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Abstract

For a propositional proof system P we introduce the complexity class DNPP(P )
of all disjoint NP-pairs for which the disjointness of the pair is efficiently provable
in the proof system P . We exhibit structural properties of proof systems which
make canonical NP-pairs associated with these proof systems hard or complete
for DNPP(P ). Moreover, we demonstrate that non-equivalent proof systems can
have equivalent canonical pairs and that depending on the properties of the proof
systems different scenarios for DNPP(P ) and the reductions between the canonical
pairs exist.
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1 Introduction

Disjoint NP-pairs (DNPP) have been introduced as a complexity-theoretic tool
to model security aspects of public-key crypto systems [11,12]. Further, the
theory of disjoint NP-pairs is intimately connected to propositional proof com-
plexity with applications to automated theorem proving and lower bounds to
the length of proofs [24,23,16]. These applications attracted more complexity-
theoretic research on the structure of the class of disjoint NP-pairs (cf. [13,8–
10]).

Various disjoint NP-pairs have been defined from propositional proof systems
which characterize properties of these proof systems. Razborov [24] was the
first to associate a canonical pair with a proof system. This pair corresponds
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to the reflection property of the proof system. Pudlák [23] showed that also
the automatizability of the proof system and the feasible interpolation prop-
erty are expressible by disjoint NP-pairs. In this way disjoint NP-pairs have
substantially contributed to the understanding of propositional proof systems.

Conversely, this paper aims to transfer proof-theoretic knowledge to the the-
ory of NP-pairs to gain a more detailed understanding of the structure of the
class of disjoint NP-pairs and in particular of the NP-pairs defined from propo-
sitional proof systems. We investigate a slight modification of the first-order
arithmetic representations of disjoint NP-pairs defined by Razborov [24]. We
also define more general propositional representations for NP-pairs and asso-
ciate with any propositional proof system P a subclass DNPP(P ) of NP-pairs
for which the disjointness is provable with short P -proofs. Somewhat sur-
prisingly, under suitable conditions on P these non-uniform classes DNPP(P )
equal their uniform versions which are defined via arithmetic representations.

Investigating the class DNPP(P ) we show that under reasonable assumptions
on the proof system P this class is closed under reductions for pairs and
possesses hard or complete pairs in form of Razborov’s canonical pair, Pudlák’s
interpolation pair and a third, new pair associated with the proof system. The
properties of the classes DNPP(P ) are decisively influenced by the closure
properties of the underlying proof system. We demonstrate that proof systems
P with different properties give rise to different scenarios for DNPP(P ) and
the reductions between the NP-pairs associated with P .

The mentioned closure properties are of logical nature: it should be feasible to
carry out basic operations like modus ponens or substitutions by constants in
the proof system. A recent result of Glaßer et al. [10] states that every DNPP
is equivalent to the canonical pair of some proof system. However, the proof
systems constructed for this purpose do not satisfy our regularity conditions.
The observations of this paper indicate that the Cook-Reckhow framework
of propositional proof systems might be too broad for the study of naturally
defined classes of disjoint NP-pairs. It therefore seems to be natural to make
additional assumptions on the properties of proof systems. Consequently, in
our opinion, the canonical pairs of these natural proof systems deserve special
attention.

Further, we investigate the connection between the simulation order of propo-
sitional proof systems and disjoint NP-pairs. As all information about the
proof lengths is coded in the canonical pair the simulations between proof
systems are reflected in reductions between NP-pairs and specifically between
canonical pairs. Among other things this implies that the existence of opti-
mal propositional proof systems implies the existence of complete NP-pairs.
On the other hand this connection is not as tight as one might hope for. We
provide different ways to construct non-equivalent proof systems with equiv-
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alent canonical pairs. A first example for this situation is due to Pudlák [23].
Here we search for general conditions on proof systems that yield a collapse
between their canonical pairs. In particular, we analyse a weak notion of sim-
ulation for proof systems introduced in [17] but not much studied elsewhere.
This simulation is provably weaker than the ordinary reduction between proof
systems but is equivalent with respect to the existence of optimal proof sys-
tems. We show that all proof systems that are equivalent with respect to this
weak simulation possess equivalent canonical pairs.

2 Proof Systems with Natural Properties

Propositional proof systems were defined in a very general way by Cook and
Reckhow in [7] as polynomial-time functions P which have as its range the
set of all tautologies. A string π with P (π) = ϕ is called a P -proof of the
tautology ϕ. By P ⊢≤m ϕ we indicate that there is a P -proof of ϕ of size ≤ m.
If Φ is a set of propositional formulas we write P ⊢∗ Φ if there is a polynomial
p such that P ⊢≤p(|ϕ|) ϕ for all ϕ ∈ Φ. If Φ = {ϕn | n ≥ 0} is a sequence of
formulas we also write P ⊢∗ ϕn instead of P ⊢∗ Φ.

Proof systems are compared according to their strength by simulations, intro-
duced in [7] and [17]. A proof system S simulates a proof system P (denoted
by P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and
P -proofs π of ϕ there is an S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a
proof π′ can even be computed from π in polynomial time we say that S p-
simulates P and denote this by P ≤p S. A proof system is called (p-)optimal
if it (p-)simulates all proof systems. A system P is polynomially bounded if
P ⊢∗ TAUT. By a theorem of Cook and Reckhow [7] polynomially-bounded
proof systems exist if and only if NP = coNP.

