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Abstract—Load balancing is an important requirement for the
efficient execution of parallel numerical simulations. In particular
when the simulation domain changes over time, the mapping
of computational tasks to processors needs to be modified
accordingly. State-of-the-art libraries for this problem are based
on graph repartitioning. They have a number of drawbacks,
including the optimized metric and the difficulty of parallelizing
the popular repartitioning heuristic Kernighan-Lin (KL).

In this paper we further explore the very promising diffusion-
based graph partitioning algorithm DIBAP [1] by adapting
DIBAP to the related problem of load balancing and improv-
ing its implementation. The presented experiments with graph
sequences that imitate adaptive numerical simulations are the
first using DIBAP for load balancing. They demonstrate the
applicability and high quality of DIBAP for load balancing by
repartitioning. Compared to the faster state-of-the-art reparti-
tioners PARMETIS and parallel JOSTLE, DIBAP’s solutions have
partitions with significantly fewer external edges and boundary
nodes and the resulting average migration volume in the impor-
tant maximum norm is also the best in most cases.

Keywords: Load balancing, graph partitioning, parallel
adaptive numerical simulations, disturbed diffusion.

I. INTRODUCTION

Numerical simulations are very important tools in science
and engineering for the analysis of physical processes modeled
by partial differential equations (PDEs). To make the PDEs
solvable, they are discretized within the simulation domain,
e. g., by the finite element method (FEM). Such a discretiza-
tion yields a mesh, which can be regarded as a graph with
geometric (and possibly other) information. Application areas
of such simulations are fluid dynamics, structural mechanics,
nuclear physics, and many others [2].

The solutions of discretized PDEs are usually computed
by iterative numerical solvers, which have become classical
applications for massively parallel computers. To utilize all
available processors in an efficient manner, the computational
tasks, represented by the mesh elements, must be distributed
onto the processors evenly. Moreover, the computational tasks
of an iterative numerical solver depend on each other. Neigh-
boring elements of the mesh need to exchange their values
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in every iteration to update their own value. Since inter-
processor communication is much more expensive than local
computation, neighboring mesh elements should reside on the
same processor. A good initial assignment of subdomains to
processors can be found by solving the graph partitioning
problem (GPP) [3]. The most common GPP formulation for
an undirected graph G = (V,E) asks for a division of V into
k pairwise disjoint subsets (partitions) such that all partitions
are no larger than (1 + ε) · d |V |k e (for small ε ≥ 0) and the
edge-cut, i.e., the total number of edges having their incident
nodes in different subdomains, is minimized.

In many numerical simulations some areas of the mesh
are of higher interest than others. For instance, during the
simulation of the interaction of a gas bubble with a surround-
ing liquid, one is interested in the conditions close to the
boundary of the fluids. To obtain an accurate solution, a high
resolution of the mesh is required in the areas of interest. A
uniformly high resolution is often not feasible due to limited
main memory. That is why one has to work with different
resolutions in different areas. Moreover, the areas of interest
may change during the simulation, which requires adaptations
in the mesh and may result in undesirable load imbalances.
Hence, after the mesh has been adapted, its elements need
to be redistributed such that every processor has a similar
computational effort again. While this can be done by solving
the GPP for the new mesh, the repartitioning process not only
needs to find new partitions of high quality. Also as few nodes
as possible should be moved to other processors since this
migration causes high communication costs and changes in
the local mesh data structure.

Motivation: The most popular graph partitioning and
repartitioning libraries (for details see Section II) use lo-
cal node-exchanging heuristics like Kernighan-Lin (KL) [4]
within a multilevel improvement process to compute good
solutions very quickly. Yet, their deployment can have certain
drawbacks. First of all, minimizing the edge-cut with these
tools does not necessarily mean to minimize the total running
time of parallel numerical simulations [5]. The number of
boundary vertices (vertices that have a neighbor in a different
partition), for instance, models the communication volume
between processors often more accurately than the edge-
cut [6]. While the total number of boundary vertices can



be minimized by hypergraph partitioning [7], synchronous
parallel applications need to wait for the processor computing
longest. Hence, the maximum norm (i. e., the worst partition) of
the load balancing costs and the simulation’s communication
costs is of higher importance. Finally, due to their sequential
nature, the most popular repartitioning heuristics are difficult
to parallelize – although significant progress has been made
(see Section II).

