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0 Introduction

The main subject of this paper is the Jordan-Brouwer separation theorem. It is
this one of those theorems in mathematics which strongly appeal to our intuition
but possess a very complicated proof, often using sophisticated techniques. The
theorem originated in 1893 with Jordan and was later generalized by Brouwer,
both of whom used fairly difficult geometric arguments for the proof. It turns
out however that homology theory as developed at around the same time as the
works of Jordan and Brouwer is best used to prove the Jordan-Brouwer theorem.
Therefore this paper is devided into two parts the first of which gives an intro-
duction to homology theory. The intention was to provide as much of homology
theory as necessary to prove the Jordan-Brouwer separation theorem which is
together with other results by Brouwer as the fixed-point theorem an important
application of homology. It is for this reason that some material that should have
been present in a survey of homology theory is omitted. Nevertheless all basic
concepts of singular homology are rigorously developed and nearly all the proofs
are given. For further material and more geometric explanations the reader is
referred to the reference list, especially Massey, Rotman and Stöcker/Zieschang
shall be recommended.

Part II deals with the Jordan-Brouwer separation theorem and related sub-
jects. In Section 7 a complete proof for the Jordan-Brouwer theorem is given, first
for the sphere Sn from which we then deduce the version for Rn. As a corollary
the invariance of domain is proved and the Phragmen-Brouwer separation prop-
erties are dicussed. Section 8 then deals with the Schönflies conjecture, a question
that comes out quite naturally from the Jordan-Brouwer theorem in Section 7.
Various forms of the Schönflies theorem for different dimensions as well as coun-
terexamples such as the Alexander horned sphere and Antoine’s set are examined.
It is actually in this section that we leave the domain of homology theory. This
and the fact, that the proofs, which use sophisticated arguments from geometric
and point-set topology, are quite long and would cover several pages, are the rea-
sons why most of the results are merely stated here. For more details one should
consult the books by Christenson/Voxman, Moise and Rourke/Sanderson. The
last chapter gives a detailed account of the history and the development of the
theorems by Jordan, Brouwer and Schönflies and related topics as dicussed in
Sections 7 and 8.

It shall also be said that we could have chosen a different way to develop
homology theory in Part I using simplicial complexes, CW-complexes or singular
cubes instead of singular simplexes. Singular homology is in some respect the
most general approach to homology since we can use arbitrary topological spaces
instead of triangulable spaces or CW-complexes. Although these different meth-
ods turn out to be equivalent to each other they have different advantages. Using
singular homology some definitions are simplified. However it is quite complicated
to determine the homology groups for given spaces. With simplicial complexes
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geometric interpretation of the basic concepts becomes easier. Computation of
homology groups is sometimes lenghty but more elementary. For these reasons
and also because we will need the notion of a simplicial complex in Section 8
we shall just outline some of the basic definitions of the simplicial theory in the
following.

Let x0, . . . , xq ∈ Rn be q + 1 points in Rn, q ≤ n, which are not contained in
any (q − 1)-dimensional hyperplane of Rn. Then the q-dimensional simplex

σ = σq = x0x1 . . . xq

is the convex hull of the points x0, . . . , xq. We call x0, . . . , xq the vertices of σq.
A simplex τ is a face of σ if all vertices of τ are also vertices of σ. We write this
as τ < σ. A 1-dimensional simplex is called an edge.

A simplicial complex is a collection K of simplexes in Rn with the following
properties

1. If σ ∈ K and τ < σ then also τ ∈ K.

2. If σ, τ ∈ K and σ ∩ τ 6= ∅ then σ ∩ τ < σ and σ ∩ τ < τ .

If K is a simplicial complex then |K| is the union of all the simplexes of K with
the subspace topology induced by the topology of Rn. We call |K| a polyhedron.
We may then proceed to define the chain groups, the boundary operator ∂ and
the homology groups in a way analogous to the approach in Section 1.

A topological space X is called triangulable if there is a complex K such that
|K| ≈ X. It can be shown that a large class of spaces is triangulable, for instance
every compact, differentiable manifold can be triangulated. For the purpose of
proving the Jordan-Brouwer separation theorem in its full generality, however, it
is not sufficient to limit our attention to triangulable spaces. Therefore we will
start to develop singular homology theory for arbitrary topological spaces in the
next section.

0.1 Notation

We list some terminology and notations that will be used frequently in the fol-
lowing sections.

Z ring of integers
Zn set of all n-tupels (x1, . . . , xn)
Zk integers modulo k
Rn Euclidean n-space
Dn = {x ∈ Rn : |x| ≤ 1} n-dimensional disc or ball
Sn = {x ∈ Rn : |x| < 1} n-dimensional sphere
I = [0, 1] unit interval
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A set which is homeomorphic to Dn (or In) is called an n-ball. If A is a set then
A◦, Ȧ and Ā denote the interiour, the boundary and the closure of A, respectively.
Moreover we shall use the relations

∼= isomorphic
≈ homeomorphic
≃ homotopic.
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Part I

Homology Theory

1 Definition of Homology Groups

1.1 The Singular Complex of a Space

Definition 1.1 Let q ≥ 0. We call the points

e0 = (1, 0, . . . , 0) e1 = (0, 1, 0, . . . , 0) . . . eq = (0, . . . , 0, 1)

the unit points of Rq+1. We define the standard q-simplex ∆q to be the following
subset of Rq+1:

∆q = {x ∈ Rq+1 : x =
q

∑

i=0

λiei with 0 ≤ λi ≤ 1 and
q

∑

i=0

λi = 1}

The points e0, . . . , eq are called the vertices of ∆q.

For instance, ∆0 is a single point, ∆1 is a segment, ∆2 an equiliteral triangle and
∆3 is a regular tetrahedron.

Definition 1.2 A mapping f : ∆q → Rn is called linear if there exists a linear
map F : Rq+1 → Rn such that F |∆q

= f . For arbitrary points x0, . . . , xq ∈ Rn

there is a unique linear map f : ∆q → Rn such that f(ei) = xi for i = 0, . . . , q,
namely f(x) =

∑q
i=0 λixi. Thus a linear map of ∆q is completely determined by

its values on the vertices of ∆q. For q ≥ 1 and 0 ≤ j ≤ q consider the linear map
δjq−1 : ∆q−1 → ∆q induced by

δjq−1(ei) = ei for i < j

δjq−1(ei) = ei+1 for i ≥ j.

The image of δjq−1 is called the j-th face of ∆q. It consists of all points (λ0, . . . , λq) ∈
∆q with λj = 0. The union of all faces of ∆q is called the boundary of ∆q which
we denote by ∆̇q.

Lemma 1.3 For q ≥ 2 and 0 ≤ k < j ≤ q we have δjq−1δ
k
q−2 = δkq−1δ

j−1
q−2.

Proof. Both sides map the vertices of ∆q−2 as follows:

ei 7→ ei for i < k
ei 7→ ei+1 for k ≤ i ≤ j − 1
ei 7→ ei+2 for i ≥ j − 1.

From this and from linearity we conclude that the maps are equal. ⊓⊔
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Definition 1.4 Let X be a topological space. A singular q-simplex of X is a
continous map σ = σq : ∆q → X. For each q ≥ 0 define Sq(X) as the free abelian
group with basis all singular q-simplexes in X. The elements of Sq are called
singular q-chains in X. Hence every c ∈ Sq(X) has a unique representation as a
finite linear combination c =

∑

σ nσσ, with coefficients nσ ∈ Z. For q < 0 we set
Sq(X) = 0.

For q ≥ 1 we define a homomorphism ∂ = ∂q : Sq(X) → Sq−1(X), called the
boundary operator

∂q(σ) =
q

∑

i=0

(−1)i(σδiq−1)

For q ≤ 0 put ∂q = 0.
We have constructed a sequence of free abelian groups and homomorphisms

· · · −→ Sq+1(X)
∂q+1

−→ Sq(X)
∂q

−→ Sq−1(X) −→ · · ·

We call this sequence the singular complex of X.

Theorem 1.5 For all q we have

∂q−1∂q = 0.

Proof. Since Sq(X) is generated by all q-simplexes σ it suffices to show ∂∂σ = 0
for every σ. Using Lemma 1.3 we get:

∂q−1∂qσ = ∂q(
q

∑

j=0

(−1)jσδjq−1)

=
q

∑

j=0

(−1)j(
q−1
∑

k=0

(−1)kσδjq−1δ
k
q−2)

=
∑

j≤k

(−1)j+kσδjq−1δ
k
q−2 +

∑

k<j

(−1)j+kσδkq−1δ
j−1
q−2.

