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Abstract. Disjoint NP-pairs are a well studied complexity theoretic con-
cept with important applications in cryptography and propositional proof
complexity. In this paper we introduce a natural generalization of the no-
tion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k ≥ 2. We define
subclasses of the class of all disjoint k-tuples of NP-sets. These subclasses
are associated with a propositional proof system and posses complete tuples
which are defined from the proof system.
In our main result we show that complete disjoint NP-pairs exist if and
only if complete disjoint k-tuples of NP-sets exist for all k ≥ 2. Further,
this is equivalent to the existence of a propositional proof system in which
the disjointness of all k-tuples is shortly provable. We also show that a
strengthening of this conditions characterizes the existence of optimal proof
systems.

1 Introduction

During the last years the theory of disjoint NP-pairs has been intensively studied.
This interest stems mainly from the applications of disjoint NP-pairs in the field of
cryptography [GS88,KP98] and propositional proof complexity [Pud03,Kra04]. In
this paper we investigate a natural generalization of disjoint NP-pairs: instead of
pairs we consider k-tuples of pairwise disjoint NP-sets. Concepts such as reductions
and separators are smoothly generalized from pairs to k-tuples.

One of the major open problems in the field of disjoint NP-pairs is the question,
posed by Razborov [Raz94], whether there exist disjoint NP-pairs that are complete
for the class of all pairs under suitable reductions. Glaßer et al. [GSSZ04] gave
a characterization in terms of uniform enumerations of disjoint NP-pairs and also
proved that the answer to the problem does not depend on the reductions used, i.e.
there are reductions for pairs which vary in strength but are equivalent with respect
to the existence of complete pairs.

The close relation between propositional proof systems and disjoint NP-pairs
provides a partial answer to the question of the existence of complete pairs. Namely,
the existence of optimal propositional proof systems is a sufficient condition for the
existence of complete disjoint NP-pairs. This result is already implicitly contained in
[Raz94]. However, Glaßer et al. [GSS04] construct an oracle relative to which there
exist complete pairs but optimal proof systems do not exist. Hence, the problems
on the existence of optimal proof systems and of complete disjoint NP-pairs appear
to be of different strength.

Our main contribution in this paper is the characterization of these two prob-
lems in terms of disjoint k-tuples of NP-sets. In particular we address the question
whether there exist complete disjoint k-tuples under different reductions. Consid-
ering this problem it is easy to see that the existence of complete disjoint k-tuples
implies the existence of complete disjoint l-tuples for l ≤ k: the first l components
of a complete k-tuple are complete for all l-tuples. Conversely, it is a priori not clear
how to construct a complete k-tuple from a complete l-tuple for l < k. Therefore
it might be tempting to conjecture that the existence of complete k-tuples forms
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a hierarchy of assumptions of increasing strength for greater k. However, we show
that this does not happen: there exist complete disjoint NP-pairs if and only if there
exist complete disjoint k-tuples of NP-sets for all k ≥ 2, and this is even true under
reductions of different strength. Further, we prove that this is equivalent to the
existence of a propositional proof system in which the disjointness of all k-tuples
with respect to suitable propositional representations of these tuples is provable
with short proofs. We also characterize the existence of optimal proof systems with
a similar but apparently stronger condition.

We achieve this by extending the connection between proof systems and NP-pairs
to k-tuples. In particular we define representations for disjoint k-tuples of NP-sets.
This can be done on a propositional level with sequences of tautologies but also with
first-order formulas in arithmetic theories. To any propositional proof system P we
associate a subclass DNPPk(P ) of the class of all disjoint k-tuples of NP-sets. This
subclass contains those k-tuples for which the disjointness is provable with short
P -proofs. We show that the classes DNPPk(P ) posses complete tuples which are
defined from the proof system P . Somewhat surprisingly, under suitable conditions
on P these non-uniform classes DNPPk(P ) equal their uniform versions which are
defined via arithmetic representations. This enables us to further characterize the
existence of complete disjoint k-tuples by conditions on arithmetic theories.

The paper is organized as follows. In Sect. 2 we recall some relevant definitions
concerning propositional proof systems and disjoint NP-pairs. We also give a very
brief description of the correspondence between propositional proof systems and
arithmetic theories. This reference to bounded arithmetic, however, only plays a
role in Sect. 6 where we analyse arithmetic representations. The rest of the paper
and in particular the main results in Sect. 7 are fully presented on the propositional
level.

In Sect. 3 we define the basic concepts such as reductions and separators that
we need for the investigation of disjoint k-tuples of NP-sets.

In Sect. 4 we define propositional representations for k-tuples and introduce
the complexity classes DNPPk(P ) of all disjoint k-tuples of NP-sets that are repre-
sentable in the system P . We show that these classes are closed under our reductions
for k-tuples.

In Sect. 5 we proceed the investigation of the classes DNPP(P ) by defining k-
tuples from propositional proof systems which serve as hard languages for DNPPk(P ).
In particular we generalize the interpolation pair from [Pud03] and demonstrate that
even these generalized variants still capture the feasible interpolation property of
the proof system.

In Sect. 6 we define first-order variants of the propositional representations from
Sect. 4. We utilize the correspondence between proof systems and bounded arith-
metic to show that a disjoint k-tuple of NP-sets is representable in P if and only if
it is representable in the arithmetic theory associated with P . This equivalence al-
lows easy proofs for the representability of the canonical k-tuples associated with P ,
thereby improving the hardness results for DNPPk(P ) from Sect. 5 to completeness
results for proof systems corresponding to arithmetic theories.

The main results on the connections between complete NP-pairs, complete k-
tuples and optimal proof systems follow in Sect. 7.

2 Preliminaries

2.1 Propositional Proof Systems

Propositional proof systems were defined in a very general way by Cook and Reck-
how in [CR79] as polynomial time functions P which have as its range the set of
all tautologies. A string π with P (π) = ϕ is called a P -proof of the tautology ϕ.
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By P `≤m ϕ we indicate that there is a P -proof of ϕ of length ≤ m. If Φ is a
set of propositional formulas we write P `∗ Φ if there is a polynomial p such that
P `≤p(|ϕ|) ϕ for all ϕ ∈ Φ. If Φ = {ϕn | n ≥ 0} is a sequence of formulas we also
write P `∗ ϕn instead of P `∗ Φ.

Proof systems are compared according to their strength by simulations intro-
duced in [CR79] and [KP89]. Given two proof systems P and S we say that S
simulates P (denoted by P ≤ S) if there exists a polynomial p such that for all
tautologies ϕ and P -proofs π of ϕ there is a S-proof π′ of ϕ with |π′| ≤ p (|π|). If
such a proof π′ can even be computed from π in polynomial time we say that S
p-simulates P and denote this by P ≤p S. A proof system is called (p-)optimal if it
(p-)simulates all proof systems. Whether or not optimal proof systems exist is an
open problem posed by Kraj́ıček and Pudlák [KP89].

In [Bey05] we investigated several natural properties of propositional proof sys-
tem. We will just define those which we need in this paper. We say that a propo-
sitional proof system P is closed under substitutions by constants if there exists a
polynomial q such that P `≤n ϕ(x̄, ȳ) implies P `≤q(n) ϕ(ā, ȳ) for all formulas

ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|. We call P efficiently closed under substitutions
by constants if we can transform any P -proof of a formula ϕ(x̄, ȳ) in polynomial
time to a P -proof of ϕ(ā, ȳ). A system P is closed under disjunctions if there is a
polynomial q such that P `≤m ϕ implies P `≤q(m+|ψ|) ϕ∨ψ for arbitrary formulas
ψ. Similarly, we say that a proof system P is closed under conjunctions if there is
a polynomial q such that P `≤m ϕ ∧ ψ implies P `≤q(m) ϕ and P `≤q(m) ψ, and
likewise P `≤m ϕ and P `≤n ψ imply P `≤q(m+n) ϕ ∧ ψ for all formulas ϕ and ψ.
As with closure under substitutions by constants we also consider efficient versions
of closure under disjunctions and conjunctions.

