
Probabilistic Databases under Updates:
BooleanQuery Evaluation and Ranked Enumeration

Christoph Berkholz

Humboldt-Universität zu Berlin

Institut für Informatik

Berlin, Germany

berkholz@informatik.hu-berlin.de

Maximilian Merz

Humboldt-Universität zu Berlin

Institut für Informatik

Berlin, Germany

maximilian.merz@informatik.hu-berlin.de

ABSTRACT
We consider tuple-independent probabilistic databases in a dynamic

setting, where tuples can be inserted or deleted. In this context we

are interested in efficient data structures for maintaining the query

result of Boolean as well as non-Boolean queries.

For Boolean queries, we show how the known lifted inference

rules can be made dynamic, so that they support single-tuple up-

dates with only a constant number of arithmetic operations. As a

consequence, we obtain that the probability of every safe UCQ can

be maintained with constant update time.

For non-Boolean queries, our task is to enumerate all result tu-

ples ranked by their probability. We develop lifted inference rules

for non-Boolean queries, and, based on these rules, provide a dy-

namic data structure that allows both log-time updates and ranked

enumeration with logarithmic delay. As an application, we iden-

tify a fragment of non-repeating conjunctive queries that supports

log-time updates as well as log-delay ranked enumeration. This

characterisation is tight under the OMv-conjecture.

ACM Reference Format:
Christoph Berkholz and Maximilian Merz. 2021. Probabilistic Databases

under Updates: Boolean Query Evaluation and Ranked Enumeration. In Pro-
ceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS ’21), June 20–25, 2021, Virtual Event, China. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3452021.3458326

1 INTRODUCTION
In dynamic query evaluation, a fixed query is evaluated against

a changing database that might be updated, e. g., by inserting or

deleting tuples. To avoid evaluating the query from scratch after

every update, it is necessary to represent the query result in a

dynamic data structure that allows efficient updates as well as

quick access.

The drawback of traditional approaches in incremental view
maintenance, which maintain a full materialisation of the query

result, is that the update time is always at least as large as the

difference between the old and the new result. In recent years,

several methods and data structures have been proposed to generate

compressed dynamic representations that allow quick access to

the current query result. These data structures support efficient

(sublinear, polylogarithmic, or even constant-time) single-tuple

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
’21), June 20–25, 2021, Virtual Event, China, https://doi.org/10.1145/3452021.3458326.

updates, even if the change of the represented query result is way

larger. Examples include the evaluation of conjunctive queries [4, 5,

15, 16, 19, 20], first-order queries on restricted classes of databases

[6, 21], and MSO on tree-structured data [1–3, 22, 27, 28].

In this paper we focus on dynamic evaluation of first-order

queries on (finite, tuple-independent) probabilistic databases [9], a

formal framework that was introduced to model uncertainty. Prob-

abilistic databases extend relational databases by annotating every

ground tuple 𝑡 in the database with a parameter 𝑝 (𝑡) ∈ [0, 1] that
expresses its certainty. Formally, they define a distribution where

the parameters 𝑝 (𝑡) are the probabilities of the independent events
that a tuple is present in the database. Evaluating a Boolean query on
a probabilistic database means computing the probability that the

query evaluates to true, given the distribution on the ground tuples.

In general, this can be a much harder task than evaluating the query

on a standard relational database. For instance, ∃𝑥∃𝑦 𝑆𝑥 ∧𝐸𝑥𝑦∧𝑇𝑦
can be answered in linear time on non-probabilistic databases, but

computing its probability on probabilistic databases is #P-hard [9].

One way to answer tractable first-order queries is to apply lifted
inference rules.1 These rules allow to rewrite and decompose a query

so that its probability can be computed from simpler subqueries. An

easy example of a lifted inference rule is “independent and”: If two

Boolean queries 𝜑1 and 𝜑2 are defined over disjoint sets of relations,

then their probabilities are independent and hence we can compute

the probability of 𝜑1∧𝜑2 by P(𝜑1∧𝜑2) = P(𝜑1) ·P(𝜑2). It turns out
that this approach is quite powerful: the well-known dichotomy

theorem of [10] states that any Boolean UCQ is either safe and
can be evaluated in polynomial time by recursively applying lifted

inference rules, or it is unsafe and query evaluation is #P-hard.

We start the investigation of dynamic query evaluation on prob-

abilistic databases by considering Boolean first-order queries. Our

first result (Theorem 3.8) is that if a query can be solved using a

set of known lifted inference rules, then there is a dynamic data

structure that allows to evaluate the query with constant update

time. A corollary of this result is that the probability of any safe

UCQ can be maintained in constant time upon single-tuple updates.

Hence, by the dichotomy theorem [10], every UCQ either supports

constant update time or requires super-polynomial update time

(assuming P≠ #P).

The result of a non-Boolean query 𝜑 (𝑥1, . . . , 𝑥𝑘) on a probabilis-

tic database is a 𝑘-ary relation that contains every potential out-

put tuple together with its probability 𝑝 > 0. Clearly, any such

query can be solved by answering, for all 𝑛𝑘 potential output tuples

(𝑎1, . . . , 𝑎𝑘), the Boolean query obtained by replacing the free vari-

ables by constants 𝑎1, . . . , 𝑎𝑘 . Thus, its polynomial-time tractability

1
This approach is also called extensional query evaluation, e. g., in [25].

https://doi.org/10.1145/3452021.3458326
https://doi.org/10.1145/3452021.3458326

reduces to tractability of the underlying Boolean formula. In the

dynamic setting, maintaining the materialised output relation un-

der updates might be too expensive. Moreover, it might be that all

𝑛𝑘 output tuples appear with a non-zero probability in the query

result, but that most of those tuples have a very small probabil-

ity and hence are of less interest to the user. In particular, this is

regularly the case in open-world probabilistic databases [7], where
every ground tuple that is not present in the database is implicitly

assigned a small probability. For these reasons, users (of probabilis-

tic database engines) typically want to order output tuples by their

probability. This motivates our search for a succinct representation

of the query result, that permits efficient updates to the database

and allows the user to access high-probability result tuples first.

Our main result identifies a class of first-order queries where

this is indeed possible. We provide a dynamic data structure that

represents the query result and supports the following:

• When inserting, deleting, or changing the probability of a

ground tuple in the current database 𝐷 , the data structure

can be updated in 𝑂 (log ∥𝐷 ∥) time.

• Upon request, the data structure immediately reports the

result tuple with highest probability and allows to enumerate

all result tuples ranked by their probability with𝑂 (log ∥𝐷 ∥)
delay between two outputs.

To achieve this result, we establish lifted inference rules for non-

Boolean queries that allow a similar recursive reasoning as in the

Boolean case. They have the following form: If a query 𝜑 can be

decomposed in a certain way into subqueries, and if all of those

subqueries support efficient dynamic ranked enumeration, then

𝜑 also supports efficient dynamic ranked enumeration. For non-
repeating (also known as self-join-free) conjunctive queries we show
that our class of queries that are tractable in the above sense is

tight: Either, log-time updates and log-delay enumeration are pos-

sible, or any dynamic algorithm with 𝑂 (∥𝐷 ∥0.5−𝜖) update time

and 𝑂 (∥𝐷 ∥0.5−𝜖) delay (even unranked) enumeration would vio-

late the OMv-conjecture. A similar dichotomy for dynamic ranked

evaluation of non-repeating UCQs remains open. Although it is

possible for deterministic (non-probabilistic) databases to charac-

terise those non-repeating UCQs that allow efficient enumeration

under updates (assuming the OMv-conjecture), it turns out that

this is much harder for probability-ranked enumeration. We illus-

trate the difficulties that arise by reducing from an open problem

in computational geometry in Section 4.3.

1.1 Related work
Query evaluation on tuple-independent probabilistic databases has

received a lot attention in the last decade and we refer the reader

to the surveys [33] and [36] for a gentle introduction to the area

and an overview of recent work. To the best of our knowledge,

there is no previous work that studies dynamic query evaluation

on probabilistic databases.

Olteanu and Wen [29] considered the task of ranking output

tuples of non-repeating conjunctive queries in the static setting. Be-

sides not supporting updates, their setting of ranked enumeration

differs from ours in the following two aspects. First, their algorithm

does not provide guarantees on the delay and computes a full mate-

rialisation of the query result. Second, in their framework it is only

required to report tuples in a ranked order, without computing the

actual probabilities associated to the output tuples. Because of this,

their polynomial time fragment (the head-hierarchical queries) also
includes intractable queries for which it is #P-complete to compute

the probability of an output tuple.

Ranked enumeration with guarantees on the delay has recently

been investigated in two independent works by Deep and Koutris

[11] and Tziavelis et al. [35] for evaluating conjunctive queries

on deterministic databases in the static setting. Both papers de-

fine their ranked enumeration algorithms using general ranking

functions, and for certain queries, their generalizations allow prob-

abilistic ranking: For example, we can use the selective semiring

([0, 1],max, ·, 0, 1) with the algorithm from [35] to evaluate acyclic

non-repeating projection-free conjunctive queries against tuple-

independent probabilistic databases with linear preprocessing time

and logarithmic delay. However, neither framework seems to gen-

eralise to first-order quantification on probabilistic databases or

to disjunctions in queries. In addition, both methods support only

static evaluation of conjunctive queries and also for those classes

of queries for which it is known that, under certain algorithmic as-

sumptions, no efficient dynamic query evaluation algorithm exists

[4].

Ranked enumeration generalises top-𝑘 query evaluation [17],

where only the best 𝑘 result tuples have to be reported. For this

reason, ranked enumeration has also been called “any-𝑘” [35] as

it enables the user to decide how many result tuples she wants to

receive. We briefly discuss the algorithmic implications of aborting
the enumeration of our data structure in Section 4.1.5.

On a high level, our algorithm takes a query 𝜑 and a probabilistic

database 𝐷 and computes a data structure that represents the query

result and provides efficient updates as well as ranked enumeration.

In a similar vein, Jha and Suciu [18] studied different static repre-

sentations for Boolean probabilistic UCQs. Their data structures

are based on well-known representation formats from knowledge
compilation, in particular (with increasing generality): read-once ex-

pressions, OBDDs, FBDDs, and d-DNNFs. Monet and Olteanu [26]

discussed the use of deterministic decomposable circuits (d-Ds) in
this setting, which are even more general as they extend d-DNNFs

by allowing negations inside the circuit. We believe that with a bit

of work, all these representations can actually be made dynamic,

so that they can be modified efficiently when a ground tuple in

the database changes. However, efficient compilation strategies

into these representation formats are only known for a subclass

of safe UCQs and it has been conjectured (called the “Intensional

vs Extensional Conjecture” in [25]) that not all safe UCQs can be

efficiently compiled. This is in contrast to our data structure, which

can represent all safe UCQs.

2 PRELIMINARIES
We denote by N = N0 the set of non-negative integers, by N1 the
set of positive integers, and we let [𝑛] := {1, ..., 𝑛} for all 𝑛 ∈ N1.
We will denote by 𝜖 the empty function 𝜖 : ∅ → ∅.

Probabilistic Databases. The domain dom is a finite set of con-
stants. We usually denote constants by the letter 𝑎 and its sub-

scripted variants. A schema is a finite set 𝜎 of relation symbols

𝑅, where each 𝑅 ∈ 𝜎 has a fix arity ar(𝑅) ∈ N1. We fix a schema

𝜎 = {𝑅1, ..., 𝑅𝑠 } and arities ar(𝑅𝑖) for 𝑖 ∈ [𝑠]. A relational database𝐷
of schema 𝜎 (or 𝜎-db𝐷) is of the form𝐷 = (dom;𝑅𝐷

1
, ..., 𝑅𝐷𝑠), where

𝑅𝐷
𝑖
is a finite subset of domar(𝑅𝑖)

. The active domain adom(𝐷) is
the smallest subset 𝐴 of dom such that 𝑅𝐷

𝑖
⊆ 𝐴ar(𝑅𝑖)

for all 𝑖 ∈ [𝑠].
For any 𝑅 ∈ 𝜎 , we call an element (𝑎1, ..., 𝑎𝑟) ∈ 𝑅𝐷 ground tu-
ple of the database instance and denote it by 𝑅𝑎1 · · ·𝑎𝑟 . We let

GT𝜎 := {𝑅𝑎1 · · ·𝑎𝑟 : 𝑅 ∈ 𝜎, 𝑎𝑖 ∈ dom} be the set of all possible

ground tuples over a schema 𝜎 and domain dom.

A (finite, tuple-independent) probabilistic database of schema 𝜎

is a 𝜎-db that associates with every ground tuple 𝑡 contained in

the database a probability 𝑝 (𝑡) ∈ [0, 1]. Unless stated otherwise,

we stick to the usual closed-world semantics and implicitly assume

that any ground tuple that is not present in the probabilistic data-

base has probability 0. Every probabilistic database of schema 𝜎

over the domain dom defines a probability distribution over all

possible worldsW, which are all relational databases over the same

schema 𝜎 and domain dom. The probability P𝐷 (W) ofW is the

probability of the event that we end up with the databaseW when

including every possible ground tuple 𝑡 ∈ GT𝜎 independently with

probability 𝑝 (𝑡), that is,
P𝐷 (W) :=

∏
𝑡 ∈W 𝑝 (𝑡) ·∏𝑡 ∈GT𝜎 \W (1 − 𝑝 (𝑡)) .

In Section 4.1.6 we show that all our results extend to open-
world semantics [7], where every ground tuple on dom that is not

contained in the database receives some small positive probability.

The size ∥𝐷 ∥ of a probabilistic database 𝐷 is the size of a reasonable

encoding of the probabilistic database and is linear in the number

of ground tuples that it contains.

