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Abstract. We provide new characterizations of two previously studied ques-
tions on nondeterministic function classes:

Q1: Do nondeterministic functions admit efficient deterministic refinements?
Q2: Do nondeterministic function classes contain complete functions?

We show that Q1 for the class NPMVt is equivalent to the question whether the
standard proof system for SAT is p-optimal, and to the assumption that every
optimal proof system is p-optimal. Assuming only the existence of a p-optimal
proof system for SAT, we show that every set with an optimal proof system
has a p-optimal proof system. Under the latter assumption, we also obtain a
positive answer to Q2 for the class NPMVt.
An alternative view on nondeterministic functions is provided by disjoint sets
and tuples. We pursue this approach for disjoint NP-pairs and its generaliza-
tions to tuples of sets from NP and coNP with disjointness conditions of varying
strength. In this way, we obtain new characterizations of Q2 for the class NPSV.
Question Q1 for NPSV is equivalent to the question whether every disjoint NP-
pair is easy to separate. In addition, we characterize this problem by the question
whether every propositional proof system has the effective interpolation prop-
erty. Again, these interpolation properties are intimately connected to disjoint
NP-pairs, and we show how different interpolation properties can be modeled
by NP-pairs associated with the underlying proof system.

1 Introduction

Most computational tasks are naturally formulated as functional problems, i.e.,
for a given input a solution to the problem instance has to be computed. Quite
in contrast, computational complexity theory mainly studies language problems
and their associated complexity classes. Of course, by studying the undergraph
{〈x, y〉 | y ≤ f(x)} of a function f , every functional problem can be transformed
into a corresponding decision version, which justifies the focus on language com-
plexity. On the other hand, some computational phenomena are most naturally
addressed in the functional setting, and this particularly applies to nondeter-
ministic functions (cf. [54] for a beautiful argument on this theme).

Prominent questions in the functional context are in particular:
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Q1: Do nondeterministic functions possess efficient deterministic refinements?
Q2: Do nondeterministic function classes possess complete functions?

During the last decade these problems have been intensively studied for a variety
of function classes (cf. [53] for a comprehensive taxonomy or [23, 29] for equiv-
alent characterizations). Question Q1 is important in connection with crypto-
graphic applications, as Q1 (for the function class NPMVt) is equivalent to the
question whether all polynomial-time computable onto honest functions are in-
vertible in polynomial time. The question was further characterized by Fenner,
Fortnow, Naik, and Rogers [14] by a number of previously studied complexity-
theoretic assumptions, and they named the list of these equivalences as “Q” (cf.
also [16]). Determining the precise strength of Q seems to be intricate. On the
one hand, Q has unlikely collapse consequences such as P = NP∩ coNP. On the
other hand, Q does not seem as strong as to imply a collapse of the polynomial
hierarchy [10].

In this paper we will argue that the above two questions on function classes
are closely connected to disjoint NP-pairs and their generalizations, as well as to
problems about proof systems. Disjoint NP-pairs have recently been intensively
studied [42, 17–21, 49, 5, 3, 4], mainly, because they are suitable objects to model
the security of cryptosystems [22, 33], and further, because they are intimately
connected to propositional proof systems [45, 42, 19, 21, 3].

Nondeterministic functions were already linked to disjoint coNP-pairs by
Fenner et al. [14]. Here we will extend this connection to further function classes
and disjoint NP-pairs as well as tuples of disjoint NP-sets (cf. [5]) and dis-
joint coNP-pairs. This correspondence provides an alternative view on disjoint
NP-pairs and allows elegant characterizations of Questions Q1 and Q2 above.
Namely, Q1 is equivalent to the statement that every disjoint NP-pair is easy
to separate, while Q2 is equivalent to the problem, whether the class of disjoint
NP-pairs (and its generalizations) possess complete elements. In the context of
NP-pairs, this question was posed by Razborov [45], and it has been intensively
studied during the last years [17, 18, 5, 3, 4]. Our characterizations restate and
unify some of these recent results in terms of nondeterministic functions.

Another important connection of nondeterministic functions (and equiva-
lently of disjoint sets) is to the field of proof systems, as introduced for ar-
bitrary languages by Cook and Reckhow [11]. We will show that in this set-
ting, Question Q1 (for functions from NPSV) can be restated as the question,
whether all propositional proof systems satisfy the effective interpolation prop-
erty (cf. [31, 33]). This again is equivalent to the statement that every disjoint
NP-pair is P/poly-separable, which in turn implies that NP ∩ coNP ⊆ P/poly
and UP ⊆ P/poly.

Similarly, we also provide another characterization of Q (or equivalently,
Question Q1 for functions from NPMVt). Namely, we investigate the problem,
whether the standard proof system sat for SAT is p-optimal4, where proofs in
sat are given by a satisfying assignment for the formula in question. We show
that this question is equivalent to the assertion Q, and it is further characterized
4 Pavel Pudlák posed this question during the discussion after Zenon Sadowski’s talk at

CSL’98 [47]
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by the statement that the two common notions of reductions between proof
systems, i.e., simulations [32] and p-simulations [11], coincide. Thus Q is also
equivalent to the statement that every optimal proof system is p-optimal. Under
the weaker assumption of the mere existence of a p-optimal proof system for
SAT we can still show that every language with an optimal proof system also
has a (possibly different) p-optimal proof system.

The (likely) assumption that there are no p-optimal proof systems for SAT
(as well as for TAUT) also has some practical implications due to its connection
to the existence of optimal algorithms (cf. [32, 48, 49, 36]). Note that usually a
decision algorithm for SAT also provides a satisfying assignment for any posi-
tive instance. However, if sat is not p-optimal, then no decision algorithm for
SAT that produces satisfying assignments for positive instances can be optimal
(cf. Theorem 16). In fact, a stronger consequence can be derived: if sat is not
p-optimal, then there is a non-sparse set of easy instances from SAT for which
it is hard to produce a satisfying assignment (cf. Theorem 20).

It has been observed in [46, 28] that (p-)optimal proof systems for certain
languages can be used to define complete sets for certain promise classes. For
example, if TAUT has an optimal proof system, then NP∩Sparse has a many-one
complete set, and if TAUT as well as SAT have a p-optimal proof system, then
NP ∩ coNP has a complete set. We complete this picture here by showing that
already a p-optimal proof system for SAT can be used to derive completeness
consequences.

In particular, we prove that a p-optimal proof system for SAT implies com-
plete functions for NPMVt (which in turn implies complete disjoint coNP-pairs).
Further, the existence of an optimal proof system for TAUT implies the ex-
istence of complete functions for NPkV (or equivalently, complete tuples of
NP-sets with some disjointness conditions). And finally, the existence of opti-
mal proof systems for TAUT and p-optimal proof systems for SAT implies the
existence of complete functions for NPSVt (or equivalently, complete sets for
NP ∩ coNP).

Overview of the Paper

This paper is organized as follows. After fixing notation and reviewing relevant
definitions about function classes, proof systems, and disjoint tuples (Sect. 2),
we start in Sect. 3 by exploring the connections between nondeterministic func-
tions and pairs (as well as tuples) of disjoint sets. Particular attention is directed
towards the problem of the existence of complete functions and pairs for the
respective classes (Question Q2 above).

Section 4 is devoted to Question Q1 above, i.e., whether functions from
NPSV possess total refinements in FP or FP/poly. It turns out that this questions
is intimately connected to different interpolation properties of propositional
proof systems, and we characterize these interpolation properties by disjoint
NP-pairs, associated with the proof system.

In Sect. 5 we investigate whether the standard proof system sat for SAT
is p-optimal. We show this question to be equivalent to the assertion Q from
[14] (and hence to Question Q1 for NPMVt). In addition we provide several
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new characterizations of this problem in terms of simulations and optimal al-
gorithms.

Finally, in Sect. 6 we analyse the weaker question whether there exists a p-
optimal proof system for SAT. We show that this is equivalent to the statement
that every language with an optimal proof system also has a p-optimal proof
system, and derive some collapse consequences from these assumptions.

2 Preliminaries and Notation

Let Σ = {0, 1}. We denote the cardinality of a set A by ‖A‖ and the length
of a string x ∈ Σ∗ by |x|. The empty word is denoted by λ. FP is the class of
(partial) functions that can be computed in polynomial time. A set S is called
sparse if the cardinality of S ∩Σn is bounded above by a polynomial in n. S is
called printable if there exists a function in FP which on input 1n outputs all
elements in S of length n. We use 〈·, . . . , ·〉 to denote a standard polynomial-
time computable tupling function. For the definitions of standard complexity
classes like P, NP etc. we refer to the monographs [2] and [39].

A function h is called FP-invertible if there is a function f ∈ FP that inverts
h, i.e., h(f(y)) = y for each y in the range of h. A function h is honest if for
some polynomial p, p(|h(x)|) ≥ |x| holds for all x in the domain of h. We call a
function g an extension of a function f if f(x) = g(x) for any x in the domain
of f . A function r : N → N is called super-polynomial if for each polynomial
p, r(n) > p(n) for almost every n ≥ 0. A set B ∈ P with B ⊆ L is called a
P-subset of L.