Another important property of weak proof systems is the feasible interpolation
property defined in [Kra97]. A proof system P has feasible interpolation if there
exists a polynomial time procedure that takes as input a formula ϕ(x̄, ȳ) ∨ ψ(x̄, z̄)
and a P -proof π of ϕ(x̄, ȳ) ∨ ψ(x̄, z̄) and outputs a Boolean circuit C(x̄) such that
for every propositional assignment ā the following holds:

– If C(ā) outputs 0, then ϕ(ā, ȳ) is a tautology.
– If C(ā) outputs 1, then ψ(ā, z̄) is a tautology.

2.2 Propositional Proof Systems and Arithmetic Theories

In Sect. 6 we will use the correspondence of propositional proof systems to theories of
bounded arithmetic. Here we will just briefly introduce some notation and otherwise
refer to the monograph [Kra95]. To explain the correspondence we have to translate
first-order arithmetic formulas into propositional formulas. An arithmetic formula in
prenex normal form with only bounded existential quantifiers is called aΣb

1-formula.
These formulas describe NP-predicates. Likewise, Πb

1-formulas only have bounded
universal quantifiers and describe coNP-predicates. A formula ϕ is ∆b

1 with respect
to an arithmetic theory T if ϕ is in T equivalent both to a Σb

1- and a Πb
1-formula.

A Σb
1- or Πb

1-formula ϕ(x) is translated into a sequence ‖ϕ(x)‖n of propositional
formulas containing one formula per input length for the number x. We use ‖ϕ(x)‖
to denote the set {‖ϕ(x)‖n | n ≥ 1}.

The reflection principle for a propositional proof system P states a strong form
of the consistency of the proof system P . It is formalized by the ∀Π b

1-formula

RFN(P ) = (∀π)(∀ϕ)PrfP (π, ϕ) → Taut(ϕ)

where PrfP and Taut are suitable arithmetic formulas describing P -proofs and
tautologies, respectively. A proof system P has the reflection property if P `∗

‖RFN(P )‖n holds.
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In [KP90] a general correspondence between arithmetic theories T and proposi-
tional proof systems P is introduced. Pairs (T, P ) from this correspondence possess
in particular the following two properties:

1. For all ϕ(x) ∈ Πb
1 with T ` (∀x)ϕ(x) we have P `∗ ‖ϕ(x)‖n.

2. P is the strongest system for which T proves the correctness, i.e. T ` RFN(P )
and if T ` RFN(Q) for a proof system Q, then Q ≤ P .

We call a proof system P regular if there exists an arithmetic theory T such that
the properties 1 and 2 are fulfilled for (T, P ).

We can strengthen these axioms by giving them a constructive formulation. In
this way we define strongly regular proof systems. A propositional proof system P
is strongly regular if there exists an arithmetic theory T such that the following two
properties are fulfilled for (T, P ):

3. Let ϕ(x) be a Πb
1-formula such that T ` (∀x)ϕ(x). Then there exists a polyno-

mial time computable function f that on input 1n outputs a P -proof of ‖ϕ(x)‖n.
4. T ` RFN(P ) and if T ` RFN(Q) for some proof system Q, then Q ≤p P .

Probably the most important example of a strongly regular proof system is the
extended Frege system EF that corresponds to the theory S1

2 . This correspondence
was established in [Bus86] and [KP90]. We refer to the monograph [Kra95] for
detailed background information.

2.3 Disjoint NP-Pairs

A pair (A,B) is called a disjoint NP-pair if A,B ∈ NP and A ∩ B = ∅. The pair
(A,B) is called p-separable if there exists a polynomial time computable set C such
that A ⊆ C and B ∩ C = ∅. Formulated differently, a disjoint NP-pair (A,B) is
p-separable if there exists a polynomial time computable function f that outputs 1
on inputs from A and 0 on inputs from B and answers arbitrarily otherwise.

Grollmann and Selman [GS88] defined the following reduction between disjoint
NP-pairs (A,B) and (C,D): ((A,B) ≤p (C,D)) if there exists a polynomial time
computable function f such that f(A) ⊆ C and f(B) ⊆ D. This variant of a many-
one reduction for pairs was strengthened by Köbler et al. [KMT03] to: (A,B) ≤s

(C,D) if there exists a function f ∈ FP such that f−1(C) = A and f−1(D) = B.
The link between disjoint NP-pairs and propositional proof systems was estab-

lished by Razborov [Raz94], who associated a disjoint NP-pair (Ref(P ), SAT∗) with
a proof system P with

Ref(P ) = {(ϕ, 1m) | P `≤m ϕ}

SAT∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT} .

(Ref(P ), SAT∗) is called the canonical pair of P .
Pudlák [Pud03] introduced an interpolation pair (I1(P ), I2(P )) for a proof sys-

tem P :

I1(P ) = {(ϕ, ψ, π) | P (π) = ϕ ∨ ψ, Var(ϕ) ∩ Var(ψ) = ∅ and ¬ϕ ∈ SAT}

I2(P ) = {(ϕ, ψ, π) | P (π) = ϕ ∨ ψ, Var(ϕ) ∩ Var(ψ) = ∅ and ¬ψ ∈ SAT}

where Var(ϕ) denotes the set of propositional variables occurring in ϕ. This pair is
p-separable if and only if the proof system P has the feasible interpolation property
[Pud03].

In [Bey04] we analysed a variant (U1(P ), U2) of the interpolation pair:

U1(P ) = {(ϕ, ψ, 1m) | Var(ϕ) ∩ Var(ψ) = ∅, ¬ϕ ∈ SAT and P `≤m ϕ ∨ ψ}

U2 = {(ϕ, ψ, 1m) | Var(ϕ) ∩ Var(ψ) = ∅ and ¬ψ ∈ SAT} .
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In the following we will refer to this pair as the U -pair.
More information on the connection between disjoint NP-pairs and propositional

proof systems can be found in [Pud03,Bey04,Bey05,GSZ05].

3 Basic Definitions and Properties

Definition 1. Let k ≥ 2 be a number. A tupel (A1, . . . , Ak) is a disjoint k-tuple
of NP-sets if all components A1, . . . , Ak are nonempty languages in NP which are
pairwise disjoint.

Next we define reductions for k-tuples. We will only consider variants of many-
one reductions which are easily obtained from the reductions ≤p and ≤s for pairs.
As there is no danger of confusion we will use the same symbols ≤p and ≤s for the
generalized versions.

Definition 2. Let (A1, . . . , Ak) and (B1, . . . , Bk) be disjoint k-tuples of NP-sets.
We say that (A1, . . . , Ak) is polynomially reducible to (B1, . . . , Bk), denoted by

(A1, . . . , Ak) ≤p (B1, . . . , Bk) ,

if there exists a polynomial time computable function f such that f(Ai) ⊆ Bi for
all i = 1, . . . , k.

The tuple (A1, . . . , Ak) is strongly reducible to (B1, . . . , Bk), denoted by

(A1, . . . , Ak) ≤s (B1, . . . , Bk) ,

if there exists a polynomial time computable function f such that f is a ≤p-reduction
from (A1, . . . , Ak) to (B1, . . . , Bk) and additionally f(A1 ∪ · · · ∪ Ak) ⊆ B1 ∪ · · · ∪ Bk.

We define from ≤p and ≤s equivalence relations ≡p and ≡s and call their equiv-
alence classes degrees.

Following common terminology we call a disjoint k-tuple of NP-sets ≤p-complete if
every disjoint k-tuple of NP-sets ≤p-reduces to it. Similarly, we speak of ≤s-complete
tuples.

We observe that the complexity of the components of a k-tuple inside a ≤p-
degree can change while this is not possible for ≤s-degrees.

Proposition 3. 1. For every disjoint k-tuple (A1, . . . , Ak) of NP-sets there exists
a disjoint k-tuple (B1, . . . , Bk) of NP-sets such that

(A1, . . . , Ak) ≡p (B1, . . . , Bk)

and B1, . . . , Bk are NP-complete.
2. If f is a ≤s-reduction between the disjoint k-tuples (A1, . . . , Ak) and (B1, . . . , Bk),

then f is a many-one reduction from Ai to Bi for every i = 1, . . . , k.