Queries. We fix a countably infinite set of variables var, which
are usually denoted be 𝑥 , 𝑦, 𝑧 and variants thereof. A (first-order)

formula is built from atoms 𝜑 = 𝑅𝑥1 . . . 𝑥𝑟 of type 𝑅 ∈ 𝜎 using

negation ¬𝜑 , conjunction 𝜑1 ∧ 𝜑2, disjunction 𝜑1 ∨ 𝜑2, universal
quantification ∀𝑥 𝜑 and existential quantification ∃𝑥 𝜑 . As usual,
we denote by free(𝜑) the free variables of 𝜑 and assume that every

quantified variable occurs free in its scope. A formula 𝜑 is a sentence
if free(𝜑) = ∅. The schema of a formula 𝜎 (𝜑) ⊆ 𝜎 is the set of

relation symbols that occur in 𝜑 . A formula is non-repeating, if
for every 𝑅 ∈ 𝜎 there exists at most one atom of type 𝑅 in 𝜑 . A

valuation 𝛽 is a partial mapping from var to dom. For a valuation

𝛽 that is undefined on variable 𝑥 , we let 𝛽𝑥 ↦→𝑎 := 𝛽 ∪ {𝑥 ↦→ 𝑎}.
Moreover, we let 𝛽↾𝑉 := {𝑥 ↦→ 𝛽 (𝑥) : 𝑥 ∈ dom(𝛽) ∩𝑉 } ⊆ 𝛽 be the

restriction of 𝛽 to 𝑉 and call 𝛽 ′ and extension of 𝛽 if 𝛽 ′ ⊇ 𝛽 .

For a formula 𝜑 , a valuation 𝛽 : free(𝜑) → dom and a proba-

bilistic database 𝐷 , we denote by P𝐷,𝛽 (𝜑) the probability that for a

randomly chosen possible worldW of 𝐷 , the first-order interpre-

tation (W, 𝛽) satisfies 𝜑 :

P𝐷,𝛽 (𝜑) :=
∑

(W,𝛽) |=𝜑
P𝐷 (W) .

If 𝜑 is a sentence we may write P𝐷 (𝜑) instead of P𝐷,𝜖 (𝜑) and
if the database is clear from the context, we will often omit the

subscript 𝐷 . A (first-order) query is a pair (𝜑,𝑊), where 𝜑 is a first-

order formula and𝑊 ⊆ free(𝜑) is a set of output variables. The
result of a query (𝜑,𝑊) under a probabilistic database 𝐷 and a

valuation 𝛽 : free(𝜑) \𝑊 → dom is the set

⟦(𝜑,𝑊)⟧𝐷,𝛽
:=

{
(𝜏, 𝑝) | 𝜏 :𝑊 → dom;𝑝 = P𝐷,𝜏⊎𝛽 (𝜑) > 0

}
.

If all free variables are output variables, we may just write 𝜑

instead of (𝜑, free(𝜑)) and ⟦𝜑⟧𝐷 instead of ⟦𝜑⟧𝐷,𝜖
. A query (𝜑,𝑊)

is Boolean if it has no output variables, i. e.,𝑊 = ∅. By 𝐶 (𝜑,𝑊) :=
free(𝜑) \𝑊 we denote the set of variables that need to be fixed by

some 𝛽 : 𝐶 → dom when evaluating (𝜑,𝑊) and we write just 𝐶 if

the query is clear from the context.

Complexity analysis and machine model. In this paper we study

data complexity, where the query is treated as fixed. Hence, our

complexity analysis may hide arbitrary terms that depend on the

query size. We use a variant of the Random Access Machine (RAM)

model with uniform cost measure. In particular, this model enables

the construction of lookup tables of polynomial size that can be

queried in constant time. Moreover, all probability values (which

might get exponentially small in 𝑛) can be stored in constant space

and arithmetic operations can be done in constant time. The same

is true for storing and comparing constants from dom.

Updates. Our data structures support single-tuple updates, that is,
inserting or deleting a ground tuple 𝑡 ∈ GT𝜎 and a probability 𝑝 (𝑡)
in a probabilistic database 𝐷 over dom. While we do not consider

updates that change the domain dom, our results extend to these

kind of updates for UCQs. For first-order queries with ∀ and/or ¬
an extension to efficient domain changes is not immediate and we

leave this for future work.

3 DYNAMIC EVALUATION OF BOOLEAN
UCQS

On a conceptual level there are two different approaches of com-

puting the probability of a Boolean query in the static setting. The

first one, called grounded inference, is to transform the first-order

query into an equivalent propositional formula over a set of ground

atoms on a fixed domain. This propositional formula, known as

grounding, lineage, or provenance, can be obtained by replacing the

first-order quantifiers ∃𝑥 𝜑 and ∀𝑥 𝜑 by disjunctions

∨
𝑎∈dom 𝜑 𝑎

𝑥
and conjunctions

∧
𝑎∈dom 𝜑 𝑎

𝑥 over all elements in the domain. Here,

𝜑 𝑎
𝑥 is obtained from 𝜑 by replacing every free occurrence of 𝑥 by

the constant 𝑎 and hence the resulting formula is a proposition state-

ment over all ground atoms. The probability of the statement can

then be computed using weighted model counting for propositional

logic.

A different paradigm is lifted inferencewhere one tries to domost

of the reasoning on the first-order level. Lifted inference rules allow

to decompose or rewrite the first-order query so that its probability

can be computed from the probability of simpler (sub-)queries.

This approach is particularly appealing to us, as it also helps to

design efficient update strategies. In this section we first revisit

known lifted inference rules and then show how they can be used

to support efficient database updates. For an in-depth discussion

of these rules and comparison to grounded inference we refer the

reader to the excellent survey [36].

3.1 Lifted Query Evaluation
In this subsection wemake the reader familiar with known concepts

and definitions for query evaluation on static probabilistic databases
that can also be found in, e. g., [10, 34, 36]. One thing that can always

be done is to rewrite a first-order query 𝜑 into an equivalent query

𝜑 ′ using syntactic transformations. It is clear that this does not

change the semantics of a query and hencemaintains the probability

value when evaluated on a probabilistic database. Wemay formalize

this as the following rule.

(≡) P𝛽 (𝜑) = P𝛽 (𝜑 ′), if 𝜑 ′ ≡ 𝜑 and

• 𝜑 ′ is obtained from 𝜑 by renaming a bound variable or

• every atom in 𝜑 ′ appears in 𝜑 .

Note that 𝜑 ′ ≡ 𝜑 is a semantic property that is undecidable to check

for full first-order logic. Hence, by “applying” this rule we mean

applying any computable equivalence transformation. Instead of

providing a list of all possible syntactic transformations, we decided

to formulate this rule as general as possible. However, for technical

reasons we added an additional syntactic property, which ensures

that no new atoms are introduced in the formula. This property will

be used in the proof of Theorem 3.8. The reader is invited to check

that most textbook equivalence transformations for first-order logic

satisfy this constraint. Moreover, the well known algorithm of Sagiv

and Yannakakis [32] for minimising UCQs, i. e., first-order formulas

without negation and universal quantification, is also captured by

this rule.

With the (≡) rule we can always transform 𝜑 into negation nor-

mal form, where negations only occur in front of atoms. If 𝜑 is a

(negated) atom, we can immediately look up the probability P𝛽 (𝜑)
from the database:

(atom) P𝛽 (𝑅𝑥1 · · · 𝑥𝑟) = 𝑝 (𝑅𝛽 (𝑥1) · · · 𝛽 (𝑥𝑟))
(¬atom) P𝛽 (¬𝑅𝑥1 · · · 𝑥𝑟) = 1 − 𝑝 (𝑅𝛽 (𝑥1) · · · 𝛽 (𝑥𝑟))

The next two rules rely on the independence of subqueries. For-

mally, two queries 𝜑1 and 𝜑2 are independent if for any probabilistic
database 𝐷 and any valuation 𝛽 : free(𝜑1) ∪ free(𝜑2) → dom the

two probabilities P𝐷,𝛽↾
free(𝜑

1
) (𝜑1) and P𝐷,𝛽↾

free(𝜑
2
) (𝜑2) are statisti-

cally independent.

(ind-∧) P𝛽 (𝜑1 ∧ 𝜑2) = P𝛽↾
free(𝜑

1
) (𝜑1) · P𝛽↾free(𝜑

2
) (𝜑2)

if 𝜑1 and 𝜑2 are independent.

(ind-∨) P𝛽 (𝜑1∨𝜑2) = 1−
(
1−P𝛽↾

free(𝜑
1
) (𝜑1)

)
·
(
1−P𝛽↾

free(𝜑
2
) (𝜑2)

)
if 𝜑1 and 𝜑2 are independent.

When applying these rules one has to provide an algorithm that

takes care that the subformulas are indeed independent. As it is the

case for logical equivalence, testing independence is undecidable

and one has to rely on syntactic criteria that guarantee indepen-

dence. A very simple property, which in fact suffices for UCQs,

is that 𝜑1 and 𝜑2 are independent if they do not share common

relation symbols.

To eliminate the quantifiers ∀𝑥 𝜑 and ∃𝑥 𝜑 using lifted infer-

ence rules one has to rely on the independence of all 𝑛 = |dom|
probabilities P𝛽𝑥 ↦→𝑎

(𝜑). Here we first provide a syntactic character-
isation that guarantees independence and use this property in the

definition of the rules below.

Definition 3.1. A variable 𝑥 is a separator variable in a first-order

formula 𝜑 if

(1) 𝑥 occurs in every atom of 𝜑 and

(2) for every relational symbol 𝑅, there exists a number 𝑖𝑅 ∈
[ar(𝑅)], such that every atom in 𝜑 that refers to 𝑅 contains

𝑥 on position 𝑖𝑅 .

It is not hard to see that the probabilities P𝛽𝑥 ↦→𝑎
(𝜑) obtained

by binding a separator variable to a domain element 𝑎 depend on

disjoint sets of ground tuples in the database and hence are mutually

independent. This leads to the following two lifted inference rules.

(ind-∀) P𝛽 (∀𝑥 𝜑) =
∏

𝑎∈dom P𝛽𝑥 ↦→𝑎
(𝜑)

if 𝑥 is a separator variable in 𝜑 .

(ind-∃) P𝛽 (∃𝑥 𝜑) = 1 −∏𝑎∈dom (1 − P𝛽𝑥 ↦→𝑎
(𝜑))

if 𝑥 is a separator variable in 𝜑 .

If independence cannot be guaranteed for ∨ or ∧, then applying

inclusion-exclusion might be helpful in order to switch from ∧ to

∨ or vice versa.

(incl-excl1) P𝛽 (
∧

𝑖∈[𝑘] 𝜑𝑖) =
∑
∅≠𝐼 ⊆[𝑘] (−1) |𝐼 |+1 · P𝛽 (

∨
𝑖∈𝐼 𝜑𝑖)

(incl-excl2) P𝛽 (
∨

𝑖∈[𝑘] 𝜑𝑖) =
∑
∅≠𝐼 ⊆[𝑘] (−1) |𝐼 |+1 · P𝛽 (

∧
𝑖∈𝐼 𝜑𝑖)

Note that when applying inclusion-exclusion further cancellations

may occur. For instance, if two queries

∨
𝑖∈𝐼 ′ 𝜑𝑖 and

∨
𝑖∈𝐼 ′′ 𝜑𝑖 that

appear with different signs in the sum are logically equivalent, then

their probabilities cancel and do not need to be computed. If logical

implication of formulas can be determined (which is in particular

the case for UCQs), then applying the Möbius-inversion formula

instead of inclusion-exclusion helps to avoid unnecessary compu-

tations. The corresponding lifted inference rule has the following

form (we avoid to define the coefficients 𝜇𝐼 ∈ Z in this paper, see

[10] for details).

(M) P𝛽 (
∧

𝑖∈[𝑘] 𝜑𝑖) =
∑
𝐼 ,𝜇𝐼≠0 𝜇𝐼 · P𝛽 (

∨
𝑖∈𝐼 𝜑𝑖)

Informally, a lifted query evaluation algorithm is a procedure

that evaluates a query by recursively applying lifted inference rules.

We are now making this intuition more formal. Note that the rules

discussed above are data independent, that is, they only depend

on the structure of the first-order formula and are independent of

the concrete database 𝐷 and valuation 𝛽 . This enables us to first

define a query plan whose size depends only on the formula. Later

we show how to use this plan to evaluate Boolean queries under

updates.

Definition 3.2. A lifted inference plan for a first-order formula

𝜑 is a directed rooted tree T where every node 𝑣 is labeled with

a formula 𝜓𝑣 and an inference rule r𝑣 ∈
{
(ind-∃), (ind-∀), (ind-∧),

(ind-∨), (≡), (atom), (¬atom), (incl-excl1), (incl-excl2), (M)

}
such

that the following holds:

(1) If 𝑣 is the root node, then𝜓𝑣 = 𝜑 .

(2) If 𝑣 is a leaf, then𝜓𝑣 is a (negated) atom and r𝑣 = (atom) or

r𝑣 = (¬atom), respectively.

(3) If r𝑣 = (≡), then 𝑣 has one child𝑤 such that𝜓𝑣 ≡ 𝜓𝑤 and

• 𝜓𝑤 is obtained from𝜓𝑣 by renaming a bound variable or

• every atom in𝜓𝑤 is contained in𝜓𝑣 .

(4) If r𝑣 = (ind-∧), then 𝑣 has two children𝑤1 and𝑤2 such that

𝜓𝑣 = 𝜓𝑤1
∧𝜓𝑤2

and𝜓𝑤1
,𝜓𝑤2

are independent.

(5) If r𝑣 = (ind-∨), then 𝑣 has two children𝑤1 and𝑤2 such that

𝜓𝑣 = 𝜓𝑤1
∨𝜓𝑤2

and𝜓𝑤1
,𝜓𝑤2

are independent.

(6) If r𝑣 = (ind-∀), then 𝑣 has one child𝑤 such that𝜓𝑣 = ∀𝑥 𝜓𝑤
and 𝑥 is a separator variable in𝜓𝑤 .

