Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $\text{DNPP}_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Institute of Computer Science Humboldt-University Berlin Germany

International Computer Science Symposium in Russia 2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Disjoint NP-Pairs

Definition (Grollmann, Selman 88) (*A*, *B*) is a *disjoint NP-Pair* if $A, B \in NP$ and $A \cap B = \emptyset$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Retween Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P) Complete Tuples and Optimal Proof Systems

Summary

Example

Clique-Colouring pair (CC_0, CC_1)

- $CC_0 = \{(G, k) \mid G \text{ contains a clique of size } k\}$
- $CC_1 = \{(G, k) \mid G \text{ can be coloured with } k 1 \text{ colours } \}$

Applications and Relations to Other Areas

- security of public-key crypto systems
 [Grollmann, Selman 88], [Homer, Selman 92]
- characterization of properties of propositional proof systems
 [Bonet, Pitassi, Raz 00], [Pudlák 03]
- lower bounds to the length of propositional proofs [Razborov 96], [Pudlák 97], [Krajíček 04]
- complete problems for promise classes [Köbler et al. 03], [Glaßer et al. 04]

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP₆(P) Complete Tuples and Optimal Proof Systems

Tuples instead of Pairs

Definition

 (A_1, \ldots, A_k) is a disjoint *k*-tuple of NP-sets if all components A_1, \ldots, A_k are nonempty languages in NP which are pairwise disjoint.

Example

 (C_1, \ldots, C_k) where C_i contains all i + 1-colourable graphs with a clique of size i.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P) Complete Tuples and Optimal Proof Systems

Summary

▲□▶▲□▶▲□▶▲□▶ □□ - つへぐ

P-Separable Pairs

Definition

A tuple (A_1, \ldots, A_k) is **p-separable** if there exists a polynomial time computable function $f : \Sigma^* \to \{1, \ldots, k\}$ such that

$$a \in A_i \implies f(a) = i$$

for
$$i = 1, \ldots, k$$
 and $a \in \Sigma^*$.

Example

 (C_1, \ldots, C_k) is p-separable (where C_i contains all i + 1-colourable graphs with a clique of size i.)

input: graph *G* output: $max\{i \le k \mid G \text{ contains a clique of size } i\}$

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P) Complete Tuples and Optimal Proof Systems

Definition $(A_1, \ldots, A_k) \leq_p (B_1, \ldots, B_k) \iff$ there exists a polynomial time computable function *f* such that $f(A_i) \subseteq B_i$ for $i = 1, \ldots, k$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

・ロト・日本・日本・日本・日本・日本

Definition $(A_1, \ldots, A_k) \leq_p (B_1, \ldots, B_k) \iff$ there exists a polynomial time computable function *f* such that $f(A_i) \subseteq B_i$ for $i = 1, \ldots, k$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

・ロト・日・・日・・日・・日・

Definition $(A_1, \ldots, A_k) \leq_p (B_1, \ldots, B_k) \iff$ there exists a polynomial time computable function *f* such that $f(A_i) \subseteq B_i$ for $i = 1, \ldots, k$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

・ロト・日本・ キャー キャー キャー シャー

Definition $(A_1, \ldots, A_k) \leq_p (B_1, \ldots, B_k) \iff$ there exists a polynomial time computable function *f* such that $f(A_i) \subseteq B_i$ for $i = 1, \ldots, k$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

・ロ・・母・・由・・ 中・ シック・

A Stronger Reduction

Definition $(A, B) \leq_{s} (C, D) \stackrel{df}{\longleftrightarrow}$ there exists a polynomial time computable function *f* such that $f : A \leq_{m}^{p} C$ und $f : B \leq_{m}^{p} D$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P) Complete Tuples and Optimal Proof Systems

Summary

・ロト・日本・日本・日本・日本

A Stronger Reduction

Definition $(A, B) \leq_{s} (C, D) \stackrel{df}{\longleftrightarrow}$ there exists a polynomial time computable function *f* such that $f : A \leq_{m}^{p} C$ und $f : B \leq_{m}^{p} D$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

・ロト・日本・モート ヨー うくぐ

A Stronger Reduction

Definition $(A, B) \leq_{s} (C, D) \stackrel{df}{\longleftrightarrow}$ there exists a polynomial time computable function *f* such that $f : A \leq_{m}^{p} C$ und $f : B \leq_{m}^{p} D$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

・ロト・日本・日本・日本・日本・日本

The Two Reductions are Different.

Theorem

For all $k \ge 2$ the following holds:

- ► All p-separable k-tuples are ≤_p-equivalent. They form the minimal ≤_p-degree of disjoint k-tuples of NP-sets.
- If P ≠ NP, then there exist infinitely many ≤_s-degrees of p-separable disjoint k-tuples of NP-sets.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P) Complete Tuples and Optimal Proof Systems

The Two Reductions are Different.

Theorem

For all $k \ge 2$ the following holds:

- ► All p-separable k-tuples are ≤_p-equivalent. They form the minimal ≤_p-degree of disjoint k-tuples of NP-sets.
- If P ≠ NP, then there exist infinitely many ≤_s-degrees of p-separable disjoint k-tuples of NP-sets.

Problem

Do there exist k-tuples which are complete for the class of all disjoint k-tuples of NP-sets?

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples

Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P) Complete Tuples and Optimal Proof Systems

Propositional Proof Systems

Definition (Cook, Reckhow 79)

- A propositional proof system is a polynomial time computable function P with rng(P) = TAUT.
- A string π with $P(\pi) = \varphi$ is called a *P*-proof of φ .

▶
$$P \vdash_{\leq m} \varphi \iff \varphi$$
 has a *P*-proof of size $\leq m$.

Motivation

Proofs can be easily checked.