Our previously developed partitioning algorithm DIBAP
aims at computing well-shaped partitions and uses disturbed
diffusive schemes to decide not only how many nodes move
to other partitions, but also which ones. It is inherently
parallel and overcomes many of the above mentioned dif-
ficulties, as could be shown experimentally for static graph
partitioning [1]. While it is much slower than state-of-the-art
partitioners, it often obtains better results.

Contribution: In this paper we further explore the dis-
turbed diffusive approach and focus on repartitioning for load
balancing. First we present how the implementation of DIBAP
has been improved and adapted for the repartitioning setting.
With this implementation we perform various experiments, in
particular repartitioning of benchmark graph sequences. These
latter experiments are the first using DIBAP for repartitioning
and show the suitability of the disturbed diffusive approach.
The average load balancing quality – measured by the quality
of the partitions and the migration volume – of DIBAP is
usually better than that of the state-of-the-art repartitioners
PARMETIS and parallel JOSTLE. It is particularly important
that the improvement achieved by DIBAP concerning the
quality of the partitionings in the graph sequences is even
higher than in the case of static partitioning.

II. RELATED WORK

In this section we give a short introduction to the state-
of-the-art of practical graph repartitioning algorithms and
libraries which only require the adjacency information about
the graph and no additional problem-related information. We
focus on implementations that are included in our experimental
evaluation. For a broader overview the reader is referred to [3].

A. Graph partitioning

To employ local improvement heuristics effectively, they
need to start with a reasonably good initial solution. If such a
solution is not provided as input, the multilevel approach [8],
[9] is a very powerful technique. It consists of three phases:
First, one computes a hierarchy of graphs G0, . . . , Gl by
recursive coarsening in the first phase. Gl ought to be very
small in size, but similar in structure to the input graph G0.
A very good initial solution for Gl is computed in the second
phase. After that, the solution is extrapolated to the next-finer
graph recursively. In this final phase each extrapolated solution
is refined using the desired local improvement algorithm. A
very common local improvement algorithm for the third phase
of the multilevel process is based on the method by Fiduccia
and Mattheyses (FM) [10], a running time optimized version of
the Kernighan-Lin heuristic (KL) [4]. The main idea of both
is to exchange nodes between partitions in the order of the

cost reductions possible, while maintaining balanced partition
sizes. After every node has been moved once, the solution with
the best gain is chosen. This is repeated several times until no
further improvements are found.

B. Load balancing by repartitioning

In order to consider both a small edge-cut and small
migration costs, different strategies have been explored in the
literature. To overcome the limitations of simple scratch-remap
and rebalance approaches, Schloegel et al. [11], [12] combine
both methods. They propose a multilevel algorithm with three
main features. In the local improvement phase, two algorithms
are used. On the coarse hierarchy levels, a diffusive scheme
takes care of balancing the subdomain sizes. Since this might
affect the partition quality negatively, a refinement algorithm is
employed on the finer levels. It aims at edge-cut minimization
by profitable swaps of boundary vertices.

To address the load balancing problem in parallel applica-
tions, distributed versions of the partitioners METIS, JOSTLE,
and SCOTCH [13], [14], [15] (and the parallel hypergraph
partitioners ZOLTAN [16] and PARKWAY [17]) have been
developed. An efficient parallelization of the KL/FM heuristic
that these tools use is very complex due to inherently sequen-
tial parts in this heuristic. For example, one needs to ensure
that during the KL/FM improvement no two neighboring
vertices change their partition simultaneously and therefore
destroy the consistency of the data structures.

C. Diffusion for shape optimization

Some applications profit from good partition shapes. As an
example, the convergence rate of certain iterative linear solvers
can depend on the geometric shape of a partition [18]. That is
why in our previous work [19], [20] we have developed shape-
optimizing algorithms based on diffusion. Before that repar-
titioning methods employed diffusion mostly for computing
how much load needs to be migrated between subdomains [21],
not which elements should be migrated. Generally speaking,
a diffusion problem consists of distributing load from some
given seed vertex (or vertices) into the whole graph by iterative
load exchanges between neighbor vertices. Typical diffusion
schemes have the property to result in the balanced load distri-
bution, in which every node has the same amount of load. This
is one reason why diffusion has been studied extensively for
load balancing [22]. In order to distinguish dense from sparse
graph regions, our algorithms BUBBLE-FOS/C [20] and the
much faster DIBAP [1] (also see Section III) as well as a
combination of KL/FM and diffusion by Pellegrini [23] exploit
that diffusion sends load entities faster into densely connected
subgraphs. In the field of graph-based image segmentation
similar arguments based on the isoperimetric constant are used
to find well-shaped segments [24].

