# Separation and Homology 

Semester Report at the<br>Mälardalens Högskola, Västerås (Sweden)<br>Supervision: Dr. Milagros Izquierdo Barrios<br>May 1996

Olaf Beyersdorff

## Contents

0 Introduction ..... 2
0.1 Notation ..... 3
I Homology Theory ..... 5
1 Definition of Homology Groups ..... 5
1.1 The Singular Complex of a Space ..... 5
1.2 Reduced Homology Groups ..... 7
1.3 The Homomorphism Induced by a Continous Map ..... 9
2 The Exact Homology Sequence of a Pair ..... 10
3 The Excision Property ..... 12
4 The Homotopy Theorem ..... 13
5 The Mayer-Vietoris Sequence ..... 14
6 Examples ..... 16
II Separation Theorems ..... 18
7 The Jordan-Brouwer Separation Theorem ..... 18
8 The Schönflies Theorem ..... 24
9 Historical Comments ..... 29

## 0 Introduction

The main subject of this paper is the Jordan-Brouwer separation theorem. It is this one of those theorems in mathematics which strongly appeal to our intuition but possess a very complicated proof, often using sophisticated techniques. The theorem originated in 1893 with Jordan and was later generalized by Brouwer, both of whom used fairly difficult geometric arguments for the proof. It turns out however that homology theory as developed at around the same time as the works of Jordan and Brouwer is best used to prove the Jordan-Brouwer theorem. Therefore this paper is devided into two parts the first of which gives an introduction to homology theory. The intention was to provide as much of homology theory as necessary to prove the Jordan-Brouwer separation theorem which is together with other results by Brouwer as the fixed-point theorem an important application of homology. It is for this reason that some material that should have been present in a survey of homology theory is omitted. Nevertheless all basic concepts of singular homology are rigorously developed and nearly all the proofs are given. For further material and more geometric explanations the reader is referred to the reference list, especially Massey, Rotman and Stöcker/Zieschang shall be recommended.

Part II deals with the Jordan-Brouwer separation theorem and related subjects. In Section 7 a complete proof for the Jordan-Brouwer theorem is given, first for the sphere $S^{n}$ from which we then deduce the version for $\mathbf{R}^{n}$. As a corollary the invariance of domain is proved and the Phragmen-Brouwer separation properties are dicussed. Section 8 then deals with the Schönflies conjecture, a question that comes out quite naturally from the Jordan-Brouwer theorem in Section 7. Various forms of the Schönflies theorem for different dimensions as well as counterexamples such as the Alexander horned sphere and Antoine's set are examined. It is actually in this section that we leave the domain of homology theory. This and the fact, that the proofs, which use sophisticated arguments from geometric and point-set topology, are quite long and would cover several pages, are the reasons why most of the results are merely stated here. For more details one should consult the books by Christenson/Voxman, Moise and Rourke/Sanderson. The last chapter gives a detailed account of the history and the development of the theorems by Jordan, Brouwer and Schönflies and related topics as dicussed in Sections 7 and 8.

It shall also be said that we could have chosen a different way to develop homology theory in Part I using simplicial complexes, CW-complexes or singular cubes instead of singular simplexes. Singular homology is in some respect the most general approach to homology since we can use arbitrary topological spaces instead of triangulable spaces or CW-complexes. Although these different methods turn out to be equivalent to each other they have different advantages. Using singular homology some definitions are simplified. However it is quite complicated to determine the homology groups for given spaces. With simplicial complexes
geometric interpretation of the basic concepts becomes easier. Computation of homology groups is sometimes lenghty but more elementary. For these reasons and also because we will need the notion of a simplicial complex in Section 8 we shall just outline some of the basic definitions of the simplicial theory in the following.

Let $x_{0}, \ldots, x_{q} \in \mathbf{R}^{n}$ be $q+1$ points in $\mathbf{R}^{n}, q \leq n$, which are not contained in any $(q-1)$-dimensional hyperplane of $\mathbf{R}^{n}$. Then the $q$-dimensional simplex

$$
\sigma=\sigma_{q}=x_{0} x_{1} \ldots x_{q}
$$

is the convex hull of the points $x_{0}, \ldots, x_{q}$. We call $x_{0}, \ldots, x_{q}$ the vertices of $\sigma_{q}$. A simplex $\tau$ is a face of $\sigma$ if all vertices of $\tau$ are also vertices of $\sigma$. We write this as $\tau<\sigma$. A 1 -dimensional simplex is called an edge.

A simplicial complex is a collection $K$ of simplexes in $\mathbf{R}^{n}$ with the following properties

1. If $\sigma \in K$ and $\tau<\sigma$ then also $\tau \in K$.
2. If $\sigma, \tau \in K$ and $\sigma \cap \tau \neq \emptyset$ then $\sigma \cap \tau<\sigma$ and $\sigma \cap \tau<\tau$.

If $K$ is a simplicial complex then $|K|$ is the union of all the simplexes of $K$ with the subspace topology induced by the topology of $\mathbf{R}^{n}$. We call $|K|$ a polyhedron. We may then proceed to define the chain groups, the boundary operator $\partial$ and the homology groups in a way analogous to the approach in Section 1.

A topological space $X$ is called triangulable if there is a complex $K$ such that $|K| \approx X$. It can be shown that a large class of spaces is triangulable, for instance every compact, differentiable manifold can be triangulated. For the purpose of proving the Jordan-Brouwer separation theorem in its full generality, however, it is not sufficient to limit our attention to triangulable spaces. Therefore we will start to develop singular homology theory for arbitrary topological spaces in the next section.

### 0.1 Notation

We list some terminology and notations that will be used frequently in the following sections.

| $\mathbf{Z}$ | ring of integers |
| :--- | :--- |
| $\mathbf{Z}^{n}$ | set of all $n$-tupels $\left(x_{1}, \ldots, x_{n}\right)$ |
| $\mathbf{Z}_{k}$ | integers modulo $k$ |
| $\mathbf{R}^{n}$ | Euclidean $n$-space |
| $D^{n}=\left\{x \in \mathbf{R}^{n}:\|x\| \leq 1\right\}$ | $n$-dimensional disc or ball |
| $S^{n}=\left\{x \in \mathbf{R}^{n}:\|x\|<1\right\}$ | n-dimensional sphere |
| $I=[0,1]$ | unit interval |

A set which is homeomorphic to $D^{n}$ (or $I^{n}$ ) is called an $n$-ball. If $A$ is a set then $A^{\circ}, \dot{A}$ and $\bar{A}$ denote the interiour, the boundary and the closure of $A$, respectively. Moreover we shall use the relations
$\cong$ isomorphic
$\approx$ homeomorphic
$\simeq$ homotopic.

## Part I

## Homology Theory

## 1 Definition of Homology Groups

### 1.1 The Singular Complex of a Space

Definition 1.1 Let $q \geq 0$. We call the points

$$
e_{0}=(1,0, \ldots, 0) \quad e_{1}=(0,1,0, \ldots, 0) \quad \ldots e_{q}=(0, \ldots, 0,1)
$$

the unit points of $\mathbf{R}^{q+1}$. We define the standard $q$-simplex $\Delta_{q}$ to be the following subset of $\mathbf{R}^{q+1}$ :

$$
\Delta_{q}=\left\{x \in \mathbf{R}^{q+1}: x=\sum_{i=0}^{q} \lambda_{i} e_{i} \text { with } 0 \leq \lambda_{i} \leq 1 \text { and } \sum_{i=0}^{q} \lambda_{i}=1\right\}
$$

The points $e_{0}, \ldots, e_{q}$ are called the vertices of $\Delta_{q}$.
For instance, $\Delta_{0}$ is a single point, $\Delta_{1}$ is a segment, $\Delta_{2}$ an equiliteral triangle and $\Delta_{3}$ is a regular tetrahedron.

Definition 1.2 A mapping $f: \Delta_{q} \rightarrow \mathbf{R}^{n}$ is called linear if there exists a linear map $F: \mathbf{R}^{q+1} \rightarrow \mathbf{R}^{n}$ such that $\left.F\right|_{\Delta_{q}}=f$. For arbitrary points $x_{0}, \ldots, x_{q} \in \mathbf{R}^{n}$ there is a unique linear map $f: \Delta_{q} \rightarrow \mathbf{R}^{n}$ such that $f\left(e_{i}\right)=x_{i}$ for $i=0, \ldots, q$, namely $f(x)=\sum_{i=0}^{q} \lambda_{i} x_{i}$. Thus a linear map of $\Delta_{q}$ is completely determined by its values on the vertices of $\Delta_{q}$. For $q \geq 1$ and $0 \leq j \leq q$ consider the linear map $\delta_{q-1}^{j}: \Delta_{q-1} \rightarrow \Delta_{q}$ induced by

$$
\begin{array}{ll}
\delta_{q-1}^{j}\left(e_{i}\right)=e_{i} & \text { for } i<j \\
\delta_{q-1}^{j}\left(e_{i}\right)=e_{i+1} & \text { for } i \geq j
\end{array}
$$

The image of $\delta_{q-1}^{j}$ is called the $j$-th face of $\Delta_{q}$. It consists of all points $\left(\lambda_{0}, \ldots, \lambda_{q}\right) \in$ $\Delta_{q}$ with $\lambda_{j}=0$. The union of all faces of $\Delta_{q}$ is called the boundary of $\Delta_{q}$ which we denote by $\dot{\Delta}_{q}$.

Lemma 1.3 For $q \geq 2$ and $0 \leq k<j \leq q$ we have $\delta_{q-1}^{j} \delta_{q-2}^{k}=\delta_{q-1}^{k} \delta_{q-2}^{j-1}$.
Proof. Both sides map the vertices of $\Delta_{q-2}$ as follows:

$$
\begin{array}{ll}
e_{i} \mapsto e_{i} & \text { for } i<k \\
e_{i} \mapsto e_{i+1} & \text { for } k \leq i \leq j-1 \\
e_{i} \mapsto e_{i+2} & \text { for } i \geq j-1 .
\end{array}
$$

From this and from linearity we conclude that the maps are equal.

Definition 1.4 Let $X$ be a topological space. A singular $q$-simplex of $X$ is a continous map $\sigma=\sigma_{q}: \Delta_{q} \rightarrow X$. For each $q \geq 0$ define $S_{q}(X)$ as the free abelian group with basis all singular $q$-simplexes in $X$. The elements of $S_{q}$ are called singular $q$-chains in $X$. Hence every $c \in S_{q}(X)$ has a unique representation as a finite linear combination $c=\sum_{\sigma} n_{\sigma} \sigma$, with coefficients $n_{\sigma} \in \mathbf{Z}$. For $q<0$ we set $S_{q}(X)=0$.

For $q \geq 1$ we define a homomorphism $\partial=\partial_{q}: S_{q}(X) \rightarrow S_{q-1}(X)$, called the boundary operator

$$
\partial_{q}(\sigma)=\sum_{i=0}^{q}(-1)^{i}\left(\sigma \delta_{q-1}^{i}\right)
$$

For $q \leq 0$ put $\partial_{q}=0$.
We have constructed a sequence of free abelian groups and homomorphisms

$$
\cdots \longrightarrow S_{q+1}(X) \xrightarrow{\partial_{q+1}} S_{q}(X) \xrightarrow{\partial_{q}} S_{q-1}(X) \longrightarrow \cdots
$$

We call this sequence the singular complex of $X$.
Theorem 1.5 For all $q$ we have

$$
\partial_{q-1} \partial_{q}=0 .
$$

Proof. Since $S_{q}(X)$ is generated by all $q$-simplexes $\sigma$ it suffices to show $\partial \partial \sigma=0$ for every $\sigma$. Using Lemma 1.3 we get:

$$
\begin{aligned}
\partial_{q-1} \partial_{q} \sigma & =\partial_{q}\left(\sum_{j=0}^{q}(-1)^{j} \sigma \delta_{q-1}^{j}\right) \\
& =\sum_{j=0}^{q}(-1)^{j}\left(\sum_{k=0}^{q-1}(-1)^{k} \sigma \delta_{q-1}^{j} \delta_{q-2}^{k}\right) \\
& =\sum_{j \leq k}(-1)^{j+k} \sigma \delta_{q-1}^{j} \delta_{q-2}^{k}+\sum_{k<j}(-1)^{j+k} \sigma \delta_{q-1}^{k} \delta_{q-2}^{j-1} .
\end{aligned}
$$

In the second sum change variables: replace $k$ by $j$ and $j$ by $k+1$. We get $\sum_{j \leq k}(-1)^{j+k+1} \sigma \delta_{q-1}^{j} \delta_{q-2}^{k}$. Terms cancel and we get $\partial \partial \sigma=0$.

