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ABSTRACT

Model-based software product lines (MBSPLs) are implemented

using various variability mechanisms. These are commonly catego-

rized whether they separate features virtually (e.g., using annota-

tions) or physically (e.g., using modules). Each of these mechanisms

comprises advantages and disadvantages regardingMBSPL develop-

ment, maintenance and analysis. To date, MBSPL developers have to

choose upfront which variability mechanism to use, and the chosen

mechanism including its drawbacks is bound to the MBSPL’s entire

lifecycle. In contrast, projectional editing has recently shown very

promising potential of making the development of classical SPLs

(e.g., implemented in C/C++) more flexible. User-editable projections

allow developers to switch fluidly between different variability

mechanisms based upon a common internal representation known

as variational abstract syntax tree.

In this paper, we report on ongoing work on the projectional

editing of MBSPLs, which is challenged by a set of additional re-

quirements. We lay the foundation for different editable projections

using a common variational abstract syntax graph (vASG) as inter-

nal representation. This vASG is used for a fine-grained variability

representation of EMOF-based models. We demonstrate the feasi-

bility of our approach by incorporating different variability mecha-

nism projections (150% models and delta modules) and modeling

languages (Ecore class diagrams and UML state machines) used in

existing MBSPL case studies.
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1 INTRODUCTION

Software product line engineering (SPLE) tackles the complexity of

variant-rich software systems by handling common and variable

parts in a family of variants using features [9, 11]. In various do-

mains, traditional source code and programming languages (like

C/C++) have been replaced by (executable) models and modeling

languages (like UML or Simulink), leading to model-based software

product lines (MBSPLs) [1]. Different variability mechanisms have

been proposed [2, 10, 14, 29] for implementing MBSPLs.

Annotative approaches mark model elements and their proper-

ties with presence conditions under which they are valid. Hence, all

configurations are superimposed into one so-called 150%model [10],

similar to preprocessor macros (e.g., ifdef directives in C/C++)

known from code-based SPLs [1]. Thus a specific configuration can

be derived by removing all model parts whose presence conditions

are not fulfilled for this configuration. With such a virtual separa-

tion of features, developers can use existing tools and processes

for implementing variability [16, 23], and a superimposed repre-

sentation enables the efficient application of various family-based

quality assurance techniques [33, 42, 43]. Furthermore, annotative

approaches offer a straightforward SPL adoption path by adding

variability to legacy systems without restructuring the core func-

tionality [37].

In contrast, modular variability approaches are based upon struc-

turing the product line implementation along features [1]. Each fea-

ture (combination) is implemented in a separate module, a specific

configuration is composed by integrating [3] or applying [30, 39] its

modules. Such a physical separation offers potential reuse among

modules and fosters feature-oriented development. Furthermore,

due to the tight integration of features as first-class citizens, a

modular representation enables feature-oriented analyses [12] (e.g.,

regarding feature interactions [1] and redundancy among mod-

ules [31]).
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To summarize, each variability mechanism comprises advan-

tages and disadvantages regarding MBSPL development, main-

tenance and analysis. Thus, developers may want to switch be-

tween these mechanisms, depending on the (changing) develop-

ment context during the lifecycle of an MBSPL. Although several

approaches combine different variability mechanisms [15, 17, 22],

this increases the complexity and developers who are not aware of

all the variability mechanisms do not perceive as many benefits as

expected [16, 20, 21]. Instead, projectional editing integrates differ-

ent mechanisms independently and has recently shown promising

results for code-oriented SPLs [5, 28]. The key concept is to use a

common variational structure as internal representation [6] that is

edited using different projections as external representations. De-

velopers may switch between different projections at any time, and

all changes are propagated directly to the internal representation

and thus synchronized among all other projections. In this paper,

we leverage these concepts from code-oriented SPLs and lift them

to model-based SPLs:

ś We analyze the additional challenges and requirements for

projectional editing of MBSPLs regarding a) syntactical well-

formedness and b) available variability mechanisms, as com-

pared to state-of-the-art approaches known from code.

ś We propose a new internal variability representation (vASG)

which adheres to these requirements and which is expressive

enough for supporting a) different variability mechanisms and

granularity levels and b) any EMOF-based modeling language.

ś We demonstrate the feasibility of our approach by implement-

ing different user-editable projections and apply them to realis-

tic MBSPL case studies.

2 BACKGROUND AND MOTIVATION

We first provide the necessary background and discuss require-

ments for projectional editing for MBSPLs. Therefore, we introduce

an MBSPL, called Expression Product Line (EPL), which has been

adapted from [4] and serves as example throughout the paper.