III. DIFFUSION-BASED REPARTITIONING WITH DIBAP
The algorithm DIBAP, which we have developed in our

previous work [1], is a hybrid multilevel combination of the
two (re)partitioning methods BUBBLE-FOS/C and TRUNC-
CONS, which are both based on disturbed diffusion. We call



a diffusion scheme disturbed if it is modified such that its
convergence state does not result in the balanced distribution.
Disturbed diffusion schemes can be helpful to determine if two
graph nodes or regions are densely connected to each other.
This property is due to the similarity of diffusion to random
walks and the notion that a random walk stays in a dense
region for a long time before leaving it via one of the few
external edges.

Before we explain the whole algorithm DIBAP, we describe
its two main (re-)partitioning components in more detail.

A. BUBBLE-FOS/C

In contrast to Lloyd’s related k-means algorithm [25],
BUBBLE-FOS/C partitions or clusters graphs instead of ge-
ometric inputs. Given a graph G = (V,E) and k ≥ 2,
initial partition representatives (centers) are chosen in the
first step of the algorithm, one center for each of the k
partitions. All remaining vertices are assigned to their closest
center vertex. While for k-means one usually uses Euclidean
distance, BUBBLE-FOS/C employs the disturbed diffusion
scheme FOS/C [20] as distance measure (or, more precisely,
as similarity measure). The similarity of a node v to a non-
empty node subset S is computed by solving the linear system
Lw = d for w, where L is the Laplacian matrix of the graph
and d a suitably chosen vector that disturbs the underlying
diffusion system. After the assignment step each partition
computes its new center for the next iteration – again using
FOS/C, but with a different right-hand side vector d. The two
operations assigning vertices to partitions and computing new
centers are repeated alternately a fixed number of times or until
a stable state is reached. Each operation requires the solution
of k linear systems, one for each partition.

It turns out that this iteration of two alternating operations
yields very good partitions. Apart from the distinction of
dense and sparse regions, FOS/C tends to produce similarity
isolines with a circular shape. Thus, the final partitions are very
compact and have short boundaries. However, the repeated
solution of linear systems makes BUBBLE-FOS/C slow.

B. TRUNCCONS

The algorithm TRUNCCONS (for truncated consolidations)
is also an iterative method for the diffusion-based local im-
provement of partitions, but it is much faster than BUBBLE-
FOS/C. Within each TRUNCCONS iteration the following is
performed independently for each partition πc: First, the initial
load vector w(0) is set. Nodes of πc receive an equal amount
of initial load |V |/|πc|, while the other nodes’ initial load is
set to 0. Then, this load is distributed within the graph by
performing a small number ψ of FOS (first order diffusion
scheme) [26] iterations. The final load vector w is computed
as w = Mψw(0), where M = I − αL denotes the diffusion
matrix [26] of G. A common choice for α is α := 1

(1+deg(G)) .
One way to compute the final load of a node v is by iterative
load exchanges for 1 ≤ t ≤ ψ:

w(t)
v = w(t−1)

v − α
∑

{u,v}∈E
(w(t−1)

v − w(t−1)
u )

Fig. 1. Sketch of the combined multilevel hierarchy and the corresponding
repartitioning algorithms used within DIBAP.

After the load vectors have been computed this way inde-
pendently for all k partitions, each node v is assigned to the
partition it has obtained the highest load from. This completes
one TRUNCCONS iteration, which can be repeated several
times (the total number is denoted by Λ subsequently) to
facilitate sufficiently large movements of the partitions.

A node with the same amount of load as all its neighbors
does not change its load in the next FOS iteration. Due to
the choice of initial loads, such an inactive node is a certain
distance away from the partition boundary. By avoiding load
computations for inactive nodes, we restrict the computational
effort to areas close to the partition boundaries.

C. The hybrid algorithm DIBAP
The main components of DIBAP are depicted in Figure 1.

To build a multilevel hierarchy, the fine levels are coarsened
(1) by approximate maximum weight matchings [27]. Once
the graphs are sufficiently small, we switch the construc-
tion mechanism (2) to the more expensive coarsening based
on algebraic multigrid (AMG) – for an overview on AMG
cf. [28]. This is advantageous regarding running time because,
after computing an initial partitioning (3), BUBBLE-FOS/C
is used as local improvement algorithm on the coarse levels
(4). Since BUBBLE-FOS/C uses AMG as a linear solver,
such a hierarchy needs to be built anyway. Eventually, the
partitionings on the fine levels are improved by the local im-
provement scheme TRUNCCONS. DIBAP includes additional
components, e. g., for balancing partition sizes and smoothing
partition boundaries. Their description is outside the scope of
this paper and can be found in [29].