Definition 1.6 We now define the following groups

$$
\begin{aligned}
Z_{q}(X) & =\operatorname{ker} \partial_{q} \\
B_{q}(X) & =\operatorname{im} \partial_{q+1}
\end{aligned}
$$

We call $Z_{q}(X)$ the group of singular $q$-cycles in $X$ and $B_{q}(X)$ the group of singular $q$-boundaries in $X$. Clearly, $Z_{q}(X)$ and $B_{q}(X)$ are subgroups of $S_{q}(X)$ and since $\partial_{q} \partial_{q+1}=0$ we get

$$
B_{q}(X) \subseteq Z_{q}(X)
$$

Hence we can define

$$
H_{q}(X)=Z_{q}(X) / B_{q}(X) .
$$

$H_{q}(X)$ is called the $q$-dimensional singular homology group of $X$. The elements of $H_{q}(X)$ are the cosets $\{z\}=\{z\}_{X}=z+B_{q}(X)$ with $z \in Z_{q}(X)$. We call $\{z\}$ the homology class of $z$.

### 1.2 Reduced Homology Groups

In the definition of the boundary operator we deliberatly chose to define $\partial_{0}=0$. However, we can also use a different homomorphism $\varepsilon: S_{0}(X) \rightarrow \mathbf{Z}$ which is called the augmentation. Let $c=\sum_{\sigma} n_{\sigma} \sigma$. Then we define

$$
\varepsilon(c)=\varepsilon\left(\sum_{\sigma} n_{\sigma} \sigma\right)=\sum_{\sigma} n_{\sigma}
$$

We easily get the formula

$$
\varepsilon \partial_{1}=0
$$

To prove this it suffices to show $\varepsilon \partial_{1}(\sigma)$ for every 1-dimensional simplex $\sigma$ in $X$, but this is trivial. Now we define $\tilde{Z}_{0}(X)=\operatorname{ker} \varepsilon$. Because of $\varepsilon \partial_{1}=0$ we get $B_{0}(X) \subseteq \tilde{Z}_{0}(X)$ and can therefore form the quotient

$$
\tilde{H}_{0}(X)=\tilde{Z}_{0}(X) / B_{0}(X)
$$

It is convenient to let $\tilde{H}_{q}(X)=H_{q}(X)$ for $q>0$. The groups $\tilde{H}_{q}(X)$ are called the reduced $q$-dimensional homology groups of $X$. We get the augmented singular complex of $X$

$$
\cdots \longrightarrow S_{2}(X) \xrightarrow{\partial_{2}} S_{1}(X) \xrightarrow{\partial_{1}} S_{0}(X) \xrightarrow{\varepsilon} \mathbf{Z} \longrightarrow 0 .
$$

It will prove to be useful to consider the reduced homology groups only for $X \neq \emptyset$.
We will now examine the relation between $H_{0}(X)$ and $\tilde{H}_{0}(X)$. Remark that $\tilde{Z}_{0}(X)$ is a subgroup of $Z_{0}(X)=S_{0}(X)$ and that therefore $\tilde{H}_{0}(X)$ is a subgroup of $H_{0}(X)$. Denote the inclusion homomorphism by $\xi: \tilde{H}_{0}(X) \rightarrow H_{0}(X)$. Further, from $\varepsilon \partial_{1}=0$ we know that $\varepsilon\left(B_{0}(X)\right)=0$. Hence $\varepsilon$ induces a homomorphism $\varepsilon_{*}: \tilde{H}_{0}(X) \rightarrow \mathbf{Z}$. We see by an easy argument that the sequence

$$
0 \longrightarrow \tilde{H}_{0}(X) \xrightarrow{\xi} H_{0}(X) \xrightarrow{\varepsilon_{*}} \mathbf{Z} \longrightarrow 0
$$

is exact. From this fact we conclude that there is a decomposition of $H_{0}(X)$ as

$$
H_{0}(X) \cong \tilde{H}_{0}(X) \oplus \mathbf{Z}
$$

As a first example for the computation of homology groups we examine the case where $X$ consists of a single point. The result is given in the next theorem which is also known as the dimension axiom.

Theorem 1.7 If $X$ is a space consisting only of one point then $H_{q}(X)=0$ for $q>0$ and $H_{0}(X) \cong \mathbf{Z}$.

Proof. Because for each $q$ there is only one map $f: \Delta_{q} \rightarrow X$, namely the constant map, we have only one singular simplex $\sigma_{q}$ for each dimension $q$. The boundary of $\sigma_{q}$ has the form

$$
\partial \sigma_{q}=\sum_{i=0}^{q}(-1)^{i} \sigma_{q} \delta_{q-1}^{i}=\sum_{i=0}^{q}(-1)^{i} \sigma_{q-1}
$$

because $\sigma_{q} \delta_{q-1}^{i}$ is necessarily the only $(q-1)$-simplex $\sigma_{q-1}$. It follows that

$$
\partial \sigma_{q}= \begin{cases}0 & \text { if } q \text { is odd or } q=0 \\ \sigma_{q-1} & \text { if } q \text { is even, } q>0\end{cases}
$$

For $q$ odd, $q>0$ we get $B_{q}(X) \cong Z_{q}(X)$ and for $q$ even, $q>0$ we get $Z_{q}(X)=0$. Therefore in both cases $H_{q}(X)=0$. Finally $B_{0}(X)=0$ and $Z_{0}(X)$ is generated by $\sigma_{0}$. Hence $H_{0}(X) \cong \mathbf{Z}$.

From Theorem 1.7 we get at once that for a one-point space $X$ we have

$$
\tilde{H}_{q}(X)=0
$$

for all $q$. A space $X$ with this property is called acyclic.
Theorem 1.8 Let $X_{\gamma}, \gamma \in \Gamma$, denote the set of path connected components of $X$. Then there is a canonical isomorphism

$$
H_{q}(X) \cong \bigoplus_{\gamma} H_{q}\left(X_{\gamma}\right)
$$

for all $q$.
Proof. Each singular $q$-simplex lies entirely in one of the arc components. Therefore we have an isomorphism

$$
S_{q}(X) \cong \bigoplus_{\gamma} S_{q}\left(X_{\gamma}\right)
$$

for all $q$. The boundary operates component by component. Therefore we have the direct sum decompositions

$$
Z_{q}(X) \cong \bigoplus_{\gamma} Z_{q}\left(X_{\gamma}\right) \text { and } B_{q}(X) \cong \bigoplus_{\gamma} B_{q}\left(X_{\gamma}\right)
$$

Forming the quotient $H_{q}(X)=Z_{q}(X) / B_{q}(X)$ gives the result.

Theorem 1.9 Let $X$ be a nonempty space. Then $H_{0}(X)$ is a free abelian group whose rank is equal to the number of path components of $X$.

Proof. By Theorem 1.8, we may assume path connectedness of $X$. Observe that $\varepsilon: S_{0}(X) \rightarrow \mathbf{Z}$ is an epimorphism. We claim that $B_{0}(X)=\operatorname{ker} \varepsilon$. From this we directly get $H_{0}(X) \cong \mathbf{Z}$ as desired. Now we prove the claim. From $\varepsilon \partial_{1}=0$ we get $B_{0}(X) \subseteq \operatorname{ker} \varepsilon$. For ker $\varepsilon \subseteq B_{0}(X)$ choose a basepoint $x_{0}$ in $X$. For $x \in X$ let $\sigma_{x}$ be a path from $x_{0}$ to $x$ such that $\partial \sigma_{x}=x-x_{0}$. Now, given a cycle $c=\sum_{x} n_{x} x \in \operatorname{ker} \varepsilon$ we get

$$
c=\sum_{x} n_{x} x=\sum_{x} n_{x} x-\sum_{x} n_{x} x_{0}=\partial\left(\sum_{x} n_{x} \sigma_{x}\right) .
$$

Hence $c \in B_{0}(X)$.

### 1.3 The Homomorphism Induced by a Continous Map

In the following our aim is to show that for any continous map $f: X \rightarrow Y$ between topological spaces $X$ and $Y$ we can associate a sequence of homomorphisms $f_{*}: H_{q}(X) \rightarrow H_{q}(Y)$ for every $q$. We start to give the necessary definitions.
Definition 1.10 Let $f: X \rightarrow Y$ be a continous map and $\sigma: \Delta_{q} \rightarrow X$ a $q$ simplex in $X$. Then $f \circ \sigma: \Delta_{q} \rightarrow Y$ is a $q$-simplex in $Y$ and we can define a homomorphism $f_{\#}: S_{q}(X) \rightarrow S_{q}(Y)$ by

$$
f_{\#}\left(\sum_{\sigma} n_{\sigma} \sigma\right)=\sum_{\sigma} n_{\sigma}(f \circ \sigma) .
$$

The notation is a bit careless for there is a different $f_{\#}$ for every $q$.
Lemma 1.11 The following diagram is commutative

for every $q$. We can also write this as $\partial f_{\#}=f_{\#} \partial$.
Proof. It suffices to show commutativity for every $q$-simplex $\sigma$ in $X$. We get

$$
\begin{aligned}
f_{\#} \partial \sigma & =f_{\#}\left(\sum_{i=0}^{q}(-1)^{i} \sigma \partial_{q-1}^{i}\right) \\
& =\sum_{i=0}^{q}(-1)^{i} f_{\#}\left(\sigma \partial_{q-1}^{i}\right)=\sum_{i=0}^{q}(-1)^{i} f \sigma \partial_{q-1}^{i} \text { and } \\
\partial f_{\#} \sigma & =\partial(f \sigma)=\sum_{i=0}^{q}(-1)^{i} f \sigma \partial_{q-1}^{i} .
\end{aligned}
$$

Lemma 1.12 For every $q$ we have

$$
\begin{aligned}
f_{\#}\left(Z_{q}(X)\right) & \subseteq Z_{q}(Y) \text { and } \\
f_{\#}\left(B_{q}(X)\right) & \subseteq B_{q}(Y) .
\end{aligned}
$$

Proof. Let $z \in Z_{q}(X)$. Then $\partial z=0$ and therefore $\partial f_{\#} z=f_{\#} \partial z=0$, i.e. $f_{\#} z \in Z_{q}(Y)$. Let now $b \in B_{q}(X)$. Then $b=\partial c$ for some $c \in S_{q+1}(X)$. Hence $f_{\#} b=f_{\#} \partial c=\partial f_{\#} c \in B_{q}(Y)$.

Because of the last lemma $f_{\#}$ induces a homomorphism of quotient groups, which we denote by

$$
f_{*}: H_{q}(X) \rightarrow H_{q}(Y)
$$

We see at once that $\varepsilon=f_{\#} \varepsilon$ and hence $f_{\#}\left(\tilde{Z}_{0}(X)\right) \subseteq \tilde{Z}_{0}(Y)$ and we get a homomorphism

$$
f_{*}: \tilde{H}_{0}(X) \rightarrow \tilde{H}_{0}(Y)
$$

It is easily checked that for continous maps $f, g: X \rightarrow Y$ we get $(f g)_{*}=f_{*} g_{*}$.

## 2 The Exact Homology Sequence of a Pair

To be able to use homology efficiently we need some tools to actually determine the homology groups of various spaces. In this section we investigate how the homology of $X$ does depend on the homology of a subspace $A$ of $X$. We define the concept of relative homology groups which is a generalization of the earlier defined "absolute" homology groups and get an answer to the mentioned question in form of an exact sequence of the pair $(X, A)$.