2.1 Nondeterministic Function Classes

A nondeterministic polynomial-time Turing machine (NPTM, for short) is a
Turing machine N such that for some polynomial p, every accepting path of
N on any input of length n is at most of length p(n). A nondeterministic
transducer is a nondeterministic Turing machine T with a write-only output
tape. On input x, T outputs y ∈ Σ∗ (in symbols: T (x) 7→ y) if there is an
accepting path on input x along which y is written on the output tape. Hence,
the function f computed by T on Σ∗ could be multi-valued and partial. Using
the notation of [9, 53] we denote the set {y | f(x) 7→ y} of all output values of
T on input x by set-f(x).

The class of all multi-valued, partial functions computable by some nonde-
terministic polynomial-time transducer T is denoted by NPMV. But also various
subclasses of NPMV are of interest. NPSV is the class of functions f in NPMV
that are single-valued, i.e., ‖set-f(x)‖ ≤ 1. Thus, the functions from NPSV are
functions in the usual sense, and we use f(x) to denote the unique string in
set-f(x). Relaxing the condition ‖set-f(x)‖ ≤ 1 by allowing ‖set-f(x)‖ ≤ k for
some fixed number k ≥ 1 leads to the classes NPkV, defined in [38, 14]. Even
more generally, Fenner, Fortnow, Naik, and Rogers [14] considered functions f
where the cardinality of set-f(x) is bounded by a function g(x) rather than a
constant. For a function g, this function class is denoted by NPgV.
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The domain of a multi-valued function is the set of those inputs x where
set-f(x) 6= ∅. A function is called total if its domain is Σ∗. For a function class
F we denote by Ft the class of total functions in F . We use Ft ⊆c FP to indicate
that for any g ∈ Ft there is a total function f ∈ FP that is a refinement of g,
i.e., f(x) ∈ set-g(x) for all x ∈ Σ∗. Occasionally it is useful to explicitly indicate
the range of a multi-valued function in the notation. To do this we collect in
the class FA all functions from F which range over subsets of A ⊆ Σ∗,i.e.,
set-f(x) ⊆ A for all x ∈ Σ∗.

Reductions for nondeterministic functions can be considered from a whole
spectrum of reductions, ranging from many-one to Turing reductions. We start
with a rather strong notion of many-one reducibility:

Definition 1. A multi-valued function h many-one reduces to a multi-valued
function g (denoted by h ≤p

m g), if there is a function f ∈ FP such that for
every x ∈ Σ∗ set-g(f(x)) = set-h(x).

On the other side of the spectrum we use Turing reductions of which differ-
ent versions are considered in the literature (cf. [15, 50, 53]). An oracle Turing
transducer M may access a single-valued function oracle g by repeatedly query-
ing function values. On such a query x, the oracle returns the unique value from
set-g(x) if x is in the domain of g, otherwise M stops without any output. Using
this machine model, we define Turing reductions:

Definition 2. A multi-valued function h Turing reduces to a multi-valued func-
tion g, if there is a deterministic oracle transducer M such that for each single-
valued refinement g′ of g, Mg′ computes a single-valued refinement of h.

In between these two kinds of reducibilities, it is natural to consider other
variants of many-one reductions, for example, by allowing post-computations
(cf. [34, 56]). As we will formulate most of our results in the strongest possible
way (by using Turing reductions in hypotheses and many-one reductions in
conclusions), they also apply to intermediate reducibilities.

2.2 Proof Systems

Cook and Reckhow [11] defined the notion of an abstract proof system for a set
L ⊆ Σ∗ as a (possibly partial) polynomial-time computable function h : Σ∗ →
Σ∗ with range L. In this setting, an h-proof for the membership of ϕ to L is
given by a string w with h(w) = ϕ. We use the notation h `≤m ϕ to indicate
that there exists an h-proof of ϕ of size ≤ m. Proof systems for the set of all
tautologies TAUT are called propositional proof systems.

To compare the relative strength of different proof systems, Cook and Reck-
how [11] introduced the notion of p-simulation. A proof system h p-simulates a
proof system g if g-proofs can be translated into h-proofs in polynomial time,
i.e., there is a polynomial-time computable function f such that for each v in
the domain of g, h(f(v)) = g(v). Similarly, h is said to simulate g if for each
g-proof v there is an h-proof w of length polynomial in the length of v with
h(w) = g(v). A proof system for a set L is called (p-)optimal if it (p-)simulates
every proof system for L (cf. [32]). It is a natural question to ask whether a set
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L has a p-optimal (or at least an optimal) proof system. Note that a p-optimal
proof system has the advantage that from any proof in another proof system
one can efficiently obtain a proof for the same instance in the p-optimal proof
system. Hence, any method that is used to compute proofs in some proof system
can be reformulated to yield proofs in the p-optimal proof system with little
overhead.

2.3 Disjoint Pairs and Tuples

For a class C of sets we call a tuple (A1, . . . , Al) of sets A1, . . . , Al ∈ C a disjoint
C-tuple if Ai ∩ Aj = ∅ for all 1 ≤ i < j ≤ l. For l = 2 we just say that (A1, A2)
is a disjoint C-pair, or simply a C-pair. For such a disjoint pair (A1, A2) of
languages let us say that (A1, A2) is D-separable if there is a language S ∈ D
which separates (A1, A2), i.e., A1 ⊆ S and A2 ∩ S = ∅ (cf. [22]).

Grollmann and Selman [22] introduced a notion of many-one reducibility
between disjoint NP-pairs, a stronger version of which was studied in [28]. In
[5] these reductions were generalized to tuples as follows. Let (B1, . . . , Bl) and
(C1, . . . , Cl) be disjoint NP-tuples. The tuple (B1, . . . , Bl) many-one reduces
to the tuple (C1, . . . , Cl) if there is a function f ∈ FP such that f(Bi) ⊆ Ci

for i = 1, . . . , l. If, in addition, f also respects the complement of the union
B1 ∪ · · · ∪ Bl, i.e., f(B1 ∪ · · · ∪Bl) ⊆ C1 ∪ · · · ∪ Cl, then we call the reduction
strong. We denote these reductions by ≤p and ≤s, respectively. We remark that
f strongly reduces (B1, . . . , Bl) to (C1, . . . , Cl) if and only if f is a many-one
polynomial-time reduction of Bi to Ci for each i ∈ {1, . . . , l}.

3 Nondeterministic Function Classes and Tuples of NP-Sets

There is a direct correspondence between nondeterministic functions and tu-
ples of NP-sets, which we will explore in this section. The simplest case is pro-
vided by functions from NPSVt and languages from NP ∩ coNP. With respect
to this relation, Selman [53] and Hemaspaandra et al. [24] have shown that
NPSVt = FPNP∩coNP

t , from which Fenner et al. [14] concluded that NPSVt ⊆ FP
holds if and only if P = NP ∩ coNP. We complete the picture by showing that
this correspondence also extends to the question of the existence of complete
problems.

Proposition 3. The following conditions are equivalent:

1. NP ∩ coNP has a many-one complete set.
2. NPSVt has a many-one complete function.
3. NPSVt has a Turing complete function.

Proof. For the implication 1 ⇒ 2, assume that C is many-one complete for
NP ∩ coNP. Hence, NPSVt = FPNP∩coNP

t = FPC
t . But FPC

t has a many-one
complete function for any C, and therefore also NPSVt has a many-one complete
function.

The implication 2 ⇒ 3 is immediate. For 3 ⇒ 1, let us assume that h is a
Turing complete function for NPSVt. Since NP∩ coNP = PNPSVt it follows that
NP ∩ coNP = Ph, and Ph has a many-one complete set for any function h. ut
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Now let us consider the function class NPSV. In the same way as NPSVt

corresponds to the language class NP ∩ coNP, the function class NPSV corre-
sponds to the class of all disjoint NP-pairs. In fact, if we denote the class of all
0,1-valued functions in NPSV by NPSV{0,1}, then any function h ∈ NPSV can
be identified with the disjoint NP-pair (D0, D1) where

Db = {x ∈ Σ∗ | h(x) 7→ b}.

Generalizing this observation, for some finite set A = {a1, . . . , al} ⊂ Σ∗

containing l ≥ 2 elements, the class NPSVA of all functions in NPSV taking only
values in A corresponds to the class of all disjoint l-tuples of NP-sets, studied
in [5]. If f is a function from NPSVA, then we can define a disjoint l-tuple of
NP-sets Df = (Df

1 , . . . , D
f
l ) by Df

i = {x ∈ Σ∗ | f(x) 7→ ai}. Conversely, a
disjoint l-tuple of NP-sets (D1, . . . , Dl) defines a nondeterministic function as
follows. Let Mi be nondeterministic polynomial-time machines that decide the
sets Di, respectively. The machine M(x) first nondeterministically chooses an
index i ∈ {1, . . . , l} and outputs the value ai if the machine Mi(x) accepts. Thus
M computes a function f from the class NPSVA such that Df = (D1, . . . , Dl).

This correspondence between functions from NPSVA and disjoint tuples of
NP-sets also extends to the respective simulations, namely:

Proposition 4. Let A be a finite subset of Σ∗, and let f and g be functions
from NPSVA. Then f ≤p

m g if and only if Df ≤s D
g.

