Experiences with Empirical PhD Work

Prof. Dr. Barbara Paech
Institut für Informatik
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
paech@informatik.uni-heidelberg.de
Profiler Dr. Barbara Paech

- Since 18 years in HD
- before Fh IESE, Kaiserlautern
- 15 finished PhD students
- 5 ongoing PhD students

Profile Quality Engineering through Software Engineering Intelligence

Products

- SE teaching and consulting
- Requirements Engineering Method TORE
- Rationale Management Tool (with TU München)
Important Principles

- **Humans are important**
 - TORE: base requirements on the tasks of the users
 - Finished PhD: Predicting user satisfaction
 - Finished PhD: Improve communication of decisions between users and developers

- **Decision making is important**
 - Capture rationale to improve quality, communication, maintenance
 - Current PhD: Continuous decision making

- **Empirical Research is important**
 - Take problem from industry, evaluate solution in industry
 - Finished PhD: Empirical test-foci definition: base future test focus on empirical evaluation of system and process data
 - Finished PhD: Mining feature descriptions

- Finished PhD: Continuous trace capture between requirements and code
- Finished PhD: RE for decision support systems
Agenda

- Motivation: Ideal SE research
- Existing approaches
- Our PhD approach
- Example PhD
- Open Questions
Hevner et al: Design Science Research

Figure 2. Information Systems Research Framework

Environment
- People
 - Roles
 - Capabilities
 - Characteristics
- Organizations
 - Strategies
 - Structure & Culture
 - Processes
- Technology
 - Infrastructure
 - Applications
 - Communications
 - Architecture
 - Development Capabilities

Relevance
- Business Needs

IS Research
- Develop/Build
 - Theories
 - Artifacts
- Justify/Evaluate
 - Analytical
 - Case Study
 - Experimental
 - Field Study
 - Simulation

Rigor
- Applicable Knowledge
- Refine

Knowledge Base
- Foundations
 - Theories
 - Frameworks
 - Instruments
 - Constructs
 - Models
 - Methods
 - Instantiations
- Methodologies
 - Data Analysis Techniques
 - Formalisms
 - Measures
 - Validation Criteria

Application in the Appropriate Environment

Additions to the Knowledge Base

[Hevner et al 2004]
Ideal Software Engineering Research

- Observe SE Practice (to identify relevant problems)
 - Create a justified theory for practice problems
 - Create a justified theory for the solution idea

- Design solution (Method/Tool)

- Validate solution
 - First in academia, then in practice
 - Create a justified theory for the solution (to learn for the next problem)

Exp1: Establishing a problem can be a PhD on its own.

Exp2: Designing the solution is often the simpler part. Validation must be considered right from the beginning.
Similarity to ideal SE practice

Research
- Observe SE Practice (to identify relevant problems)
 - Theory for practice problems
 - Theory for the solution idea
- Design solution (Method/Tool)
- Validate solution
 - First in academia, then in practice
 - Create a justified theory for the solution (to learn for the next problem)

Practice
- Observe business practice (software usage)
 - Theory for problems (business case)
 - Theory for solution (software specification)
- Build software
- Prototype, Test
- Operation in production environment
- Observe benefits and effects to learn for next release
Gorschek et al: Technology Transfer

Exp3: Clients do not like to spend much time on AS-IS study

Exp4: There is often a problem idea, before there is a client. Finding the right client is difficult.

Exp5: Solution release is too much for a PhD

Main goal: to help client
Distinguish validation in academia and industry in several stages

[Gorschek et al 2006]
Wieringa: Technical Action Research

Exp4: Problem idea

Exp6: It is difficult to balance the clients interest and the empirical research goal

Several goals:
Distinguish overall research, validation research and improvement for client

Exp5: No solution release
Exp7: Several small studies easier than one big study, possibly with several clients

Exp8: Full pilot project is often difficult
Our PhD approach: Combination of Small Studies

General Improvement

1. Problem Idea
2. Establish Problem
3. Design Solution
4. Validate Solution

Empirical Research

1. RQ1: Is this really a problem and what are the requirements on the solution?
 - SLR

2. RQ2: How to fulfill the requirements on the solution?
 - SLR

3. RQ3: Is this a valid solution?
 - Academic Study

Client (s) (improvement)

1. State-of-the-Practice / AS-IS Study
2. Idea Study
3. TO-BE Study

Notes

- SLR = Systematic literature review
- Temporal sequence
- Containment
- Optional containment

Barbara Paech

© 2020 Institut für Informatik, Ruprecht-Karls-Universität Heidelberg
The TO-BE study should apply the solution to a practice project.

