
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Semantics
Prof. Joachim Fischer /

Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Previously on MODSOFT

3

Eclipse Modeling Framework

4

structure

EMFnotation semantics

Repository

Revision Diff

Compilation
Unit

* *

prevnext

«relation,
fragmentation»

* *

Meta-Languages

5

editor/
parser

repository/
constraint checker

compiler/
simulator/
intepreter

instance representation
(program, model, description)

instance semantics
(running software, results)

la
ng

ua
ge

 to
ol

s

Meta-Languages

5

editor/
parser

repository/
constraint checker

compiler/
simulator/
intepreter

instance representation
(program, model, description)

instance semantics
(running software, results)

la
ng

ua
ge

 to
ol

s notationmeta tools

structuremeta tools

semanticsmeta tools

human input

generated output

Concrete Meta-Languages

6

editor xText grammarxText

repository Ecore meta-modelEMF

code-generator xTend programxTend

textual DSL programm/model

Java code

la
ng

ua
ge

 to
ol

s

human input

generated output

Semantics
Introduction

7

Different Goals of Semantics and Semantics Descriptions

▶ Programs

▶ Proving properties, calculations, simulations

▶ Descriptions/input for other existing systems

8

Different Types of Semantics

▶ Operational Semantics

▶ Denotational Semantics

▶ Axiomatic Semantics

▶ Translational Semantics

9

Operational Semantics

▶ The meaning of a well-formed program/model is the trace
of computation steps.

▶ Operational semantics is also called intensional semantics,
because the sequence of internal computation steps (the
“intension”) is most important.

▶ For example, two differently coded programs that both
compute factorial have different operational semantics.

▶ Different types of operational semantics; e.g. term rewriting
systems

10

Denotational Semantics

▶ The meaning of a well-formed program/model is a function
from input data to output data. The steps taken to calculate
the output are unimportant; it is the relation of input to
output that matters.

▶ Denotational semantics is also called extensional semantics,
because only the “extension”—the visible relation between
input and output—matters.

▶ Thus, two differently coded versions of factorial have the
same denotational semantics.

▶ The assignment of meaning to programs is performed
compositionally.

11

Axiomatic Semantics

▶ A meaning of a well-formed program/model is a logical
proposition (a “specification”) that states some property
about the input and output.

▶ Strong ties to denotational semantics, e.g. predicate logic
denotations of programs/models.

12

Translational Semantics

▶ The meaning of a well-formed program/model is
established via translation into a program/model of a
different language with known semantics.

13

Different Types of Semantics

▶ Operational Semantics

▶ Denotational Semantics

▶ Axiomatic Semantics

▶ Translational Semantics

14

Semantics Descriptions

▶ Artifacts that describe how language instances (models/
programs) are mapped to a semantic domain.

▶ Semantics description written in a computer language to
derive tools:

■ interpreter/simulator/debugger

■ compiler

■ code-generator

■ model transformations

▶ Different semantics descriptions languages for different
types of semantics and semantic domains, e.g. M3Actions,
Xtend, ATL

15

Translational Semantics and MDA

16

PIM

PSM PSM

Code Code

Design

UML

UML + P1 UML + P2

Java C++

Petri-Nets

Semantics and MDA

17

PIM

PSM PSM

Code Code

Design Checking

Simulation

Test Code

Semantics and DSLs

18

DSL Validation

CheckingPetri-Nets

Simulation
Language Simulation

Java

C++

Java Tests

C++ Tests

Higher Order-Functions

19

Higher Order-Functions

▶ Functions/operations/methods that take other functions/...
as arguments

▶ List<T>.sort(comparator:(T,T)=>int): void

▶ List<T>.forAll(predicate:(T)=>boolean): boolean

▶ OCL?

