Disjoint NP-Pairs from Propositional Proof Systems

Olaf Beyersdorff

Institute of Computer Science
Humboldt-University Berlin
Germany
Theory and Applications of Models of Computation 2006

Disjoint NP-Pairs

Disjoint NP-Pairs from Propositional Proof Systems

Definition (Grollmann, Selman 88)
(A, B) is a disjoint NP-Pair (DNPP) if $A, B \in N P$ and $A \cap B=\emptyset$.

Example

Clique-Colouring pair $\left(C C_{0}, C C_{1}\right)$
$C C_{0}=\{(G, k) \mid G$ contains a clique of size $k\}$
$C C_{1}=\{(G, k) \mid G$ can be coloured with $k-1$ colours $\}$

Applications and Relations to Other Areas

- security of public-key crypto systems [Grollmann, Selman 88], [Homer, Selman 92]
- characterization of properties of propositional proof systems
[Bonet, Pitassi, Raz 00], [Pudlák 03]
- lower bounds to the length of propositional proofs [Razborov 96], [Pudlák 97], [Krajíček 04]
- complete problems for promise classes [Köbler et al. 03], [Glaßer et al. 04]

Disjoint NP-Pairs from Propositional Proof Systems

Reductions Between Pairs

Disjoint NP-Pairs from Propositional Proof Systems
Olaf Beyersdorff

Reductions Between Pairs

Definition (Grollmann, Selman 88) $(A, B) \leq_{p}(C, D) \stackrel{\text { df }}{\Longleftrightarrow}$ there exists a polynomial time computable function f such that $f(A) \subseteq C$ and $f(B) \subseteq D$.

Reductions Between Pairs

Disjoint NP-Pairs from Propositional Proof Systems
Olaf Beyersdorff

A Strong Reduction Between Pairs

Definition (Köbler, Messner, Torán 03)
$(A, B) \leq_{s}(C, D) \stackrel{d f}{\Longleftrightarrow}$ there exists a polynomial time computable function f such that $f: A \leq_{m}^{p} C$ und $f: B \leq_{m}^{p} D$.

A Strong Reduction Between Pairs

Definition (Köbler, Messner, Torán 03)
$(A, B) \leq_{s}(C, D) \stackrel{d f}{\Longleftrightarrow}$ there exists a polynomial time computable function f such that $f: A \leq_{m}^{p} C$ und $f: B \leq_{m}^{p} D$.

A Strong Reduction Between Pairs

Definition (Köbler, Messner, Torán 03)
$(A, B) \leq_{s}(C, D) \stackrel{d f}{\Longleftrightarrow}$ there exists a polynomial time computable function f such that $f: A \leq_{m}^{p} C$ und $f: B \leq_{m}^{p} D$.

A Strong Reduction Between Pairs

Definition (Köbler, Messner, Torán 03)
$(A, B) \leq_{s}(C, D) \stackrel{d f}{\Longleftrightarrow}$ there exists a polynomial time computable function f such that $f: A \leq_{m}^{p} C$ und $f: B \leq_{m}^{p} D$.

Theorem (Glaßer, Selman, Sengupta 04)
The reduction \leq_{s} is a proper refinement of \leq_{p} if and only if $\mathrm{P} \neq \mathrm{NP}$.

P-Separable Pairs

Disjoint NP-Pairs from Propositional Proof Systems
Olaf Beyersdorff

Definition (Grollmann, Selman 88)
(A, B) is p-separable, if there exists a set $C \in P$ such that $A \subseteq C$ and $B \cap C=\emptyset$.

Theorem (Lovász 79)
($C C_{0}, C C_{1}$) is p-separable.

Theorem (Grollmann, Selman 88)

The p-separable pairs form the minimal \leq_{p}-degree in the lattice of disjoint NP-pairs.

Problem
Do there exist p-inseparable DNPP?
Answer
Yes, if $\mathrm{P} \neq \mathrm{NP} \cap$ coNP.

Candidates

- cryptographic pairs [Grollmann, Selman 88]
- pairs from propositional proof systems [Krajíček, Pudlák 98]

Problem (Razborov 94)
Do there exist NP-Pairs which are complete for the class of all DNPP? from Propositional Proof Systems

Propositional Proof Systems

Disjoint NP-Pairs from Propositional Proof Systems

Definition (Cook, Reckhow 79)

- A propositional proof system is a polynomial time computable function P with $r n g(P)=$ TAUT.
- A string π with $P(\pi)=\varphi$ is called a P-proof of φ.
- $P \vdash_{\leq m} \varphi \stackrel{d f}{\Longleftrightarrow} \varphi$ has a P-proof of size $\leq m$.