In the following we will often consider proof systems satisfying some addi-
tional properties. We say that a proof system P is closed under modus ponens
if there exists a constant c such that P ⊢≤m ϕ and P ⊢≤n ϕ → ψ imply
P ⊢≤m+n+|ψ|+c ψ for all formulas ϕ and ψ. P is closed under substitutions if
there exists a polynomial q such that P ⊢≤m ϕ implies P ⊢≤q(m+|σ(ϕ)|) σ(ϕ)
for all formulas ϕ and all substitutions σ. Likewise we say that P is closed
under substitutions by constants if there exists a polynomial q such that
P ⊢≤m ϕ(x̄, ȳ) implies P ⊢≤q(m) ϕ(ā, ȳ) for all formulas ϕ(x̄, ȳ) and constants
ā ∈ {0, 1}|x̄|. A system P is closed under disjunctions if there is a polyno-
mial q such that P ⊢≤m ϕ implies P ⊢≤q(m+|ψ|) ϕ ∨ ψ for arbitrary formulas
ψ. If these proof transformations can be executed in polynomial time, then
we speak of efficient closure properties. The following property is shared by
all systems that simulate the truth-table system: a proof system evaluates
formulas without variables if these formulas have polynomially long proofs.
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We call a proof system line based if proofs in the system consist of sequences
of formulas, and formulas in such a sequence are derived from earlier formulas
in the sequence by the rules available in the proof system. Most of the stud-
ied proof systems like resolution, cutting planes and Frege systems are line
based in this sense. The most interesting proof systems for us will be Frege
proof systems F which are usual textbook proof systems based on axioms
and rules. Enhancing F by the possibility to abbreviate complex formulas by
propositional variables results in the extended Frege proof system EF (see e.g.
[14]).

Line-based proof systems can be enhanced by additional axioms. We will do
this in two different ways. Let Φ be a set of tautologies which can be decided
in polynomial time. By P + Φ we denote the proof system P augmented by
the possibility to use all formulas from Φ as axiom schemes. This means that
formulas from Φ as well as substitution instances of these formulas can be
freely introduced as new lines in P + Φ -proofs. In contrast to this we use the
notation P ∪ Φ for the proof system that extends P by formulas from Φ as
new axioms. The difference to P + Φ is that in P ∪ Φ we are only allowed to
use formulas from Φ but not their substitution instances in proofs.

We say that a line-based proof system P allows efficient deduction if there
exists a polynomial p such that for all finite sets Φ of tautologies P ∪Φ ⊢≤m ψ
implies P ⊢≤p(m+n) (

∧

ϕ∈Φ ϕ) → ψ where n = |
∧

ϕ∈Φ ϕ|. In particular, it is well
known that this deduction property holds for Frege systems (see e.g. [14]):

Theorem 1 (Deduction theorem) Frege systems allow efficient deduction.

A class of particularly well behaved proof systems is formed by proof sys-
tems which correspond to arithmetic theories. To explain this correspondence
we have to translate first order arithmetic formulas into propositional formu-
las. Πb

1-formulas have only bounded universal quantifiers and describe coNP-
predicates. A Πb

1-formula ϕ(x) is translated into a sequence ‖ϕ(x)‖n of propo-
sitional formulas containing one formula per input length for the number x
such that ϕ(x) is true if and only if ‖ϕ(x)‖n is a tautology where n = |x|
(cf. [14]). We use ‖ϕ(x)‖ to denote the set {‖ϕ(x)‖n | n ≥ 1}.

The reflection principle for a propositional proof system P states a strong form
of the consistency of the proof system P . It is formalized by the ∀Πb

1-formula

RFN(P ) = (∀π)(∀ϕ)PrfP (π, ϕ) → Taut(ϕ)

where PrfP and Taut are suitable arithmetic formulas describing P -proofs and
tautologies, respectively. The formulas PrfP and Taut can be chosen such that
Taut is a Πb

1-formula, whereas PrfP is provably equivalent in S1
2 both to a Σb

1

and a Πb
1-formula (cf. [14]). A proof system P has the reflection property if
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P ⊢∗ ‖RFN(P )‖n holds.

In [18] a general correspondence between arithmetic theories T and proposi-
tional proof systems P is introduced. Pairs (T, P ) from this correspondence
possess in particular the following two properties:

(1) Let ϕ(x) be a Πb
1-formula such that T ⊢ (∀x)ϕ(x). Then there exists

a polynomial-time computable function f that on input 1n outputs a
P -proof of ‖ϕ(x)‖n.

(2) P is the strongest system for which T proves the correctness, i.e., T ⊢
RFN(P ) and if T ⊢ RFN(S) for a proof system S, then S ≤p P .

In the following we call a proof system P regular if there exists an arithmetic
theory T such that the properties 1 and 2 are fulfilled for (T, P ). The most
prominent example for this correspondence is the pair (S1

2 , EF ).

In [14] a sequence of tautologies ϕn is called hard for a proof system P if ϕn
is constructible in polynomial time and P 6⊢∗ ϕn. By a theorem of [14] hard
sequences exist for a proof system P ≥ EF if and only if P is not optimal.

3 NP-Pairs Defined from Propositional Proof Systems

A pair (A,B) is called a disjoint NP-pair (DNPP) if A,B ∈ NP and A∩B = ∅.
A separator of (A,B) is a set C such that A ⊆ C and B ∩ C = ∅. If such
a separator can be computed in polynomial time, then the pair is called p-
separable.

Grollmann and Selman [11] defined the following Turing reduction between
pairs: (A,B) ≤T (C,D), if there exists a polynomial-time oracle Turing ma-
chine M such that for every separator T of (C,D) L(MT ) separates (A,B).
If for inputs from A ∪B the machine M makes only queries to C ∪D we call
the reduction performed by M a smart Turing reduction.

The following more refined many-one reduction for pairs also stems from [11]:
(A,B) ≤p (C,D) if there exists a polynomial-time computable function f
such that f(A) ⊆ C and f(B) ⊆ D. Because elements from A ∪B can be
mapped to C ∪D a reduction (A,B) ≤p (C,D) does not imply that A and B
are many-one reducible to C and D, respectively. This is, however, the case
for the following stronger reduction defined in [13]: (A,B) ≤s (C,D) if there
exists a function f ∈ FP with f−1(C) = A and f−1(D) = B. As usual we
define the equivalence relation ≡p as (A,B) ≡p (C,D) if (A,B) ≤p (C,D)
and (C,D) ≤p (A,B), and similarly for ≡s.