(7) If r𝑣 = (ind-∃), then 𝑣 has one child𝑤 such that𝜓𝑣 = ∃𝑥 𝜓𝑤
and 𝑥 is a separator variable in𝜓𝑤 .

(8) If r𝑣 = (incl-excl1), then𝜓𝑣 =
∧

𝑖∈[𝑘] 𝜑𝑖 and 𝑣 has for every
nonempty 𝐼 ⊆ [𝑘] one child𝑤𝐼 with𝜓𝑤𝐼

=
∨

𝑖∈𝐼 𝜑𝑖 .

(9) If r𝑣 = (incl-excl2), then𝜓𝑣 =
∨

𝑖∈[𝑘] 𝜑𝑖 and 𝑣 has for every
nonempty 𝐼 ⊆ [𝑘] one child𝑤𝐼 with𝜓𝑤𝐼

=
∧

𝑖∈𝐼 𝜑𝑖 .
(10) If r𝑣 = (M), then𝜓𝑣 =

∧
𝑖∈[𝑘] 𝜑𝑖 and 𝑣 has for every 𝐼 ⊆ [𝑘]

such that 𝜇𝐼 ≠ 0 one child𝑤𝐼 with𝜓𝑤𝐼
=
∨

𝑖∈𝐼 𝜑𝑖 .

We let ΨT = {𝜓𝑣 : 𝑣 ∈ 𝑉 (T)} and RT = {r𝑣 : 𝑣 ∈ 𝑉 (T)} be the set
of formulas and rules used by the plan T . A formula 𝜑 is liftable
(using rules R) if it has a lifted inference plan T (with RT ⊆ R).

If we have a lifted inference plan T for a Boolean query 𝜑 , then

we can easily compute the query result P𝐷 (𝜑) on a probabilistic

database 𝐷 in polynomial time. For this, we just need to calcu-

late bottom-up for every node 𝑣 and every valuation 𝛽 : free(𝜓𝑣) →
dom the probabilities P𝐷,𝛽 (𝜓𝑣). The chosen lifted inference rules r𝑣
tell us how to compute these numbers in each node from its children.

Since we have to compute 𝑛 |free(𝜓𝑣) |
probabilities in each node and

|free(𝜓𝑣) | ≤ |vars(𝜑) |, the overall running time is𝑂 (𝑓 (𝜑)𝑛 |vars(𝜑) |).
In their fundamental work, Dalvi and Suciu [10] showed that,

modulo some preprocessing, we can compute a lifted inference

plan for all Boolean UCQs for which a polynomial time query

evaluation algorithm exists (assuming P≠ #P). Before we can state

this theorem, we need to introduce the technical notion of ranked
formulas.

Definition 3.3. A first-order formula 𝜑 is ranked if there exists a

partial order ⪯ on its variables such that for every atom 𝑅𝑥1 · · · 𝑥𝑟
in 𝜑 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 it holds that 𝑥𝑖 ≺ 𝑥 𝑗 .

Theorem 3.4 (Dichotomy Theorem for Ranked Boolean

UCQs [10]). Let 𝜑 be a ranked Boolean UCQ. Either the query evalu-
ation problem for 𝜑 is #P-hard, or there is an algorithm that computes
a lifted inference plan for 𝜑 that uses the rules (atom), (≡), (ind-∨),
(ind-∧), (ind-∃), and (M).

Remark 3.5. The restriction to ranked formulas is not essential.

Dalvi and Suciu [10] showed that for every schema 𝜎 and 𝜎-formula

𝜑 there is a new schema 𝜎 ′ and a ranked 𝜎 ′-formula 𝜑 ′ that can
be used instead of 𝜑 . In particular, for any domain dom there is

a computable bijection 𝐹 between all 𝜎-ground tuples and all 𝜎 ′-
ground tuples over the domain dom such that P𝐷 (𝜑) = P𝐹 (𝐷) (𝜑 ′)
for all probabilistic databases 𝐷 of schema 𝜎 [10, Proposition 4.2].

Note that using the bijection 𝐹 also preserves updates: P𝐷 (𝜑) can
be maintained with 𝑂 (𝑔(𝑛)) update time if, and only if, P𝐹 (𝐷) (𝜑 ′)
can be maintained with 𝑂 (𝑔(𝑛)) update time.

3.2 Dynamic Lifted Query Evaluation
In this section we show that if a Boolean query 𝜑 has a lifted

inference plan T , then it can be maintained with constant update

time (Theorem 3.8). As a consequence we obtain that every Boolean

UCQ is either #P-hard or can be maintained with constant update

time (Corollary 3.9). The basic idea is to maintain for every formula

𝜓 ∈ ΨT and assignment 𝛽 : free(𝜓) → dom its probability value

P𝛽 (𝜓). To ensure constant update time, we need to verify that only

few stored values are actually affected from the insertion or deletion

of a ground tuple and that each such value can be recomputed

in constant time. To this end, we provide the following syntactic

definition, which is stated for Boolean and non-Boolean formulas.

Definition 3.6. Let 𝜑 be a formula, 𝐶 ⊆ free(𝜑) a set of free

variables in 𝜑 , and 𝛽 : 𝐶 → dom.
2
We say that (𝜑, 𝛽) is affected by a

ground atom 𝑅𝑎1 · · ·𝑎𝑟 , if there is an extension 𝛽 ′ : vars(𝜑) → dom
of 𝛽 and an atom 𝑅𝑥1 · · · 𝑥𝑟 in 𝜑 such that 𝛽 ′(𝑥𝑖) = 𝑎𝑖 for all 𝑖 ∈ [𝑟].
Moreover, (𝜑, 𝛽) is supported by a probabilistic database 𝐷 , if it is

affected by at least one ground tuple in 𝐷 . A Boolean formula 𝜑 is

affected/supported, if (𝜑, 𝜖) is affected/supported.

The important property of this definition is that if (𝜑, 𝛽) is not
affected by a ground atom 𝑅𝑎1 · · ·𝑎𝑟 , then it is independent of

𝑅𝑎1 · · ·𝑎𝑟 . In particular, inserting, deleting or changing the proba-

bility of 𝑅𝑎1 · · ·𝑎𝑟 in an arbitrary tuple-independent probabilistic

database 𝐷 has no effect on the query result P𝐷,𝛽 (𝜑). The other
direction does not necessarily hold: 𝑆𝑎 affects ∀𝑥 (𝑆𝑥 ∨ ¬𝑆𝑥), but
this tautological query does not depend on 𝑆𝑎. However, for our

purposes it suffices that affecting a query is a necessary requirement

for having an effect to the query.

Lemma 3.7. Let𝜑 be a first-order formula, T a lifted inference plan
for 𝜑 , and 𝛾 : free(𝜑) → dom a valuation. For every ground tuple
𝑅𝑎1 · · ·𝑎𝑟 and every𝜓 ∈ ΨT there is at most one 𝛽 : free(𝜓) → dom
with 𝛽↾free(𝜑) ⊆ 𝛾 such that 𝑅𝑎1 · · ·𝑎𝑟 affects (𝜓, 𝛽). If such a 𝛽

exists, then it can be computed in time 𝑂 (|𝜓 |).

Proof. We first argue that for all 𝜓𝑣 ∈ ΨT the variables in

free(𝜓𝑣) \ free(𝜑) are separator variables. We proceed by induc-

tion over the height of 𝑣 in T . The statement is trivially true for

the root, as 𝜓𝑣 = 𝜑 . For the induction step note that, except for

(ind-∃) and (ind-∀), no new free variables are introduced and if

a variable is a separator variable in the parent node 𝑣 , then it is

also separator variable in all child nodes 𝑣𝑖 . Particular attention is

needed for the concrete choice of equivalent transformations in the

equivalence rule (≡), as there are equivalent transformations that

do not preserve separator variables. However, the syntactic side

conditions ensure that, besides renaming bound variables, no new

atoms are introduced and hence the separator variable condition

is maintained. For (ind-∃) and (ind-∀), the new free variable 𝑥 is a

separator variable by definition.

Now suppose that 𝑅𝑎1 · · ·𝑎𝑟 affects (𝜓, 𝛽) for some 𝜓 ∈ ΨT ,
which means that there is an atom 𝑅𝑥1 · · · 𝑥𝑟 in 𝜓 and an exten-

sion 𝛽 ′ ⊇ 𝛽 such that 𝛽 ′(𝑥𝑖) = 𝑎𝑖 . Since every free variable

in free(𝜓) \ free(𝜑) is a separator variable, we have free(𝜓) \
free(𝜑) ⊆ {𝑥1, . . . , 𝑥𝑟 } and hence 𝑎1, . . . , 𝑎𝑟 fixes 𝛽↾free(𝜓)\free(𝜑) .
Since 𝛽↾

free(𝜓)∩free(𝜑) = 𝛾↾
free(𝜓) it follows that 𝛽 is uniquely

determined. □

Theorem 3.8. Let 𝜑 be a liftable first-order formula and T a
lifted inference plan for 𝜑 . For every 𝛾 : free(𝜑) → dom there is an
algorithm that computes P𝐷,𝛾 (𝜑) in time𝑂 (∥𝐷 ∥) and maintains this
value in constant time on every single-tuple update to 𝐷 .

Proof. We fix𝛾 : free(𝜑) → dom and assume that all valuations

𝛽 mentioned in this proof satisfy 𝛽↾
free(𝜑) ⊆ 𝛾 . For every𝜓 ∈ ΨT

we store the probability values P𝐷,𝛽 (𝜓) for all 𝛽 : free(𝜓) → dom
such that (𝜓, 𝛽) is supported by the current database 𝐷 . In addition,

for every 𝜓 ∈ ΨT we store the probability 𝑝𝔲 (𝜓) = P𝐷𝔲,𝛽 (𝜓)
when evaluating𝜓 with an arbitrary assignment 𝛽 over the empty

2
Note that in this section, 𝐶 will always be equal to free(𝜑) . We will consider

𝐶 ⊊ free(𝜑) in Section 4.

database 𝐷𝔲 . Note that 𝑝𝔲 (𝜓) = P𝐷,𝛽 (𝜓) for all 𝛽 such that (𝜓, 𝛽)
is not supported by 𝐷 .

When an update inserts or deletes a ground tuple in the current

database, we apply Lemma 3.7 to identify which 𝜓𝑣 ∈ ΨT are af-

fected and to compute the corresponding unique assignments 𝛽𝑣 .

Afterwards, we (re)compute all values P𝛽𝑣 (𝜓𝑣) using a bottom-up

traversal of the inference tree T . For all rules except (ind-∃) and
(ind-∀) we can directly do the recomputation using the correspond-

ing lifted inference rule r𝑣 , as the value P𝛽𝑣 (𝜓𝑣) depends only on

the numbers P𝛽𝑣 (𝜓𝑣𝑖) for a constant number of child nodes 𝑣𝑖 .

If r𝑣 = (ind-∀) or r𝑣 = (ind-∃) and hence 𝜓𝑣 = ∀𝑥 𝜓𝑤 or 𝜓𝑣 =

∃𝑥 𝜓𝑤 , we maintain the following sets of domain elements for all

𝛽 : free(𝜓𝑣) → dom where (𝜓𝑤 , 𝛽𝑥 ↦→𝑎) is supported by 𝐷 for some

𝑎 ∈ dom:

𝑆 (𝛽) := {𝑎 ∈ dom : (𝜓𝑤 , 𝛽𝑥 ↦→𝑎) is supported by 𝐷},
𝑇0 (𝛽) := {𝑎 ∈ 𝑆 (𝛽) : P𝛽𝑥 ↦→𝑎

(𝜓𝑤) = 0},
𝑇1 (𝛽) := {𝑎 ∈ 𝑆 (𝛽) : P𝛽𝑥 ↦→𝑎

(𝜓𝑤) = 1}.

By Lemma 3.7 this can be done efficiently as every single-tuple

update causes at most one element to be inserted to or deleted from

these sets. We also maintain the corresponding auxiliary variable

𝑝∀(𝛽) :=
∏

𝑎∈𝑆 (𝛽)\(𝑇0 (𝛽)∪𝑇1 (𝛽)) P𝛽𝑥 ↦→𝑎
(𝜓𝑤) or

𝑝∃ (𝛽) :=
∏

𝑎∈𝑆 (𝛽)\(𝑇0 (𝛽)∪𝑇1 (𝛽)) (1 − P𝛽𝑥 ↦→𝑎
(𝜓𝑤)) .

These variables can also be maintained in constant update time

by multiplying with or dividing by the corresponding probability

when an update causes 𝑎 to be inserted to or deleted from 𝑆 (𝛽) \
(𝑇0 (𝛽) ∪𝑇1 (𝛽)) for some 𝛽 . With this auxiliary information we are

ready to compute the new probabilities of the query:

P𝛽𝑣 (∀𝑥 𝜓𝑤) =
{
0, if 𝑇0 (𝛽𝑣) ≠ ∅
𝑝∀(𝛽𝑣) · 𝑝𝔲 (𝜓𝑤) |dom |− |𝑆 (𝛽𝑣) | , else.

P𝛽𝑣 (∃𝑥 𝜓𝑤) =
{
1, if 𝑇1 (𝛽𝑣) ≠ ∅
1 − 𝑝∃ (𝛽𝑣) · 𝑝𝔲 (𝜓𝑤) |dom |− |𝑆 (𝛽𝑣) | , else.

This finishes the proof that the data structure can be maintained

with constant update time, after which we can read off the query

result P𝐷,𝛾 (𝜑) = P𝐷,𝛽 (𝜓𝑣) in the root node 𝑣 . Note that the data

structure can be initialized in constant time over the empty data-

base, which implies linear time initialisation for a database 𝐷 after

inserting all tuples. □

Corollary 3.9. Every Boolean UCQ is either #P-hard or can be
maintained with constant update time.