2.1 Running Example

Fig. 1 shows the problem space of the EPL in terms of a feature

diagram. It consists of the two and-groups Data and Operations

and the alternative-group Type. While the first one declares three

kinds of expressions, namely literals (Lit), addition (Add) and nega-

tion (Neg), the second group defines the operations Print and Eval,

which can be performed on an expression. A literal and the return

type of the operation eval can be either an Integer or a Float, as

declared by the alternative-group. Mandatory features represent

the commonalities of the MBSPL, while optional and alternative

features represent the variability of the MBSPL.

In the remainder, we illustrate the realization of the solution

space following an annotative and a modular variability approach.

Annotative VariabilityMechanism. Fig. 2 shows the 150%model

of the EPL as an annotated Ecore class diagram 1, the Ecore an-

notations attached to classes, their properties and references are

used to specify commonalities and variabilities. Model elements

without annotations represent the commonalities consisting of the

1https://www.eclipse.org/modeling/emf/

EPL

Add IntegerNeg Print Float

Type

Lit

Data

Eval

Legend:

Mandatory

Optional

Alternative

Concrete

Operations

Figure 1: Feature model of the problem space of the Expres-

sion Product Line (EPL), slightly adapted from [4].

interface Exp that declares a method print() and the class Lit

implementing this method. The optional and alternative features,

i.e., the variabilities, are realized by model elements annotated with

a presence condition. For instance, the class Lit declares the prop-

erty value two times but with different types, namely Integer and

Float. Given a valid configuration comprising the feature Integer ,

the property annotated with Float is not included in the final model.

As another example, the feature Eval is realized by two variants

of the method eval that differ in their return types (both in the

interface Exp and the implementing class Lit). The respective ele-

ments are annotated with the presence conditions Eval and Integer

as well as Eval and Float.

Note that, in general, the granularity of variability for annotative

approaches depends on syntactical constraints of the domain mod-

eling language. Regarding our example, multiplicity constraints

of the Ecore metamodel (e.g., each method may have at most one

return type) results in duplicated elements for the method eval

and property value, thus limiting re-use among these elements.

Exp

print()

eval() : EInt

eval() : EFloat

Lit

value : EInt

value : EFloat = 0.0

print()

eval() : EInt

eval() : EFloat

Add

print()

eval() : EInt

eval() : EFloat

Neg

print()

eval() : EInt

eval() : EFloat

Eval and

IntegerEval and Float

Add

Add and Eval

and Float

Add and Eval

and Integer

Neg

Neg and Eval

and Integer

Neg and Eval

and Float

[1..1] left
[1..1] right [1..1] expr

Float Integer

Figure 2: Implementation of the EPL as an annotated Ecore

class diagram serving as 150% model.

Modular VariabilityMechanism.As a modular variability mech-

anism, we use delta modeling, a language-independent transforma-

tional approach in which the commonalities and variabilities of

an MBSPL are realized by specifying a core model and a set of

delta modules [38]. The core model typically represents a valid

configuration of the MBSPL, while delta modules specify model

transformations using predefined language-specific delta operations

that may add, modify ore remove model elements. Therefore, an

operation supplies several parameters for passing arguments like

context elements and attribute values. For the sake of clarity, we

refer to delta operations with passed arguments as delta actions. To

relate a delta module to one or several features, it is equipped with

an application condition, i.e., a propositional formula over a subset

of all available features.
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Fig. 3 shows the core model of the EPL realizing all mandatory

features (Lit and Print) as well as the alternative feature Integer .

Exp

print()

Lit

value : EInt
print()

Figure 3: Core

model of a delta-

based EPL imple-

mentation.

Listing 1 shows the delta module DEval

following the textual syntax of the SiPL-

framework [29, 31, 32]. Its application

condition (when-clause) consists of the

feature Eval (line 1), which means that

the delta module is applied when the fea-

ture Eval is selected in a valid configura-

tion. The set of available delta operations

is determined by the document type (line

2), i.e., the namespace uri of the mod-

eling language’s metamodel. The delta

module adds the operation eval to the

interface Exp (lines 4-8) and class Lit

(lines 13-17) with EInt as return type

(lines 9-12, 18-21). Note that in Ecore

class diagrams, operations are referred

to as EOperations, and interfaces are actually classes (referred to

as EClasses) which are declared to be an interface.

The delta module DFloat, which is shown in Listing 2, realizes

the alternative feature Float by modifying the type of the property

value in the class Lit (lines 4-7).

Listing 3 shows the delta module DEvalFloat that realizes the

feature interaction of the feature Eval with Float. Its application

condition is a conjunction of both features (line 1). It changes the

return type of the operation eval in the interface Exp (lines 4-7)

and the class Lit (lines 8-11) from EInt to EFloat.

