
Modellbasierte Softwareentwicklung (MODSOFT) 

Part II

Domain Specific Languages

Semantics
Prof. Joachim Fischer / 

Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1



prolog
(1 VL)

Introduction: languages and their aspects, modeling vs. 
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description, 
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code, 
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText, 
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and 
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and 
comparison, model evolution and co-adaption, modular 
languages with XBase, Meta Programming System (MPS)

Agenda
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Previously on MODSOFT
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Eclipse Modeling Framework
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Meta-Languages
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Concrete Meta-Languages
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Semantics
Introduction
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Different Goals of Semantics and Semantics Descriptions

▶ Programs

▶ Proving properties, calculations, simulations

▶ Descriptions/input for other existing systems
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Different Types of Semantics

▶ Operational Semantics

▶ Denotational Semantics

▶ Axiomatic Semantics

▶ Translational Semantics
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Operational Semantics

▶ The meaning of a well-formed program/model is the trace 
of computation steps. 

▶ Operational semantics is also called intensional semantics, 
because the sequence of internal computation steps (the 
“intension”) is most important.

▶ For example, two differently coded programs that both 
compute factorial have different operational semantics.

▶ Different types of operational semantics; e.g. term rewriting 
systems
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Denotational Semantics

▶ The meaning of a well-formed program/model is a function 
from input data to output data. The steps taken to calculate 
the output are unimportant; it is the relation of input to 
output that matters. 

▶ Denotational semantics is also called extensional semantics, 
because only the “extension”—the visible relation between 
input and output—matters. 

▶ Thus, two differently coded versions of factorial have the 
same denotational semantics.

▶ The assignment of meaning to programs is performed 
compositionally.
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Axiomatic Semantics

▶ A meaning of a well-formed program/model is a logical 
proposition (a “specification”) that states some property 
about the input and output.

▶ Strong ties to denotational semantics, e.g. predicate logic 
denotations of programs/models.
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Translational Semantics

▶ The meaning of a well-formed program/model is 
established via translation into a program/model of a 
different language with known semantics.
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Different Types of Semantics

▶ Operational Semantics

▶ Denotational Semantics

▶ Axiomatic Semantics

▶ Translational Semantics
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Semantics Descriptions

▶ Artifacts that describe how language instances (models/
programs) are mapped to a semantic domain.

▶ Semantics description written in a computer language to 
derive tools:

■ interpreter/simulator/debugger

■ compiler

■ code-generator

■ model transformations

▶ Different semantics descriptions languages for different 
types of semantics and semantic domains, e.g. M3Actions, 
Xtend, ATL
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Translational Semantics and MDA
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Semantics and MDA
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Semantics and DSLs
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Higher Order-Functions
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Higher Order-Functions

▶ Functions/operations/methods that take other functions/... 
as arguments

▶ List<T>.sort(comparator:(T,T)=>int): void

▶ List<T>.forAll(predicate:(T)=>boolean): boolean

▶ OCL?
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Mathematical Foundations

▶ Imperative/Procedural Programming ➡ Turing Machine

▶ higher-order functions/functional programming ➡ Lambda 
Calculus
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Lambda Calculus

▶ Syntax

 

▶ Semantics

■ alpha reduction (renaming): 

■ beta reduction (substitution):

▶ Sugar:
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�y.M )↵ �v.(M [y 7! v])

(�x.M)N )� M [x 7! N ]

term = variable

| term term

| (term)

| �variable.term

�x.(�y.yx) ⌘ �xy.yx



Lambda Calculus Examples
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T ⌘ �xy.x

F ⌘ �xy.y

if ⌘ �cte.cte

if T M N ⌘ (�cte.cte)(�xy.x) M N

) (�xy.x) M N

) M

and ⌘ �xy.(if x y F )

or ⌘ �xy.(if x T y)



Higher-Order Functions in Functional Languages

▶ Direct descendants form the lambda calculus

▶ e.g. Lisp, Scheme

▶                      ➡ (lambda(x)M)N
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Higher-Order Functions in Imperative Languages

▶ Most formal properties of lambda calculus are lost, 
especially side-effect free (functional programming) nature 
of methods and operations (functions)

▶ Different (but similar) syntax in most languages, statically 
type safe

■ C#, Groovy, Scala, Java 8

▶ Can be realized with regular methods, polymorphy and 
inheritance in most object-oriented languages

▶ Can be realized with function pointers (and no type safety) 
in languages like C
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Higher Order-Functions in Java

