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Abstract Simulink is an example of a successful application
of the paradigm of model-based development into industrial
practice. Numerous companies create andmaintain Simulink
projects for modeling software-intensive embedded systems,
aiming at early validation and automated code generation.
However, Simulink projects are not as easily available as
code-based ones, which profit from large publicly accessible
open-source repositories, thus curbing empirical research.
In this paper, we investigate a set of 1,734 freely available
Simulink models from 194 projects and analyze their suit-
ability for empirical research. We analyze the projects con-
sidering (i) their development context, (ii) their complexity
in terms of size and organization within projects, and (iii)
their evolution over time. Our results show that there are
both limitations and potentials for empirical research. On
the one hand, some application domains dominate the de-
velopment context, and there is a large number of models
that can be considered toy examples of limited practical rel-
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evance. These often stem from an academic context, consist
of only a few Simulink blocks, and are no longer (or have
never been) under active development or maintenance. On
the other hand, we found that a subset of the analyzed mod-
els is of considerable size and complexity. There are models
comprising several thousands of blocks, some of them highly
modularized by hierarchically organized Simulink subsys-
tems. Likewise, some of the models expose an active main-
tenance span of several years, which indicates that they are
used as primary development artifacts throughout a project’s
lifecycle. According to a discussion of our results with a do-
main expert, many models can be considered mature enough
for quality analysis purposes, and they expose characteris-
tics that can be considered representative for industry-scale
models. Thus, we are confident that a subset of the models is
suitable for empirical research. More generally, using a pub-
licly available model corpus or a dedicated subset enables
researchers to replicate findings, publish subsequent studies,
and use them for validation purposes. We publish our dataset
for the sake of replicating our results and fostering future
empirical research.

Keywords Simulink · Open Source · Empirical Research ·
Sample study

1 Introduction

Domain-specific models are the primary artifacts of model-
based development of software-intensive systems [10, 66].
They serve as a central means for abstraction, facilitate anal-
ysis and simulation in the early stages of development, and
provide a starting point for automated software production.
Over the last two decades, Matlab/Simulink1 (in the sequel
referred to as Simulink, for short) has emerged in various

1 http://www.mathworks.com/products/simulink

http://www.mathworks.com/products/simulink
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domains (e.g., automotive, avionics, industrial automation,
medicine) as a de facto standard for the industrial model-
based development of embedded systems [40].

However, Simulink projects andmodels created andmain-
tained in an industrial context are usually not publicly avail-
able due to confidentiality agreements or license restric-
tions [2, 21, 51, 63]. Access to these models, in general,
is limited, making research results hard if not impossible
to replicate [7]. Publicly available projects do not reflect
“real world” models [6, 12, 13, 31, 33], which severely
limits empirical research. Additionally, there are no com-
monly established benchmarks for assessing and comparing
the effectiveness of new techniques and tools, and little is
known about the usage of these models in practice. As a
consequence, scientific insights into model-based develop-
ment with Simulink are not nearly as deep and substantial as
for classical code-based development, which highly profits
from large publicly available open-source software reposito-
ries [22, 23, 25, 27, 35].

As a step to overcome this situation, we investigate a set
of 1,734 freely available Simulink models from 194 projects,
originally collected by Chowdhury et al. [15] and updated
in terms of our study. The set comprises projects from Mat-
lab Central2, SourceForge3, Github4, and other web pages,
as well as two smaller sets [9, 34]. We first analyze these
projects and models concerning their basic characteristics,
including (i) their development context, (ii) their complex-
ity in terms of size and model organization within projects,
and (iii) their evolution over time. Thereupon, we discuss the
corpus’ potentials and limitations for empirical research.

We found that the projects and models comprised by the
corpus are very heterogeneous concerning these characteris-
tics. For (i), the projects stem from different origins and ap-
plication domains. Most projects come from academia, and
the distribution over application domains is skewed towards
the energy sector. For (ii) and (iii), most of the projects are
relatively small, exposing a short lifetime and hardly any col-
laborative development effort. Many of them are toy exam-
ples with limited practical relevance. However, some large-
scale projects provide sophisticated Simulink models in a
mature project structure, and the most long-living projects
have a lifetime of several years of active development. Be-
sides these limitations, our results show that there are also
potentials for empirical research in the Simulink area. Ac-
cording to our results’ validation with a domain expert, many
models expose several characteristics that can be considered
representative of industry models, and are suitable for em-
pirical research, the circumstances of which are discussed
in this paper. The validity of this study may be threatened

2 https://www.mathworks.com/matlabcentral/
fileexchange

3 https://sourceforge.net

4 https://github.com

internally by a subjective classification of a project’s context
and externally by the limited size of our data set.

We publish the updated corpus5 for the sake of replicating
our results and fostering future empirical research, which is
the major impact we aim for with this paper.

2 Model-based Development with Simulink

Simulink is a Matlab-based graphical programming en-
vironment for modeling, simulating, and analyzing multi-
domain dynamical systems. Its primary interface is a graph-
ical block diagramming tool and a customizable set of block
libraries. Different kinds of blocks can be connected via
ports to transmit outputs and receive inputs, thus yielding a
dataflow-oriented model. Subsystems are special blocks that
contain another Simulink diagram, thus enabling hierarchi-
cal modeling.

Figure 1 shows an example of a Simulink diagram (taken
from [42]). The model shows a dual-clutch control of an
automatic transmission system of a vehicle with two sep-
arate clutches. Blocks of various types are connected via
signal lines. The four smaller blocks on the left side are in-
port blocks, which transport input values from the model’s
context. One of them is the car’s current speed (VehSpd ),
which is further processed to compute the next gear shift.
Also, there are three outport blocks (same symbol as inports
but with incoming signal lines), which transport output val-
ues of the model to its context. The four rectangular blocks
shaded in gray are subsystems. The subsystems are part of
the model, and the contained behavior can be displayed on
request. The other shapes represent basic blocks (i.e., non-
composite blocks). The pentagon at the top (trq_dem) is a
goto block that transports its signal to some other part of
the model (to a point deeper in one of the subsystems). The
triangle (Tmax ) is a gain block, which multiplies a signal
with a constant. The black bar is a multiplexer block, which
combines inputs with the same data type and complexity
into a vector output. The rectangle with the label “[0,1]” is
a saturation block, which produces an output signal that is
the input signal’s value bounded to some upper and lower
values.

The process of computing the states of a Simulink model
at successive time steps is known as solving the model. This
way, models can be simulated for the sake of validation or
verification. Simulink comes with two classes of solvers: (1)
Fixed-step solvers, as the name suggests, solve the model
using the same step size from the beginning to the end of the
simulation; (2) Variable-step solvers vary the step size during
the simulation. Within one simulation step, each block of the

5 https://doi.org/10.6084/m9.figshare.13636589
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Fig. 1: Example of a Simulink block diagram modeling the
dual-clutch control of an automatic transmission system of a
vehicle with two separate clutches [42].

model updates its state and output values according to the
specified behavior and this step’s input values.

Several add-on tools allow to model state-based systems
(Stateflow), generate code from Simulink models (e.g., Tar-
getLink, Embedded Coder), or to do formal verification and
test case generation (e.g., Design Verifier).

