
On the Isomorphism Problem for
Helly Circular-Arc Graphs

Johannes Köbler, Sebastian Kuhnert1,∗, Oleg Verbitsky2

Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin, Germany

Abstract

The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class
of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection
graphs for families of circular arcs that satisfy the Helly property. We solve the isomorphism problem for this
class in logarithmic space. If an input graph has a Helly circular-arc model, then our algorithm constructs it
canonically, which means that the models constructed for isomorphic graphs are equal.

Keywords: Graph isomorphism, circular-arc graphs, Helly property, graph, logarithmic space

1. Introduction

An intersection representation of a graph G is a mapping α from the vertex set V (G) onto a family A
of sets such that vertices u and v of G are adjacent if and only if the sets α(u) and α(v) have a nonempty
intersection. The family A is called an intersection model of G. G is an interval graph if it admits an
intersection model consisting of intervals of reals (or, equivalently, intervals of consecutive integers). The
larger class of circular-arc (CA) graphs arises if we consider intersection models consisting of arcs on a
circle. These two archetypal classes of intersection graphs have important applications, most noticeably in
computational genomics, and have been intensively studied for decades in graph theory and algorithmics;
for an overview see e.g. [Spi03]. In general, fixing a class of admissible intersection models, we obtain the
corresponding class of intersection graphs.

In the canonical representation problem for a class C of intersection graphs, we are given a graph G ∈ C
and have to compute its intersection representation α so that isomorphic graphs receive equal intersection
models. This subsumes both the recognition of C and the isomorphism testing for graphs in C. In their
seminal work [BL76, LB79], Booth and Lueker solve both the representation and the isomorphism problems
for interval graphs in linear time. Together with Laubner, we designed a canonical representation algorithm
for interval graphs that takes logarithmic space [KKL+11].

The case of CA graphs remains a challenge up to now. While a circular-arc intersection model can
be constructed in linear time (McConnell [McC03]), no polynomial-time isomorphism test for CA graphs
is currently known (though some approaches [Hsu95] have appeared in the literature; see the discussion
in [CLM+13]). A few natural subclasses of CA graphs have received special attention among researchers. In
particular, for proper CA graphs both the recognition and the isomorphism problems are solved in linear time,
respectively, in [DHH96, KN09] and [LSS08, CLM+13], and in logarithmic space in [KKV12]. The latter

∗Corresponding author.
Email addresses: koebler@informatik.hu-berlin.de (Johannes Köbler), kuhnert@informatik.hu-berlin.de (Sebastian

Kuhnert), verbitsk@informatik.hu-berlin.de (Oleg Verbitsky)
1Supported by DFG grant KO 1053/7–2.
2Supported by DFG grant VE 652/1–1. On leave from the Institute for Applied Problems of Mechanics and Mathematics,

Lviv, Ukraine.

1

result actually gives a logspace algorithm for computing a canonical representation of proper CA graphs, and
such an algorithm is also known for unit CA graphs [Sou14]. The history of the isomorphism problem for
circular-arc graphs is surveyed in more detail by Uehara [Ueh13].

Here we are interested in the class of Helly circular-arc (HCA) graphs. Those are graphs that admit circular-
arc models having the Helly property, which requires that every subfamily of arcs with nonempty pairwise
intersections has a nonempty overall intersection. Obeying this property is assumed in the representation
problem for HCA graphs. Since any family of intervals has the Helly property and the cycles of length at
least 4 are HCA graphs but not interval, the canonical representation problem for HCA graphs generalizes
the canonical representation problem for interval graphs. On the other hand, not every CA model is Helly;
see Fig. 1 for examples. Joeris et al. characterize HCA graphs among CA graphs by a family of forbidden
induced subgraphs [JLM+11].

HCA graphs were introduced by Gavril under the name of Θ circular-arc graphs [Gav74]. Gavril
gave an O(n3) time representation algorithm for HCA graphs. Hsu improved this to O(nm) [Hsu95].
Recently, Joeris et al. gave a linear time representation algorithm [JLM+11]. The fastest known isomorphism
algorithm for HCA graphs is due to Curtis et al. and works in linear time [CLM+13]. Chen gave a parallel
AC2 algorithm [Che96].

We aim at designing space efficient algorithms. In [KKV13] we already presented a logspace canonical
representation algorithm for HCA graphs. Our approach in [KKV13] uses techniques developed by McConnell
in [McC03], and the algorithm is rather intricate. Now we suggest an alternative approach that is independent
of [McC03]. The new algorithm admits a much simpler analysis and exploits some new ideas that may be of
independent interest.

Theorem 1.1. The canonical representation problem for the class of Helly circular-arc graphs is solvable in
logspace.

Note that solvability in logspace implies solvability in logarithmic time by a CRCW PRAM with
polynomially many parallel processors, i.e., in AC1. Prior to our work, no AC1 algorithm was known for
recognition and isomorphism testing of HCA graphs.

In general, solvability of the isomorphism problem for a non-trivial class of graphs in logarithmic space is
an interesting result because the general graph isomorphism problem is known to be DET-hard [Tor04] and
therefore also NL-hard. It is also interesting that for some classes of intersection graphs, the isomorphism
problem is as hard as in general. For example, Uehara [Ueh08] shows this for intersection graphs of
axis-parallel rectangles in the plane. Note that any family of such rectangles has the Helly property.

Our strategy. Recall that a hypergraph H is interval (resp. circular-arc) if it is isomorphic to a hypergraph
whose hyperedges are intervals of integers (resp. arcs of a discrete circle). Such an isomorphism is called an
interval (resp. arc) representation of H. Like in our approach to interval graphs in [KKL+11], the overall
idea of our algorithm is to exploit the relationship between an input graph G and the dual of its clique
hypergraph, which will be denoted by B(G). Fulkerson and Gross [FG65] established that G is an interval
graph if and only if B(G) is an interval hypergraph. Moreover, represented as an interval system, B(G) can
serve as an interval model of G. More specifically, our approach in [KKL+11] consists of two steps: First,

(a) (b)

Figure 1: Two non-Helly CA models and their intersection graphs. The graph in (a) admits an HCA model, while the graph
in (b) does not.

2

construct B(G) (or, equivalently, find all maxcliques in G) and, second, design a canonical representation
algorithm for interval hypergraphs and apply it to B(G). The first step is implementable in logspace because
all interval graphs without isolated vertices are maximal clique irreducible [OR81]. This means that every
maxclique C contains an edge uv that is contained in no other maxclique, and implies that C is equal to the
common neighborhood of u and v (cf. Lemma 7.2).