The rationale behind DIBAP can be explained as follows.
While BUBBLE-FOS/C computes high-quality graph parti-
tions with good shapes, its similarity measure FOS/C is quite
expensive to compute compared to established partitioning
heuristics. Consequently, BUBBLE-FOS/C’s running time is



too high for real practical value. To overcome this problem, we
use the simpler process TRUNCCONS, a truly local algorithm
to improve partitions generated in a multilevel process. It
exploits the observation that, once a reasonably good solution
has been found, alterations during a local improvement step
take place mostly at the partition boundaries. The disturbing
truncation within TRUNCCONS allows for a concentration
of the computations around the partition boundaries, where
the changes in subdomain affiliation occur. Moreover, since
TRUNCCONS is also based on disturbed diffusion, the good
properties of the partitions generated by BUBBLE-FOS/C are
mostly preserved.

IV. IMPROVING AND ADAPTING THE DIBAP
IMPLEMENTATION FOR REPARTITIONING

In this section we describe improvements and adaptations
to the DIBAP implementation compared to the version used
for static partitioning [1]. Although our changes are not very
drastic, they usually allow for a faster repartitioning with
higher quality.

A. Multiple coarse solutions

A natural way to improve the solution quality would be to
restart the whole algorithm multiple times with different initial
partition assignments. However, as DIBAP is already slower
than the state-of-the-art, such a computationally expensive
method is not advisable. Instead of restarting the complete
algorithm, we only call BUBBLE-FOS/C a number of times
and keep only the best of the solutions, before starting a single
multilevel repartitioning step with TRUNCCONS. Since the
graph on the coarsest TRUNCCONS level (the finest BUBBLE-
FOS/C level) is relatively small, BUBBLE-FOS/C returns a
solution quite fast.

B. Repartitioning

When DIBAP is used for repartitioning instead of parti-
tioning, one part of its input is an initial partitioning. We can
assume that this partitioning is probably more unbalanced than
advisable. It might also contain some undesirable artifacts.
Nevertheless, its quality is not likely to be extremely bad. It
is therefore reasonable to improve the initial partition instead
of starting from scratch.

If DIBAP is called although the imbalance criterion is not
violated by the input, we perform TRUNCCONS with very
small Λ and ψ (e. g., both are set to 3) on the input graph only.
This is relatively inexpensive and eliminates possible artifacts.
It also improves the quality of the subdomains somewhat,
while it generates hardly any migration costs. Note that this
fast approach is not feasible in case of static partitioning where
no initial solution is provided.

In case the imbalance is higher than allowed, the usual mul-
tilevel paradigm comes into play again. A matching hierarchy
is constructed until only a few thousand nodes remain in the
coarsest graph. The initial partition is projected downwards
the hierarchy onto the coarsest level. On the coarsest level the
graph is repartitioned with BUBBLE-FOS/C, starting with the

Time /
Graph |E| |E| (µs)
mrng1 505,048 19.07
mrng2 2,015,714 24.52
mrng3 8,016,848 15.63
mrng4 14,991,280 17.28

k Time / k0.8 (s)
4 2.19
8 2.19

12 2.19
16 2.20
20 2.21
32 2.11

TABLE I
NORMALIZED RUNNING TIMES OF DIBAP (Λ = 10, ψ = 14) ON GRAPHS
FROM THE mrng SERIES WITH k = 8 (LEFT) AND ON EIGHT BENCHMARK

GRAPHS FROM [30], [31] (RIGHT).

projected initial solution. Going up the multilevel hierarchy
recursively, the result is then improved with TRUNCCONS on
each level and extrapolated to the next one.

Sometimes the matching algorithm has hardly coarsened
a level, in order to avoid star-like subgraphs with strongly
varying node degrees. This limited coarsening results in two
very similar adjacent levels. Local improvement with TRUNC-
CONS on both of these levels would more or less result in
the same work being done twice. That is why in such a case
TRUNCCONS is skipped on the finer level of the two.

V. EXPERIMENTAL RESULTS

This section presents some of our experimental results
obtained with our new DIBAP implementation. Sections V-A
and V-B use the partitioning functionality of DIBAP to draw
conclusions about the scaling of the running time and the
effect of using multiple coarse solutions. The major experi-
mental part is comprised of the comparison to the state-of-
the-art load balancing tools PARMETIS and parallel JOSTLE
(Section V-C).