We now make the necessary definitions. Let $A$ be a subspace of the topological space $X$. We can consider the chains in $A$ which are also chains in $X$. Therefore $S_{q}(A)$ can be regarded as a subgroup of $S_{q}(X)$ and we can form the quotient $S_{q}(X, A)=S_{q}(X) / S_{q}(A)$, which we will call the group of relative singular $q$ chains. Because $\partial_{q}$ has the property that $\partial_{q}\left(S_{q}(A)\right) \subseteq S_{q-1}(A)$ it induces a boundary operator (also denoted by $\partial_{q}$ ) on the quotient group

$$
\partial_{q}: S_{q}(X, A) \rightarrow S_{q-1}(X, A)
$$

We define the group of relative $q$-cycles as $Z_{q}(X, A)=\operatorname{ker} \partial_{q}$ and the group of relative $q$-boundaries as $B_{q}(X, A)=\operatorname{im} \partial_{q+1}$. We have $B_{q}(X, A) \subseteq Z_{q}(X, A)$ and can therefore form the quotient

$$
H_{q}(X, A)=Z_{q}(X, A) / B_{q}(X, A)
$$

which we call the $q$-th relative homology group. Remark that relative homology groups are a generalization of the earlier defined homology groups of a space $X$. If we let $A=\emptyset$ we get $H_{q}(X)=H_{q}(X, A)$.

Corresponding to the inclusion map $i: A \rightarrow X$ we have the induced inclusion homomorphism

$$
i_{*}: H_{q}(A) \rightarrow H_{q}(X) .
$$

Similarly, by regarding each q-cycle as a relative q-cycle we get a homomorphism

$$
j_{*}: H_{q}(X) \rightarrow H_{q}(X, A)
$$

Lastly we define the boundary operator $\partial_{*}: H_{q}(X, A) \rightarrow H_{q-1}(A)$ of the pair $(X, A)$ to be the following homomorphism

$$
\partial_{*}\left(\{z\}_{(X, A)}\right)=\{\partial z\}_{A} .
$$

This last definition requires justification. If $z \in Z_{q}(X, A)$ then $\partial z \in S_{q-1}(A)$. But of course $\partial z$ is a cycle, so $\{\partial z\}_{A} \in H_{q-1}(A)$ is defined. To see that the definition is independent of the choice of the representative cycle $z$ let $z^{\prime}$ be a cycle homologous to $z$ relative $A$. Then there is a $c \in S_{q+1}(X)$ and a $c^{\prime} \in S_{q}(A)$ such that $z^{\prime}-z=\partial c+c^{\prime}$. Therefore $\partial z^{\prime}=\partial z+\partial c^{\prime}$ and hence $\left\{\partial z^{\prime}\right\}_{A}=\{\partial z\}_{A}$.

Using the homomorphisms $i_{*}, j_{*}$ and $\partial_{*}$ we can construct the following sequence

$$
\cdots \xrightarrow{j_{*}} H_{q+1}(X, A) \xrightarrow{\partial_{*}} H_{q}(A) \xrightarrow{i_{*}} H_{q}(X) \xrightarrow{j_{*}} H_{q}(X, A) \xrightarrow{\partial_{*}} \cdots .
$$

We call the sequence the homology sequence of the pair $(X, A)$.
Theorem 2.1 The homology sequence of the pair $(X, A)$ is exact.
Proof. The proof consists of three parts.

1. $\operatorname{ker} i_{*}=\operatorname{im} \partial_{*}$
2. $\operatorname{ker} j_{*}=\operatorname{im} i_{*}$
3. $\operatorname{ker} \partial_{*}=\operatorname{im} j_{*}$
4. Let $c_{q} \in Z_{q}(A)$. Then $c_{q}$ represents an element in ker $i_{*}$ precisely if $i_{*}\left(c_{q}\right)$ is a boundary in $S_{q}(X)$, i.e. if there is a $c_{q+1} \in S_{q+1}(X)$ such that $\partial c_{q+1}=i_{*}\left(c_{q}\right)$, i.e. $\partial c_{q+1}=c_{q}$ if $c_{q}$ is regarded as a chain in $S_{q}(X)$. But the $(q+1)$-chains $c_{q+1}$ of $S_{q+1}(X)$ with the property that $\partial c_{q+1}$ is a cycle in $S_{q}(A)$ are precisely those representing $q$-cycles of $S_{q+1}(X, A)$. Therefore $\operatorname{ker} i_{*}=\operatorname{im} \partial_{*}$.
5. Let $c_{q} \in Z_{q}(X)$ such that $j_{*}\left(\left\{c_{q}\right\}\right)=0$. Then there is a $c_{q+1} \in S_{q+1}(X)$ and a $c_{q}^{\prime} \in S_{q}(A)$ such that $c_{q}=c_{q}^{\prime}+\partial c_{q+1}$. Hence a cycle $c_{q}$ is in ker $j_{*}$ precisely if there is a $c_{q}^{\prime} \in S_{q}(A)$ which is homologous to it. But this means that $c_{q}$ represents an element of $\operatorname{im} i_{*}$.
6. Let $\left\{c_{q}\right\} \in H_{q}(X, A)$ such that $\partial_{*}\left\{c_{q}\right\}=0$. This is equivalent to the existence of a $c_{q}^{\prime} \in Z_{q}(X)$ and a $c_{q}^{\prime \prime} \in S_{q}(A)$ such that $c_{q}=c_{q}^{\prime}+c_{q}^{\prime \prime}$. But this means the existence of a cycle $c_{q}^{\prime}=c_{q}-c_{q}^{\prime \prime} \in Z_{q}(X)$ which represents the same element of $H_{q}(X, A)$ as $c_{q}$ does, i.e. $\left\{c_{q}^{\prime}\right\}_{(X, A)}=\left\{c_{q}\right\}_{(X, A)}$. This implies that $\left\{c_{q}\right\} \in \operatorname{im} j_{*}$.

The sequence of homomorphisms remains exact if we replace $H_{q}(X)$ by $\tilde{H}_{q}(X)$ and $H_{q}(A)$ by $\tilde{H}_{q}(A)$. We also state without proof another theorem which expresses the relations between reduced homology and relative homology groups.

Theorem 2.2 Let $x_{0} \in X$. Then

$$
\tilde{H}_{q}(X) \cong H_{q}\left(X, x_{0}\right)
$$

for all $q$.
For later use we also need the homology sequence of a triad. We give the result without proof.

Theorem 2.3 Let $B \subset A \subset X$ be subspaces of $X$ and let $i:(A, B) \rightarrow(X, B)$ and $j:(X, B) \rightarrow(X, A)$ be inclusions. Then the following sequence, called the sequence of the triad $(X, A, B)$,

$$
\cdots \xrightarrow{j_{*}} H_{q+1}(X, A) \xrightarrow{\partial_{*}} H_{q}(A, B) \xrightarrow{i_{*}} H_{q}(X, B) \xrightarrow{j_{*}} H_{q}(X, A) \xrightarrow{\partial_{*}} \cdots
$$

is exact. The boundary operator $\partial_{*}$ is given by $\partial_{*}\left(\{z\}_{(X, A)}\right)=\{\partial z\}_{(A, B)}$.

## 3 The Excision Property

We now come to a very important but quite subtle property of relative homology groups. Intuitivly speaking when forming the quotient $S_{q}(X, A)=S_{q}(X) / S_{q}(A)$ we forget about everything inside $A$. We could therefore hope that $H_{q}(X, A)$ only depends on $X \backslash A$. The actual statement is a bit weaker. The proof which involves barycentric subdivision is quite lengthy and will be omitted.

Theorem 3.1 Let $U \subset A \subset X$ be subspaces with $\bar{U} \subset A^{o}$. Then the inclusion $i:(X \backslash U, A \backslash U) \rightarrow(X, A)$ induces isomorphisms

$$
i_{*}: H_{q}(X \backslash U, A \backslash U) \rightarrow H_{q}(X, A)
$$

for all $q$.
We can also formulate the excision property in a different way, in which it is used quite often.

Theorem 3.2 Let $X_{1}$ and $X_{2}$ be subspaces of $X$ such that $X=X_{1}^{\circ} \cup X_{2}^{\circ}$. Then the inclusion $j:\left(X_{1}, X_{1} \cap X_{2}\right) \rightarrow\left(X, X_{2}\right)$ induces isomorphisms

$$
j_{*}: H_{q}\left(X_{1}, X_{1} \cap X_{2}\right) \rightarrow H_{q}\left(X, X_{2}\right)
$$

for all $q$.
Proof. We use Theorem 3.1. Let $U=X \backslash X_{1}$ and $A=X_{2}$. First, we show that $\bar{U} \subset A^{\circ}$. From $X_{1}^{\circ} \subset X_{1}$ we have $X \backslash X_{1} \subset X \backslash X_{1}^{\circ}$. Therefore $\bar{U}=\overline{\left(X \backslash X_{1}\right)} \subset$ $X \backslash X_{1}^{\circ}$, because $X \backslash X_{1}^{\circ}$ is closed. Further

$$
X \backslash X_{1}^{\circ}=\left(X_{1}^{\circ} \cup X_{2}^{\circ}\right) \backslash X_{1}^{\circ}=X_{2}^{\circ} \backslash X_{1}^{\circ} \subset X_{2}^{\circ}=A^{\circ}
$$

Second, we prove that ( $X \backslash U, A \backslash U$ ) is the same as ( $X_{1}, X_{1} \cap X_{2}$ ). We have

$$
\begin{aligned}
X \backslash U & =X \backslash\left(X \backslash X_{1}\right)=X_{1} \text { and } \\
A \backslash U & =X_{2} \backslash\left(X \backslash X_{1}\right)=X_{1} \cap X_{2}
\end{aligned}
$$

Obviously $(X, A)$ is the same as $\left(X, X_{2}\right)$ and therefore $i=j$ which gives $i_{*}=j_{*}$.

## 4 The Homotopy Theorem

We will see in the following that homology groups possess another very important property, namely their invariance for a large class of spaces. The homotopy theorem (also called the homotopy axiom) states that spaces from the same homotopy class have isomorphic homology groups. This also simplifies the computation of homology groups. To determine $H_{q}(X)$ we replace $X$ by a simpler space $Y \simeq X$ and compute $H_{q}(Y) \cong H_{q}(X)$. The main result is the following:

Theorem 4.1 Let $f, g: X \rightarrow Y$ be continous maps. If $f$ and $g$ are homotopic then the induced homomorphisms $f_{*}$ and $g_{*}$ of $H_{q}(X)$ into $H_{q}(Y)$ are the same.
The theorem also holds for reduced homology groups, i.e. $f_{*}=g_{*}: \tilde{H}_{q}(X) \rightarrow$ $\tilde{H}_{q}(Y)$. We will not give the proof here, it can be found in any of the text books about homology. Instead we continue with some corollaries.

Theorem 4.2 If $f: X \rightarrow Y$ is a homotopy equivalence then $f_{*}: H_{q}(X) \rightarrow$ $H_{q}(Y)$ are isomorphisms for all $q$. We also have isomorphisms $f_{*}: \tilde{H}_{q}(X) \rightarrow$ $\tilde{H}_{q}(Y)$.

Proof. We have a $g: Y \rightarrow X$ with $g f \simeq \operatorname{id}_{X}$ and $f g \simeq \operatorname{id}_{Y}$. Using Theorem 4.1 we get $(g f)_{*}=g_{*} f_{*}=$ id and $(f g)_{*}=f_{*} g_{*}=$ id. Hence $f_{*}^{-1}=g_{*}$ and $f_{*}$ is bijective.

Using the exact sequence of the pair $(X, A)$ we obtain from Theorem 4.2:

Corollary 4.3 If $A \subset X$ is a deformation retract of $X$ then $i_{*}: H_{q}(A) \rightarrow H_{q}(X)$ is an isomorphism for all $q$. Also $H_{q}(X, A)=0$.

By considering the exact sequence of the triad $B \subset A \subset X$ and application of the last corollary and Theorem 4.2 we conclude:

Corollary 4.4 If $B \subset A \subset X$ and $B$ is a deformation retract of $A$ then we have isomorphisms $j_{*}: H_{q}(X, B) \rightarrow H_{q}(X, A)$.