It involves static and dynamic analysis of the solution.

If it is not possible that the client applies the solution in an ongoing project (moderated by the researcher), the researcher applies the solution

- In an ongoing project OR
- Retrospectively on past project data OR
- In a simulation extrapolating the ongoing project

Exp9: Documented project data often not sufficient for retrospective validation, especially for a method with many human activities
Simulated method application

- 3 steps of the simulated method application
 - AS-IS study of the actual project
 - Understand the status wrt. the problem (how urgent is the problem)
 - Understand the status wrt potential solution (how easy is it to apply the solution)
 - Sketch the method application on the actual project data (changing the actual project as little as possible)
 - Discuss the simulation with the project participants

Exp10: Application based on an ongoing project is more convincing than on „old“ project data.
User-Developer Communication in Large Scale IT Projects

- Published in ICSE Chase, REFSQ and Empirical Software Engineering Journal
- Problem from own experience in industry
- Solution is a method
Establish Problem and First Design Ideas

Chapter 3 - Understanding the Influence of UPI System Success (State-of-the-Art)

RQ1: Does increased user participation and involvement (UPI) leads to increased system success? (Knowledge Problem)

Results: Meta-analysis on empirical evidence on the effect of UPI on system success

RQ2: What are the characteristics of methods aiming to increase UPI in software development? (Knowledge Problem)

Results: Analysis of existing methods

Chapter 4 – User-Developer Communication in Large-Scale IT Projects

RQ3: How and how well is user-developer communication supported in large-scale IT projects (with a focus on the decisions which are made in the design and implementation phase and their rationale)? (Knowledge Problem)

Results: State-of-practice of UDC in large-scale IT projects

Chapter 5 – A Descriptive Classification for End User-Relevant Decisions of Large-Scale IT Projects

RQ4: What are user-relevant decisions in the design and implementation phase? (Knowledge Problem)

Results: Descriptive classification of user-relevant decisions
<table>
<thead>
<tr>
<th>Part III - Treatment Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 – Requirement for the UDC-LSI Method</td>
</tr>
<tr>
<td>Results: Conceptual framework and requirements for the UDC - LSI Method</td>
</tr>
<tr>
<td>Chapter 7 – The UDC-LSI Method to Enhance User-Developer Communication in Large-Scale IT Projects</td>
</tr>
<tr>
<td>Results: UDC - LSI Method for large-scale IT projects using traditional methods in customer-specific software development to increase system success</td>
</tr>
</tbody>
</table>
First Design Validation and Implementation Validation

Chapter 8 - Expert Assessment of UDC-LSI Method - Results of an Interview Series with Practice Experts

RQ5: What is the potential of the UDC-LSI method to improve system success? (Knowledge Problem)

Results: Design validation incl. benefits and obstacle for implementation of UDC-LSI method

Chapter 9 - Evaluation of the UDC-LSI method – the iPeople Case Study

RQ6: What effects with regards to usability and utility has the UDC-LSI in large-scale IT project? In particular?: (Knowledge Problem)

Results: Confirmation of feasibility, effectiveness, efficiency, and acceptance, of UDC-LSI method

Simulated application
Many further questions

- Wieringas book gives very good advice on how to do the empirical work, however…
- How to scope the SLR?
 - balance research question, search terms and amount of papers
- How to do the AS-IS study, if client has no time?
 - Similar to problems in requirements elicitation for software….
- How to describe a method in detail?
 - Similar to problems in requirements specification and validation
 - How to get judgement of future users before they can use the software
- Which criteria describe the validity of the solution?
 - checklist
- How to consider which threats to validity?
 - checklist
Quality of the solution

- Many different terms: utility, usability, acceptance,…
- We use
 - **Feasibility**: can the solution really be applied in practice (by other people)?
 - **Effectiveness**: does the solution application lead to the required effects?
 - **Efficiency**: is the overhead by the solution application worth the effect?
 - **Acceptance**: do the practitioners accept the solution?
 - E.g. using Technology Acceptance Model (TAM)
 - Perceived ease of use, perceived usefulness, attitude towards using, behavioral intention towards using
Design Science research is important for an SE PhD
Complete technology transfer often not possible
Distinguish improvement and research
Combine different small studies for different purposes
If unavoidable, validate solution partially (e.g. through simulation)

It is difficult to generalize from individual PhDs....