Thus, for example, the class of disjoint NP-pairs has a strongly many-one
complete pair if and only if NPSV{0,1} has a many-one complete function. As
shown in the next theorem, this is even equivalent to the assumption that NPSV
has a many-one complete function. In addition, the theorem gives alternative
and easier proofs for some results from [5] on disjoint NP-tuples.

Theorem 5. The following statements are equivalent.

1. NPSV has a many-one complete function.
2. For all polynomial-time decidable sets A ⊆ Σ∗, the class NPSVA has a

many-one complete function.
3. For some set A ⊆ Σ∗ with at least two elements, the class NPSVA has a

many-one complete function.
4. For all numbers l ≥ 2 there exist ≤s-complete disjoint l-tuples of NP-sets.
5. For some number l ≥ 2 there exist ≤s-complete disjoint l-tuples of NP-sets.
6. There is a ≤s-complete disjoint NP-pair.

This list can be extended by the analogous versions of items 1 to 3 where many-
one reducibility is replaced by Turing reducibility.

Proof. To obtain the above equivalences we will verify the following implica-
tions: 1 ⇒ 2 ⇒ 4 ⇒ 6 ⇒ 5 ⇒ 3 ⇒ 1, of which the implications 4 ⇒ 6 ⇒ 5 are
trivial, and 2 ⇒ 4 as well as 5 ⇒ 3 are clear by the preceding discussion on the
reformulation of functions from NPSV as tuples of disjoint NP-sets. It therefore
remains to prove the implications 1 ⇒ 2 and 3 ⇒ 1.
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For the first of these implications let g be a function many-one complete for
NPSV and let A ⊆ Σ∗ be decidable in polynomial time. We fix some element
a0 ∈ A and define the function σ as

σ(y) =

{
y y ∈ A
a0 otherwise.

As A is decidable in polynomial time, the function σ is in FP. Then g′(x) =
σ(g(x)) is a function in NPSVA. Observe that for a function h ∈ NPSVA any
many-one reduction from h to g also reduces h to g′. Thus g′ is many-one
complete for NPSVA.

To prove that item 3 implies item 1, we show that NPSV can be character-
ized as FPNPSVA , where the value Mf (x) computed by the deterministic oracle
transducer M on input x is only defined if all oracle queries belong to the do-
main of the functional oracle f . We first show that FPNPSVA ⊆ NPSV. Clearly,
any function in FPNPSVA is single-valued. Also a computation of Mf on input
x where f ∈ NPSVA can be simulated by a nondeterministic transducer N that
simulates M , and for each query z guesses an accepting path of the nondeter-
ministic transducer that computes f and answers with f(x). This guarantees
that Mf (x) = N(x) if all oracle queries of Mf on input x are in the domain of
f . If not, then by definition, Mf (x) is undefined, and also set-N(x) = ∅, i.e.,
N(x) is undefined. This shows FPNPSVA ⊆ NPSV.

To see that every function f ∈ NPSV is in FPNPSVA , we fix two distinct
elements a0 and a1 in A and define the following function g ∈ NPSVA:

g(z) =





aj if z = 1〈i, x〉 and the ith bit of f(x) is j,
a0 if z = 0〈l, x〉 and |f(x)| < l,

a1 if z = 0〈l, x〉 and |f(x)| = l.

Notice that z is in the domain of g, if z = 1〈i, x〉 with some x in the domain
of f and 1 ≤ i ≤ |f(x)|, or if z = 0〈l, x〉 with some x in the domain of f and
l ≤ |f(x)|. Now an oracle transducer Mg computes f as follows. On input x
Mg first determines the length l of f(x) by querying 0〈l, x〉 for l = 0, 1, . . . until
g(0〈l, x〉) = a1 (if x is not in the domain of f , then the first query leads to a
reject of Mg, otherwise all the strings queried are in the domain of g). If l = 0,
then Mg outputs λ, otherwise the output of Mg is the bit string y1 · · · yl, where
yi = 1 if and only if g(1〈i, x〉) = a1. Therefore Mg computes the function f .

Now the assumption that there is a complete function g for NPSVA implies
NPSV = FPNPSVA = FPg, hence also NPSV has a complete function.

The additional claims in the theorem about Turing reductions follow di-
rectly from the above proof of 3 ⇒ 1. Namely, assuming the existence of a
Turing complete function for NPSVA, the equality FPNPSVA = NPSV yields the
existence of many-one complete functions for NPSV. ut

Additionally, we can get results on tuples obeying less restrictive disjointness
conditions. Namely, we call a collection of sets {Di}i∈I k-disjoint if

⋂
i∈J Di = ∅

for all J ⊆ I such that ‖J‖ > k. For k = 1 this is just the usual pairwise
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disjointness condition, but for increasing k this leads to successively weaker
notions. Reductions are easily generalized to this context, i.e., f strongly reduces
(C1, . . . , Cl) to (D1, . . . , Dl) if f is a many-one polynomial-time reduction from
the components Ci to Di for i = 1, . . . , l.

Similarly as above, there is a direct correspondence between k-disjoint l-
tuples of NP-sets and functions from NPkVA, where NPkVA denotes all functions
from NPMV with ‖set-f(x)‖ ≤ k and set-f(x) ⊆ A for all x ∈ Σ∗. Then we
have:

Proposition 6. For all numbers l > k ≥ 1, there exist ≤s-complete k-disjoint
l-tuples of NP-sets if and only if NPkVA has many-one complete functions for
all subsets A ⊂ Σ∗ of size ‖A‖ = l.

Similarly as in [5] we can show that the question of the existence of complete
k-disjoint tuples does not depend on the number of components of the tuple,
i.e., for all numbers l, l′ > k ≥ 1, complete k-disjoint l-tuples exist if and only
if complete k-disjoint l′-tuples exist.

Instead of considering functions from NPkVA, it is probably more natural
to investigate the function class NPkV, that contains all functions from NPMV
such that ‖set-f(x)‖ ≤ k for all x ∈ Σ∗ (cf. [14, 54]). Naik, Rogers, Royer, and
Selman [38] showed that with respect to refinements the classes NPkV, k ≥ 1,
form a strict hierarchy (called the output-multiplicity hierarchy), unless the
polynomial hierarchy collapses to its second level.

Functions from NPkV correspond to k-disjoint tuples of NP-sets where the
number of components is not restricted. Analogously to the implication 1 ⇒ 2
in Theorem 5 we can show the following proposition.

Proposition 7. If NPkV contains many-one complete functions, then NPkVA

contains many-one complete functions for all polynomial-time decidable sets
A ⊆ Σ∗.

Fenner, Fortnow, Naik, and Rogers [14] investigated the problem whether
total functions in NPkV possess refinements in FP. In particular, they proved
that the answer to this question is independent of k, i.e., if NPkVt ⊆c FP for
some k ≥ 2, then NPkVt ⊆c FP holds for all k ≥ 2. Here we are interested in
the question, whether these function classes contain complete sets. Concerning
this problem we can prove:

Theorem 8.

1. If TAUT has an optimal proof system, then for all k, NPkV has a many-one
complete function.

2. Let g(x) be a polynomial-time computable function such that for all x ∈
Σ∗ we have g(x) ≤ p(|x|) for some polynomial p. Then the existence of
optimal proof systems for TAUT implies the existence of many-one complete
functions for NPgV.

Proof. The proof follows the general method developed in [28], that amounts
to bound the complexity of the promise predicates for NPkV and NPgV. In
particular, we have to show that these promise predicates are definable in coNP.
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For this let N be an NP transducer. Then the promise that N(x) outputs
at most k different values can be defined by the formula

∀y1 . . .∀yk+1




(
k+1∧

i=1

yi ∈ set-f(x)

)
→

∨

1≤i<j≤k+1

yi = yj


 , (1)

where f is the NPMV function computed by N . As the premise
∧k+1

i=1 yi ∈
set-f(x) defines an NP-predicate, the whole formula (1) is a condition in coNP.
By choosing suitable polynomial-size nondeterministic circuits for f , we can
translate the formula (1) to a sequence of polynomial-size propositional formulas
θk,f
n (p̄, q̄, r̄), which contain propositional variables p̄ = p1, . . . , pn for the input
x, variables q̄ for y1, . . . , yk+1, as well as auxiliary variables r̄ for the gates of
the circuits for f .

From the construction of θk,f
n it is clear, that f is indeed a function from

NPkV if and only if (θk,f
n )n≥0 is a sequence of propositional tautologies. As for

each NP transducer N the sequence θk,f
n can be constructed in polynomial time,

we can easily define a proof system hf which admits polynomial-size proofs of
the sequence θk,f

n . By assumption there exists an optimal proof system h. As h
simulates all proof systems hf , we have polynomial-size h-proofs of θk,f

n for all
f ∈ NPkV.