Razborov [24] associated a canonical disjoint NP-pair (Ref(P ), SAT∗) with a
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proof system P where the first component Ref(P ) = {(ϕ, 1m) |P ⊢≤m ϕ} con-
tains information about proof lengths in P , and SAT∗ = {(ϕ, 1m) |¬ϕ ∈ SAT}
is a padded version of SAT. The canonical pair corresponds to the reflection
principle of the proof system, but it is also linked to the automatizability of
the proof system, a concept that is of great relevance for automated theorem
proving. In [6] a proof system P is called automatizable if there exists a de-
terministic procedure that takes as input a formula ϕ and outputs a P -proof
of ϕ in time polynomial in the length of the shortest P -proof of ϕ. This is
equivalent to the existence of a deterministic polynomial-time algorithm that
takes as input (ϕ, 1m) and produces a P -proof of ϕ if (ϕ, 1m) ∈ Ref(P ). From
this reformulation of automatizability it is clear that automatizable proof sys-
tems have p-separable canonical pairs. The converse is probably not true as
the following proposition shows.

Proposition 2 There exists a proof system P that has a p-separable canonical
pair. But P is not automatizable unless P = NP.

PROOF. We define the proof system P as follows:

P (π) =



























ϕ if π = (ϕ, 1m), m ≥ 2|ϕ| and ϕ ∈ TAUT

ϕ ∨ ⊤ if π = (ϕ, α) and α is a satisfying assignment for ϕ

⊤ otherwise .

The following algorithm separates the canonical pair of P :

1 Input: (ϕ, 1m)

2 IF ϕ = ψ ∨⊤ or ϕ = ⊤ THEN output 1

3 IF m ≥ 2|ϕ| THEN

4 IF ϕ ∈ TAUT THEN output 1

5 output 0 .

The test ϕ ∈ TAUT in line 4 can be performed in polynomial time by checking
all assignments because the parameter m is big enough according to line 3.

If the input formula ϕ is a tautology, then the algorithm outputs 1 by lines 2
and 4, except for the case when ϕ is not of the form ψ ∨⊤ and m < 2|ϕ|. But
in this case we have by definition (ϕ, 1m) 6∈ Ref(P ). Therefore (ϕ, 1m) ∈ SAT∗

always leads to the answer 0 whereas inputs (ϕ, 1m) ∈ Ref(P ) are always
answered by 1.
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The proof system P is not automatizable because this would mean that on in-
put ϕ∨⊤ we would have to produce in polynomial time a satisfying assignment
of ϕ provided ϕ ∈ SAT. This implies in particular the existence of a deter-
ministic polynomial-time algorithm to decide SAT and hence P = NP. 2

This example is not entirely satisfactory as the proof system constructed in the
last proof is not very natural. But it might be hard to prove Proposition 2 for
natural proof systems as it is conjectured that the canonical pairs of all studied
proof systems are not p-separable (cf. [23]). At least for proof systems stronger
than bounded-depth Frege systems we have good reason to believe that their
canonical pairs are not p-separable because cryptographic pairs reduce to the
canonical pairs of these systems [19,6,4].

However, Pudlák showed in [23] that the canonical pair of a proof system
P is p-separable if and only if there exists an automatizable proof system
which simulates P . Therefore proof systems with p-separable canonical pair
are called weakly automatizable.

Pudlák [23] also introduced the interpolation pair of a proof system:

I1(P )= {(ϕ, ψ, π) | Var(ϕ) ∩ Var(ψ) = ∅, ¬ϕ ∈ SAT and P (π) = ϕ ∨ ψ}

I2(P )= {(ϕ, ψ, π) | Var(ϕ) ∩ Var(ψ) = ∅, ¬ψ ∈ SAT and P (π) = ϕ ∨ ψ}

where Var(ϕ) denotes the set of variables occurring in ϕ. This pair is p-
separable if and only if the proof system P has the efficient interpolation prop-
erty. Efficient interpolation has been successfully used to show lower bounds to
the proof size of a number of proof systems like resolution and cutting planes
[5,15,21].

4 Representations of NP-Pairs

In the previous section we briefly explained how properties of propositional
proof systems can be captured by disjoint NP-pairs that are suitably defined
from these proof systems. Conversely, we now employ proof-theoretic methods
to gain a more detailed understanding of the class of disjoint NP-pairs. For
this we need to represent arbitrary disjoint NP-pairs in propositional proof
systems. This can be done uniformly in theories of bounded arithmetic or
non-uniformly in propositional proof systems. We will start with the uniform
concept which was first considered by Razborov [24].

Definition 3 (Razborov [24]) A Σb
1-formula ϕ is an arithmetic represen-

tation of an NP-set A if for all natural numbers a the formula ϕ(a) is true if
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and only if a ∈ A.

A DNPP (A,B) is representable in an arithmetic theory T if there are Σb
1-

formulas ϕ and ψ representing A and B, respectively, such that T ⊢ (∀x)(¬ϕ(x)∨
¬ψ(x)). By DNPP(T ) we denote the class of all disjoint NP-pairs that are rep-
resentable in T .

Since (∀x)(¬ϕ(x)∨¬ψ(x)) is a ∀Πb
1-formula we can also express the disjointness

of A and B propositionally by the sequence of tautologies ‖¬ϕ(x) ∨¬ψ(x)‖n.
Hence propositional representations of disjoint NP-pairs can be simply ob-
tained by transforming Definition 3 with the translation ‖.‖ to the proposi-
tional level. However, we will give a more general definition. For this we first
need to define a propositional encoding of NP-sets.

Definition 4 Let A be an NP-set over the alphabet {0, 1}. A propositional
representation for A is a sequence of propositional formulas ϕn(x̄, ȳ) with the
following properties:

(1) ϕn(x̄, ȳ) has propositional variables x̄ and ȳ such that x̄ is a vector of n
propositional variables.

(2) There exists a polynomial-time algorithm that on input 1n outputs ϕn(x̄, ȳ).
(3) Let ā ∈ {0, 1}n. Then ā ∈ A if and only if ϕn(ā, ȳ) is satisfiable.

Once we have a propositional description of NP-sets we can also represent
disjoint NP-sets in propositional proof systems. This notion is captured by
the next definition.