3 Related Work

3.1 Empirical Studies on Model Characteristics

Several authors have investigated existing UML models re-
garding their characteristics and perception. Hebig et al. [28]
released the currently largest set of open source UMLmodels
mined from GitHub repositories (the Lindholmen dataset).
They described content- and process-related characteristics
of the UML models and the corresponding projects. In a
follow-up study [30], they triangulated their results with
qualitative surveys. They found that collaboration seems to
be the most important motivation for using UML, and teams
use UML during communication and planning of joint im-
plementation efforts. Störrle analyzed the impact of UML
diagram size on the understanding of the diagrams [60]. He
found a strong negative correlation between diagram size
and modeler performance. He used in his experiments class
diagrams, state charts, and sequence diagrams with a mean
diagram size of 25 to 30 elements, which were smaller than
the models found in the Lindholmen dataset [28].

Regarding works describing characteristics of Simulink
models, Dajsuren et al. [18, 19] reported coupling and cohe-
sion metrics they found in ten industrial Simulink models.
They measured the inter-relation of subsystems as well as the
inter-relation of blocks within subsystems. Stephan et al. [57]
developed a taxonomy to describe Simulink model muta-
tions. The mutations are organized by categories based on
the types of model clones (Type 1, 2 or 3) they inject, and
further broken down into mutation classes that resemble typ-
ical edit operations on Simulink models. In order to evaluate
the representativeness of the edit operations, the taxonomy
has been applied to three Simulink projects, two of them be-

ing publicly available. Although the work’s main aim was to
establish a framework for evaluating model clone detectors,
the taxonomy can be considered general enough to describe
aspects of Simulink model evolution from a qualitative per-
spective. Kehrer et al. [37] defined Simulink model editing
operations which have been used to study the evolution of a
cruise control model. Balasubramaniam et al. [3] conducted
an empirical study investigating the types and quantity of
software changes in the context of embedded control sys-
tems. Insights are gained from two widely adopted open-
source control software suites, namely ArduPilot and Pa-
parazzi UAV. These are used to develop a code mutation
framework mimicking typical evolution in control software.
Later on, they apply this framework to explore the impact of
software evolution on the behavior of three controllers de-
signed with Simulink, focusing on the mismatches that arise
between control models and the corresponding control soft-
ware. Chowdhury et al. [15] reported on a large set of freely
available Simulink models that they crawled from various
sources on the Internet. They analyzed these models in terms
of content and reported basic measures such as the number of
blocks and connections. Their set is used in this paper as the
basis for further analysis. Moreover, we update their corpus
by collecting the latest project and model snapshots, and we
extract additional meta-data from those projects hosted on
GitHub to assess their evolutionary characteristics.

3.2 Relevance of Open Source Models for Empirical
Research

Conducting extensive empirical studies in modeling and
model-based development can be challenging due to the lack
of repositories with large numbers of freely accessible mod-
els. Badreddin et al. studied 20 free open source software
(FOSS) projects with high numbers of commits without find-
ing UML and concluded that it is barely used in FOSS [2].
Similarly, Ding et al. found only 19 projects with UMLwhen
manually studying 2,000 FOSS projects from popular FOSS
repositories [21].

Most empirical studies on modeling in practice are case
studies analyzing limited sets of models in specific contexts
(e.g., [11, 26, 32, 43, 64]) or qualitative studies including
interviews and surveys (e.g., [1, 44, 49]). Some studies ap-
proach the use of models in FOSS from a quantitative per-
spective, studying a large number and variety of projects.
For example, to study the use of sketches, Chung et al. col-
lected insights from 230 persons contributing to 40 FOSS
projects [16]. Langer et al. studied the lifespan of 121 en-
terprise architect models in FOSS projects [39]. Collections
of models used for experimental evaluations of model-based
development tools can be found, e.g., in [29, 47] .

Some authors created datasets of Simulink models as
benchmarks. For example, Bourbouh et al. [8] compiled a
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set of 77 Stateflow models to demonstrate the effectiveness
of their tool. Similarly, Sanchez et al. [52] downloaded 70
Simulink models larger than 1MB from GitHub. Another
benchmark of Simulink models was created as part of the
Applied Verification for Continuous and Hybrid Systems
(ARCH) workshop [24]. This benchmark offers six models
in four projects used as study objects in a competition to
solve a range of general problems (e.g., falsification or model
checking).

Due to the lack of publicly available models, most ex-
perimental evaluations of tools rely on models that have
been synthetically created using a dedicated model gener-
ator [45, 46, 53, 54, 55, 61]. Specifically, there is a line
of research on the generation of realistic models conducted
by Yazdi et al. [69, 70, 71, 72]. The basic idea is to ana-
lyze model histories to learn statistical properties of model
editing sequences, which are then used to configure a model
generator that aims to generate realistic models by simulating
such editing sequences.

Stol and Ali Babar performed a systematic literature re-
view on empirical studies in FOSS [58]. Based on their obser-
vation of the analyzed studies’ low methodological quality,
they proposed a guideline for conducting empirical studies in
FOSS projects. In the guideline, they emphasized the impor-
tance of reporting the characteristics of the analyzed sample:
“Such details can include: the size of the FOSS software (ex-
pressed as lines of code), size of community (expressed as
the number of active and inactive participants), and the do-
main of the FOSS software (e.g., operating systems, desktop
software, infrastructural such as web servers).” In our paper,
we augment the meta-data of models with information about
content, project context, and process context. This informa-
tion allows researchers to derive and justify suitable samples
for their research.

In code-based development, a large research community
focuses on analyzing [22, 23, 25, 27, 35], and building [62]
FOSS repositories, especially in the context of platforms
with social features (e.g., GitHub) [17, 36]. However, mod-
els known from model-based development, including UML,
Simulink and other domain-specific kinds of models, have
not yet made it into typical research on mining software
repositories.

4 Study Design

4.1 Research Objective

Our research aims at understanding the characteristics of
publicly available Simulink models to assess their potential
for empirical research. We characterize these models ac-
cording to three perspectives: context, size, and evolution.
We selected these perspectives because we found indications
in the literature that those perspectives should be considered

when conducting empirical studies. For example, the ACM
SIGSOFT Empirical Standards [50] lists “describes the con-
text of the case in rich detail” as an essential part of any case
study or action research study. Baltes and Ralph [4] argue
that representativeness of corpora can be improved by “(1)
Including artifacts from diverse domains (e.g. aerospace, fi-
nance, personal computing, robotics). [. . . ] (3) Making the
corpus large enough to support heterogeneity sampling and
bootstrapping. (4) Attempting to match the parameters we
can discern [. . . ]”. Moreover, we considered existing stud-
ies on model characteristics (see Section 3.1) and found that
these consistently report the context of the analyzed models,
size and complexity [19, 60], and evolution [28].

Therefore, we analyzed the mentioned three perspectives
as formulated by the following research questions.

RQ1: In which context are Simulink projects created?
Information regarding the project context is a necessary

prerequisite to assess the external validity of any future em-
pirical research based on our Simulink project corpus. For
example, the validity of research results might be limited to
dedicated application domains.

RQ2: What is the size of the Simulink models and how are
they organized within their defining projects?
The primary motivation for assessing the size of models is
that future benchmarks or experiments being based on our
corpus might require models that exceed a certain degree of
complexity and are not just toy models. In particular, we are
interested in whether our corpus comprises industry-scale
models useful for further research.