The Fulkerson-Gross theorem is extended to the class of HCA graphs by Gavril [Gav74]: G is an
HCA graph if and only if B(G) is a CA hypergraph. Also in this case, any arc representation of B(G) yields a
Helly arc representation for G. The canonical representation problem for CA hypergraphs is solved in logspace
in [KKV12]. However, the similarity between interval and HCA graphs ends there because HCA graphs are
in general not maximal clique irreducible and hence we have to use a different approach to compute the
hypergraph B(G).

Though we are not able to find all maxcliques of an HCA graph G directly, the discussion above shows
that the canonical representation problem for HCA graphs is logspace reducible to the representation problem,
where we need just to construct a Helly arc representation and do not need to take care of canonicity. Indeed,
once we have an arbitrary HCA model of an input graph G, we get all maxcliques of G by inspection of the
sets of arcs sharing a common point. As soon as all the maxcliques are found, we form the hypergraph B(G)
and compute its canonical representation according to [KKV12] (the details are given in Section 4).

It remains to explain how we compute a Helly arc representation α for a given HCA graph G with
n vertices. It is handy to assume that the corresponding HCA model α(G) has 2n points and that no arc
in α(G) shares extreme points with others. For a given subset C ⊂ V (G), let αC(G) denote the arc system
obtained from α(G) by flipping the arc α(v) for each v ∈ C, that is, by replacing α(v) with the other arc
on the same circle that has the same extreme points. We make use of a simple consequence of the Helly
property: If C is a maxclique, then αC(G) becomes an interval system. Note that it suffices to find only one
maxclique C of G in order to perform the flipping operation. Such a maxclique C can be found in logspace;
see Lemma 7.3. Moreover, if we can also compute the corresponding mapping αC , we obtain the desired
Helly arc representation α by performing the C-flipping for αC(G) (note that (αC)C = α). The flipping
operation is considered in detail in Section 6.

The interval system αC(G) and the corresponding mapping αC are constructed as follows. In Section 5 we
combine results of Hsu [Hsu95] and Joeris et al. [JLM+11] to argue that α can be supposed to be normalized,
which means that the geometric configurations of arc pairs in the arc model α(G) are predetermined by
natural conditions expressible in terms of the adjacency relation of G. Using these conditions, we are able
to compute the pairwise-intersection matrix Mα = (muv), defined by muv = |α(u) ∩ α(v)|, and then also
the pairwise-intersection matrix MαC for the interval system αC(G). Afterwards we use another result of
Fulkerson and Gross saying that an interval system is determined by its pairwise-intersection matrix up to
isomorphism [FG65]. Moreover, it can be reconstructed from the pairwise-intersection matrix in logspace by
an algorithm worked out in [KKW15]; see Section 3.

2. Formal definitions

Hypergraphs. Recall that a hypergraph is a pair (X,H), where X = V (H) is a set of vertices and H is a
family of subsets of X, called hyperedges. We will use the same notation H to denote a hypergraph and its
hyperedge set. A hypergraph has the Helly property if every set of pairwise intersecting hyperedges has a
common vertex. An isomorphism from a hypergraph H to a hypergraph K is a bijection φ : V (H)→ V (K)
such that H ∈ H if and only if φ(H) ∈ K for every H ⊆ V (H). Here and below, if φ is a function and H is a
subset of its domain, then φ(H) = {φ(x) : x ∈ H} denotes the image of H under φ. In Section 4, we consider
hypergraphs H with multi-hyperedges, that is, each hyperedge H is assigned a positive integer cH(H), called
the multiplicity of H. An isomorphism φ from H to K has to preserve the multiplicities, that is, it is required
that cK(φ(H)) = cH(H) for every hyperedge H of H.

Arc and interval systems. For n ≥ 3, consider the directed cycle C on the vertex set {1, . . . , n} with arrows
from i to i+ 1 and from n to 1. The vertices of C will be called points. An arc [a, b] consists of the points

3

appearing in the directed path from a to b. An arc system A is a hypergraph on the vertex set {1, . . . , n}
whose hyperedges are arcs.

Given an arc A = [a, b], we refer to a and b as extreme points of A; in particular, a is the start point and b
is the end point of A. Note that [1, n] and [i, i− 1] for i = 2, . . . , n denote the same complete arc. The notion
of extreme points is ambiguous in this case. Nevertheless, we will consider complete arcs with designated
extreme points in Sections 6 and 7. An arc [a, b], a complete one in particular, can alternatively be viewed as
a path in C starting in a and ending in b.

The notions of an interval and an interval system are defined similarly with the only difference that
in place of C, the underlying structure is now the directed path I on the points 1, . . . , n with arrows from
i to i+ 1. Note that the extreme points of the complete interval [1, n] are unambiguous.

In fact, we can consider an interval system on an arbitrary linearly ordered set. In particular, in Section 7
we consider interval systems where the underlying path is a complete arc with designated extreme points. In
this way, if an arc [a, b] is understood as a path from a to b, then any arc system in C that does not traverse
some specified edge of C is naturally regarded as an interval system.

Arc representations of hypergraphs. An arc representation of a hypergraph H is an isomorphism ρ from H to
an arc system A. It can be thought of as a circular ordering of V (H) where every hyperedge is a segment
of consecutive vertices. The arc system A is referred to as an arc model of H. The notions of an interval
representation and an interval model of a hypergraph are introduced similarly. Hypergraphs having arc
representations are called circular-arc (CA) hypergraphs, and those having interval representations are called
interval hypergraphs.

A representation scheme for CA hypergraphs is a function defined on CA hypergraphs that on input H
outputs an arc representation ρH of H. Such a representation scheme is called canonical if isomorphic
CA hypergraphs H ∼= K always receive equal arc models ρH(H) = ρK(K). In [KKV12] we designed a canonical
representation scheme for CA hypergraphs computable in logarithmic space. Note that our algorithm works
for hypergraphs with multi-hyperedges.

Graphs. The vertex set of a graph G is denoted by V (G). The closed neighborhood N [v] of a vertex v consists
of v itself and all the vertices adjacent to it. A vertex u is universal if N [u] = V (G). Two vertices u and v
are twins if N [u] = N [v]. Note that twins are always adjacent. The twin class [v] of a vertex v consists of v
itself along with all its twins. Between two different twin classes there are either none or all of the possible
edges. This allows us to consider the quotient graph G′ on the vertex set V (G′) =

{
[v]
}
v∈V (G) where two

distinct twin classes [v] and [u] are adjacent if v and u are adjacent in G. The map v 7→ [v] from G to G′
will be referred to as the quotient map.

The intersection graph I(H) of a hypergraph H has the hyperedges of H as vertices, and two such vertices
A,B ∈ H are adjacent if A ∩B 6= ∅. If H has hyperedges of multiplicity greater than 1, they become twins
in I(H).