20

Mathematical Foundations

▶ Imperative/Procedural Programming ➡ Turing Machine

▶ higher-order functions/functional programming ➡ Lambda
Calculus

21

Lambda Calculus

▶ Syntax

▶ Semantics

■ alpha reduction (renaming):

■ beta reduction (substitution):

▶ Sugar:

22

�y.M)↵ �v.(M [y 7! v])

(�x.M)N)� M [x 7! N]

term = variable

| term term

| (term)

| �variable.term

�x.(�y.yx) ⌘ �xy.yx

Lambda Calculus Examples

23

T ⌘ �xy.x

F ⌘ �xy.y

if ⌘ �cte.cte

if T M N ⌘ (�cte.cte)(�xy.x) M N

) (�xy.x) M N

) M

and ⌘ �xy.(if x y F)

or ⌘ �xy.(if x T y)

Higher-Order Functions in Functional Languages

▶ Direct descendants form the lambda calculus

▶ e.g. Lisp, Scheme

▶ ➡ (lambda(x)M)N

24

(�x.M) N

Higher-Order Functions in Imperative Languages

▶ Most formal properties of lambda calculus are lost,
especially side-effect free (functional programming) nature
of methods and operations (functions)

▶ Different (but similar) syntax in most languages, statically
type safe

■ C#, Groovy, Scala, Java 8

▶ Can be realized with regular methods, polymorphy and
inheritance in most object-oriented languages

▶ Can be realized with function pointers (and no type safety)
in languages like C

25

Higher Order-Functions in Java

▶ Interfaces to declare function types

▶ Anonymous classes to define actual functions

▶ e.g. in apache commons collections or google guava

26

Higher Order-Functions in Java

▶ Interfaces to declare function types

▶ Anonymous classes to define actual functions

▶ e.g. in apache commons collections or google guava

26

public interface Predicate<T> {
	 boolean apply(T value);
}

public class Collections {
	 public static <T> boolean forAll(Iterable<T> iter, Predicate<T> predicate) {
	 	 for(T value: iter) {
	 	 	 if (!predicate.apply(value)) {
	 	 	 	 return false;
	 	 	 }
	 	 }
	 	 return true;
	 }
}

public class areAllLowerCase {
	 public static void main(String args[]) {
	 	 System.out.println(
	 	 	 Collections.forAll(Arrays.asList(args), new Predicate<String>() {
	 	 	 	 public boolean apply(String value) {
	 	 	 	 	 return value.toLowerCase().equals(value);
	 	 	 	 }
	 	 	 })
);
	 }
}

Java 8

27

Java 8

27

public class Collections {
	 public static <T> boolean forAll(Iterable<T> iter, Function<T, boolean> predicate) {
	 	 for(T value: iter) {
	 	 	 if (!predicate.apply(value)) {
	 	 	 	 return false;
	 	 	 }
	 	 }
	 	 return true;
	 }
}

public class areAllLowerCase {
	 public static void main(String args[]) {
	 	 System.out.println(
	 	 	 Collections.forAll(
 Arrays.asList(args),
 (String v) -> v.toLowerCase().equals(v));
);
	 }
}

Scala

28

def forAll(list:List[T], predicate: T => Boolean) {
for (value <- list) {
 if (!predicate(value)) {
 return false;
 }

}
return true;

}

println(forAll(Arrays.asList(args), v => v.toLowerCase().equals(v)));

OCL-like Internal DSL in Scala

▶ OCL-like internal Scala DSL analog to our internal Scala
model transformation language [1]

▶ OCL collection operations mapped to Scala’s higher-order
fuctions [2]:

29

1. L. George, A. Wider, M. Scheidgen: Type-Safe Model Transformation Languages as Internal DSLs in Scala; Theory and Practice of Model
Transformations - 5th International Conference, ICMT; 2012

2.Filip Krikava: Enrichting EMF Models with Scala; Slideshare

http://dl.acm.org/citation.cfm?id=1555078
http://dl.acm.org/citation.cfm?id=1555078
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x

OCL-like Internal DSL in Scala

▶ OCL-like internal Scala DSL analog to our internal Scala
model transformation language [1]

▶ OCL collection operations mapped to Scala’s higher-order
fuctions [2]:

29

context Model:
 self.ownedElements->collect(p|p.ownedElements)->size

pure OCL

Model Package
Abstract
Type

Declaration

ownedElements

ownedElements

ownedPackages

*

*

*

1. L. George, A. Wider, M. Scheidgen: Type-Safe Model Transformation Languages as Internal DSLs in Scala; Theory and Practice of Model
Transformations - 5th International Conference, ICMT; 2012