Proof. Follows immediately from Theorem 3.4, Remark 3.5 and

Theorem 3.8 □

4 DYNAMIC RANKED ENUMERATION
In the last section, we studied the dynamic evaluation of Boolean

queries, where the query result is a single probability value. The

goal of this section is to provide dynamic algorithms for evaluating

non-Boolean queries, where the query result is a relation in which

every tuple is annotated with a probability. In particular, we want

to enumerate the output tuples ranked by their probability and

with bounded delay.

Recall from Section 2 that a (first-order) query is a pair (𝜑,𝑊),
where 𝜑 is a first-order formula and𝑊 ⊆ free(𝜑) the set of output
variables. Moreover, the result set ⟦(𝜑,𝑊)⟧𝐷,𝛽

of a query (𝜑,𝑊)
under a probabilistic database 𝐷 and a valuation 𝛽 : 𝐶 → dom,

where 𝐶 = 𝐶 (𝜑,𝑊) := free(𝜑) \𝑊 , is the set of all pairs (𝜏, 𝑝) of
result tuples 𝜏 : 𝑊 → dom that have a positive probability 𝑝 =

P𝐷,𝜏⊎𝛽 (𝜑) > 0.

We now provide a formal description of our algorithmic problem:

A dynamic ranked enumeration algorithm for a query (𝜑,𝑊) and an
assignment 𝛽 : 𝐶 → dom computes the query result ⟦(𝜑,𝑊)⟧𝐷,𝛽

on a probabilistic database 𝐷 and implements two modes: Update
mode, in which it receives updates to the database, and enumeration
mode, in which it is asked to list the elements of ⟦(𝜑,𝑊)⟧𝐷,𝛽

,

ranked by their probabilities and without repetitions, where 𝐷

is the current database after all previous updates. The algorithm

starts in update mode on the empty database and must handle the

following calls:

(1) insert(𝑅𝑎1 ...𝑎𝑟 , 𝑝), upon which the ground tuple 𝑅𝑎1 ...𝑎𝑟
is inserted into the database with probability 𝑝 .

(2) delete(𝑅𝑎1 ...𝑎𝑟), upon which the ground tuple 𝑅𝑎1 ...𝑎𝑟 is

removed from the database.

(3) enumerate(), upon which the algorithm must enter enu-

meration mode and return the first element of the output

set.

In enumeration mode, the algorithm must handle repeated calls to

the following method:

(4) next(), upon which it is to return the next element of the

output, if there is any; or, if there is no element left, it must re-

turn the special end-of-enumeration symbol EOE and switch

into update mode.

(5) abort(), upon which it must abort the enumeration and

switch back into update mode.

If the distinction is not important, we will write “update(𝑡, 𝑝)”
to mean either one of insert(𝑡, 𝑝) or delete(𝑡). We call “update

time” the time the algorithm needs for a call to update(𝑡, 𝑝). We call

“delay” the maximum time needed to handle a call to enumerate()
and next().

Our goal is to design dynamic ranked enumeration algorithms

that achieve 𝑂 (log ∥𝐷 ∥) update time and 𝑂 (log ∥𝐷 ∥) delay for a

large class of queries. Below we define the class of r-liftable queries
for which this is possible. This class extends the class of liftable

Boolean queries from Definition 3.2, which can be evaluated with

constant update time.

Definition 4.1. The class of r-liftable queries is recursively defined
as follows:

(1) If𝜑 is liftable first-order formula (according to Definition 3.2),

then (𝜑, ∅) is r-liftable .
(2) If (𝜑,𝑊) is r-liftable and 𝑥 is a separator variable in 𝜑 ,

then (𝜑,𝑊 ∪ {𝑥}) is r-liftable.
(3) If (𝜑1,𝑊1) and (𝜑2,𝑊2) are r-liftable, 𝜑1 and 𝜑2 are

independent, and𝑊1 ∩𝑊2 = ∅,
then (𝜑1 ∧ 𝜑2,𝑊1 ∪𝑊2) is r-liftable.

(4) If (𝜑1,𝑊1) and (𝜑2,𝑊2) are r-liftable, 𝜑1 and 𝜑2 are
independent, and𝑊1 ∩𝑊2 = ∅,
then (𝜑1 ∨ 𝜑2,𝑊1 ∪𝑊2) is r-liftable.

Note that the rules (3) and (4) are similar to the lifted inference

rule (ind-∧) and (ind-∨), respectively. Moreover, the introduction

of output variables (2) relies on the same syntactic property as the

quantifier rules (ind-∀) and (ind-∃). In Section 4.3 we discuss the

difficulties that arise when trying to achieve a non-Boolean variant

of the inclusion-exclusion rules (incl-excl1), (incl-excl2), and (M).

4.1 A dynamic ranked enumeration algorithm
for liftable queries

In this subsection, we present a dynamic ranked enumeration al-

gorithm for the class of r-liftable queries and prove the following

main theorem.

Theorem 4.2. For any r-liftable query (𝜑,𝑊), database 𝐷 , and
valuation 𝛽 : free(𝜑) \𝑊 → dom, there is a data structure that sup-
ports dynamic ranked enumeration of the query result ⟦(𝜑,𝑊)⟧𝐷,𝛽

with 𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay.

We prove these rules by describing, for each rule, a recursive data

structure E that can enumerate the probability-ranked elements of

⟦(𝜑,𝑊)⟧𝐷,𝛽
. We will call these data structures enumerators. In the

following, we first give a high-level introduction, then introduce

the enumerator data structures for each rule, and finally bring

everything together to prove the theorem. Note that we will omit

the abort() function at first and consider it in Subsection 4.1.5. We

begin with some notation and definitions.

Recall from Section 2 that elements of a query result ⟦(𝜑,𝑊)⟧𝐷,𝛽

are of the form (𝜏, 𝑝), where 𝜏 : 𝑊 → dom and 𝑝 ∈ [0, 1] ⊂ Q.
When we want to explicitly state the order of different elements of

⟦(𝜑,𝑊)⟧𝐷,𝛽
under the probability ranking, we use the upper index

and write (𝜏, 𝑝)1, ..., (𝜏, 𝑝)𝑚 . We interchangeably write (𝜏𝑖 , 𝑝𝑖) or
(𝜏, 𝑝)𝑖 .

Definition 4.3. We extend Definition 3.6 by the following: We

say that a result ⟦(𝜑,𝑊)⟧𝐷,𝛽
is affected by a ground tuple 𝑡 (or

by a call update(𝑡, 𝑝)) iff the pair (𝜑, 𝛽) is affected by 𝑡 . A result

⟦(𝜑,𝑊)⟧𝐷,𝛽
is supported iff the pair (𝜑, 𝛽) is supported over 𝐷 ;

the result is unsupported otherwise. An enumerator Enum(𝜑, 𝛽) is
affected (supported, unsupported) if the corresponding query result

⟦(𝜑,𝑊)⟧𝐷,𝛽
is affected (supported, unsupported).

It is easy to see that if we let 𝐷𝔲 be the empty database, then

all elements in the result ⟦(𝜑,𝑊)⟧𝐷𝔲,𝛽
(for any 𝜑,𝑊 , 𝛽) have the

same probability 𝑝
shared

; and this probability is independent of𝑊

and 𝛽 .

Definition 4.4. We define 𝑝𝔲 (𝜑):

𝑝𝔲 (𝜑) :=
{
0 if ⟦(𝜑,𝑊)⟧𝐷𝔲,𝛽 = ∅,
𝑝
shared

otherwise.

4.1.1 High-Level Description. For the dynamic ranked enumera-

tion of a result set ⟦(𝜑,𝑊)⟧𝐷,𝛽
, we will describe an enumerator

data structure. More precisely, for every rule in Definition 4.1, we

will define one type of enumerator: For example, an AndEnumerator
will be able to “break down” the task of enumerating a query result

⟦(𝜑1 ∧ 𝜑2,𝑊1 ∪𝑊2)⟧𝐷,𝛽
into the separate tasks of enumerating

⟦(𝜑1,𝑊1)⟧𝐷,𝛽↾𝐶
1 and ⟦(𝜑1,𝑊2)⟧𝐷,𝛽↾𝐶

2 . This leads to an overall

structure of a tree of enumerators, see Figure 1: For example, enu-

merator E𝑥
0
relies on enumerators E∧

1
, E∧

2
, ... for their partial solu-

tions.

For the remainder of this subsection, we denote by 𝐷 the current

database instance. Note also that the set𝑊 = free(𝜑) \ dom(𝛽)
is implicitly given by 𝛽 . We will therefore mostly omit 𝐷 and𝑊

from ⟦(𝜑,𝑊)⟧𝐷,𝛽
and simplify the notation to ⟦𝜑⟧𝛽 . With the

same reasoning, we will denote the enumerator for a result set

⟦𝜑⟧𝛽 = ⟦(𝜑,𝑊)⟧𝐷,𝛽
by Enum(𝜑, 𝛽).

Invariants. The enumerator data structures will implement the

two modes of a dynamic ranked enumeration algorithm: the update

mode and the enumeration mode. We present the update invari-
ant and the enumeration invariant, which are maintained by the

enumerator data structure in the respective modes:

Update Invariant: The enumerator has pre-computed its first el-

ement under the ranking and can produce it in 𝑂 (1) time.

Enumeration Invariant: The enumerator has pre-computed the

element it needs to return on the next next() call, and can

produce it in 𝑂 (1) time.

Because these invariants will hold, our enumerators offer the

functions first() (in update mode) and preview_next() (in enu-

meration mode) in addition to the required functions for dynamic

ranked enumeration algorithms.

Consider an enumerator at the top of the enumerator tree and

its descendant enumerators. Calls of update(𝑡, 𝑝), enumerate(), or
next() force the enumerator to re-establish the invariants. This

re-establishing process is performed recursively in all descendant

enumerators that are affected by the call. We will show that the

number of descendant enumerators that are affected by each call is

independent of the size of the database, and that the re-establishing

E𝑥
0
: (∃𝑧 𝑅𝑥𝑧) ∧ 𝑆𝑥𝑦

𝛽 =𝜖

E∧
1
: (∃𝑧 𝑅𝑥𝑧) ∧ 𝑆𝑥𝑦

𝛽 = {𝑥 ↦→ 𝑎}

E𝑏
3
: ∃𝑧 𝑅𝑥𝑧

𝛽 = {𝑥 ↦→ 𝑎}
E𝑦
4
:𝑆𝑥𝑦

𝛽 = {𝑥 ↦→ 𝑎}

E𝑏
5
:𝑆𝑥𝑦

𝛽 = {𝑥 ↦→ 𝑎,

𝑦 ↦→ 𝑎}

a

E𝑏
6
:𝑆𝑥𝑦

𝛽 = {𝑥 ↦→ 𝑎,

𝑦 ↦→ 𝑏 }

b

E𝑏
7
:𝑆𝑥𝑦

𝛽 = {𝑥 ↦→ 𝑎,

𝑦 ↦→ 𝑐 }

c

a

E∧
2
: (∃𝑧 𝑅𝑥𝑧) ∧ 𝑆𝑥𝑦

𝛽 = {𝑥 ↦→ 𝑏 }

· · · · · ·

b

· · ·
c

Figure 1: An enumerator tree. Every box represents an enu-
merator. The upper exponent of E indicates the type of the
enumerator, e.g. E𝑏 for a Rule (1) enumerator. Enumerators
of type E𝑏 (highlighted in light grey) end the recursion.

procedure takes at most logarithmic time in each affected enumera-

tor. (Mostly, re-establishing the invariants consist of deleting from

and inserting into a priority queue; this requires logarithmic time.)

Result sets ⟦𝜑⟧𝛽 consist of tuples (𝜏, 𝑝). To designate the end of

an enumeration, our enumerators return the special result tuple

(EOE, 0), where EOE is the “end of enumeration” symbol. The prob-

ability 0 will ensure that when we rank possible output tuples by

their probability, the special (EOE, 0) will always be ranked last.

We define the update(𝑡, 𝑝) call to return a pair (𝑠, 𝑜), where 𝑠
is one of the two symbols SUP or UNSUP (which designate that the

updated enumerator is supported or unsupported, respectively) and

𝑜 is the first output tuple of the updated enumerator (i.e. either

some (𝜏, 𝑝) or (EOE, 0)).
In the enumeration tree, an enumerator is only initialized when

it becomes supported. This “pruning” or “omission” of unsupported

enumerators is a key part of why we are able to provide logarith-

mic updates. If an insert(𝑡, 𝑝) call lets previously unsupported

enumerators become supported, these enumerators are first ini-

tialized and then passed the insert call. If a delete(𝑡) call leads
to an enumerator becoming unsupported, the enumerator returns

the special UNSUP message to its parent; this instructs the parent

to delete the enumerator. In both of these cases, only a constant

number of enumerators are affected.

We can enumerate unsupported ⟦𝜑⟧𝛽 by computing, in constant

time, the probability 𝑝𝔲 (𝜑), and then outputting either (EOE, 0) (if
𝑝𝔲 (𝜑) = 0), or (𝜏, 𝑝𝔲 (𝜑)) for every 𝜏 : 𝑊 → dom otherwise. The

latter can be reduced to enumerating the cartesian product dom |𝑊 | .

4.1.2 Enumerator for Rule (2). Before we describe the enumerator

data structure, we show how to maintain a set of unsupported

constants in a dynamic data structure. We assume that there is a

total order on dom, and that we can, given a constant 𝑎, access the

preceding and succeeding constants under the order in constant

time, and that we can test 𝑎 ≤ 𝑎′ for two constants in constant

time.

Lemma 4.5. Let𝑈 ⊆ dom be a subset of dom that is initially set to
𝑈 = dom, and let 𝑛𝑈 := |dom \𝑈 |. There is a data structure 𝐸𝑈 that
can enumerate the elements of𝑈 with 𝑂 (log𝑛𝑈) delay and provides
the following 𝑂 (log𝑛𝑈) functions to update𝑈 :

(1) skip(𝑎), which removes the constant 𝑎 ∈ dom from𝑈 , and
(2) unskip(𝑎), which adds the constant 𝑎 ∈ dom back into𝑈 .

