Process Mining
(ProMi)

Winter 2015/16

Matthias Weidlich
Recall: presentation is requirement for taking the final exam

By December 4, 2015:
- Team up in pairs of two
- Submit by mail (matthias.weidlich@hu) the name of your ranked selection of three topics

Assignment of topics/slots will happen soon after that

Preparation time:
- No lecture/recitation on 05.01.16, but, option for consultation

Links to all papers can be found on the course website
III. Conformance Checking
Alignment-based Techniques
Idea

Assessing the conformance of an event log with a model based on an alignment of activities and events

• Consider the set of activities of the model as a set of symbols
• Then, each execution sequence of the model is a sequence of symbols
• Each trace of the event log is also a sequence of symbols

An alignment between two sequences is established by

• Linking pairs of symbols in each sequence
• Such that the order between aligned symbols is preserved

The notion of an alignment allows for quantification of conformance and insights on non-conformance
Example

Model

Event log

Slides partly due to Boudewijn van Dongen
Example

Model

Event log

Alignment

abfdg
...
...

ab d
d
ab f d

g
pay compensation
h
reject request
...
Example

Model

Event log

Alignment

a b d e

a b f d
Example

Model

Event log

Alignment

abfdg

... ...

abfdg abfdg abfdg

Event log

Alignment
Example

Model

Event log

Alignment

Non-Conformance!
Idea Cont.

<table>
<thead>
<tr>
<th>Execution Sequence</th>
<th>a</th>
<th>d</th>
<th>b</th>
<th>e</th>
<th>f</th>
<th>d</th>
<th>c</th>
<th>e</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>e</td>
<td>f</td>
<td>d</td>
<td>c</td>
<td>e</td>
<td>g</td>
</tr>
</tbody>
</table>
Approach

Steps to realise the idea of alignment-based conformance analysis

- Definition of alignments
- Construction of (optimal) alignments
- Conformance measures

Here, focus is on basic approach, various variations have been presented in the literature:

- For different types of process models
- Using different strategies to construct optimal alignments
- Incorporating weighting schemes to fine-tune the importance of activities for conformance checking

Details:
The Notion of Moves

Alignment is based on “moves” in trace or execution sequence

- Specific symbol \bot to denote “no move”
- Set T_σ as the transitions of trace σ and $T_\sigma^\perp = T_\sigma \cup \{\bot\}$
- Set T_π as the transitions of execution sequence π and $T_\pi^\perp = T_\pi \cup \{\bot\}$

One step is a pair $(x, y) \in T_\sigma^\perp \times T_\pi^\perp$ and

- (x, y) is a move in log if $x \in T_\sigma$ and $y = \bot$
- (x, y) is a move in model if $x = \bot$ and $y \in T_\pi$
- (x, y) is a move in both if $x \in T_\sigma$ and $y \in T_\pi$
- (x, y) is an illegal move in log if $x = \bot$ and $y = \bot$

$T_{\sigma\pi} = \{(x, y) \in T_\sigma^\perp \times T_\pi^\perp \mid x \in T_\sigma \lor y \in T_\pi\}$ is the set of all legal moves
Alignment Definition

An alignment of trace σ and execution sequence π is a sequence of steps $\gamma \in T_{\sigma\pi}^*$, such that

- The projection of γ on its first component, ignoring \bot, is σ
- The projection of γ on its second component, ignoring \bot, is π

Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>\bot</th>
<th>d</th>
<th>e</th>
<th>g</th>
<th>\bot</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>\bot</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>\bot</td>
<td>h</td>
<td></td>
</tr>
</tbody>
</table>

Note: Given a trace and an execution sequence

- There is more than one alignment
- The set of possible alignments is finite
Alignment Examples

\[\gamma_1 = \begin{array}{cccccc}
 a & c & d & e & h \\
 \hline
 a & c & d & e & h \\
\end{array} \]

“Ideal” alignment!

\[\gamma_2 = \begin{array}{cccccc}
 a & b & \bot & d & e & g & \bot \\
 \hline
 a & \bot & c & d & e & \bot & h \\
\end{array} \]

“Imperfect” alignment!

\[\gamma_3 = \begin{array}{cccccc}
 a & b & \bot & d & e & \bot & \bot & g \\
 \hline
 \bot & a & c & d & \bot & e & \bot & h \\
\end{array} \]

“Non-optimal” alignment!

\[\gamma_4 = \begin{array}{cccccc}
 a & \bot & b & d & e & g & \bot \\
 \hline
 a & \bot & c & d & e & \bot & h \\
\end{array} \]

Not an alignment!
Cost of Moves

Introduce cost for legal moves

- Function $\delta: T_{\sigma\pi} \rightarrow \mathbb{N}$ assigns cost to each move
- Typically, $\delta(x, x) = 0$