Arc representations and arc models of graphs. An intersection representation of a graph G is an isomorphism
α : V (G)→ A from G to the intersection graph I(A) of a hypergraph A. The hypergraph A is then called
an intersection model of G. If A is an arc system, we call α an arc representation and A an arc model of G.
Graphs having arc representations are called circular-arc (CA) graphs. In other words, those are graphs
isomorphic to the intersection graph of some CA hypergraph. Helly circular-arc (HCA) graphs are graphs
having Helly arc representations, i.e., representations providing arc models that obey the Helly property.
The notions of interval representations and interval models of graphs as well as interval graphs are defined
accordingly.

A representation scheme for a class C of CA graphs is a function that on input G ∈ C outputs an arc
representation αG of G. A representation scheme for HCA graphs must produce Helly arc representations. If
a representation scheme produces equal models for isomorphic input graphs, it is called canonical.

4

3. Pairwise intersections as a complete isomorphism invariant for interval hypergraphs

In this short section, we state a few useful facts about interval systems. Let V be a set and let H be a
hypergraph. Given a bijection λ : V → H, we define the pairwise-intersection matrix Mλ = (muv)u,v∈V of λ
by muv = |λ(u) ∩ λ(v)|. Consider two bijections λ : V → H and µ : V → K from V to hypergraphs H and K,
respectively. If there is an isomorphism ψ from H to K such that µ = ψ ◦ λ, then obviously Mλ =Mµ. It
turns out that the converse is also true if H is an interval hypergraph.

Lemma 3.1 (Fulkerson and Gross [FG65]). Let I be an interval system and J be an arbitrary hyper-
graph. Suppose that Mλ = Mµ for bijections λ : V → I and µ : V → J . Then there is a hypergraph
isomorphism ψ such that µ = ψ ◦ λ; see Fig. 2.

V

I

J

λ

µ

ψ

Figure 2: Lemma 3.1: If Mλ =Mµ and I is an interval hypergraph, then I ∼= J .

We will use the fact that I and λ are efficiently reconstructible from a given matrix M =Mλ.

Lemma 3.2 (Köbler, Kuhnert, and Watanabe [KKW15]). There is a logspace algorithm that com-
putes for a given integer matrix M = (muv)u,v∈V an interval system I and a bijection λ : V → I such that
M =Mλ (if they exist).

4. Getting canonicity for free

A clique in a graph G is a set of pairwise adjacent vertices. An inclusion-maximal clique will be called a
maxclique. The clique hypergraph C(G) of a graph G has the same vertex set as G (i.e., V (C(G)) = V (G)) and
the maxcliques of G as its hyperedges. We now define the bundle hypergraph B(G), which is the dual of C(G).
The hypergraph B(G) has the maxcliques of G as vertices (i.e., V (B(G)) = C(G)) and a hyperedge Bv for
each vertex v of G, where Bv consists of all the maxcliques that contain v. We call Bv the (maxclique) bundle
of v and denote the corresponding map v 7→ Bv from V (G) to B(G) by βG.

We begin with a well-known general fact (see, e.g., [MM99, Theorem 1.14]).

Lemma 4.1. Let G be a graph. Then the map βG is an intersection representation for G, that is, two
vertices u and v of G are adjacent if and only if Bu ∩ Bv 6= ∅. Moreover, the corresponding intersection
model B(G) has the Helly property.

The following classical result provides a link between HCA graphs and CA hypergraphs; it is exemplified
in Fig. 3.

Lemma 4.2 (Gavril [Gav74]). G is an HCA graph if and only if B(G) is a CA hypergraph. Moreover,
if ρ is a CA representation of B(G), then αG = ρ ◦ βG (i.e., αG(v) = ρ(Bv) for all v ∈ V (G)) is a Helly arc
representation of G.

Note that if u and v are twins of G, then Bu = Bv and consequently αG(u) = αG(v), i.e., twins are
mapped to arcs of multiplicity greater than one. Although we do not require this, we remark that αG can be
transformed in logspace into a Helly arc representation of G that maps different vertices to different arcs.

Lemma 4.3. The canonical representation problem for HCA graphs is logspace reducible to the (not neces-
sarily canonical) representation problem for HCA graphs that have neither twins nor universal vertices.

5

G:

a

b

c

d

e

f

g

h

A:

1

2
3

4

5

6

Aa

Ab
Ac

AdAe

AfAg

Ah

Figure 3: The graph G contains the maxcliques C1 = {a, b, c}, C2 = {b, c, d, e}, C3 = {c, d, e, f}, C4 = {e, f, g}, C5 = {f, g, h},
and C6 = {a, h}. Its bundle hypergraph BG admits the HCA model A via the representation ρ : C(G)→ {1, 2, 3, 4, 5, 6} that
maps each maxclique Ci to the point i, and thus ρ(Bv) = Av for each v ∈ V (G). The function α : V (G)→ A that maps each
vertex v to the arc Av is a Helly arc representation of G.

Proof. We first show that the canonical representation problem for HCA graphs reduces in logspace
to the problem of computing C(G), that is, to finding all maxcliques in a given HCA graph G. Indeed,
given C(G), we can easily construct the bundle hypergraph B(G) and the mapping βG. By Lemma 4.2, we can
combine βG with an arc representation ρB(G) of the CA hypergraph B(G) and obtain an arc representation
αG = ρB(G) ◦ βG. If ρB(G) is chosen according to the logspace-computable canonical representation scheme
for CA hypergraphs designed in [KKV12], then G 7→ αG will be a canonical representation scheme for
HCA graphs. Indeed, if G ∼= H, then B(G) ∼= B(H), which implies that αG(G) = ρB(G)(B(G)) is equal to
αH(H) = ρB(H)(B(H)).

Note now that the problem of computing C(G) is equivalent to its restriction to graphs having neither
twins nor universal vertices. Indeed, let G′ be obtained from G by computing its quotient-graph Q with
respect to the twin-relation and removing the universal vertex [u] from Q (if it exists). Given C(G′), we
easily obtain C(G) by possibly re-inserting [u] in each maxclique of G′ and by converting each maxclique
{[v1], . . . , [vk]} of Q to the corresponding maxclique [v1] ∪ . . . ∪ [vk] of the original graph G.

It remains to show that finding C(G′) reduces to computing an arbitrary Helly arc representation α
of G′. Given an HCA model α(G′), for each point x of the underlying cycle we can compute the set
Cx =

{
v ∈ V (G′) : x ∈ α(v)

}
. Obviously, Cx is a clique in G′. By the Helly property, among these cliques

there are all the maxcliques of G′. Since maximality of a given clique is easy to detect in logspace, this allows
us to compute C(G′).