A. Running time

For sufficiently large graphs the running time of DIBAP
is dominated by that of TRUNCCONS, because the hierarchy
level on which the algorithm switch takes place is fixed with
a constant. As most expensive step within TRUNCCONS, one
performs for each subdomain Λ times ψ FOS iterations (with
small Λ and ψ). Seeing Λ and ψ as constants, the asymptotic
running time can be bounded by O(k · |E|).

To estimate experimentally how the graph size enters into
the running time, we have conducted experiments on four
graphs from the mrng series (dual graphs of 3D FEM meshes).
Since these graphs have different sizes, but a similar structure,
the results are not structurally biased. The smallest graph
mrng1 has 257,000 nodes, the largest one mrng4 around 7.5
million. All four graphs have a very similar average degree
of just below four. As a representative example, normalized
running times for partitioning them into k = 8 subdomains
are shown in Table I (left). These values indicate that an
increase in the number of edges results in a similar increase in
running time. The primary reasons for variations in the data are
the partition placement and the resulting number of inactive
nodes. Similar results can be seen in other experiments with
FEM graphs. Table I (right) contains the average running times
of DIBAP divided by k0.8 for partitioning the eight largest



Setting Λ ψ #coarse Time (s)
1 10 14 1 16.52
2 10 14 3 18.73
3 14 19 1 36.51
4 14 19 3 39.21

TABLE II
PARAMETER SETTINGS AND RESULTING RUNNING TIMES WITH DIBAP ON

AN INTEL CORE 2 DUO 6600 PROCESSOR FOR PARTITIONING THE
“AVERAGE BENCHMARK GRAPH”.

Fig. 2. Solution quality obtained by DIBAP in the four parameter settings
(1 to 4) of Table II. Lower values are better.

graphs of Walshaw’s popular archive [30], [31]. With this
particular divisor the results are nearly constant. This sublinear
behavior in k is due to the fact that the number of inactive
nodes per partition increases when k becomes larger. While
an extrapolation of these data to asymptotic behavior may be
shaky, our expectations drawn from theoretical considerations
are essentially confirmed.

B. Influence of multiple coarse solutions

To evaluate the influence of using the best of multiple coarse
solutions provided by BUBBLE-FOS/C, we have conducted a
set of experiments where the TRUNCCONS loop parameters
Λ and ψ are fixed (they determine primarily the running time
and are also very important for the solution quality), but the
number of coarse solutions are varied.

Table II displays the settings for Λ, ψ, and the number
of coarse initial solutions as well as the resulting running
times for partitioning the benchmark set of the eight largest
graphs in Walshaw’s archive with DIBAP. The data are highly
aggregated, as they are averaged over all graphs, different
numbers of k (k ∈ {4, 8, 12, 16, 20, 32}), and ten randomized
runs on each graph. The quality obtained by DIBAP in the four
settings is shown in Figure 2. The first two data columns show
the aggregated values for the edge-cut (EC) and the boundary
nodes (BN sum) in the summation norm, respectively. In the
next two data columns, the data for the maximum norm follow
(EE: external edges). Note that for presentation reasons the
values in the first three data columns are divided by the value
shown in the x-axis.

Comparing the solution quality obtained with the different
parameter settings, it is of course not surprising that the
average solution quality is improved by choosing the best

out of more than one initial solutions, as can be seen from
the data. Similarly, that the most time-consuming parameter
setting achieves the best quality meets our expectations. Yet,
it is remarkable that setting 2 is consistently better than setting
3, although much less computational effort has been invested.
This indicates that selecting a good initial partition is very
helpful for saving running time. It is much cheaper than
additional TRUNCCONS operations, as can be seen by the large
running time difference between settings 2 and 3.

The additional gain derived from multiple solutions declines
when their number is further increased. While three might
not be the optimal choice, our experiments are only meant to
show the general trend rather than the best value. But another
positive influence of having multiple choices is the reduced
variance in the data. For k = 12 selecting the best of three
initial solutions reduces the variance in the edge-cut by an
average factor of more than six. Hence, the results are not
only better on average, but also more reliable as they deviate
less from the mean.

C. Load balancing of graph sequences

Unlike the parallel versions of METIS and JOSTLE, the
implementation of our load balancer is not prepared yet
for a distributed-memory parallelization.1 That is why we
concentrate in the following on the quality of the experiments
and neglect their running time. Comparing the latter is part
of future work with an MPI parallel version of DIBAP.
Preliminary results suggest that the average slowdown factor
for using DIBAP instead of PARMETIS (which is faster than
parallel JOSTLE) depends very much on the graph size and k
and lies approximately between 30 and 60.