We now claim that the following function fk is complete for NPkV: fk takes
inputs of the form 〈x,N, 0m〉. From this input, fk first computes the formula
θk,f
|x| where f is the function computed by N . Then fk guesses an h-proof π

of size ≤ m and verifies whether h(π) = θk,f
|x| . If this is not the case, then

fk stops without producing any output. Otherwise, fk simulates N(x) for at
most m steps and gives the corresponding output. Clearly, fk belongs to NPkV.
To verify its completeness let N be an NP transducer computing a function
f ∈ NPkV and let p be a polynomial bounding the running time of N as well as
the size of h-proofs for θk,f

n . Then f many-one reduces to fk via the mapping
x 7→ 〈x,N, 0p(|x|+|θk,f

n |)〉.
For item 2 let g ∈ FP such that for all x ∈ Σ∗ we have g(x) ≤ p(|x|) for

some polynomial p. Similarly as above, we define for each function f ∈ NPgV
the promise of f(x) with respect to NPgV by

∀y1 . . .∀yg(x)+1







g(x)+1∧

i=1

yi ∈ set-f(x)


 →

∨

1≤i<j≤g(x)+1

yi = yj


 . (2)

By the conditions on g, the propositional translations of (2) have polynomial
size in the length of x. A complete function for NPgV is then obtained analo-
gously as in the proof of item 1. ut

Note that if g(x) is a function with super-polynomial increase in |x|, then it
is not clear whether the formulas (2) can be described by propositional formulas
of size polynomial in |x|, and therefore the above proof method fails for such
functions g. We also leave open, whether the reverse implications of items 1 and
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2 are valid. As a more general programme, it seems interesting to determine the
relationship between the assumptions of the existence of complete functions in
NPkV and NPgV for different numbers k and functions g.

We conclude this section by observing that the class of disjoint coNP-pairs
corresponds to the class NPbVt of all 0,1-valued functions in NPMVt, studied in
[14]. With a disjoint coNP-pair (A0, A1) we associate the function h ∈ NPbVt

defined by set-h(x) = {b | x /∈ Ab}).
Again, it is interesting to see what happens if we extend the range from

{0, 1} in NPbVt to arbitrary sets A ⊆ Σ∗. If A = {a1, . . . , ak} contains exactly
k elements, then a function g from NPMVt,A corresponds to a tuple (A1, . . . , Ak)
of coNP-sets with Ai = {x | ai /∈ set-g(x)}. As every x can be contained in at
most k−1 sets from A1, . . . , Ak, the tuple (A1, . . . , Ak) is (k−1)-disjoint (but not
necessarily pairwise disjoint). Given this correspondence between coNP-tuples
and functions from NPMVt, we obtain the following result.

Theorem 9.

1. If NPMVt has many-one complete functions, then there exist strongly many-
one complete disjoint coNP-pairs.

2. More generally, if NPMVt has many-one complete functions, then there exist
≤s-complete (k − 1)-disjoint k-tuples of coNP-sets for all k ≥ 2.

Proof. It suffices to prove the second item. Using a similar argument as for the
implication 1 ⇒ 2 in Theorem 5, we can show that the existence of complete
functions for NPMVt implies that for every k ≥ 2 there exist complete functions
in NPMVt,A for each A ⊂ Σ∗ containing exactly k elements. By the above
correspondence between functions from NPMVt,A and (k − 1)-disjoint k-tuples
of coNP-sets, we obtain the asserted complete k-tuple. ut

We leave open whether the reverse implications also hold.

4 Collapse of NPSV and Effective Interpolation

In this section we investigate the question whether functions from NPSV admit
total extensions in FP or FP/poly. We show that this question can be character-
ized by interpolation properties, which in turn are intimately connected with
disjoint NP-pairs associated with propositional proof systems. We will start
by reviewing different notions of interpolation along with their connections to
disjoint NP-pairs.

Due to Craig’s interpolation theorem for propositional logic, for any tautol-
ogy ϕ → ψ there is a formula θ that uses only common variables of ϕ and ψ
such that ϕ→ θ and θ → ψ are tautologies [12]. A circuit C that computes the
same function as θ is called an interpolant of ϕ→ ψ.

Lower bounds for the size of interpolants were first considered by Mundici
[37], who proved that the existence of polynomial-size interpolants for all tau-
tologies ϕ→ ψ implies NP∩coNP ⊆ P/poly. As the existence of polynomial-size
interpolants for all tautological implications seems to be a rather strong assump-
tion, Kraj́ıček [31] suggested to measure the size of an interpolant not merely
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in terms of the size of the implication ϕ → ψ, but in terms of the size of the
shortest proof of this implication in some fixed proof system. This leads to the
following definition:

Definition 10 (Kraj́ıček, Pudlák [33]). A proof system h for TAUT admits
effective interpolation if there is a polynomial p such that for any h-proof w of
a formula h(w) = ϕ→ ψ, the formula h(w) has an interpolant of size at most
p(|w|).

Effective interpolation is sometimes considered in an efficient version such
that it is possible to generate an interpolating circuit from an h-proof of a
formula ϕ → ψ in polynomial time. In [42] this property is called feasible
interpolation.

Feasible interpolation has been shown for resolution [31], the cutting planes
system [7, 31, 40], and some algebraic proof systems [43]. Combined with lower
bounds for the separation of the clique colouring pair by monotone Boolean
circuits [44, 1], these results yield lower bounds for the proof lengths in the
above proof systems. We refer to the survey [41] for a detailed presentation of
this approach.

The notion of effective interpolation for a propositional proof system h can
be characterized by a disjoint NP-pair associated with the proof system h. For
this we define the following interpolation pair Int(h) with the components

Int1(h) = {〈ϕ(x̄, ȳ), ψ(x̄, z̄), ā, 0m〉 | x̄ are the common variables of ϕ and ψ,
ϕ(ā, ȳ) is satisfiable, and
h `≤m ϕ(x̄, ȳ) → ψ(x̄, z̄)}

Int2(h) = {〈ϕ(x̄, ȳ), ψ(x̄, z̄), ā, 0m〉 | x̄ are the common variables of ϕ and ψ,
¬ψ(ā, z̄) is satisfiable, and
h `≤m ϕ(x̄, ȳ) → ψ(x̄, z̄)}.

Let us first argue that Int(h) is indeed a disjoint NP-pair. Clearly,
both components are in NP. To verify the disjointness, assume that
〈ϕ(x̄, ȳ), ψ(x̄, z̄), ā, 0m〉 is contained in Int1(h). Since we have an h-proof, the
formula ϕ(x̄, ȳ) → ψ(x̄, z̄) is a tautology. By assumption, ϕ(ā, ȳ) is satisfiable
and hence ψ(ā, z̄) must be a tautology. Therefore, ¬ψ(ā, z̄) is unsatisfiable which
implies 〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 0m〉 6∈ Int2(h).

Before we start to explain the link of the interpolation pair to different no-
tions of interpolation, let us mention a general connection between propositional
proof systems and disjoint NP-pairs. For this connection, disjoint NP-pairs are
represented by sequences of propositional formulas (cf. [3]). The formal defini-
tion is as follows: A propositional representation for an NP-set A is a sequence
of propositional formulas ϕn(x̄, ȳ) with the following properties:

1. ϕn(x̄, ȳ) has propositional variables x̄ and ȳ such that x̄ is a vector of n
propositional variables.

2. There exists a polynomial-time algorithm that on input 1n outputs ϕn(x̄, ȳ).
3. Let ā ∈ {0, 1}n. Then ā ∈ A if and only if ϕn(ā, ȳ) is satisfiable (where we

have substituted the propositional variables x̄ by the bits ā).
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With these propositional descriptions of NP-sets we can represent disjoint
NP-pairs in propositional proof systems. We say that a disjoint NP-pair (A,B) is
representable in a propositional proof system h if there are propositional repre-
sentations ϕn(x̄, ȳ) of A and ψn(x̄, z̄) of B such that x̄ are the common variables
of ϕn(x̄, ȳ) and ψn(x̄, z̄) and h `≤p(n) ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) for some polynomial
p.

Let us remark at this point that every disjoint NP-pair (A,B) is repre-
sentable in some propositional proof system by simply coding a representation
of (A,B) into a given base system. As a concrete example, let us explain how this
works for the extended Frege proof system EF (cf. [11]). If ϕn(x̄, ȳ) and ψn(x̄, z̄)
are propositional representations for the NP-sets A and B, respectively, then the
pair (A,B) is representable in the system EF + {ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) | n ≥ 0}
which augments EF by additional axioms for the disjointness of the pair (A,B).
Such extensions EF +Φ by polynomial-time decidable sets Φ of tautologies are
of particular interest, as every propositional proof system is simulated by such
a system EF + Φ for suitable axioms Φ (cf. [30]).

Before we explain how the interpolation pair Int(h) captures effective in-
terpolation for h, we will show that Int(h) serves as a hard pair for the class
of all pairs representable in the system h (this class was investigated in detail
in [3] under the name DNPP(h)). We formulate this observation in the next
proposition.

Proposition 11. For every proof system h the interpolation pair Int(h) is ≤s-
hard for the class of all disjoint NP-pairs that are representable in h.

Proof. Let h be a proof system and let (A,B) be a disjoint NP-pair such that
ϕn(x̄, ȳ) and ψn(x̄, z̄) represent A and B, respectively, and h `≤p(n) ϕn(x̄, ȳ) →
¬ψn(x̄, z̄) for some polynomial p. It is then straightforward to verify that

a 7→ 〈ϕ|a|(x̄, ȳ),¬ψ|a|(x̄, z̄), a, 0p(|a|)〉

realizes the reduction (A,B) ≤s Int(h). ut

Now we want to argue that Int(h) indeed justifies its qualification as a pair
that describes the effective interpolation property. To this end we consider for
a given proof system h the following three assertions:

A1(h): The interpolation pair Int(h) is P/poly-separable.
A2(h): h has effective interpolation.
A3(h): All NP-pairs that are representable in h are P/poly-separable.