Definition 5 Let P be a propositional proof system. A disjoint NP-pair (A,B)
is representable in P if there are propositional representations ϕn(x̄, ȳ) of
A and ψn(x̄, z̄) of B such that x̄ are the common variables of ϕn(x̄, ȳ) and
ψn(x̄, z̄) and P ⊢∗ ¬ϕn(x̄, ȳ) ∨ ¬ψn(x̄, z̄).

By DNPP(P ) we denote the class of all disjoint NP-pairs which are repre-
sentable in P .

In the class DNPP(P ) we collect those NP-pairs for which the disjointness is
efficiently provable in the proof system P . Clearly, considering stronger proof
systems we expect this class to grow, namely, if P and Q are proof systems
with P ≤ Q, then DNPP(P ) ⊆ DNPP(Q).

We remark that the provability of the disjointness of a pair (A,B) in a proof
system depends crucially on the choice of the representations for A and B.

Proposition 6 If optimal proof systems do not exist, then the following holds:
for every proof system P and for every disjoint NP-pair (A,B) there exist
propositional representations ϕn for A and ψn for B such that P does not
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prove the disjointness of (A,B) with respect to these representations, i.e., P 6⊢∗

¬ϕn ∨ ¬ψn.

PROOF. Let the pair (A,B) be representable in the proof system P via the
representations ϕ′

n and ψ′
n, i.e., P ⊢∗ ¬ϕ′

n ∨ ¬ψ′
n. By Q we denote the proof

system EF + ‖RFN(P )‖. By assumption Q is not optimal, hence we get a
sequence τn of hard tautologies for Q. We define ϕn(x̄, ȳ, ū) = ϕ′

n(x̄, ȳ)∨¬τn(ū)
and ψn(x̄, z̄, v̄) = ψ′

n(x̄, z̄)∨¬τn(v̄) where all tuples of variables x̄, ȳ, z̄, ū and v̄
are pairwise disjoint. As ¬τn(ū) is not satisfiable ϕ′

n(x̄, ȳ)∨¬τn(ū) represents A.
Similarly, ψn is a propositional representation for B. But Q and hence also P
does not prove the disjointness of A and B with respect to the representations
ϕn and ψn. Assume on the contrary that Q ⊢∗ ¬ϕn ∨ ¬ψn. By definition this
means

Q ⊢∗ ¬(ϕ′
n(x̄, ȳ) ∨ ¬τn(ū)) ∨ ¬(ψ′

n(x̄, z̄) ∨ ¬τn(v̄)) .

Using basic manipulations of formulas, which can be efficiently performed in
Q, we get polynomial-size Q-proofs of τn(ū), contradicting the choice of τn as
hard tautologies for Q. 2

Let us give a concrete example for this situation. The Clique-Coloring pair
(CC0, CC1) takes inputs of the form (G, k), where the first component contains
graphs G with a clique of size k, whereas graphs in CC1 are k − 1-colorable.
Pudlák [22] shows that the disjointness of (CC0, CC1) is not provable with
polynomial-size proofs in the cutting planes system CP for some canonical
representations of the components CC0 and CC1. On the other hand, the
Clique-Coloring pair is p-separable as shown by Lovász [20]. Hence (CC0, CC1)
is contained in DNPP(CP ) as the following argument shows. We choose some
simple p-separable pair (A,B) that is representable in CP . As all p-separable
are equivalent we can reduce (CC0, CC1) to (A,B). The class DNPP(CP ) is
closed under ≤p-reductions (we will show this in Sect. 5, Theorem 8). Therefore
we get (CC0, CC1) ∈ DNPP(CP ) which means that there exist polynomial-
size CP -proofs for the disjointness of the Clique-Coloring pair for suitable
representations of its components.

Now we will compare the uniform and non-uniform representations.

Theorem 7 Let P ≥ EF be a regular proof system which is closed under
substitutions by constants and let T ⊇ S1

2 be a theory corresponding to P .
Then DNPP(P ) = DNPP(T ).
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PROOF. For the first inclusion let (A,B) be a disjoint NP-pair in DNPP(P )
and let ϕn(x̄, ȳ) and ψn(x̄, z̄) be propositional representations for A and B,
respectively, such that P ⊢∗ ¬ϕn(x̄, ȳ) ∨ ¬ψn(x̄, z̄).

Because P is closed under substitutions by constants there exists a polynomial
p such that for all ā ∈ {0, 1}n we have P ⊢≤p(n) ¬ϕn(ā, ȳ)∨¬ψn(ā, z̄). Assume
further that the polynomial-time computable functions f and g generate the
formulas ϕn and ψn, i.e., f(1n) = ϕn(x̄, ȳ) and g(1n) = ψn(x̄, z̄). Consider the
first-order formula

ϕ(α) = Assign(α, x̄) ∧ ¬Taut(¬f(1|α|)(α(x̄), ȳ)) ,

where Assign(α, x̄) describes that α codes a propositional assignment to the
variables x̄ and Taut is the Πb

1-formula from RFN(P ) (cf. [14] for details on
propositional encodings). As the above notation is still not completely pre-
cise let us explain how to understand the definition of ϕ. At input 1|α| the
function f outputs the formula ϕ|α|(x̄, ȳ). In ϕ the computation of f is ex-
pressed by a Σb

1-formula. Then we use again the free variable α of ϕ to ob-
tain a propositional assignment to the propositional variables x̄. The formula
¬Taut(¬f(1|α|)(α(x̄), ȳ)) is a Σb

1-formulation for the satisfiability of ϕ|α|(x̄, ȳ),
where the variables x̄ are substituted by the constants specified in α, and only
the variables ȳ remain free.

The above explanation shows that ϕ is a Σb
1-formula. Moreover, it is clear that

ϕ represents A. Similarly, we define a representation for B as

ψ(α)=Assign(α, x̄) ∧ ¬Taut(¬g(1|α|)(α(x̄), z̄)) ∧

(∃π)|π| ≤ p(|α|) ∧ PrfP (π,¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

In order to verify that T can prove the disjointness of A and B with respect
to the above representations, assume that M is a model of T and α ∈ M is
an element such that M |= ψ(α). In particular this means that there exists an
element π ∈M such that

M |= PrfP (π,¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

Because T ⊢ RFN(P ) this implies

M |= Taut(¬f(1|α|)(α(x̄), ȳ) ∨ ¬g(1|α|)(α(x̄), z̄)) .