▶ Interfaces to declare function types

▶ Anonymous classes to define actual functions

▶ e.g. in apache commons collections or google guava
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Higher Order-Functions in Java

▶ Interfaces to declare function types

▶ Anonymous classes to define actual functions

▶ e.g. in apache commons collections or google guava
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public interface Predicate<T> {
	 boolean apply(T value);
}

public class Collections {
	 public static <T> boolean forAll(Iterable<T> iter, Predicate<T> predicate) {
	 	 for(T value: iter) {
	 	 	 if (!predicate.apply(value)) {
	 	 	 	 return false;
	 	 	 }
	 	 }
	 	 return true;
	 }
}

public class areAllLowerCase {
	 public static void main(String args[]) {
	 	 System.out.println(
	 	 	 Collections.forAll(Arrays.asList(args), new Predicate<String>() {
	 	 	 	 public boolean apply(String value) {
	 	 	 	 	 return value.toLowerCase().equals(value);
	 	 	 	 }
	 	 	 })
	 	 );
	 }
}



Java 8
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Java 8
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public class Collections {
	 public static <T> boolean forAll(Iterable<T> iter, Function<T, boolean> predicate) {
	 	 for(T value: iter) {
	 	 	 if (!predicate.apply(value)) {
	 	 	 	 return false;
	 	 	 }
	 	 }
	 	 return true;
	 }
}

public class areAllLowerCase {
	 public static void main(String args[]) {
	 	 System.out.println(
	 	 	 Collections.forAll(
              Arrays.asList(args), 
              (String v) -> v.toLowerCase().equals(v));
	 	 );
	 }
}



Scala

28

def forAll(list:List[T], predicate: T => Boolean) {
for (value <- list) {
  if (!predicate(value)) {
      return false;
  }

} 
return true;

}

println(forAll(Arrays.asList(args), v => v.toLowerCase().equals(v)));



OCL-like Internal DSL in Scala

▶ OCL-like internal Scala DSL analog to our internal Scala 
model transformation language [1]

▶ OCL collection operations mapped to Scala’s higher-order 
fuctions [2]:
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1. L. George, A. Wider, M. Scheidgen: Type-Safe Model Transformation Languages as Internal DSLs in Scala; Theory and Practice of Model 
Transformations - 5th International Conference, ICMT; 2012

2.Filip Krikava: Enrichting EMF Models with Scala; Slideshare
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context Model:
    self.ownedElements->collect(p|p.ownedElements)->size

pure OCL

Model Package
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model transformation language [1]

▶ OCL collection operations mapped to Scala’s higher-order 
fuctions [2]:
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context Model:
    self.ownedElements->collect(p|p.ownedElements)->size

pure OCL

def numberOfFirstPackageLevelTypes(self: Model): Int =
    self.getOwnedElements().collect(p=>p.getOwnedElements()).size()

OCL-like expression in Scala
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With great power comes great responsibility

▶ Code that uses higher-order functions can be very very hard to 
read and maintain

▶ Higher-order functions that are used according to certain well 
known patterns can be very readable and still be powerful

■ filters, predicate logical functions, transformations, etc. for complex 
datatype classes like collections

■ callbacks, event handlers, etc.

▶ Avoid anonymous constructs: verbose code has its merits, 
names function as build in documentation

▶ There is a reason why complex, robust, and commercially 
successful software software is not written in Lisp, Scheme, or 
Haskel. (Please don’t say emacs)
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Higher-Order Functions and Semantics

▶ Higher-Order functions for list operations greatly improves 
the ability to navigate and query EMF-models

▶ Most languages that require model navigation/queries have 
higher-order function constructs, e.g. collections in OCL
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Operational Semantics
with EMF
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Approaches to Operational Semantics with EMF

▶ Programming

■ Java or other JRE compatible languages (e.g. Groovy, Scala)

■ other languages via XMI/XML

▶ Action languages

■ imperative description of meta-model method implementations

◆ e.g. UML Activities and UML Action Language

▶ Graph rewriting

■ declarative description of execution steps

■ semantics as a series of in-place model-transformations 

■ like term rewriting on context-free syntax (terms), but on EMF-
models (graphs)

33



Abstract Syntax and Runtime Concepts

▶ Abstract syntax covers all concepts that can be used to write 
models/programs before the model/program is executed

▶ Runtime concepts are necessary to model program/model 
state while the model/program is executed

▶ Runtime concepts can be realized within or outside of EMF

▶ Runtime concepts are often instances of syntax concepts

■ remember Multi-Level-Meta-Modeling with ambiguous 
instantiation and replication of concepts
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Abstract Syntax and Runtime Concepts
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Meta-Model Operations and Operational Semantics