RQ3:How do Simulink projects and their models evolve over
time?
The motivation to understand how Simulink projects and
models evolve is to assess their suitability for learning from
their development history. Thus, we are particularly inter-
ested in whether there are any projects under active develop-
ment or maintenance for a long time.

The research objective is summarized using aGoalQues-
tion Metric [5] model, illustrated in Figure 2. Metrics and
respective extraction methods will be presented in detail in
the remainder of this section.

4.2 Study Subjects

This study can be classified as a quantitative and qualitative
non-probability sample study [59]. Our sample is based on
the largest [14] set of publicly available Simulink models,6
collected by Chowdhury et al. [15]. The set by Chowdhury
et al. comprises a smaller Simulink model collection [34],
a Stateflow model collection by the CoCo-Sim-Team [9],

6 https://github.com/verivital/slsf_randgen

https://github.com/verivital/slsf_randgen
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GOAL: Understand the characteristics of 

publicly available Simulink models to assess 
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RQ1: In which context are 

Simulink projects created?
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within their defining projects?
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- Number of subsystems

- Cyclomatic Complexity

- Halstead Difficulty

- Henry-Kafura Information Flow

- Card and Glass’s System Complexity

- File format

Project level

- Total number of commits

- Ratio of merge commits

- Number of authors

- Project lifetime
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- Model commits

- Model authors

Model level

- Number of updates

- Number of authors

- Absolute Lifetime

- Relative Lifetime

- Distribution of commits

- Ratio of models that are under 

active development
Goal

Question

Metric

Fig. 2: Goal Question Metric model of the research objective

and many other projects from Matlab Central, Sourceforge,
GitHub, and other sources such as web sites of university
projects. Although critical open source repository sites could
have been missed, the set by Chowdhury et al. covers a wide
range of sources. Instead of using the provided dataset as it
is, we re-collected a current snapshot in August 20207 con-
sisting of all constituent Simulink models based on the infor-
mation provided in the meta-data of the corpus of Chowd-
hury et al. The main motivation for this new snapshot arises
from several inconsistencies we found between the actual
corpus and the results presented in [15]. According to per-
sonal correspondence with the authors, these inconsistencies
may originate from only a subset of the entire corpus mod-
els being used in their study. For many projects, the newer
snapshot also provided updated models and a richer model
evolution history for answering RQ3.

We collected the Simulink projects and models of our
updated corpus using the project URLs provided in the orig-
inal corpus’ meta-data. Out of the 205 projects listed in the
meta-data, 204 mention a URL. We visited these 204 web
pages and found 193 to be still online. Out of the remain-
ing 11 projects, we were able to find one additional project
in the original dataset. In sum, we could thus analyze 194
projects comprising a total of 1,736 Simulink models. Two
of these models are invalid and cannot be opened by Matlab

7 https://doi.org/10.6084/m9.figshare.13636589

Simulink, which reduces the number of actually analyzable
models to 1,734.

Our corpus comprising all the projects and models used
in this study, including the respective meta-data, is available
in our replication package.

4.3 Data Analysis

4.3.1 RQ1: Project Context

To get a basic understanding of the context in which a
Simulink project has been created, we classify each project
with respect to the following dimensions:

Origin: We use the categories academia, industry, and
Mathworks to classify the origin of a project. The categoriza-
tion is determined based on the affiliations of the developers
associated with the projects. Although Mathworks’ model-
ing projects might also be classified as industry projects, we
assume that Mathworks developers do not represent typical
“end-users” of Simulink from industry, which is why we
differentiate among the two.

Application domain: We use the domains energy, elec-
tronics, automotive, avionics, robotics, domain independent,
and other to classify the projects with respect to their ap-
plication domain. Domain-independent projects commonly
encompass tools (e.g., Simulink analyzers, diagram layout

https://doi.org/10.6084/m9.figshare.13636589
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managers or general toolboxes). These projects are assumed
to be applicable in any domain.

Both classifications were performed manually by four
researchers based on multiple sources of information. Be-
sides the project data itself and the project’s web site, a
web search was performed to gather additional information
like developer affiliation or associated scientific publications.
Concerning the list of possible application domains, we first
used the classification scheme of [65], which comprises eight
application domains. We revised this initial classification
scheme during our analysis, as some of the analyzed projects
did not fit into that scheme and some domains were not
represented by a single project. We ended up reusing their
domains automotive, avionics, and “unclear”. Newly created
domains were decided upon together and were added if a
project would not fit into another domain: energy, electron-
ics, domain-independent, robotics, military, biology, wear-
able. The domains railway and automation were adjusted to
transport and home automation. The domains finance, health
care, public, and telecommunication were not used in our
classification. To mitigate classification errors, a consensus
needed to be reached among the four researchers, which was
achieved through iterative discussions. Without a consensus,
no useful project description available, or when a project
domain remains unclear, we used the categories unclear and
not enough information for domain and origin, respectively.

Traceability to a scientific publication: Moreover, par-
ticularly for those projects originating from an academic
context, we are interested in whether there is a scientific
publication associated with the project. Such publications
may be useful for additional research as they provide a more
detailed context of a project and its models. It also gives an
insight into the scientific diligence of the academic work.

Solver mode: The usage of a fixed-step solver might indi-
cate that a model is used for code generation; otherwise, the
model may only be used for simulation or other abstract pur-
poses. If the model state is changed in fixed time steps, code
generation for hardware on embedded systems as a deploy-
ment target is possible. The solvermode can be automatically
extracted using the Simulink API.

Code generation using a standard code generator: In
addition to the extraction of the solver mode, we searched
for TargetLink, and Embedded Coder traces in the models,
as these are the two most commonly used code generators in
model-driven development with Simulink.

4.3.2 RQ2: Size and Organization of Simulink Models

To characterize the size and complexity of the Simulinkmod-
els and their organization within projects, we use a collection
of standard Simulinkmodel and complexitymetrics fromOl-
szewska et al. [48]. We collect and report measurements on
a model level and on a project level by aggregating the mea-

surements from a project’s models. Our Matlab and Python
scripts used for computation of all the metrics are published
on Figshare.8

The number of models per projects helps to judge the
projects’ overall size. The number of blocks further helps
in assessing the size of the models as well as, in an aggre-
gated manner, the magnitude of the projects (i.e., if projects
consist of multiple small models or fewer large ones). We
include masked subsystems in the calculation of the num-
ber of blocks. The number of different block types used in a
model represents the modeling diversity. When aggregated,
this metric serves to judge and compare the modeling diver-
sity on a project level. Further, the comparison of model and
project block diversity yields insights into how the different
models within projects are modularized, i.e., if the models
of a project contain similar blocks or not. The number of
signal lines represents the connectivity within the models,
demonstrating the complexity of interaction between differ-
ent functional blocks. This metric is also analyzed regarding
the number of blocks to examine if there is a correlation. The
number of subsystems characterizes a model from an archi-
tectural point of view and gives a hint on its modularization.

To assess the complexity of the models in our corpus, we
use several complexity metrics that have been proposed by
Olszewska et al. [48]. In their work, the authors have adapted
several well-known code complexity metrics to Simulink.
Cyclomatic Complexitywas first introduced byMcCabe [41]
and assesses a program’s complexity by counting the inde-
pendent paths of program flow. Olszewska et al. adapt this
for Simulink by mapping conditional statements of C to cor-
responding blocks in Simulink.