The homotopy axiom enables us to determine the homology of contractible spaces:

Corollary 4.5 If $X$ is a contractible space then $\tilde{H}_{q}(X)=0$ for all $q \geq 0$.
Proof. $X$ has the same homotopy type as a one-point space. Application of Theorem 4.2 and the dimension axiom (Theorem 1.7) gives the result.

From this we can conclude that $\mathbf{R}^{n}$ is acyclic.

## 5 The Mayer-Vietoris Sequence

In this section we discuss a very powerful tool for determining the homology groups of many spaces: the Mayer-Vietoris sequence. Suppose that a space $X=$ $X_{1} \cup X_{2}$ is given as the union of two subspaces. How does the homology of $X$ depend on $X_{1}$ and $X_{2}$ ? The answer will be given in form of an exact sequence, the Mayer-Vietoris sequence, which plays the same role for homology groups as the Seifert-Van Kampen theorem does for the fundamental group.

Before we come to the main result we will prove a lemma.
Lemma 5.1 (Barratt-Whitehead) Given a diagram with exact rows in which all rectangles commute

$$
\begin{aligned}
& \cdots \longrightarrow A_{q}^{\prime} \quad \xrightarrow{f_{q}^{\prime}} B_{q}^{\prime} \quad \xrightarrow{g_{q}^{\prime}} C_{q}^{\prime} \quad \xrightarrow{h_{q}^{\prime}} A_{q-1}^{\prime} \quad \xrightarrow{f_{q-1}^{\prime}} B_{q-1}^{\prime} \quad \longrightarrow \cdots
\end{aligned}
$$

if all the $\gamma_{q}$ are isomorphisms then there is an exact sequence

$$
\cdots \xrightarrow{\Gamma_{q+1}} A_{q} \xrightarrow{\Phi_{q}} B_{q} \oplus A_{q}^{\prime} \xrightarrow{\Psi_{q}} B_{q}^{\prime} \xrightarrow{\Gamma_{q}} A_{q-1} \xrightarrow{\Phi_{q-1}} \cdots
$$

where $\Phi_{q}(a)=\left(f_{q}(a), \alpha_{q}(a)\right), \Psi_{q}\left(b, a^{\prime}\right)=\beta_{q}(b)-f_{q}^{\prime}\left(a^{\prime}\right)$ and $\Gamma_{q}\left(b^{\prime}\right)=h_{q} \gamma_{q}^{-1} g_{q}^{\prime}$. This latter sequence is called the Barrett-Whitehead sequence of the ladder.

Proof. The proof of exactness is a diagram chase. We will first prove exactness at $B_{q}^{\prime}$. We have to show that $\operatorname{im} \Psi_{q}=\operatorname{ker} \Gamma_{q}$. For $\operatorname{im} \Psi_{q} \subseteq \operatorname{ker} \Gamma_{q}$ we need $\Gamma_{q} \Psi_{q}\left(b, a^{\prime}\right)=0$. But

$$
\Gamma_{q} \Psi_{q}\left(b, a^{\prime}\right)=\Gamma_{q}\left(\beta_{q}(b)-f_{q}^{\prime}\left(a^{\prime}\right)\right)=h_{q} \gamma_{q}^{-1} g_{q}^{\prime} \beta_{q}(b)-h_{q} \gamma_{q}^{-1} g_{q}^{\prime} f_{q}^{\prime}\left(a^{\prime}\right)
$$

The first term is 0 because $h_{q} \gamma_{q}^{-1} g_{q}^{\prime} \beta_{q}=g_{q} h_{q}=0$ and the second term is 0 because of $g_{q}^{\prime} f_{q}^{\prime}=0$.

For $\operatorname{ker} \Gamma_{q} \subseteq \operatorname{im} \Psi_{q}$ take $b^{\prime} \in B_{q}^{\prime}$ such that $\Gamma_{q}\left(b^{\prime}\right)=0$. Because of the exactness of the upper row and $\gamma_{q}^{-1} g_{q}^{\prime}(b) \in \operatorname{ker} h_{q}$ there exists $b \in B_{q}$ such that $g_{q}(b)=$ $\gamma_{q}^{-1} g_{q}^{\prime}\left(b^{\prime}\right)$. By commutativity we get $g_{q}^{\prime}\left(b^{\prime}-\beta_{q} b\right)=0$. Therefore, by exactness of the lower row there is an $a^{\prime} \in A_{q}^{\prime}$ such that $f_{q}^{\prime}\left(a^{\prime}\right)=b^{\prime}-\beta_{q} b$. Then we have

$$
\Psi_{q}\left(b,-a^{\prime}\right)=\beta_{q}(b)+f_{q}^{\prime}\left(a^{\prime}\right)=b^{\prime}
$$

as desired. In a similar manner we get $\operatorname{im} \Phi_{q}=\operatorname{ker} \Psi_{q}$ and $\operatorname{im} \Gamma_{q}=\operatorname{ker} \Phi_{q-1}$.
We are now able to prove the theorem about the Mayer-Vietoris sequence.
Theorem 5.2 (Mayer-Vietoris) Let $X_{1}$ and $X_{2}$ be subspaces of the topological space $X$ such that $X=X_{1}^{\circ} \cup X_{2}^{\circ}$. Then there is an exact sequence, called the Mayer-Vietoris sequence of $X$
$\cdots \xrightarrow{\Delta} H_{q}\left(X_{1} \cap X_{2}\right) \xrightarrow{\phi} H_{q}\left(X_{1}\right) \oplus H_{q}\left(X_{2}\right) \xrightarrow{\psi} H_{q}(X) \xrightarrow{\Delta} H_{q-1}\left(X_{1} \cap X_{2}\right) \xrightarrow{\phi} \cdots$
Here

$$
\begin{array}{ll}
\phi(x)=\left(i_{*}(x), j_{*}(x)\right) & x \in H_{q}\left(X_{1} \cap X_{2}\right) \\
\psi\left(x_{1}, x_{2}\right)=k_{*}\left(x_{1}\right)-l_{*}\left(x_{2}\right) & x_{1} \in H_{q}\left(X_{1}\right), x_{2} \in H_{q}\left(X_{2}\right)
\end{array}
$$

with the homomorphisms $i_{*}, j_{*}, k_{*}$ and $l_{*}$ induced by the inclusions

$$
i: X_{1} \cap X_{2} \rightarrow X_{1}, j: X_{1} \cap X_{2} \rightarrow X_{2}, k: X_{1} \rightarrow X \text { and } l: X_{2} \rightarrow X
$$

Finally $\Delta=d h_{*}^{-1} q_{*}$ with $h$ and $q$ inclusions and $d$ the boundary operator of the pair $\left(X_{1}, X_{1} \cap X_{2}\right)$.

Proof. Consider the following diagram of pairs of spaces where all maps are inclusions


This diagram is commutative. From this we get another diagram where the rows are exact by Theorem 2.1:

From the excision property (Theorem 3.2) we conclude that $h_{*}$ is an isomorphism. Application of Lemma 5.1 gives the result.

We can also formulate Theorem 5.2 for reduced homology groups an obtain
Theorem 5.3 Let $X_{1}$ and $X_{2}$ be subspaces of the topological space $X$ such that $X=X_{1}^{\circ} \cup X_{2}^{\circ}$. Then there is an exact sequence
$\cdots \xrightarrow{\Delta} \tilde{H}_{q}\left(X_{1} \cap X_{2}\right) \xrightarrow{\phi} \tilde{H}_{q}\left(X_{1}\right) \oplus \tilde{H}_{q}\left(X_{2}\right) \xrightarrow{\psi} \tilde{H}_{q}(X) \xrightarrow{\Delta} \tilde{H}_{q-1}\left(X_{1} \cap X_{2}\right) \xrightarrow{\phi} \cdots$
The sequence ends with

$$
\cdots \xrightarrow{\phi} \tilde{H}_{0}\left(X_{1}\right) \oplus \tilde{H}_{0}\left(X_{2}\right) \xrightarrow{\psi} \tilde{H}_{0}(X) \xrightarrow{\Delta} 0 .
$$

Proof. Let $x_{0} \in X$. Consider the commutative diagram with all maps inclusions

$$
\begin{array}{ccccc}
\left(X_{1} \cap X_{2}, x_{0}\right) & \xrightarrow{i} & \left(X_{1}, x_{0}\right) & \xrightarrow{p} & \left(X_{1}, X_{1} \cap X_{2}\right) \\
\downarrow j & & \downarrow k & & \downarrow h \\
\left(X_{2}, x_{0}\right) & \xrightarrow{l} & \left(X, x_{0}\right) & \xrightarrow{q} & \left(X, X_{2}\right)
\end{array}
$$

Using Theorem 2.2 then proof then proceeds as in Theorem 5.2.

## 6 Examples

After having examined some techniques of homology theory we will now use these methods to determine the homology of a few spaces. We know already that $\tilde{H}_{q}\left(\mathbf{R}^{n}\right)=0$ for all $q \geq 0$. Next we turn to $S^{n}$.

Theorem 6.1 For the sphere $S^{n}, n \geq 0$ we have

$$
\tilde{H}_{q}\left(S^{n}\right) \cong \begin{cases}\mathbf{Z} & \text { if } q=n \\ 0 & \text { if } q \neq n\end{cases}
$$

Proof. The proof is by induction on $n$. $S^{0}$ consists of two points and by Theorem 1.7 (dimension axiom) and Theorem 1.8 we get $H_{0}\left(S^{0}\right) \cong \mathbf{Z}^{2}$ and hence $\tilde{H}_{0}\left(S^{0}\right) \cong \mathbf{Z}$ and $\tilde{H}_{q}\left(S^{0}\right)=0$ for $q>0$.

Assume now $n>0$. Let $P_{+}$be the north pole and $P_{-}$be the south pole of $S^{n}$ and let $X_{1}=S^{n} \backslash P_{+}$and $X_{2}=S^{n} \backslash P_{-}$. Observe that $X_{1}^{\circ} \cup X_{2}^{\circ}=S^{n}$. Consider the corresponding Mayer-Vietoris sequence of $S^{n}$ :

$$
\tilde{H}_{q}\left(X_{1}\right) \oplus \tilde{H}_{q}\left(X_{2}\right) \longrightarrow \tilde{H}_{q}\left(S^{n}\right) \longrightarrow \tilde{H}_{q-1}\left(X_{1} \cap X_{2}\right) \longrightarrow \tilde{H}_{q-1}\left(X_{1}\right) \oplus \tilde{H}_{q-1}\left(X_{2}\right) .
$$

Here $X_{1}$ and $X_{2}$ are contractible and $S^{n-1}$ is a deformation retract of $X_{1} \cap X_{2}$. Therefore

$$
0 \longrightarrow \tilde{H}_{q}\left(S^{n}\right) \longrightarrow \tilde{H}_{q-1}\left(S^{n-1}\right) \longrightarrow 0
$$

is exact. This means that $\tilde{H}_{q}\left(S^{n}\right) \cong \tilde{H}_{q-1}\left(S^{n-1}\right)$ and the proof is complete.
An important application of this is the following corollary known as the invariance of dimension.

Corollary 6.2 If $n \neq m$, then $\mathbf{R}^{n}$ and $\mathbf{R}^{m}$ are not homeomorphic.
Proof. If there was a homeomorphism between $\mathbf{R}^{n}$ and $\mathbf{R}^{m}$ there would also be a homeomorphism between the one-point compactifications of $\mathbf{R}^{n}$ and $\mathbf{R}^{m}$, namely between $S^{n}$ and $S^{m}$. But $H_{n}\left(S^{n}\right) \neq H_{n}\left(S^{m}\right)$ for $n \neq m$.