Proof. The set𝑈 is maintained as follows: When a constant 𝑎 is

skipped, we initialize a triple (𝑎𝑝 ,𝑇𝑎, 𝑎𝑠), where 𝑎𝑝 := pred(𝑎) and
𝑎𝑠 := succ(𝑎) are the predecessor and successor wrt. the total order
on dom, and𝑇𝑎 is an AVL tree that contains only 𝑎. Under repeated

skip and unskip calls to 𝐸𝑈 , the AVL trees designate continuous

areas of skipped constants. We can join adjacent areas in𝑂 (log𝑛𝑈),
and we can split an area in 𝑂 (log𝑛𝑈) if a constant it contains is
unskipped.

In enumeration mode, whenever 𝐸𝑈 needs to output the suc-

cessor of an element 𝑏, 𝐸𝑈 checks whether there is a triple that

contains 𝑏 in the first position. If it finds such a triple (𝑏,𝑇 , 𝑐), it
outputs as successor the constant 𝑐 that is in the third position of

the triple; if there is no such triple, it simply outputs succ(𝑏). □

The next lemma formalizes the inductive step for Rule (2) in

Definition 4.1.

Lemma 4.6. Let (𝜑,𝑊1) be a query where 𝑥 is a separator variable
in 𝜑 and 𝑥 ∉ 𝑊1. Assume that for any 𝛽1 : 𝐶1 → dom, there
exists a dynamic ranked enumeration algorithm 𝐸1 that enumerates
⟦(𝜑,𝑊1)⟧𝐷,𝛽1 with 𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay.

Then, there exists a dynamic ranked enumeration algorithm E
of type WhichEnumerator(𝜑, 𝛽) that enumerates ⟦(𝜑,𝑊)⟧𝐷,𝛽 with
𝑂 (log | |𝐷 | |) update time and𝑂 (log | |𝐷 | |) delay, where𝑊 =𝑊1⊎{𝑥}
and 𝛽 = 𝛽1↾𝐶 .

Proof of Lemma 4.6. Let us fix the query (𝜑,𝑊) and a valuation
𝛽 : 𝐶 → dom, and assume that there exist enumerators 𝐸𝑎 for every

⟦(𝜑,𝑊1)⟧𝐷,𝛽𝑥 ↦→𝑎
. To prove the lemma, we need to show how to

construct the enumerator E.
We first describe the update mode (see Algorithm 1). The enu-

merator E of type WhichEnumerator(𝜑, 𝛽) is initialized with a prior-
ity queue Q. This priority queue will contain triples (𝑎, 𝐸𝑎, (𝜏, 𝑝)1𝑎)
for 𝑎 ∈ dom, where 𝐸𝑎 is the enumerator that can enumerate

⟦(𝜑,𝑊1)⟧𝛽𝑥 ↦→𝑎
, and (𝜏, 𝑝)1𝑎 is 𝐸𝑎 ’s first output tuple. The queue Q

will be sorted in descending order by the values 𝑝1𝑎 . This means

that the first triple in the queue, let it be (𝑏, 𝐸𝑏 , (𝜏, 𝑝)1𝑏) for some

𝑏 ∈ dom, will contain the first output tuple (𝜏, 𝑝)1
𝑏
of E.

The queue Q is initialized with one special triple (𝔲, 𝐸𝔲, 𝑝𝔲),
where 𝔲 ∉ dom is the special “unsupported” symbol and 𝑝𝔲 :=𝑝𝔲 (𝜑).

1 Class WhichEnumerator:
2 function WhichEnumerator(𝜑, 𝛽):
3 𝐸𝔲 ← init_unsup_for(𝜑);
4 Q ← a new, empty priority queue;

5 Q .enqueue((𝔲, 𝐸𝔲, 𝐸𝔲 .first()));
6 E← new Object(𝜑, 𝛽,Q, 𝐸𝔲);
7 return E;
8 end
9 function E.update(𝑡 = 𝑅𝑎1 ...𝑎𝑟 , 𝑝):
10 𝑎 ← the unique 𝑎 ∈ dom, s.t. 𝐸𝑎 is affected by 𝑡 ;

11 if (𝑎, ...) ∉ E.Q then
12 𝐸𝑎 ← new Enumerator(𝜑, 𝛽𝑥 ↦→𝑎);
13 E.𝐸𝔲 .skip(𝑎);
14 else
15 (𝑎, 𝐸𝑎, (𝜏1𝑎, 𝑝1𝑎)) ← E.Q .remove((𝑎, ...));
16 end
17 switch 𝐸𝑎 .update(𝑡, 𝑝) do
18 case SUP, (𝜏 ′𝑎, 𝑝 ′𝑎) do
19 E.Q .enqueue((𝑎, 𝐸𝑎, (𝜏 ′𝑎, 𝑝 ′𝑎)));
20 case UNSUP, ... do
21 E.𝐸𝔲 .unskip(𝑎);
22 end
23 𝑠 ← (SUP if |E.Q| > 1; UNSUP otherwise);

24 (𝜏, 𝑝)1 ← take the first tuple from E.Q;
25 return 𝑠, (𝜏, 𝑝)1;
26 end
27 end

Algorithm 1: Update mode of WhichEnumerator(𝜑, 𝛽)

This special triple represents all unsupported child enumerators

– because all unsupported result tuples have the same probability,

we can treat them as one. When an insert(𝑡, 𝑝) call makes a child

enumerator 𝐸𝑎 supported, the child enumerator is initialized, its

triple (𝑎, 𝐸𝑎, ...) is added to the priority queue Q, and the constant 𝑎
is “skipped” in 𝐸𝔲 . When a delete(𝑡) call removes the support of a

child enumerator 𝐸𝑎 , this is reversed. Thus, the queueQ always con-

tains triples for the supported enumerators, and the unsupported

enumerators are handled by 𝐸𝔲 .

When the enumerator E receives a call update(𝑡, 𝑝), it computes

the unique constant 𝑎, such that the child enumerator 𝐸𝑎 is affected

by 𝑡 (𝑎 is unique because 𝑥 is a separator variable). The enumer-

ator propagates the update(𝑡, 𝑝) call to 𝐸𝑎 , upon which the child

enumerator returns its new first output tuple (𝜏, 𝑝)′𝑎 . The triple

(𝑎, 𝐸𝑎, ...) in Q is updated with the new first output tuple of 𝐸𝑎 ,

and E re-establishes the ranking of the queue and returns the first

element in Q as its own first output tuple.

It is clear that this algorithm maintains the update invariant, as

the first output tuple is always contained in the first triple in Q.
We now describe the enumeration mode (see Algorithm 2).

The basic idea is that we use the priority queue Q to rank the next

output tuple of each child enumerator 𝐸𝑎 . When the enumerator

E receives a call next, we pop the first triple (𝑎, 𝐸𝑎, (𝜏, 𝑝)𝑘𝑎) from
the priority queue Q and return (𝜏, 𝑝)𝑘𝑎 as our next output tuple

1 Class WhichEnumerator:
2 function E.enumerate():
3 E.Qenum ← shallow copy of E.Q;
4 E. 𝑗Q ← 1;

5 return E.next();
6 end
7 function E.next():
8 switch E.Q, E.Qenum do
9 case E.Qenum [1] .𝑝 = E.Q[E. 𝑗Q] .𝑝 = 0 do
10 restore default state;

11 return (EOE, 0);
12 case E.Qenum [1] .𝑝 ≥ E.Q[E. 𝑗Q] .𝑝 do
13 (𝑎, 𝐸𝑎, (𝜏𝑘 , 𝑝𝑘)) ← E.Qenum .pop();
14 case E.Qenum [1] .𝑝 < E.Q[E. 𝑗Q] .𝑝 do
15 (𝑎, 𝐸𝑎, (𝜏𝑘 , 𝑝𝑘)) ← E.Q[E. 𝑗Q];
16 E. 𝑗Q ← E. 𝑗Q + 1;
17 end
18 (𝜏𝑘 , 𝑝𝑘) ← 𝐸𝑎 .next();
19 (𝜏𝑘+1, 𝑝𝑘+1) ← 𝐸𝑎 .preview_next();
20 E.Qenum .enqueue((𝑎, 𝐸𝑎, (𝜏𝑘+1, 𝑝𝑘+1)));
21 return (𝜏𝑘 , 𝑝𝑘);
22 end
23 end
Algorithm 2: Enumeration mode of WhichEnumerator(𝜑, 𝛽).
We use the notation Q[𝑖] .𝑝 to denote the probability of the 𝑖’th

triple in the queue Q, which we define to be 0 if the index 𝑖 is

out of bounds or if the queue is empty. The (𝜏𝑘 , 𝑝𝑘) in line 13

(or 15), and line 18 are equal – we call next() in line 18 not for

its return value, but for its side effects on 𝐸𝑎 .

to our parent. We then call next on the child enumerator, and add

(𝑎, 𝐸𝑎, (𝜏, 𝑝)𝑘+1𝑎) back in the priority queue Q.
If we would do exactly this, we would “use up” the priority queue

Q, and we would have to rebuild it at the end of the enumeration

procedure. Therefore, we instead do the following: At the start of

the enumeration procedure, we create a second, temporary priority

queue Qenum. We do not pop enumerators from Q, but simply

iterate with a pointer 𝑗Q through it. If the pointer 𝑗Q points to

a triple (𝑎, 𝐸𝑎, (𝜏, 𝑝)1𝑎) ∈ Q that has higher probability than the

first element in Qenum, we use that triple as described above (but

without removing it from Q), move the pointer 𝑗Q forward by one,

and add the new triple (𝑎, 𝐸𝑎, (𝜏, 𝑝)2𝑎) to Qenum.
If the special triple (𝔲, 𝐸𝔲, 𝑝𝔲) is at the top of the queue(s), it

outputs all unsupported output tuples (as an example, consider the

query 𝜑 (𝑥) = ¬𝑅𝑥 on the empty database). As discussed above, the

enumerator 𝐸𝔲 must log-delay enumerate all possible valuations

of𝑊1 (or: the cartesian product dom |𝑊 | ×𝑈 , where𝑈 is the set of

all unsupported constants 𝑎 ∈ dom, that is, those that are not repre-
sented in the priority queue Q). The set of unsupported constants

𝑈 is maintained and enumerated as described in Lemma 4.5. Note

that if𝑈 is the set of unsupported constants, then the number 𝑛𝑈
in the lemma is at most |adom|.

Note that we left the triples (𝑎, 𝐸𝑎, (𝜏, 𝑝)1𝑎) in Q unchanged, so

that returning to update mode after an exhaustive enumeration is

as easy as deleting Qenum and 𝑗Q . We did modify all of our child

enumerators 𝐸𝑎 by repeatedly calling next() on them, but since

they all turned themselves back into update mode before sending

EOE to us, we do not need to clean up after them.

We now argue that calls update(𝑡, 𝑝), and next() are handled
by the enumerator E in logarithmic time. The enqueue and pop

operations of the priority queue are logarithmic in the length of

the queue, and this length is bounded by the size of the active

domain 𝑛𝑎 := |adom|. Skipping and unskipping constants in 𝐸𝔲
is also in logarithmic time by Lemma 4.5. The child enumerator’s

update(𝑡, 𝑝), and next() need logarithmic time by assumption.

This gives us the lemma. □

4.1.3 Enumerator for Rules (3) and (4). We only present the enu-

merator data structure for Rule (3) in detail, as the enumerator for

Rule (4) is similar (see Lemma 4.8).

Lemma 4.7. Let (𝜑1,𝑊1) and (𝜑2,𝑊2) be two queries where𝜑1 and
𝜑2 are independent and𝑊1∩𝑊2 = ∅. Assume that for any 𝛽1 : 𝐶1 →
dom, 𝛽2 : 𝐶2 → dom, there exist dynamic ranked enumeration al-
gorithms 𝐸1, 𝐸2 that enumerate ⟦(𝜑1,𝑊1)⟧𝐷,𝛽1 and ⟦(𝜑2,𝑊2)⟧𝐷,𝛽2 ,
respectively, with 𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay.

Then, there exists a dynamic ranked enumeration algorithm E
of type AndEnumerator(𝜑, 𝛽) that enumerates ⟦(𝜑,𝑊)⟧𝐷,𝛽 with
𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay, where 𝜑 = 𝜑1 ∧ 𝜑2,
𝑊 =𝑊1 ∪𝑊2, and any 𝛽 : 𝐶 → dom.

Proof of Lemma 4.7. Let us fix the query (𝜑,𝑊) and a valuation
𝛽 : 𝐶 → dom, and assume that there exist enumerators 𝐸1, 𝐸2 with

𝛽1 = 𝛽↾𝐶1
and 𝛽2 = 𝛽↾𝐶2

. To prove the lemma, we need to show

how to construct the enumerator E.
We first describe the update mode (see Algorithm 3). The enu-

merator E of type AndEnumerator(𝜑1 ∧ 𝜑2, 𝛽) is initialized with

a priority queue Q and two cache arrays, A1 and A2. The enu-

merator E lazily initializes two child enumerators, 𝐸1 and 𝐸2, that

enumerate the results ⟦(𝜑1,𝑊1)⟧𝐷,𝛽1
and ⟦(𝜑2,𝑊2)⟧𝐷,𝛽2

, respec-

tively, on the first insert call that affects them; and it deletes them

when they send the UNSUP signal. While they are unsupported, they

are substituted by special 𝐸𝔲,1 and 𝐸𝔲,2 enumerators, respectively.