Examples

truth-table method, resolution, Frege systems

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Simulations Between Proof Systems

Definition (Cook, Reckhow 79)

A proof system Q simulates a proof system $P (P \le Q)$, if Q-proofs are at most polynomially longer than P-proofs.

Definition

A proof system is optimal, if it simulates all other proof systems.

Problem (Krajíček, Pudlák 89)

Do there exist optimal proof systems?

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs Tuples from Proof Systems The Complexity Classes $\text{DNPP}_k(P)$ Complete Tuples and Optimal Proof Systems

Representations of NP-Sets

Definition

A representation of an NP-set *A* is a sequence of prop. formulas

$$\varphi_n(\bar{x},\bar{y}) \quad |\bar{x}|=n$$

such that

- there exists a polynomial time algorithm which on input 1ⁿ constructs φ_n(x̄, ȳ)
- ▶ for all a ∈ {0, 1}ⁿ

$$a \in A \iff \varphi_n(\bar{a}, \bar{y})$$
 is satisfiable.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs

Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and Optimal Proof Systems

Summary

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Representable Disjoint NP-Pairs

Definition

A disjoint *k*-tuple $(A_1, ..., A_k)$ of NP-sets is representable in a proof system *P* if there exist representations

$$\varphi_n^i(\bar{x}, \bar{y}^i)$$
 of A_i for $i = 1, \dots, k$

such that

$$P \vdash_* \bigwedge_{1 \leq i < j \leq k} \neg \varphi_n^i(\bar{x}, \bar{y}^i) \lor \neg \varphi_n^j(\bar{x}, \bar{y}^j) .$$

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs

Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$ Complete Tuples and

Optimal Proof System

Summary

 $DNPP_k(P)$ contains all disjoint *k*-tuples of NP-sets which are representable in *P*.

Proposition

The representability of a tuple depends on the choice of the representations for A and B.

Tuples from Proof Systems

Definition

To a proof system *P* we associate a *k*-tuple $(U_1(P), \ldots, U_k(P))$, where $U_i(P)$ contains tuples $(\varphi_1, \ldots, \varphi_k, 1^m)$ such that

- φ_j and φ_l do not share variables for all $1 \le j < l \le k$,
- φ_i is satisfiable, and

$$\blacktriangleright P \vdash_{\leq m} \bigwedge_{1 \leq j < l \leq k} \neg \varphi_j \lor \neg \varphi_l.$$

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs

Tuples from Proof Systems

```
The Complexity Classes DNPP_k(P)
Complete Tuples and
```

Summary

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Normal Proof Systems

Definition

We call a proof system P normal if

▶ *P* is closed under modus ponens, i.e.

$$P \vdash_{\leq n} \varphi \text{ and } P \vdash_{\leq m} \varphi \rightarrow \psi \implies P \vdash_{\leq p(n+m)} \psi$$

for some polynomial *p*.

P is closed under substitutions by constants, i.e.

$$P \vdash_{\leq n} \varphi(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \implies P \vdash_{\leq q(n)} \varphi(\bar{\mathbf{a}}, \bar{\mathbf{y}})$$

for some polynomial q.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs

Tuples from Proof Systems

The Complexity Classes DNPP_k(P)

Complete Tuples and Optimal Proof Systems

Summary

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

The Complexity Class DNPP(P)

Theorem

For every normal proof system P and every number $k \ge 2$ we have:

- ▶ DNPP_k(P) is closed under \leq_p for P ≥ Resolution.
- $(U_1(P), \ldots, U_k(P))$ is \leq_s -hard for $DNPP_k(P)$.
- ▶ If P has reflection, then $(U_1(P), ..., U_k(P))$ is ≤_s-complete for DNPP(P).

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems

Representable Pairs

Tuples from Proof Systems

The Complexity Classes DNPP_k(P)

Complete Tuples and Optimal Proof Systems

Complete Tuples

Theorem

The following conditions are equivalent:

- For all k ≥ 2 there exist ≤s-complete disjoint k-tuples of NP-sets.
- For all k ≥ 2 there exist ≤_p-complete disjoint k-tuples of NP-sets.
- 3. There exist \leq_p -complete disjoint NP-pairs.
- There exists k ≥ 2 such that there exist ≤_p-complete disjoint k-tuples of NP-sets.
- There exists a proof system P such that for all k ≥ 2 all disjoint k-tuples of NP-sets are representable in P.
- 6. There exists a proof system P such that all disjoint NP-pairs are representable in P.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_k(P)

Complete Tuples and Optimal Proof Systems

Optimal Proof Systems and Complete Tuples

Theorem

The following conditions are equivalent:

- 1. There exists an optimal propositional proof system.
- There exists a proof system that proves the disjointness of all disjoint k-tuples of NP-sets with respect to all representations.
- There exists a proof system that proves the disjointness of all disjoint NP-pairs with respect to all representations.

Corollary

If optimal proof systems exist, then there exist \leq_s -complete disjoint k-tuples of NP-sets for all $k \geq 2$.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes $DNPP_k(P)$

Complete Tuples and Optimal Proof Systems

Summary

- For every propositional proof system P we define complexity classes DNPP_k(P) of disjoint k-tuples of NP-sets.
- Canonical tuples associated with the proof system P serve as hard or complete pairs for DNPP_k(P).
- If complete k-tuples exist for some k ≥ 2, then complete k-tuples exist for all k ≥ 2.
- Optimal proof systems imply complete k-tuples for all k ≥ 2.

Tuples of Disjoint NP-Sets

Olaf Beyersdorff

Basic Definitions

Pairs and Tuples P-Seperable Tuples Reductions Between Tuples

Tuples and Proof Systems

Propositional Proof Systems Representable Pairs Tuples from Proof Systems The Complexity Classes DNPP_n (P) Complete Tuples and Optimal Proof Systems