The parameter settings Λ = 10, ψ = 14, and three
coarse solutions computed by BUBBLE-FOS/C are chosen
as they provide a good trade-off between running time and
quality. The thrsh parameter, which controls the size of the
hierarchy level on which the switch between TRUNCCONS and
BUBBLE-FOS/C takes place, is set to 8, 000 nodes.

Our benchmark set comprises two types of graph sequences.
Twelve sequences are made of 101 frames of small graphs
(around 10,000 to 15,000 nodes each), which are repartitioned
into k = 12 subdomains. The second set consists of three
sequences of larger graphs (between 110,000 and 1,100,000
nodes each), which are repartitioned into k = 16 subdomains.
While the sequence bigtric has 101 frames, the sequences
bigbubbles and bigtrace have only 46 frames. All graphs of
these 15 sequences have a two-dimensional geometry and are
generated to resemble adaptive numerical simulations such as
fluid dynamics. The graph of frame i+ 1 in a given sequence
is obtained from the graph of frame i by changes restricted to
local areas. As an example, some areas are coarsened, whereas
others are refined. These changes are in most cases due to the
movement of an object in the simulation domain and often

1We would like to point out that the algorithm DIBAP is very well suited
for such a parallelization approach. Only its corresponding implementation
has not been finished yet. The implementation used for this paper is based on
POSIX threads instead.



result in unbalanced subdomain sizes.2

In addition to the graph partitioning metrics edge-cut and
boundary nodes, we are here also interested in migration costs.
These costs result from data changing their processor after
repartitioning. We count the number of nodes that change
their subdomain from one frame to the next as a measure
of these costs. One could also assign cost weights to the
partitioning objectives and the migration volume to evaluate
the linear combination of both. Since these weights depend
both on the underlying application and the parallel architec-
ture, we have not pursued this here. We compare our new
algorithm DIBAP to the state-of-the-art repartitioning tools
PARMETIS and parallel JOSTLE, which are mainly based on
the node-exchanging KL heuristic for local improvement. The
partitioning quality (EC: edge-cut, BN: boundary nodes, EE:
external edges) measured in our experiments in the summation
(sum) and maximum norm (max) are displayed in Figure 3,
where the values are shown relative to PARMETIS. Moreover,
the values are averaged over all small sequences on the left
and over all large sequences on the right. The corresponding
non-aggregated data for the large sequences can be found in
Tables III and IV and for the small sequences in the appendix.
Additionally, we are interested in the migration costs, which
are recorded in both norms and detailed for each sequence in
Table V.

Sequence / Norm PARMETIS Par. JOSTLE DIBAP
bigtric (`1) 1866.3 1569.4 1436.8

bigbubbles (`1) 4716.2 3974.8 3527.1
bigtrace (`1) 4124.9 3349.1 2919.7
bigtric (`∞) 321.3 267.0 230.9

bigbubbles (`∞) 845.7 740.4 615.4
bigtrace (`∞) 718.7 584.5 463.9

TABLE III
AVERAGE NUMBER OF external edges IN THE `1- AND `∞-NORM FOR

REPARTITIONINGS COMPUTED BY PARMETIS, JOSTLE, AND DIBAP ON
THREE LARGE GRAPH SEQUENCES. LOWER VALUES ARE BETTER, BEST

VALUES PER INSTANCE ARE WRITTEN IN BOLD.

Sequence / Norm PARMETIS Par. JOSTLE DIBAP
bigtric (`1) 3717.7 3121.9 2865.9

bigbubbles (`1) 9387.2 7873.7 7041.7
bigtrace (`1) 8212.2 6630.9 5815.5
bigtric (`∞) 319.6 265.5 229.7

bigbubbles (`∞) 840.3 729.0 613.5
bigtrace (`∞) 713.2 577.8 461.7

TABLE IV
AVERAGE NUMBER OF boundary nodes IN THE `1- AND `∞-NORM FOR

REPARTITIONINGS COMPUTED BY PARMETIS, JOSTLE, AND DIBAP ON
THREE LARGE GRAPH SEQUENCES. LOWER VALUES ARE BETTER, BEST

VALUES PER INSTANCE ARE WRITTEN IN BOLD.

The averaged graph partitioning metrics show that DIBAP
is able to compute the best partitions on average. DIBAP’s

2For more details the reader is referred to Marquardt and Schamberger [32],
who have provided the sequence data. The input data can also be downloaded
from the project website http://wwwcs.upb.de/cs/henningm/graph.html.