In the second sum change variables: replace k by j and j by k + 1. We get
∑

j≤k(−1)j+k+1σδjq−1δ
k
q−2. Terms cancel and we get ∂∂σ = 0. ⊓⊔

Definition 1.6 We now define the following groups

Zq(X) = ker ∂q

Bq(X) = im ∂q+1

We call Zq(X) the group of singular q-cycles inX and Bq(X) the group of singular

q-boundaries in X. Clearly, Zq(X) and Bq(X) are subgroups of Sq(X) and since
∂q∂q+1 = 0 we get

Bq(X) ⊆ Zq(X).
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Hence we can define
Hq(X) = Zq(X)/Bq(X).

Hq(X) is called the q-dimensional singular homology group of X. The elements
of Hq(X) are the cosets {z} = {z}X = z + Bq(X) with z ∈ Zq(X). We call {z}
the homology class of z.

1.2 Reduced Homology Groups

In the definition of the boundary operator we deliberatly chose to define ∂0 = 0.
However, we can also use a different homomorphism ε : S0(X) → Z which is
called the augmentation. Let c =

∑

σ nσσ. Then we define

ε(c) = ε(
∑

σ

nσσ) =
∑

σ

nσ

We easily get the formula
ε∂1 = 0.

To prove this it suffices to show ε∂1(σ) for every 1-dimensional simplex σ in X,
but this is trivial. Now we define Z̃0(X) = ker ε. Because of ε∂1 = 0 we get
B0(X) ⊆ Z̃0(X) and can therefore form the quotient

H̃0(X) = Z̃0(X)/B0(X)

It is convenient to let H̃q(X) = Hq(X) for q > 0. The groups H̃q(X) are called
the reduced q-dimensional homology groups of X. We get the augmented singular

complex of X

· · · −→ S2(X)
∂2−→ S1(X)

∂1−→ S0(X)
ε
−→ Z −→ 0.

It will prove to be useful to consider the reduced homology groups only forX 6= ∅.
We will now examine the relation between H0(X) and H̃0(X). Remark that

Z̃0(X) is a subgroup of Z0(X) = S0(X) and that therefore H̃0(X) is a subgroup
of H0(X). Denote the inclusion homomorphism by ξ : H̃0(X)→ H0(X). Further,
from ε∂1 = 0 we know that ε(B0(X)) = 0. Hence ε induces a homomorphism
ε∗ : H̃0(X)→ Z. We see by an easy argument that the sequence

0 −→ H̃0(X)
ξ
−→ H0(X)

ε∗−→ Z −→ 0

is exact. From this fact we conclude that there is a decomposition of H0(X) as

H0(X) ∼= H̃0(X)⊕ Z.

As a first example for the computation of homology groups we examine the case
where X consists of a single point. The result is given in the next theorem which
is also known as the dimension axiom.
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Theorem 1.7 If X is a space consisting only of one point then Hq(X) = 0 for

q > 0 and H0(X) ∼= Z.

Proof. Because for each q there is only one map f : ∆q → X, namely the constant
map, we have only one singular simplex σq for each dimension q. The boundary
of σq has the form

∂σq =
q

∑

i=0

(−1)iσqδ
i
q−1 =

q
∑

i=0

(−1)iσq−1

because σqδ
i
q−1 is necessarily the only (q − 1)-simplex σq−1. It follows that

∂σq =

{

0 if q is odd or q = 0
σq−1 if q is even, q > 0

For q odd, q > 0 we get Bq(X) ∼= Zq(X) and for q even, q > 0 we get Zq(X) = 0.
Therefore in both cases Hq(X) = 0. Finally B0(X) = 0 and Z0(X) is generated
by σ0. Hence H0(X) ∼= Z. ⊓⊔

From Theorem 1.7 we get at once that for a one-point space X we have

H̃q(X) = 0

for all q. A space X with this property is called acyclic.

Theorem 1.8 Let Xγ, γ ∈ Γ, denote the set of path connected components of

X. Then there is a canonical isomorphism

Hq(X) ∼=
⊕

γ

Hq(Xγ)

for all q.

Proof. Each singular q-simplex lies entirely in one of the arc components. There-
fore we have an isomorphism

Sq(X) ∼=
⊕

γ

Sq(Xγ)

for all q. The boundary operates component by component. Therefore we have
the direct sum decompositions

Zq(X) ∼=
⊕

γ

Zq(Xγ) and Bq(X) ∼=
⊕

γ

Bq(Xγ)

Forming the quotient Hq(X) = Zq(X)/Bq(X) gives the result. ⊓⊔
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Theorem 1.9 Let X be a nonempty space. Then H0(X) is a free abelian group

whose rank is equal to the number of path components of X.

Proof. By Theorem 1.8, we may assume path connectedness of X. Observe that
ε : S0(X) → Z is an epimorphism. We claim that B0(X) = ker ε. From this
we directly get H0(X) ∼= Z as desired. Now we prove the claim. From ε∂1 = 0
we get B0(X) ⊆ ker ε. For ker ε ⊆ B0(X) choose a basepoint x0 in X. For
x ∈ X let σx be a path from x0 to x such that ∂σx = x− x0. Now, given a cycle
c =

∑

x nxx ∈ ker ε we get

c =
∑

x

nxx =
∑

x

nxx−
∑

x

nxx0 = ∂(
∑

x

nxσx).

Hence c ∈ B0(X). ⊓⊔

1.3 The Homomorphism Induced by a Continous Map

In the following our aim is to show that for any continous map f : X → Y between
topological spaces X and Y we can associate a sequence of homomorphisms
f∗ : Hq(X)→ Hq(Y ) for every q. We start to give the necessary definitions.

Definition 1.10 Let f : X → Y be a continous map and σ : ∆q → X a q-
simplex in X. Then f ◦ σ : ∆q → Y is a q-simplex in Y and we can define a
homomorphism f# : Sq(X)→ Sq(Y ) by

f#(
∑

σ

nσσ) =
∑

σ

nσ(f ◦ σ).

The notation is a bit careless for there is a different f# for every q.

Lemma 1.11 The following diagram is commutative

Sq(X)
∂q

−→ Sq−1(X)
↓ f# ↓ f#

Sq(Y )
∂q

−→ Sq−1(Y )

for every q. We can also write this as ∂f# = f#∂.

Proof. It suffices to show commutativity for every q-simplex σ in X. We get

f#∂σ = f#(
q

∑

i=0

(−1)iσ∂iq−1)

=
q

∑

i=0

(−1)if#(σ∂iq−1) =
q

∑

i=0

(−1)ifσ∂iq−1 and

∂f#σ = ∂(fσ) =
q

∑

i=0

(−1)ifσ∂iq−1.

⊓⊔
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Lemma 1.12 For every q we have

f#(Zq(X)) ⊆ Zq(Y ) and

f#(Bq(X)) ⊆ Bq(Y ).

Proof. Let z ∈ Zq(X). Then ∂z = 0 and therefore ∂f#z = f#∂z = 0, i.e.
f#z ∈ Zq(Y ). Let now b ∈ Bq(X). Then b = ∂c for some c ∈ Sq+1(X). Hence
f#b = f#∂c = ∂f#c ∈ Bq(Y ). ⊓⊔

Because of the last lemma f# induces a homomorphism of quotient groups,
which we denote by

f∗ : Hq(X)→ Hq(Y ).

We see at once that ε = f#ε and hence f#(Z̃0(X)) ⊆ Z̃0(Y ) and we get a
homomorphism

f∗ : H̃0(X)→ H̃0(Y ).

It is easily checked that for continous maps f, g : X → Y we get (fg)∗ = f∗g∗.

2 The Exact Homology Sequence of a Pair

To be able to use homology efficiently we need some tools to actually determine
the homology groups of various spaces. In this section we investigate how the
homology of X does depend on the homology of a subspace A of X. We define
the concept of relative homology groups which is a generalization of the earlier
defined “absolute” homology groups and get an answer to the mentioned question
in form of an exact sequence of the pair (X,A).

We now make the necessary definitions. Let A be a subspace of the topological
space X. We can consider the chains in A which are also chains in X. Therefore
Sq(A) can be regarded as a subgroup of Sq(X) and we can form the quotient
Sq(X,A) = Sq(X)/Sq(A), which we will call the group of relative singular q-
chains. Because ∂q has the property that ∂q(Sq(A)) ⊆ Sq−1(A) it induces a
boundary operator (also denoted by ∂q) on the quotient group

∂q : Sq(X,A)→ Sq−1(X,A).