The theory T ⊇ S1
2 is strong enough to prove Tarski’s truth conditions for the

propositional satisfaction relation |= (cf. [14] Lemma 9.3.9). In particular T
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proves that a tautological disjunction of formulas without common variables
contains at least one tautological disjunct, and hence we get

M |= Taut(¬f(1|α|)(α(x̄), ȳ)) ∨ Taut(¬g(1|α|)(α(x̄), z̄)) .

But M |= ψ(α) implies M |= Taut(¬f(1|α|)(α(x̄), ȳ)), and therefore M 6|=
ϕ(α). Hence we have shown T ⊢ (∀x)¬ϕ(x) ∨ ¬ψ(x).

To show DNPP(T ) ⊆ DNPP(P ) let ϕ and ψ be Σb
1-formulas representing A and

B, respectively, such that T ⊢ (∀x)¬ϕ(x)∨¬ψ(x). We define the propositional
representations of A and B as the ‖.‖-translations of ϕ and ψ, namely

ϕn(x̄, ȳ) = ‖ϕ(x)‖n and ψn(x̄, z̄) = ‖ψ(x)‖n

where we choose the auxiliary variables ȳ of ‖ϕ(x)‖n and z̄ of ‖ψ(x)‖n disjoint.
These sequences can be generated in polynomial time and represent A and B.
Because the formula (∀x)¬ϕ(x) ∨ ¬ψ(x) is a ∀Πb

1-formula, we derive P ⊢∗

‖¬ϕ(x) ∨ ¬ψ(x)‖n, implying P ⊢∗ ¬ϕn ∨ ¬ψn. 2

At first sight Theorem 7 might come as a surprise as it states that the non-
uniform and uniform concepts equal when representing disjoint NP-pairs in
regular proof systems. The uniform representations of NP-pairs are translated
via ‖.‖ to non-uniform representations in a straightforward manner. For the
transformation of propositional representations into first-order formulas it is,
however, necessary to essentially change the representation of one of the com-
ponents.

5 The Complexity Class DNPP(P )

The aim of this section is to show that the subclasses DNPP(P ) of disjoint NP-
pairs are indeed examples for well defined complexity classes. We will provide
justification for this claim by demonstrating that the classes DNPP(P ) are
closed under reductions and also possess hard or complete pairs for well defined
proof systems P .

We start by giving sufficient conditions for the closure of DNPP(P ) under ≤p

(and hence also under ≤s). Translating the reductions to the propositional
level we have to work with uniform circuit families computing the reduction
functions. Since it is possible in resolution to prove the uniqueness of circuit
computations we can show the following:
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Theorem 8 Let P be a proof system which simulates resolution and is closed
under disjunctions. Then DNPP(P ) is closed under ≤p.

PROOF. Let (A,B) and (C,D) be disjoint NP-pairs. Let (C,D) be repre-
sentable in P , i.e., there exist representations ϕn(x̄, ȳ) and ψn(x̄, z̄) of C and
D, respectively, such that P ⊢∗ ¬ϕn(x̄, ȳ) ∨ ¬ψn(x̄, z̄). Assume further that
(A,B) is ≤p-reducible to (C,D) via the polynomial-time computable function
f . We have to show that also (A,B) is representable in P . For this we fix arbi-
trary representations χn(x̄, r̄) and θn(x̄, s̄) for A and B, respectively. Without
loss of generality we may assume that the reduction function f generates on
inputs of length n outputs of length exactly p(n) for some fixed polynomial p.
Let Cn : {0, 1}n → {0, 1}p(n) be a uniform circuit family which computes the
function f . The computation of the circuits Cn can be described by propo-
sitional formulas Cn(x̄, p̄, ū) which state that on input corresponding to the
propositional variables x̄ the circuit produces the output corresponding to p̄.
The variables ū are auxiliary variables for the gates of the circuit.

Consider the sequence of propositional formulas

ϕ′
n = χn(x̄, r̄) ∧ Cn(x̄, p̄, ū) ∧ ϕp(n)(p̄, ȳ) .

The formulas ϕ′
n provide a propositional representation of the set A because

they propositionally express that x̄ ∈ A and there exists a computation of Cn
on input x̄ that outputs an element from the set C. Similarly, the sequence

ψ′
n = θn(x̄, s̄) ∧ Cn(x̄, q̄, v̄) ∧ ψp(n)(q̄, z̄)

represents B. We have to check that P proves the disjointness of A and B
with respect to ϕ′

n and ψ′
n. The P -proof proceeds along the following lines. By

hypothesis we have polynomial-size P -proofs for the formulas

¬ϕp(n)(p̄, ȳ) ∨ ¬ψp(n)(p̄, z̄) . (1)

By induction on the number of gates of a circuit we can show that resolution
proves the uniqueness of computations of Boolean circuits in polynomial-size
resolution proofs. Because P simulates resolution this means that we have
polynomial-size P -proofs of the formulas

Cn(x̄, p̄, ū) ∧ Cn(x̄, q̄, v̄) → (p̄↔ q̄) . (2)

From (1) and (2) we obtain polynomial-size P -proofs of

Cn(x̄, p̄, ū) ∧ Cn(x̄, q̄, v̄) → ¬ϕp(n)(p̄, ȳ) ∨ ¬ψp(n)(q̄, z̄) ,

12



from which we obtain by closure under disjunctions polynomial-size P -proofs
of the disjointness of A and B with respect to the propositional representations
ϕ′
n and ψ′

n. Hence (A,B) ∈ DNPP(P ). 2

Next we show the hardness of the canonical pair of a proof system P for the
class DNPP(P ).

Theorem 9 Let P be a proof system that is closed under substitutions by con-
stants and modus ponens and can evaluate formulas without variables. Then
(Ref(P ), SAT∗) is ≤p-hard for DNPP(P ).