Standard cost function, for $x \in T_{\sigma}$ and $y \in T_{\pi}$:

- $\delta(x, \bot) = 1$ (move in log)
- $\delta(\bot, y) = 1$ (move in model)
- $\delta(x, y) = 0$ if $x = y$ (equal move in both)
- $\delta(x, y) = \infty$ if $x \neq y$ (different move in both)

Various further cost functions possible

- Take into account importance of activities (skip payment vs. skip logging)
- Consider similarity of activities (preliminary check vs. partial check)
Examples Again

\[\gamma_1 = \begin{array}{cccccc}
a & c & d & e & h \\
a & c & d & e & h \\
\end{array}\]
Cost: 0

\[\gamma_2 = \begin{array}{ccccccc}
a & b & \bot & d & e & g & \bot \\
a & \bot & c & d & e & \bot & h \\
\end{array}\]
Cost: 4

\[\gamma_3 = \begin{array}{cccccccc}
a & b & \bot & d & e & \bot & \bot & g \\
\bot & a & c & d & \bot & e & h & \bot \\
\end{array}\]
Cost: \(\infty\)
Optimal Alignment

So far, cost of *some* alignment of trace with respect to *some* execution sequence

- Optimal alignment of trace σ and execution sequence π: alignment with minimal cost
- Optimal alignment of trace σ and model, i.e., set of complete execution sequences Π: alignment with minimal cost of all optimal alignments of σ and complete execution sequence $\pi \in \Pi$
- Notation: optimal alignment of σ and execution sequence π is $\gamma^*(\sigma, \pi)$, optimal alignment of σ and execution sequences Π is $\gamma^*(\sigma, \Pi)$

Optimal alignment of trace σ and model always exists

- Maybe the trivial alignment that first only moves in trace and then in shortest complete execution sequence, or vice versa
- Not unique, multiple alignments may show minimal cost

Finding the optimal alignment is expensive in general
Example

Trace: abefbh
Cost: 3
The Problem of Finding Optimal Alignments

The search space is a “product” of the statespace of the model and the trace

Each node is a combination of a state in the model and the executed events in the trace

Each arc is a move in model, move in log or move in both

Example:

Trace: < A, A, B, A >

9 states, 13 transitions
Alignment search space

Find the shortest path from the top-left to the bottom right

45 states,
121 transitions

Find the shortest path from the top-left to the bottom right

Slides partly due to Boudewijn van Dongen
The alignment for trace \langle A, A, B, A \rangle:
\langle (0, -), (1, -), (2, A), (3, -), (2, A), (4, B), (5, A) \rangle
Implicit Execution

Implicit execution:
- Of silent transitions in a net system
- Of operator nodes in a Process Tree

6 states, 9 transitions
Implicit execution – Reduced Statespace

- 45 – 30 states,
- 121 – 86 transitions
Computing Alignments

In general, finding the shortest path in a weighted, directed graph

Baseline: Dijkstra's algorithm

• Visit each node at most once
• Proceed by iteratively exploring nodes with minimal distance to source
• In each iteration, compute distances to neighbours of current node

Yet, A* as a more efficient algorithm, where the search is guided by heuristics
Recall: A* Search

OPEN set, initialised with source node
CLOSED set, initialised as empty set

function g, cost on best known path
g(source) := 0; g(n) := ∞ for all other n

function f, cost estimate to goal
f(source) := g(source) + \texttt{heuristic}(source, goal); f(n) := ∞ for all other n

while OPEN is not empty
 find node q with least f in OPEN, remove q from OPEN, add q to CLOSED
 if q is the goal, stop the search

 for each successor of q
 if successor in CLOSED, continue
 score := g(q) + weight(q, successor)
 if successor not in OPEN, add successor to OPEN
 else if score >= g(successor), continue
 g(successor) := score
 f(successor) := g(successor) + \texttt{heuristic}(successor, goal)

return none
Search Heuristics

In general: heuristic must be admissible, i.e., never overestimate the cost to reach goal and be monotonic.

Simple estimator for our setting: length of remaining trace

• Never overestimates: best solution needs to align all the remaining transitions in this trace
• Is monotonic: move in model yields the same estimate, move in log and move in both lower the estimate

Not here: more advanced estimators based on ILP
Example

Estimator: remaining trace length
- 45 30 21 states,
- 121 86 32 transitions
Conformance Analysis

Alignments enable quantification of conformance of event logs w.r.t. a process model.

Compared to approaches discussed earlier, two common issues are not problematic when using alignments:

- Silent transitions do not need to be treated.
- Duplicated transitions in the model can be integrated directly.