We define the group of relative q-cycles as Zq(X,A) = ker ∂q and the group of
relative q-boundaries as Bq(X,A) = im ∂q+1. We have Bq(X,A) ⊆ Zq(X,A) and
can therefore form the quotient

Hq(X,A) = Zq(X,A)/Bq(X,A)

which we call the q-th relative homology group. Remark that relative homology
groups are a generalization of the earlier defined homology groups of a space X.
If we let A = ∅ we get Hq(X) = Hq(X,A).
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Corresponding to the inclusion map i : A→ X we have the induced inclusion
homomorphism

i∗ : Hq(A)→ Hq(X).

Similarly, by regarding each q-cycle as a relative q-cycle we get a homomorphism

j∗ : Hq(X)→ Hq(X,A).

Lastly we define the boundary operator ∂∗ : Hq(X,A) → Hq−1(A) of the pair
(X,A) to be the following homomorphism

∂∗({z}(X,A)) = {∂z}A.

This last definition requires justification. If z ∈ Zq(X,A) then ∂z ∈ Sq−1(A).
But of course ∂z is a cycle, so {∂z}A ∈ Hq−1(A) is defined. To see that the
definition is independent of the choice of the representative cycle z let z′ be a
cycle homologous to z relative A. Then there is a c ∈ Sq+1(X) and a c′ ∈ Sq(A)
such that z′ − z = ∂c + c′. Therefore ∂z′ = ∂z + ∂c′ and hence {∂z′}A = {∂z}A.

Using the homomorphisms i∗, j∗ and ∂∗ we can construct the following se-
quence

· · ·
j∗
−→ Hq+1(X,A)

∂∗−→ Hq(A)
i∗−→ Hq(X)

j∗
−→ Hq(X,A)

∂∗−→ · · · .

We call the sequence the homology sequence of the pair (X,A).

Theorem 2.1 The homology sequence of the pair (X,A) is exact.

Proof. The proof consists of three parts.

1. ker i∗ = im ∂∗

2. ker j∗ = im i∗

3. ker ∂∗ = im j∗

1. Let cq ∈ Zq(A). Then cq represents an element in ker i∗ precisely if i∗(cq) is a
boundary in Sq(X), i.e. if there is a cq+1 ∈ Sq+1(X) such that ∂cq+1 = i∗(cq),
i.e. ∂cq+1 = cq if cq is regarded as a chain in Sq(X). But the (q + 1)-chains
cq+1 of Sq+1(X) with the property that ∂cq+1 is a cycle in Sq(A) are precisely
those representing q-cycles of Sq+1(X,A). Therefore ker i∗ = im ∂∗.

2. Let cq ∈ Zq(X) such that j∗({cq}) = 0. Then there is a cq+1 ∈ Sq+1(X)
and a c′q ∈ Sq(A) such that cq = c′q + ∂cq+1. Hence a cycle cq is in ker j∗
precisely if there is a c′q ∈ Sq(A) which is homologous to it. But this means
that cq represents an element of im i∗.
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3. Let {cq} ∈ Hq(X,A) such that ∂∗{cq} = 0. This is equivalent to the
existence of a c′q ∈ Zq(X) and a c′′q ∈ Sq(A) such that cq = c′q + c′′q . But
this means the existence of a cycle c′q = cq − c

′′
q ∈ Zq(X) which represents

the same element of Hq(X,A) as cq does, i.e. {c′q}(X,A) = {cq}(X,A). This
implies that {cq} ∈ im j∗.

⊓⊔

The sequence of homomorphisms remains exact if we replace Hq(X) by H̃q(X)
and Hq(A) by H̃q(A). We also state without proof another theorem which ex-
presses the relations between reduced homology and relative homology groups.

Theorem 2.2 Let x0 ∈ X. Then

H̃q(X) ∼= Hq(X, x0)

for all q.

For later use we also need the homology sequence of a triad. We give the
result without proof.

Theorem 2.3 Let B ⊂ A ⊂ X be subspaces of X and let i : (A,B) → (X,B)
and j : (X,B) → (X,A) be inclusions. Then the following sequence, called the

sequence of the triad (X,A,B),

· · ·
j∗
−→ Hq+1(X,A)

∂∗−→ Hq(A,B)
i∗−→ Hq(X,B)

j∗
−→ Hq(X,A)

∂∗−→ · · ·

is exact. The boundary operator ∂∗ is given by ∂∗({z}(X,A)) = {∂z}(A,B).

3 The Excision Property

We now come to a very important but quite subtle property of relative homology
groups. Intuitivly speaking when forming the quotient Sq(X,A) = Sq(X)/Sq(A)
we forget about everything inside A. We could therefore hope that Hq(X,A)
only depends on X \ A. The actual statement is a bit weaker. The proof which
involves barycentric subdivision is quite lengthy and will be omitted.

Theorem 3.1 Let U ⊂ A ⊂ X be subspaces with U ⊂ Ao. Then the inclusion

i : (X \ U,A \ U)→ (X,A) induces isomorphisms

i∗ : Hq(X \ U,A \ U)→ Hq(X,A)

for all q.

We can also formulate the excision property in a different way, in which it is
used quite often.
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Theorem 3.2 Let X1 and X2 be subspaces of X such that X = X◦
1 ∪X

◦
2 . Then

the inclusion j : (X1, X1 ∩X2)→ (X,X2) induces isomorphisms

j∗ : Hq(X1, X1 ∩X2)→ Hq(X,X2)

for all q.

Proof. We use Theorem 3.1. Let U = X \X1 and A = X2. First, we show that
U ⊂ A◦. From X◦

1 ⊂ X1 we have X \X1 ⊂ X \X◦
1 . Therefore U = (X \X1) ⊂

X \X◦
1 , because X \X◦

1 is closed. Further

X \X◦
1 = (X◦

1 ∪X
◦
2 ) \X◦

1 = X◦
2 \X

◦
1 ⊂ X◦

2 = A◦.

Second, we prove that (X \ U,A \ U) is the same as (X1, X1 ∩X2). We have

X \ U = X \ (X \X1) = X1 and

A \ U = X2 \ (X \X1) = X1 ∩X2.

Obviously (X,A) is the same as (X,X2) and therefore i = j which gives i∗ = j∗.
⊓⊔

4 The Homotopy Theorem

We will see in the following that homology groups possess another very important
property, namely their invariance for a large class of spaces. The homotopy theo-
rem (also called the homotopy axiom) states that spaces from the same homotopy
class have isomorphic homology groups. This also simplifies the computation of
homology groups. To determine Hq(X) we replace X by a simpler space Y ≃ X
and compute Hq(Y ) ∼= Hq(X). The main result is the following:

Theorem 4.1 Let f, g : X → Y be continous maps. If f and g are homotopic

then the induced homomorphisms f∗ and g∗ of Hq(X) into Hq(Y ) are the same.

The theorem also holds for reduced homology groups, i.e. f∗ = g∗ : H̃q(X) →
H̃q(Y ). We will not give the proof here, it can be found in any of the text books
about homology. Instead we continue with some corollaries.

Theorem 4.2 If f : X → Y is a homotopy equivalence then f∗ : Hq(X) →
Hq(Y ) are isomorphisms for all q. We also have isomorphisms f∗ : H̃q(X) →
H̃q(Y ).

Proof. We have a g : Y → X with gf ≃ idX and fg ≃ idY . Using Theorem 4.1
we get (gf)∗ = g∗f∗ = id and (fg)∗ = f∗g∗ = id. Hence f−1

∗ = g∗ and f∗ is
bijective. ⊓⊔

Using the exact sequence of the pair (X,A) we obtain from Theorem 4.2:
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Corollary 4.3 If A ⊂ X is a deformation retract of X then i∗ : Hq(A)→ Hq(X)
is an isomorphism for all q. Also Hq(X,A) = 0.

By considering the exact sequence of the triad B ⊂ A ⊂ X and application
of the last corollary and Theorem 4.2 we conclude:

Corollary 4.4 If B ⊂ A ⊂ X and B is a deformation retract of A then we have

isomorphisms j∗ : Hq(X,B)→ Hq(X,A).

The homotopy axiom enables us to determine the homology of contractible
spaces:

Corollary 4.5 If X is a contractible space then H̃q(X) = 0 for all q ≥ 0.