2.Filip Krikava: Enrichting EMF Models with Scala; Slideshare

http://dl.acm.org/citation.cfm?id=1555078
http://dl.acm.org/citation.cfm?id=1555078
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x

OCL-like Internal DSL in Scala

▶ OCL-like internal Scala DSL analog to our internal Scala
model transformation language [1]

▶ OCL collection operations mapped to Scala’s higher-order
fuctions [2]:

29

context Model:
 self.ownedElements->collect(p|p.ownedElements)->size

pure OCL

def numberOfFirstPackageLevelTypes(self: Model): Int =
 self.getOwnedElements().collect(p=>p.getOwnedElements()).size()

OCL-like expression in Scala

Model Package
Abstract
Type

Declaration

ownedElements

ownedElements

ownedPackages

*

*

*

1. L. George, A. Wider, M. Scheidgen: Type-Safe Model Transformation Languages as Internal DSLs in Scala; Theory and Practice of Model
Transformations - 5th International Conference, ICMT; 2012

2.Filip Krikava: Enrichting EMF Models with Scala; Slideshare

http://dl.acm.org/citation.cfm?id=1555078
http://dl.acm.org/citation.cfm?id=1555078
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x
http://dx.doi.org/10.1007/s10618-008-0118-x

With great power comes great responsibility

▶ Code that uses higher-order functions can be very very hard to
read and maintain

▶ Higher-order functions that are used according to certain well
known patterns can be very readable and still be powerful

■ filters, predicate logical functions, transformations, etc. for complex
datatype classes like collections

■ callbacks, event handlers, etc.

▶ Avoid anonymous constructs: verbose code has its merits,
names function as build in documentation

▶ There is a reason why complex, robust, and commercially
successful software software is not written in Lisp, Scheme, or
Haskel. (Please don’t say emacs)

30

Higher-Order Functions and Semantics

▶ Higher-Order functions for list operations greatly improves
the ability to navigate and query EMF-models

▶ Most languages that require model navigation/queries have
higher-order function constructs, e.g. collections in OCL

31

Operational Semantics
with EMF

32

Approaches to Operational Semantics with EMF

▶ Programming

■ Java or other JRE compatible languages (e.g. Groovy, Scala)

■ other languages via XMI/XML

▶ Action languages

■ imperative description of meta-model method implementations

◆ e.g. UML Activities and UML Action Language

▶ Graph rewriting

■ declarative description of execution steps

■ semantics as a series of in-place model-transformations

■ like term rewriting on context-free syntax (terms), but on EMF-
models (graphs)

33

Abstract Syntax and Runtime Concepts

▶ Abstract syntax covers all concepts that can be used to write
models/programs before the model/program is executed

▶ Runtime concepts are necessary to model program/model
state while the model/program is executed

▶ Runtime concepts can be realized within or outside of EMF

▶ Runtime concepts are often instances of syntax concepts

■ remember Multi-Level-Meta-Modeling with ambiguous
instantiation and replication of concepts

34

Abstract Syntax and Runtime Concepts

35

Meta-Model Operations and Operational Semantics

▶ EMF classes can declare operations

▶ Main operation to start interpretation

▶ Model as a start configuration of objects

▶ operation implementations can create and destroy model
object

▶ syntax becomes runtime state

36

Implementation of EMF operations

▶ Java

▶ delegation to external implementations in other languages

▶ e.g. action languages

▶ e.g. M3Actions

■ UML activities to choreograph actions on the model

■ Actions are

◆ instantiation

◆ modification of value sets

◆ destruction of objects

◆ call operations

■ OCL can be used to describe expressions to compute decisions, values, and
operation arguments

■ Actions can be reversed

37

Example Semantics with Actions (MActions)

38

Traces and Debugging

▶ Only actions change the model

▶ It’s good practice to only modify the runtime-part of a model
and retain the user model/program

▶ Actions can be recorded as traces of the execution

■ reverse actions to go backwards

▶ Intermediate models can be stored (compare heap dump in
traditional programming)

▶ generated EMF edit and notifications can be used to create
views on the runtime for a custom debugger

▶ no easy out of the box debugging

■ no separation between model/program and semantics description

39

Traces and Debugging

40

Traces and Debugging

41

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

Traces and Debugging

41

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

Traces and Debugging

41

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

	 // ...
	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 for (Place p : t.getSrc())
	 	 	 	 consume(p);
	 	 	 for (Place p : t.getSnk())
	 	 	 	 produce(p);
	 	 }
	 }

	 // ...