Listing 1: DEval

1 delta DEval when "Eval" {

2 docType : "http ://www.eclipse.org/emf /2002/ Ecore";

3
4 new_EOperation as expEval =

addEOperationToEOperationsOfEClass(

5 object eClass : epl.Exp ,

6 value name : "eval",

7 ...

8 );

9 setETypeOfEOperation(

10 object srcEOperation : expEval ,

11 object tgtEClassifier : ecore.EInt

12 );

13 new_EOperation as litEval =

addEOperationToEOperationsOfEClass(

14 object eClass : epl.Lit ,

15 value name : "eval",

16 ...

17 );

18 setETypeOfEOperation(

19 object srcEOperation : litEval ,

20 object tgtEClassifier : ecore.EInt

21 );

22 }

Listing 2: DFloat

1 delta DFloat when "Float" {

2 docType : "http ://www.eclipse.org/emf /2002/ Ecore";

3
4 changeETypeOfEAttribute(

5 object srcEAttribute : epl.Lit .^value ,

6 object tgtEClassifier : ecore.EFloat

7 );

8 }

Listing 3: DEvalFloat

1 delta DEvalFloat when "Eval and Float" {

2 docType : "http ://www.eclipse.org/emf /2002/ Ecore";

3
4 changeETypeOfEOperation(

5 object srcEOperation : epl.Exp.eval ,

6 object tgtEClassifier : ecore.EFloat

7 );

8 changeETypeOfEOperation(

9 object srcEOperation : epl.Lit.eval ,

10 object tgtEClassifier : ecore.EFloat

11 );

12 }

Note that the delta module DEvalFloat depends on the delta

module DEval, the operation eval must be added before its type

can be set or altered. The SiPL-framework provides several analysis

functions to automatically detect such interrelations between delta

modules, they do not need to be managed manually. Moreover, note

that the level of granularity for specifying variable parts depends

on the available delta operations. In our implementation of the EPL,

we use the approach and supporting tool presented by Kehrer et

al. [19, 36] to derive a basic set of delta operations from the Ecore

metamodel. Since this set includes a delta operation for changing

the return type of the operation of a class in an Ecore class diagram,

no redundant definition of the operation eval is needed in a delta-

oriented implementation of the EPL, as opposed to the annotative

implementation using a 150% model.

3 BASIC REQUIREMENTS

Following the ideas presented in [6], projectional editing relies

on a common variational structure over a set of projections. In

order to support projectional editing for MBSPLs, such a variational

structure needs to fulfill the following criteria:

C1 - Representation. The variational structure must support any

kind of variability representation used for MBSPLs. This in-

cludes positive and negative variability in the sense that any

model element can be explicitly declared to be absent or

present in the final model, according to its condition. Fur-

thermore, combinatorial variability (e.g, feature interactions

or derivatives [1]) must be supported.

C2 - Consistency. In contrast to [5], syntactical constraints de-

fined by the metamodel of the underlying domain modeling

language must be considered in the variational structure, espe-

cially in the context of visual models [18]. This ensures that all

valid configurations (according to the variability model) are ei-

ther syntactically well-formed or that invalid model fragments

violating metamodel constraints are marked accordingly.

C3 - Granularity. The granularity of variability must be indepen-

dent of the modeling language and its syntactical constraints.

This is crucial for supporting fine-granular reuse and/or vari-

ability among features. In fact, this may not be possible with-

out relaxation of some syntactical constraints of the modeling

language (e.g., upper bounds of multiplicity constraints).

4 APPROACH

We now describe our approach for projectional editing of MBSPLs,

which addresses the requirements presented in the previous section.

Following the notions introduced in [5], we differentiate between
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vASG

Annota�ve

...

Modular

Domain Internal External

typed over

consistent to

EMOF-based

Model

Domain Language

Metamodel

Figure 4: Overview of themodel representations used by our

approach.

internal and external representations of variability. A conceptual

overview of our approach is shown in Fig. 4, which we will describe

in more detail in the remainder of this section.

4.1 Internal Representation

Abstract SyntaxGraph.Weassume EMOF-based representations 2

of models, using the Eclipse Modeling Framework (EMF) as an

implementation technology that serves as the de-facto standard

implementation of EMOF. EMF models (referred to as EMOF-based

model in Fig. 4) are basically object graphs whose objects and refer-

ences are typed over a metamodel (referred to as domain language

metamodel in Fig. 4).