Proof. X has the same homotopy type as a one-point space. Application of
Theorem 4.2 and the dimension axiom (Theorem 1.7) gives the result. ⊓⊔

From this we can conclude that Rn is acyclic.

5 The Mayer-Vietoris Sequence

In this section we discuss a very powerful tool for determining the homology
groups of many spaces: the Mayer-Vietoris sequence. Suppose that a space X =
X1 ∪ X2 is given as the union of two subspaces. How does the homology of X
depend on X1 and X2? The answer will be given in form of an exact sequence,
the Mayer-Vietoris sequence, which plays the same role for homology groups as
the Seifert-Van Kampen theorem does for the fundamental group.

Before we come to the main result we will prove a lemma.

Lemma 5.1 (Barratt-Whitehead) Given a diagram with exact rows in which

all rectangles commute

· · · −→ Aq
fq

−→ Bq
gq

−→ Cq
hq

−→ Aq−1
fq−1

−→ Bq−1 −→· · ·
↓ αq ↓ βq ↓ γq ↓ αq−1 ↓ βq−1

· · · −→ A′
q

f ′q
−→ B′

q

g′q
−→ C ′

q

h′q
−→ A′

q−1

f ′
q−1

−→ B′
q−1 −→· · ·

if all the γq are isomorphisms then there is an exact sequence

· · ·
Γq+1

−→ Aq
Φq

−→ Bq ⊕ A
′
q

Ψq

−→ B′
q

Γq

−→ Aq−1
Φq−1

−→ · · ·

where Φq(a) = (fq(a), αq(a)), Ψq(b, a
′) = βq(b) − f ′

q(a
′) and Γq(b

′) = hqγ
−1
q g′q.

This latter sequence is called the Barrett-Whitehead sequence of the ladder.
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Proof. The proof of exactness is a diagram chase. We will first prove exactness
at B′

q. We have to show that im Ψq = ker Γq. For im Ψq ⊆ ker Γq we need
ΓqΨq(b, a

′) = 0. But

ΓqΨq(b, a
′) = Γq(βq(b)− f

′
q(a

′)) = hqγ
−1
q g′qβq(b)− hqγ

−1
q g′qf

′
q(a

′).

The first term is 0 because hqγ
−1
q g′qβq = gqhq = 0 and the second term is 0 because

of g′qf
′
q = 0.

For ker Γq ⊆ im Ψq take b′ ∈ B′
q such that Γq(b

′) = 0. Because of the exactness
of the upper row and γ−1

q g′q(b) ∈ ker hq there exists b ∈ Bq such that gq(b) =
γ−1
q g′q(b

′). By commutativity we get g′q(b
′ − βqb) = 0. Therefore, by exactness of

the lower row there is an a′ ∈ A′
q such that f ′

q(a
′) = b′ − βqb. Then we have

Ψq(b,−a
′) = βq(b) + f ′

q(a
′) = b′

as desired. In a similar manner we get im Φq = ker Ψq and im Γq = ker Φq−1. ⊓⊔

We are now able to prove the theorem about the Mayer-Vietoris sequence.

Theorem 5.2 (Mayer-Vietoris) Let X1 and X2 be subspaces of the topological

space X such that X = X◦
1 ∪ X

◦
2 . Then there is an exact sequence, called the

Mayer-Vietoris sequence of X

· · ·
∆
−→ Hq(X1∩X2)

φ
−→ Hq(X1)⊕Hq(X2)

ψ
−→ Hq(X)

∆
−→ Hq−1(X1∩X2)

φ
−→ · · ·

Here
φ(x) = (i∗(x), j∗(x)) x ∈ Hq(X1 ∩X2)
ψ(x1, x2) = k∗(x1)− l∗(x2) x1 ∈ Hq(X1), x2 ∈ Hq(X2)

with the homomorphisms i∗, j∗, k∗ and l∗ induced by the inclusions

i : X1 ∩X2 → X1, j : X1 ∩X2 → X2, k : X1 → X and l : X2 → X.

Finally ∆ = dh−1
∗ q∗ with h and q inclusions and d the boundary operator of the

pair (X1, X1 ∩X2).

Proof. Consider the following diagram of pairs of spaces where all maps are
inclusions

(X1 ∩X2, ∅)
i
−→ (X1, ∅)

p
−→ (X1, X1 ∩X2)

↓ j ↓ k ↓ h

(X2, ∅)
l
−→ (X, ∅)

q
−→ (X,X2)

This diagram is commutative. From this we get another diagram where the rows
are exact by Theorem 2.1:

· · · −→ Hq(X1 ∩X2)
i∗−→ Hq(X1)

p∗
−→ Hq(X1, X1 ∩X2)

d
−→ Hq−1(X1 ∩X2) −→ · · ·

↓ j∗ ↓ k∗ ↓ h∗ ↓ j∗

· · · −→ Hq(X2)
l∗−→ Hq(X)

q∗
−→ Hq(X, X2) −→ Hq−1(X2) −→ · · ·
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From the excision property (Theorem 3.2) we conclude that h∗ is an isomorphism.
Application of Lemma 5.1 gives the result. ⊓⊔

We can also formulate Theorem 5.2 for reduced homology groups an obtain

Theorem 5.3 Let X1 and X2 be subspaces of the topological space X such that

X = X◦
1 ∪X

◦
2 . Then there is an exact sequence

· · ·
∆
−→ H̃q(X1∩X2)

φ
−→ H̃q(X1)⊕H̃q(X2)

ψ
−→ H̃q(X)

∆
−→ H̃q−1(X1∩X2)

φ
−→ · · ·

The sequence ends with

· · ·
φ
−→ H̃0(X1)⊕ H̃0(X2)

ψ
−→ H̃0(X)

∆
−→ 0.

Proof. Let x0 ∈ X. Consider the commutative diagram with all maps inclusions

(X1 ∩X2, x0)
i
−→ (X1, x0)

p
−→ (X1, X1 ∩X2)

↓ j ↓ k ↓ h

(X2, x0)
l
−→ (X, x0)

q
−→ (X,X2)

Using Theorem 2.2 then proof then proceeds as in Theorem 5.2. ⊓⊔

6 Examples

After having examined some techniques of homology theory we will now use
these methods to determine the homology of a few spaces. We know already that
H̃q(R

n) = 0 for all q ≥ 0. Next we turn to Sn.

Theorem 6.1 For the sphere Sn, n ≥ 0 we have

H̃q(S
n) ∼=

{

Z if q = n
0 if q 6= n

Proof. The proof is by induction on n. S0 consists of two points and by Theo-
rem 1.7 (dimension axiom) and Theorem 1.8 we get H0(S

0) ∼= Z2 and hence
H̃0(S

0) ∼= Z and H̃q(S
0) = 0 for q > 0.

Assume now n > 0. Let P+ be the north pole and P− be the south pole of Sn

and let X1 = Sn \ P+ and X2 = Sn \ P−. Observe that X◦
1 ∪X

◦
2 = Sn. Consider

the corresponding Mayer-Vietoris sequence of Sn:

H̃q(X1)⊕ H̃q(X2) −→ H̃q(S
n) −→ H̃q−1(X1 ∩X2) −→ H̃q−1(X1)⊕ H̃q−1(X2).

Here X1 and X2 are contractible and Sn−1 is a deformation retract of X1 ∩ X2.
Therefore

0 −→ H̃q(S
n) −→ H̃q−1(S

n−1) −→ 0
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is exact. This means that H̃q(S
n) ∼= H̃q−1(S

n−1) and the proof is complete. ⊓⊔

An important application of this is the following corollary known as the in-
variance of dimension.

Corollary 6.2 If n 6= m, then Rn and Rm are not homeomorphic.

Proof. If there was a homeomorphism between Rn and Rm there would also be a
homeomorphism between the one-point compactifications of Rn and Rm, namely
between Sn and Sm. But Hn(S

n) 6= Hn(S
m) for n 6= m. ⊓⊔

In order to illustrate how homology groups can be used to distinguish effi-
ciently between different topological spaces we will just give some more examples
without proof.