5. Normalized arc representations of HCA graphs

A system A of m arcs on the 2m-point cycle will be called sharp if all extreme points of the arcs in A are
pairwise distinct; in other words, every point of the cycle is either the start or the end point of exactly one
arc. An arc representation of a graph G is sharp if the corresponding arc model of G is sharp. It suffices to
deal with arc representations of this kind because any CA graph has a sharp arc model.

Moreover, we are particularly interested in those arc representations where the mutual placement of any
two arcs α(u) and α(v) is determined by conditions on u and v expressible in terms of the adjacency relation
of G. Note that in any arc representation α, arcs α(u) and α(v) are disjoint exactly when the vertices u and v
are non-adjacent. Furthermore, α(u) ⊆ α(v) only if N [u] ⊆ N [v] (but in general, the converse may not be
true).

If two arcs A and B intersect but neither of them includes the other, then there are two possibilities:
Either each arc contains exactly one extreme point of the other arc or each arc contains both extreme points
of the other arc. In the former case we say that A and B strictly overlap and write A B. In the latter
case we say that A and B form a circle cover and write A B. Note that the relation α(u) α(v) is only

6

possible if the vertices u and v satisfy the following conditions:

N [u] ∪N [v] = V (G); (1)
w ∈ N [u] \N [v] implies N [w] ⊂ N [u]; (2)
w ∈ N [v] \N [u] implies N [w] ⊂ N [v]. (3)

Definition 5.1 (cf. Hsu [Hsu95]). A sharp arc representation α of a graph G is called normalized if the
following two conditions are met for every two vertices u and v of G:

1. α(u) ⊆ α(v) exactly when N [u] ⊆ N [v].
2. α(u) α(v) exactly when all the three conditions (1)–(3) are true.

We will benefit from the following fact.

Lemma 5.2 (Hsu [Hsu95]). Every CA graph G without twins and universal vertices has a normalized arc
representation.

When applied to an HCA graph G, Lemma 5.2 itself does not guarantee that G has a normalized Helly
arc representation. Nevertheless, this is true and follows from a result of Joeris et al. in [JLM+11].

Lemma 5.3. Let G be an HCA graph without twins and universal vertices. Then every normalized arc
representation of G is a Helly arc representation.

Proof. Joeris et al. in [JLM+11] introduce the concept of a stable arc model and prove that every stable
arc model of an HCA graph has the Helly property [JLM+11, Theorem 4.1]. Therefore, it suffices to show
that any arc model A of G produced by a normalized arc representation α : V (G)→ A is stable.

In the case that G has no universal vertex, the stability property can be defined as follows. Given an arc
system in a cycle C, by an extreme sequence we mean a maximal path in C containing extreme points of
the same type, i.e., either start or end points. Let S be an extreme sequence of start points succeeding an
extreme sequence E of end points in the arc model A of G. Suppose that an arc A has start point in S and
an arc B has end point in E. Then the stability of A means that all such A and B are disjoint.

Assume now that there are such A = α(u) and B = α(v) with nonempty intersection. It is easy to observe
that the vertices u and v satisfy the conditions (1)–(3), while A and B strictly overlap. This contradicts the
assumption that α is normalized.

We will use yet another property of normalized arc representations of HCA graphs. If A B, then we will
write A ≺ B in the case that B contains the end point of A (equivalently, A contains the start point of B).

Lemma 5.4. Let α be a normalized Helly arc representation of a graph G and let u, v, w be vertices of G.
If the arcs α(u), α(v) and α(w) strictly overlap each other, then

α(u) ∩ α(v) ⊆ α(w) if and only if N [u] ∩N [v] ⊆ N [w]. (4)

Proof. To prove (4) in the forward direction, we need only the Helly property and the fact that α(u)∩α(v) 6= ∅.
Indeed, let x ∈ N [u] ∩ N [v]. It follows that α(x) intersects both α(u) and α(v). By the Helly property,
α(x) intersects even the intersection α(u) ∩ α(v). Hence, x ∈ N [w] follows from the assumption that
α(u) ∩ α(v) ⊆ α(w).

Now suppose that α(u) ∩ α(v) * α(w). We assume without loss of generality that α(u) ≺ α(v). As
the Helly property precludes the case α(v) ≺ α(w) ≺ α(u) (see Fig. 4.a), we either have α(u) ≺ α(w) and
α(v) ≺ α(w) or α(w) ≺ α(u) and α(w) ≺ α(v). We assume the former relation (see Fig. 4.b); the latter case
is symmetric. Because α is normalized and α(v) * α(w), there exists a vertex x ∈ N [v] \N [w]. Its arc α(x)
must contain a point in α(v) \ α(w), which is a subset of α(u). Thus, x is also a neighbor of u and witnesses
that N [u] ∩N [v] * N [w].

7

(a)

α(w)

α(u) α(v)

(b)
α(u) α(v)

α(w)

Figure 4: Proof of Lemma 5.4

6. Flipping in a sharp arc system

As we already mentioned in Section 2, the arcs [1, n] and [a, a− 1] for a = 2, . . . , n all coincide with the
complete arc {1, . . . , n} on the n-point cycle C. However, in this section we differentiate between these n arcs
and call them complete arcs with designated extreme points. Suppose that an arc A = [a, b] contains more
than one point, that is, a 6= b. In this case, we will say that the arc Ã = [b, a] is obtained from A by flipping.
This operation applies, in particular, to the n complete arcs with designated extreme points, producing the
n two-point arcs [n, 1] and [a − 1, a] for a = 2, . . . , n. If applied to two-point arcs, the flipping operation
produces complete arcs with designated extreme points. Note also that sharpness is preserved by flipping.

Suppose that an arc systemA contains no one-point arc but possibly contains complete arcs with designated
extreme points. Given a mapping ν : V → A and a set C ⊆ V , we define the C-flipped mapping νC : V → Aν(C)

by νC(v) = ν̃(v) for v ∈ C and νC(v) = ν(v) for v /∈ C. Here AX =
{
Ã : A ∈ X

}
∪
{
A : A ∈ A \ X

}
for a

subset X ⊆ A. We will use this notation in the case when V = V (G) is the vertex set of a graph G, though
ν is not necessarily an arc representation. In the following lemma we denote arc systems by I and J (which
we typically do for interval systems) in order to make the notation consistent with Section 7, where this
lemma is used.

Lemma 6.1. Let I be an arc system containing no one-point arc but possibly complete arcs with designated
extreme points. Let ψ be a hypergraph isomorphism from I to another arc system J that takes the extreme
points of each arc A ∈ I to the extreme points of the arc ψ(A) ∈ J . Given a mapping λ : V → I, define the
mapping µ : V → J by µ = ψ ◦ λ. Then, for any subset C ⊆ V , ψ is an isomorphism from Iλ(C) to J µ(C)

and, moreover, µC = ψ ◦ λC ; see Fig. 5.