PROOF. Let (A,B) be a DNPP and let ϕn(x̄, ȳ) and ψn(x̄, z̄) be proposi-
tional representations of A and B, respectively, such that P ⊢∗ ¬ϕn(x̄, ȳ) ∨
¬ψn(x̄, z̄). Then the reduction (A,B) ≤p (Ref(P ), SAT∗) is given by

a 7→ (¬ψ|a|(ā, z̄), 1
p(|a|))

for some suitable polynomial p. To see the correctness of the reduction let
first be a ∈ A. Then there exists a witness b̄ such that |= ϕ|a|(ā, b̄). From the
P -proof of ¬ϕ|a|(x̄, ȳ) ∨ ¬ψ|a|(x̄, z̄) we get by substituting ā for x̄ and b̄ for ȳ
a polynomially longer P -proof of ¬ϕ|a|(ā, b̄) ∨ ¬ψ|a|(ā, z̄). ¬ϕ|a|(ā, b̄) is a false
propositional formula without free variables and hence can be refuted with
polynomial-size P -proofs. An application of modus ponens gives a P -proof of
¬ψ|a|(ā, z̄) as desired.

Assume now a ∈ B. Then ¬¬ψ|a|(ā, z̄) ≡ ψ|a|(ā, z̄) is satisfiable and hence
(¬ψ|a|(ā, z̄), 1

p(|a|)) ∈ SAT∗. 2

Now we turn to proof systems which have the reflection property. The link
between the canonical pair and the reflection property is already apparent
from the definition of (Ref(P ), SAT∗) and is also discussed in [23]. Using our
terminology from Sect. 4 we may phrase this connection precisely as:

Proposition 10 Let P be a proof system. Then P has the reflection property
if and only if the canonical pair of P is representable in P with respect to
the standard representations of Ref(P ) and SAT∗, which are obtained from
the ‖.‖-translations of the first-order formulas (∃π) |π| ≤ m ∧ PrfP (π, ϕ) for
Ref(P ) and (∃α) |α| ≤ |ϕ| ∧ α |= ¬ϕ for SAT∗.

From this we immediately conclude with Theorem 9:

Corollary 11 Let P be a proof system that has the reflection property. As-
sume further that P is closed under substitutions by constants and modus
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ponens and can evaluate formulas without variables. Then (Ref(P ), SAT∗) is
≤p-complete for DNPP(P ).

In particular, this corollary holds for extension EF+‖Φ‖ of EF by polynomial-
time decidable sets Φ of true Πb

1-formulas.

In this context it is natural to ask whether the canonical pair of the resolution
calculus Res is ≤p-complete for DNPP(Res). In view of Corollary 11 and the
above discussion knowing whether (Ref(Res), SAT∗) is representable in resolu-
tion would answer this question. Atserias and Bonet [1] proved that resolution
does not have the reflection property. By Proposition 10 this means that the
disjointness of (Ref(Res), SAT∗) is not provable in resolution with respect to
the standard representation. However, we cannot exclude the possibility that
we have short resolution proofs of the disjointness of (Ref(Res), SAT∗) with
respect to some other representation. At least we can remark that, unless
the canonical pair of resolution is p-separable, these proofs would have to be
essentially non-uniform.

Proposition 12 If the canonical pair of resolution is not p-separable, then
there do not exist proofs for the disjointness of (Ref(Res), SAT∗) that can be
generated in polynomial time.

PROOF. Assume on the contrary that ϕ(x̄, ȳ) and ψ(x̄, z̄) are representations
of Ref(Res) and SAT∗, respectively, such that we can generate resolution
proofs of ¬ϕ(x̄, ȳ) ∨ ¬ψ(x̄, z̄) in polynomial time. Because resolution has the
feasible interpolation property [15] this gives a polynomial-time computable
algorithm that on input 1n produces a circuit Cn(x̄) such that Cn(ā) = 1 if
ϕ(ā, ȳ) is satisfiable, and Cn(ā) = 0 in case of the satisfiability of ψ(ā, z̄). As
ϕ and ψ are representations for Ref(Res) and SAT∗, respectively, this means
that by evaluating the circuit Cn we get a separator for (Ref(Res), SAT∗).
Hence the canonical pair of resolution is p-separable. 2

6 The Class DNPP(P ) Under the Strong ≤s-Reduction

In this section we will analyse the class DNPP(P ) under the strong reduction
≤s. This is interesting because Glaßer, Selman, and Sengupta [8] proved that
≤s is indeed a proper refinement of ≤p, provided that P 6= NP. We start by
associating to every proof system P a disjoint NP-pair (U1(P ), U2):

U1(P )= {(ϕ, ψ, 1m) | Var(ϕ) ∩ Var(ψ) = ∅, ¬ϕ ∈ SAT and P ⊢≤m ϕ ∨ ψ}

U2 = {(ϕ, ψ, 1m) | Var(ϕ) ∩ Var(ψ) = ∅ and ¬ψ ∈ SAT} .
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In the following we will simply refer to this pair as the U -pair. The U -pair
is reminiscent of the interpolation pair (I1(P ), I2(P )), the essential difference
being that (I1(P ), I2(P )) contains actual P -proofs while (U1(P ), U2) contains
only information on their lengths. In the following we will show that both these
pairs have similar function for DNPP(P ) under ≤s as the canonical pairs have
under the weaker reduction ≤p. But before we come to this we need to compare
(U1(P ), U2) with the canonical pair of P .

Proposition 13 (1) Let P be a proof system that is closed under disjunc-
tions. Then (Ref(P ), SAT∗) ≤p (U1(P ), U2).

(2) Let P be a proof system that is closed under substitutions by constants
and modus ponens and evaluates formulas without variables. Then we
have (U1(P ), U2) ≤p (Ref(P ), SAT∗).

PROOF. The first reduction is given by (ϕ, 1m) 7→ (⊥, ϕ, 1p(m)), while the
second reduction is performed by (ϕ, ψ, 1m) 7→ (ψ, 1q(m)), where p and q are
suitable polynomials depending on the proof system P . 2

The following is an analogue of Theorem 9 for the strong reduction ≤s.

Theorem 14 Let P be a proof system that is closed under substitutions by
constants. Then (U1(P ), U2) is ≤s-hard for DNPP(P ).