Since references in EMF object graphs are only implicitly repre-

sented by their source and target objects (and thus can neither be

identified nor annotated), our notion of an Abstract Syntax Graph

(ASG) used as basis for our internal representation differs from

the usual EMF representation by treating references as first class

citizens. Such an ASG can be decomposed into atomic model entities

(AME) [27], namely Elements, Attributes and References:

ś Elements represent the objects of an EMF object graph. Their

type is drawn from the language metamodel (i.e., an instance

of EClass), and they may contain other elements.

ś Attributes of model elements represent the properties (referred

to as structural features in EMF) of an element. Their type is

declared by the language metamodel (i.e., by an instance of

EAttribute), and they have a value drawn from the domain of

the corresponding type declaration.

ś References between elements represent the references of an

EMF object graph as a first class citizen. Their type is drawn

from the language metamodel (i.e., an instance of EReference),

and they have a source and a target Element. A Reference may

have an opposite Reference in order to represent bidirectional

references.

Fig. 5 shows an excerpt of the ASG of our example model intro-

duced in Fig. 3. The class Exp is decomposed into 7 atomic model

entities. It contains three Attribute entities name, abstract and

interface as well as one Reference eOperations that references

another Element print. In turn, the element print has oneAttribute

specifying its name. Since we work with Ecore class diagrams in this

example, types are drawn from the Ecore metamodel, e.g., element

print if of type EOperation (not shown in Fig. 5).

2https://www.omg.org/spec/MOF/2.5.1

Figure 5: AMEs of the element Exp.

Variational Abstract Syntax Graph (vASG).We now extend our

notion of an ASG to support variability. The conceptual structure

of our Variational Abstract Syntax Graph (vASG) is shown in Fig. 6.

For a given MBSPL, the SuperimposedModel contains all AMEs

(see abstract Entity in the center), each being one of the three

kinds of entities described earlier in this section.

According to criterion C1 (see Section 3), our vASG additionally

introduces an Annotation object that may be attached to any AME.

In case of simple boolean conditions, one may use the body to

denote the presence of an AME in case of a selected feature (e.g., the

AME representing class Neg in Fig. 2 for feature Neg). Additionally,

arbitrary formulas over features may be expressed as well, and we

distinguish among presence and absence conditions, the latter are

needed for explicitly excluding certain entities from a projection

(e.g., deletions in delta modules) as we will later discuss in more

detail in Sec. 4.2.

Regarding criterion C2, we enforce certain syntactic consistency

constraints to be fulfilled by a vASG. The minimum level of con-

sistency required by projections is that models are at least editable

in their external representation [18]. Thus, mandatory properties

of model elements (e.g., multiplicities with a lower bound greater

than 0) as well as elementary EMF constraints (e.g., each element

except the root element has exactly one container) are enforced by

our vASG representation.

To accommodate for criterion C3, in contrast to lower bounds of

multiplicity constraints, we do not enforce the vASG to comply to

upper bounds defined by a metamodel’s reference types and follow

the idea of superimposing [3] similar elements to a single unified

one. To achieve this, our vASG incorporates a local signature for

uniquely identifying equal and similar entities using (exchangeable)

SignatureCalculators. This way, a SuperimposedElement fos-

ters reuse by subsuming redundant entities, i.e., their properties and

annotations are unified. In contrast, each SuperimposedElement

may contain arbitrary many entities with different properties, e.g.,

different values for a łnamež attribute. This allows for fine-granular

variability even for single-valued properties, independently of the

underlying domain modeling language. For example, one may de-

fine the signature of an Attribute as the signature of its container

SuperimposedELement, its type and its value. The computation

of a meaningful signature is a complex problem itself, similar to

matching problems known from model version and variant man-

agement (see [41] for a survey regarding model comparison). In our

approach, the computation algorithm is an exchangeable compo-

nent that can be used to adapt the vASG representation to a given

modeling language.
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Annotation

body : EString

kind : Presence/Absence

 formula : Formula

[0..*] entities

[1..*] annotations

[0..*] entities

[0..*] attributes
Reference SuperimposedElement

 objects : EObject

Entity

signature : EString

SuperimposedModel

signatureCalculators : ISignatureCalculator

calculateSignature(Entity e) : EString

Attribute

value : EString
[1..1] container

[1..1] source

[1..1] target

[0..*] out

[0..*] in

[0..1] opposite

isContainment : EBoolean

type : EClass

type : EPackage

type : EReference type : EAttribute

Figure 6: Conceptual structure of the vASG.