In order to illustrate how homology groups can be used to distinguish efficiently between different topological spaces we will just give some more examples without proof.

| Torus $T$ | $H_{0}(T) \cong \mathbf{Z}$ |
| :--- | :--- |
|  | $H_{1}(T) \cong \mathbf{Z}^{2}$ |
|  | $H_{2}(T) \cong \mathbf{Z}$ |
| Torus with a Hole $H$ | $H_{0}(H) \cong \mathbf{Z}$ |
|  | $H_{1}(H) \cong \mathbf{Z}^{2}$ |
|  | $H_{2}(H)=0$ |
| Klein Bottle $K$ | $H_{0}(K) \cong \mathbf{Z}$ |
|  | $H_{1}(K) \cong \mathbf{Z} \oplus \mathbf{Z}_{\mathbf{2}}$ |
|  | $H_{2}(K)=0$ |
| Projective Plane $P$ | $H_{0}(P) \cong \mathbf{Z}$ |
|  | $H_{1}(P) \cong \mathbf{Z}$ |
|  | $H_{2}(P)=0$ |
|  |  |
| Möbius Strip $M$ | $H_{0}(M) \cong \mathbf{Z}$ |
|  | $H_{1}(M) \cong \mathbf{Z}$ |
|  | $H_{2}(M)=0$ |

In particular it should be observed that for the torus the first homology group is a free abelian group and the second is infinite cyclic whereas for the Klein bottle the first group contains a cyclic subgroup of order 2 and the second homology group is 0 . This behaviour is quite typical and can be used to distinguish between closed surfaces which are orientable as the torus and those which are nonorientable as the Klein bottle or the projective plane.

## Part II

## Separation Theorems

## 7 The Jordan-Brouwer Separation Theorem

In order to prove the Jordan-Brouwer separation theorem we need the following lemma, which is of fundamental importance for this chapter.

Lemma 7.1 Let $B \subset S^{n}$ be a subset of $S^{n}$ which is homeomorphic to $I^{k}$ where $0 \leq k \leq n$. Then $\tilde{H}_{q}\left(S^{n} \backslash B\right)=0$ for all $q$.

Proof. The proof is by induction on $k$. For $k=0$ the set $B$ is a single point and $S^{n} \backslash B \approx \mathbf{R}^{n}$, which is acyclic. Suppose now that the theorem holds for $k-1$. Let

$$
z \in \tilde{Z}_{q}\left(S^{n} \backslash B\right)
$$

We want to prove that $z=\partial b$ for some $b \in S_{q+1}\left(S^{n} \backslash B\right)$. This would imply $B_{q}\left(S^{n} \backslash B\right) \cong \tilde{Z}_{q}\left(S^{n} \backslash B\right)$ and hence $\tilde{H}_{q}\left(S^{n} \backslash B\right)=0$ as desired.

We assume that we have chosen a fixed homeomorphism $f: I^{k-1} \times I \rightarrow B$. Let

$$
B_{t}=f\left(I^{k-1} \times t\right) \subset B \subset S^{n}
$$

Then $B_{t}$ is a $(k-1)$-ball and hence $\tilde{H}_{q}\left(S^{n} \backslash B_{t}\right)=0$ by the inductive hypothesis.
Clearly $z \in \tilde{Z}_{q}\left(S^{n} \backslash B_{t}\right)$ and by the hypothesis we have a $b_{t} \in S_{q+1}\left(S^{n} \backslash B_{t}\right)$ with $\partial b_{t}=z$. We know that $b_{t}$ is of the form $b_{t}=n_{1} \sigma_{1}+\ldots+n_{l} \sigma_{l}$ where $\sigma_{i}: \Delta_{q+1} \rightarrow S^{n} \backslash B_{t}$. Note that $L=\bigcup_{i=1}^{l} \sigma_{i}\left(\Delta_{q+1}\right)$ is compact and $L \cap B_{t}=\emptyset$. Therefore we have an open neighbourhood $U_{t}$ of $B_{t}$ with $L \cap U_{t}=\emptyset$. Observe that $b_{t} \in S_{q+1}\left(S^{n} \backslash U_{t}\right)$. Since $I^{k-1} \times t \subset f^{-1}\left(B \cap U_{t}\right)$ we also have a neighbourhood $V_{t}$ of $t$ with $I^{k-1} \times V_{t} \subset f^{-1}\left(B \cap U_{t}\right)$. We choose $m$ big enough such that for every closed interval $I_{j}=\left[\frac{j-1}{m}, \frac{j}{m}\right]$ there is a $t_{j}$ with $I_{j} \subset V_{t_{j}}$. Let $Q_{j}=f\left(I^{k-1} \times I_{j}\right)$. We have $Q_{j} \subset U_{t_{j}}$ and $B=\bigcup_{j=1}^{m} Q_{j}$ and for every $j$ there is a $b_{t_{j}} \in S_{q+1}\left(S^{n} \backslash Q_{j}\right)$ with $t=\partial b_{t_{j}}$.

Let $X_{1}=S^{n} \backslash Q_{1}$ and $X_{2}=S^{n} \backslash Q_{2}$. Then

$$
\begin{aligned}
& X_{1} \cup X_{2}=S^{n} \backslash\left(Q_{1} \cap Q_{2}\right)=S^{n} \backslash B_{1 / m} \text { and } \\
& X_{1} \cap X_{2}=S^{n} \backslash\left(Q_{1} \cup Q_{2}\right)
\end{aligned}
$$

$B_{1 / m}$ is a $(k-1)$-ball and $Q_{1}, Q_{2}$ and $Q_{1} \cup Q_{2}$ are $k$-balls. Consider now the exact Mayer-Vietoris sequence of $S^{n} \backslash B_{1 / m}$ :

$$
\tilde{H}_{q+1}\left(X_{1} \cup X_{2}\right) \xrightarrow{\Delta} \tilde{H}_{q}\left(X_{1} \cap X_{2}\right) \xrightarrow{\phi} \tilde{H}_{q}\left(X_{1}\right) \oplus \tilde{H}_{q}\left(X_{2}\right) \xrightarrow{\psi} \tilde{H}_{q}\left(X_{1} \cup X_{2}\right)
$$

But $\tilde{H}_{q+1}\left(X_{1} \cup X_{2}\right) \cong \tilde{H}_{q}\left(X_{1} \cup X_{2}\right)=0$ and hence $\phi$ is an isomorphism. For $z \in \tilde{Z}_{q}\left(X_{1} \cap X_{2}\right)$ we get $\phi(\{z\})=0$ because $z=\partial b_{t_{1}}$ in $X_{1}$ and $z=\partial b_{t_{2}}$
in $X_{2}$ and therefore also $\{z\}=0$. But this means that $z=\partial b$ for some $b \in$ $S_{q+1}\left(S^{n} \backslash\left(Q_{1} \cup Q_{2}\right)\right)$.

The same argument as above is applied to $X_{1}=S^{n} \backslash\left(Q_{1} \cup Q_{2}\right)$ and $X_{2}=$ $S^{n} \backslash Q_{3}$. Examination of the Mayer-Vietoris sequence gives that $z$ is the boundary of some chain in $S^{n} \backslash\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)$. By iterating this procedure we finally get that $z=\partial b$ for some $b \in S_{q+1}\left(S^{n} \backslash\left(Q_{1} \cup \ldots \cup Q_{m}\right)\right)=S_{q+1}\left(S^{n} \backslash B\right)$, which completes the proof.

In order to illustrate why this lemma is so important and possesses such a somewhat complicated proof we can consider some examples of wild arcs $B \subset S^{3}$ where $B \approx I^{1}$ and $S^{3} \backslash B$ has a nontrivial fundamental group. For the definition of wild see Section 8 .

Theorem 7.2 Let $S \subset S^{n}$ be a subset of $S^{n}$ which is homeomorphic to $S^{k}$ where $0 \leq k \leq n-1$. Then $\tilde{H}_{n-k-1}\left(S^{n} \backslash S\right) \cong \mathbf{Z}$ and $\tilde{H}_{q}\left(S^{n} \backslash S\right)=0$ for all $q \neq n-k-1$.

Proof. The proof is by induction on $k$. For $k=0$ the subset $S$ consists of two points and hence $S^{n} \backslash S$ is homeomorphic to $\mathbf{R}^{n}$ with one point removed which is homotopic to $S^{n-1}$ and so $\tilde{H}_{n-1}\left(S^{n} \backslash S\right) \cong \mathbf{Z}$ and $\tilde{H}_{q}\left(S^{n} \backslash S\right)=0$ for $q \neq n-1$.

Assume now that the theorem holds for $k-1$. We can fix a homeomorphism $f: S^{k} \rightarrow S$. Let $D_{+}^{k}$ and $D_{-}^{k}$ denote the upper and the lower hemisphere of $S^{k}$,respectively. Then $B_{1}=f\left(D_{+}^{k}\right)$ and $B_{2}=f\left(D_{-}^{k}\right)$ are $k$-balls and $S=B_{1} \cup B_{2}$. Let $T=B_{1} \cap B_{2}$. We know that $T$ is of the same homotopy class as $S^{k-1}$. Remark that

$$
\begin{aligned}
& \left(S^{n} \backslash B_{1}\right) \cup\left(S^{n} \backslash B_{2}\right)=S^{n} \backslash T \text { and } \\
& \left(S^{n} \backslash B_{1}\right) \cap\left(S^{n} \backslash B_{2}\right)=S^{n} \backslash S .
\end{aligned}
$$

Application of the Mayer-Vietoris sequence gives

$$
\begin{aligned}
\tilde{H}_{q+1}\left(S^{n} \backslash B_{1}\right) \oplus \tilde{H}_{q+1}\left(S^{n} \backslash B_{2}\right) & \longrightarrow \tilde{H}_{q+1}\left(S^{n} \backslash T\right) \longrightarrow \tilde{H}_{q}\left(S^{n} \backslash S\right) \\
& \longrightarrow \tilde{H}_{q}\left(S^{n} \backslash B_{1}\right) \oplus \tilde{H}_{q}\left(S^{n} \backslash B_{2}\right) .
\end{aligned}
$$

But from Lemma 7.1 we know that $\tilde{H}_{q}\left(S^{n} \backslash B_{1}\right) \cong \tilde{H}_{q}\left(S^{n} \backslash B_{2}\right)=0$ for all $q \geq 0$ and therefore $\tilde{H}_{q+1}\left(S^{n} \backslash T\right) \cong \tilde{H}_{q}\left(S^{n} \backslash S\right)$ which proves the inductive step.

From this we can directly conclude
Theorem 7.3 (Jordan-Brouwer Separation Theorem) Let $S \subset S^{n}$ be a subset which is homeomorphic to $S^{n-1}$. Then $S^{n} \backslash S$ has exactly two components.

For $n=2$ this is known as the Jordan curve theorem. For $n>2$ we have the Brouwer separation theorem.

Proof. Applying Theorem 7.2 for $k=n-1$ gives $\tilde{H}_{0}\left(S^{n} \backslash S\right) \cong \mathbf{Z}$ and hence $H_{0}\left(S^{n} \backslash S\right) \cong \mathbf{Z}^{2}$ which means that $S^{n} \backslash S$ has two arc components. But
because $S^{n} \backslash S$ is locally arcwise connected the arc components are the same as the components.

We can also conclude from Theorem 7.2 that a homeomorph of $S^{k}$ where $k<n-1$ does not seperate $S^{n}$. The next statement is a stronger version of the Jordan-Brouwer separation theorem:

Theorem 7.4 Let $S \subset S^{n}$ be a subset of $S^{n}$ which is homeomorphic to $S^{n-1}$. Then $S$ is the boundary of the two components $U$ and $V$ of $S^{n} \backslash S$.
Proof. $S^{n} \backslash S$ is locally path connected and therefore $U$ and $V$ are open subsets of $S^{n} \backslash S$ and hence also of $S^{n}$. This shows that $\dot{U} \subset S$ and $\dot{V} \subset S$. For the reverse inclusion we must show that for every $x \in S$ we get $x \in \dot{U}$ and $x \in \dot{V}$.