Proof. For part 1 choose Bi = Ai × SAT. Part 2 follows immediately from the
definition of ≤s. ut

We generalize the notion of a separator of a disjoint NP-pair in the following
way:

Definition 4. A function f : {0, 1}∗ → {1, . . . , k} is a separator for a disjoint
k-tuple (A1, . . . , Ak) of NP-sets if for all a ∈ {0, 1}∗

a ∈ Ai =⇒ f(a) = i for i = 1, . . . , k .

For inputs from the complement A1 ∪ · · · ∪ Ak the function f may answer arbitrar-
ily.

If (A1, . . . , Ak) is a disjoint k-tuple of NP-sets that has a polynomial time com-
putable separator we call the tuple p-separable, otherwise p-inseparable.
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Whether there exist p-inseparable disjoint k-tuples of NP-sets is certainly a hard
problem that cannot be answered with our current techniques. At least we can show
that this question is not harder than the previously studied question whether there
exist p-inseparable disjoint NP-pairs.

Theorem 5. The following are equivalent:

1. For all numbers k ≥ 2 there exist p-inseparable disjoint k-tuples of NP-sets.
2. There exists a number k ≥ 2 such that there exist p-inseparable disjoint k-tuples

of NP-sets.
3. There exist p-inseparable disjoint NP-pairs.

Proof. Trivially, 1 implies 2. We will show 2 ⇒ 3 and 3 ⇒ 1.
In order to prove 2 ⇒ 3 let us assume that all disjoint NP-pairs are p-separable.

Let k ≥ 2 be some number and (A1, . . . , Ak) be a disjoint k-tuple of NP-sets. By
assumption we have separators fi,j for all disjoint NP-pairs (Ai, Aj) with i, j ∈
{1, . . . , k}, i 6= j. We devise a separator for (A1, . . . , Ak) as follows: at input a we
first evaluate all functions fi,j(a). If there exists a number i such that we received
1 at all evaluations fi,j(a) for j ∈ {1, . . . , k} \ {i}, then we output this number
i. If no such i exists, then we know that a is outside A1 ∪ · · · ∪ Ak , and we can
answer arbitrarily. If on the other hand a ∈ Ai, then we always get fi,j(a) = 1 for
j ∈ {1, . . . , k} \ {i}. As only one such i can exist we produce the correct answer.

To show the remaining implication 3 ⇒ 1 let us assume that the disjoint NP-pair
(A,B) is p-inseparable. Without loss of generality we may assume that A ∪B is
infinite because otherwise the pair (A,B) can be trivially modified to a p-inseparable
pair that meets this condition. For a given number k let a3, . . . , ak be distinct
elements from A ∪ B. Then (A,B, {a3}, . . . , {ak}) is a p-inseparable disjoint k-tuple
of NP-sets. ut

The difference between ≤p and ≤s as expressed in Proposition 3 allows us to
separate the reductions ≤p and ≤s on the domain of all p-separable disjoint k-tuples
of NP-sets:

Theorem 6. For all numbers k ≥ 2 the following holds:

1. All p-separable disjoint k-tuples of NP-sets are ≤p-equivalent. They form the
minimal ≤p-degree of disjoint k-tuples of NP-sets.

2. If P 6= NP, then there exist infinitely many ≤s-degrees of p-separable disjoint
k-tuples of NP-sets.

3. P 6= NP if and only if there exist disjoint k-tuples of NP-sets (A1, . . . , Ak) and
(B1, . . . , Bk) with nonempty complements A1 ∪ · · · ∪ Ak and B1 ∪ · · · ∪ Bk such
that (A1, . . . , Ak) ≤p (B1, . . . , Bk), but (A1, . . . , Ak) 6≤s (B1, . . . , Bk).

Proof. For part 1 let (A1, . . . , Ak) be a p-separable disjoint k-tuple with separator
f and let (B1, . . . , Bk) be an arbitrary disjoint k-tuple of NP-sets. Fix arbitrary
elements bi ∈ Bi for i = 1, . . . , k. To compute a reduction from (A1, . . . , Ak) to
(B1, . . . , Bk) we map a to bf(a).

If on the other hand the k-tuple (B1, . . . , Bk) is p-separable via the function
f , and g computes a ≤p-reduction from (A1, . . . , Ak) to (B1, . . . , Bk), then f ◦ g
separates (A1, . . . , Ak).

We now turn to the proof of part 2. By a theorem of Ladner [Lad75] there
exist infinitely many different ≤p

m-degrees of NP-sets assuming P 6= NP. Therefore
Ladner’s theorem together with the following claim imply part 2 of the proposition.

Claim. Let (A1, . . . , Ak) and (B1, . . . , Bk) be p-separable disjoint k-tuple of NP-sets
. Let further B1 ∪ · · · ∪ Bk 6= ∅. Then (A1, . . . , Ak) ≤s (B1, . . . , Bk) if and only if
Ai ≤pm Bi for all i = 1, . . . , k.
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The first direction is clear from the definition of ≤s. For the reverse implication
let f, g ∈ FP be separators of (A1, . . . , Ak) and (B1, . . . , Bk), respectively. Let fur-
ther hi : Ai ≤pm Bi compute the many-one reductions for i = 1, . . . , k and let x0 be
a fixed element from B1 ∪ · · · ∪ Bk. Then the polynomial time computable function

x 7→

{
hf(x)(x) if g(hf(x)(x)) = f(x)
x0 otherwise

is a ≤s-reduction from (A1, . . . , Ak) to (B1, . . . , Bk).
Part 3 is a consequence of parts 1 and 2. ut

4 Representable Disjoint k-Tuples of NP-Sets

In [Bey05] we defined the notion of propositional representations for NP-sets as
follows:

Definition 7. Let A be a NP-set over the alphabet {0, 1}. A propositional repre-
sentation for A is a sequence of propositional formulas ϕn(x̄, ȳ) with the following
properties:

1. ϕn(x̄, ȳ) has propositional variables x̄ and ȳ such that x̄ is a vector of n propo-
sitional variables.

2. There exists a polynomial time algorithm that on input 1n outputs ϕn(x̄, ȳ).
3. Let ā ∈ {0, 1}n. Then ā ∈ A if and only if ϕn(ā, ȳ) is satisfiable.

Once we have propositional descriptions of NP-sets we can now represent disjoint
k-tuples of NP-sets in propositional proof systems.

Definition 8. Let P be a propositional proof system. A disjoint k-tuple (A1, . . . , Ak)
of NP-sets is representable in P if there exist propositional representations ϕin(x̄, ȳi)
of Ai for i = 1, . . . , k such that for each 1 ≤ i < j ≤ k the formulas ϕin(x̄, ȳi) and
ϕjn(x̄, ȳj) have only the variables x̄ in common, and further

P `∗

∧

1≤i<j≤k

¬ϕin(x̄, ȳi) ∨ ¬ϕjn(x̄, ȳ
j) .

By DNPPk(P ) we denote the class of all disjoint k-tuples of NP-sets which are
representable in P .

For DNPP2(P ) we will also write DNPP(P ). In [Bey05] we have analysed this
class for some standard proof systems. As the classes DNPPk(P ) provide natural
generalizations of DNPP(P ) we have chosen the same notation for the classes of
k-tuples.

We will now show that the class DNPPk(P ) is closed under reductions.

Proposition 9. Let P be a proof system that is closed under conjunctions and
disjunctions and that simulates resolution. Then for all numbers k ≥ 2 the class
DNPPk(P ) is closed under ≤p.

Proof. Let (A1, . . . , Ak) and (B1, . . . , Bk) be disjoint k-tuples of NP-sets such that f
is a ≤p-reduction from (A1, . . . , Ak) to (B1, . . . , Bk). Let further P be a propositional
proof system satisfying the above conditions and let (B1, . . . , Bk) ∈ DNPPk(P ).