If any of the two submits (EOE, 0) as its first output tuple, the
result set of the enumerator is also empty. For two output tuples

(𝜏1, 𝑝1) ∈ 𝐸1 and (𝜏2, 𝑝2) ∈ 𝐸2, we let (𝜏1, 𝑝1) ⊙ (𝜏2, 𝑝2) := (𝜏1 ∪
𝜏2, 𝑝1 · 𝑝2) . If the child enumerators submit (𝜏, 𝑝)1

1
and (𝜏, 𝑝)1

2
, then

the enumerator sets each pair as the first entry in the corresponding

cache list A𝑖 , and it adds the pair ((1, 1), (𝜏, 𝑝)1
1
⊙ (𝜏, 𝑝)1

2
) to the

priority queue Q.
Next, we describe the enumeration mode (see Algorithm 4).

For the following, we will denote by 𝑡
𝑗
𝑖
the 𝑗th output tuple of

𝐸𝑖 , so that 𝑡
𝑗
𝑖
= (𝜏 𝑗

𝑖
, 𝑝

𝑗
𝑖
). The output set ⟦𝜑1 ∧ 𝜑2⟧𝛽 consists of

the cartesian product of the outputs of 𝐸1 and 𝐸2, that means all

𝑇 𝑗1, 𝑗2
:= 𝑡

𝑗1
1
⊙ 𝑡 𝑗2

2
, where 𝑡

𝑗1
1
∈ ⟦𝜑1⟧𝛽↾𝐶1 and 𝑡

𝑗2
2
∈ ⟦𝜑2⟧𝛽↾𝐶2 .

Because both child enumerators are ranked, we can ranked-

enumerate all 𝑇 𝑗1, 𝑗2
with a simple search: Let us consider the carte-

sian product of output tuples 𝑇 𝑗1, 𝑗2
as a matrix, where indices of

enumerator 𝐸1 index the rows, and indices of 𝐸2 the columns. (See

Figure 2 for an example.) Let 𝐽 be a set of |𝐸1 | many pointers 𝐽𝑘 ,

each of them pointing to a certain element 𝑇𝑘,𝐽𝑘
in row 𝑘 . We ini-

tialize all of these pointers to 𝐽𝑘 ← 1 for all 𝑘 and add all 𝑇𝑘,𝐽𝑘
to

the priority Q with their probability as priority. On a call to next(),
we now pop the first 𝑇𝑘,𝐽𝑘

from the queue, output it as our next

tuple, then set 𝐽𝑘 ← 𝐽𝑘 + 1 and insert the new 𝑇𝑘,𝐽𝑘
into the queue.

Because the elements of 𝐸1 are ranked as well, we know that

𝑇𝑘,1 ≥ 𝑇𝑘+1,1
under our ranking. This means that we only need to

1 Class AndEnumerator:
2 function AndEnumerator(𝜑 = 𝜑1 ∧ 𝜑2, 𝛽):
3 for 𝑖 ∈ {1, 2} do
4 𝐸𝑖 ← new Enumerator(𝜑𝑖 , 𝛽↾𝜑𝑖

);
5 A𝑖 ← new Array(𝐸𝑖 .first());
6 end
7 E← new Object(𝜑1, 𝜑2, 𝛽,A1,A2, 𝐸1, 𝐸2);
8 return E;
9 end

10 function E.update(𝑡 = 𝑅𝑎1 ...𝑎𝑟 , 𝑝):
11 𝐴← {𝑖 ∈ {1, 2} | 𝑡 affects 𝐸𝑖 };
12 for 𝑖 ∈ 𝐴 do
13 𝑠𝑖 , (𝜏1𝑖 , 𝑝

1

𝑖
) ← 𝐸𝑖 .update(𝑡, 𝑝);

14 replace the only tuple in A𝑖 with (𝜏1𝑖 , 𝑝
1

𝑖
);

15 end
16 for 𝑖 ∉ 𝐴 do
17 𝑠𝑖 , (𝜏1𝑖 , 𝑝

1

𝑖
) ← 𝐸𝑖 .first();

18 end
19 𝑠 ← (UNSUP if 𝑠1 = 𝑠2 = UNSUP; SUP otherwise);

20 return 𝑠, (𝜏1
1
, 𝑝1

1
) ⊙ (𝜏1

2
, 𝑝1

2
);

21 end
22 end

Algorithm 3: Update mode of AndEnumerator(𝜑, 𝛽)

⟦𝑆𝑦⟧𝜖 → (𝑏, 0.9) (𝑒, 0.4) · · · (𝑑, 0.2) (EOE, 0)
⟦𝑅𝑥⟧𝜖 ↓
(𝑎, 1) (𝑎𝑏, 0.9) (𝑎𝑒, 0.2) · · · (𝑎𝑑, 0.2)
(𝑐, 0.5) (𝑐𝑏, 0.45) (𝑐𝑒, 0.2) · · · (𝑐𝑑, 0.1)

(𝑏, 0.1) (𝑏𝑏, 0.09) (𝑏𝑒, 0.04) · · · (𝑏𝑑, 0.02)
(EOE, 0)

Figure 2: An example of a cartesian product of two enumer-
ators 𝐸1, 𝐸2 in a formula 𝜑 (𝑥,𝑦) = 𝑅𝑥 ∧ 𝑆𝑦. The entry (𝑎𝑏, 0.9)
means that the formula 𝜑 (𝑎, 𝑏) = 𝑅𝑎 ∧ 𝑆𝑏 has probability 0.9.
In this example, underlines mark the two tuples that have
already been output, dashed underlines mark the position
of the index 𝐽𝑘 in every row 𝑘 .

initialize the pointer 𝐽𝑘+1 when we output the tuple 𝑇𝑘,1
; and that

we only need to initialize 𝐽1 at the beginning.

We now argue that calls update(𝑡, 𝑝), and next() are handled
by the enumerator E in logarithmic time. The child enumerator’s

update(𝑡, 𝑝), and next() need logarithmic time by assumption.

This gives us directly that the update function of E is also loga-

rithmic. During enumeration, the queue Q of candidates will have

1 Class AndEnumerator:
2 function E.enumerate():
3 E.Q ← a new, empty priority queue;

4 E.Q .enqueue(((1, 1), E.A1 [1] ⊙ E.A2 [1]));
5 return E.next();
6 end
7 function E.next():
8 ((𝑘, 𝐽𝑘),𝑇𝑘,𝐽𝑘) ← E.Q .pop();
9 if 𝑇𝑘,𝐽𝑘 .𝑝 = 0 then
10 restore default state;

11 return (EOE, 0);
12 end
13 if 𝐽𝑘 = 1 then
14 𝑡𝑘+1

1
← E.𝐸1 .next();

15 E.A1 [𝑘 + 1] ← 𝑡𝑘+1
1

;

16 𝑡1
2
← E.A2 [1];

17 E.Q .enqueue(((𝑘 + 1, 1), 𝑡𝑘+1
1
⊙ 𝑡1

2
));

18 end
19 if |E.A2 | < 𝐽𝑘 + 1 then
20 E.A2 [𝐽𝑘 + 1] ← E.𝐸2 .next();
21 end
22 𝑡𝑘

1
← E.A1 [𝑘];

23 𝑡
𝐽𝑘+1
2
← E.A2 [𝐽𝑘 + 1];

24 E.Q .enqueue(((𝑘, 𝐽𝑘 + 1), 𝑡𝑘1 ⊙ 𝑡
𝐽𝑘+1
2
));

25 return 𝑇𝑘,𝐽𝑘
;

26 end
27 end
Algorithm 4: Enumeration mode of AndEnumerator(𝜑, 𝛽)

length at most𝑚1 := |⟦𝜑1⟧𝛽1 |. During each next() call, we need
at most one pop and at most two insertions. The trivial bound of

𝑚1 ≤ 𝑛
|𝑊1 |
𝑎 where 𝑛𝑎 := |adom| suffices to show that the oper-

ations on the queue Q need only time 𝑂 (log𝑛𝑎) = 𝑂 (log𝑛 |𝑊 |𝑎)
Therefore, we can give the time bound of 𝑂 (log | |𝐷 | |) per next()
call. This gives us the lemma. □

Lemma 4.8. Let (𝜑1,𝑊1) and (𝜑2,𝑊2) be two queries where𝜑1 and
𝜑2 are independent and𝑊1∩𝑊2 = ∅. Assume that for any 𝛽1 : 𝐶1 →
dom, 𝛽2 : 𝐶2 → dom, there exist dynamic ranked enumeration al-
gorithms 𝐸1, 𝐸2 that enumerate ⟦(𝜑1,𝑊1)⟧𝐷,𝛽1 and ⟦(𝜑2,𝑊2)⟧𝐷,𝛽2 ,
respectively, with 𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay.

Then, there exists a dynamic ranked enumeration algorithm E
of type AndEnumerator(𝜑, 𝛽) that enumerates ⟦(𝜑,𝑊)⟧𝐷,𝛽 with
𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay, where 𝜑 = 𝜑1 ∨ 𝜑2,
𝑊 =𝑊1 ∪𝑊2, and any 𝛽 : 𝐶 → dom.

The proof of Lemma 4.8 is completely analog to Lemma 4.7, only

the output probability is computed as 𝑝 (1,1) := 1− (1−𝑝1) · (1−𝑝2).

4.1.4 Proving the Theorem.

Proof of Theorem 4.2. We prove the theorem by structural in-

duction over r-liftable formulas (Definition 4.1). The base case (1)

follows immediately from Theorem 3.8. The induction step for the

rules (2), (3), and (4) follows from Lemma 4.6, 4.7, and 4.8, respec-

tively. □

4.1.5 Top-𝑘 Enumeration. Often, users of probabilistic databases
are only interested in the most probable output tuples. This moti-

vates the research area of top-𝑘 enumeration, where users do not

request the full query result ⟦𝜑⟧𝛽 , but only the 𝑘 output tuples with

the highest probability. Here, 𝑘 ∈ N1 is a user-provided parameter.

We show that our enumerators support top-𝑘 enumeration. Let

abort() be a new method (in addition to next()) that our enu-
merators are to implement in enumeration mode. Upon a call to

abort(), an enumerator should clean up the enumeration state, go

back into update mode, and return the special end-of-enumeration

tuple (EOE, 0). We let “abort time” be the time that is needed to

handle a call to abort(). It is clear that this allows users to perform
top-𝑘 enumeration, even without explicitly giving us the parameter

𝑘 beforehand: They just start the enumeration as usual and abort it

after they have seen enough output tuples.

Lemma 4.9. Let E be one of the enumerator data structures we
introduced for the proof of Theorem 4.2, and let 𝑘 ∈ N be the number
of output tuples that was produced prior to a call to abort(). If all
child enumerators of E support top-𝑘 enumeration with 𝑂 (𝑘) abort
time, then E also supports top-𝑘 enumeration with 𝑂 (𝑘) abort time.

In uninterrupted enumeration, the enumeration state is built up

and built back down over the course of multiple next() calls; this
is why we can give logarithmic delay, but need abort time linear in

𝑘 . Typically, values of 𝑘 will be small and independent of the size

of the database, e.g. 𝑘 = 10 or 𝑘 = 100.

Proof. We prove the bound on the abort time. Enumerators of all

types need only constant time to reset their own state on an abort()
call. However, Rule (2)-based enumerators need to propagate the

abort() call to 𝑠 := |Qenum | many child enumerators. Let 𝑘1, ..., 𝑘𝑠

be the number of output tuples that each of the 𝑠 child enumerators

produced. Note that 𝑠 ≤ 𝑘 , and in particular that 𝑘 =
∑
𝑐∈[𝑠] 𝑘𝑐 . It

follows that the abort time of the Rule (2)-based enumerator is in

𝑂 (∑𝑐∈[𝑠] 𝑘𝑐) = 𝑂 (𝑘). □

Remark 4.10. Note that the space required by our data structure is
𝑂 (∥𝐷 ∥) in update mode. In the enumeration mode, the new priority

queues grow linear in the number of generated output tuples and are

cleaned up afterwards. It follows that top-𝑘 enumeration requires

total space𝑂 (∥𝐷 ∥ +𝑘), which is another incentive to avoid running

the enumeration for prohibitively large 𝑘 .

4.1.6 Open-World Semantics. In tuple-independent probabilistic

databases, the conventional semantics are “closed-world”, which

means that ground tuples 𝑡 that are not present in the database are

assumed to have probability 𝑝 (𝑡) = 0. Ceylan et al. [7] describe sev-

eral queries where output probabilities derived with closed-world

semantics go against intuition, and propose open-world semantics

to address this problem: For open-world semantics, a probabilistic

database instance𝐷 is coupledwith a threshold probability 𝜆 ∈ [0, 1].
A 𝜆-completion of a probabilistic database 𝐷 is another probabilistic

database based on 𝐷 , where we add every ground tuple that is

not present in 𝐷 with some probability 𝑝 ∈ [0, 𝜆]. Now, a (finite)3
open-world probabilistic database (𝐷, 𝜆) defines a set of probability
distributions P such that a distribution 𝑃 is contained in P iff 𝑃

is induced by some 𝜆-completion of 𝐷 . Queries (𝜑,𝑊) on (𝐷, 𝜆)
yield result valuations 𝜏 that do not have a single probability value

assigned to them, but an interval [𝑝, 𝑝], where

𝑝 (𝜑) := min

𝑃 ∈P
𝑃 (𝜏) and 𝑝 (𝜑) := max

𝑃 ∈P
𝑃 (𝜏) .

We will write ⟦𝜑⟧𝛽𝑐 for the result of query (𝜑, 𝛽) under closed-
world semantics and ⟦𝜑⟧𝛽𝑜 for the result of the same query under

open-world semantics. For further discussion, we refer the reader

to [7].

When we rank the result tuples (𝜏, 𝑝) of ⟦𝜑⟧𝛽𝑜 with 𝑝 = [𝑝, 𝑝] ⊂
Q by their probabilities, we rank them (in descending order) by

their upper-bound probability 𝑝 .

Theorem 4.11. If a query (𝜑,𝑊) is r-liftable with our rules under
closed-world-semantics (see Theorem 4.2), then it is also r-liftable
under open-world-semantics.