The Halstead metrics are another set of complexity met-
rics. For our study, wemeasure theHalsteadDifficulty, which
is calculated by the following formula:

D =
n1

2
∗ N2

n2

where n1 is the number of distinct Simulink block types, n2

is the number of distinct input signals, and N2 is the total
number of input and output signals [48].

The Henry-Kafura Information Flow defines a subsys-
tem’s complexity based on the fan-in and fan-out of infor-
mation flow for that subsystem. It is calculated as

HKIF = size ∗ (fanIn ∗ fanOut)2

where size is the number of contained blocks (including
subsystem blocks), fanIn and fanOut represent the number
of afferent and efferent blocks of a subsystem. [48].

As last complexity metric, we calculate Card and Glass’s
System Complexity. System Complexity adds up two sub-
metrics: Structural Complexity and Data Complexity (SC =

8 https://doi.org/10.6084/m9.figshare.13636589
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StructC +DataC ). Structural complexity is defined as the
mean of squared values of fan-out for all subsystems (n):

StructC =

∑n
i=1 fanOut2i

n

Data Complexity is defined as a function that is directly
dependent on the number of input and output signals (Si)
and inversely dependent on the number of fan-outs in the
module:

DataC =
1

n
∗

n∑
i=1

Si

fanOut i + 1

In addition to size and complexity, we assess the file
format of the model. This information originates from the
default file format of Simulink models changing from .mdl
to .slx-extensions with the second annual release of Simulink
in 2012. The file format may be necessary for tool and orga-
nization compatibility across versions. Finally, we establish
any peculiarities to be observed between themanually identi-
fied domains of projects (e.g., if industry projects differ from
academic ones). Additionally, the identified industries them-
selves are analyzed concerning project and model structure.

4.3.3 RQ3: Project and Model Evolution

We use meta-data extracted from a version control system
to get an overview of how Simulink projects and models
evolve, as it is customary in the field of software repository
mining [22, 23]. We use a subset of our corpus’ projects
hosted on GitHub. We analyze only this subset as we can
easily access the commit history of these Git projects9. On
the contrary, the commit history is not provided for the other
projects, thus excluded here. The GitHub subset comprises
35 projects containing 579 models, accounting for 18% of
all projects and 33% of all models of the entire corpus.

On the project level, the total number of commits assesses
the project’s general development activity. In contrast, the
ratio of merge commits to total commits and the number of
authors serve as indicators of how the development is per-
formed collaboratively. By extracting the project lifetime, we
determine whether there are any long-living projects. We are
particularly interested in whether any projects are actively
maintained over time or whether they are just stored in the
repository. Therefore, the lifetime comprises the time be-
tween the first and the last commit. Further, the commits per
day provide a first indicator of how frequently the projects
are updated. Since the total commits extracted from GitHub
refer to all the project files, we are additionally interested
in the proportion of model commits that change at least one
Simulink model in the project. Similarly, regarding the total

9 https://git-scm.com

number of project authors, we are also interested in the au-
thors’ proportion that changed at least one model file (model
authors) during a project’s lifetime.

On the model level, the number of updates reports the
number of commits on the model file. The number of authors
per model reports the number of different committers that
have modified this model at least once. The lifetime in days
encompasses the time between the first and the last commit
that changed the model. In contrast, the lifetime in % denotes
the model’s relative lifetime concerning the overall lifetime
of the project that comprises the model. We compute all
models’ lifetime according to the model files’ inherent meta-
data in addition to thesemetrics extracted fromGitHubmeta-
data. This information provides a date for the first creation
date and the last modification used to calculate the lifetime
in days of all models.

Finally, we are interested in how the development work-
load, particularly the number of model modifications, is dis-
tributed over the lifetime of projects and models. Therefore,
we calculate the distribution of project commits, the distri-
bution of model commits, and the ratio of models that are
under active development over the lifetime of a project. We
assume a model to be under active development between the
first and last commit of a model.

5 Study Results

In this section, we report the results of the analyses detailed in
Section 4.3, structured by our research questions RQ1–RQ3.

5.1 RQ1: Project Context

Origin and traceability to a scientific publication: As il-
lustrated in Figure 3, of 194 projects, 113 (58%) originate
from an academic context, 34 (17%) are provided by Math-
works, and 25 (13%) projects are from industry. We could
not classify the origin of the remaining 22 (12%) projects
due to missing information. We measured the agreement of
the manual classification by computing Krippendorff’s Al-
pha [38] to be 0.85, which is reliable (Alpha values ≥ 0.80

are considered reliable). Further, we found links to scientific
publications for 26 (13%) projects. Of these projects, 18
(9%) originate from an academic context, while the remain-
ing eight (4%) projects are not classified concerning their
context.

Application domains: Figure 4 shows the results of our do-
main classification. Most projects represent applications in
the energy sector: 52 (27%). The second-largest domain
is electronics, with 47 (24%) projects. These two domains
make up more than half of all projects. 36 (19%) of the
models are classified as “domain-independent” – e.g., used

https://git-scm.com
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Fig. 4: Application domains in which the projects have been
developed.

to demonstrate a Simulink tool. The avionics, robotics, and
automotive domain together make up another 21%.
The remaining categories are summarized as “other” in Fig-
ure 4. The “other” categories comprise 18 projects (9%): six
of which we could not classify at all and are thus “unclear”,
five telecommunication projects, and two audio projects. The
remaining domains only contribute a single project to the
corpus: biology, home automation, wearable, transportation,
and military.
A Krippendorff Alpha of 0.86 was computed for the re-
searchers’ inter-rater agreement for domain classification,
which, analogously to the original classification, can be con-
sidered reliable.

Solver mode and code generation: In our corpus, 576 mod-
els (33%) use a fixed-step solver mode, while the remain-
ing 1,158 (67%) models apply a variable-step solver mode.

Therefore, with two-thirds of the models, the majority of
models use variable-step solvers. When aggregating this to
the project-level, there are 119 projects (61%) that exclu-
sively contain models applying a variable-step solver and
28 projects (14%) use fixed-step solvers only. Another 47
projects (24%) exhibit a mixture of both. Surprisingly, none
of the models uses one of the two most widely established
code generators, TargetLink,10 and Embedded Coder.11

RQ1: In which context are Simulink projects created?
We were able to determine the origin of 172 projects,
65% of those originate from an academic context and
17% of projects are from industry. Further, 13% of all
projects are associated with a scientific publication. 27%
of all projects are developed in the energy domain, and
another 24% are from the electronics domain. Although
one-third of all models use fixed-step solvers, none uses a
standard code generator such as TargetLink or Embedded
Coder.

5.2 RQ2: Model Sizes and Project Organization

Overall project comparison: Table 1 shows the different
metrics on the project and model level. On the project level,
all metrics are aggregated for all models in each project. The
model-level metrics are calculated without relation to the
projects.

The standard deviation is much larger for all metrics
than the mean values (except for the number of different
block types), which shows the diverse range of projects and
models. Further, for thesemetrics, the median is significantly
smaller than the mean value. Therefore, the metric values
are rather small for most models and projects, while some
exceptions are much larger than the median accounts. Some
of the models are even empty, in the sense that they do not
contain a single line or block.Modelswithout any signal lines
are usually library models, which are merely a collection of
different types of blocks. In contrast, empty models might
indicate “orphan models” or models that are not yet under
active development.