Then the following implications between these assertions hold.

Proposition 12.

1. For all propositional proof systems h the implications A1(h) ⇒ A2(h) ⇒
A3(h) hold.

2. Let h be a proof system of the form EF +Φ with a polynomial-time decidable
set of tautologies Φ. Then the equivalences A1(h) ⇔ A2(h) ⇔ A3(h) hold.
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Proof. To prove the implication A1(h) ⇒ A2(h) for arbitrary proof systems
h, assume that Int(h) is separated by the polynomial-size circuit family Cn,
i.e., for inputs 〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 0m〉 of length n from Int1(h) the circuit Cn

outputs 1, and Cn outputs 0 for inputs from Int2(h).
Let ϕ(x̄, ȳ) → ψ(x̄, z̄) be an implication that has an h-proof of length m.

By substituting ϕ, ψ, and 0m for the respective input gates of the appropriate
circuit Cn, we obtain a circuit with inputs x̄ that interpolates ϕ and ψ.

For the implication A2(h) ⇒ A3(h) let (A,B) be a disjoint NP-pair that
is representable in h with respect to the representations ϕn(x̄, ȳ) and ψn(x̄, z̄),
i.e., we have h-proofs of length ≤ p(n) for the sequence of formulas ϕn(x̄, ȳ) →
¬ψn(x̄, z̄) with some polynomial p. As h has effective interpolation by A2(h),
there exist interpolating circuits Cn(x̄) for ϕn(x̄, ȳ) → ¬ψn(x̄, z̄). Hence the
circuit family Cn provides a separator for (A,B).

For item 2 it remains to show the implication A3(h) ⇒ A1(h) for proof sys-
tems h of the form EF + Φ with polynomial-time decidable set Φ ⊆ TAUT.
For this it suffices to prove the representability of Int(h) in the system h,
i.e., we have to construct representations of Int(h) such that h admits short
proofs for the disjointness of Int1(h) and Int2(h) with respect to these repre-
sentations. Such representations arise from translations of natural arithmetic
formulas defining the components of Int(h). Using reflection for extensions of
EF , it is then straightforward to verify the disjointness of Int(h) in the system
h (cf. [3, 5] for a detailed description of this procedure). ut

To capture the feasible interpolation property, Pudlák [42] defines an inter-
polation pair (I0

h, I
1
h) for a proof system h with the components

Ii
h = {〈ϕ0, ϕ1, π〉 | ϕ0 and ϕ1 do not share variables, ¬ϕi is satisfiable,

and h(π) = ϕ0 ∨ ϕ1}

for i = 0, 1. Let us briefly argue for the disjointness of the pair: The proof π
ensures that ϕ0 ∨ϕ1 is tautological and since ϕ0 and ϕ1 do not share variables,
one of the formulas ϕ0 or ϕ1 must itself be a tautology. Therefore, ¬ϕ0 and ¬ϕ1

cannot be both satisfiable and hence I0
h∩I1

h = ∅. Under reasonable assumptions
on the proof system h, we can then show a similar result as in Proposition 12
for (I0

h, I
1
h) and the efficient analogues of A1(h) to A3(h). In particular, h has

feasible interpolation if and only if (I0
h, I

1
h) is P-separable (assuming some sim-

ple closure properties of h such as closure under substitution by constants,
cf. [42]). The pair (I0

h, I
1
h) is, however, not suitable for the notion of effective

interpolation, for which reason we have defined its nonuniform version Int(h).
As mentioned above, weak systems like resolution or cutting planes are

known to possess effective interpolation [7, 31, 40]. In contrast, there is evidence
that strong propositional proof systems like Frege systems and their extensions
do not admit effective interpolation [33, 8, 6]. In particular, it is observed in [33]
that extended Frege proof systems do not admit effective interpolation if the
RSA cryptosystem is secure.

Partly generalizing this observation, one can state that the existence of an
honest injective function in FP that is not FP/poly-invertible (i.e., a one-way
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function that is secure against FP/poly) implies the existence of a proof system
for TAUT that does not admit effective interpolation. Notice that each injective
function in FP is invertible by an NPSV-function. Thus the assumption that each
NPSV-function has a total extension in FP/poly implies that every injective
function is FP/poly-invertible. As the former assumption implies NP ∩ coNP ⊆
P/poly and the latter is equivalent to UP ⊆ P/poly (cf. [26, 22]), the former
assumption is presumably stronger. We now show that every function in NPSV
has a total extension in FP/poly if and only if every proof system for TAUT
admits effective interpolation.

Theorem 13. The following statements are equivalent.

1. Every propositional proof system admits effective interpolation.
2. Every disjoint NP-pair is P/poly-separable.
3. Every function in NPSV has a total extension in FP/poly.
4. For every set S ⊆ TAUT, S ∈ NP, there is a polynomial p, such that any

formula ϕ→ ψ ∈ S has an interpolant of size at most p(|ϕ→ ψ|).
5. For every printable set S ⊆ TAUT, there is a polynomial p, such that any

formula ϕ→ ψ ∈ S has an interpolant of size at most p(|ϕ→ ψ|).

Proof. For the proof we will show the implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 as
well as 4 ⇒ 1 and 5 ⇒ 2. The implication 4 ⇒ 5 is immediate, as item 5 is a
weakening of item 4.

Items 1 and 2 are the universally quantified versions of the assertions A2(h)
and A3(h), respectively, i.e., item 1 expresses that A2(h) holds for all proposi-
tional proof systems h. Similarly, this holds for item 2 and assertionA3(h), as ev-
ery disjoint NP-pair (A,B) is representable in a proof system EF +{ϕn → ¬ψn}
with arbitrary representations ϕn and ψn for A and B, respectively. Therefore
the equivalence of items 1 and 2 is a direct consequence of Proposition 12.

The implication 2 ⇒ 3 was shown in [52], but for the sake of completeness
we include a proof. Assume that all disjoint NP-pairs are P/poly-separable, and
let f be a function in NPSV. With f we associate a pair (Af

0 , A
f
1) with the

components

Af
i = {〈x, j〉 | (∃y)y ∈ set-f(x), 1 ≤ j ≤ |y|, and the j-th bit of y is i}.

This disjoint NP-pair describes all bits of the values of f . To determine the
length of f -values we define a second NP-pair (Bf

0 , B
f
1 ) with the components

Bf
0 = {〈x, j〉 | (∃y)y ∈ set-f(x) and j ≤ |y|}

Bf
1 = {〈x, j〉 | (∃y)y ∈ set-f(x) and j > |y|}.

By assumption the pairs (Af
0 , A

f
1) and (Bf

0 , B
f
1 ) can be separated by polynomial-

size circuit families Cn and Dn, respectively. Using these circuits we devise a
function g ∈ FP/poly that refines f as follows. Let p be a polynomial bounding
the running time of f . At input x, the function g evaluates all respective circuits
from Dn on inputs 〈x, 1〉, . . . , 〈x, p(|x|) + 1〉 to determine the length l of the
possible output value of f(x). After l is computed, g evaluates the circuits Cn
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on inputs 〈x, 1〉, . . . , 〈x, l〉. The output of g is then just the bitwise concatenation
of these values. From the construction it is clear that g ∈ FP/poly refines the
function f .

The proof of the implication 3 ⇒ 4 is obtained by extending an idea from
[52]. Let S ⊆ TAUT, S ∈ NP. Let f be a function such that for any formula
ϕ ∈ S, ϕ = ϕ0(x̄, ȳ) → ϕ1(x̄, z̄), it holds

f(〈α, ϕ〉) =

{
1 if for some β, ϕ0(α, β) holds
0 if for some γ, ¬ϕ1(α, γ) holds.

Otherwise, and for any other input let f be undefined. First observe that f
is well defined, i.e., that f is single valued. This is due to the fact that ϕ =
ϕ0(x̄, ȳ) → ϕ1(x̄, z̄) ∈ TAUT. Further, f can be computed by a nondeterministic
machine N that first (in deterministic polynomial time) validates that the input
is of the appropriate form 〈α, ϕ〉, ϕ = ϕ0(x̄, ȳ) → ϕ1(x̄, z̄). Then N guesses a
certificate for ϕ ∈ S and, if successful, guesses some string w. Now if w is of an
appropriate length and if ϕ0(α,w) holds, then N outputs 1, if ϕ1(α,w) holds,
N outputs 0. Hence f ∈ NPSV.

Assuming 3, f has a total extension in FP/poly. Thus there is a polynomial
p and for any n ≥ 0 a circuit Cn of size at most p(n) such that for any tuple
v = 〈α, ϕ〉 of length n in the domain of f , Cn(v) = f(v). Fixing the input
bits of Cn that belong to the formula ϕ, we obtain a circuit Cϕ with Cϕ(α) =
Cn(〈α, ϕ〉) = f(〈α, ϕ〉), and thus Cϕ is of size polynomial in |ϕ|. Now observe
that Cϕ is an interpolant for the formulas ϕ0(x̄, ȳ) and ϕ1(x̄, z̄). If ϕ0(α, ȳ) ∈
SAT, then Cϕ(α) = 1, and if Cϕ(α) = 1, then for no γ it holds ¬ϕ1(α, γ) and
therefore ϕ1(α, z̄) ∈ TAUT.