V

I

J

λ

µ

ψ V

Iλ(C)

J µ(C)

λC

µC

ψ

Figure 5: Lemma 6.1: Flipping preserves isomorphisms that respect extreme points.

Proof. For every v ∈ V , the isomorphism ψ maps the arc λ(v) = [a−, a+] in I onto the arc µ(v) = [b−, b+]
in J . Since ψ preserves the extreme points, ψ({a−, a+}) = {b−, b+}. This implies that for every v ∈ V ,
ψ maps the flipped arc λ̃(v) onto the flipped arc µ̃(v), irrespective of whether or not v ∈ C. Therefore, ψ
always maps λC(v) onto µC(v), which exactly means that ψ is an isomorphism from Iλ(C) to J µ(C) and
µC = ψ ◦ λC .

Lemma 6.1 holds under the assumption that the given isomorphism ψ respects the extreme points of
all arcs. It is easy to see that there are isomorphisms that violate this assumption. For example, the
transposition (23), while being an automorphism of the interval system {[1, 3], [2, 4]}, exchanges the extreme
points of two different intervals. However, two isomorphic sharp interval systems always admit an isomorphism

8

that does respect extreme points. Before we prove this below in Lemma 6.3, we need to recall some general
notions and facts about interval systems.

A slot of a hypergraph H is an inclusion-maximal subset S of V (H) such that each hyperedge of H
contains either all of S or none of it. We say that hyperedges A and B overlap, and write A G B, if
they intersect but neither of them includes the other. Similarly to the intersection graph I(H), for any
hypergraph H we consider its overlap graph O(H) with the vertex set H, where A ∈ H and B ∈ H are
adjacent if A G B. By overlap-connected components of H we mean the subsets of H spanning the connected
components of the overlap graph O(H). If O and O′ are different overlap-connected components, then either
they are vertex-disjoint or all hyperedges of one of the two components are contained in a single slot of the
other component.3 If H is connected, then this containment relation determines a tree-like decomposition
of H into its overlap-connected components.4 The root in this tree will be referred to as the top component ;
the other components will be called inner.

Note that in the terminology of Section 5, two overlapping arcs either strictly overlap or form a circle
cover. The latter relation is excluded in interval systems. The following fact about interval systems is due
to [CY91, Theorem 2]; see also [KKL+11, Section 2.2].

Lemma 6.2 (Chen and Yesha [CY91]). Suppose that I and J are isomorphic overlap-connected interval
systems. Let I1, . . . , Ik be all slots of I listed in the order as they appear in the integer line. Similarly, let
J1, . . . , Jk be the sequence of slots of J as they appear in the integer line. Then any isomorphism from I
to J maps either each Is onto Js or each Is onto Jk+1−s.

Lemma 6.3. Let I and J be isomorphic sharp interval systems. Then there is a hypergraph isomorphism ψ
from I to J that respects extreme points, that is, it takes the extreme points of each interval A ∈ I to
the extreme points of the interval ψ(A) ∈ J . Moreover, for every isomorphism ψ from I to J there is an
isomorphism ψ′ that respects extreme points and maps each interval A ∈ I to ψ′(A) = ψ(A).

Proof. We proceed by induction on the number of overlap-connected components of I. In the base case,
I and J are overlap-connected. Let I1, . . . , Ik be the slots of I and let J1, . . . , Jk be the slots of J as
described in Lemma 6.2. By Lemma 6.2, we can assume that an isomorphism ψ from I to J maps each Is
onto Js; the other case is symmetric.

We show that for each A ∈ I, the isomorphism ψ either respects the extreme points of A or can be locally
modified to respect them. Let A = [a−, a+] and A =

⋃q
s=p Is. It follows that ψ(A) =

⋃q
s=p Js, a

− ∈ Ip, and
a+ ∈ Iq. Moreover, if ψ(A) = [b−, b+], then b− ∈ Jp and b+ ∈ Jq.

Notice now that since I is sharp, every slot contains at most two points. Moreover, every two-point
slot [c−, d+] consists of the start point of some interval C and the end point of another interval D. The
transposition of the points c− and d+ violates neither C nor D, nor any other interval.

If Ip is a one-point slot, we immediately conclude that ψ(a−) = b−. Suppose that Ip = [a−, x+] is a
two-point slot. Let Jp = [b−, y+]. If ψ(a−) = b−, we are done. Otherwise we can ensure ψ′(a−) = b− by
changing ψ only on Ip.

In order to ensure that ψ′(a+) = b+, we may need to modify ψ on Iq. In fact, we just need to inspect all
two-point slots; if such a slot needs modification, this will simultaneously fix inconsistency between a pair of
start points and a pair of end points. The analysis of the overlap-connected case is complete.

Suppose now that I and J have more than one overlap-connected component, that is, are not overlap-
connected. If I and J are disconnected, then the claim readily follows by applying the induction assumption
to the corresponding connected components of I and J .

It remains to consider the case when I and J are connected but not overlap-connected. Assume that
an interval A ∈ I contains an inner overlap-connected component S ⊂ I. Then ψ(V (S)) ⊂ ψ(A) for any
isomorphism ψ from I to J . If we remove all points in V (S) from I and all points in ψ(V (S)) from J , then
the resulting interval systems I ′ and J ′ will still contain the extreme points of A and ψ(A) respectively, and

3This follows from a simple observation that the conditions B ⊂ A, B G B′, and ¬(B′ G A) imply that B′ ⊂ A.
4If H is an interval system, then this decomposition gives rise to the concept of a PQ-tree [BL76].

9

ψ will induce an isomorphism from I ′ to J ′ (recall that both interval systems are sharp). By the induction
assumption, there are isomorphisms from I ′ to J ′ and from S to ψ(S) that agree with ψ on hyperedges and
respect extreme points. Merging them, we get the desired isomorphism ψ′ from I to J .

When we want to apply Lemmas 6.1 and 6.3, the interval systems under consideration need to be sharp.
It may happen that we deal with an isomorphic copy of a sharp interval system that itself is not sharp;
consider for example, {[1, 4], [1, 2]} that is isomorphic to {[1, 4], [2, 3]}. In such cases the following fact will
be helpful.

Lemma 6.4. Suppose that a given interval system J is isomorphic to a sharp interval system. Then an
isomorphism from J to a sharp interval system J ′ can be computed in logspace.

Proof. Suppose that J is isomorphic to a sharp interval system S and ϕ is an isomorphism from J to S.
Since S cannot contain any 1-point interval, the same holds true for any isomorphic system and in particular
for J . Furthermore, J cannot contain any point that serves simultaneously as the start point of an interval A
and the end point of another interval B; otherwise the intervals ϕ(A) and ϕ(B) in S would also intersect at
only one point and thus share an extreme point.