Figure 7 shows an excerpt of the vASG for the EPL introduced

in Sec. 2. The SuperimposedElement Lit represents the respec-

tive class along with its contained elements, namely the opera-

tions print and eval that are connected via the Reference of type

eOperations, and the Element called value that is connected via

the Reference of type eStructuralFeature. The annotations con-

sist of a set of presence conditions, that is a disjunction of propo-

sitional formulas that specify to which features or combinations

thereof an element is connected. For instance, the reference of type

eType from the SuperimposedElement eval to the element EInt

is annotated with Eval and Integer , while the element eval is an-

notated with Eval as well as Eval and Integer , which can be read

as (Eval) or (Eval and Integer). Although operations may have only

one return type according to the Ecore metamodel, our variational

structure integrates two dedicated eType references for element

eval, thus ensuring both re-use and consistency.

4.2 External Representations

We now demonstrate the feasibility of our approach by implement-

ing two different user-editable projections, either virtually or phys-

ically separating features. To this end, we describe how to project

variability from the vASG to the respective external representations

and vice versa.

Annotative Projection. Basically, transforming the internal rep-

resentation to an external 150% model proceeds as follows: Each

superimposed element yields an element in the the domain model,

Figure 7: Excerpt of the vASG for the EPL.

i.e., an object in the EMF object graph of the 150%model. Reference

and Attribute entities result in references and object attributes of

the EMF object graph of the 150% model. For attaching variability

information in the 150% model, we use an exchangeable annotation

mechanism. In our example, we use EAnnotations as described in

Sect. 2. In case of UML models, annotations may be implemented

based on Comment objects (see Sect. 5).

However, in contrast to source code-based SPLs [5], we may not

be able to apply a one-to-one transformation from the vASG to

the 150% model. Due to criterion C3, our internal representation

allows for violating metamodel constraints regarding upper bounds

of multiplicity constraints and thus cannot be projected without

preprocessing.. First, we analyze if any entitiy violates such a con-

straint. If so, we duplicate the łconflictingž entities and all their

properties as well as incoming references, similar to the variability

normalization concept presented in [34]. As duplicating elements

may introduce further constraint violations (e.g., multiplicities are

violated for the container), this process is repeated until no con-

straint violations are found. Regarding our example vASG from

Fig. 7, element eval needs to be duplicated due to the two eType

references. This yields two superimposed elements for eval having

an eType reference to EInt and EFloat, respectively. Furthermore,

the incoming eOperations Reference is duplicated as well, thus

element Lit owns two operations named eval.

Importing an 150% model into our vASG essentially creates one

superimposed element for each object in the EMF object graph

of the 150% model, each of which is annotated according to the

external annotations. Usually, not all external elements are anno-

tated, either by developers’ intention or due to an implementation

bug [1, 16]. As our approach and its analyses require all entities to

be annotated in the vASG (e.g, for ensuring criteria C2), we addi-

tionally propagate annotations along AMEs based upon syntactical

constraints defined by the metamodel (similar to [13]). For example,

the vASG element representing class Add in Fig. 2 is enriched with

all annotations of contained elements (both eval operations), i.e.,

Add and Eval and Integer as well as Add and Eval and Float. Such

propagation is also done for all contained entities, including ref-

erences (based upon their source and target) as well as attributes

(based upon their container elements). The final vASG contains

all elements from the original 150% model, enriched with variabil-

ity information for all AMEs. Finally, the vASG is postprocessed

automatically for ensuring criterion C3, using a given signature

calculator as described in Sect. 4.1. This is necessary as the original

150% model may contain (needed) duplicates, which can be elimi-

nated in our vASG representation for more fine-granular re-use. For
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addEOperationTo...(...)

setETypeOfEOp...(...)

changeETypeOf...(...)

DEval

DEvalFloat

import

Figure 8: Illustration of importing the delta modules DEval

and DEvalFloat into the vASG of the EPL.

example, both attributes value in class Lit in Fig. 2 can be super-

imposed due to their similarity, thus resulting in one superimposed

element in the vASG (see Fig. 7, left).

Modular Projection. For importing a delta module into the vASG,

each delta action is analyzed regarding its effect onto the ASG. Here,

we make use of the graph-based specification of delta operations

provided by SiPL [30]. A delta operation is specified declaratively

by a parameterized graph transformation rule. Rule graph elements

may be attached with a change action (add or remove), elements

without change action are considered to be preserved. Context ele-

ments and attribute values may be passed as parameters. Figure 8

illustrates the import of the delta modules DEval and DEvalFloat

into the vASG of the EPL (attributes are omitted for the sake of

readability). We use colors to highlight change actions of delta op-

erations, green marked rule elements represent additions, while red

marked elements represent removals. The other elements represent

context elements. The delta module DEval adds the operation eval

to the class Lit and sets its type to EInt, while the delta module

DEvalFloat changes the type of the added operation from EInt to

EFloat.