Fig. 3. Average partition quality (external edges, boundary nodes) in the `1-
norm (sum) and `∞-norm (max) for repartitionings relative to PARMETIS
(which has normalized value 1.0) on twelve small (top) and three large
(bottom) graph sequences. Lower values are better.

PARMETIS JOSTLE DIBAP
Sequence mig1 mig∞ mig1 mig∞ mig1 mig∞
bubbles 2460.7 558.0 1723.9 367.9 1775.0 367.7
change 284.4 74.9 330.9 67.8 352.2 64.7
circles 3200.5 676.4 2128.6 505.3 2164.1 490.2
fastrot 4314.3 934.5 3229.6 860.2 3094.8 811.6
fasttric 4648.1 1003.0 3466.6 943.8 2940.0 785.8

heat 299.8 66.8 286.5 56.8 561.1 98.7
refine 1.5 1.2 114.2 19.0 30.6 6.7
ring 3369.8 730.2 2684.0 524.7 2584.1 508.0

rotation 2914.9 721.3 2281.1 722.8 2421.6 724.2
slowrot 3928.4 806.7 2774.7 622.1 2511.4 593.7
slowtric 3094.9 718.3 2322.1 591.9 2165.1 559.7

trace 977.5 223.7 896.0 182.3 781.9 169.9

TABLE V
AVERAGE MIGRATION VOLUME IN THE `1- AND `∞-NORM FOR

REPARTITIONINGS COMPUTED BY PARMETIS, JOSTLE, AND DIBAP FOR
TWELVE SMALL GRAPH SEQUENCES. LOWER VALUES ARE BETTER, BEST

VALUES PER INSTANCE ARE WRITTEN IN BOLD.

advance is highest for the boundary nodes in the maximum
norm, which can be considered a more accurate measure for
the communication costs of typical numerical solvers than the
edge-cut. With about 12–15 % on parallel JOSTLE and about
23–30% on PARMETIS these improvements are clearly higher
than the approximately 7% obtained for static partitioning [1],
which is due to the fact that parallel KL (re)partitioners often



Sequence / Norm PARMETIS Par. JOSTLE DIBAP
bigtric (`1) 27563.2 20170.0 22248.3

bigbubbles (`1) 197449.2 157475.0 182205.9
bigtrace (`1) 71934.6 61294.1 90358.2
bigtric (`∞) 5257.8 4507.9 4275.5

bigbubbles (`∞) 39601.7 29448.9 28422.0
bigtrace (`∞) 15117.4 11881.8 13975.4

TABLE VI
AVERAGE MIGRATION VOLUME IN THE `1- AND `∞-NORM FOR

REPARTITIONINGS COMPUTED BY PARMETIS, JOSTLE, AND DIBAP FOR
THREE LARGE GRAPH SEQUENCES. LOWER VALUES ARE BETTER, BEST

VALUES PER INSTANCE ARE WRITTEN IN BOLD.

Fig. 4. Number of migrating nodes (`∞-norm) in each frame of the slowrot
sequence for DIBAP (red square), METIS (grey diamond), and JOSTLE (blue
triangle). Lower values are better.

compute worse solutions than their serial counterparts for
static partitioning.

DIBAP’s migration volume is best for six (out of 15)
sequences in the summation norm. Compared to this, only
parallel JOSTLE is competitive. Its partitions have a lower
quality, but its migration volume is best for eight sequences
in the summation norm. In the more important maximum
norm the results are not fundamentally different, but DIBAP
performs even better than before. Again, it attains the best
partitions. Moreover, the migration volume is best for eleven
sequences. As a representative example, Figure 4 shows the
migration volumes for each frame within the slowrot sequence
in the `∞-norm. One can see the different strategies of the
three programs. While JOSTLE and DIBAP have a relatively
constant migration volume, the values for PARMETIS fluctu-
ate extremely.

These results lead to the conclusion that DIBAP’s implicit
optimization with the iterative algorithms BUBBLE-FOS/C
and TRUNCCONS focusses more on good partitions than
on small migration costs. In some special cases the latter
objective should receive more attention. As currently no ex-
plicit mechanisms for migration optimization are integrated,
such mechanisms could be implemented if one finds in other
experiments that the migration costs become too high with
DIBAP.

It is interesting to note that further experiments indicate

a multilevel approach to be indeed necessary in order to
produce sufficiently large partition movements in order to
keep up with the movements of the simulation. Partitions
generated by multilevel DIBAP are of a noticeably higher
quality regarding the graph partitioning metrics than those
computed by TRUNCCONS without multilevel approach. Also,
using a multilevel hierarchy results in very steady migration
costs, which rarely deviate much from the mean.