Given J , we construct an interval system J ′ in three steps, each doable in logspace.

1. Remove all interior points from J , that is, those points that are not extreme for any interval.

2. For each point x that is the start point of two or more intervals A1, . . . , Ak, do the following. W.l.o.g.,
assume that A1 ⊃ A2 ⊃ . . . ⊃ Ak. Let y ∈ A1 be the point next to x. We provide the intervals
A2, . . . , Ak with new pairwise distinct start points a−2 , . . . , a

−
k that will be inserted between x and y in

this order; x remains the start point of A1.

3. Do similarly with the shared end points.

Being removed in the first step, interior points never appear later. The 2nd and the 3rd steps ensure that
any two intervals in J ′ share neither the start nor the end point. Thus, J ′ is sharp. It remains to show that
J ′ is isomorphic to J .

Let V be a set of labels for the intervals in S, J , and J ′. Fix bijections λ : V → S, µ : V → J , and
µ′ : V → J ′ such that for every label v, ϕ(µ(v)) = λ(v) and µ′(v) is obtained from µ(v) by the above
transformation. In order to show that J ′ ∼= J , we will show that J ′ ∼= S by using Lemma 3.1. To this end
we need to check the equality Mµ′ =Mλ of the corresponding pairwise-intersection matrices.

Note that the transformation of J into J ′ has the following features.

• If µ(u) contains the start (resp. end) point of µ(v) as an inner point, then µ′(u) contains the start
(resp. end) point of µ′(v) as an inner point.

• If µ(u) does not contain the start (resp. end) point of µ(v), then µ′(u) does not contain the start (resp.
end) point of µ′(v).

• If µ(u) and µ(v) share the start (resp. end) point and µ(u) ⊂ µ(v), then µ′(u) ⊂ µ′(v) and the start
(resp. end) point of µ′(u) becomes an inner point of µ′(v).

These observations readily imply the following equivalences:

µ(w) ∩ µ(v) = ∅ ⇐⇒ µ′(w) ∩ µ′(v) = ∅, (5)
µ(w) ⊂ µ(v) ⇐⇒ µ′(w) ⊂ µ′(v), (6)
µ(w) G µ(v) ⇐⇒ µ′(w) G µ′(v). (7)

Moreover, for every triple of pairwise overlapping intervals µ(w), µ(u), µ(v) we have

µ(u) ∩ µ(v) ⊆ µ(w) ⇐⇒ µ′(u) ∩ µ′(v) ⊆ µ′(w). (8)

10

Since λ(v) and µ(v) correspond to each other under an isomorphism between S and J , the equivalences
(5)–(8) hold true also if µ is replaced with λ.

Suppose now that
{
ν(v)

}
v∈V is a sharp interval system, for example, ν = λ or ν = µ′. Note that the

pairwise-intersection matrix Mν is completely determined by the set-theoretic relations between the intervals.
Specifically,

|ν(v)| = 2 + |{w ∈ V : ν(w) G ν(v)}|+ 2 · |{w ∈ V : ν(w) ⊂ ν(v)}|.

Furthermore,

|ν(u) ∩ ν(v)| =

0 if ν(u) ∩ ν(v) = ∅,
|ν(u)| if ν(u) ⊂ ν(v),
|ν(v)| if ν(u) ⊃ ν(v).

Finally, if ν(u) G ν(v), then

|ν(u) ∩ ν(v)| = 2 + 2 · |{w ∈ V : ν(w) ⊂ ν(u), ν(w) ⊂ ν(v)}|
+ |{w ∈ V : ν(w) ⊂ ν(u), ν(w) G ν(v)}|
+ |{w ∈ V : ν(w) G ν(u), ν(w) ⊂ ν(v)}|
+ |{w ∈ V : ν(w) G ν(u), ν(w) G ν(v), ν(u) ∩ ν(v) 6⊆ ν(w)}|.

Since the set-theoretic relations are the same for λ and µ′, we conclude that Mµ′ = Mλ. As claimed,
Lemma 3.1 now implies that J ′ ∼= S ∼= J .

In general, the algorithm is run on an arbitrary J . After computing J ′ we invoke the algorithm
of [KKL+11] to find a hypergraph isomorphism from J to J ′. In the case of failure, we conclude that the
input system J is not isomorphic to any sharp interval system.

7. A representation scheme for HCA graphs in logspace

We are now prepared to prove Theorem 1.1. By Lemma 4.3, it suffices to design a (not necessarily
canonical) representation scheme for HCA graphs that have no twins and no universal vertices and to show
that this scheme is computable in logspace.

Let G be an input graph on n vertices. We assume that G is HCA and has neither twins nor universal
vertices. By Lemmas 5.2 and 5.3, we know that G admits a normalized Helly arc representation.

Lemma 7.1. Let α be a normalized Helly arc representation of a graph G without twins and universal
vertices. Then the pairwise-intersection matrix Mα depends on G only (being the same for all normalized
Helly arc representations of G) and can be computed in logspace on input G.

Proof. Consider first mvv = |α(v)|. The arc α(v) contains its two own extreme points and additionally,
every vertex u adjacent to v contributes one or two extreme points of α(u) to α(v). More precisely, the
following configurations are possible.

α(u) ⊂ α(v): By Condition 1 in Definition 5.1, this happens exactly when N [u] ⊂ N [v], which is verifiable in
logspace. In this case, u contributes 2 points to α(v).

α(u) α(v): By Condition 2 in Definition 5.1, this happens exactly when the logspace-verifiable conditions (1)–
(3) are met. Also in this case, u contributes 2 points to α(v).

α(u) α(v): This is the remaining case: u contributes 1 point to α(v).

Consider now muv = |α(u) ∩ α(v)| for u 6= v. In the simplest case of non-adjacent u and v we have
muv = 0. Also, muv = muu if α(u) ⊂ α(v) or, equivalently, N [u] ⊂ N [v]. Similarly, muv = mvv if
N [v] ⊂ N [u]. Furthermore, muv = muu +mvv − 2n if α(u) α(v), which is equivalent to (1)–(3).

It remains to compute muv if α(u) α(v). The intersection contains one extreme point of α(u) and one
of α(v). Any other vertex w contributes 0, 1, or 2 extreme points of α(w). The contribution is 0 when

11

α(w) is disjoint from α(u) or α(v) or when it contains at least one of these arcs. Let us analyze the remaining
cases (some cases symmetric up to swapping u and v are omitted). The first four conditions are verifiable in
logspace similarly to the above.

α(w) ⊂ α(u) and α(w) ⊂ α(v): The vertex w contributes 2 to muv.