In [Bey05] we proved that for proof systems P that simulate resolution and are
closed under disjunctions the class DNPP(P ) is closed under ≤p. Closure of P under
conjunctions implies that for all 1 ≤ i < j ≤ k each of the disjoint NP-pairs (Bi, Bj)
is contained in DNPP(P ). As f is also a ≤p-reduction between the disjoint NP-pairs
(Ai, Aj) and (Bi, Bj) we infer that all pairs (Ai, Aj) are in DNPP(P ). Inspecting
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the proof of the relevant result from [Bey05] we see that P proves the disjointness
of these pairs with respect to the representations

A′
i = {x | x ∈ Ai and f(x) ∈ Bi} .

In particular, the representation of Ai is always the same when proving the dis-
jointness of Ai and Aj for different j. Therefore we can combine these proofs of
disjointness by conjunctions and obtain a P -proof of a suitable propositional de-
scription of

∧

1≤i<j≤k

A′
i ∩ A

′
j = ∅ .

This shows (A1, . . . , Ak) ∈ DNPPk(P ). ut

5 Disjoint k-Tuples of NP-Sets from Propositional Proof

Systems

In this section we want to associate tuples of NP-sets with proof systems. It is not
clear how the canonical pair could be modified for k-tuples but the interpolation
pair as well as the U -pair can be stretched to more than two components. We start
with the generalization of the U -pair.

For a propositional proof system P we define a k-tuple (U1(P ), . . . , Uk(P )) with
the components

Ui(P ) = {(ϕ1, . . . , ϕk, 1
m) | Var(ϕj) ∩ Var(ϕl) = ∅ for all 1 ≤ j < l ≤ k,

¬ϕi ∈ SAT and P `≤m

∧

1≤j<l≤k

ϕj ∨ ϕl}

for i = 1, . . . , k. It is clear that all components Ui(P ) are in NP. To see their pairwise
disjointness assume that (ϕ1, . . . , ϕk, 1

m) ∈ Ui(P ) and let j ∈ {1, . . . , k} \ {i}.
Because we have a P -proof of

∧

1≤j<l≤k ϕj∨ϕl, this formula is a tautology. Therefore
in particular ϕi∨ϕj is a tautology and because ϕi and ϕj have no common variables
either of these formulas must be tautological. As in the definition of Ui(P ) this is
excluded for ϕi the formula ϕj is a tautology. But this implies (ϕ1, . . . , ϕk, 1

m) 6∈
Uj(P ).

Similarly, we can expand the interpolation pair to a k-tuple (I1(P ), . . . , Ik(P ))
be setting

Ii(P ) = {(ϕ1, . . . , ϕk , π) | Var(ϕj) ∩ Var(ϕl) = ∅ for all 1 ≤ j < l ≤ k,

¬ϕi ∈ SAT and P (π) =
∧

1≤j<l≤k

ϕj ∨ ϕl}

for i = 1, . . . , k. The same argument as above shows that (I1(P ), . . . , Ik(P )) is
indeed a disjoint k-tuple of NP-sets. Further, this tuple still captures the feasible
interpolation property of the proof system P as the next theorem shows.

Theorem 10. Let P be a propositional proof system that is efficiently closed under
substitutions by constants and conjunctions. Then (I1(P ), . . . , Ik(P )) is p-separable
if and only if P has the feasible interpolation property.

Proof. For the first direction assume that (I1(P ), . . . , Ik(P )) is separated by the
polynomial time computable function f , i.e.

(ϕ1, . . . , ϕk, π) ∈ Ii(P ) =⇒ f(ϕ, . . . , ϕk, π) = i

8



for i = 1, . . . , k. To show feasible interpolation for P let ϕ(x̄, ȳ) ∨ ψ(x̄, z̄) be given
together with a P -proof π of this disjunction. In order to generate the interpolation
circuit C we first compute at input ā a P -proof π′ of ϕ(ā, ȳ)∨ψ(ā, z̄) from π which
is hardwired into C. Then we form the k-tuple

(ϕ1, . . . , ϕk) = (ϕ(ā, ȳ), ψ(ā, z̄),>, . . . ,>)

where > is some simple tautology. We use the assumption that P is efficiently closed
under conjunctions to generate a P -proof π′′ of

∧

1≤i<j≤k ϕi ∨ ϕj from π′. Finally,
we evaluate f(ϕ, ψ,>, . . . ,>, π′′). We use this answer to decide the input ā, i.e. on
output 1 we also answer with 1 and on output 2 we answer with 0.

For the converse direction assume that P has feasible interpolation. Let f be a
polynomial time computable function that on input (ϕ(x̄, ȳ)∨ψ(x̄, z̄), π) computes
an interpolation circuit for ϕ(x̄, ȳ)∨ψ(x̄, z̄). We separate the tuple (I1(P ), . . . , Ik(P ))
by the following algorithm: at input (ϕ1, . . . , ϕk, π) we test whether the formulas
ϕi have no common variables and π is indeed a P -proof of

∧

1≤i<j≤k

ϕi ∨ ϕj .

If this is the case we can use the assumption that P is efficiently closed under
conjunctions to compute P -proofs πi,j of ϕi ∨ ϕj for all i, j ∈ {1, . . . , k}, i 6= j. We
then test whether there exists an i ∈ {1, . . . , k} such that for all j ∈ {1, . . . , k} \ {i}
the function f on input (ϕi ∨ ϕj , πi,j) outputs a circuit without free inputs that
evaluates to 1. If such i exists, then we output this i.

It is clear that this algorithm runs in polynomial time. To see the correctness
of the algorithm assume that (ϕ1, . . . , ϕk, π) ∈ Ii(P ). Then ¬ϕi is satisfiable and
hence ϕi is not tautological. Therefore the circuit f(ϕi ∨ ϕj , πi,j) always evaluates
to 1. As this can happen for at most one i we give the correct answer. ut

The next theorem shows that for all proof systems P we can find hard k-tuples
for the classes DNPPk(P ).

Theorem 11. Let P be a proof system that is closed under substitutions by con-
stants. Then for every k ≥ 2 the k-tuple (U1(P ), . . . , Uk(P )) is ≤s-hard for DNPPk(P ).

Proof. Let (A1, . . . , Ak) be a disjoint k-tuple of NP-sets and let ϕin(x̄, ȳi) be propo-
sitional representations of Ai for i = 1, . . . , k such that

P `∗

∧

1≤i<j≤k

¬ϕin(x̄, ȳ
i) ∨ ¬ϕjn(x̄, ȳj) .

We claim that there exists a polynomial p such that

a 7→ (¬ϕ1
|a|(ā, ȳ

1), . . . ,¬ϕk|a|(ā, ȳ
k), 1p(|a|))

realizes a ≤s-reduction from (A1, . . . , Ak) to (U1(P ), . . . , Uk(P )).
To verify the claim let a be an element from Ai of length n. Because ϕin(x̄, ȳi)

represents Ai the formula ϕin(ā, ȳ) is satisfiable. As P is closed under substitutions
by constants we have

P `≤p(n)

∧

1≤i<j≤k

¬ϕin(ā, ȳi) ∨ ¬ϕjn(ā, ȳj)

for the appropriate polynomial p. Therefore

(¬ϕ1
n(ā, ȳ1), . . . ,¬ϕkn(ā, ȳ

k), 1p(|a|)) ∈ Ui(P ) .

If the element a comes from the complement of A1 ∪ · · · ∪Ak , then none of the
formulas ϕi(ā, ȳ

i), i = 1, . . . , k is satisfiable and hence a is mapped to a tuple from
the complement of U1(P ) ∪ · · · ∪ Uk(P ). ut
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For technical reasons we now introduce a modification (V1(P ), . . . , Vk(P )) of the
U -tuple for which we will also show the hardness for DNPPk(P ). Instead of k-tuples
the components Vr(P ) now consist of sequences of (k − 1)k formulas together with
an unary coded parameter m. For a propositional proof system P we define the
k-tuple (V1(P ), . . . , Vk(P )) as:

Vr(P ) = {((ϕi,j | 1 ≤ i, j ≤ k, i 6= j), 1m) |

Var(ϕi,j) ∩ Var(ϕl,n) = ∅ for all i, j, l, n ∈ {1, . . . , k}, i 6= l,

¬ϕr,i ∈ SAT for i ∈ {1, . . . , k} \ {r} and P `≤m

k∧

i=1

k∧

j=i+1

ϕi,j ∨ ϕj,i}

for i = r, . . . , k. Let us verify that we have defined a disjoint k-tuple of NP-sets. It
is clear that all components Vr(P ) are in NP. To prove their disjointness assume
that the tuple ((ϕi,j | 1 ≤ i, j ≤ k, i 6= j), 1m) is contained both in Vr(P ) and Vs(P )
for r, s ∈ {1, . . . , k}, r < s. The definition of Vr guarantees that

k∧

i=1

k∧

j=i+1

ϕi,j ∨ ϕj,i

is a tautology. Therefore in particular ϕr,s ∨ ϕs,r is a tautology and because ϕr,s
and ϕs,r have no common variables either of these formulas must be tautological.
In the definition of Vr(P ) this is excluded for ϕr,s and in the definition of Vs(P )
this is excluded for ϕs,r which gives a contradiction.