Torus T H0(T ) ∼= Z
H1(T ) ∼= Z2

H2(T ) ∼= Z

Torus with a Hole H H0(H) ∼= Z
H1(H) ∼= Z2

H2(H) = 0

Klein Bottle K H0(K) ∼= Z
H1(K) ∼= Z⊕ Z2

H2(K) = 0

Projective Plane P H0(P ) ∼= Z
H1(P ) ∼= Z2

H2(P ) = 0

Möbius Strip M H0(M) ∼= Z
H1(M) ∼= Z
H2(M) = 0

In particular it should be observed that for the torus the first homology group
is a free abelian group and the second is infinite cyclic whereas for the Klein
bottle the first group contains a cyclic subgroup of order 2 and the second ho-
mology group is 0. This behaviour is quite typical and can be used to distinguish
between closed surfaces which are orientable as the torus and those which are
nonorientable as the Klein bottle or the projective plane.
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Part II

Separation Theorems

7 The Jordan-Brouwer Separation Theorem

In order to prove the Jordan-Brouwer separation theorem we need the following
lemma, which is of fundamental importance for this chapter.

Lemma 7.1 Let B ⊂ Sn be a subset of Sn which is homeomorphic to Ik where

0 ≤ k ≤ n. Then H̃q(S
n \B) = 0 for all q.

Proof. The proof is by induction on k. For k = 0 the set B is a single point and
Sn \ B ≈ Rn, which is acyclic. Suppose now that the theorem holds for k − 1.
Let

z ∈ Z̃q(S
n \B).

We want to prove that z = ∂b for some b ∈ Sq+1(S
n \ B). This would imply

Bq(S
n \B) ∼= Z̃q(S

n \B) and hence H̃q(S
n \B) = 0 as desired.

We assume that we have chosen a fixed homeomorphism f : Ik−1 × I → B.
Let

Bt = f(Ik−1 × t) ⊂ B ⊂ Sn.

Then Bt is a (k− 1)-ball and hence H̃q(S
n \Bt) = 0 by the inductive hypothesis.

Clearly z ∈ Z̃q(S
n \ Bt) and by the hypothesis we have a bt ∈ Sq+1(S

n \ Bt)
with ∂bt = z. We know that bt is of the form bt = n1σ1 + . . . + nlσl where
σi : ∆q+1 → Sn \ Bt. Note that L =

⋃l
i=1 σi(∆q+1) is compact and L ∩ Bt = ∅.

Therefore we have an open neighbourhood Ut of Bt with L∩Ut = ∅. Observe that
bt ∈ Sq+1(S

n \Ut). Since Ik−1× t ⊂ f−1(B∩Ut) we also have a neighbourhood Vt
of t with Ik−1 × Vt ⊂ f−1(B ∩ Ut). We choose m big enough such that for every
closed interval Ij = [ j−1

m
, j
m

] there is a tj with Ij ⊂ Vtj . Let Qj = f(Ik−1 × Ij).
We have Qj ⊂ Utj and B =

⋃m
j=1Qj and for every j there is a btj ∈ Sq+1(S

n \Qj)
with t = ∂btj .

Let X1 = Sn \Q1 and X2 = Sn \Q2. Then

X1 ∪X2 = Sn \ (Q1 ∩Q2) = Sn \B1/m and

X1 ∩X2 = Sn \ (Q1 ∪Q2)

B1/m is a (k − 1)-ball and Q1, Q2 and Q1 ∪ Q2 are k-balls. Consider now the
exact Mayer-Vietoris sequence of Sn \B1/m:

H̃q+1(X1 ∪X2)
∆
−→ H̃q(X1 ∩X2)

φ
−→ H̃q(X1)⊕ H̃q(X2)

ψ
−→ H̃q(X1 ∪X2)

But H̃q+1(X1 ∪ X2) ∼= H̃q(X1 ∪ X2) = 0 and hence φ is an isomorphism. For
z ∈ Z̃q(X1 ∩ X2) we get φ({z}) = 0 because z = ∂bt1 in X1 and z = ∂bt2
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in X2 and therefore also {z} = 0. But this means that z = ∂b for some b ∈
Sq+1(S

n \ (Q1 ∪Q2)).
The same argument as above is applied to X1 = Sn \ (Q1 ∪ Q2) and X2 =

Sn\Q3. Examination of the Mayer-Vietoris sequence gives that z is the boundary
of some chain in Sn \ (Q1 ∪Q2 ∪Q3). By iterating this procedure we finally get
that z = ∂b for some b ∈ Sq+1(S

n \ (Q1 ∪ . . . ∪ Qm)) = Sq+1(S
n \ B), which

completes the proof. ⊓⊔

In order to illustrate why this lemma is so important and possesses such a
somewhat complicated proof we can consider some examples of wild arcs B ⊂ S3

where B ≈ I1 and S3 \B has a nontrivial fundamental group. For the definition
of wild see Section 8.

Theorem 7.2 Let S ⊂ Sn be a subset of Sn which is homeomorphic to Sk where

0 ≤ k ≤ n−1. Then H̃n−k−1(S
n\S) ∼= Z and H̃q(S

n\S) = 0 for all q 6= n−k−1.

Proof. The proof is by induction on k. For k = 0 the subset S consists of two
points and hence Sn \ S is homeomorphic to Rn with one point removed which
is homotopic to Sn−1 and so H̃n−1(S

n \S) ∼= Z and H̃q(S
n \S) = 0 for q 6= n− 1.

Assume now that the theorem holds for k − 1. We can fix a homeomorphism
f : Sk → S. Let Dk

+ and Dk
− denote the upper and the lower hemisphere of

Sk,respectively. Then B1 = f(Dk
+) and B2 = f(Dk

−) are k-balls and S = B1∪B2.
Let T = B1∩B2. We know that T is of the same homotopy class as Sk−1. Remark
that

(Sn \B1) ∪ (Sn \B2) = Sn \ T and

(Sn \B1) ∩ (Sn \B2) = Sn \ S.

Application of the Mayer-Vietoris sequence gives

H̃q+1(S
n \B1)⊕ H̃q+1(S

n \B2) −→ H̃q+1(S
n \ T ) −→ H̃q(S

n \ S)

−→ H̃q(S
n \B1)⊕ H̃q(S

n \B2).

But from Lemma 7.1 we know that H̃q(S
n \B1) ∼= H̃q(S

n \B2) = 0 for all q ≥ 0
and therefore H̃q+1(S

n \ T ) ∼= H̃q(S
n \ S) which proves the inductive step. ⊓⊔

From this we can directly conclude

Theorem 7.3 (Jordan-Brouwer Separation Theorem) Let S ⊂ Sn be a

subset which is homeomorphic to Sn−1. Then Sn \S has exactly two components.

For n = 2 this is known as the Jordan curve theorem. For n > 2 we have the
Brouwer separation theorem.

Proof. Applying Theorem 7.2 for k = n − 1 gives H̃0(S
n \ S) ∼= Z and

hence H0(S
n \ S) ∼= Z2 which means that Sn \ S has two arc components. But
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because Sn \ S is locally arcwise connected the arc components are the same as
the components. ⊓⊔

We can also conclude from Theorem 7.2 that a homeomorph of Sk where
k < n− 1 does not seperate Sn. The next statement is a stronger version of the
Jordan-Brouwer separation theorem:

Theorem 7.4 Let S ⊂ Sn be a subset of Sn which is homeomorphic to Sn−1.

Then S is the boundary of the two components U and V of Sn \ S.

Proof. Sn \ S is locally path connected and therefore U and V are open subsets
of Sn \ S and hence also of Sn. This shows that U̇ ⊂ S and V̇ ⊂ S. For the
reverse inclusion we must show that for every x ∈ S we get x ∈ U̇ and x ∈ V̇ .

Let N be an open neighbourhood of x. We have to prove that N ∩ U 6= ∅
and N ∩ V 6= ∅. N ∩ S is an open neighbourhood of x in S. We can find
a decomposition of S as S = B1 ∪ B2 where B1 and B2 are (n − 1)-balls and
B1 ∩ B2 ≈ Sn−2 such that B1 ⊂ N ∩ S. From Lemma 7.1 we conclude that
Sn \B2 is path connected and hence we can choose a path in Sn \B2 from a point
p1 ∈ U to p2 ∈ V . Let f : I → Sn \ B2 be a continous map such that f(0) = p1

and f(1) = p2. Necessarily f(I) ∩ S 6= ∅ and hence f(I) ∩B1 6= ∅. Let

t0 = inf{t ∈ I : f(t) ∈ B1}.

Thus f(t0) ∈ f(I)∩B1 ⊂ N . Consider now J = [0, t0). The set f(J) is connected
and contains p1 = f(0) and

f(J) ⊂ f(I) ∩ (Sn \ S) = f(I) ∩ (U ∪ V ).