In a first step, we import the core model and annotate each entity

with a conjunction of all features realized by the core model. After

that, we check if the delta module to be imported depends on other

delta modules. The depending delta module may require the pres-

ence or absence of entities that are added or removed by other delta

modules. In this case, the required delta modules must be imported

first in order to resolve all context elements for depending delta

actions. For instance, the delta module DEvalFloat requires that the

element eval exists and that its type is set to EInt. This is done

by the delta module DEval, which in turn requires the element Lit

being part of the core model. Thus, the delta module DEval must be

imported before DEvalFloat. To import a delta module, we iterate

over all its delta operations’ change actions, a suitable order in

which these change actions are applicable can be inferred from the

delta operations’ declarative specification [18]. Graph elements that

are to be created by a delta action are annotated with the delta mod-

ule’s application condition serving as presence condition. Graph

elements that are to be removed by a delta action are annotated by

the delta module’s negated application condition serving as absence

condition. Imported graph elements are illustrated by unidirectional

arrows in Figure 8. For ensuring criterion C2, analogously to the

import of a 150% model, the new annotations are propagated to

all contained elements along all attributes and outgoing references

having the same annotation as the containing element .

To export a delta module from the vASG, we exploit SiPL’s facil-

ity to derive a delta module from a model difference [29, 32]. Given

the application condition of the delta module to be derived, we

export an original and a modified model from the vASG, serving

as input for the difference calculation that yields the delta module.

The modified model comprises all entities annotated with the ap-

plication condition. For instance, given the application condition

Eval and Float, the modified model contains the elements Lit, eval

and the references eOperations from Lit to eval as well as eType

from eval to EFloat 3 (see Figure 8). To obtain the original model,

we start from the modified one and (i) drop those elements that are

exclusively annotated by the application condition and (ii) include

those elements that are annotated by the negated application condi-

tion. When deriving the difference from the original to the changed

model, elements dropped in step (i) result in creations while ele-

ments included in step (ii) result in deletions, all retained elements

serve as context for the respective delta actions. For instance, for

exporting the original model for DEvalFloat, we start with the mod-

ified model as described above, discard the reference eType from

eval to EFloat (exclusively annotated with Eval and Float), and

include the reference eType from eval to EInt (annotated with

not(Eval and Float)). The resulting difference between the original

and modified model for DEvalFloat consists of an eType reference

from eval to EInt that is to be deleted and an eType reference from

eval to EFloat that is to be created. These changes are specified

by the delta actions of DEvalFloat shown in Figure 8.

5 EXPERIMENTAL EVALUATION

We evaluate our approach w.r.t. the following research questions:

(RQ1) Feasibility. Is the internal representation suitable to fulfill

all criteria for projectional editing of MBSPLs?

(RQ2) Implications.Howdoes switching between variabilitymech-

anisms impact the implementation characteristics of the MBSPL?

(RQ3) Fluidity. Can variability mechanisms be changed fluidly by

a developer in the case of larger MBSPLs?

5.1 Study Subjects

In our experiments, we work with two MBSPLs that are imple-

mented using different modeling languages and variability mecha-

nisms. We selected these subjects as they are publicly available and

have been originally developed significantly differently by either

separating features physically or virtually.

EPL. The EPL, introduced in Sect. 2.1, is based upon Ecore class

diagrams and has been originally developed using a modular ap-

proach [4]. Additionally, we have re-implemented the EPL using

an annotative approach (see Fig. 2) for comparison purposes. The

problem space specifies 16 valid configurations. The solution space

3Note that the elements EInt and EFloat represent łremotež elements from another
model (in this case, the Ecore metamodel). Elements from another model are not
annotated, they are always present as long as they are referenced by a non-remote
entity.
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Figure 9: Study design of our experiments.

of the annotative implementation comprises a 150% model consist-

ing of 55 elements. The modular realization includes the core model

and 9 delta modules. The core model comprises 5 elements, while

the delta modules consist of 2.4 delta actions on average.

PPU. The Pick and Place Unit (PPU) MBSPL [25, 44] is extracted

from a case study for embedded software in industrial automation.

The PPU manipulates work pieces of different materials by either

transporting them to their destination or additionally handling

them in some ways (e.g., sorting or stamping). The problem space

is defined by a feature model specifying 69 valid configurations.

The solution space consists of a 150% UML state machine model

comprising 1178 elements.

