
Objektorientierte Programmierung mit C++ Dr. K. Ahrens

60

1. Elementares C++

1.2. Datentypen

Referenztypen:
Eine Neuerung gegenüber C, Aliasnamen für Objekte mit Referenzsemantik
ähnlich zur primären Objektsemantik von Java, aber
– für alle Typen (incl. build-in Typen)
– es gibt KEINE 'Nullreferenz'

in Anlehnung an die Syntax von Zeigervereinbarungen
int i=42;
// int& ri;
// ERROR: Referenzen MÜSSEN initialisiert werden
int& ri = i; // i alias ri

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

61

1. Elementares C++

1.2. Datentypen

Konstantentypen:
Ein Typ T wird durch den Präfix const zu einem Konstantentyp, Objekte
solcher Typen sind unveränderlich (per statischer Kontrolle durch den
Compiler)

für Argumente von Funktionen bedeutet dies, dass die Funktion
1. die (nachprüfbare) Zusicherung gibt, dieses Argument NICHT zu verändern
2. beim Aufruf für das Argument auch konstante Objekte benutzt werden

dürfen (was für non-const nicht erlaubt ist, weil ja die Funktion keine Zusicherung
gegeben hat und daher ...)

const double pi=3.1415926; double someMathFkt(double);
const double x = someMathFkt(pi); // call by value !

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

62

1. Elementares C++

1.2. Datentypen (Konstantentypen)

Konstante Objekte müssen initialisiert werden (weil eine spätere
Zuweisung nicht erlaubt ist)

konstante Objekte können auch über Zeiger nicht verändert werden, weil
die Adresse einer const T Variablen vom Typ const T* ist

double* dp = π // ERROR
*dp = 33.3;

const double* cdp = π
*cdp = 33.3; // ERROR

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

63

1. Elementares C++

1.2. Datentypen (Konstantentypen)

bei Zeigern ist wohl zu unterscheiden zwischen der constness des
Zeigers selbst

int * const constant_pointer = &someint;

und der constness des referenzierten Objektes (Feldes)

const int * pointer_to_constant;

const int * const constant_pointer_to_constant = …;

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

64

1. Elementares C++

1.2. Datentypen (Konstantentypen)

Referenzen (selbst) sind implizit const, es gibt jedoch Referenzen auf
Konstantentypen

Wichtigste Anwendung: call by reference in-parameter
T t;
void foo(T& pt)
{
 pt.change();
}
foo(t); // call by reference: t itself changes
const T ct;
foo(ct); // ERROR

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

65

1. Elementares C++

1.2. Datentypen (Konstantentypen)

void foo(const T& pct)
{
 // pct.change(); ERROR
 pct.read_only();
}

const T ct;
foo(ct); // OK

class X{ public: void foo() const; void bar(); };
X x; const X cx; x.foo(); x.bar();
cx.foo(); /* OK */ cx.bar() // ERROR !

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

66

1. Elementares C++

1.2. Datentypen

Strukturtypen (a la C):

heterogene Wertekombinationen unter einem Typnamen

struct Person {
 std::string name;
 int age;
 double salary;
 long phone_no;
} p;

name
age:
salary:
phone_no:

sizeof(Person)
abhängig vom alignment !

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

67

1. Elementares C++

1.2. Datentypen (Strukturtypen)

p.name = "Willibald Wusel";

Kombination mit Zeigern (dynamische Strukturobjekte)

Person* aNewPerson = new Person;
aNewPerson->age = 32;
// short hand for:
(* aNewPerson).age = 32;

Kombination mit Referenzen
void raise_salary (Person &p, int percentage) {
 p.salary *= 1 + percentage/100.0; // ? why .0 ?
}
raise_salary (p, 3);

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

68

1. Elementares C++

1.2. Datentypen (Strukturtypen)

Strukturen sind in C++ de facto Klassen ohne Memberfunktionen und
öffentlichem Zugriff auf alle Memberdaten!

struct Person {
 std::string name;
 int age;
 double salary;
 long phone_no;
};

class Person {
public:
 std::string name;
 int age;
 double salary;
 long phone_no;
};

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

69

1. Elementares C++

1.2. Datentypen (Strukturtypen - Unions)

Es gibt noch die C-Variante, bei der alle Bestandteile eines solchen
zusammengesetzten Typs an der gleichen Adresse (am Objektanfang) beginnen -
> sog. Unions (spielen in C++ eine untergeordnete Rolle !)

union HACK {
 double d; // double precision ieee
 struct {
 unsigned :1,
 e:11;
 } s;
};
int NaN(double x) {
 HACK h; h.d = x; return h.s.e == 0x7ff;
}

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

70

1. Elementares C++

1.3. Ausdrücke

ähnlich zu Java:
– Literale und Variablen 1.234 "Huhh..." i
– Anwendung von Operatoren auf Operanden

x+1 std::cout<<4 x=y foo(3,bar(7),&a) p->name[0]

ABER:
– Reihenfolge der Berechnung undefiniert (bis auf && und ||) !
– jeder Ausdruck liefert einen Wert (ggf. den leeren Wert bei Funktionen mit

Rückgabetyp void), ein nicht-leerer Wert kann, muss aber nicht weiterverwendet
werden (wie in Java)

– ein Ausdruck wird durch nachfolgendes Semikolon zu einer Anweisung !

f(3); // Ergebnis wird ignoriert
int k=f(4); // Ergebnis wird weiterverwendet

int main() { 42; } // KORREKTES C++ ???

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

71

1. Elementares C++

1.4. Funktionen

– Memberfunktionen von Klassen oder außerhalb von Klassen (global, bzw.
namespace-lokal)

– Unterscheidung in Deklaration (Angabe der Signatur) und Definition !

void foo(int); // optional: Parameternamen
void foo(int x) { }
class X { public: int foo(); // int foo(void) !
 X& bar() {return *this; }
 X(int); };
X::X(int i){ }

– jede Definition ist auch eine Deklaration
– Jede Funktion muss deklariert sein, bevor sie verwendet wird; Deklaration

einer Memberfunktionen wirkt ab Klassenbeginn