The number of models per project varies substantially.
Ninety-eight projects (50.5%) contain only one model. The
five largest projects contain 42% of all models. Overall,
no predominant trend is evident concerning the number of
blocks, neither per model nor per project.

The number of signal lines also varies substantially be-
tween projects and models. Sixty-eight library models con-

10 https://www.dspace.com/en/pub/home/products/sw/
pcgs/targetlink.cfm

11 https://www.mathworks.com/products/embedded-coder.
html

https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/embedded-coder.html
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Table 1: Calculated metrics for the project size. The metrics are reported per project and per model.

Metric per Min. Max. Mean Median Std. Dev.

Number of Models project 1.0 252.0 8.93 1.00 25.84
model - - - - -

Number of Blocks project 2.0 319,108.0 6,076.56 553.50 28,786.19
model 0.0 59,860.0 679.85 70.00 2,746.76

Number of Block types project 2.0 199.0 47.59 40.00 36.46
model 0.0 66.0 16.11 13.00 12.97

Number of Signal lines project 0.0 41,340.0 1,137.76 158.00 3,863.64
model 0.0 12,844.0 127.29 28.00 470.32

Number of Subsystems project 0.0 3,372.0 118.63 18.50 391.63
model 0.0 1,791.0 13.27 4.00 50.14

Cyclomatic Complexity project 1.0 384.0 14.45 2.41 37.49
model 1.0 859.0 10.50 1.00 39.68

Halstead Difficulty project 0.0 118.0 16.55 11.53 19.99
model 0.0 118.0 10.37 0.00 15.99

Henry-Kafura Information Flow project 0.0 7,936.0 161.49 1.06 828.75
model 0.0 96,042.9 131.43 0.00 2,393.25

System Complexity project 0.0 1,173.1 12.73 3.24 84.41
model 0.0 1,173.1 4.31 2.00 29.14
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Fig. 5: The 25 most common block types according to the
number of models they are used in.

tain only blocks but no signal lines. Additionally, somemodel
files contain just a single high-level subsystem, which is a
reference to another model in the project. On the other hand,
450 models show high connectivity with equally as many
or more signal lines than blocks. Apart from these two ex-
tremes, there is no common scheme in the correlation of
signal lines and blocks. This phenomenon is also apparent
when analyzing the average signal lines per block over all
models, which amounts to 0.82 ± 1.52. One may expect
models to contain more signal lines than blocks, in general.
However, many models are library models, one signal line
can connect more than two blocks, and models can contain
descriptions or comment blocks that are not connected to
other blocks.

As with the previously presented metrics, the number of
subsystems per project and per model does not show any par-

ticular pattern. Again, some very large projects are causing
the high maximum value and the high standard deviation.

Similarly, with all of the reported complexity metrics, the
mean, median, and standard deviation distribution shows the
diversity of models and projects regarding their complexity.
The large maximum values of the Cyclomatic Complexity
originate from extensive library models from a drive-train
simulation. In contrast to these extreme examples, 1088mod-
els exhibit a minimal Cyclomatic Complexity of 1. The Hal-
stead Difficulty values are not as divergent and do not show
prominent outliers. However, in addition to the median, the
957models showing a complexity of 0 signify a large number
of low complexity models. The Henry-Kafura Information
Flow exhibits one radical outlier with the noted maximum
value. The next lowest value amounts to just 13.000. This out-
lier originates from a demo model contained in a Mathworks
tool collection. In contrast to this, there are 1366 models
in the dataset with a Henry-Kafura Information Flow of 0.
This divergence explains the reported values in the table.
Regarding System Complexity, the shown maximum value
is an exception in the dataset, with the next highest value
amounting to just 178.

Diving deeper into the models’ contents, we can see that
some block types are commonly used in most models. Fig-
ure 5 shows the 25 most commonly occurring block types
with the number of models they are used. The most used type
of block, being the subsystem, highlights the importance of
modularization in Simulink projects. Unsurprisingly, in-, and
outports, which provide the basic functionality to receive and
send signals, are used in most models. The few projects not
incorporating these blocks are not used to process data but
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mainly for simulations using generated signals as inputs and
only producing some visualization in scope instead of out-
putting a signal.

In addition to the models’ contents, we analyze the file
types of the models within the projects, with the majority
of 107 projects (55%) exclusively containing models with
the older file type .mdl, 72 projects (37%) only containing
.slx-files and 15 (8%) containing both. 40% of the models
with the newer .slx format has been created before 2012when
this file formatwas first introduced.While appearing counter-
intuitive, this finding indicates that thesemodelswere created
in the previous .mdl format but were later transferred into the
newer .slx format. This hypothesis is further supported by
the fact that of these 40% of .slx model files being created
before 2012, 95% were still under active development after
introducing the new file format.

Comparison by origin: This comparison analyzes howmodel
size and organization differ between models from different
origins, which we have determined in Section 5.1. To that
end, we group our measurements by the categories Aca-
demic, Mathworks, Industry, and No Information, compris-
ing 460, 619, 309, and 346 models, respectively. We use
boxplots [67] to illustrate these aggregated values; the or-
ange line within a box represents the median, the size of
the box is determined by the first and third quartile, and
the whiskers represent the fifth and ninety-fifth percentile.
Outliers are displayed as circles.

For most industry category projects, the number of mod-
els per project is much lower than in the other categories, as
shown in Figure 6a. Only the projects with no origin infor-
mation are even smaller. The largest projects in terms of the
number of models can be found in the Mathworks category.

When comparing themodelmetrics based on the project’s
origin, three metrics stand out and show a difference be-
tween origins. Figure 6b shows the comparison of origins
regarding the number of blocks per model. For reasons of
clarity, we cleaned the plot of outliers, i.e., models with
more than 10,500 blocks. Therefore, there are eight models
in the Mathworks category and three models in the indus-
try and academic categories that are not displayed in the
plot. These outliers consist of libraries and large simula-
tion models. Models from the Mathworks category show the
largest median, with 123 blocks per model, while the indus-
try models show the largest distribution. While the academic
category shows the most narrow distribution of the num-
ber of blocks per model, the category also exhibits the most
outliers.

Figure 6c shows the subsystems per model for all origin
categories. This plot is cleaned of outlierswithmore than 175
subsystems, accounting for one model each in the academic
and industry categories. When considering the modulariza-
tion of models in terms of the contained subsystems, models

from the Mathworks category show the most usage of sub-
systems due to the highmedian, larger third quartile, and high
density of outliers above the 95 percentile. However, there
are more models with a larger number of subsystems in the
industry category, while the majority of industry models use
fewer subsystems than the Mathworks models. Models from
academia are least modularized, with just 11 subsystems per
model on average.

Lastly, Figure 6d shows the Cyclomatic Complexity of
models for the different categories. There are four industry
models and one from academia not shown in the plot, with
values larger than 210. Interestingly, all categories exhibit a
median of 1, as in the overall comparison before. Still, the
industry category contains the most complex models, with
an average Cyclomatic Complexity of 30. The much larger
ninety-fifth percentile also signifies this.

Comparison by application domain: We compare the mod-
els concerning their identified application domain from Sec-
tion 5.1. The largest domain in terms of the number ofmodels
is the energy domain, with 354 models. The other domains
split up as follows: 339 are domain-independent, 280 from
electronics, 257 from avionics, 232 from robotics, 151 from
several ’other’ domains, and 121 in the automotive domain.