5.2 Study Design and Methodology

We conducted two different experiments depicted in Fig. 9. Ex-

periment 1 addresses research questions RQ1 and RQ2 using the

EPL. We transformed the EPL from both original implementations

(top and bottom) into our internal vASG representation (center)

and projected them into the other variability mechanism (red and

green arrows). To ensure correctness, we generated all valid con-

figurations (left) using both representations. For reasoning about

implementation characteristics, we compared the different internal

and external representations with each other.

Regarding RQ3, we performed experiment 2 that measures the

time consumption needed to switch between different projections

of the PPU (which is substantially larger than the EPL). This in-

cludes the time needed for unifying equal elements in the vASG

during import from an 150% model as well as the duplication of

elements needed for exporting the vASG (see orange arrows). In

case of our delta-based projection, we measure the time needed for

generating/deriving delta-modules as well the transformation to the

vASG (see blue arrows). The overall runtimes are split into loading

and serializing EMF models as well as the actual transformation.

All subject systems and experimental data are available for re-

producibility at the accompanying webpage [35].

5.3 Results & Discussion

RQ1: Feasibility. In our experiments, we have worked with differ-

ent modeling languages (Ecore class diagrams and UML statema-

chines) and variability mechanisms (150% models and delta mod-

ules). Furthermore, both subject systems are using different kinds of

variabilities (e.g., presence and/or absence conditions). Additionally,

our subject systems contain feature interactions, which are realized

by elements (resp. delta modules) annotated with complex formulas

(resp. application conditions), e.g., a conjunction of several features.

This provides confidence that our approach can be applied to fur-

ther EMOF-based modeling languages and variability mechanisms

as well (as required by criterion C1).

The same set of valid configurations can be generated from all

the four external representations of the EPL, and each of these

configurations yields a valid model. In other words, each of the

generated models is consistent w.r.t. to the consistency constraints

defined by the Ecore metamodel. This provides confidence that our

approach respects consistency constraints that must be fulfilled in

our context of projectional editing (as required by criterion C2).

Finally, the two imports conducted in terms of our first experi-

ment yield the same vASG (cf. Table 1 columns 3 and 5), although

both external representations used in the EPL case study support re-

use at different levels of granularity. This provides confidence that

our internal representation supports fine-granular re-use, even if

the modeling language’s consistency constraints would prevent the

re-use of certain elements in external representations (as required

by criterion C3).

RQ2: Implications. The most interesting implementation char-

acteristics of the EPL in its different external representations are

summarized in Tables 1, 2 and 3.

As expected, the internal representation allows for more re-

use than the external representation of a 150% model (cf. Table 1

columns 2 and 3). This is due to the fact that certain consistency

constraints of the language’s metamodel are not enforced by our

vASG. Furthermore, we see that the exported 150% model may

contain (substantially) more annotations as compared to the original

150% model (cf. Table 1 columns 2 and 4). This is due to the fact that

we propagate łmissingž annotations during import into the vASG,

thus they are included in the resulting external representation after

exporting. To avoid this effect, however, core feature annotations

may be suppressed during export if desired by the developer.

As for the delta-based representation, the core model as well

as delta modules may differ depending on the transformation di-

rection (see Fig. 9, red vs. green arrow). When creating an MBSPL

from scratch, the core model may be chosen freely, which then

impacts all delta modules as well. Table 2 gives an overview of the

solution space of the original delta-oriented EPL implementation.

We chose a core model comprising all mandatory features, the al-

ternative feature Integer and the optional feature Neg. For realizing

the remaining features, we implemented 9 delta modules, most of

them only add or modify elements. Only the delta module DNotNeg

removes all elements related to the feature Neg. Removals are one

of the unique characteristics of delta modeling [38, 39]. When im-

porting this implementation into the vASG (s. Fig. 9, red arrow), we

get the same vASG as when importing the 150% model (cf. Table 1

columns 3 and 5). The only difference is the amount of annotations,

as some elements are annotated with absence conditions due to the

removals. Although our approach also supports absence conditions

as annotations (see Sect. 4.2), these kinds of annotations were not

used in the original 150% model of the EPL. Hence, when exporting

the vASG obtained from the 150% model to delta modules (s. Fig. 9,

green arrow), the core model consists of all core elements of the

150% model (all elements that are part of all configurations) and 10

delta modules without removals (see Table 3).
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Table 1: Original 150% model of the EPL and vASG represen-

tations obtained from different external representations.

Representation
Type 150% 150%→ vASG vASG→ 150% ∆→ vASG

Annotation 17 10 71 14

EAttribute 2 1 2 1

EClass 4 4 4 4

EDatatype 2 2 2 2

EOperation 12 8 12 8

EPackage 1 1 1 1

EReference 3 3 3 3

Total 24 19 24 19

Table 2: Original delta-oriented EPL.