α(w) ⊂ α(u) and α(w) α(v): The vertex w contributes 1 to muv.

α(w) α(u) and α(w) α(v): The vertex w contributes 2 to muv.

α(w) α(u) and α(w) α(v): The vertex w contributes 1 to muv.

α(w) α(u) and α(w) α(v): This case is more complicated. Without loss of generality, suppose that
α(u) ≺ α(v). Note first that the arc configuration α(v) ≺ α(w) ≺ α(u) cannot occur since it is
non-Helly. There remain two subcases.

α(u) ≺ α(w) ≺ α(v): This happens exactly when α(u) ∩ α(v) ⊆ α(w), which is equivalent to the
logspace-verifiable condition N [u] ∩N [v] ⊆ N [w] by Lemma 5.4. In this subcase, the vertex w
contributes 0 to muv.

α(w) ≺ α(u) and α(w) ≺ α(v) or α(u) ≺ α(w) and α(v) ≺ α(w): This is the complementary subcase
and w contributes 1 to muv.

The analysis is complete. The matrix entry muv is obtained by summing up the contributions of α(w) over
all w.

Our next task is to find an arbitrary maxclique C ∈ C(G). We have to argue that this is doable in
logspace. An edge uv in a graph G is called essential if it is contained in a unique maxclique C. The following
lemma implies that for each edge uv, we can check in logspace if it is essential. If so, then the corresponding
maxclique C is equal to N [u] ∩N [v] and, hence, can also be computed in logspace. A short proof of this
simple fact is provided for the reader’s convenience.

Lemma 7.2. An edge uv is essential if and only if the intersection N = N [u] ∩N [v] is a clique.

Proof. Note first that any clique containing uv is included in N . Hence, if N is a clique then N is the only
maxclique containing uv.

On the other hand, if N contains non-adjacent vertices x and y, then the two triangles {u, v, x} and
{u, v, y} can be extended to two different maxcliques that contain uv.

It is known [OR81] that if G is an interval graph without isolated vertices, then every maxclique in G
contains an essential edge. This allows us to compute the bundle hypergraph B(G) in logspace, which is
an important ingredient of our canonical representation scheme for interval graphs in [KKL+11]. However,
there are HCA graphs that do not enjoy this property; an example is the Hajós (or 3-sun) graph depicted in
Fig. 1(a). Fortunately, every nonempty HCA graph has at least one maxclique that can be efficiently found
due to the fact that it contains an essential edge.

Lemma 7.3. Every nonempty HCA graph G contains an essential edge uv.

Proof. It is enough to consider the case that G has neither twins nor universal vertices. Our analysis is based
on the Helly arc representation β = ρ ◦ βG of G where ρ is an arc representation of the CA hypergraph B(G);
see Lemma 4.2. Fix v to be a non-isolated vertex whose maxclique bundle Bv is minimal under inclusion.
Note that Bv ∪Bw = C(G) for no vertex w ∈ N [v] for else w would be universal. Thus, for every w ∈ N [v]
either Bv ⊆ Bw or Bv G∗ Bw, where the last notation means that each of the four sets Bv ∩Bw, Bv \Bw,
Bw \Bv, and C(G) \ (Bv ∪Bw) is nonempty. If Bv ⊆ Bw for all w ∈ N [v], then N [v] is a clique and we are
done (we can choose u arbitrarily from N [v]). Otherwise fix u ∈ N [v] to be a vertex with |Bv ∩Bu| being as
small as possible. Note that Bv G∗ Bu.

It remains to argue that uv is an essential edge. By Lemma 7.2, we have to show that the intersection
N = N [u] ∩N [v] is a clique. Assume to the contrary that N contains non-adjacent x and y. Looking at
the Helly arc representation β, we see that the arcs β(x) and β(y) must intersect the arc β(v) ∩ β(u) from

12

different sides. Hence, one of β(x) and β(y) must contain the extreme point of β(v) contained in β(u).
Without loss of generality, suppose that this is β(x). It follows that |β(v) ∩ β(x)| < |β(v) ∩ β(u)|, which
contradicts the assumption that |Bv ∩Bu| is as small as possible.

Lemma 7.4. Let α : V (G)→ A be a sharp Helly arc representation of a graph G without universal vertices
and let C ∈ C(G) be a maxclique in G. Consider the C-flipped mapping αC : V (G)→ Aα(C). Then there is a
complete arc D with designated extreme points such that I = Aα(C) is an interval system on D.

Proof. Since α is a Helly representation of G, the arcs in the set α(C) have a common point x. Let
A ∈ α(C) be the arc that has x as one of its extreme points. Choose y to be the point of A next to x. Then
the complete arc D having x and y as its designated extreme points fulfills the claimed property.

We remark that the sharpness condition in Lemma 7.4 is crucial. Indeed, consider the graph G and its
Helly arc representation α given in Fig. 3. The C6-flipped mapping αC6 results in a non-interval arc system.

Lemma 7.5. Let α be a normalized Helly arc representation of a graph G without twins and universal
vertices. Let λ = αC where C ∈ C(G). Then Mλ can be computed in logspace from Mα and C.

Proof. Let Mλ = (mλ
uv) and Mα = (mα

uv). We have mλ
vv = mα

vv if v /∈ C and mλ
vv = 2n+ 2−mα

vv if v ∈ C.
For different u and v, mλ

uv is computed by inspection of several cases. If u /∈ C and v /∈ C, then mλ
uv = mα

uv.
Otherwise, mλ

uv can be computed as detailed in Table 1; the case where u /∈ C and v ∈ C is symmetric to
that where u ∈ C and v /∈ C.

This completes the proof since as argued in the proof of Lemma 7.1, the relationship between α(u) and α(v)
is recognizable in logspace.

Now we can complete the description of our algorithm for computing a Helly arc representation of the
input graph G. Suppose that α : V (G) → A is a normalized Helly arc representation of G. What follows
does not depend on a particular choice of α.

Step 1. Compute the intersection matrix Mα. By Lemma 7.1, this matrix can be computed in logspace and
does not depend on α.

Step 2. Compute a maxclique C of G. This is doable in logspace according to Lemmas 7.2 and 7.3.

Step 3. Compute the intersection matrix Mλ for the C-flipped mapping λ = αC . This can be done in
logspace due to Lemma 7.5.

Note that by Lemma 7.4, the flipped arc system I = Aα(C) is actually an interval system.

Step 4. Compute an interval system J and a mapping µ : V (G)→ J such that Mµ =Mλ. For that purpose,
we invoke the algorithm of Lemma 3.2.

Note that by Lemma 3.1, J and I are isomorphic hypergraphs.