Let $N$ be an open neighbourhood of $x$. We have to prove that $N \cap U \neq \emptyset$ and $N \cap V \neq \emptyset . \quad N \cap S$ is an open neighbourhood of $x$ in $S$. We can find a decomposition of $S$ as $S=B_{1} \cup B_{2}$ where $B_{1}$ and $B_{2}$ are $(n-1)$-balls and $B_{1} \cap B_{2} \approx S^{n-2}$ such that $B_{1} \subset N \cap S$. From Lemma 7.1 we conclude that $S^{n} \backslash B_{2}$ is path connected and hence we can choose a path in $S^{n} \backslash B_{2}$ from a point $p_{1} \in U$ to $p_{2} \in V$. Let $f: I \rightarrow S^{n} \backslash B_{2}$ be a continous map such that $f(0)=p_{1}$ and $f(1)=p_{2}$. Necessarily $f(I) \cap S \neq \emptyset$ and hence $f(I) \cap B_{1} \neq \emptyset$. Let

$$
t_{0}=\inf \left\{t \in I: f(t) \in B_{1}\right\}
$$

Thus $f\left(t_{0}\right) \in f(I) \cap B_{1} \subset N$. Consider now $J=\left[0, t_{0}\right)$. The set $f(J)$ is connected and contains $p_{1}=f(0)$ and

$$
f(J) \subset f(I) \cap\left(S^{n} \backslash S\right)=f(I) \cap(U \cup V)
$$

Therefore $f(J) \subset U$. Hence any open neighbourhood of $f\left(t_{0}\right)$ in $N$ meets $U$ and so $N \cap U \neq \emptyset$. Similarly we get $N \cap V \neq \emptyset$ via considering $t_{1}=\sup \{t \in I: f(t) \in$ $\left.B_{1}\right\}$.

It should be noted how Lemma 7.1 also contributed to this proof. To appreciate the theorem consider a subset $S$ of $S^{n}$ homeomorphic to $S^{n-1} \times I$. In this case we have two path connected components $U$ and $V$. Here $\dot{U} \subset S$ and $\dot{V} \subset S$ but neither $\dot{U}=S$ nor $\dot{V}=S$.

In the following we examine what happens if we replace $S^{n}$ by $\mathbf{R}^{n}$. The next lemma is the equivalent of Lemma 7.1.

Lemma 7.5 Let $B \subset \mathbf{R}^{n}$ be a subset of $\mathbf{R}^{n}, n \geq 2$ which is homeomorphic to $I^{k}$ where $0 \leq k \leq n$. Then $\tilde{H}_{n-1}\left(\mathbf{R}^{n} \backslash B\right) \cong \mathbf{Z}$ and $\tilde{H}_{q}\left(\mathbf{R}^{n} \backslash B\right)=0$ for $q \neq n-1$.

Proof. We have a homeomorphism $f$ between $\mathbf{R}^{n}$ and $S^{n} \backslash P_{+}$via stereographic projection ( $P_{+}$is the north pole). Let $A=f(B)$. The set $A \subset S^{n}$ is a $k$-ball and $P_{+} \notin A$. Consider the sequence of the pair $\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right)$:
$\tilde{H}_{q+1}\left(S^{n} \backslash A\right) \longrightarrow \tilde{H}_{q+1}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow \tilde{H}_{q}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow \tilde{H}_{q}\left(S^{n} \backslash A\right)$.

From Lemma 7.1 we know that $S^{n} \backslash A$ is acyclic and hence

$$
\tilde{H}_{q+1}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \cong \tilde{H}_{q}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right)
$$

By the excision property we get $\tilde{H}_{q+1}\left(\tilde{\tilde{H}}^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \cong \tilde{H}_{q}\left(S^{n}, S^{n} \backslash P_{+}\right)$ and furthermore $\tilde{H}_{q+1}\left(S^{n}, S^{n} \backslash P_{+}\right) \cong \tilde{H}_{q+1}\left(S^{n}, P_{-}\right)$by Corollary 4.4 since $P_{-}$is a deformation retract of $S^{n} \backslash P_{+}$. But $\tilde{H}_{q+1}\left(S^{n}, P_{-}\right)$is easily determined from the sequence of $\left(S^{n}, P_{-}\right)$and we get

$$
\tilde{H}_{q+1}\left(S^{n}, P_{-}\right) \cong \tilde{H}_{q+1}\left(S^{n}\right) \cong \begin{cases}\mathbf{Z} & \text { for } q=n-1 \\ 0 & \text { for } q \neq n-1\end{cases}
$$

Finally $\tilde{H}_{q}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \cong \tilde{H}_{q}\left(\mathbf{R}^{n} \backslash B\right)$ because the spaces are homeomorphic. This leads to the desired conclusion.

From Theorem 7.2 we now conclude an equivalent statement for $\mathbf{R}^{n} \backslash S$ instead of $S^{n} \backslash S$ :

Theorem 7.6 Let $S \subset \mathbf{R}^{n}$ be homeomorphic to $S^{k}$ with $n \geq 2$ and $0 \leq k \leq n-1$. Then

$$
\tilde{H}_{q}\left(\mathbf{R}^{n} \backslash S\right) \cong \begin{cases}\mathbf{Z} & \text { for } q=n-1 \text { and } q=n-k-1 \\ 0 & \text { for } q \neq n-1, n-k-1\end{cases}
$$

Proof. We proceed as in Lemma 7.5. By stereographic projection we get a homeomorphism between $\mathbf{R}^{n}$ and $S^{n} \backslash P_{+}$. Let $S$ be mapped homeomorphically into $A$. Hence $\tilde{H}_{q}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \cong \tilde{H}_{q}\left(\mathbf{R}^{n} \backslash B\right)$. As in the proof of Lemma 7.5 we consider the following sequence:

$$
\begin{aligned}
& \tilde{H}_{q}\left(\mathbf{R}^{n} \backslash B\right) \cong \tilde{H}_{q}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \stackrel{\left(\partial_{*}\right.}{\tilde{H}_{q+1}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \stackrel{(1)}{\cong}} \\
& \tilde{H}_{q+1}\left(S^{n}, S^{n} \backslash P_{+}\right) \stackrel{(2)}{\cong} \tilde{H}_{q+1}\left(S^{n}, P_{-}\right) \stackrel{(3)}{\cong} \tilde{H}_{q+1}\left(S^{n}\right) .
\end{aligned}
$$

We get the first isomorphism (1) from the excision property, (2) from the fact that $P_{-}$is a deformation retract of $S^{n} \backslash P_{+}$and (3) from the sequence of $\left(S^{n}, P_{-}\right)$. Now for $\partial_{*}$ consider the following part of the sequence of the pair $\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right)$ for $q \neq n-k-2, n-k-1$ :
$\tilde{H}_{q+1}\left(S^{n} \backslash A\right) \longrightarrow \tilde{H}_{q+1}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \xrightarrow{\partial_{*}} \tilde{H}_{q}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow \tilde{H}_{q}\left(S^{n} \backslash A\right)$.
But from Theorem 7.2 we know that $\tilde{H}_{q+1}\left(S^{n} \backslash A\right) \cong \tilde{H}_{q}\left(S^{n} \backslash A\right)=0$ and hence $\partial_{*}$ is an isomorphism in this case. The remaining part is

$$
\begin{aligned}
& \tilde{H}_{n-k}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \xrightarrow{\partial_{*}} \tilde{H}_{n-k-1}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow \tilde{H}_{n-k-1}\left(S^{n} \backslash A\right) \longrightarrow \\
& \tilde{H}_{n-k-1}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \xrightarrow{\partial_{*}} \tilde{H}_{n-k-2}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow \tilde{H}_{n-k-2}\left(S^{n} \backslash A\right)
\end{aligned}
$$

Because of Theorem 7.2 and $\tilde{H}_{q}\left(S^{n} \backslash A, S^{n} \backslash\left(A \cup P_{+}\right)\right) \cong \tilde{H}_{q}\left(S^{n}\right)$ this becomes

$$
0 \xrightarrow{\partial_{*}} \tilde{H}_{n-k-1}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow \mathbf{Z} \longrightarrow 0 \xrightarrow{\partial_{*}} \tilde{H}_{n-k-2}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \longrightarrow 0
$$

and therefore $\tilde{H}_{n-k-1}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right) \cong \mathbf{Z}$ and $\tilde{H}_{n-k-2}\left(S^{n} \backslash\left(A \cup P_{+}\right)\right)=0$. This completes the proof.

If we compare Lemma 7.1 and Theorem 7.2 to Lemma 7.5 and Theorem 7.6 it is apparent that, if $S^{n}$ is replaced by $\mathbf{R}^{n}$, one more group, namely $\tilde{H}_{n-1}$ is different from 0 . A geometric interpretation can be given for this.

Consider the case where $B \subset \mathbf{R}^{n}$ is a $k$-ball. There exists an $a>0$ such that $B \subset\left\{x \in \mathbf{R}^{n}:|x|<a\right\}$. Let $f: S^{n-1} \rightarrow \mathbf{R}^{n}$ be given by $f(x)=a x$. Because $f$ is a homeomorphism and $f\left(S^{n-1}\right)$ is a deformation retract of $\mathbf{R}^{n} \backslash B$ we conclude that $f_{*}: \tilde{H}_{n-1}\left(S^{n-1}\right) \rightarrow \tilde{H}_{n-1}\left(\mathbf{R}^{n} \backslash B\right)$ is an isomorphism and hence $\tilde{H}_{n-1}\left(\mathbf{R}^{n} \backslash B\right) \cong \mathbf{Z}$. This also illustrates how a generator of $\tilde{H}_{n-1}\left(\mathbf{R}^{n} \backslash B\right)$ can be imagined. If we form the one-point compactification of $\mathbf{R}^{n}$ by adding one single point $\{\infty\}$ this generating cycle becomes a boundary. This explains why $\tilde{H}_{n-1}\left(S^{n} \backslash B\right)=0$. A similar argument can be applied to $\mathbf{R}^{n} \backslash S$.

Having Theorem 7.5 and 7.6 at hand we can state the Jordan-Brouwer theorem for $\mathbf{R}^{n}$ :

Theorem 7.7 Let $S \subset \mathbf{R}^{n}$ be homeomorphic to $S^{n-1}$. Then $\mathbf{R}^{n} \backslash S$ consists of exactly two components. $S$ is the common boundary of these components.

The first part follows directly from Theorem 7.6 and the proof of the second part proceeds exactly as the proof of Theorem 7.4. The unbounded component of $\mathbf{R}^{n} \backslash S$ is called the outside of $S$ and the other component is called the inside.

From Theorem 7.3 we can get a very important corollary, the theorem of the invariance of domain, which is also due to Brouwer.

Theorem 7.8 (Invariance of Domain) Let $U, V \subset S^{n}$ be homeomorphic subsets of $S^{n}$. If $U$ is open then so is $V$.

Proof. Let $f: U \rightarrow V$ be a homeomorphism. Let $x \in U$ and $\in V$ such that $f(x)=y$. Take a closed neighbourhood $N$ of $x$ in $U$ which is homeomorphic to $I^{n}$ and $\dot{N} \approx S^{n-1}$. Now $f(N)$ is a closed neighbourhood of $y$ in $V$ and Theorem 7.1 says that $S^{n} \backslash f(N)$ is connected. But we also know that $S^{n} \backslash f(\dot{N})$ has two components, by Theorem 7.3. Now

$$
S^{n} \backslash f(\dot{N})=\left(S^{n} \backslash f(N)\right) \cup(f(N) \backslash f(\dot{N}))
$$

is the disjoint union of two nonempty connected sets. Hence $S^{n} \backslash f(N)$ and $f(N) \backslash f(\dot{N})$ are the components of $S^{n} \backslash f(\dot{N})$. This implies that both are open in $S^{n} \backslash f(\dot{N})$ and therefore $f(N) \backslash f(\dot{N})$ is also open in $S^{n}$. But $f(N) \backslash f(\dot{N})$ is
an open neighbourhood of $y$ which is entirely contained in $V$. Since $y$ is arbitrary it follows that $V$ is open.

A similar theorem may be stated for $\mathbf{R}^{n}$. The proof is the same. We can also express this theorem in a slightly different manner and get:

Corollary 7.9 Let $U$ and $V$ be arbitrary subsets of $S^{n}\left(\mathbf{R}^{n}\right)$ having a homeomorphism $f: U \rightarrow V$. Then $f$ maps interiour points onto interiour points and boundary points onto boundary points.