Therefore f(J) ⊂ U . Hence any open neighbourhood of f(t0) in N meets U and
so N ∩U 6= ∅. Similarly we get N ∩V 6= ∅ via considering t1 = sup{t ∈ I : f(t) ∈
B1}. ⊓⊔

It should be noted how Lemma 7.1 also contributed to this proof. To appre-
ciate the theorem consider a subset S of Sn homeomorphic to Sn−1 × I. In this
case we have two path connected components U and V . Here U̇ ⊂ S and V̇ ⊂ S
but neither U̇ = S nor V̇ = S.

In the following we examine what happens if we replace Sn by Rn. The next
lemma is the equivalent of Lemma 7.1.

Lemma 7.5 Let B ⊂ Rn be a subset of Rn, n ≥ 2 which is homeomorphic to Ik

where 0 ≤ k ≤ n. Then H̃n−1(R
n \B) ∼= Z and H̃q(R

n \B) = 0 for q 6= n− 1.

Proof. We have a homeomorphism f between Rn and Sn \ P+ via stereographic
projection (P+ is the north pole). Let A = f(B). The set A ⊂ Sn is a k-ball and
P+ ∈/A. Consider the sequence of the pair (Sn \ A, Sn \ (A ∪ P+)):

H̃q+1(S
n\A) −→ H̃q+1(S

n\A, Sn\(A∪P+)) −→ H̃q(S
n\(A∪P+)) −→ H̃q(S

n\A).
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From Lemma 7.1 we know that Sn \ A is acyclic and hence

H̃q+1(S
n \ A, Sn \ (A ∪ P+)) ∼= H̃q(S

n \ (A ∪ P+)).

By the excision property we get H̃q+1(S
n \ A, Sn \ (A ∪ P+)) ∼= H̃q(S

n, Sn \ P+)
and furthermore H̃q+1(S

n, Sn \ P+) ∼= H̃q+1(S
n, P−) by Corollary 4.4 since P− is

a deformation retract of Sn \P+. But H̃q+1(S
n, P−) is easily determined from the

sequence of (Sn, P−) and we get

H̃q+1(S
n, P−) ∼= H̃q+1(S

n) ∼=

{

Z for q = n− 1
0 for q 6= n− 1

Finally H̃q(S
n \ (A ∪ P+)) ∼= H̃q(R

n \B) because the spaces are homeomorphic.
This leads to the desired conclusion. ⊓⊔

From Theorem 7.2 we now conclude an equivalent statement for Rn\S instead
of Sn \ S:

Theorem 7.6 Let S ⊂ Rn be homeomorphic to Sk with n ≥ 2 and 0 ≤ k ≤ n−1.
Then

H̃q(R
n \ S) ∼=

{

Z for q = n− 1 and q = n− k − 1
0 for q 6= n− 1, n− k − 1

Proof. We proceed as in Lemma 7.5. By stereographic projection we get a
homeomorphism between Rn and Sn \ P+. Let S be mapped homeomorphically
into A. Hence H̃q(S

n \ (A ∪ P+)) ∼= H̃q(R
n \ B). As in the proof of Lemma 7.5

we consider the following sequence:

H̃q(R
n \B) ∼= H̃q(S

n \ (A ∪ P+))
∂∗←− H̃q+1(S

n \ A, Sn \ (A ∪ P+))
(1)
∼=

H̃q+1(S
n, Sn \ P+)

(2)
∼= H̃q+1(S

n, P−)
(3)
∼= H̃q+1(S

n).

We get the first isomorphism (1) from the excision property, (2) from the fact that
P− is a deformation retract of Sn\P+ and (3) from the sequence of (Sn, P−). Now
for ∂∗ consider the following part of the sequence of the pair (Sn\A, Sn\(A∪P+))
for q 6= n− k − 2, n− k − 1:

H̃q+1(S
n\A) −→ H̃q+1(S

n\A, Sn\(A∪P+))
∂∗−→ H̃q(S

n\(A∪P+)) −→ H̃q(S
n\A).

But from Theorem 7.2 we know that H̃q+1(S
n \ A) ∼= H̃q(S

n \ A) = 0 and hence
∂∗ is an isomorphism in this case. The remaining part is

H̃n−k(S
n \A, Sn \ (A ∪ P+))

∂∗−→ H̃n−k−1(S
n \ (A ∪ P+)) −→ H̃n−k−1(S

n \ A) −→

H̃n−k−1(S
n \ A, Sn \ (A ∪ P+))

∂∗−→ H̃n−k−2(S
n \ (A ∪ P+)) −→ H̃n−k−2(S

n \A)
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Because of Theorem 7.2 and H̃q(S
n \ A, Sn \ (A ∪ P+)) ∼= H̃q(S

n) this becomes

0
∂∗−→ H̃n−k−1(S

n \ (A ∪ P+)) −→ Z −→ 0
∂∗−→ H̃n−k−2(S

n \ (A ∪ P+)) −→ 0

and therefore H̃n−k−1(S
n \ (A ∪ P+)) ∼= Z and H̃n−k−2(S

n \ (A ∪ P+)) = 0. This
completes the proof. ⊓⊔

If we compare Lemma 7.1 and Theorem 7.2 to Lemma 7.5 and Theorem 7.6
it is apparent that, if Sn is replaced by Rn, one more group , namely H̃n−1 is
different from 0. A geometric interpretation can be given for this.

Consider the case where B ⊂ Rn is a k-ball. There exists an a > 0 such
that B ⊂ {x ∈ Rn : |x| < a}. Let f : Sn−1 → Rn be given by f(x) = ax.
Because f is a homeomorphism and f(Sn−1) is a deformation retract of Rn \ B
we conclude that f∗ : H̃n−1(S

n−1)→ H̃n−1(R
n \B) is an isomorphism and hence

H̃n−1(R
n \ B) ∼= Z. This also illustrates how a generator of H̃n−1(R

n \ B) can
be imagined. If we form the one-point compactification of Rn by adding one
single point {∞} this generating cycle becomes a boundary. This explains why
H̃n−1(S

n \B) = 0. A similar argument can be applied to Rn \ S.
Having Theorem 7.5 and 7.6 at hand we can state the Jordan-Brouwer theo-

rem for Rn:

Theorem 7.7 Let S ⊂ Rn be homeomorphic to Sn−1. Then Rn \ S consists of

exactly two components. S is the common boundary of these components.

The first part follows directly from Theorem 7.6 and the proof of the second part
proceeds exactly as the proof of Theorem 7.4. The unbounded component of
Rn \ S is called the outside of S and the other component is called the inside.

From Theorem 7.3 we can get a very important corollary, the theorem of the
invariance of domain, which is also due to Brouwer.

Theorem 7.8 (Invariance of Domain) Let U, V ⊂ Sn be homeomorphic sub-

sets of Sn. If U is open then so is V .

Proof. Let f : U → V be a homeomorphism. Let x ∈ U and ∈ V such that
f(x) = y. Take a closed neighbourhood N of x in U which is homeomorphic
to In and Ṅ ≈ Sn−1. Now f(N) is a closed neighbourhood of y in V and
Theorem 7.1 says that Sn \ f(N) is connected. But we also know that Sn \ f(Ṅ)
has two components, by Theorem 7.3. Now

Sn \ f(Ṅ) = (Sn \ f(N)) ∪ (f(N) \ f(Ṅ))

is the disjoint union of two nonempty connected sets. Hence Sn \ f(N) and
f(N) \ f(Ṅ) are the components of Sn \ f(Ṅ). This implies that both are open
in Sn \ f(Ṅ) and therefore f(N) \ f(Ṅ) is also open in Sn. But f(N) \ f(Ṅ) is
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an open neighbourhood of y which is entirely contained in V . Since y is arbitrary
it follows that V is open. ⊓⊔

A similar theorem may be stated for Rn. The proof is the same. We can also
express this theorem in a slightly different manner and get:

Corollary 7.9 Let U and V be arbitrary subsets of Sn (Rn) having a homeo-

morphism f : U → V . Then f maps interiour points onto interiour points and

boundary points onto boundary points.

For the rest of this section we want to replace Sn or Rn by an arbitrary
topological space X and discuss some more general results concerning separation,
known as the Phragmen-Brouwer properties. The key to these properties is the
following theorem.

Theorem 7.10 Let X be a topological space and let A,B ⊂ X be nonempty,

disjoint, closed subsets such that X \ A and X \ B are arcwise connected. If

H̃1(X) = 0 then X \ (A ∪B) is also arcwise connected.