Step 5. Modify µ and J so that J becomes sharp if it is not so from the very beginning. This is possible
due to Lemma 6.4 because J is isomorphic to the sharp interval system I.

Recall that λ is a mapping from V (G) to I. Lemma 3.1 ensures that there is a hypergraph
isomorphism ψ from I to J such that

µ = ψ ◦ λ.

Moreover, by Lemma 6.3 we can assume that ψ respects extreme points of intervals in I and J .
Step 6. Now, we “close” the interval 1, . . . , 2n to the cycle where 1 succeeds 2n and regard J and I as arc

systems, that possibly have complete arcs with designated extreme points. The mapping ψ stays a
hypergraph isomorphism respecting extreme points of all arcs.

13

u ∈ C and v /∈ C u ∈ C and v ∈ C

α(u) ∩ α(v) = ∅ mλ
uv = mα

vv

α(u) ⊂ α(v) mλ
uv = mα

vv −mα
uu + 2 mλ

uv = 2n+ 2−mα
vv

α(u) ⊃ α(v) mλ
uv = 0 mλ

uv = 2n+ 2−mα
uu

α(u) α(v) mλ
uv = 2n+ 2−mα

uu mλ
uv = 0

α(u) α(v) mλ
uv = mα

vv −mα
uv + 1 mλ

uv = 2n+ 2 +mα
uv −mα

uu −mα
vv

Table 1: The entries mλuv of the matrix Mλ can be computed from Mα. Different rules apply depending on the relation of α(u)
to α(v) and whether u and/or v belong to the flipping set C.

Step 7. From µ and C, compute the C-flipped mapping µC : V (G)→ J µ(C).
Note that by Lemma 6.1,

µC = ψ ◦ λC = ψ ◦ α
and ψ is a hypergraph isomorphism from Iλ(C) = A to J µ(C). It follows that, like α, the constructed
mapping µC is a Helly arc representation of G.

The proof of Theorem 1.1 is complete. Note that the above argument also shows that any two normalized arc
representations of an HCA graph without twins and universal vertices yield arc models that are isomorphic
as hypergraphs.

Acknowledgement
We are grateful to an anonymous referee, whose detailed comments were very valuable for us in the course

of preparing the revised version of the paper.

References

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using
PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379, 1976.

[Che96] L. Chen. Graph isomorphism and identification matrices: Parallel algorithms. IEEE Trans. Parallel Distrib. Syst.,
7(3):308–319, 1996.

[CY91] L. Chen and Y. Yesha. Parallel recognition of the consecutive ones property with applications. J. Algorithms,
12(3):375–392, 1991.

[CLM+13] A. R. Curtis, M. C. Lin, R. M. McConnell, Y. Nussbaum, F. J. Soulignac, J. P. Spinrad, and J. L. Szwarcfiter.
Isomorphism of graph classes related to the circular-ones property. Discrete Mathematics & Theoretical Computer
Science, 15(1):157–182, 2013.

[DHH96] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-arc graphs and proper
interval graphs. SIAM J. Comput., 25(2):390–403, 1996.

[FG65] D. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pac. J. Math., 15:835–855, 1965.
[Gav74] F. Gavril. Algorithms on circular-arc graphs. Networks, 4(4):357–369, 1974.
[Hsu95] W.-L. Hsu. O(MN) algorithms for the recognition and isomorphism problems on circular-arc graphs. SIAM J.

Comput., 24(3):411–439, 1995.
[JLM+11] B. L. Joeris, M. C. Lin, R. M. McConnell, J. P. Spinrad, and J. L. Szwarcfiter. Linear time recognition of Helly

circular-arc models and graphs. Algorithmica, 59(2):215–239, 2011.
[KN09] H. Kaplan and Y. Nussbaum. Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc

graphs. Discrete Applied Mathematics, 157(15):3216–3230, 2009.
[KKL+11] J. Köbler, S. Kuhnert, B. Laubner, and O. Verbitsky. Interval graphs: Canonical representations in Logspace. SIAM

J. on Computing, 40(5):1292–1315, 2011.
[KKV12] J. Köbler, S. Kuhnert, and O. Verbitsky. Solving the canonical representation and Star System problems for proper

circular-arc graphs in logspace. In Proc. Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), number 18 in LIPIcs, pages 387–399. Leibniz-Zentrum für Informatik, 2012.

[KKW15] J. Köbler, S. Kuhnert, and O. Watanabe. Interval graph representation with given interval and intersection lengths.
Journal of Discrete Algorithms, 34(9):108–117, 2015.

[KKV13] J. Köbler, S. Kuhnert, and O. Verbitsky. Helly circular-arc graph isomorphism is in logspace. In Proc. 38th MFCS,
number 8087 in LNCS, pages 631–642. Springer, 2013.

[LSS08] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter. A simple linear time algorithm for the isomorphism problem on
proper circular-arc graphs. In Proc. 11th Scandinavian Workshop on Algorithm Theory (SWAT), number 5124 in
LNCS, pages 355–366. Springer, 2008.

14

[LB79] G. Lueker and K. Booth. A linear time algorithm for deciding interval graph isomorphism. J. ACM, 26(2):183–195,
1979.

[McC03] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37(2):93–147, 2003.
[MM99] T. A. McKee and F. R. McMorris. Topics in intersection graph theory. SIAM Monographs on Discrete Mathematics

and Applications 2. Philadelphia: SIAM, 1999.
[OR81] R. J. Opsut and F. S. Roberts. On the fleet maintenance, mobile radio frequency, task assignment, and traffic

phasing problems. In The theory and applications of graphs, pages 479–492. Wiley, 1981.
[Sou14] F. J. Soulignac. Minimal and short representations of unit interval and unit circular-arc graphs. http://arxiv.org/

abs/1408.3443v2, 2014.
[Spi03] J. Spinrad. Efficient graph representations. Number 19 in Field Institute Monographs. AMS, 2003.
[Tor04] J. Torán. On the hardness of Graph Isomorphism. SIAM J. Comput. 33(5):1093–1108, 2004.
[Ueh08] R. Uehara. Simple geometrical intersection graphs. In Proc. 2nd Int. Workshop on Algorithms and Computation

(WALCOM), number 4921 in LNCS, pages 25–33. Springer, 2008.
[Ueh13] R. Uehara. Tractabilities and intractabilities on geometric intersection graphs. Algorithms, 6(1):60–83, 2013.

15

http://arxiv.org/abs/1408.3443v2
http://arxiv.org/abs/1408.3443v2

	Introduction
	Formal definitions
	Pairwise intersections as a complete isomorphism invariant for interval hypergraphs
	Getting canonicity for free
	Normalized arc representations of HCA graphs
	Flipping in a sharp arc system
	A representation scheme for HCA graphs in logspace