As this V -tuple is a generalization of the previously defined U -tuple we can
reduce the U -tuple to the V -tuple, thereby showing the hardness result for the
V -tuple:

Proposition 12. Let P be a proof system that is closed under substitutions by con-
stants. Then for every k ≥ 2 the pair (V1(P ), . . . , Vk(P )) is ≤s-hard for DNPPk(P ).

Proof. By Theorem 11 we know that (U1(P ), . . . , Uk(P )) is ≤s-hard for DNPPk(P )
for proof systems P that are closed under substitutions by constants. Therefore, to
prove the result it is sufficient to ≤s-reduce (U1(P ), . . . , Uk(P )) to (V1(P ), . . . , Vk(P )).
The reduction is given by

f : (ϕ1, . . . , ϕk, 1
m) 7→ (ϕ1, . . . , ϕ1

︸ ︷︷ ︸

k−1

, ϕ2, . . . , ϕ2
︸ ︷︷ ︸

k−1

, . . . , ϕk, . . . , ϕk
︸ ︷︷ ︸

k−1

, 1m) .

To prove the correctness of the reduction it is enough to observe that for each i =
1 . . . , k we have (ϕ1, . . . , ϕk, 1

m) ∈ Ui(P ) if and only if f(ϕ1, . . . , ϕk, 1
m) ∈ Vi(P ).

This is true because the conditions on the satisfiability and the disjointness of the
variables of the formulas are trivially preserved, and the formulas

∧

1≤j<l≤k

ϕj ∨ ϕl =

k∧

j=1

k∧

l=j+1

ϕj ∨ ϕl

which should be P -provable in size ≤ m are equal. ut

6 Arithmetic Representations

In [Raz94] and [Bey04] arithmetic representations of disjoint NP-pairs were investi-
gated. These form a uniform first-order counterpart to the propositional representa-
tions introduced in the previous section. We now generalize the notion of arithmetic
representations to disjoint k-tuples of NP-sets.
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Definition 13. A Σb
1-formula ϕ is an arithmetic representation of an NP-set A if

for all natural numbers a

N |= ϕ(a) ⇐⇒ a ∈ A .

A disjoint k-tuple (A1, . . . , Ak) of NP-sets is representable in an arithmetic theory
T if there are Σb

1-formulas ϕ1(x), . . . , ϕk(x) representing A1, . . . , Ak such that

T ` (∀x)
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x) .

By DNPPk(T ) we denote the class of all disjoint k-tuples of NP-sets that are repre-
sentable in T .

We now show that the uniformly defined classes DNPPk(T ) coincide with the
non-uniformly defined classes DNPPk(P ) for regular proof systems P corresponding
to the theory T .

Theorem 14. Let P ≥ EF be a regular proof system which is closed under substi-
tutions by constants and conjunctions and let T ⊇ S1

2 be a theory corresponding to
T . Then we have DNPPk(P ) = DNPPk(T ) for all k ≥ 2.

Proof. We start with the proof of the inclusion DNPPk(P ) ⊆ DNPPk(T ). We will
first show this inclusion for k = 2 and then infer from it the inclusion for higher k.

Let (A,B) be a disjoint NP-pair in DNPP(P ) and let ϕn(x̄, ȳ) and ψn(x̄, z̄) be
propositional representations for A and B, respectively, such that

P `∗ ¬ϕn(x̄, ȳ) ∨ ¬ψn(x̄, z̄) .

Because P is closed under substitutions by constants there exists a polynomial p
such that for all ā ∈ {0, 1}n

P `≤p(n) ¬ϕn(ā, ȳ) ∨ ¬ψn(ā, z̄) . (1)

Assume further that the polynomial time computable functions f and g generate
the formulas ϕn and ψn, i.e.

f(1n) = ϕn(x̄, ȳ) and g(1n) = ψn(x̄, z̄) .

Consider the first-order formula

θ(α) = Assign(α, x̄) ∧ ¬Taut(¬f(1|α|)(α(x̄), ȳ)) .

As this notation is not completely precise let us explain how to understand the
definition of θ. At input 1|α| the function f outputs the formula ϕ|α|(x̄, ȳ). In θ the

computation of f is expressed by a Σb
1-formula. Then we use again the free variable

α of θ to obtain a propositional assignment to the propositional variables x̄. The
formula ¬Taut(¬f(1|α|)(α(x̄), ȳ)) then is a Σb

1-formulation for the unsatisfiability
of ϕ|α|(x̄, ȳ), where the variables x̄ are substituted by the constants specified in α
and only the variables ȳ remain free.

The above explanation shows that θ is a Σb
1-formula. Moreover, it is clear that

θ represents A. We augment this representation by a first-order description of (1),
arriving at

ϕ(α) = θ(α) ∧ (∃π)|π| ≤ p(|α|) ∧ PrfP (π,¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

Let us argue that this is indeed an arithmetic representation of A. We already
verified that θ ∈ Σb

1. As PrfP has a ∆b
1-definition in S1

2 and T ⊇ S1
2 also the second

part can be given a Σb
1-formulation, and hence ϕ ∈ Σb

1.

11



Let ā ∈ {0, 1}|α| be the tupel of constants specified by the assignment α. Then
θ expresses ā ∈ A. Because

¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)

equals the formula
¬ϕ|α|(ā, ȳ) ∨ ¬ψ|α|(ā, z̄)

which by assumption has a P -proof of length ≤ p(|α|) also the second part of ϕ is
fulfilled for ā ∈ A. Therefore ϕ represents A.

Similarly, we define a representation for B as

ψ(α) = Assign(α, x̄) ∧ ¬Taut(¬g(1|α|)(α(x̄), z̄)) ∧

(∃π)|π| ≤ p(|α|) ∧ PrfP (π,¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

It remains to verify that T can prove the disjointness of A and B with respect
to the above representations. For this assume that M is a model of T and α ∈ M
is an element such that M |= ψ(α). In particular this means that there exists an
element π ∈M such that

M |= PrfP (π,¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

Because T ` RFN(P ) this implies

M |= Taut(¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

The theory T ⊇ S1
2 is strong enough to prove Tarski’s truth conditions for the

propositional satisfaction relation |= (cf. [Kra95] Lemma 9.3.9). In particular T
proves

(∀ϕ, ψ, α)Assign(α, ϕ ∨ ψ) ∧ (α |= ϕ ∨ ψ) → (α |= ϕ) ∨ (α |= ψ) .

Therefore T proves that a tautological disjunction of formulas without common
variables contains at least one tautological disjunct, and hence we get

M |= Taut(¬f(1|α|)(α(x̄), ȳ)) ∨ Taut(¬g(1|α|)(α(x̄), z̄)) .