For the rest of this section we want to replace $S^{n}$ or $\mathbf{R}^{n}$ by an arbitrary topological space $X$ and discuss some more general results concerning separation, known as the Phragmen-Brouwer properties. The key to these properties is the following theorem.

Theorem 7.10 Let $X$ be a topological space and let $A, B \subset X$ be nonempty, disjoint, closed subsets such that $X \backslash A$ and $X \backslash B$ are arcwise connected. If $\tilde{H}_{1}(X)=0$ then $X \backslash(A \cup B)$ is also arcwise connected.

Proof. Since $A \cap B=\emptyset$ we have

$$
\begin{aligned}
X & =(X \backslash A) \cup(X \backslash B) \text { and } \\
X \backslash(A \cup B) & =(X \backslash A) \cap(X \backslash B) .
\end{aligned}
$$

Hence we can form the Mayer-Vietoris sequence and get

$$
\tilde{H}_{1}(X) \longrightarrow \tilde{H}_{0}(X \backslash(A \cup B)) \longrightarrow \tilde{H}_{0}(X \backslash A) \oplus \tilde{H}_{0}(X \backslash B)
$$

Because $X \backslash A$ and $X \backslash B$ are arcwise connected we get

$$
0 \longrightarrow \tilde{H}_{0}(X \backslash(A \cup B)) \longrightarrow 0
$$

Hence $\tilde{H}_{0}(X \backslash(A \cup B))=0$ and $X \backslash(A \cup B)$ is arcwise connected.
Under the additional assumptions that $X$ is an arcwise connected and locally arcwise connected Hausdorff space we can deduce from Theorem 7.10 the Phragmen-Brouwer properties which are listed below. The first property is indeed an immediate corollary of Theorem 7.10.

Theorem 7.11 (Property I) Let $A, B$ be two nonempty, disjoint subsets of $X$. If two points $x$ and $y$ belong to both the same component of $X \backslash A$ and $X \backslash B$ they also belong to the same component of $X \backslash(A \cup B)$.

Theorem 7.12 (Property II) Let $A$ be a closed, connected, nonempty subset of $X$. Then each component of $X \backslash A$ has a connected boundary.

Theorem 7.13 (Property III, Unicoherence) Let $A, B$ be two closed, connected subsets of $X$ such that $X=A \cup B$. Then $A \cap B$ is connected.

Theorem 7.14 (Property IV) Let $A$ be a closed subset of $X$ and let $C_{1}, C_{2}$ be two disjoint components of $X \backslash A$ which have the same boundary $B$. Then $B$ is connected.

Theorem 7.15 (Property V) Let $A, B$ be two disjoint, closed subsets of $X$ and let $x \in A$ and $y \in B$. Then there exists a closed, connected subset $C \subset X \backslash(A \cup B)$ such that $x$ and $y$ belong to different components of $X \backslash C$.

Using elementary arguments from point set topology it may be shown that all these properties are equivalent. Because $H_{1}\left(S^{n}\right)=H_{1}\left(\mathbf{R}^{n}\right)=0$ for $n \geq 1$ it follows that $S^{n}$ and $\mathbf{R}^{n}$ have the Phragmen-Brouwer properties.

## 8 The Schönflies Theorem

We continue to examine the separation properties of $S^{n}$ and $\mathbf{R}^{n}$. Although we shall only speak about $S^{n}$ from now on everything can be reformulated in terms of $\mathbf{R}^{n}$ without significant changes. In particular for every theorem about separation of $S^{n}$ there is a corresponding theorem for $\mathbf{R}^{n}$.

In the last section we saw that a homeomorph $S$ of $S^{n-1}$ separates $S^{n}$ into two components. A few more questions might be asked about this. If $S$ were the standard $S^{n-1}$ in $S^{n}$ then the corresponding components $U$ and $V$ of $S^{n} \backslash S$ would be the upper and lower hemispheres of $S^{n}$. That means that the closures of $U$ and $V$ are homeomorphic to the $n$-disc $D^{n}$. This observation leads to the Schönflies conjecture.

Conjecture 8.1 (Schönflies Conjecture) Let $S$ be a subset of $S^{n}$ which is homeomorphic to $S^{n-1}$. Then the closure of each of the components of $S^{n} \backslash S$ is homeomorphic to $D^{n}$.

It turns out that the Schönflies conjecture is true for $n=2$ but does not hold for $n \geq 3$ without additional assumptions. First, we will examine the 2 dimensional case. We state the corresponding result.

Theorem 8.2 (Schönflies Theorem) Let $S \subset S^{2}$ be homeomorphic to $S^{1}$. Then the closures of the components of $S^{2} \backslash S$ are homeomorphic to $D^{2}$.

We may also express this differently as
Theorem 8.3 (Schönflies Theorem, Second Form) Let $S \subset S^{2}$ be homeomorphic to $S^{1}$. Then the homeomorphism of $S \subset S^{2}$ to $S^{1} \subset S^{2}$ can be extended to give a homeomorphism of $S^{2}$ onto $S^{2}$.

We will not give the proof which is quite complicated. The reader is referred to Christenson/Voxman or Moise. Here we will prove the Schönflies theorem for polygons only. For this we have to come back to the concept of a simplicial complex as established in Section 0.

Let $S$ be a polygon in $S^{2}$. We choose one component $U$ of $S^{2} \backslash S$. It may be shown that $\bar{U}$ can be triangulated, i.e. $\bar{U}$ is a finite complex $|K|$. We call a 2-simplex $\sigma \in K$ a free simplex if $\sigma \cap S$ consists of one or two edges of $\sigma$. For our purpose we need a lemma.

Lemma 8.4 Let $S$ be a polygon in $S^{2}$ and let $K$ be a triangulation of the closure of a component $U$ of $S^{2} \backslash S$. If $K$ has more than one 2-simplex than $K$ has a free 2-simplex.

Proof. We will prove the stronger result that $K$ has at least two free 2-simplexes. The proof is by induction on the number of 2-simplexes of $K$. If $K$ has exactly two 2-simplexes then both are free.


Figure 1

Assume now that $K$ has more than two 2 -simplexes. There are two 2simplexes $\sigma, \tau$ of $K$ with $\sigma \cap S$ and $\tau \cap S$ consisting of at least one edge of $\sigma$ and $\tau$, respectively. If both $\sigma$ and $\tau$ are free then there is nothing to prove. Suppose that

$$
\sigma=x_{0} x_{1} x_{2} \in K
$$

is not free. Let $x_{0} x_{1} \subset \sigma \cap S$ as in Figure 1. It follows that also $x_{2} \in \sigma \cap S$. Therefore $S$ can be decomposed into two broken lines $C_{1}$ and $C_{2}$ by the points $x_{0}$ and $x_{2}$. Let $U_{1}$ and $U_{2}$ be the interiour of $C_{1} \cup x_{0} x_{2}$ and $C_{2} \cup x_{0} x_{2}$, respectively. Then $|K|=\bar{U}_{1} \cup \bar{U}_{2}$. Let $K_{1}$ be the complex consisting of all simplexes of $K$ that lie in $\bar{U}_{1}$, together with $\sigma$ and its faces, and let $K_{2}$ be the complex consisting of all simplexes of $K$ that lie in $\bar{U}_{2}$, which also contains $\sigma$. By the inductive hypothesis $K_{1}$ and $K_{2}$ have two free 2-simplexes each and hence both $K_{1}$ and $K_{2}$ contain one free 2 -simplex different from $\sigma$. These two simplexes are also free in $K$ which completes the inductive step.

We can now formulate Theorem 8.2 for polygons.

Theorem 8.5 Let $S$ be a polygon in $S^{2}$. Then the closures of the components of $S^{2} \backslash S$ are homeomorphic to $D^{2}$.

Proof. Let $U$ be one of the components of $S^{2} \backslash S$. We will construct a homeomorphism $f: S^{2} \rightarrow S^{2}$ such that $f(\bar{U})$ is a 2 -simplex. Thus $\bar{U}$ is homeomorphic to $D^{2}$. Application of the same procedure to the other component gives the result.

Let $K_{0}$ be a triangulation of $\bar{U}$ with $k 2$-simplexes. We will describe a homeomorphism $g_{1}$ which reduces the number of free simplexes of $K_{0}$ by 1 . Hence $K_{1}=g_{1}\left(K_{0}\right)$ is a complex with one less 2-simplex, which still has at least one free 2 -simplex by Lemma 8.4. By induction we obtain a complex $K_{k-1}$ which consists of only one 2 -simplex and get $f=g_{k-1} \ldots g_{1}$.


Figure 2

Now we construct $g_{1}$. Let $\sigma=x_{0} x_{1} x_{2}$ be a free 2 -simplex of $K_{0}$. Assume that $\sigma \cap S=x_{0} x_{1}$. We choose $x_{3}$ and $x_{4}$ as in Figure 2 in such a way that the entire figure intersects $S$ only in $x_{0} x_{2}$. Define $g_{1}$ to be the identity outside Figure 2. Hence $g_{1}$ is the identity on $x_{0}, x_{2}, x_{3}$ and $x_{4}$. Inside Figure 2 let $g_{1}$ be the linear map induced by $g_{1}\left(x_{5}\right)=x_{1}$.

If $\sigma \cap S=x_{0} x_{1} \cup x_{1} x_{2}$ let $g_{1}$ be the inverse of the homeomorphism just defined.

We will now examine the Schönflies conjecture in dimension three. We have an equivalent result to Theorem 8.5.

Theorem 8.6 Let $S$ be a polyhedral 2-dimensional sphere in $S^{3}$. Then the closures of $S^{3} \backslash S$ are homeomorphic to $D^{3}$.

The proof of even a slightly stronger form of Theorem 8.6 can be found in the book by Moise.

As mentioned before we do not have an analogon of the 2-dimensional Schönflies theorem for arbitrary curves (Theorem 8.2) in $S^{3}$. In fact we can construct some counterexamples. The first one is the Alexander horned sphere (considered in $\mathbf{R}^{3}$ ). The horned sphere $S$ is homeomorphic to $S^{2}$ but we cannot find a homeomorphism $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ such that $f(S)=S^{2}$. From the picture one can already "see" that $\mathbf{R}^{3} \backslash S$ is not simply connected because $S$ contains a Cantor set. On the other hand $\mathbf{R}^{3} \backslash S^{2}=f\left(\mathbf{R}^{3} \backslash S\right)$ is simply connected and hence such a homeomorphism $f$ can not exist.

Another also intuitive explanation is that it is impossible to form a "membrane" with $R$ as its boundary that does not intersect $S$. If a homeomorphism $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ with $f(S)=S^{2}$ existed then $f(R)$ would have a membrane outside $S^{2}$, which gives a contradiction.

Alexander's horned sphere can be modified to obtain homeomorphs of $S^{n-1}$ in $\mathbf{R}^{n}$ for $n>3$ which show that the Schönflies conjecture is also false for these dimensions.

The second example which we will describe is due to Antoine. It is called Antoine's necklace. Let $T$ be a solid torus with $l$ solid tori $T_{1}, \ldots, T_{l}$ embedded and particularly linked in $L$ (see the book by Moise for a graphical representation). In every $T_{i}$ we embed $l$ solid tori in exactly the same way that the $T_{i}$ are embedded in $T$. After $k$ steps of embeddings we get $l^{k}$ tori, whose union we denote by $A_{k}$. Antoine's necklace $A$ is then defined to be

$$
A=\bigcap_{k=1}^{\infty} A_{k} .
$$

The intersection is nonempty. Because the tori in $A_{k}$ have a small diameter for large $k$ the set $A$ consists only of single points. Since the tori in $A_{k}$ are also close to each other for large $k$ every point of $A$ is a limit point of $A$. Since $A$ is also compact it is a Cantor set.

It may further be shown that there exists a set $S$ homeomorphic to $S^{2}$ such that $A \subset S \subset T^{\circ}$. This set $S$ is then again an example of a 2 -sphere for which we cannot find a homeomorphism $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ such that $f(S)=S^{2}$. For details on this example the reader should consult the book by Moise.