Figure 7a shows themodels’ distribution over the projects
of the domains. Projects from avionics and robotics domains
are the largest in terms of the number of models per project,
with 17.1 and 16.6 models per project on average. The small-
est projects originate from the electronics and energy do-
main, with 6.1 and 6.7 models per project on average. The
extreme outlier in the energy domain is an extensive model
of a wind turbine. Apart from the outliers and the ninety-fifth
percentiles, the projects in all domains are rather small, with
each of the third quartiles being under 15 models per project.

As in the preceding section, Figure 7b shows the blocks
per model for the different domains of the projects. This
plot is again cleaned off the outliers above 10,500 blocks per
model. Therefore not shown are five domain-independent
projects, three from the robotics and automotive domains,
two from energy, and one from avionics. Figure 7b shows
that most automotive domain models are significantly larger
than in the other domains.

Figure 7c shows the number of subsystems per model for
the identified domains, excluding one outlier each from the
automotive and energy domain.With the automotive domain
models being the largest ones, they also show the highest
amount of subsystems per model. Therefore, the models in
the automotive domain show the highest degree of modu-
larization. The energy domain exhibits the second largest
number of subsystems in the models. Generally, the distribu-
tion of subsystems over the domains follows a similar trend
as the number of blocks.
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Fig. 6: Comparison of the different project origins w.r.t (a) the number of models per project, (b) the number of blocks per
model, (c) the number of subsystems per model, and (d) the Cyclomatic Complexity per model.

The number of different block types per model is shown
in Figure 7d. The automotive domain shows the most diver-
sity in terms of the block types used in the models, with 29
unique block types per model on average. However, many
highly diverse models belong to the energy domain, as sig-
nified by the ninety-fifth percentile and the outliers. The
remaining domains are rather similar in their unique block
types per model, exhibiting only minor differences.

Lastly, Figure 7e shows the Cyclomatic Complexity of
models for the domains. The plot is cleaned of values above
210, which relates to three models from the automotive and
two from the energy domain. The previously identified trend
holds in this respect as well, as the automotive domain is the
most prominent featuring the most complex models. While
all other domains exhibit a median of just 1, the automotive
domain exhibits a value of 10. Further, all third quartiles are
below 5; just the automotive domain exhibits a value of 66
for the third quartile.

RQ2: What is the size of the Simulink models and how
are they organized within their defining projects?
The majority of projects and models are rather small.
The largest models stem from the automotive domain,
exposing a high degree ofmodularity through subsystems
and higher Cyclomatic Complexity. Models originating
from industry and Mathworks are the most modularized.

5.3 RQ3: Project and Model Evolution

As described in Section 4.3.3, we analyze the subset of
projects hosted on GitHub to evaluate evolutionary aspects.
In order to evaluate if this subset represents the characteris-
tics of the whole corpus, we analyzed all metrics reported in
Section 5.2 on this subset as well. While the GitHub subset
is missing some of the most extensive projects, identified as
outliers in Section 5.2, the overall metrics are comparable to
those of the whole corpus. The lack of some of the largest
projects especially reflects in the metrics for subsystems,
Cyclomatic Complexity and System Complexity, where the
GitHub subset shows smaller values on average. However,
the most extensive projects are outliers of the entire corpus
and therefore deviate from most corpus projects. Arguably,
their lack in the GitHub subset does not harm its representa-
tivity.

Evolutionary data from the projects mentioned above can
be seen in Table 2, whilst the models’ evolution character-
istics are summarized in Table 3. Similar to the results of
the static properties of RQ2 (see Section 5.2), these projects
and models are highly diverse concerning their evolution-
ary characteristics, as the standard deviation is bigger than
the mean for most metrics. For some metrics, the standard
deviation is more than twice the mean value. Further, all
metrics’ median values are lower than the respective mean
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Fig. 7: Comparison of the different project domains w.r.t. (a) the number of models per project, (b) the number of blocks per
model, (c) the number of subsystems per model, (d) the number of different block types per model, and (e) the Cyclomatic
Complexity per model.

values, which indicates that only a few projects are sub-
stantially more long-living, more frequently maintained, and
have more authors.

Projects: Most projects show a rather small number of com-
mits, as the median only amounts to 8 commits (see Table 2).
The ratio of merges to all commits in the GitHub projects is
even smaller; the median lies at 0%, with 1.4 merge com-
mits per project on average. Similarly, the number of people
actively working on the projects is small, comprising only
2.7 authors on average. The project lifetimes vary greatly
between zero days (1 commit only) and more than six years.
About half of the projects show an active maintenance span
which is less than 50 days. 44.2% of the commits modify
Simulink models, indicating that the models can indeed be

considered as primary development artifacts of the projects.
The model-author-ratio further supports this: in most cases,
all authors of a project also edit the model files, with the
mean value being at 82.2%.

Models: Table 3 shows that, on average, a model is updated
about two times after its initial creation. For most of themod-
els, these modifications are performed by a single developer
since, on average, 1.3 developers contribute to a model over
its entire lifetime. The mean time span in which a model is
under active development is about 204 days. On the contrary,
most models have an active lifetime of only one day – indi-
cated by the median. The relative time a model is actively
developed presents a median and mean value of 1% and
23.9% of the entire project’s lifetime.
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Table 2: Calculated metrics for the projects’ evolution.

Project Metric Min. Max. Mean Median Std. Dev.

Number of commits 1.0 589.0 56.8 8.0 120.1
Merge commits in % 0.0 16.9 2.4 0.0 4.5
Number of authors 1.0 16.0 2.7 1.0 3.4
Lifetime in days 0.0 2,273.0 250.8 50.0 511.3
Commits per day 0.005 14.0 1.9 0.5 3.5
Model commits in % 3.1 100.0 44.2 42.9 29.6
Model authors in % 33.3 100.0 82.2 100.0 24.2

Table 3: Calculated metrics for the models’ evolution.

Model Metric Min. Max. Mean Median Std. Dev.

Number of updates 0.0 42.0 2.3 1.0 3.6
Number of authors 1.0 4.0 1.3 1.0 0.5
Abs. lifetime in days* 0.0 2,153.0 204.2 1.0 383.7
Abs. lifetime in days** 0.0 7,071.0 1,350.1 885.0 1,381.1
Rel. lifetime in %* 0.0 100.0 23.9 1.0 33.9
*Calculated for GitHub models based on commit data.
**Calculated for all models of the corpus based on the
model files’ internal meta data.

Additionally, we evaluated all models’ absolute lifetime
by analyzing the Simulink model files, which expose their
initial creation and last modification dates. The penultimate
line of Table 3 summarizes lifetime characteristics obtained
from Simulink files of 1,686 models in our corpus. For 48
of the models, the format of the dates was corrupted and not
retrievable. In particular, it can be seen that the mean and
median values differ significantly in comparison to the life-
time calculated for GitHub projects. Further, the most long-
living model was under development for almost 20 years.
This information might indicate that some models have been
developed offline and were later committed and pushed to
the central repository for the sake of distribution and archiv-
ing. Furthermore, others represented file hosting services
like Mathworks and SourceForge started hosting files earlier
than GitHub.