PROOF. Let (A,B) be a DNPP and let ϕn(x̄, ȳ) and ψn(x̄, z̄) be proposi-
tional representations of A and B, respectively, such that P ⊢∗ ¬ϕn(x̄, ȳ) ∨
¬ψn(x̄, z̄). We claim that there exists a polynomial p such that

a 7→ (¬ϕ|a|(ā, ȳ),¬ψ|a|(ā, z̄), 1
p(|a|))

realizes a ≤s-reduction from (A,B) to (U1(P ), U2).

Let first a be an element from A of length n. Because ϕn(x̄, ȳ) represents A the
formula ϕn(ā, ȳ) is satisfiable. As P is closed under substitutions by constants
we have

P ⊢≤p(n) ¬ϕn(ā, ȳ) ∨ ¬ψn(ā, z̄)

for the appropriate polynomial p. This confirms that a is mapped to U1(P ).
Similarly, elements from B are mapped to U2. The reduction is strong, because
if a 6∈ A ∪ B, then neither ϕ|a|(ā, ȳ) nor ψ|a|(ā, z̄) is satisfiable and hence
(¬ϕ|a|(ā, z̄),¬ψ|a|(ā, z̄), 1

p(|a|)) 6∈ U1(P ) ∪ U2. 2
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As in the case of ≤p we can improve this hardness result to a completeness
result for proof systems which have the reflection property. For proof systems
P corresponding to theories of bounded arithmetic we can additionally prove
the ≤s-completeness of the interpolation pair of P for DNPP(P ):

Theorem 15 Let P ≥ EF be a regular proof system that is efficiently closed
under substitutions by constants. Then (U1(P ), U2) and (I1(P ), I2(P )) are ≤s-
complete for DNPP(P ). In particular we have (U1(P ), U2) ≡s (I1(P ), I2(P )).

PROOF. To show that the pairs (U1(P ), U2) and (I1(P ), I2(P )) are contained
in DNPP(P ), let T ⊇ S1

2 be the theory corresponding to P . It is straightforward
to show that the interpolation and the U -pair are representable in T via some
standard representations using the formulas PrfP and Taut. From this the
representability of the pairs in P follows by Theorem 7.

Together with the ≤s-hardness of (U1(P ), U2) for DNPP(P ) as shown in The-
orem 14 this yields the ≤s-completeness of (U1(P ), U2).

To prove the ≤s-hardness of (I1(P ), I2(P )) for DNPP(P ) let (A,B) be a dis-
joint NP-pair that is representable in P . By Theorem 7 we know that (A,B) is
also representable in the theory T corresponding to P . Let ϕ(x) and ψ(x) be
representations of A andB, respectively, such that T ⊢ (∀x)¬ϕ(x)∨¬ψ(x). Be-
cause P is regular there exists a polynomial-time computable function f that
on input 1n produces a P -proof of ‖¬ϕ(x)∨¬ψ(x)‖n. Further, because by as-
sumption P is efficiently closed under substitutions by constants we can use f
to obtain a polynomial-time computable function g that on input ā ∈ {0, 1}n

outputs a P -proof of

‖¬ϕ(x) ∨ ¬ψ(x)‖n(p̄x/ā) ,

where the variables p̄x corresponding to x are replaced by the bits ā of the
number a. We claim that the ≤s-reduction from (A,B) to (I1(P ), I2(P )) is
given by

a 7→ (‖¬ϕ(x)‖|a|(p̄x/ā), ‖¬ψ(x)‖|a|(p̄x/ā), g(ā))

where the auxiliary variables of ‖¬ϕ(x)‖|a| and ‖¬ψ(x)‖|a| are chosen disjoint.
Verifying the correctness of the reduction proceeds as in Theorem 14. 2

The equivalence of the interpolation pair and the U -pair for strong systems
as stated in the last corollary might come unexpected as the first idea for
a reduction from the U -pair to the I-pair probably is to generate proofs for
ϕ ∨ ψ at input (ϕ, ψ, 1m). This, however, is not possible for extensions of
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EF , because a ≤p-reduction from (U1(P ), U2) to (I1(P ), I2(P )) of the form
(ϕ, ψ, 1m) 7→ (ϕ, ψ, π) implies the automatizability of the system P . But it is
known that automatizability fails for strong systems P ≥ EF under crypto-
graphic assumptions [19,23].

Clearly, for all proof systems (ϕ, ψ, π) 7→ (ϕ, ψ, 1|π|) computes a ≤p-reduction
from (I1(P ), I2(P )) to (U1(P ), U2). For weak systems like resolution or cut-
ting planes the opposite reduction is not possible unless the system is weakly
automatizable. This is the content of the next proposition.

Proposition 16 Let P be a proof system that has the feasible interpolation
property and is closed under disjunctions. Then (U1(P ), U2) ≤p (I1(P ), I2(P ))
implies that P is weakly automatizable.

PROOF. Pudlák [23] showed that feasible interpolation for P means that the
interpolation pair of P is p-separable. Therefore (U1(P ), U2) ≤p (I1(P ), I2(P ))
implies that also (U1(P ), U2) is p-separable. Closure of P under disjunctions
together with Proposition 13 guarantees that (Ref(P ), SAT∗) ≤p (U1(P ), U2),
hence also the canonical pair of P is p-separable and therefore P is weakly
automatizable by a result from [23]. 2

7 NP-Pairs and the Simulation Order of Proof Systems

Now we use the results of the last sections to make some observations about
the connection between the simulation order of proof systems and disjoint
NP-pairs. As this analysis frequently involves proof systems with suitable clo-
sure properties which we want to avoid to list at each occasion we make the
following definition:

Definition 17 We call a proof system P strong if P ≥ EF is a regular proof
system that is closed under modus ponens and disjunctions and efficiently
closed under substitutions by constants.

For instance, all extensions of EF by translations of true arithmetic formulas
are strong in this sense, and therefore every proof system is simulated by
some strong system. If we are interested in exploring optimal proof systems,
then it is anyway legitimate to make as many assumptions on the systems as
necessary. In particular, it is not difficult to show that optimal proof systems
are strong.