But because M |= ψ(α) we also have

M |= ¬Taut(¬g(1|α|)(α(x̄), z̄))

implying
M |= Taut(¬f(1|α|)(α(x̄), ȳ)) .

and therefore M 6|= ϕ(α). Hence we have shown T ` (∀x)¬ϕ(x) ∨ ¬ψ(x).
To show DNPPk(P ) ⊆ DNPPk(T ) for k > 2 let (A1, . . . , Ak) be a disjoint k-tuple

of NP-sets in DNPPk(P ) and let ϕin be propositional representations of the sets Ai
for i = 1, . . . , k, such that

P `∗

∧

1≤i<j≤k

¬ϕin ∨ ¬ϕjn . (2)

Because P is closed under conjunctions this in particular means

P `∗ ¬ϕin ∨ ¬ϕjn

for all 1 ≤ i < j ≤ k, i.e. all disjoint NP-pairs (Ai, Aj) are contained in DNPP(P ).
As we have already shown DNPP(P ) ⊆ DNPP(T ) this implies that for all 1 ≤ i <
j ≤ k we have (Ai, Aj) ∈ DNPP(T ) where the disjointness of (Ai, Aj) is T -provable
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via arithmetic representations ψi(x) for Ai depending only on the set Ai and the
polynomial in (2). Hence we get

T ` (∀x)
∧

1≤i<j≤k

¬ψi(x) ∨ ¬ψj(x) (3)

and therefore (A1, . . . , Ak) ∈ DNPPk(T )
To prove the inclusion DNPPk(T ) ⊆ DNPPk(P ) let ψ1(x), . . . , ψk(x) be arith-

metic representations of A1, . . . , Ak such that (3) holds. Then the translations
‖ψi(x)‖n of the arithmetic representations ψi provide propositional representations
of Ai for i = 1, . . . , k. In these translations we choose the auxiliary variables disjoint.
Because

∧

1≤i<j≤k ¬ψi(x) ∨ ¬ψj(x) is a Πb
1-formula we get from (3)

P `∗ ‖
∧

1≤i<j≤k

¬ψi(x) ∨ ¬ψj(x)‖
n .

By definition of the translation ‖.‖ this is equivalent to

P `∗

∧

1≤i<j≤k

¬‖ψi(x)‖
n ∨ ¬‖ψj(x)‖

n

and therefore (A1, . . . , Ak) ∈ DNPPk(P ) ut

At first sight Theorem 14 might come as a surprise as it states that the non-
uniform and uniform concepts equal when representing disjoint k-tuples of NP-sets
in regular proof systems. The uniform representations of k-tuples are translated
via ‖.‖ to non-uniform representations in a straightforward manner. For the trans-
formation of propositional representations into first-order formulas it is, however,
necessary to essentially change the representations of the components.

We now observe that all the k-tuples that we associated with a proof system P
are representable in P if the system is regular.

Lemma 15. Let P be a regular proof system. Then for all numbers k ≥ 2 the
k-tuples (U1(P ), . . . , Uk(P )), (V1(P ), . . . , Vk(P )) and (I1(P ), . . . , Ik(P )) are repre-
sentable in P .

Proof. Let P be regular and T be a theory associated with P . We show the rep-
resentability of (U1(P ), . . . , Uk(P )), (V1(P ), . . . , Vk(P )) and (I1(P ), . . . , Ik(P )) in
T .

As arithmetic representations for the components Ui(P ), Vi(P ) and Ii(P ) we
choose straightforward first-order formalizations which use the formulas Taut and
PrfP . Using the reflection principle of P which is available in T we can devise T -
proofs of the arithmetic formalizations of Ui(P ) ∩ Uj(P ) = ∅, Vi(P ) ∩ Vj(P ) = ∅
and Ii(P ) ∩ Ij(P ) = ∅ for all 1 ≤ i < j ≤ k. Combining these proofs we get the
representability of (U1(P ), . . . , Uk(P )), (V1(P ), . . . , Vk(P )) and (I1(P ), . . . , Ik(P ))
in T .

Because the inclusion DNPPk(T ) ⊆ DNPPk(P ) in Theorem 14 follows alone
from the regularity of P we infer that these tuples are also representable in the
proof system P . ut

Combining Theorem 11 and Lemma 15 we conclude:

Corollary 16. Let P be a regular proof system that is closed under substitutions
by constants. Then for every k ≥ 2 the pair (U1(P ), . . . , Uk(P )) is ≤s-complete for
DNPPk(P ).

For strongly regular proof systems P we can additionally show the ≤s-completeness
of the k-tuple (I1(P ), . . . , Ik(P )) for DNPPk(P ):
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Theorem 17. Let P ≥ EF be a strongly regular proof system that is efficiently
closed under substitutions by constants. Then for all numbers k ≥ 2 the tuples
(U1(P ), . . . , Uk(P )) and (I1(P ), . . . , Ik(P )) are ≤s-complete for DNPPk(P ). In par-
ticular we have (U1(P ), . . . , Uk(P )) ≡s (I1(P ), . . . , Ik(P )).

Proof. The ≤s-completeness of (U1(P ), . . . , Uk(P )) was already stated in Corol-
lary 16.

As by Lemma 15 also (I1(P ), . . . , Ik(P )) is representable in P it remains to
show that (I1(P ), . . . , Ik(P )) is ≤s-hard for DNPPk(P ). For this let (A1, . . . , Ak) be
a disjoint k-tuple of NP-sets that is representable in P . By Theorem 14 we know
that (A1, . . . , Ak) is also representable in the theory T corresponding to P . Let
ϕi(x) be arithmetic representations of Ai for i = 1, . . . , k such that

T ` (∀x)
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x) .

Because this is a ∀Πb
1-formula and P is strongly regular there exists a polynomial

time computable function f that on input 1n produces a P -proof of

‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
n .

Further, because by assumption P is efficiently closed under substitutions by con-
stants we can use f to obtain a polynomial time computable function g that on
input ā ∈ {0, 1}n outputs a P -proof of

‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
n(p̄x/ā)

where the propositional variables p̄x for x are substituted by the bits of a.
We claim that the ≤s-reduction from (A1, . . . , Ak) to (I1(P ), . . . , Ik(P )) is given

by
a 7→ ((‖¬ϕi(x)‖

|a|(p̄x/ā) | 1 ≤ i ≤ k), g(ā))

where the auxiliary variables of ‖¬ϕi(x)‖|a| are all chosen disjoint. Verifying the
correctness of the reduction then proceeds as in the proof of Theorem 11. ut

As a corollary we get from Proposition 9 and Theorem 17 for the extended Frege
system EF :

Corollary 18. For every number k ≥ 2 and every disjoint k-tuple (A1, . . . , Ak)
of NP-sets we have (A1, . . . , Ak) ∈ DNPPk(EF ) if and only if (A1, . . . , Ak) ≤s
(U1(EF ), . . . , Uk(EF )).

Additionally, we have (U1(EF ), . . . , Uk(EF )) ≡s (I1(EF ), . . . , Ik(EF )).

The corollary is also true for all extensions EF + ‖Φ‖ of the extended Frege
systems for polynomial time sets Φ of true Πb

1-formulas.
The equivalence of the interpolation tuple and the U -tuple for strong systems as

stated in Theorem 17 might come unexpected as the first idea for a reduction from
the U -tuple to the I-tuple probably is to generate proofs for

∧

1≤j<l≤k ϕj ∨ ϕl at
input (ϕ1, . . . , ϕk, 1

m). This, however, is not possible for extensions of EF , because
a reduction from (U1(P ), . . . , Uk(P )) to (I1(P ), . . . , Ik(P )) of the form

(ϕ1, . . . , ϕk, 1
m) 7→ (ϕ1, . . . , ϕk, π)

implies the automatizability of the system P . But it is known that automatizability
fails for strong systems P ≥ EF under cryptographic assumptions [KP98,Pud03].
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7 On Complete Disjoint k-Tuples of NP-Sets

In this section we will study the question whether there exist complete disjoint k-
tuples of NP-sets under the reductions ≤p and ≤s. We will not be able to answer this
question but we will relate it to the previously studied questions whether there exist
complete disjoint NP-pairs or optimal propositional proof systems. The following is
the main theorem of this section:

Theorem 19. The following conditions are equivalent:

1. For all numbers k ≥ 2 there exists a ≤s-complete disjoint k-tuple of NP-sets.
2. For all numbers k ≥ 2 there exists a ≤p-complete disjoint k-tuple of NP-sets.
3. There exists a ≤p-complete disjoint NP-pair.
4. There exists a number k ≥ 2 such that there exists a ≤p-complete disjoint k-tuple

of NP-sets.
5. There exists a propositional proof system P such that for all numbers k ≥ 2 all

disjoint k-tuples of NP-sets are representable in P .
6. There exists a propositional proof system P such that all disjoint NP-pairs are

representable in P .
7. There exists a propositional proof system P and a number k ≥ 2 such that all

disjoint k-tuples of NP-sets are representable in P .