Distribution of development workload over project lifetime:
Figure 8a shows the distribution of project commits over a
project’s lifetime, averaged over all projects. As the median
project lifetime is about 50 days, each bin represents five
or more days for most projects. Apart from bursts of devel-
opment activity at the beginning and the end of a project,
a rather even distribution of project commits is observed.
The burst in the first tenth of a project’s lifetime is dominat-
ing with 36% of all commits falling into this initial period.
A similar pattern can be seen in Figure 8b, which depicts
commits’ distribution, that modify a Simulink model, again,
averaged over all projects.
From comparing Figure 8a and Figure 8b, we can conclude,
that the overall workload onmodels and the rest of the project
is similarly distributed. A minor difference can be observed

concerning the bursts at the beginning and the end of a
project, where the first burst of development activity is even
more distinct for model commits than for project commits.

Figure 8c shows a nearly identical graph to Figure 8b,
as it plots the distribution of committed Simulink model
modifications over a project’s lifetime. The difference is,
that Figure 8b counts a commit with at least one created or
updatedmodel, and Figure 8b counts each created or updated
model, individually. As the graphs are extremely similar, it
follows that the average commit on one or more models over
a project’s lifetime modifies the same amount of models.

Figure 8d shows the ratio ofmodels under active develop-
ment during a project’s lifetime, averaged over all projects.
A model is counted in each bin that falls between its first
commit and last commit: suppose a model is created at the
very start of the project and last modified just before the
project’s half time, then it will be counted in the first four
bins separately. It can be seen that 52% of the models of
the GitHub subset are created in the first 10% of the project
lifetime. At least half of these models were never modified
again, as the second bin only holds 23% of models that are
under active development. Some models are created only in
the last 10% of a project’s lifetime. On average, more than
22% of the models are under active development during the
entire duration of a project. Again, this can be interpreted as
an indicator that the models within a Simulink project can
be considered primary development artifacts since there are
no project phases in which the models are not edited.
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Fig. 8: Figure (a) shows the distribution of commits over a project’s lifetime. Figure (b) shows the distribution of commits,
that modify Simulink models over a project’s lifetime. Figure (c) shows the distribution of committed Simulink modifications
over a project’s lifetime. Figure (d) shows the ratios of models under development over a project’s lifetime. Note that a model
will be counted in every bin from its first commit till its last in (d).

RQ3: How do Simulink projects and their models evolve
over time?
35 projects from our corpus are hosted on GitHub, most
of which are under active development for less than 50
days. The median project receives a commit every sec-
ond day. Most models are rarely updated and commonly
maintained by only a single developer. Bursts of com-
mit activity can be seen at the beginning and the end of
a project, with workload regarding models following a
similar trend. More than a fifth of the average project’s
models are under active development throughout the en-
tire lifetime of a project.

6 Threats to Validity

We discuss potential threats to our study results’ validity,
using the scheme established by Wohlin et al. [68].

6.1 Internal Validity

Threats to internal validity are related to our methodology’s
potential systematic errors, most notably concerning the col-
lected and analyzed data.

Some of the classifications for RQ1 (origin and applica-
tion domain) have been done manually, which may be biased
by the subjective assessment of individual researchers or
by simply overlooking relevant information. To mitigate this
bias, we formed a team of four researchers to rate any man-
ual classification task results. Their inter-rater agreementwas
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good, as reported in Section 5.1. If two or more researchers
were unsure how to assess a project, we abstained from mak-
ing a final yet potentially misleading decision and classified
the project as unclear.

The reported quantitative measures are calculated using
scripts that we developed as part of this study. We took
several countermeasures to rule out potential errors in these
calculations. For those metrics already reported in the study
of Chowdhury et al. [15], which are based on a model corpus
that overlaps with ours, we have checked the plausibility and
were able to reproduce their results. Further, we used the
Matlab/API to parse the Simulink models, which prevents
errors introduced by other custom-built Simulink parsers.
We checked the results of our scripts on sample models of
the corpus to assure correctness. Since our automated check
on TargetLink and Embedded Coder usage did not result in
any findings, we used example models for code generation
provided by Matlab Simulink also. Our scripts successfully
detected indications of code generation in these models. For
the evolutionary metrics extracted from GitHub, we used an
established tool, namely PyDriller [56], to extract meta-data
from the commit history.

Additionally, in our analysis, we focused only on the in-
formation that is provided directly in the Simulink models,
as it is also done in other studies [14, 15, 19, 48]). How-
ever, Simulink models can also reference Matlab code and
functions. Arguably, these are a part of the model, and most
repositories do not contain just Simulink models. The anal-
ysis of Matlab code was out of the scope of our study and
scripts. Our results may be affected by this threat if, for exam-
ple, most of the complexity resides in the outsourced Matlab
code instead of the Simulink model.

The information presented in this study is limited to the
data available in the project repositories. To not miss any-
thing, we performed manual inspection of the models in a
open coding fashion [20] (cf. Section 4.3.1). However, if rel-
evant information about the project is not reflected in the
repositories or their meta-information, we may have missed
it.

6.2 Construct Validity

The construct validity concerns whether the study answers
the posed research questions.

We investigated the projects and models curated in our
corpus from three perspectives (context, size/organization,
and evolution). However, the project and model character-
istics explored for each of these perspectives are not meant
to be comprehensive. Though we selected these characteris-
tics based on existing guidelines for empirical research and
related work, future empirical studies may aim for different
characteristics that are not yet considered by our analysis.

Moreover, our classification scheme for RQ1 may be in-
complete. However, the main reason that projects could not
be assigned to a dedicated origin or application domain was
missing information. No additional category arose during
the discussion of the researchers who did the manual classi-
fication.

Regarding the evolution of projects, we rely on the com-
mit history of GitHub. However, as with any repository, we
do not have further information regarding subordinate pro-
cessing of the models between commits or before the first
commit. Thus, we cannot assess whether there is an under-
lying modeling process apart from the explicit repository
commits. In particular, mainstream version control systems
such as GitHub are file-based and work on a textual or binary
representation of the managed artifacts, which is still consid-
ered an obstacle for the versioning of models. Thus, version
control systems are not as integrated into the development
process as it is the case for code-centric development.

6.3 External Validity

The external validity pertains to the question to which extent
our results are generalizable. Raw data used in our study is
taken from a limited set of data sources, namely a publicly
available corpus of Simulink models and according meta-
data extracted from the subset of GitHub projects for answer-
ingRQ3.We did not do any systematicmining of open source
platforms (e.g.,GitHub, SourceForge, BitBucket) beyond the
projects included in the corpus. More specifically, we cannot
claim that the analyzed corpus is statistically representative
for the population of all existing Simulink projects (not even
for the publicly available ones). The reader should have in
mind that access to a comprehensive population list regard-
ing all publicly available open-source Simulink projects and
models is impossible; thus, we cannot infer that any acces-
sible population is “representative”. However, the selected
corpus provides the currently largest [14] and publicly avail-
able set of open source Simulink models from hosts like
Mathworks, SourceForge, GitHub, and other web pages, and
it even includes two other compiled corpora [9, 34]. This
makes us confident that our results generalize to other open-
source Simulink projects.

6.4 Conclusion Validity

Conclusion validity pertains to the degree to which we can
be sure that our conclusions are reasonable.