Traces and Debugging

41

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

	 // ...
	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 for (Place p : t.getSrc())
	 	 	 	 consume(p);
	 	 	 for (Place p : t.getSnk())
	 	 	 	 produce(p);
	 	 }
	 }

	 // ...

Traces and Debugging

42

Using the Environment

▶ Reasonable models/programs need to interact with the
environment when simulated/run

■ Input/output

■ Interaction with eclipse or other GUI elements

■ Interaction with databases

■ Simulation visualization

■ ...

▶ EMF is not self-contained: use operations and datatypes to
connect EMF to the rest of the Java world

▶ notations can be used to visualize runtime state

43

Summary

▶ Add runtime-concepts to the meta-model

▶ Declare operations

▶ Implement operations, e.g. with Java or M3Actions

▶ Interpreters need to load the model/program and call the
main operation.

▶ Lots of possibilities to debug and to build custom
debuggers, no simple out of the box solution

44

Translational Semantics
with EMF

45

Types of “Model Transformations”

▶ Operational semantics

■ Interpretation (model-to-execution)

▶ Translational semantics

■ Code-generation (model-to-code)

■ Model-transformation (model-to-model)

◆ new target

◆ existing target

◆ source=target, in-place transformation

◆ further classification necessary

46

Elaboration and Translational Semantics

▶ Generated artifacts can be modified or extended after generation

▶ Elaboration allows to vary the generated semantics, i.e. allows variance
in the semantics description

▶ Generated code can be modified, generated models can be extended

▶ Elaboration is paramount for practical abstraction

■ more flexibility for language users

■ smaller, more coherent, less expensive DSLs for language engineers

■ mitigates some problems of external DSLs (when compared to internal DSLs)

▶ Elaboration and re-generation

■ protected regions

■ elaboration by extension, if the target language supports external extension of
completed entities like e.g. in most object-oriented languages

47

Elaboration and Translational Semantics

48

PIM

PSM PSM

Code Code

Design Checking

Simulation

Test Code

Translational Semantics with EMF

▶ Programming

■ Java or other JRE compatible languages

■ other programming languages via XMI/XML

▶ Languages for code-generation

■ templates, e.g. Jet

■ programming languages with rich-strings, e.g. xtend

▶ Languages for model-to-model transformations

■ imperative, e.g. ATL

■ declarative, e.g. (triple graph) grammars

49

Operational vs. Translational

▶ self-contained

▶ requires a specific runtime
environment almost all the time

▶ debuggable

▶ platform specific, requires model
processing on that platform

▶ interpreters can be
parameterized for semantic
variations

▶ no generated artifacts, no
elaboration of generated artifacts

▶ no generated artifacts that need
to be maintained

50

▶ target language dependent

▶ sometimes requires specific
runtime environment

▶ hard to debug

▶ “platform independent”, platform
does not need to process model

▶ model transformations can be
parameterized for semantic
variations

▶ generated code can be elaborated
for semantic variations

▶ generated code is another asset
to maintain

Code-Generation vs. Model-Transformartions

▶ No guaranties that
generated artifacts are well-
formed or even
semantically sound

▶ In general, no properties
can be formally proved

▶ Structural differences
between source and target
possible

▶ Generated artifacts can be
syntactically elaborated
(there is concrete syntax)

51

▶ generated artifacts are at least
syntactically sound (no concrete
syntax involved)

▶ In theory and for some
techniques, some properties
(e.g. retention of properties) can
be proved

▶ Its harder to create structurally
different targets with most
model transformation languages

▶ Elaboration of generated
artifacts only via external
extension

