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Der Backpropagation Algorithmus

Es sollen die Gewichte fiir ein beliebiges gerichtetes azyklisches Netz gelernt werden.
Als Aktivierung wird die Sigmoid-Funktion verwendet.

Mittels Gradientenabstieg wird der quadratische Fehler minimiert. Da das Netz
mehrere Ausgdnge haben kann, werden die Teilfehler addiert:

E(w) = %Z Z (tra — Okd)®
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Die notwendige Anpassung des Gewichts ergibt sich wiederum aus:
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5, = —2E+ pezeichnet den Fehler in dem Knoten k.
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Die Trainingsbeispiele liegen jeweils als Paare von Eingabewerten # und erwarteten
Ergebniswerten ¢ vor. outputs ist die Menge der Ausgabeknoten. downstream(k) ist
die Menge aller Knoten zu denen eine gerichtete Verbindung von k£ aus besteht.
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Der Backpropagation Algorithmus

Die Gewichte im Netz werden mit kleinen zufdlligen Werten initialisiert.

Die folgenden Schritte werden wiederholt bis ein Zielkriterium erflllt ist:

e Fir jedes Trainingsbeispiel die Eingabe vorwdrts durch das Netz propagieren
e den Fehler riickwarts durch das Netz propagieren

— Fir jeden Ausgabeknoten k&
Ok = (tr, — ox)op(1 — o)
— Fir jeden Knoten h in einer versteckten Schicht
6 = on(1 —op) > SkWkh
k€downstream(h)

e Alle Gewichte anpassen: wj; = wj; + Awj; mit Awj; = ndjz;;
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Modifikationen des Lernverfahrens

Ziel: bessere Konvergenz und vermeiden lokaler Minima

e Stochastischer Gradientenabstieg: Anpassung der Gewichte nach
jedem Trainingsbeispiel

e Momentum ergdnzen: Aw;;(n) = né;z;; + aAw;;(n — 1)
e Lernrate im Laufe des Trainings verringern

e Unterschiedliche Netze mit gleichen Trainingsdaten trainieren
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Zielkriterium fur das Lernenverfahren

Das Unterschreiten eines zuvor festgelegten Fehlerwertes auf den
Trainingsdaten ist als Zielkriterium nicht geeignet. Wahrend der Feh-
ler auf den Trainingsbeispielen weiter fdllt, kann er auf anderen Bei-
spieldaten bereits wieder steigen — das Netz ist Ubertrainiert. Im All-
gemeinen wird zum Testen eine separate Menge von Validierungbei-
spielen verwendet.

Das Verfahren darf aber auch nicht zu friih abgebrochen werden. Ein
steigender Fehler auf den Validierungsdaten kann auch nur voriber-
gehend sein.

Losungsidee: bestes bisher gelerntes Netz speichern; steigt der Va-
lidierungsfehler signifikant an — Abbruch; fallt der Validierungsfehler
wieder — gespeichertes Netz ersetzen
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Ausdrucksstarke vorwartsverketteter Netze

e boolsche Funktionen mit 2-Schichten-Netz aus Perceptronen

e stetige Funktionen mit 2-Schichtennetz mit Sigmoid-Einheiten
und linearer Einheit in den Ausgabeknoten

e beliebige Funktionen mit 3-Schichtennetz mit Sigmoid-Einheiten
und linearer Einheit in den Ausgabeknoten
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Charakterisierung des Lernenverfahren

Hypothese: jede moglich Zuweisung von Gewichtswerten

Hypothesenraum: R", wobei n der Anzahl der Gewichte entspricht

Suchverfahren: Gradientenabstieg

Inductive Bias: stetige Interpolation von Zwischenwerten

Leistungsfahigkeit: Approximation beliebiger Funktionen
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