The Schönflies theorem and possible generalizations can also be put into a more general context. Let $(X, A)$ and $\left(X^{\prime}, A^{\prime}\right)$ be pairs of spaces. We consider homeomorphisms $f: X \rightarrow X^{\prime}$ such that $f(A)=A^{\prime}$. We call such a homeomorphism $f$ a homeomorphism between the pairs $(X, A)$ and ( $X^{\prime}, A^{\prime}$ ). If we let $X=X^{\prime}$ we say that $A$ and $A^{\prime}$ are equivalent subspaces of $X$ if there is a homeomorphism between the pairs $(X, A)$ and $\left(X, A^{\prime}\right)$. We shall now consider the case $X=S^{n}\left(\right.$ or $\left.X=\mathbf{R}^{n}\right)$ and $A \approx S^{k}, k<n$.

From Theorem 8.3 we conclude that if $S_{1}$ and $S_{2}$ are different embeddings of $S^{1}$ into $S^{2}$ there is a homeomorphism $f$ of $S^{2}$ onto $S^{2}$ such that $f\left(S_{1}\right)=S_{2}$. Thus
all homeomorphs of $S^{1}$ in $S^{2}$ are equivalent. For $\mathbf{R}^{2}$ this means that there are no knots in the plane. In $\mathbf{R}^{3}$, however, it is a well known fact that different knots, i.e. nonequivalent embeddings of $S^{1}$ into $\mathbf{R}^{3}$, exist and hence we can not hope to generalize the Schönflies theorem in this direction. We also saw already that there are nonequivalent embeddings of $S^{2}$ in $S^{3}$. To obtain some more positive results we have to make additional assumptions on the nature of the embedding of $S^{k}$ into $S^{n}$. The first condition is that of tameness.

Definition 8.7 Let $S$ be homeomorphic to $S^{k}$. Then $S$ is said to be a tame imbedding of $S^{k}$ into $S^{n}$ if each point $x \in S$ has a neighbourhood $\left(N_{1}, N_{2}\right)$ in $\left(S^{n}, S\right)$ such that $\left(N_{1}, N_{2}\right)$ is homeomorphic to $\left(\mathbf{R}^{n}, \mathbf{R}^{k}\right)$. Otherwise $S$ is called wild.

Using triangulations this definition might be expressed as
Definition 8.8 Let $S$ be a triangulable subspace of $S^{n}$. If there is a homeomorphism $f: S^{n} \rightarrow S^{n}$ such that $f(S)$ is a polyhedron then $S$ is tame. Otherwise, as before, $S$ is wild.
Clearly, the Alexander horned sphere and Antoine's necklace are wild sets in $\mathbf{R}^{3}$. Tameness gives an answer to the question of equivalence for a large class of pairs of spaces. We just state the result.

Theorem 8.9 For $n-k \geq 3$ all tame embeddings of $S^{k}$ into $S^{n}$ are equivalent. The case $n-k=2$ leads us into the very extensive theory of knots which we will not be concerned about here. To ensure equivalence for $k=n-1$ we need a kind of "global tameness" condition, namely there must exist a bicollar for $S \approx S^{n-1}$ in $S^{n}$. The precise definition is
Definition 8.10 Let $S \subset S^{n}$ be homeomorphic to $S^{n-1}$. Then $S$ is bicollared if there is an embedding $f: S^{n-1} \times I \rightarrow S^{n}$ such that $f\left(S^{n-1} \times\{1 / 2\}\right)=S$.
This enables us to state the generalized Schönflies theorem. A proof can be found in Christenson/Voxmann.

Theorem 8.11 (Generalized Schönflies Theorem) Let $S \subset S^{n}$ be homeomorphic to $S^{n-1}$. If $S$ is bicollared then the closure of each component of $S^{n} \backslash S$ is homeomorphic to $D^{n}$

A related problem to the Schönflies theorem is the annulus conjecture. An annulus is a space homeomorphic to $S^{n-1} \times I$. Let $S_{1}$ and $S_{2}$ be two subsets of $\mathbf{R}^{n}$ both homeomorphic to $S^{n-1}$ such that $S_{1}$ is contained in the inner component of $\mathbf{R}^{n} \backslash S_{2}$. Denote the inner components of $\mathbf{R}^{n} \backslash S_{1}$ and $\mathbf{R}^{n} \backslash S_{2}$ by $U_{1}$ and $U_{2}$, respectively. Let $U=\overline{U_{1} \cap U_{2}}$. Then the annulus conjecture may be formulated as follows

Conjecture 8.13 (Annulus Conjecture) If $S_{1}$ and $S_{2}$ are bicollared then $U$ is an annulus.

This conjecture is proved for $n \neq 4$. For $n=4$ the result is still unknown.

## 9 Historical Comments

Considering a circle in the plane it is intuitively clear that the circle devides the plane into two regions, called the interiour and the exteriour. In the late nineteenth century due to the recent development of analysis, however, it was discovered that continous mappings from the circle into the plane could have very "nonintuitive" properties. One example for this is the square-filling Peano curve, which Peano (1858-1932) defined in 1890. This is on the other hand not a simple closed curve, i.e. it is not homeomorphic to the circle. Therefore separation properties in the plane began to gain interest and in 1893 C. Jordan (1838-1922) gave the first proof of the Jordan curve theorem (Theorem 7.3 for $n=2$ ) in his book 'Cours d'Ananlyse'. His proof, however, was incomplete because he took the theorem in the case of polygons for granted and also omitted some details in his argument. The polygonal version of the Jordan curve theorem was proved by N.J. Lennes (1874-1951) in 1903 and by O. Veblen (1880-1960) in 1904. It was also Veblen who gave the first complete proof of the Jordan curve theorem for arbitrary curves in 1905. These proofs, however, did not use homology theory but complicated geometric arguments. Simpler proofs were given by L.E.J. Brouwer (1881-1967) in 1910 and by J.W. Alexander (1888-1971) in 1920.

The generalization of the Jordan curve theorem for dimension $n \geq 2$, called the Jordan-Brouwer theorem (Theorem 7.7) may be split into three parts. Let $S \subset \mathbf{R}^{n}$ be homeomorphic to $S^{n-1}$. Then we have:

1. $\mathbf{R}^{n} \backslash S$ has at least two components.
2. $S$ is the boundary of the components of $\mathbf{R}^{n} \backslash S$
3. $\mathbf{R}^{n} \backslash S$ has at most two components.
M.H. Lebesgue (1875-1941) published a sketch of a proof for the first part, which is independent of the other two, in 1911. At first Brouwer mistrusted these ideas because he misunderstood Lebesgue's somewhat unclear language. Later he admitted that his methods could indeed be used for a rigorous proof of part one but did not want to complete the proof himself. Because Lebesgue did not publish any more about the subject no complete proof was available before Alexander's paper in 1922.

Parts two and three were proved by Brouwer in two papers in 1912. In the first of these articles he also proved the theorem of the invariance of domain for which he did not use the separation theorem but a "no separation theorem" similar to Lemma 7.1 which also contributed to the proofs of parts two and three of the Jordan-Brouwer theorem. Brouwer was originally concerned about separation in $\mathbf{R}^{n}$ but also showed that a related result (Theorem 7.4) holds for $S^{n}$.

Alexander generalized the Jordan-Brouwer theorem in 1922 by showing the relation between the Betti numbers of a closed set $A$ in $S^{n}$ and those of $S^{n} \backslash A$. The relevant result is the Alexander duality theorem.

The Phragmen-Brouwer properties started with L. Phragmen in 1885 who proved that if $A$ is a compact, connected subset of $\mathbf{R}^{2}$ then the unbounded component of $\mathbf{R}^{2} \backslash A$ has a connected boundary. In 1910 Brouwer showed the more general result that in fact any component of $\mathbf{R}^{2} \backslash A$ has a connected boundary. Later the other properties were added and $\mathbf{R}^{2}$ was replaced by more general spaces $X$. The dependence of the Phragmen-Brouwer properties on the fact that $H_{1}(X)=0$ (Theorem 7.10) was first shown by P. Alexandroff and H. Hopf in 1935.

In 1902 A. Schönflies (1853-1928) announced a converse to the Jordan curve theorem: A set of points which devides the plane into two regions is a curve. He explained his results in a series of papers from 1904 to 1906. In the last paper 1906 he also proved the 2-dimensional Schönflies theorem (Theorem 8.2). But his proof contained errors and he also assummed (like Jordan in 1893) the polygonal version (Theorem 8.5) without proof. Theorem 8.5 was first proved by L.D. Ames (1869-1965) and G.A. Bliss (1876-1951) in 1904. Their papers also contained a proof of the polygonal Jordan curve theorem. The proof of the Schönflies theorem (Theorem 8.2) was corrected by Brouwer in 1910 and 1912.

Naturally the question was asked whether the Schönflies theorem could be extended to higher dimensions. This led to the Schönflies conjecture. The first counterexample for the 3-dimensional case was given by L. Antoine in 1921. A second example for wild spheres which is better known than that by Antoine is the horned sphere which Alexander presented in 1924. The horned sphere is picturially easier to imagine but its mathematical properties are harder to explore. A reason for this might be that Antoine was blind.

Alexander also proved the Schönflies theorem for dimension three for polygonal spheres. The generalized version of the Schönflies theorem (Theorem 8.11) was proved by M. Brown (b. 1931) in 1960 after B. Mazur (b. 1937) had given a proof in 1959 with slightly different assumptions.

For a long time the annulus conjecture had been one of the famous open problems of topology until it was proved for $n \neq 4$ by Kirby, Siebenmann and Wall in 1969.

## References

[1] Agoston,M.K., Algebraic Topology: A First Course, Marcel Dekker, New York, 1976.
[2] Armstrong,M.A., Basic Topology, Springer-Verlag, New-York, 1983.
[3] y Brown,R., Topology: A Geometric Account of General Topology, Homotopy Types and the Fundamental Gruppoid, Ellis Horwood, Chichester, 1988.
[4] Christenson,C.O. and Voxman,W.L., Aspects of Topology, Marcel Dekker, New-York, 1977.
[5] Dieudonné,J., A History of Algebraic and Differential Topology 1900-1960, Birkhäuser, Boston, 1988.
[6] Dold,A., Lectures on Algebraic Topology, Springer-Verlag, New-York, 1972.
[7] Dubrovin,B.A., Fomenko,A.T. and Novikov,S.P., Modern Geometry - Methods and Applications, Part III. Introduction to Homology Theory, SpringerVerlag, New-York, 1990.
[8] Eilenberg,S. and Stenrod,N., Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952.
[9] Fulton,W., Algebraic Topology: A First Course, Springer-Verlag, New-York, 1995.
[10] Greenberg,M.J. and Harper,J.R., Algebraic Topology: A First Course, Benjamin/Cummings, Menlo Park, California, 1981.
[11] Hilton,P.J. and Wylie,S., Homology Theory, Cambridge University Press, Cambridge, 1960.
[12] Hocking,J.G. and Young,G.S., Topology, Addison-Wesley, Reading, Massachusetts, 1961.
[13] Jänich,K., Topologie, Springer-Verlag, New-York, 1980.
[14] Massay,W.S., A Basic Course in Algebraic Topology, Springer-Verlag, NewYork, 1991.
[15] Moise,E.E., Geometric Topology in Dimensions 2 and 3, Springer-Verlag, New-York, 1977.
[16] Rolfson,D., Knots and Links, Publish or Perish, Berkeley, California, 1976.
[17] Rotman,J.J., An Introduction to Algebraic Topology, Springer-Verlag, NewYork, 1988.
[18] Rourke,C.P. and Sanderson.B.J., Introduction to Piecewise-linear Topology, Springer-Verlag, New-York, 1972.
[19] Seifert,H. and Threlfall,W., Lehrbuch der Topologie, Teubner, Stuttgart, 1934.
[20] Spanier,E.H., Algebraic Topology, McGraw-Hill, New York, 1966.
[21] Stöcker,R. and Zieschang,H., Algebraische Topologie, Teubner, Stuttgart, 1988.
[22] Wall,C.T.C., A Geometric Introduction to Topology, Addison-Wesley, Reading, Massachusetts, 1972.