Proof. To show the equivalence of 1 to 7 we will prove the following implications: 1
⇒ 2 ⇒ 3 ⇒ 6 ⇒ 1 and the equivalences 3 ⇔ 4, 5 ⇔ 6 and 6 ⇔ 7.

As the implications 1 ⇒ 2 ⇒ 3 ⇒ 4 and 5 ⇒ 6 ⇒ 7 are trivial it remains to
prove 3 ⇒ 6 ⇒ 1, 4 ⇒ 3, 6 ⇒ 5 and 7 ⇒ 6.

To prove the implication 3 ⇒ 6 assume that (A,B) is a ≤p-complete disjoint
NP-pair. We choose some representations ϕn and ψn for A and B, respectively.
Let P be a proof system such that (A,B) is representable in P , and P simulates
resolution and is closed under conjunctions and disjunctions. For instance the proof
system

EF + {¬ϕn ∨ ¬ψn | n ≥ 0}

fulfills these conditions. Because (A,B) is representable in P and DNPP(P ) is closed
under ≤p by Proposition 9, it follows that all disjoint NP-pairs are representable in
the system P .

Next we prove the implication 6 ⇒ 1. Let P be a propositional proof system such
that all disjoint NP-pairs are representable in P . We choose a proof system Q ≥ P
that is closed under conjunctions and substitutions by constants. As Q simulates P
also the class DNPP(Q) contains all disjoint NP-pairs. We claim that for all k ≥ 2
the pair (V1(Q), . . . , Vk(Q)) is ≤s-complete for the class of all disjoint k-tuples of
NP-sets. To verify the claim let (A1, . . . , Ak) be a disjoint k-tuple of NP-sets. In
particular, for all 1 ≤ i < j ≤ k the pair (Ai, Aj) is a disjoint NP-pair. By as-
sumption all these pairs are representable in Q. However, we might need different
representations for the sets Ai to prove the disjointness of all these pairs. For exam-
ple proving A1 ∩A2 = ∅ and A1 ∩A3 = ∅ might require two different propositional
representations for A1. For this reason we cannot simply reduce (A1, . . . , Ak) to
(U1(P ), . . . , Uk(P )). But we can reduce (A1, . . . , Ak) to (V1(P ), . . . , Vk(P )) which
was designed for this particular purpose.

For 1 ≤ i < j ≤ k let ϕi,jn (x̄, ȳi,j) and ϕj,in (x̄, ȳj,i) be propositional represen-
tations of Ai and Aj , respectively, such that all tuples of variables ȳi,j are chosen
distinct and

Q `∗ ¬ϕi,jn (x̄, ȳi,j) ∨ ¬ϕj,in (x̄, ȳj,i) .

Because Q is closed under conjunctions we can combine all these proofs to obtain

Q `∗

k∧

i=1

k∧

j=i+1

¬ϕi,jn (x̄, ȳi,j) ∨ ¬ϕj,in (x̄, ȳj,i) . (4)
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The reduction from (A1, . . . , Ak) to (V1(P ), . . . , Vk(P )) is given by

a 7→ ((¬ϕi,jn (ā, ȳi,j) | 1 ≤ i, j ≤ k, i 6= j), 1p(m))

for some appropriate polynomial p which comes from (4) and the closure of Q
under substitutions by constants. To prove the correctness of the reduction let a
be an element from Ar for some r ∈ {1, . . . , k}. As for all j ∈ {1, . . . , k} \ {r} the
sequences ϕr,jn are representations for Ar all formulas ϕr,jn (ā, ȳr,j) are satisfiable.
By substituting the bits ā of a for the variables x̄ we get from (4) polynomial size
Q-proofs of

k∧

i=1

k∧

j=i+1

¬ϕi,jn (ā, ȳi,j) ∨ ¬ϕj,in (ā, ȳj,i) .

This shows ((¬ϕi,jn (ā, ȳi,j) | 1 ≤ i, j ≤ k, i 6= j), 1p(m)) ∈ Vr(Q).

If a is in the complement of A1 ∪ · · · ∪Ak , then none of the formulas ϕi,jn (ā, ȳi,j)
is satisfiable and hence a is mapped to a tuple from the complement of V1(P )∪· · ·∪
Vk(P ).

We proceed with the proof of the implication 4 ⇒ 3. Assume that (A1, . . . , Ak) is
a ≤p-complete disjoint k-tuple of NP-sets. We claim that (A1, A2) is a ≤p-complete
disjoint NP-pair. To prove this let (B1, B2) be an arbitrary disjoint NP-pair. Without
loss of generality we may assume that the complement of B1 ∪B2 contains at least
k − 2 distinct elements b3, . . . , bk, because otherwise we can change from (B1, B2)
to a ≤p-equivalent pair with this property. Since (A1, . . . , Ak) is ≤p-complete for all
k-tuples there exists a reduction f from (B1, B2, {b3}, . . . , {bk}) to (A1, . . . , Ak). In
particular f is then a reduction from (B1, B2) to (A1, A2).

Next we prove the implication 6 ⇒ 5. Let P be a proof system such that all
disjoint NP-pairs are representable in P . We choose a regular proof system Q that
simulates P and is closed under conjunctions, disjunctions and substitutions by
constants, for example Q = EF + RFN(P ) is such a system. Clearly, every disjoint
NP-pair is also representable in Q. Going back to the proof of 6 ⇒ 1 we see that
condition 6 implies that for all k ≥ 2 the k-tuple (V1(Q), . . . , Vk(Q)) is ≤s-complete
for the class of all disjoint k-tuples of NP-sets. By Lemma 15 (V1(Q), . . . , Vk(Q)) is
representable in Q and by Proposition 9 the class DNPPk(Q) is closed under ≤s.
Therefore for all k ≥ 2 all disjoint k-tuples of NP-sets are representable in Q.

The last part of the proof is the implication 7 ⇒ 6. For this let P be a proof sys-
tem and k be a number such that all disjoint k-tuples of NP-sets are representable
in P . We choose some proof system Q that simulates P and is closed under con-
junctions. As Q ≥ P all disjoint k-tuples of NP-sets are representable in Q. To show
that also all disjoint NP-pairs are representable in the system Q let (B1, B2) be a
disjoint NP-pair. As in the proof of 4 ⇒ 3 we stretch (B1, B2) to a disjoint k-tuple
(B1, B2, {b3}, . . . , {bk}) with some elements b3, . . . , bk ∈ B1 ∪ B2. By assumption
(B1, B2, {b3}, . . . , {bk}) is representable in Q via some representations ϕ1

n, . . . , ϕ
k
n.

Because Q is closed under conjunctions this implies that Q proves the disjointness
of B1 and B2 with respect to ϕ1

n and ϕ2
n, hence (B1, B2) is representable in Q. ut

We can also characterize the existence of complete disjoint k-tuples of NP-sets
by conditions on arithmetic theories, thereby extending the list of characterizations
from Theorem 19 by the items listed in the next theorem:

Theorem 20. The following conditions are equivalent:

1. For all numbers k ≥ 2 there exists a ≤s-complete disjoint k-tuple of NP-sets.
2. There exists a finitely axiomatized arithmetic theory T such that for all numbers

k ≥ 2 all disjoint k-tuples of NP-sets are representable in T .
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3. There exists an arithmetic theory T with a polynomial time set of axioms such
that for some number k ≥ 2 all disjoint k-tuples of NP-sets are representable in
T .

Proof. We start with the proof of the implication 1 ⇒ 2. By Theorem 19 we know
already that condition 1 implies the existence of a proof system P in which all
disjoint k-tuples of NP-sets are representable. Because P is simulated by the proof
system EF + RFN(P ) all k-tuples are also representable in EF + RFN(P ). This
system is regular and corresponds to the theory S1

2+RFN(P ) (cf. [Bey05]). Therefore
all disjoint k-tuples of NP-sets are representable in S1

2 + RFN(P ) by Theorem 14.
As the theory S1

2 is finitely axiomatizable (cf. [Kra95]) we have proven condition 2.
As condition 3 obviously is a weakening of condition 2 it remains to prove 3 ⇒ 1.