▶ EMF classes can declare operations

▶ Main operation to start interpretation

▶ Model as a start configuration of objects

▶ operation implementations can create and destroy model 
object

▶ syntax becomes runtime state
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Implementation of EMF operations

▶ Java

▶ delegation to external implementations in other languages

▶ e.g. action languages

▶ e.g. M3Actions

■ UML activities to choreograph actions on the model

■ Actions are

◆ instantiation

◆ modification of value sets

◆ destruction of objects

◆ call operations

■ OCL can be used to describe expressions to compute decisions, values, and 
operation arguments

■ Actions can be reversed

37



Example Semantics with Actions (MActions)
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Traces and Debugging

▶ Only actions change the model

▶ It’s good practice to only modify the runtime-part of a model 
and retain the user model/program 

▶ Actions can be recorded as traces of the execution

■ reverse actions to go backwards

▶ Intermediate models can be stored (compare heap dump in 
traditional programming)

▶ generated EMF edit and notifications can be used to create 
views on the runtime for a custom debugger

▶ no easy out of the box debugging

■ no separation between model/program and semantics description
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Traces and Debugging
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Traces and Debugging

41

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}
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Traces and Debugging
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Using the Environment

▶ Reasonable models/programs need to interact with the 
environment when simulated/run

■ Input/output

■ Interaction with eclipse or other GUI elements

■ Interaction with databases

■ Simulation visualization

■ ...

▶ EMF is not self-contained: use operations and datatypes to 
connect EMF to the rest of the Java world

▶ notations can be used to visualize runtime state
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Summary

▶ Add runtime-concepts to the meta-model

▶ Declare operations

▶ Implement operations, e.g. with Java or M3Actions

▶ Interpreters need to load the model/program and call the 
main operation.

▶ Lots of possibilities to debug and to build custom 
debuggers, no simple out of the box solution
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Translational Semantics
with EMF
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Types of “Model Transformations”

▶ Operational semantics

■ Interpretation (model-to-execution)

▶ Translational semantics

■ Code-generation (model-to-code)

■ Model-transformation (model-to-model)

◆ new target

◆ existing target

◆ source=target, in-place transformation

◆ further classification necessary
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Elaboration and Translational Semantics

▶ Generated artifacts can be modified or extended after generation

▶ Elaboration allows to vary the generated semantics, i.e. allows variance 
in the semantics description 

▶ Generated code can be modified, generated models can be extended

▶ Elaboration is paramount for practical abstraction

■ more flexibility for language users

■ smaller, more coherent, less expensive DSLs for language engineers

■ mitigates some problems of external DSLs (when compared to internal DSLs)

▶ Elaboration and re-generation

■ protected regions

■ elaboration by extension, if the target language supports external extension of 
completed entities like e.g. in most object-oriented languages 
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Elaboration and Translational Semantics
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Translational Semantics with EMF

▶ Programming

■ Java or other JRE compatible languages

■ other programming languages via XMI/XML

▶ Languages for code-generation

■ templates, e.g. Jet

■ programming languages with rich-strings, e.g. xtend

▶ Languages for model-to-model transformations

■ imperative, e.g. ATL

■ declarative, e.g. (triple graph) grammars 
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Operational vs. Translational

▶ self-contained

▶ requires a specific runtime 
environment almost all the time

▶ debuggable

▶ platform specific, requires model 
processing on that platform

▶ interpreters can be 
parameterized for semantic 
variations

▶ no generated artifacts, no 
elaboration of generated artifacts

▶ no generated artifacts that need 
to be maintained 
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▶ target language dependent

▶ sometimes requires  specific 
runtime environment

▶ hard to debug

▶ “platform independent”, platform 
does not need to process model

▶ model transformations can be 
parameterized for semantic 
variations

▶ generated code can be elaborated 
for semantic variations

▶ generated code is another asset 
to maintain



Code-Generation vs. Model-Transformartions

▶ No guaranties that 
generated artifacts are well-
formed or even 
semantically sound

▶ In general, no properties 
can be formally proved

▶ Structural differences 
between source and target 
possible

▶ Generated artifacts can be 
syntactically elaborated 
(there is concrete syntax)
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▶ generated artifacts are at least 
syntactically sound (no concrete 
syntax involved)

▶ In theory and for some 
techniques, some properties 
(e.g. retention of properties) can 
be proved

▶ Its harder to create structurally 
different targets with most 
model transformation languages

▶ Elaboration of generated 
artifacts only via external 
extension