We prepare the proof with the following definition:

Definition 4.12. If we evaluate a query (𝜑,𝑊) over the empty

database 𝐷𝔲 under open-world semantics, then all elements in the

result ⟦𝜑⟧𝐷𝔲,𝛽
𝑜 have the same probability interval 𝑝

shared
⊂ Q

(which is independent of 𝛽). We define the function 𝑝𝔲 (𝜑) under
open-world semantics to be an interval 𝑝𝔲 (𝜑) ⊂ Q; and we define

𝑝𝔲 (𝜑) := [0, 0] if ⟦𝜑⟧𝐷𝔲,𝛽 = ∅, and 𝑝𝔲 (𝜑) := 𝑝
shared

otherwise.

Proof. Our algorithm from Theorem 4.2 supports open-world

semantics with only slight modifications: For computing the prob-

ability intervals of unsupported queries (𝜑,𝑊), instead of using

𝑝𝔲 (𝜑) under closed-world semantics, we will use 𝑝𝔲 (𝜑) under open-
world semantics (as defined in Definition 4.12). The probability

3
A different notion of open-world semantics has recently been proposed for probabilis-

tic databases over an infinite domain [12, 13]. However, in this work we only consider

finite domains.

interval of a supported ground tuple 𝑡 = 𝑅𝑎1 ...𝑎𝑟 with probability

𝑝𝑡 ∈ Q will be the single-element interval [𝑝𝑡 , 𝑝𝑡] = {𝑝𝑡 } ⊂ Q.
In all output tuples (𝜏, 𝑝), 𝑝 will now be an interval 𝑝 = [𝑝, 𝑝] ⊂

Q, instead of a scalar probability value. The arithmetics we per-

formed on probability values can be transferred to intervals with

constant overhead: For example, for two intervals 𝑝, 𝑝 ′ we can com-

pute 𝑝 · 𝑝 ′ := [𝑝 · 𝑝 ′, 𝑝 · 𝑝 ′] and 1 − 𝑝 := [1 − 𝑝, 1 − 𝑝]. We let all

priority queues sort in descending order, based on the upper bound

probability. The rest of the proof for closed-world semantics is not

affected by the change to open-world semantics; this gives us the

theorem. □

4.2 Application to Non-Repeating CQs
In this subsection, we show that our lifted inference rules for dy-

namic ranked enumeration (Definition 4.1) are complete for the

class of non-repeating conjunctive queries: For every non-repeating

conjunctive query we can either apply Theorem 4.2 and efficiently

maintain the ranked query result, or (under the assumption that

the OMv conjecture holds) there is no efficient dynamic ranked

enumeration algorithm for this query.

A conjunctive query (CQ) of schema 𝜎 is a query (𝜑,𝑊), where
𝜑 = ∃𝑦1 · · · ∃𝑦ℓ (𝜓1 ∧ · · · ∧𝜓𝑑),
𝑊 = free(𝜑),

ℓ ∈ N0, 𝑑 ∈ N1, and 𝜓 𝑗 is an atomic query of schema 𝜎 for every

𝑗 ∈ [𝑑]. Since𝑊 = free(𝜑), we abbreviate a conjunctive query

(𝜑,𝑊) as 𝜑 . A CQ 𝜑 is non-repeating or self-join-free if no two

atoms of 𝜑 share the same relational symbol.

Berkholz et al. [4] introduced the notion of a q-hierarchical CQ,
which will perfectly capture those non-repeating CQs that are

efficiently enumerable:

Definition 4.13 ([4]). A CQ 𝜑 is q-hierarchical if, for any two

variables 𝑥,𝑦 ∈ vars(𝜑), the following is satisfied:
(1) atoms(𝑥) ⊆ atoms(𝑦) or atoms(𝑦) ⊆ atoms(𝑥) or

atoms(𝑥) ∩ atoms(𝑦) = ∅, and
(2) if 𝑥 ∈ free(𝜑) and atoms(𝑥) ⊊ atoms(𝑦), then 𝑦 ∈ free(𝜑),

where atoms(𝑥) denotes the set of atoms in 𝜑 that contain 𝑥 .

We first show that all non-repeating q-hierarchical CQs are effi-

ciently enumerable.

Lemma 4.14. Let 𝜑 be a non-repeating CQ. The following state-
ments are equivalent:

(1) 𝜑 can be transformed into an equivalent r-liftable query 𝜑 ′.
(2) 𝜑 is q-hierarchical.

Proof. Consider a rooted syntax tree T for the conjunction

𝜓1 ∧ · · · ∧𝜓𝑑 in the formula 𝜑 . T has internal nodes ∧ that have

two children each, and leaf nodes 𝜓𝑖 . Note that because of the

commutativity and associativity of ∧, any two such trees T ,T ′
that have the same leaf set are equivalent. For any node 𝑡 in T ,
let 𝐷 (𝑡) be the set of descendants of 𝑡 in T (including 𝑡 itself). We

also define atoms(𝑡) ⊆ 𝐷 (𝑡) to be the set of leaves (i.e. atoms 𝜓𝑖)

in 𝐷 (𝑡). Let us define the q-condition for such a syntax tree T : The
q-condition is satisfied on T if

(1) for every variable 𝑥 ∈ vars(𝜑), there is a node 𝑡𝑥 in T , such
that atoms(𝑥) = atoms(𝑡𝑥), and

(2) if 𝑥 ∈ free(𝜑) and 𝑦 ∈ vars(𝜑) \ free(𝜑), then 𝑡𝑥 is no de-

scendant of 𝑡𝑦 in T .
It is easy to see that if the q-condition is satisfied on a syntax

tree T for a CQ 𝜑 , then 𝜑 is q-hierarchical. The converse also holds:

If 𝜑 is q-hierarchical, then we can rearrange the syntax tree T of 𝜑

into an equivalent syntax tree T ′ that satisfies the q-condition.
It remains to show the equivalence between (a) a syntax tree

satisfying the q-condition, and (b) the corresponding formula being

r-liftable. Assume that a syntax tree T satisfies the q-condition.

Because 𝜑 is non-repeating, 𝑥 is a separator variable in the subfor-

mula rooted in node 𝑡𝑥 , and every two sibling nodes 𝑡1, 𝑡2 represent

independent subformulas. What remains in order to apply our rules

is only to “pull in” all existential quantifiers ∃𝑥 to the position

of node 𝑡𝑥 . For the other direction, see that if our rules were ap-

plied successfully to a formula with syntax tree T , then (after we

“pulled out” all existential quantifiers) that tree must satisfy the

q-condition. □

It remains to show that non-repeating conjunctive queries that

are not q-hierarchical are not efficiently enumerable. The following

theorem fromBerkholz et al. [4] provides a lower bound on the delay

and update time for enumerating the result of a non-q-hierarchical

CQ on a standard (non-probabilistic) database. It relies on the OMv-

conjuncture [14], an algorithmic assumption on the hardness of the

online matrix-vector multiplication problem.

Theorem 4.15 ([4]). Fix a number 𝜀 > 0 and a non-repeating CQ
𝜑 . If 𝜑 is not q-hierarchical, then there is no algorithm with arbitrary
preprocessing time and 𝑂 (∥𝐷 ∥

1

2
−𝜀) update time that enumerates

the query result on a deterministic database 𝐷 in any order with
𝑂 (∥𝐷 ∥

1

2
−𝜀) delay, unless the OMv-conjecture fails.

If there is no algorithm that can enumerate a result set on a

deterministic database in any order, then adding the requirements

of probabilistic inference and ranking will not make the problem

easier. We directly get our theorem:

Theorem 4.16. Let 𝜑 be a non-repeating CQ, 𝐷 a probabilistic
database, and 𝜀 > 0. The following dichotomy holds:

(1) If𝜑 is q-hierarchical, then there is a data structure that supports
dynamic ranked enumeration of the query result ⟦𝜑⟧𝐷 with
𝑂 (log | |𝐷 | |) update time and 𝑂 (log | |𝐷 | |) delay.

(2) If 𝜑 is not q-hierarchical, then there is no dynamic ranked
enumeration algorithm with 𝑂 (∥𝐷 ∥

1

2
−𝜀) update time, and

𝑂 (∥𝐷 ∥
1

2
−𝜀) delay, unless the OMv-conjecture fails.

Proof. The first statement follows directly from Lemma 4.14

and Theorem 4.2, the second directly from Theorem 4.15. □

4.3 On Dynamic Ranked Enumeration for
Inclusion-Exclusion Lifting

Wehave shown that the lifted inference rules (ind-∨) and (ind-∧) for
Boolean queries translate to dynamic ranked enumeration (rule (4)

and (3) in Definition 4.1). In addition, the rule (2) for free variables

bases on the same syntactic criteria as (ind-∃) and (ind-∀) in the

Boolean setting.

The question that we address in this section is whether an analog

of the inclusion-exclusion rules (incl-excl1), (incl-excl2), and (M)

for ranked enumeration might be possible as well. Note that for

Boolean UCQs using inclusion-exclusion is essential to characterise

the queries that can be maintained under updates. We argue that

for dynamic ranked enumeration applying inclusion-exclusion is

muchmore challenging. To illustrate this, we consider the following

simple family of non-repeating UCQs (𝜑𝑘 ,𝑊𝑘) that can be evaluated
in polynomial time:

𝜑𝑘 =
∨
𝑖∈[𝑘]

(𝑆𝑖𝑥 ∧𝑇𝑖𝑦), 𝑊𝑘 = { 𝑥,𝑦 }.

By inclusion-exclusion we get that

⟦(𝜑𝑘 ,𝑊𝑘)⟧𝐷 = {((𝑎, 𝑏), 𝑝𝑎,𝑏) : 𝑎, 𝑏 ∈ dom; 𝑝𝑎,𝑏 > 0}, (1)

where 𝑝𝑎,𝑏 =
∑
∅≠𝐼 ⊆[𝑘] (−1) |𝐼 |+1 ·

∏
𝑖∈𝐼

(
𝑝 (𝑆𝑖𝑎) · 𝑝 (𝑇𝑖𝑏)

)
. (2)

There is a simple algorithm for dynamic ranked evaluation that

achieves constant delay and𝑂 (𝑛 log𝑛) update time by maintaining

an ordered list of output pairs and inserting/deleting all 𝑂 (𝑛) af-
fected pairs after an update. Moreover, a data structure supporting

unordered constant-delay enumeration of result tuples can be main-

tained with constant update time. Achieving logarithmic update

time for dynamic ranked enumeration seems to be much harder and

can be related to the following intriguing problem in computational

geometry.

In the 𝑑-dimensional dynamic linear programming problem (also

known as dynamic convex hull or linear optimization query) the task
is to maintain a set 𝑈 of 𝑑-dimensional points in a data structure

that allows the following operations.

(1) Update: Insert or remove single point from𝑈 .

(2) LP-query: Given a vector (𝑣1, . . . , 𝑣𝑑), output a point
(𝑢1, . . . , 𝑢𝑑) ∈ 𝑈 such that

∑
𝑖 𝑣𝑖𝑢𝑖 is maximal.

Solving an LP-query is equivalent to solving a linear program

with 𝑑 variables over the convex hull of the point set. For 𝑑 = 2 and

𝑑 = 3 this problem can be solved with polylogarithmic (amortized)

update and query time by maintaining a representation of the

convex hull of the point set [8, 30]. While for 𝑑 > 3 different

dynamic data structures exist [23, 24, 31], it is open, whether there

is a data structure that achieves polylogarithmic update and query

time [8].

Note that the objective function

∑
𝑖 𝑣𝑖𝑢𝑖 is already quite similar

to the expression (2) when |𝐼 | = 1. For a formal reduction we want

to neglect the other summands for |𝐼 | > 1 and for this reason we

reduce from a discrete variant of the problem, where the points

are taken from [𝑁]𝑑 for some fixed integer 𝑁 and query vector

has integral values between −𝑁 and 𝑁 . This formal restriction

is equivalent to assuming that the point set and the query are

represented with bounded precision.

Theorem 4.17. Let 𝑁 ∈ N. If there is a ranked enumeration
algorithm for 𝜑𝑑 with logarithmic update time and logarithmic delay,
then there is a data structure that maintains a point set 𝑈 ⊂ [𝑁]𝑑
with 𝑂 (log |𝑈 |) update time and supports LP-queries 𝑣 ∈ [−𝑁, 𝑁]𝑑
in time 𝑂 (log |𝑈 |).

Proof. To solve dynamic linear programming queries using

probabilistic query evaluation we maintain 2
𝑑
databases 𝐷𝑠 with

𝑠 = (𝑠1, . . . , 𝑠𝑑) ∈ {−1, 1}𝑑 that represent the point set and will be

used for answering LP-queries. With each point 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈
𝑈 we identify an element 𝑎𝑢 ∈ dom and maintain the ground tuples

𝑆1 (𝑎𝑢), . . . , 𝑆𝑑 (𝑎𝑢) in every database 𝐷𝑠 with probabilities

𝑝 (𝑆𝑖 (𝑎𝑢)) =
{

𝑢𝑖
𝑁 2 ·2𝑑 , if 𝑠𝑖 = 1

1

𝑁 2
𝑑 −

𝑢𝑖
𝑁 2 ·2𝑑 , if 𝑠𝑖 = −1.

(3)

Now let (𝑣1, . . . , 𝑣𝑑) by an LP-query and set 𝑠𝑖 := sign(𝑣𝑖). We

insert into 𝐷𝑠 the ground atoms 𝑇1 (𝑏), . . . ,𝑇𝑑 (𝑏) with probabilities

𝑝 (𝑇𝑖 (𝑏)) = |𝑣𝑖 |
𝑁 2 ·2𝑑 . Now we start the ranked enumeration for 𝜑𝑑 on

𝐷𝑠 and let (𝑎𝑢 , 𝑏) be the first tuple. We report 𝑢 as an answer to the

LP-query and delete the ground tuples 𝑇1 (𝑏), . . . ,𝑇𝑑 (𝑏) from 𝐷𝑠 .