For this let k ≥ 2 be a natural number and T be an arithmetic theory such that
DNPPk(T ) contains all disjoint k-tuples of NP-sets. Consider the theory T ′ = T∪S1

2 .
As T ′ is an extension of T all k-tuples are also representable in T ′. As in [KP89] we
define from the theory T ′ a propositional proof system P as follows:

P (π) =

{
ϕ if π is a T ′-proof of Taut(ϕ)
> otherwise

Because T ′ has a polynomial time axiomatization this defines indeed a propositional
proof system. We claim that all k-tuples are representable in P . To verify this claim
let (A1, . . . , Ak) be a disjoint k-tuple of NP-sets. By hypothesis there exist arithmetic
representations ϕ1, . . . , ϕk of A1, . . . , Ak such that

T ` (∀x)
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x) . (5)

By induction on the logical complexity of a Πb
1-formula ψ(x) we can prove

S1
2 ` (∀x)ψ(x) → (∀y)Taut(‖ψ‖y) .

Therefore we get from (5)

T ′ ` (∀y)Taut(‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
y) .

By the construction of P this implies

P `∗ (‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
n) . (6)

The translations ‖ϕi‖n are propositional representations for Ai for i = 1, . . . , k. By
the definition of the translations ‖.‖ we get from (6)

P `∗ (
∧

1≤i<j≤k

¬‖ϕi(x)‖
n ∨ ¬‖ϕj(x)‖

n) ,

hence (A1, . . . , Ak) is representable in P . Thus all disjoint k-tuples of NP-sets are
representable in P which by Theorem 19 implies condition 1. ut

In Theorem 19 we stated that the existence of complete disjoint NP-pairs is
equivalent to the existence of a propositional proof system P in which every disjoint
NP-pair is representable. By definition this condition means that for all disjoint NP-
pairs there exists a representation for which the disjointness of the pair is provable
with short P -proofs. If we strengthen this condition by requiring that this is possible
for all disjoint NP-pairs and all representations we arrive at a condition which is
strong enough to characterize the existence of optimal proof systems. This is the
contents of the next theorem.
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Theorem 21. The following conditions are equivalent:

1. There exists an optimal propositional proof system.

2. There exists a propositional proof system P such that for all k ≥ 2 the system
P proves the disjointness of all disjoint k-tuples of NP-sets with respect to all
representations, i.e. for all disjoint k-tuples (A1, . . . , Ak) of NP-sets and all
representations ϕ1

n, . . . , ϕ
k
n of A1, . . . , Ak we have P `∗

∧

1≤i<j≤k ¬ϕ
i
n ∨ ¬ϕjn.

3. There exists a propositional proof system P that proves the disjointness of all
disjoint NP-pairs with respect to all representations, i.e. for all disjoint NP-pairs
(A,B) and all representations ϕn of A and ψn of B we have P `∗ ¬ϕn ∨ ¬ψn.

4. There exists a propositional proof system P and a number k ≥ 2 such that
P proves the disjointness of all disjoint k-tuples of NP-sets with respect to all
representations.

Proof. To prove the implication 1 ⇒ 2 let P be an optimal proof system. Let
further (A1, . . . , Ak) be a disjoint k-tuple of NP-sets and let ϕin be propositional
representations of Ai for i = 1, . . . , k. As the sequence of tautologies

∧

1≤i<j≤k

¬ϕin ∨ ¬ϕjn

can be generated in polynomial time we can define some proof system Q with
Q `∗

∧

1≤i<j≤k ¬ϕ
i
n ∨¬ϕjn. But because P is optimal we have Q ≤ P and therefore

also P `∗

∧

1≤i<j≤k ¬ϕ
i
n ∨ ¬ϕjn.

As 2 ⇒ 3 and 3 ⇒ 4 trivially hold it only remains to show 4 ⇒ 1. For this
assume that optimal proof systems do not exist. To prove that condition 4 fails let
k be a natural number and let P be a proof system. We choose some proof system
Q that fulfills the following conditions:

1. Q simulates the systems EF and P . Further, Q is closed under modus ponens,
substitutions and conjunctions.

2. There exists a polynomial p such that for all formulas τ Q `≤m τ(ū) ∨ τ(v̄)
implies Q `≤p(m) τ(ū) where ū and v̄ are disjoint tuples of variables.

Finding a system that fulfills condition 1 is easy: for instance we can take EF +
RFN(P ). To get also condition 2 we can enhance the system EF + RFN(P ) by
accepting (π, τ(ū)) as a proof of τ(ū) if π is an EF + RFN(P )-proof of τ(ū)∨ τ(v̄).
The system Q defined in this way fulfills conditions 1 and 2.

Let now (A1, . . . , Ak) be a disjoint k-tuple of NP-sets. We will prove that there
exists a representation of (A1, . . . , Ak) such that the disjointness of (A1, . . . , Ak) is
not provable in P with respect to this representation. For this we prove the following
claim:

Claim. There exist representations ϕ1
n of A1 and ϕ2

n of A2 such that

Q 6`∗ ¬ϕ1
n ∨ ¬ϕ2

n .

To prove the claim we choose arbitrary representations θn for A1 and ψn for A2.
Because Q ≥ EF is not optimal and fulfills the conditions listed in 1 there exists
a polynomial time constructible sequence τn of tautologies such that Q 6`∗ τn (cf.
[Kra95] Theorem 14.2.2). We define

ϕ1
n(x̄, ȳ, ū) = θn(x̄, ȳ) ∨ ¬τn(ū)

ϕ2
n(x̄, z̄, v̄) = ψn(x̄, z̄) ∨ ¬τn(v̄)
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where all tuples of variables x̄, ȳ, z̄, ū and v̄ are pairwise disjoint. As ¬τn(ū) is not
satisfiable θn(x̄, ȳ)∨¬τn(ū) represents A1. Similarly, ϕ2

n is a propositional represen-
tation for A2. But Q does not prove the disjointness of A1 and A2 with respect to
the representations ϕ1

n and ϕ2
n. Assume on the contrary that

Q `∗ ¬ϕ1
n ∨ ¬ϕ2

n .

By definition this means

Q `∗ ¬(θn(x̄, ȳ) ∨ ¬τn(ū)) ∨ ¬(ψn(x̄, z̄) ∨ ¬τn(v̄)) .

By the choice of Q we get from this polynomial size Q-proofs of

(¬θn(x̄, ȳ)∨¬ψn(x̄, z̄)) ∧ (¬θn(x̄, ȳ)∨τn(v̄)) ∧ (¬ψn(x̄, z̄)∨τn(ū)) ∧ (τn(ū)∨τn(v̄)) .

Because Q is closed under conjunctions we obtain

Q `∗ τn(ū) ∨ τn(v̄) .

Using condition 2 on Q we derive Q `∗ τn(ū). This contradicts the choice of τn as
hard tautologies for Q, and the claim is proved.

To finish the proof we choose arbitrary representations ϕ3
n, . . . , ϕ

k
n forA3, . . . , Ak.

As Q is closed under conjunctions Q does not prove the disjointness of (A1, . . . , Ak)
with respect to ϕ1

n, . . . , ϕ
k
n and as P ≤ Q this is also true for the system P . Hence

condition 4 fails. ut

As an immediate corollary to Theorems 19 and 21 we get a strengthening of
a theorem of Köbler, Messner and Torán [KMT03], stating that the existence of
optimal proof systems implies the existence of ≤s-complete disjoint NP-pairs:

Corollary 22. If there exist optimal propositional proof systems, then there exist
≤s-complete disjoint k-tuples of NP-sets for all numbers k ≥ 2.

Proof. The existence of optimal proof systems implies condition 2 of Theorem 21.
This condition is a strengthening of condition 5 from Theorem 19 which is equivalent
to the existence of ≤s-complete disjoint k-tuples of NP-sets for all k ≥ 2. ut
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