Motivation
Proofs can be easily checked.

Examples

truth-table method, resolution, Frege systems

The Extended Frege System EF

Disjoint NP-Pairs from Propositional Proof Systems
Olaf Beyersdorff

Extended Frege EF

- axiom schemes: $\quad \varphi \rightarrow \varphi, \quad \varphi \rightarrow \varphi \vee \psi, \quad \ldots$
- rules: $\frac{\varphi \varphi \rightarrow \psi}{\psi}$ (modus ponens)
- abbreviations for complex formulas: $\quad p \leftrightarrow \varphi$

Extensions of $E F$

Let Φ be a polynomial time computable set of tautologies.

- $E F \cup \Phi$: Φ as new axioms
- $E F+\Phi$: $\quad \Phi$ as axiom schemes

Simulations Between Proof Systems

Disjoint NP-Pairs from Propositional Proof Systems

Definition (Cook, Reckhow 79)
A proof system Q simulates a proof system $P(P \leq Q)$, if Q-proofs are at most polynomially longer than P-proofs.

Theorem (Krajíček, Pudlák 89)
For all proof systems P we have: $P \leq E F+R F N(P)$. Reflection principle:
$\operatorname{RFN}(P)=(\forall \pi)(\forall \varphi) \operatorname{Prf} f_{P}(\pi, \varphi) \rightarrow \operatorname{Taut}(\varphi)$

Canonical NP-Pairs

Disjoint NP-Pairs from Propositional Proof Systems

Definition (Razborov 94)
To a proof system P we associate a canonical pair:

$$
\begin{aligned}
\operatorname{Ref}(P) & =\left\{\left(\varphi, 1^{m}\right) \mid P \vdash_{\leq m} \varphi\right\} \\
\text { Sat }^{*} & =\left\{\left(\varphi, 1^{m}\right) \mid \neg \varphi \text { is satisfiable }\right\}
\end{aligned}
$$

Proposition

If P and S are proof systems with $P \leq S$, then $\left(\operatorname{Ref}(P), S a t^{*}\right) \leq_{p}\left(\operatorname{Ref}(S), S a t^{*}\right)$.

Proof.
$\left(\varphi, 1^{m}\right) \mapsto\left(\varphi, 1^{p(m)}\right)$ where p is the polynomial from $P \leq S$.

Canonical NP-Pairs

Disjoint NP-Pairs from Propositional Proof Systems

Definition (Razborov 94)
To a proof system P we associate a canonical pair:

$$
\begin{aligned}
\operatorname{Ref}(P) & =\left\{\left(\varphi, 1^{m}\right) \mid P \vdash_{\leq m} \varphi\right\} \\
\text { Sat }^{*} & =\left\{\left(\varphi, 1^{m}\right) \mid \neg \varphi \text { is satisfiable }\right\}
\end{aligned}
$$

Proposition

If P and S are proof systems with $P \leq S$, then $\left(\operatorname{Ref}(P), S a t^{*}\right) \leq_{p}\left(\operatorname{Ref}(S), S a t^{*}\right)$.

Proof.
$\left(\varphi, 1^{m}\right) \mapsto\left(\varphi, 1^{p(m)}\right)$ where p is the polynomial from $P \leq S$.
The converse does not hold.

Theorem

Let $\Phi \subset$ TAUT be a sparse polynomial time set. Then $\left(\operatorname{Ref}(E F), S a t^{*}\right) \equiv_{p}\left(\operatorname{Ref}(E F \cup \Phi), S a t^{*}\right)$.

Proof.

- EF has efficient deduction: for all finite $\Phi_{0} \subset$ TAUT

$$
E F \cup \Phi_{0} \vdash_{\leq m} \psi \quad \text { implies } \quad E F \vdash_{m^{O(1)}}\left(\bigwedge_{\varphi \in \Phi_{0}} \varphi\right) \rightarrow \psi
$$

with a fixed polynomial p.