To prove the implication 4 ⇒ 1, let pad: Σ∗ × {0}∗ → Σ∗ be a function in
FP with the following properties:

1. pad(χ, 0n) ∈ TAUT if and only if χ ∈ TAUT.
2. given an implication ϕ → ψ ∈ TAUT as an input, the output pad(ϕ →
ψ, 0n) is also an implication ϕ′ → ψ′ that has the same interpolants as
ϕ→ ψ.

3. |pad(χ, 0n)| ≥ |χ|+ n.

Notice that there is such a padding function. Now let h be a proof system for
TAUT, and let

S = {χ | ∃n ≤ |χ| ∃w, |w| ≤ n, pad(h(w), 0n) = χ}.

Clearly S ∈ NP, as pad and h are functions in FP. Because h is a proof system for
TAUT and due to property 1 of pad, S ⊆ TAUT. Thus by assumption 4 there is
a monotone polynomial p, such that any formula ϕ′ → ψ′ ∈ S has an interpolant
of size at most p(|ϕ′ → ψ′|). As pad, h ∈ FP there are monotone polynomials q, r
such that |h(w)| ≤ q(|w|) and |pad(χ, 0n)| ≤ r(|χ|+n) for any w,χ ∈ Σ∗, n ≥ 0.
Let ϕ → ψ ∈ TAUT and let w be an h-proof for ϕ → ψ. Now by property 3
of pad ϕ′ → ψ′ = pad(ϕ → ψ, 0|w|) ∈ S, therefore by the property 2 of pad,
ϕ→ ψ has an interpolant of size at most p(|ϕ′ → ψ′|) ≤ p(r(q(|w|) + |w|)).
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To finish the proof let us show that the implication 5 ⇒ 2 holds. Let (A,B)
be a disjoint NP-pair. We choose arbitrary representations ϕn(x̄, ȳ) for A and
ψn(x̄, z̄) for B. By the disjointness of A and B, ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) is a print-
able sequence of tautologies. Assuming 5 we get polynomial-size interpolating
circuits for these formulas. These circuits separate the pair (A,B). ut

Part of the equivalences of the last theorem were already shown by Schöning
and Torán [52]. There they proved that items 2, 3, and 5 are equivalent, and
that these hypotheses imply NP ∩ coNP ⊆ P/poly and UP ⊆ P/poly.

Let us note that Theorem 13 also holds in an efficient version, where FP/poly
is replaced by FP, and effective interpolation is strengthened to feasible inter-
polation. It is readily checked that the proof of Theorem 13 is easily modified to
this efficient context. Hence Theorem 13 along with its proof yield the following
corollary:

Corollary 14. The following statements are equivalent.

1. Every propositional proof system admits feasible interpolation.
2. Every disjoint NP-pair is P-separable.
3. Every function in NPSV has a total extension in FP.

Let us mention that the above list of equivalences also relates to the impor-
tant concept of automatizability, as recently noted by Sadowski [49]. In [8] a
proof system h is called automatizable if there exists a deterministic procedure
that takes as input a formula ϕ and outputs an h-proof of ϕ in time polynomial
in the length of the shortest h-proof of ϕ. A proof system g is called weakly au-
tomatizable if there exists an automatizable system h that simulates g (cf. [42]).
In [49] Sadowski proves that items 2 and 3 from Corollary 14 are equivalent to
the statement that every propositional proof system is weakly automatizable.

It is easy to see that a proof system g admits effective interpolation if g is
simulated by a proof system h that admits effective interpolation. As a corollary
from Theorem 13 we obtain:

Corollary 15. If there is an optimal proof system for TAUT that admits ef-
fective interpolation, then items 1 to 5 from Theorem 13 hold.

5 Is the Standard Proof System for SAT P-optimal?

In this section we will consider the question whether the standard proof system
for SAT is p-optimal, where by the standard proof system sat for SAT we mean
the following procedure of checking the truth value of a given assignment:

sat(x) =

{
ϕ if x = 〈α,ϕ〉 and α is a satisfying assignment for ϕ
undef. otherwise.

As sat is polynomially bounded (i.e. every satisfiable formula has a polynomial-
size proof in sat), the system sat is an optimal proof system for SAT. It will
turn out that the question whether sat is even p-optimal is (in some disguise)
actually well studied in the literature. The assumption that sat is p-optimal is
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equivalent to a variety of complexity-theoretic assumptions (which have unlikely
collapse consequences such as P = NP ∩ coNP).

In [14] the following statements were all shown to be equivalent. There,
Q is defined to be the proposition that one (and consequently each) of these
statements is true. In this section we show that Q is also equivalent to the
p-optimality of sat .

Theorem 16 (Fenner, Fortnow, Naik, Rogers [14]). The following state-
ments are equivalent.

1. For each NPTM N that accepts SAT there is a function f ∈ FP such that for
each accepting path α of N on input ϕ, f(〈ϕ, α〉) is a satisfying assignment
of ϕ.

2. Each honest function f ∈ FP with range Σ∗ is FP-invertible.
3. NPMVt ⊆c FP.
4. For each P-subset S of SAT there exists a function g ∈ FP such that for all

ϕ ∈ S, g(ϕ) is a satisfying assignment of ϕ.

Clearly, each nondeterministic Turing machine N corresponds to a proof
system h for SAT with h(w) = ϕ if w encodes an accepting path of N on
input ϕ. Now h is honest if and only if N is a NPTM. This leads to the ob-
servation that Statement 1 in Theorem 16 is equivalent to the condition that
sat p-simulates every proof system h for SAT where h happens to be an hon-
est function. Hence, we just need to delete the term ‘polynomial-time’ in the
Statement 1 of Theorem 16 to obtain the desired result that Q is equivalent to
the p-optimality of sat . That this is possible without changing the truth of the
theorem is shown by a padding argument.

Theorem 17. The following statements are equivalent.

1. For each nondeterministic Turing machine N that accepts SAT there is a
function f ∈ FP such that for each accepting path α of N on input ϕ,
f(〈ϕ, α〉) is a satisfying assignment of ϕ.

2. For each NPTM N that accepts SAT there is a function f ∈ FP such that for
each accepting path α of N on input ϕ, f(〈ϕ, α〉) is a satisfying assignment
of ϕ.

3. sat is a p-optimal proof system for SAT.

Proof. By the preceding discussion, it is clear that items 1 and 3 are equivalent.
Also, item 1 trivially implies item 2. Hence it remains to prove that 2 implies 3.

For this assume that item 2 holds, and let h be a proof system for SAT. We
will show that sat p-simulates h. Let > be some tautology, and let >1 = >,
>n = > ∧ >n−1 for n ≥ 2 (i.e., >n is a tautology of length ≥ n that is easy to
compute from 0n). Let h′ ∈ FP be a proof system defined by

h′(x) =





ϕ ∧ >|x|−1 if x = 1w and h(w) = ϕ,

ϕ if x = 0w and sat(w) = ϕ,

undef. otherwise.
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Notice that h′ is honest. Hence, sat p-simulates h′ by the following argument.
Let Nh′ be a nondeterministic polynomial-time Turing machine that on input
y guesses some w and accepts if h′(w) = y. Since Nh′ accepts SAT, by item 2
there is a function f ∈ FP such f(〈y, α〉) is a satisfying assignment of y for
any accepting path α of Nh′ on input y. Thus there is a function f ′ ∈ FP with
sat(f ′(w)) = ϕ ∧ >|w| for any w with h(w) = ϕ. But it is clear that from a
satisfying assignment of ϕ∧>|w| we can easily compute a satisfying assignment
of ϕ, i.e., there is a function g with sat(g(f ′(w), h(w))) = h(w) for any w in the
domain of h. ut

It is known that the assumption NP = P implies NPMVt ⊆c FP which in
turn implies NP ∩ coNP = P (cf. [55]). Also, in [25] it has been shown that
the converse of these implications is not true in suitable relativized worlds. The
consequence NP∩coNP = P also shows that the assumption that sat is p-optimal
is presumably stronger than the assumption that SAT has a p-optimal proof
system. Namely the p-optimality of sat implies that NP ∩ coNP = P, whereas
the existence of a p-optimal proof system follows already if any super-tally set
in ΣP

2 belongs to P, where any set L ⊆ {022n

| n ≥ 0} is called super-tally [28].
The assumption that sat is a p-optimal proof system also has an effect

on various reducibility degrees, as has been mentioned in [14] for Karp and
Levin reducibility. Also in [35] it is shown that NPMVt ⊆c FP if and only if
γ-reducibility equals polynomial-time many-one reducibility. Furthermore it is
shown in [13] that Statement 4 of Theorem 16 is equivalent to the assumption
that the approximation class APX is closed under L-reducibility (see [13] for
definitions).

The equivalence between the p-optimality of sat and NPMVt ⊆c FP directly
leads to the following theorem.

Theorem 18. The following statements are equivalent.

1. sat is p-optimal.
2. For all languages the notions of simulation and p-simulation coincide, i.e.,

for every language L and all proof systems h and g for L we have g ≤ h if
and only if g ≤p h.

3. The notions of simulation and p-simulation coincide for propositional proof
systems, i.e., for all propositional proof systems h and g we have g ≤ h if
and only if g ≤p h.