Due to the lack of reliable indicators, our study does
not capture the intent behind creating a model, yielding a
spectrum that heavily influences a model’s characteristics.
On the one hand of this spectrum, there are simple example
models that are deliberately kept as tiny as possible, e.g.,
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for the sake of teaching. On the other hand of the spectrum,
some models are created to model a real-world system or
phenomenon, thus growing in size and complexity. Not dis-
tinguishing the models by their intent of creation may lead to
the fact that a few outliers dominate many of the aggregated
metrics presented in Table 1 at both ends of this spectrum.
A classification of the intent could help eliminate such out-
liers and get a better picture of the models within each intent
category. However, the aggregated values are not meant to
characterize a specific class of models, but are calculated for
characterizing our entire corpus.

Instead of the intent behind creating a model, we clas-
sified our projects and models according to their origin and
application domain (see Section 4.3.1), which we use to get
an overview of the characteristics in each of these categories
(see Figure 6 and Figure 7). The results may be biased by
intents not equally distributed over the models’ origins and
application domains. For example, by chance, it might be
the case that most of the models in one application domain
are toy examples created for the sake of teaching, while the
models in another domain are representing abstractions of
real-world systems. Again, a classification by intent could
help to rule out such undesired effects.

7 Discussion: Suitability for Empirical Research

In this section,we discuss our findings togetherwith the opin-
ion of a Simulink expert. The expert, a partner in the context
of a research project, has more than six years of experience
in developing a quality assurance and optimization tools for
Simulink models. In his work, he is confronted with many
Simulink models and projects in various stages of develop-
ment and from different application domains, including the
automotive, automation, and lift domains. Please note that
this consultation of an expert is not meant to be part of our
research methodology as the expressiveness of just one ex-
pert’s opinion is somewhat limited. However, we included
the expert to help us form our interpretation less subjectively
and become more informed from a practitioner’s point of
view. The talk with the expert started with presenting our
results, followed by an open discussion on the project and
model characteristics. The goal was to get an expert opinion
on the general suitability of our corpus.

7.1 Suitability from the Perspective of Context

Although our corpus comprises Simulink projects of various
origins, most of them have an academic background (58%),
whilst only 13% originate from the industry. However, Fig-
ures 6a to 6c show that models from academic and industrial
projects are not that different. Moreover, several different

application domains are represented within our corpus, al-
though the distribution is skewed towards the energy and
electronics domains while others are missing (e.g., defense
and automation).

According to the interviewed Simulink expert, the au-
tomotive domain seems to be underrepresented within our
corpus. The expert was also surprised that we did not find
any indication of code generation in our models. According
to the practitioner experience, industrial models are usually
used for generating code, which is eventually deployed on
some hardware. The expert expected more models employ-
ing Embedded Coder. He assumes that TargetLink is not
used in the corpus’ models because it is too expensive for
open-source Simulink development.

In conclusion, our corpus does show some variation in
terms of the project context. However, the corpus should
not be used to compare characteristics between different do-
mains since not all domains are covered, and the distribution
is imbalanced. Additionally, the corpus is not suitable for
studies on code generation since we found no evidence of
code generation capabilities in the projects.

7.2 Suitability from the Perspective of Model Size and
Organization

The Simulink expert reveals that most models in our corpus
are considerably smaller (median of 70 blocks per model)
than the average models from the industry (his estimation is
a median of about 1,000 blocks per model). Typical industry
models he analyzes consist of 200 – 2,000 blocks, only a few
exceed 20,000 blocks. Thus, the largest models in our corpus
are comparable to large models in the industry. The expert
also confirmed that the distribution of block types in our cor-
pus is similar to industrial models. He was surprised by the
ratio of blocks to the subsystem. In his opinion, this relation
indicates rather mature models in terms of modularization.

As presented in Section 5.2, the corpus’s diversity may
be useful for testing and validating tools or automated ap-
proaches. The variety of models can cover a vast spectrum
of test cases. Further, for studies with more specific require-
ments towards certain model characteristics, the corpus can
be leveraged to produce a subset under the application needs
(e.g., only large models, only models with many subsystems,
exclusion of library models).

In terms of model size and organization, the corpus is
well suited for testing and evaluating tools. The enclosed
models exhibit a wide range of characteristics. The largest
ones are comparable to industry models in terms of size,
which is especially suitable for scalability and performance
tests. On the other hand, large models still are a minority.
Therefore, the corpus may not be suitable for applications
with especially high prerequisites concerning the amount of
data, e.g., machine-learning approaches.
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7.3 Suitability from the Perspective of Project and Model
Evolution

Our corpus provides limited opportunities to research projects
and model evolution. Only 35 of the 194 projects are hosted
on GitHub and offer the full project commit history. The
results presented in Section 5.3 show that most projects are
rather short-lived (<50 days) and are maintained by only one
developer. A low number of merge commits also indicates
little collaborative work available for analysis. However, a
few projects in our corpus provide opportunities to study
their evolution (e.g., in a case study research). For exam-
ple, a NASA project12 is active for 2,273 days, a Mathworks
Simulink tools project13 has 589 commits, and a driving chair
simulator14 has 16 developers. Moreover, with, on average,
44% of commits affecting models, the development of most
projects indeed focuses on Simulink models.

Despite the cases mentioned above, we conclude that
most projects are not suitable for empirical studies from
an evolutionary perspective, confirmed by the Simulink ex-
pert. According to him, the evolution characteristics ex-
tracted from GitHub do not mirror the evolution of industrial
Simulink projects. Typically, more developers are involved
in a project, and the number of commits steadily increases
towards the end of the project or a release.

8 Conclusions

In this paper, we collect and investigate a set of 1,734 freely
available Simulink models from 194 projects and analyze
their basic characteristics and suitability for empirical re-
search. Our analyses regarding project context, size and or-
ganization, and evolution have shown that the projects and
models are highly diverse in all aspects.

In principle, the models in our corpus are suitable for
empirical research. Depending on the research goals, the
subsets of the corpus might have to be selected. According
to the Simulink expert, many corpus models can be consid-
ered mature enough for quality analysis purposes. Another
use case might be unit testing, as many test cases can be
covered with a diverse set of models. Generally, the usage
of a publicly available model corpus or a subset enables re-
searchers to replicate findings, publish subsequent studies,
and use them for validation purposes.

For other kinds of empirical research, however, our cor-
pus might be of limited value. Most industry models use
code generation at some development stage, which is not
represented in the corpus at all. Domain-wise, the corpus is

12 https://github.com/nasa/T-MATS

13 https://github.com/analogdevicesinc/MathWorks_
tools

14 https://github.com/Alexanderallenbrown/MotionBase/
wiki

skewed towards the energy sector. Run-time analysis with
big models (e.g., 100k blocks or more) is possible with only
a few models. Many projects are no longer under active
development or maintenance, which may be necessary for
testing up-to-date Simulink versions and newer features or
consulting the developers involved in a Simulink project.

In the future, we want to investigate the models’ contents
and their evolution. To understand their basic characteristics,
most of our current metrics refer to themodels’ size and basic
organization within projects, which could be complemented
by structural complexity metrics or even qualitative analy-
ses in the future. The evolutionary characterization might
be worth examining content-related characteristics such as
structural differences between versions, complementing our
high-level analyses of the development history. Acquiring
a bigger set of Simulink projects from GitHub akin to the
method used in [52] promises to gain more generalizable
statements about RQ3.
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