In summary one can say that, in almost all cases, DIBAP
computes the best repartitioning results w. r. t. to the graph
partitioning metrics. Concerning the migration volume, the
results are not as clear. The `1-norm values are slightly in
favor of JOSTLE (eight times best) compared to DIBAP (six
times best). Yet, in the `∞-norm of the migration volume,
DIBAP is the clear winner again. The strategy of PARMETIS
to migrate either very few or very many nodes does not seem
to pay off on average since PARMETIS computes in most
cases the worst solutions.

We would like to stress that a high repartitioning quality is
often very important. Usually, the most time consuming parts
of numerical simulations are the numerical solvers. Hence,
a reduced communication volume provided by an excellent
partitioning can pay off unless the repartitioning time is
extremely high.

VI. CONCLUSIONS

With this paper we have demonstrated that the disturbed
diffusive repartitioning algorithm DIBAP is a clear alterna-
tive to traditional KL-based methods for balancing the load
in parallel adaptive numerical simulations. While DIBAP is
still significantly slower than the state-of-the-art, it usually
computes considerably better solutions. In situations where the
quality of the load balancing phase is more important than its
running time – e. g., when the computation time between the
load balancing phases is relatively high – the use of DIBAP is
expected to pay off. As part of future work we develop an MPI
parallel version of DIBAP. Improvements to the algorithms
and their implementation aim at a further acceleration of the
disturbed diffusive approach.
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APPENDIX

A. Additional experimental results

PARMETIS JOSTLE DIBAP
Sequence EC bnd1 EC bnd1 EC bnd1

bubbles 366.7 723.8 323.8 638.6 312.8 612.1
change 357.9 706.5 308.4 607.6 297.9 588.8
circles 371.2 733.0 328.8 646.4 314.2 610.0
fastrot 433.6 857.4 385.2 757.9 362.2 705.9
fasttric 455.0 900.1 407.5 803.2 376.3 741.8

heat 182.2 360.2 154.5 304.2 159.5 306.4
refine 225.9 448.6 199.9 389.1 191.3 377.6
ring 274.4 541.1 238.0 471.2 231.0 446.5

rotation 387.9 767.7 342.6 675.3 341.0 662.7
slowrot 431.7 853.5 383.5 754.9 359.3 703.9
slowtric 502.1 994.0 434.2 856.5 406.7 796.5

trace 328.1 644.1 285.4 557.9 273.6 524.8

TABLE VII
AVERAGE NUMBER OF EXTERNAL EDGES (EDGE-CUT, EC) AND

BOUNDARY NODES (BND) IN THE `1-NORM FOR REPARTITIONINGS
COMPUTED BY PARMETIS, JOSTLE, AND DIBAP ON TWELVE SMALL
GRAPH SEQUENCES. LOWER VALUES ARE BETTER, BEST VALUES PER

INSTANCE ARE WRITTEN IN BOLD.

PARMETIS JOSTLE DIBAP
Sequence ext∞ bnd∞ ext∞ bnd∞ ext∞ bnd∞
bubbles 86.0 84.8 75.4 74.1 66.0 64.3
change 83.0 81.5 70.9 69.6 64.6 63.6
circles 81.1 80.1 74.4 72.9 66.7 63.7
fastrot 96.1 94.8 86.4 84.7 73.6 71.4
fasttric 98.4 97.1 92.1 90.4 77.6 76.3

heat 56.9 56.2 45.1 44.4 48.1 46.6
refine 47.6 46.6 42.9 41.2 36.2 35.7
ring 71.3 69.9 61.1 60.5 59.9 57.1

rotation 90.0 88.7 80.3 78.8 71.3 70.0
slowrot 93.2 91.9 82.2 80.7 70.4 68.7
slowtric 112.9 111.6 97.6 95.8 78.5 76.4

trace 73.8 71.9 65.9 63.8 58.9 56.3

TABLE VIII
AVERAGE NUMBER OF EXTERNAL EDGES (EXT) AND BOUNDARY NODES

(BND) IN THE `∞-NORM FOR REPARTITIONINGS COMPUTED BY
PARMETIS, JOSTLE, AND DIBAP ON TWELVE SMALL GRAPH SEQUENCES.
LOWER VALUES ARE BETTER, BEST VALUES PER INSTANCE ARE WRITTEN

IN BOLD.