Core Model
Type Elements
EAttribute 1

EClass 3

EDataType 1

EOperation 3

EReference 1

EPackage 1

Total 10

Delta-Module Add Rem Mod
DAdd 4 0 1

DNotNeg 0 3 1

DEval 2 0 2

DNegEval 1 0 1

DAddEval 1 0 1

DFloat 0 0 1

DEvalFloat 0 0 2

DNegEvalFloat 0 0 1

DAddEvalFloat 0 0 1

Total 8 3 11

Table 3: Exported delta-oriented EPL (vASG→ ∆).

Core Model
Type Elements
EClass 2

EOperation 2

EPackage 1

Total 5

Delta Module Add Rem Mod
DAdd 4 0 1

DAddEvalFloat 1 0 1

DAddEvalInteger 1 0 1

DEvalFloat 2 0 2

DEvalInteger 2 0 2

DFloat 1 0 1

DInteger 1 0 1

DNeg 3 0 1

DNegEvalFloat 1 0 1

DNegEvalInteger 1 0 1

Total 17 0 12

RQ3: Fluidity. The runtimes of all the four projectional transfor-

mations conducted in terms of our second experiment using the

PPU case study are shown in Table 4, averaged over 5 runs. The

transformation from the vASG to the 150% model takes about 2

seconds, while the inverse direction takes about 10 seconds. This is

due to the additional overhead of unifying equal elements in the

vASG during import. The transformation of delta modules to the

vASG takes 11 seconds, while the other direction takes 107 seconds.

In case of longer runtimes (e.g., exporting the vASG to delta mod-

ules) most of the consumed time (64%) is due to EMF overheads

for (de-)serialization of the underlying models. In particular, the

difference between delta modeling and 150% models is caused by

the number of saved EMF models, as the delta modules themselves

are saved as separate models [29] compared to saving only one

150% model. Given the expected frequency of switching between

variability mechanisms in realistic MBSPL development scenarios,

we argue that fluidly switching between different external repre-

sentations may be feasible in the case of larger MBSPLs, although

this needs more in-depth investigation in future work.

5.4 Threats to Validity

Our selection of two MBSPLs may threaten the validity because the

results might not be representative of other modeling languages and

Table 4: Results of Experiment 2.

Consumed Time (s)
Direction Transformation De/Serialization Total

vASG→ 150% 1.5 0.6 2.1

150%→ vASG 9.1 0.8 9.9

vASG→ ∆ 38.1 68.8 106,9

∆→ vASG 10.7 0.7 11.4

variability mechanisms. Furthermore, we assume the implemented

variability to be correct (e.g., no invalid annotations) and consistent

to the feature model, which may not be realistic in other cases.

Finally, the consistency level assumed is based upon our earlier

work [18] as well as alignment with the delta module projection [30]

and may need to be adapted for other projections and consistency

levels.

6 RELATEDWORK

Although several variability mechanisms have been proposed in

the context of model-based SPLs [2, 10, 14, 29], there is no work

on projectional editing for MBSPLs. Thus, most closely related to

our work are code-oriented approaches [5ś7, 28], which we extend

regarding specific requirements of MBSPLs. In contrast, (different)

variability mechanisms are integrated in [15, 22], yet without al-

lowing to switch between different mechanisms but by using them

in parallel. Kästner et al. [17] try to mitigate this by refactoring

between physical and virtual separation, although no common vari-

ation structure is used as in our approach. Projectional editing is

remotely related to multi-view editing, but variability is either out

of scope [8] or used for consistency-checking [26]. So-called vari-

ation control systems [24, 40] also differentiate between internal

and external representations, which is similar to our ongoing work

regarding variant projection (see next section).

7 CONCLUSION AND ONGOING WORK

In this paper, we leveraged concepts of projectional editing of code-

centric SPLs and lifted them to model-based SPLs. In contrast to

the code-centric scenario, projectional editing of model-based SPLs

comes with a set of additional requirements which are addressed

by our notion of a variational abstract syntax graph and according

bi-directional transformations into external representations.

To reduce complexity, which is not the aim of switching between

variability mechanisms, we plan to integrate the so-called variant

projection (see [5, 28]) into our framework, which renders a single

configuration of the MBSPL in its external representation. More-

over, our consistency analysis as well as annotation propagation

is based upon annotation strings without inspecting the formula

in detail. We want to take single terms and the feature model into

consideration for reasoning about consistency and correctness. In

earlier work we demonstrated the drawbacks of current delta-based

quality analyses due to their pair-wise strategy [31]. We plan to use

the succinct vASG representation for efficient variability-specific

analyses [30] for higher-order conflict detection.
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