- reduce the canonical pair of $E F \cup \Phi$ to the canonical pair of $E F$ by

$$
\left(\psi, 1^{m}\right) \mapsto\left(\left(\bigwedge_{\varphi \in \Phi \cap \Sigma \leq m} \varphi\right) \rightarrow \psi, 1^{m^{O(1)}}\right)
$$

for a suitable polynomial q. from Propositional

Representations of NP-Sets

Disjoint NP-Pairs from Propositional Proof Systems
Olaf Beyersdorff

Reductions Between Pairs P-Seperable Pairs

- for all $a \in\{0,1\}^{n}$

$$
a \in A \Longleftrightarrow \varphi_{n}(\bar{a}, \bar{y}) \text { is satisfiable. }
$$

Representable Disjoint NP-Pairs

Definition
A DNPP (A, B) is representable in P if there are representations

$$
\begin{array}{ll}
\varphi_{n}(\bar{x}, \bar{y}) & \text { of } A \quad \text { and } \\
\psi_{n}(\bar{x}, \bar{z}) & \text { of } B
\end{array}
$$

such that $P \vdash_{*} \neg \varphi_{n}(\bar{x}, \bar{y}) \vee \neg \psi_{n}(\bar{x}, \bar{z})$.
$\operatorname{DNPP}(P)=\{(A, B) \mid(A, B)$ is representable in $P\}$

Proposition

The representability of a pair depends on the choice of the representations for A and B.

Disjoint NP-Pairs from Propositional Proof Systems

Normal Proof Systems

Disjoint NP-Pairs from Propositional Proof Systems
Olaf Beyersdorff

Reductions Between Pairs P-Seperable Pairs
for some polynomial p.

- P is closed under substitutions by constants, i.e.

$$
P \vdash_{\leq n} \varphi(\bar{x}, \bar{y}) \Longrightarrow P \vdash_{\leq q(n)} \varphi(\bar{a}, \bar{y})
$$

for some polynomial q.

The Complexity Class DNPP(P)

Disjoint NP-Pairs from Propositional Proof Systems

Theorem
For every normal proof system P we have:

- $\operatorname{DNPP}(P)$ is closed under \leq_{p} for $P \geq$ Resolution.
- $\left(\operatorname{Ref}(P)\right.$, Sat $\left.^{*}\right)$ is \leq_{p}-hard for $\operatorname{DNPP}(P)$.
- If P has reflection, then $(\operatorname{Ref}(P)$, Sat* $)$ is \leq_{p}-complete for $\operatorname{DNPP}(P)$.

DNPP (P) Under the Strong \leq_{s}-Reduction

A second pair:

$$
\begin{array}{ll}
U_{1}(P)=\left\{\left(\varphi, \psi, 1^{m}\right) \mid\right. & \varphi, \psi \text { do not share variables, } \\
& \left.P \vdash_{\leq m} \varphi \vee \psi \text { and } \neg \varphi \in S A T\right\} \\
U_{2}(P)=\left\{\left(\varphi, \psi, 1^{m}\right) \mid\right. & \ldots \neg \psi \in S A T\}
\end{array}
$$

Theorem

For normal proof systems P we have:

- $\left(U_{1}(P), U_{2}(P)\right)$ is \leq_{s}-hard for $\operatorname{DNPP}(P)$.
- If P has reflection, then $\left(U_{1}(P), U_{2}(P)\right)$ is \leq_{s}-complete for $\operatorname{DNPP}(P)$.

Different Scenarios for DNPP (P)

proof system P	Res, $C P$	$E F+\Phi$	$E F \cup \Phi$
$\left(\operatorname{Ref}(P)\right.$, Sat $\left.^{*}\right)$	\leq_{p}-hard	\leq_{p}-complete	not
$\left(U_{1}(P), U_{2}(P)\right)$	\leq_{s}-hard	\leq_{s}-complete	
$\left(I_{1}(P), I_{2}(P)\right)$	p-separable	\leq_{s}-complete	
closed under	modus ponens, substitutions		mod. pon..

* unless ($\operatorname{Ref}(E F)$, Sat $\left.^{*}\right)$ is a \leq_{p}-complete pair

Summary

Disjoint NP-Pairs from Propositional Proof Systems

- For every propositional proof system P we define a complexity class DNPP (P) of disjoint NP-pairs.
- Canonical pairs associated with the proof system P serve as hard or complete pairs for $\operatorname{DNPP}(P)$.
- Properties of the class $\operatorname{DNPP}(P)$ depend on closure properties of the underlying proof system P.

