
SLX 2.0 Keywords / Interpretations

Keyword Examples Interpretation

abstract interface Interface1

 {

 abstract method M1() returning int;

 }

class MyClass1 returning int

implements(Interface1)

 {

 concrete method M1() returning int

 {

 return 99;

 }

 };

class MyClass

 {

 abstract method M() returning int;

 };

abstract class widget

 {

 };

1. In interface declarations, all methods must be specified as

abstract methods. Currently, interface methods do not default to

being abstract. They must be explicitly declared as such.

Any class that implements an interface must provide concrete

definitions of the interface’s methods.

2. For a parent class, any class derived from the parent must provide

concrete instances of all of the parent class’s abstract methods.

3. An entire class may be declared to be abstract. Such classes can

be used only as parent classes; i.e., you can’t create an instance of an

abstract class.

Suppose that you had a parent class P containing an abstract method

M, and you had a child class C of P. Clearly C must contain a

definition of M, but what if C’s version of M was itself abstract?

This would require that its definition of M, itself a concrete

realization of P’s abstract method M, be declared as abstract. If the

rules were strictly followed, C’s version of M would have to be

declared as

 abstract concrete method M

The concrete keyword is required because M instantiates P’s

abstract method M. The abstract keyword is required, because C

requires its children to implement M. Because this notation is so

confusing, SLX allows you to omit the concrete keyword.

concrete concrete method M()

 {

 }

Concrete and abstract method declarations must be correctly

paired. If you define a method in a subclass, and the method name

matches that of an abstract method in its parent, the subclass’s

method must be declared as concrete. If you define a concrete

method in a subclass, the method’s name must match a

corresponding abstract method in its parent. While this approach is

a bit wordy, it assures that your intentions are always clearly

expressed, improving readability.

interface See the example interface shown for the

abstract keyword above.

procedure P(pointer(interface) xp)

 {

 xp -> M1();

 }

An interface is a collection of abstract method declarations. Any

class that implements an interface must provide concrete definitions

of all of the interface’s methods.

At any given time, a pointer to an interface is either NULL, or it

points to an instance of a class that implements the interface. Thus,

a pointer to an interface resembles a pointer(*), except that it is

restricted to point to a small collection of classes.

Since interfaces are inherently abstract, you cannot create a pointer

to an instance. Thus the only way to assign a value to a pointer to an

interface is to assign it the value of another pointer or a NULL

value.

The principal use of interfaces is as procedure arguments. This

allows a procedure to operate on instances of any class that supports

the interface.

method method m() returning double

In SLX 2, the method keyword is interchangeable with the

procedure keyword. This is because “methods” in SLX 1 were

simply procedures defined inside classes. Because of the large body

of code using the SLX 1 convention, SLX 2 will not force the use of

method where it is the more appropriate keyword.

overridable overridable method M(double x) A parent class’s overridable methods can be overridden in

subclasses of the parent. The override and overridable keywords

must be properly paired. If a subclass redefines a non-overridable

method of its parent, a compile-time error will result. If a subclass

method is declared to be an override, but its parent class has no

overridable method of that name, a compile-time error will result.

The notation required for overriding overrides is currently being

discussed. Strictly speaking, a method override that can be

overridden yet again in a grandchild class should be designated as an

overridable override. At the moment, this notation is not required.

(The first override is interpreted as allowing further overrides to take

place. A non-overridable override can be specified as a sealed

override.)

Note that not requiring overridable override is analogous to not

requiring abstract concrete, as discussed above.

override override method M… (See above)

protected protected class C Members of a protected class are visible to the class and any

subclasses derived from it. They are private to the rest of the world.

Note that class-based protection is a departure from SLX’s

convention of enforcing access rights such as public/private on a

module basis. Private variables (including class members) are

visible throughout the module in which they are defined, but private

elsewhere. You can argue that things should not have been done

this way, but the body of code that rests on this approach is far to

large to introduce any changes.

unprotected unprotected int Qsize; Within a protected class, the “unprotected” declaration prefix can be

used to override a class member’s protected status.

sealed sealed class C A sealed class cannot be specified as a parent class in a subclass

definition. The sealed keyword is used elsewhere to cut off the

possibility of subsequent redefinitions. (The details of this haven’t

yet been fully worked out.)

subclass class widget() subclass(BaseWidget)

super x = super::Method(y) The super qualifier currently is available only in methods of a class.

It designates the parent class of the current class. The primary use if

the super qualifier is to allow a method to invoke methods specific

to its parent, even if the methods are overridden in the current child

class. The super qualifier can be nested:

 x = super::super::MtyMethod();

