Objektorientierte Programmierung mit C++ Dr. K. Ahrens o
Informatik

1. Elementares C++

1.2. Datentypen

Referenztypen:

Eine Neuerung gegeniiber C, Aliasnamen fur Objekte mit Referenzsemantik
ahnlich zur primaren Objektsemantik von Java, aber
— flr alle Typen (incl. build-in Typen)

— es gibt KEINE 'Nullreferenz’

in Anlehnung an die Syntax von Zeigervereinbarungen

int i=42;

// inté& ri;

// ERROR: Referenzen MUSSEN initialisiert werden

int& ri = i; // i alias ri

stemanalys 60

Objektorientierte Programmierung mit C++ Dr. K. Ahrens s |
Informatik

1. Elementares C++

1.2. Datentypen

Konstantentypen:

Ein Typ T wird durch den Prafix const zu einem Konstantentyp, Objekte

solcher Typen sind unveranderlich (per statischer Kontrolle durch den
Compiler)

fur Argumente von Funktionen bedeutet dies, dass die Funktion
1. die (nachprufbare) Zusicherung gibt, dieses Argument NICHT zu verandern

2. beim Aufruf fir das Argument auch konstante Objekte benutzt werden

dlrfen (was fur non-const nicht erlaubt ist, weil ja die Funktion keine Zusicherung
gegeben hat und daher ...)

const double pi=3.1415926; double someMathFkt (double) ;
const double x = someMathFkt(pi); // call by value '

stemanalys 61

Objektorientierte Programmierung mit C++ Dr. K. Ahrens o
Informatik

1. Elementares C++

1.2. Datentypen (Konstantentypen)

Konstante Objekte mussen initialisiert werden (weil eine spatere
Zuweisung nicht erlaubt ist)

konstante Objekte konnen auch Uber Zeiger nicht verandert werden, weil
die Adresse einer const T Variablen vom Typ const T* ist

double* dp = π // ERROR
*dp = 33.3;

const double* cdp = π
*cdp = 33.3; // ERROR

62

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

1. Elementares C++

1.2. Datentypen (Konstantentypen)

bei Zeigern ist wohl zu unterscheiden zwischen der constness des
Zeigers selbst

int * const constant pointer = &someint;
und der constness des referenzierten Objektes (Feldes)

const int * pointer to constant;

const int * const constant pointer to constant = ..;

63

stemanalys:

Objektorientierte Programmierung mit C++ Dr. K. Ahrens o]

1. Elementares C++

1.2. Datentypen (Konstantentypen)

Referenzen (selbst) sind implizit const, es gibt jedoch Referenzen auf
Konstantentypen

Wichtigste Anwendung: call by reference in-parameter
T t;
void foo (T& pt)
{
pt.change() ;

}
foo(t); // call by reference: t itself changes

const T ct;
foo(ct); // ERROR

64

stemanalys:

Objektorientierte Programmierung mit C++ Dr. K. Ahrens Humboldt
1. Elementares C++ Lotormatlic
1.2. Datentypen (Konstantentypen)
void foo(const T& pct)
{
// pct.change(); ERROR
pct.read only() ;
}
const T ct;
foo(ct); // OK
class X{ public: void foo() const; wvoid bar(); };
X x; const X cx; x.foo(); x.bar();
cx.foo(); /* OK */ cx.bar() // ERROR !
65

Objektorientierte Programmierung mit C++ Dr. K. Ahrens o
Informatik

1. Elementares C++

1.2. Datentypen
Strukturtypen (a la C):

heterogene Wertekombinationen unter einem Typnamen

struct Person { —. 81zef)f(l.)erson) | '
std::string name; 0 abhangig vom alignment '
int age; age: ...
double salary; salary:
long phone_no; phone no:

} P

stemanalys: 66

Humboldt

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

Universitat
Informatik
1. Elementares C++

1.2. Datentypen (Strukturtypen)

p.name = "Willibald Wusel";

Kombination mit Zeigern (dynamische Strukturobjekte)

Person* aNewPerson = new Person;
aNewPerson->age = 32;

// short hand for:

(* aNewPerson) .age = 32;

Kombination mit Referenzen

void raise salary (Person &p, int percentage) {
p.salary *= 1 + percentage/100.0; // ? why .0 ?

}

raise salary (p, 3);

stTemanalyse 67

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

Universitat

1. Elementares C++

1.2. Datentypen (Strukturtypen)

Strukturen sind in C++ de facto Klassen ohne Memberfunktionen und
offentlichem Zugriff auf alle Memberdaten!

68

vstemanalyse:l

Objektorientierte Programmierung mit C++ Dr. K. Ahrens =

1. Elementares C++

1.2. Datentypen (Strukturtypen - Unions)

Es gibt noch die C-Variante, bei der alle Bestandteile eines solchen
zusammengesetzten Typs an der gleichen Adresse (am Objektanfang) beginnen -
> s0g. Unions (spielen in C++ eine untergeordnete Rolle !)

union HACK {
double d; // double precision ieee

struct {
unsigned :1,
e:11;

} s;

};
int NaN(double x) {
HACK h; h.d = x; return h.s.e == 0x7ff;

}

69

stemanalys:

Objektorientierte Programmierung mit C++ Dr. K. Ahrens "

Humboldt

Universitat

1. Elementares C++ dnformatik

1.3. Ausdrucke

ahnlich zu Java:
— Literale und Variablen 1.234 "Huhh..." i

— Anwendung von Operatoren auf Operanden
x+1 std::cout<<4 x=y foo(3,bar(7),6&a) p->name|[0]

ABER:

— Reihenfolge der Berechnung undefiniert (bis auf && und ||) !

— jeder Ausdruck liefert einen Wert (ggf. den leeren Wert bei Funktionen mit

Rlckgabetyp void), ein nicht-leerer Wert kann, muss aber nicht weiterverwendet
werden (wie in Java)

— ein Ausdruck wird durch nachfolgendes Semikolon zu einer Anweisung !

£(3); // Ergebnis wird ignoriert
int k=£f(4); // Ergebnis wird weiterverwendet

int main() { 42; } // KORREKTES C++ 2?27

70

Objektorientierte Programmierung mit C++ Dr. K. Ahrens '_» mboldt

1. Elementares C++

1.4. Funktionen

— Memberfunktionen von Klassen oder auBerhalb von Klassen (global, bzw.
namespace-lokal)

- Unterscheid’Llfrlg\in_}eklar tion_(Angabe der Signatur) und Definition !

rameternamen 4_’//

L=

void foo(int); // optional:
void foo(int x) { }
class X { public: int foo()

X::X(int 1){ } —

— jede Definition ist auch eine Deklaration

— Jede Funktion muss deklariert sein, bevor sie verwendet wird; Deklaration
einer Memberfunktionen wirkt ab Klassenbeginn

stemanalyse /1