4. Every optimal proof system is p-optimal.

Proof. We will show the implications 1 ⇒ 2 ⇒ 3 ⇒ 1 and 2 ⇒ 4 ⇒ 1, of which
2 ⇒ 3 and 2 ⇒ 4 are obvious, and 4 ⇒ 1 follows, because sat is optimal.

To show the implication 1 ⇒ 2, assume that sat is a p-optimal proof system.
Clearly, if h p-simulates g, then h also simulates g.

Therefore, let us assume that h simulates g. Then there is a polynomial p
such that for every x in the domain of g there is some w of length at most p(|x|)
with g(x) = h(w). LetN be a nondeterministic polynomial-time Turing machine
that on input of any x in the domain of g guesses some w of length ≤ p(|x|) and
outputs w if h(w) = g(x) (if x is not in the domain of g, which can be decided in
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polynomial time, N outputs λ). Clearly, N computes a function in NPMVt. As
by assumption sat is p-optimal, we get NPMVt ⊆c FP by Theorems 16 and 17.
Hence there exists a function f ∈ FP with h(f(x)) = g(x) for every x in the
domain of g. Therefore h p-simulates g.

Now we prove the remaining implication 3⇒ 1. For this let g be an arbitrary
propositional proof system, and let N be an NPTM for SAT. From g and N we
define a propositional proof system h1 by

h1(π) =





g(π′) if π = 0π′, and g(π′) is not of the form > ∨ ϕ
with some propositional formula ϕ

> ∨ ϕ if π = 1〈ϕ, 1m〉 and m ≥ 2|ϕ|

> ∨ ϕ if π = 1〈ϕ,w〉 and w is an accepting path of N(ϕ)
> otherwise,

where > stands for a fixed tautology. Clearly, h1 is computable in polynomial
time and outputs only tautologies. Moreover, all tautologies appear in the range
of h1, according to the first two lines of its definition. Hence h1 is a propositional
proof system.

Similarly, we construct a propositional proof system h2 by replacing N by
sat in the third line of the definition of h1.

h2(π) =





g(π′) if π = 0π′, and g(π′) is not of the form > ∨ ϕ
with some propositional formula ϕ

> ∨ ϕ if π = 1〈ϕ, 1m〉 and m ≥ 2|ϕ|

> ∨ ϕ if π = 1〈ϕ, α〉 and α is a satisfying assignment for ϕ
> otherwise.

Obviously, h1 and h2 are equivalent, as they differ only in proofs for formulas>∨
ϕ with ϕ ∈ SAT, and these tautologies have polynomial-size proofs in both h1

and h2 (these formulas also have exponential-size proofs in both systems). Thus,
assuming 3, h1 and h2 are p-equivalent. Let f ∈ FP compute a p-simulation of
h1 by h2, and let w be an accepting path of N on input ϕ. Then f computes
on input 1〈ϕ,w〉 a satisfying assignment α for ϕ (the complete output of f is
1〈ϕ, α〉). Thus assertion 2 of Theorem 17 holds, which we have already shown
to be equivalent to the p-optimality of sat in Theorem 17. ut

The equivalence 2 ⇔ 3 of the preceding theorem states that any simulation
of a propositional proof system can be turned into a p-simulation if and only if
any simulation of an arbitrary proof system can be turned into a p-simulation.
In contrast, we cannot expect a similar equivalence with respect to the existence
of optimal and p-optimal proof systems since item 4 of the previous theorem
is probably stronger than the statement that every optimal propositional proof
system is p-optimal. The reason for this is that optimal propositional proof sys-
tems are unlikely to exist (cf. [28]). Therefore, item 4 restricted to propositional
proof systems would be trivially true, whereas item 4 is probably false, as it is
equivalent to Q and hence leads to unlikely collapse consequences.
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In [36] it has been observed that given a p-optimal proof system h for a
language L, the problem to find an h-proof for y ∈ L is not much harder
than deciding L. More precisely, we can transform each deterministic Turing
machine M with L(M) = L to a deterministic Turing machine M ′ that on
input y ∈ L yields an h-proof of y in timeM ′(y) ≤ p(|y|+ timeM (y)), for some
polynomial p determined by M . Using this observation and the equivalences in
Theorems 16 and 17 we obtain the following result: sat is p-optimal if and only
if any deterministic Turing machine M that accepts SAT can be converted to
a deterministic Turing machine that computes a satisfying assignment for any
formula ϕ ∈ SAT and runs not much longer than M on input ϕ.

Theorem 19. The following statements are equivalent.

1. sat is p-optimal.
2. For any deterministic Turing machine M that accepts SAT in timeM (ϕ)

steps for any ϕ ∈ SAT, there is a deterministic Turing machine M ′ and a
polynomial p such that for every ϕ ∈ SAT, M ′ produces a satisfying assign-
ment of ϕ in timeM ′(ϕ) ≤ p(|ϕ|+timeM (ϕ)) steps.

Proof. It is easy to see that 2 implies Statement 4 of Theorem 16: Combine
a polynomial-time machine that decides a P-subset S of SAT with a standard
machine that decides SAT to obtain a machine M for SAT whose running time
timeM (ϕ) is polynomial in |ϕ| for ϕ ∈ S. Assuming 2 there is a machine M ′

that on input ϕ ∈ S produces a satisfying assignment of ϕ in time polynomial
in |ϕ|.

To show the implication 1 ⇒ 2 assume that sat is p-optimal. Let M be an
arbitrary deterministic Turing machine that decides SAT. We will construct a
suitable machine M ′ to show that 2 holds. Define a proof system hM for SAT
with hM (〈ϕ, 0s〉) = ϕ if M accepts ϕ in at most s steps. As sat is p-optimal
there is a function g ∈ FP with sat(g(x)) = hM (x) for each x in the domain of
hM . Now on input ϕ, M ′ simulates M . If M accepts after s steps, M ′ computes
the sat-proof g(〈ϕ, 0s〉) of ϕ and extracts the satisfying assignment. Otherwise
M ′ rejects. Clearly, on input ϕ ∈ SAT, M ′ needs time at most polynomial in
|ϕ|+timeM (ϕ). ut

Under the assumption that sat is not p-optimal it follows from Theorem 19
that there is a Turing machine M that decides SAT such that any machine M ′

that on input ϕ ∈ SAT has to produce a satisfying assignment for ϕ is much
slower on some SAT instances. In some sense this appears counter-intuitive as
probably all SAT algorithms used in practice produce a satisfying assignment
in case the input belongs to SAT. Of course it follows from Theorem 19 that
M is superior to any such M ′ on an infinite set of instances. As shown in the
following theorem M is even superior to any M ′ on a fixed non-sparse set of
SAT instances. The result is due to the paddability of SAT, and uses ideas from
the theory of complexity cores (cf. [51]).

Theorem 20. The following statements are equivalent.

1. sat is not p-optimal.
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2. There is a P-subset S of SAT such that for any deterministic Turing machine
M ′ that on input ϕ ∈ S produces a satisfying assignment of ϕ and for any
polynomial p the set

{ϕ ∈ S | timeM ′(ϕ) > p(|ϕ|)}

is not sparse.
3. There is a P-subset S of SAT, a non-sparse subset L of S, and a super-

polynomial function f such that for any deterministic Turing machine M ′

that on input ϕ ∈ S produces a satisfying assignment of ϕ

timeM ′(ϕ) > f(|ϕ|)

for almost every ϕ ∈ L.
4. There is a machine M accepting SAT, a non-sparse subset S of SAT, and a

super-polynomial function f such that for any deterministic Turing machine
M ′ that on input ϕ ∈ SAT produces a satisfying assignment of ϕ

timeM ′(ϕ) > f(|ϕ|+ timeM (ϕ))

for almost every ϕ ∈ S.

Proof. Let pad: Σ∗ × Σ∗ → Σ∗ be an injective function that is FP-invertible
with the following further properties

1. pad(ϕ,w) ∈ SAT if and only if ϕ ∈ SAT.
2. from a sat-proof for ψ = pad(ϕ,w) one can easily compute a satisfying

assignment for ϕ.
3. |pad(ϕ,w)| = |ϕ|+ c(|w|+ 1) for some constant c.

Notice that there is such a padding function.
To see that item 1 implies item 2, assume that the contrary of 2 holds. We

will see that this implies Statement 4 in Theorem 16 which completes the proof
of this implication. Let S be an arbitrary P-subset of SAT and let

T = {pad(ϕ,w) | w ∈ Σ∗, ϕ ∈ S} .

As pad is invertible we also have T ∈ P. Assuming the contrary of 2 there is
a polynomial p and a deterministic Turing machine M ′ that on input ϕ ∈ T
produces a satisfying assignment of ϕ such that the set

Q = {ϕ ∈ T | timeM ′(ϕ) > p(|ϕ|)}

is sparse. Let q be a polynomial bound for the density ofQ (i. e., ‖Q∩Σn‖ ≤ q(n)
for each n).