It is clear that the process guarantees logarithmic update and

query time and it remains to prove correctness. By construction we

have

𝑝𝑎𝑢 ,𝑏 =
∑
𝑖∈[𝑑]

𝑝 (𝑆𝑖𝑎𝑢) · 𝑝 (𝑇𝑖𝑏) − 𝑟 (𝑢, 𝑣)

=
∑
𝑖∈[𝑑]

𝑢𝑖
𝑁 2 ·2𝑑 ·

𝑣𝑖
𝑁 2 ·2𝑑 +

∑
𝑖 : 𝑠𝑖=−1

1

𝑁 2
𝑑 ·

|𝑣𝑖 |
𝑁 2 ·2𝑑 − 𝑟 (𝑢, 𝑣)

Where 𝑟 (𝑢, 𝑣) ≤ 2
𝑑 · (1

𝑁 2
𝑑)−4 = 𝑁−42−3𝑑 as every remaining

summand is a product of at least four probabilities smaller than

1

𝑁 2
𝑑 . Now we can conclude the proof by showing that if 𝑢 has a

larger score than some other point𝑤 ∈ 𝑈 , it will receive a larger

probability. ∑
𝑖 𝑣𝑖𝑢𝑖 >

∑
𝑖 𝑣𝑖𝑤𝑖

⇔ ∑
𝑖 𝑣𝑖𝑢𝑖 ≥

∑
𝑖 𝑣𝑖𝑤𝑖 + 1

⇔ 1

𝑁 4 ·22𝑑
∑
𝑖 𝑣𝑖𝑢𝑖 ≥ 1

𝑁 4 ·22𝑑
∑
𝑖 𝑣𝑖𝑤𝑖 + 1

𝑁 4 ·22𝑑

⇔ 𝑝𝑎𝑢 ,𝑏 ≥ 𝑝𝑎𝑤 ,𝑏 + 𝑟 (𝑤, 𝑣) − 𝑟 (𝑢, 𝑣) + 1

𝑁 4 ·22𝑑
> 𝑝𝑎𝑤 ,𝑏 □

5 CONCLUSION
We studied the problem of probabilistic query evaluation under

updates for both Boolean and non-Boolean queries. We first con-

sidered the known lifted inference rules for Boolean queries and

demonstrated that we can maintain, in constant update time, the

query result for all Boolean queries that are liftable using these

rules. Then, we extended the lifted inference rules to non-Boolean

queries. Here, our interest was to rank the set of output tuples by

their probability. We showed that we can enumerate the ranked

output tuples with logarithmic delay, and that we can efficiently

maintain this ranked query result under updates.

The overall goal of this line of research is to understand for which

classes of queries efficient dynamic query evaluation is possible.

While for Boolean UCQs a complete characterisation is inherited

from Dalvi and Suciu’s dichotomy theorem [10], we only have

partial results for dynamic ranked enumeration for non-Boolean

UCQs. In particular, we showed that our method is complete for

the class of non-repeating conjunctive queries, where we can either

apply our method, or (conditioned on the OMv-conjecture) no

algorithm with polylogarithmic delay and polylogarithmic update

time is possible.

One obvious open problem is to extend this characterisation to

larger classes of queries, either by proving tight (conditional) lower

bounds or by extending our methods.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) – 414325841; 431183758.

REFERENCES
[1] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-

based approach to efficient enumeration. In Ioannis Chatzigiannakis, Piotr

Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017), pages 111:1–111:15,
2017. URL https://doi.org/10.4230/LIPIcs.ICALP.2017.111.

[2] Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumeration on trees under

relabelings. In Benny Kimelfeld and Yael Amsterdamer, editors, Proceedings of
the 21st International Conference on Database Theory (ICDT 2018), pages 5:1–5:18,
2018. URL https://doi.org/10.4230/LIPIcs.ICDT.2018.5.

[3] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enu-

meration on trees with tractable combined complexity and efficient updates. In

Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings of the
38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS 2019), pages 89–103, 2019. URL https://doi.org/10.1145/3294052.3319702.

[4] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunc-

tive queries under updates. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS 2017), pages 303–318,
2017. URL https://doi.org/10.1145/3034786.3034789.

[5] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs

under updates and in the presence of integrity constraints. In Benny Kimelfeld

and Yael Amsterdamer, editors, Proceedings of the 21st International Conference
on Database Theory (ICDT 2018), pages 8:1–8:19, 2018. URL https://doi.org/10.

4230/LIPIcs.ICDT.2018.8.

[6] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD

queries under updates on bounded degree databases. ACM Trans. Database Syst.,
43(2):7:1–7:32, 2018. URL https://doi.org/10.1145/3232056.

[7] İsmail İlkan Ceylan, Adnan Darwiche, and Guy van den Broeck. Open-world

probabilistic databases. In Chitta Baral, James P. Delgrande, and Frank Wolter,

editors, Proceedings of the 15th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2016), pages 339–348, 2016. URL http://www.

aaai.org/ocs/index.php/KR/KR16/paper/view/12908.

[8] Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d

nearest neighbor queries. Journal of the ACM, 57(3):16:1–16:15, 2010. URL

https://doi.org/10.1145/1706591.1706596.

[9] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic

databases. The VLDB Journal, 16(4):523–544, 2007. URL https://doi.org/10.1007/

s00778-006-0004-3.

[10] Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for

unions of conjunctive queries. Journal of the ACM, 59(6):30:1–30:87, 2012. URL

https://doi.org/10.1145/2395116.2395119.

[11] Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive query

results. In Ke Yi and Zhewei Wei, editors, Proceedings of the 24th International
Conference on Database Theory (ICDT 2021), pages 5:1–5:19, 2021. URL https:

//doi.org/10.4230/LIPIcs.ICDT.2021.5.

[12] Martin Grohe and Peter Lindner. Probabilistic databases with an infinite open-

world assumption. In Dan Suciu, Sebastian Skritek, and Christoph Koch, editors,

Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS 2019), pages 17–31, 2019. URL https://doi.org/10.1145/

3294052.3319681.

[13] Martin Grohe and Peter Lindner. Infinite probabilistic databases. In Carsten Lutz

and Jean Christoph Jung, editors, Proceedings of the 23rd International Conference
on Database Theory (ICDT 2020), pages 16:1–16:20, 2020. URL https://doi.org/10.

4230/LIPIcs.ICDT.2020.16.

[14] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. Unifying and strengthening hardness for dynamic problems via the

online matrix-vector multiplication conjecture. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing (STOC 2015), pages 21–30,
2015. URL http://doi.acm.org/10.1145/2746539.2746609.

[15] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The dynamic yan-

nakakis algorithm: Compact and efficient query processing under updates. In

Proceedings of the 2017 ACM International Conference on Management of Data (SIG-
MOD 2017), pages 1259–1274, 2017. URL https://doi.org/10.1145/3035918.3064027.

[16] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. Conjunctive queries with inequalities under updates. Proc.
VLDB Endow., 11(7):733–745, 2018. doi: 10.14778/3192965.3192966. URL http:

//www.vldb.org/pvldb/vol11/p733-idris.pdf.

[17] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Computing

Surveys, 40(4):11:1–11:58, 2008. URL https://doi.org/10.1145/1391729.1391730.

[18] Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory:

Compiling queries to decision diagrams. Theory Comput. Syst., 52(3):403–440,
2013. URL https://doi.org/10.1007/s00224-012-9392-5.

[19] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang.

Maintaining triangle queries under updates. ACM Trans. Database Syst., 45(3):
11:1–11:46, 2020. URL https://doi.org/10.1145/3396375.

[20] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in

static and dynamic evaluation of hierarchical queries. In Dan Suciu, Yufei Tao,

and Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS 2020), pages 375–392, 2020.
URL https://doi.org/10.1145/3375395.3387646.

[21] Dietrich Kuske and Nicole Schweikardt. Gaifman normal forms for counting

extensions of first-order logic. In Proceedings of the 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018), pages 133:1–133:14,
2018. URL https://doi.org/10.4230/LIPIcs.ICALP.2018.133.

[22] Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers

under updates. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS) (CSL-LICS 2014), pages 67:1–67:10, 2014. URL https://doi.org/10.1145/

2603088.2603137.

[23] Jirí Matousek. Linear optimization queries. Journal of Algorithms, 14(3):432–448,
1993. URL https://doi.org/10.1006/jagm.1993.1023.

[24] Jirí Matousek and Otfried Schwarzkopf. Linear optimization queries. In David

Avis, editor, Proceedings of the 8th Annual Symposium on Computational Geometry,
pages 16–25, 1992. URL https://doi.org/10.1145/142675.142683.

[25] Mikaël Monet. Solving a special case of the intensional vs extensional conjecture

in probabilistic databases. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors,

Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS 2020), pages 149–163, 2020. URL https://doi.org/10.1145/

3375395.3387642.

[26] Mikaël Monet and Dan Olteanu. Towards deterministic decomposable circuits for

safe queries. In Dan Olteanu and Barbara Poblete, editors, Proceedings of the 12th
Alberto Mendelzon International Workshop on Foundations of Data Management
(AMW 2018), 2018. URL http://ceur-ws.org/Vol-2100/paper19.pdf.

[27] Matthias Niewerth. MSO queries on trees: Enumerating answers under updates

using forest algebras. In Anuj Dawar and Erich Grädel, editors, Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2018),
pages 769–778, 2018. URL https://doi.org/10.1145/3209108.3209144.

[28] Matthias Niewerth and Luc Segoufin. Enumeration of MSO queries on strings

with constant delay and logarithmic updates. In Jan Van den Bussche and

Marcelo Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS 2018), pages 179–191, 2018.
URL https://doi.org/10.1145/3196959.3196961.

[29] DanOlteanu andHongkaiWen. Ranking query answers in probabilistic databases:

Complexity and efficient algorithms. In Anastasios Kementsietsidis and Marcos

Antonio Vaz Salles, editors, Proceedings of the 28th IEEE International Conference
on Data Engineering (ICDE 2012), pages 282–293, 2012. URL https://doi.org/10.

1109/ICDE.2012.61.

[30] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in

the plane. Journal of Computer and System Sciences, 23(2):166–204, 1981. URL
https://doi.org/10.1016/0022-0000(81)90012-X.

[31] Edgar A. Ramos. Linear programming queries revisited. In Siu-Wing Cheng,

Otfried Cheong, Pankaj K. Agarwal, and Steven Fortune, editors, Proceedings of
the 16th Annual Symposium on Computational Geometry, pages 176–181, 2000.
URL https://doi.org/10.1145/336154.336198.

[32] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expres-

sions with the union and difference operators. Journal of the ACM, 27(4):633–655,

1980. URL https://doi.org/10.1145/322217.322221.

[33] Dan Suciu. Probabilistic databases for all. In Dan Suciu, Yufei Tao, and Zhewei

Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS 2020), pages 19–31, 2020. URL https:

//doi.org/10.1145/3375395.3389129.

[34] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
Databases. Synthesis Lectures on Data Management. Morgan & Claypool Pub-

lishers, 2011. URL https://doi.org/10.2200/S00362ED1V01Y201105DTM016.

[35] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and

Xiaofeng Yang. Optimal algorithms for ranked enumeration of answers to full

conjunctive queries. Proc. VLDB Endow., 13(9):1582–1597, 2020. doi: 10.14778/
3397230.3397250. URL http://www.vldb.org/pvldb/vol13/p1582-tziavelis.pdf.

[36] Guy van den Broeck and Dan Suciu. Query processing on probabilistic data: A

survey. Found. Trends Databases, 7(3-4):197–341, 2017. URL https://doi.org/10.

1561/1900000052.

Received December 2020

https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.4230/LIPIcs.ICDT.2018.5
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.1145/3232056
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12908
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12908
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.1007/s00778-006-0004-3
https://doi.org/10.1007/s00778-006-0004-3
https://doi.org/10.1145/2395116.2395119
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.1145/3294052.3319681
https://doi.org/10.1145/3294052.3319681
https://doi.org/10.4230/LIPIcs.ICDT.2020.16
https://doi.org/10.4230/LIPIcs.ICDT.2020.16
http://doi.acm.org/10.1145/2746539.2746609
https://doi.org/10.1145/3035918.3064027
http://www.vldb.org/pvldb/vol11/p733-idris.pdf
http://www.vldb.org/pvldb/vol11/p733-idris.pdf
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1007/s00224-012-9392-5
https://doi.org/10.1145/3396375
https://doi.org/10.1145/3375395.3387646
https://doi.org/10.4230/LIPIcs.ICALP.2018.133
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1006/jagm.1993.1023
https://doi.org/10.1145/142675.142683
https://doi.org/10.1145/3375395.3387642
https://doi.org/10.1145/3375395.3387642
http://ceur-ws.org/Vol-2100/paper19.pdf
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3196959.3196961
https://doi.org/10.1109/ICDE.2012.61
https://doi.org/10.1109/ICDE.2012.61
https://doi.org/10.1016/0022-0000(81)90012-X
https://doi.org/10.1145/336154.336198
https://doi.org/10.1145/322217.322221
https://doi.org/10.1145/3375395.3389129
https://doi.org/10.1145/3375395.3389129
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
http://www.vldb.org/pvldb/vol13/p1582-tziavelis.pdf
https://doi.org/10.1561/1900000052
https://doi.org/10.1561/1900000052

	Abstract
	1 Introduction
	1.1 Related work

	2 Preliminaries
	3 Dynamic Evaluation of Boolean UCQs
	3.1 Lifted Query Evaluation
	3.2 Dynamic Lifted Query Evaluation

	4 Dynamic Ranked Enumeration
	4.1 A dynamic ranked enumeration algorithm for liftable queries
	4.2 Application to Non-Repeating CQs
	4.3 On Dynamic Ranked Enumeration for Inclusion-Exclusion Lifting

	5 Conclusion
	Acknowledgments
	References