Proof. Since A ∩ B = ∅ we have

X = (X \ A) ∪ (X \B) and

X \ (A ∪B) = (X \ A) ∩ (X \B).

Hence we can form the Mayer-Vietoris sequence and get

H̃1(X) −→ H̃0(X \ (A ∪ B)) −→ H̃0(X \ A)⊕ H̃0(X \B).

Because X \ A and X \B are arcwise connected we get

0 −→ H̃0(X \ (A ∪B)) −→ 0.

Hence H̃0(X \ (A ∪ B)) = 0 and X \ (A ∪ B) is arcwise connected. ⊓⊔

Under the additional assumptions that X is an arcwise connected and lo-
cally arcwise connected Hausdorff space we can deduce from Theorem 7.10 the
Phragmen-Brouwer properties which are listed below. The first property is indeed
an immediate corollary of Theorem 7.10.

Theorem 7.11 (Property I) Let A,B be two nonempty, disjoint subsets of X.

If two points x and y belong to both the same component of X \A and X \B they

also belong to the same component of X \ (A ∪B).

Theorem 7.12 (Property II) Let A be a closed, connected, nonempty subset

of X. Then each component of X \ A has a connected boundary.
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Theorem 7.13 (Property III, Unicoherence) Let A,B be two closed, con-

nected subsets of X such that X = A ∪B. Then A ∩ B is connected.

Theorem 7.14 (Property IV) Let A be a closed subset of X and let C1, C2 be

two disjoint components of X \ A which have the same boundary B. Then B is

connected.

Theorem 7.15 (Property V) Let A,B be two disjoint, closed subsets of X and

let x ∈ A and y ∈ B. Then there exists a closed, connected subset C ⊂ X\(A∪B)
such that x and y belong to different components of X \ C.

Using elementary arguments from point set topology it may be shown that
all these properties are equivalent. Because H1(S

n) = H1(R
n) = 0 for n ≥ 1 it

follows that Sn and Rn have the Phragmen-Brouwer properties.

8 The Schönflies Theorem

We continue to examine the separation properties of Sn and Rn. Although we
shall only speak about Sn from now on everything can be reformulated in terms of
Rn without significant changes. In particular for every theorem about separation
of Sn there is a corresponding theorem for Rn.

In the last section we saw that a homeomorph S of Sn−1 separates Sn into
two components. A few more questions might be asked about this. If S were
the standard Sn−1 in Sn then the corresponding components U and V of Sn \ S
would be the upper and lower hemispheres of Sn. That means that the closures
of U and V are homeomorphic to the n-disc Dn. This observation leads to the
Schönflies conjecture.

Conjecture 8.1 (Schönflies Conjecture) Let S be a subset of Sn which is

homeomorphic to Sn−1. Then the closure of each of the components of Sn \ S is

homeomorphic to Dn.

It turns out that the Schönflies conjecture is true for n = 2 but does not
hold for n ≥ 3 without additional assumptions. First, we will examine the 2-
dimensional case. We state the corresponding result.

Theorem 8.2 (Schönflies Theorem) Let S ⊂ S2 be homeomorphic to S1.

Then the closures of the components of S2 \ S are homeomorphic to D2.

We may also express this differently as

Theorem 8.3 (Schönflies Theorem, Second Form) Let S ⊂ S2 be homeo-

morphic to S1. Then the homeomorphism of S ⊂ S2 to S1 ⊂ S2 can be extended

to give a homeomorphism of S2 onto S2.
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We will not give the proof which is quite complicated. The reader is referred
to Christenson/Voxman or Moise. Here we will prove the Schönflies theorem
for polygons only. For this we have to come back to the concept of a simplicial
complex as established in Section 0.

Let S be a polygon in S2. We choose one component U of S2 \ S. It may
be shown that U can be triangulated, i.e. U is a finite complex |K|. We call a
2-simplex σ ∈ K a free simplex if σ∩S consists of one or two edges of σ. For our
purpose we need a lemma.

Lemma 8.4 Let S be a polygon in S2 and let K be a triangulation of the closure

of a component U of S2 \S. If K has more than one 2-simplex than K has a free

2-simplex.

Proof. We will prove the stronger result that K has at least two free 2-simplexes.
The proof is by induction on the number of 2-simplexes of K. If K has exactly
two 2-simplexes then both are free.
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Assume now that K has more than two 2-simplexes. There are two 2-
simplexes σ, τ of K with σ ∩ S and τ ∩ S consisting of at least one edge of
σ and τ , respectively. If both σ and τ are free then there is nothing to prove.
Suppose that

σ = x0x1x2 ∈ K

is not free. Let x0x1 ⊂ σ ∩ S as in Figure 1. It follows that also x2 ∈ σ ∩ S.
Therefore S can be decomposed into two broken lines C1 and C2 by the points x0

and x2. Let U1 and U2 be the interiour of C1 ∪ x0x2 and C2 ∪ x0x2, respectively.
Then |K| = U 1∪U 2. Let K1 be the complex consisting of all simplexes of K that
lie in U 1, together with σ and its faces, and let K2 be the complex consisting
of all simplexes of K that lie in U 2, which also contains σ. By the inductive
hypothesis K1 and K2 have two free 2-simplexes each and hence both K1 and K2

contain one free 2-simplex different from σ. These two simplexes are also free in
K which completes the inductive step. ⊓⊔

We can now formulate Theorem 8.2 for polygons.
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Theorem 8.5 Let S be a polygon in S2. Then the closures of the components of

S2 \ S are homeomorphic to D2.

Proof. Let U be one of the components of S2 \S. We will construct a homeomor-
phism f : S2 → S2 such that f(U) is a 2-simplex. Thus U is homeomorphic to
D2. Application of the same procedure to the other component gives the result.

Let K0 be a triangulation of U with k 2-simplexes. We will describe a homeo-
morphism g1 which reduces the number of free simplexes of K0 by 1. Hence
K1 = g1(K0) is a complex with one less 2-simplex, which still has at least one
free 2-simplex by Lemma 8.4. By induction we obtain a complex Kk−1 which
consists of only one 2-simplex and get f = gk−1 . . . g1.
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Now we construct g1. Let σ = x0x1x2 be a free 2-simplex of K0. Assume that
σ ∩ S = x0x1. We choose x3 and x4 as in Figure 2 in such a way that the entire
figure intersects S only in x0x2. Define g1 to be the identity outside Figure 2.
Hence g1 is the identity on x0, x2, x3 and x4. Inside Figure 2 let g1 be the linear
map induced by g1(x5) = x1.

If σ∩S = x0x1∪x1x2 let g1 be the inverse of the homeomorphism just defined.
⊓⊔

We will now examine the Schönflies conjecture in dimension three. We have
an equivalent result to Theorem 8.5.

Theorem 8.6 Let S be a polyhedral 2-dimensional sphere in S3. Then the clo-

sures of S3 \ S are homeomorphic to D3.
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The proof of even a slightly stronger form of Theorem 8.6 can be found in the
book by Moise.

As mentioned before we do not have an analogon of the 2-dimensional Schönflies
theorem for arbitrary curves (Theorem 8.2) in S3. In fact we can construct some
counterexamples. The first one is the Alexander horned sphere (considered in
R3). The horned sphere S is homeomorphic to S2 but we cannot find a homeo-
morphism f : R3 → R3 such that f(S) = S2. From the picture one can already
“see” that R3 \ S is not simply connected because S contains a Cantor set. On
the other hand R3 \S2 = f(R3 \S) is simply connected and hence such a homeo-
morphism f can not exist.

Another also intuitive explanation is that it is impossible to form a “mem-
brane” with R as its boundary that does not intersect S. If a homeomorphism
f : R3 → R3 with f(S) = S2 existed then f(R) would have a membrane outside
S2, which gives a contradiction.

Alexander’s horned sphere can be modified to obtain homeomorphs of Sn−1

in Rn for n > 3 which show that the Schönflies conjecture is also false for these
dimensions.

The second example which we will describe is due to Antoine. It is called
Antoine’s necklace. Let T be a solid torus with l solid tori T1, . . . , Tl embedded
and particularly linked in L (see the book by Moise for a graphical representation).
In every Ti we embed l solid tori in exactly the same way that the Ti are embedded
in T . After k steps of embeddings we get lk tori, whose union we denote by Ak.
Antoine’s necklace A is then defined to be

A =
∞
⋂

k=1

Ak.

The intersection is nonempty. Because the tori in Ak have a small diameter for
large k the set A consists only of single points. Since the tori in Ak are also close
to each other for large k every point of A is a limit point of A. Since A is also
compact it is a Cantor set.