Now a function g ∈ FP that on input ϕ ∈ S yields a satisfying assignment for
ϕ can be computed as follows. Let q′(n) denote the polynomial q(n+c(n+1))+1.
Let ϕ ∈ S be an input of length n. First assume that n is sufficient large, i.e.,
q′(n) ≤ 2n. Let w1, . . ., wq′(n) denote the q′(n) lexicographically first strings of
Σn. Now simulate ‘in parallel’ the computations of M ′ on input of pad(ϕ,w1),
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. . ., pad(ϕ,wq′(n)), i. e. perform a simulation in stages, in stage i for each 1 ≤
j ≤ q′(n) simulate the ith step of the computation of M ′ on pad(ϕ,wj); notice
that each stage i can be completed in time (q′(n) · i)2. Stop the simulation as
soon as the first of those computations produces a satisfying assignment, say
e. g. for pad(ϕ,wj). From this assignment obtain a satisfying assignment for ϕ.
For the finitely many input lengths n that do not satisfy q′(n) ≤ 2n determine
a satisfying assignment by a table look-up.

This construction guarantees that for some polynomial r and every ϕ ∈ S
we obtain a satisfying assignment of ϕ after at most

r(n+ min{timeM ′(pad(ϕ,wj)) | 1 ≤ j ≤ q′(n)})
steps. Observe further that the set {pad(ϕ,wj) | 1 ≤ j ≤ q′(n)} ⊆ Σn+c(n+1) is
of cardinality q′(n) = q(n + c(n + 1)) + 1 and thus cannot be fully contained
in Q. Thus by assumption for some wj M

′ produces a satisfying assignment of
pad(ϕ,wj) in time p(|pad(ϕ,wj))|). This shows that the time needed for the
above computation is bounded by a polynomial.

For the implication 2 ⇒ 3 let S be a set such that 2 is fulfilled. A suitable
subset L ⊆ S is obtained by the following construction. Let M ′

1,M
′
2, . . . be a

(non effective) enumeration of the deterministic Turing machines that on input
ϕ ∈ S produce a satisfying assignment of ϕ.

Set n0 = 0, and for k > 0 let nk be the smallest number n > nk−1 such that
the set

Sn
k := {ϕ ∈ S ∩Σn | timeM ′

i
(ϕ) > nk + k for all i ≤ k}

has cardinality greater than nk + k.
Observe that for each k there is such a number nk. If this were not the case

for some k, then for the least such k the set

T = {ϕ ∈ S | timeM ′
i
(ϕ) > |ϕ|k + k for all i ≤ k}

would be sparse (namely for each n > nk−1 we had ‖T∩Σn‖ ≤ nk+k). However,
this contradicts 2 if we let M ′ be a deterministic Turing machine that in parallel
simulates the machines M ′

1, . . . ,M
′
k (notice that this parallel simulation is even

possible without overhead since k is constant).
Now let L =

⋃
k>0 S

nk
k , and let f(n) = nk(n) + k(n) where k(n) = max{k |

nk ≤ n}.
Clearly f is super-polynomial, and L is non-sparse. To see that f and L

also fulfill the last condition in 3 let M ′
i be a deterministic Turing machine that

on input ϕ ∈ S produces a satisfying assignment of ϕ. By the construction, we
have for each k ≥ i, and for each ϕ ∈ Snk

k

timeM ′
i
(ϕ) > |ϕ|k + k = f(|ϕ|).

Thus for each ϕ ∈ L with |ϕ| ≥ ni, timeM ′
i
(ϕ) > f(|ϕ|).

For the proof of the implication 3 ⇒ 4, we observe that item 3 is the nega-
tion of item 4 from Theorem 16, whereas item 4 is the negation of item 2 in
Theorem 19. Therefore, 3 implies 4 by an argument similar to the one given in
the proof of implication 2 ⇒ 1 in Theorem 19. Finally, the implication 4 ⇒ 1
follows directly from Theorem 19. ut

23



6 On the Existence of P-optimal Proof Systems

In Theorem 18 it is observed that sat is p-optimal if and only if every optimal
proof system is p-optimal. Although the assumption of the mere existence of
a p-optimal proof system for SAT is presumably weaker than the assumption
that sat is p-optimal, it is still equivalent to a quite similar statement, namely
that any set with an optimal proof system has a p-optimal proof system. For
the proof of this result we use the following observation from [28].

Lemma 21 ([28]). If L has a (p-)optimal proof system, and T ≤p
m L, then T

has a (p-)optimal proof system.

Using this lemma we can prove the following ‘existentially quantified’ version
of Theorem 18 from the previous section.

Theorem 22. The following statements are equivalent.

1. SAT has a p-optimal proof system.
2. Any language L that has an optimal proof system also has a p-optimal proof

system.

Proof. Clearly, item 2 implies item 1, as SAT has an optimal proof system. To
see the converse implication assume that SAT has a p-optimal proof system,
and let L be an arbitrary nonempty language with an optimal proof system.
Let TL (cf. [28]) be the following language consisting of tuples 〈M,x, 0s〉 where
M is a deterministic Turing transducer, s ≥ 0, and x ∈ Σ∗.

TL = {〈M,x, 0s〉 | timeM (x) > s or M(x) ∈ L}.

Notice that TL is many-one reducible to L. Hence, the assumption that there
is an optimal proof system for L implies that TL has an optimal proof system,
say h. Let

Sh = {〈〈M,x, 0s〉, 0l〉 | h `≤l 〈M,x, 0s〉}.
Clearly Sh ∈ NP. Therefore by assumption there is a p-optimal proof system g
for Sh. Let now f be the following proof system.

f(w) =





y if g(w) = 〈〈M,x, 0s〉, 0l〉,
and on input x, M outputs y in ≤ s steps,

undef. otherwise.

First notice that y ∈ L if f(w) = y. This is due to the fact that g(w) =
〈〈M,x, 0s〉, 0l〉 implies 〈〈M,x, 0s〉, 0l〉 ∈ Sh which in turn implies 〈M,x, 0s〉 ∈
TL. On the other hand, each y ∈ L is easily seen to have an f -proof, hence f is
a proof system for L.

We now show that f p-simulates every proof system f ′ for L. Assume that
f ′ is computed by the transducer Mf ′ in polynomial time p(n). Observe that
〈Mf ′ , x, 0p(|x|)〉 ∈ TL for any x ∈ Σ∗. Hence, one may define a proof system
for TL such that for any x the tuple 〈Mf ′ , x, 0p(|x|)〉 has the short proof 1x.
Consequently, due to the optimality of h, there is a polynomial q such that
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〈Mf ′ , x, 0p(|x|)〉 has an h-proof of size ≤ q(|x|). Now 〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉 ∈
Sh for any x, and one may define a proof system g′ for Sh with g′(1x) =
〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉 for any x. As g is p-optimal, g p-simulates g′, i.e., there
is a function t ∈ FP such that g(t(1x)) = g′(1x) = 〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉.
Observe now that f(t(1x)) = f ′(x) for any x. Hence f p-simulates f ′. ut

As shown in [28], the assumption that SAT and TAUT both have p-optimal
proof systems implies that NP ∩ coNP has a many-one complete set. In fact,
due to Theorem 22 it suffices to assume that SAT has a p-optimal proof system
and TAUT only has an optimal proof system. Together with Proposition 3 we
obtain:

Corollary 23. If SAT has a p-optimal and TAUT has an optimal proof system,
then NP ∩ coNP has a many-one complete set, and NPSVt has a many-one
complete function.

Next we show that a p-optimal proof system for SAT implies a complete
function for the class NPMVt. The proof uses ideas from [28].

Theorem 24. If SAT has a p-optimal proof system, then NPMVt has a many-
one complete function.

Proof. Consider the NP-set L = {〈N,x, 0s〉 | there is an accepting path of N
on input x of length ≤ s}. If SAT has a p-optimal proof system, then due to
Lemma 21 there is a p-optimal proof system h for L. We show that the following
function g is complete for NPMVt.

If the input is a tuple u = 〈N,x, 0s, w〉 with the property that h(w) =
〈N, x, 0s〉, then set-g(u) = {y | y is an output of N on an accepting path
of length ≤ s on input x}. Otherwise set-g(u) = {λ}.

It is clear that g is in NPMVt. To see that g is hard for NPMVt let f ∈ NPMVt

be computed by a nondeterministic Turing machine Nf with a polynomial time-
bound p. It is easy to see that there is a proof system h′ for L with h′(1x) =
〈Nf , x, 0p(|x|)〉 for any x. As h p-simulates h′ there is a function t ∈ FP such that
h(t(1x)) = 〈Nf , x, 0p(|x|)〉 for any x. So, x 7→ 〈Nf , x, 0p(|x|), t(1x)〉 is a many-one
reduction from f to g. ut

By Theorem 9 we obtain:

Corollary 25. If SAT has a p-optimal proof system, then there exists a strongly
many-one complete disjoint coNP-pair.

In the following table we collect some of the implications proven in this
section.

Assumption Consequence
p-optimal proof system for SAT and complete set for NP ∩ coNP and
optimal proof system for TAUT complete function for NPSVt

optimal proof system for TAUT complete function for NPkV, k ≥ 1

p-optimal proof system for SAT
complete function for NPMVt and
complete disjoint coNP-pair
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7 Conclusion

We have shown that the assumption that certain proof systems are (p-)optimal
can be used to derive collapse results. Also we presented some relations be-
tween completeness assumptions for different classes. It would be interesting to
know whether these observations can be extended to further proof systems and
promise classes.
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