Alignments form the basis not only for conformance analysis, but a full range of analysis techniques.
Fitness Measures

Absolute fitness of a trace σ regarding a given model

- Defined by the cost δ of the optimal alignment of σ with the model
- Using the standard cost function, this corresponds to the number of
 moves in log and moves in model

Absolute fitness of a multiset $S = [\sigma_1^{n_1}, \ldots, \sigma_m^{n_m}]$ of traces regarding model M with complete execution sequences Π

- Sum of costs of optimal alignments of traces

$$f\text{cost}(S, \Pi) = \sum_{1 \leq i \leq m} n_i \delta(\gamma^*(\sigma_i, \Pi))$$
Normalised Fitness

Various solutions to normalise the absolute fitness measure

Here: division by maximal possible value

- Assume that a move in both \((x, y)\) happens only if \(x = y\)
- Worst case: alignment is built only from moves in model and moves in log
- With \(S\) as the multiset of traces, the cost of moving through the log without moving in the model is:
 \[
 c(S) = \sum_{1 \leq i \leq m} n_i \sum_{x \in \sigma_i} \delta(x, \perp)
 \]
 - The cost of moving only in the model (via the least expensive path) is:
 \[
 c(\Pi) = \min_{\pi \in \Pi} \sum_{y \in \pi} \delta(\perp, y)
 \]

Normalised fitness measure:

\[
\text{fitness}(S, \Pi) = 1 - \frac{f\text{cost}(S, \Pi)}{c(S) + \sum_{1 \leq i \leq m} n_i c(\Pi)}
\]
Local Feedback in Trace/Model

Characterise “hotspots” of non-conformance in trace or model

• Approach similar to the one introduced for relational conformance checking

• Instead of considering elements of behavioural relations as entities for feedback, the violation pair (transition, move type) is used (move type is either move in log or move in model)

• Frequent occurrence of such a pair hints at hotspot

Illustration:
Global Feedback

To obtain further insights on root causes of non-conformance
 • Lifting the notions of violation support and confidence of introduced for relational approaches to the (transition, move type) violation pairs

Violation support: number of traces that show particular violation in optimal alignment

Confidence of violation rules: given two violations v and v', determine ratio of number of traces showing both violations and number of traces showing only violation v
Beyond Conformance Checking

Alignments can not only be used to quantify fitness

Specifically, the precision-generalisation trade-off can be addressed

One approach to measure precision and generalisation

- Use alignment prefixes to characterise states (assuming a fully fitting and deterministic model)
- Determine enabled transitions per state based on alignment
- Observe changes in the set of enabled transitions for each state change
Event Log Analysis

So far, alignments between a trace of an event log and an execution sequence of a model

• Pairwise alignment
• Each trace is considered in isolation

But: Alignments are also useful in the absence of a model

• Support explorative analysis of an event log
• Insights into regularities and most common behaviour among the traces
• Identification of rare deviations
• Powerful visual feedback
Multiple Trace Alignment

Construct alignment between traces of event log
 • No longer a question of optimising the alignment cost for a single trace
 • Global view: overall alignment cost should be minimal

Problem well-known in genomics
 • Alignments of nucleic acid sequences
 • Yet, also known to be an NP-complete problem

Various heuristic techniques to find multiple trace alignment that may be non-optimal
 • Typically based on iterative approach
 • Often based on hierarchical clustering
Intuition

$T_1: jgcflebd$
$T_2: jgclebdfi$
$T_3: jgclebd$
$T_4: jgclfebd$
$T_5: jgclefbd$
Specific Techniques

Standard techniques may lead to results that are not intuitive from a business process point of view

Example: tendency to penalise gaps at the beginning and end of traces

- Not in line with “looping” behaviour in processes
- Consider locality in the alignment

\[\text{j g c - a h b --- f d} \]
\[\text{j g c f a h b d k a h b d} \]
\[\text{j g c - a h b f d ---} \]
\[\text{j g c f a h b - d k a h b d} \]
Insights

Alignment of a cluster of real world traces (house/apartment rentals):
b0 is check activity (inspection done?), sequence b4a8b0 is done only in negative case (tenant not at home -> send letter, reschedule)
Insights

h1g9 is well preserved (final inspection, recording of defects)
d1d0 is offering a flat, before final inspection in first trace!
Insights

b5e5 are related to second inspection – rarely needed.
c9 is determination of candidate tenant – happened multiple times in one trace (featuring f0 termination of provisional lease)
Take Away

Alignments are a basic technique to compare event logs and models.

Main idea: establish the cost-optimal relation between each observed trace and an execution sequence of a model.

Enables quantification of conformance.

Additional techniques for behavioural comparison based on alignments.