It may further be shown that there exists a set S homeomorphic to S2 such
that A ⊂ S ⊂ T ◦. This set S is then again an example of a 2-sphere for which
we cannot find a homeomorphism f : R3 → R3 such that f(S) = S2. For details
on this example the reader should consult the book by Moise.

The Schönflies theorem and possible generalizations can also be put into a
more general context. Let (X,A) and (X ′, A′) be pairs of spaces. We consider
homeomorphisms f : X → X ′ such that f(A) = A′. We call such a homeo-
morphism f a homeomorphism between the pairs (X,A) and (X ′, A′). If we let
X = X ′ we say that A and A′ are equivalent subspaces of X if there is a homeo-
morphism between the pairs (X,A) and (X,A′). We shall now consider the case
X = Sn (or X = Rn) and A ≈ Sk, k < n.

From Theorem 8.3 we conclude that if S1 and S2 are different embeddings of
S1 into S2 there is a homeomorphism f of S2 onto S2 such that f(S1) = S2. Thus
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all homeomorphs of S1 in S2 are equivalent. For R2 this means that there are no
knots in the plane. In R3, however, it is a well known fact that different knots,
i.e. nonequivalent embeddings of S1 into R3, exist and hence we can not hope
to generalize the Schönflies theorem in this direction. We also saw already that
there are nonequivalent embeddings of S2 in S3. To obtain some more positive
results we have to make additional assumptions on the nature of the embedding
of Sk into Sn. The first condition is that of tameness.

Definition 8.7 Let S be homeomorphic to Sk. Then S is said to be a tame

imbedding of Sk into Sn if each point x ∈ S has a neighbourhood (N1, N2) in

(Sn, S) such that (N1, N2) is homeomorphic to (Rn,Rk). Otherwise S is called

wild.

Using triangulations this definition might be expressed as

Definition 8.8 Let S be a triangulable subspace of Sn. If there is a homeomor-

phism f : Sn → Sn such that f(S) is a polyhedron then S is tame. Otherwise, as

before, S is wild.

Clearly, the Alexander horned sphere and Antoine’s necklace are wild sets in R3.
Tameness gives an answer to the question of equivalence for a large class of pairs
of spaces. We just state the result.

Theorem 8.9 For n− k ≥ 3 all tame embeddings of Sk into Sn are equivalent.

The case n− k = 2 leads us into the very extensive theory of knots which we will
not be concerned about here. To ensure equivalence for k = n−1 we need a kind
of “global tameness” condition, namely there must exist a bicollar for S ≈ Sn−1

in Sn. The precise definition is

Definition 8.10 Let S ⊂ Sn be homeomorphic to Sn−1. Then S is bicollared if

there is an embedding f : Sn−1 × I → Sn such that f(Sn−1 × {1/2}) = S.

This enables us to state the generalized Schönflies theorem. A proof can be found
in Christenson/Voxmann.

Theorem 8.11 (Generalized Schönflies Theorem) Let S ⊂ Sn be homeo-

morphic to Sn−1. If S is bicollared then the closure of each component of Sn \ S
is homeomorphic to Dn

A related problem to the Schönflies theorem is the annulus conjecture. An
annulus is a space homeomorphic to Sn−1 × I. Let S1 and S2 be two subsets of
Rn both homeomorphic to Sn−1 such that S1 is contained in the inner component
of Rn \ S2. Denote the inner components of Rn \ S1 and Rn \ S2 by U1 and U2,
respectively. Let U = U1 ∩ U2. Then the annulus conjecture may be formulated
as follows

Conjecture 8.13 (Annulus Conjecture) If S1 and S2 are bicollared then U
is an annulus.

This conjecture is proved for n 6= 4. For n = 4 the result is still unknown.
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9 Historical Comments

Considering a circle in the plane it is intuitively clear that the circle devides
the plane into two regions, called the interiour and the exteriour. In the late
nineteenth century due to the recent development of analysis, however, it was
discovered that continous mappings from the circle into the plane could have
very “nonintuitive” properties. One example for this is the square-filling Peano
curve, which Peano (1858-1932) defined in 1890. This is on the other hand not a
simple closed curve, i.e. it is not homeomorphic to the circle. Therefore separation
properties in the plane began to gain interest and in 1893 C. Jordan (1838-1922)
gave the first proof of the Jordan curve theorem (Theorem 7.3 for n = 2) in his
book ‘Cours d’Ananlyse’. His proof, however, was incomplete because he took
the theorem in the case of polygons for granted and also omitted some details in
his argument. The polygonal version of the Jordan curve theorem was proved by
N.J. Lennes (1874-1951) in 1903 and by O. Veblen (1880-1960) in 1904. It was
also Veblen who gave the first complete proof of the Jordan curve theorem for
arbitrary curves in 1905. These proofs, however, did not use homology theory but
complicated geometric arguments. Simpler proofs were given by L.E.J. Brouwer
(1881-1967) in 1910 and by J.W. Alexander (1888-1971) in 1920.

The generalization of the Jordan curve theorem for dimension n ≥ 2, called
the Jordan-Brouwer theorem (Theorem 7.7) may be split into three parts. Let
S ⊂ Rn be homeomorphic to Sn−1. Then we have:

1. Rn \ S has at least two components.

2. S is the boundary of the components of Rn \ S

3. Rn \ S has at most two components.

M.H. Lebesgue (1875-1941) published a sketch of a proof for the first part,
which is independent of the other two, in 1911. At first Brouwer mistrusted
these ideas because he misunderstood Lebesgue’s somewhat unclear language.
Later he admitted that his methods could indeed be used for a rigorous proof of
part one but did not want to complete the proof himself. Because Lebesgue did
not publish any more about the subject no complete proof was available before
Alexander’s paper in 1922.

Parts two and three were proved by Brouwer in two papers in 1912. In the first
of these articles he also proved the theorem of the invariance of domain for which
he did not use the separation theorem but a “no separation theorem” similar to
Lemma 7.1 which also contributed to the proofs of parts two and three of the
Jordan-Brouwer theorem. Brouwer was originally concerned about separation in
Rn but also showed that a related result (Theorem 7.4) holds for Sn.

Alexander generalized the Jordan-Brouwer theorem in 1922 by showing the
relation between the Betti numbers of a closed set A in Sn and those of Sn \ A.
The relevant result is the Alexander duality theorem.
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The Phragmen-Brouwer properties started with L. Phragmen in 1885 who
proved that if A is a compact, connected subset of R2 then the unbounded com-
ponent of R2 \ A has a connected boundary. In 1910 Brouwer showed the more
general result that in fact any component of R2 \ A has a connected boundary.
Later the other properties were added and R2 was replaced by more general
spaces X. The dependence of the Phragmen-Brouwer properties on the fact that
H1(X) = 0 (Theorem 7.10) was first shown by P. Alexandroff and H. Hopf in
1935.

In 1902 A. Schönflies (1853-1928) announced a converse to the Jordan curve
theorem: A set of points which devides the plane into two regions is a curve. He
explained his results in a series of papers from 1904 to 1906. In the last paper
1906 he also proved the 2-dimensional Schönflies theorem (Theorem 8.2). But his
proof contained errors and he also assummed (like Jordan in 1893) the polygonal
version (Theorem 8.5) without proof. Theorem 8.5 was first proved by L.D. Ames
(1869-1965) and G.A. Bliss (1876-1951) in 1904. Their papers also contained a
proof of the polygonal Jordan curve theorem. The proof of the Schönflies theorem
(Theorem 8.2) was corrected by Brouwer in 1910 and 1912.

Naturally the question was asked whether the Schönflies theorem could be
extended to higher dimensions. This led to the Schönflies conjecture. The first
counterexample for the 3-dimensional case was given by L. Antoine in 1921. A
second example for wild spheres which is better known than that by Antoine
is the horned sphere which Alexander presented in 1924. The horned sphere is
picturially easier to imagine but its mathematical properties are harder to explore.
A reason for this might be that Antoine was blind.

Alexander also proved the Schönflies theorem for dimension three for poly-
gonal spheres. The generalized version of the Schönflies theorem (Theorem 8.11)
was proved by M. Brown (b. 1931) in 1960 after B. Mazur (b. 1937) had given
a proof in 1959 with slightly different assumptions.

For a long time the annulus conjecture had been one of the famous open
problems of topology until it was proved for n 6= 4 by Kirby, Siebenmann and
Wall in 1969.
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