We start our analysis with an easy but very useful observation from [23] ex-
pressing that the simulation order of propositional proof systems is reflected
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in reductions between the canonical pairs.

Proposition 18 (Pudlák [23]) If P and S are proof systems with P ≤ S,
then we have (Ref(P ), SAT∗) ≤p (Ref(S), SAT∗).

PROOF. The reduction is given by (ϕ, 1m) 7→ (ϕ, 1p(m)) where p is the poly-
nomial from P ≤ Q. 2

Probably not unexpected, this link between simulations of propositional proof
systems and reductions between disjoint NP-pairs extends to the question
of the existence of maximal elements in the respective orders. The following
theorem which is usually attributed to Razborov [24] expresses this for the
reduction ≤p. Actually, the result as such is not stated in [24], but it easily
follows from the results proven there.

Theorem 19 (Razborov [24]) If P is an optimal proof system, then the
canonical pair of P is a ≤p-complete disjoint NP-pair.

PROOF. Let the proof system P be optimal and let (A,B) be some disjoint
NP-pair. We choose arbitrary representations ϕn and ψn for A and B, respec-
tively. Now we construct some strong proof system that admits polynomial-
size proofs of ¬ϕn ∨ ¬ψn. For example, Q = EF + {¬ϕn ∨ ¬ψn | n ≥ 0} is
such a proof system. By Theorem 9 we get (A,B) ≤p (Ref(Q), SAT∗). Be-
cause P is optimal we have Q ≤ P and hence by Proposition 18 we get
(Ref(Q), SAT∗) ≤p (Ref(P ), SAT∗). Combining these reductions we get the
reduction from (A,B) to the canonical pair of P , as claimed. 2

Even without assuming the existence of optimal proof systems we can say
that candidates for ≤p-complete NP-pairs come from canonical pairs of strong
proof systems:

Proposition 20 Let (A,B) be ≤p-complete for the class of all DNPP. Then
we have (A,B) ≡p (Ref(P ), SAT∗) for some strong proof system P .

PROOF. As in the last proof we choose some strong proof system Q such
that (A,B) is representable in Q. Then (A,B) ≤p (Ref(Q), SAT∗) and by
assumption (Ref(Q), SAT∗) ≤p (A,B). 2

We now analyse how the simulation order of proof systems is reflected in the
more refined reduction ≤s. In [8] it was shown that the reductions ≤p and ≤s
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are different under the assumption P 6= NP. Still we have:

Proposition 21 Let P be a strong proof system. Then for all disjoint NP-
pairs (A,B) we have (A,B) ≤p (U1(P ), U2) if and only if (A,B) ≤s (U1(P ), U2).

PROOF. Let (A,B) ≤p (U1(P ), U2). Because P is strong, the pair (U1(P ), U2)
is representable in P by Theorem 15. Again, as P is strong, P is closed under
disjunctions and P ≥ EF , hence in particular P simulates resolution. Thus we
can deduce by Theorem 8 that also (A,B) is representable in P , from which
we conclude with Theorem 14 (A,B) ≤s (U1(P ), U2).

The opposite implication holds by definition. 2

Corollary 22 Let P and S be strong proof systems. Then we have
(Ref(P ), SAT∗) ≤p (Ref(S), SAT∗) if and only if (U1(P ), U2) ≤s (U1(S), U2).

PROOF. For the first direction we get from

(U1(P ), U2) ≤p (Ref(P ), SAT∗) ≤p (Ref(S), SAT∗) ≤p (U1(S), U2)

together with the last proposition (U1(P ), U2) ≤s (U1(S), U2).

The other implication follows by combining the chain of reductions
(Ref(P ), SAT∗) ≤p (U1(P ), U2) ≤p (U1(S), U2) ≤p (Ref(S), SAT∗) . 2

This yields an analogue of Proposition 18 for strong proof systems:

Corollary 23 If P and S are strong proof systems with P ≤ S, then we have
(U1(P ), U2) ≤s (U1(S), U2).

Köbler, Messner, and Torán [13] proved that the existence of an optimal proof
system implies the existence of ≤s-complete NP-pairs. This result also follows
from our observations here. Additionally, we can exhibit a complete pair:

Theorem 24 If P is an optimal proof system, then (U1(P ), U2) is ≤s-complete
for the class of all DNPP.

PROOF. Let P be an optimal proof system and (A,B) a DNPP. We choose
arbitrary propositional representations ϕn and ψn for A and B, respectively.
As the sequence ¬ϕn ∨ ¬ψn is constructible in polynomial time there exists
some proof system with polynomial-size proofs of these tautologies. Because P
is optimal we also have polynomial-size P -proofs of ¬ϕn ∨ ¬ψn, hence (A,B)
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is representable in P . The system P is optimal, so in particular it is strong.
Therefore we can apply Theorem 15 to conclude (A,B) ≤s (U1(P ), U2). 2

We now turn again to the question whether complete pairs exists, but with-
out assuming the existence of optimal proof systems. Glaßer, Selman, and
Sengupta [8] proved that up to smart Turing reductions the answer to the
problem does not depend on the strength of the reductions used. Here we give
an easy proof based on our results from this section.

Theorem 25 (Glaßer, Selman, Sengupta [8]) The class of all disjoint NP-
pairs contains a ≤p-complete pair if and only if it contains a ≤s-complete pair.

PROOF. For the first direction we can assume with Proposition 20 that
the ≤p-complete DNPP has the form (Ref(P ), SAT∗) for some strong proof
system P . Then all disjoint NP-pairs are representable in P by Theorem 8,
and therefore by Theorem 14 all DNPP are ≤s-reducible to (U1(P ), U2).

The other direction holds by definition. 2

In [8] Glaßer et al. prove that the existence of a complete DNPP under smart
Turing reductions already implies the existence of a ≤p-complete pair. We can
easily reprove their result in our framework by noticing:

Lemma 26 Let T ⊇ S1
2 be an L-theory. Then the class DNPP(T ) is closed

under smart Turing reductions.

PROOF. Let the pair (A,B) be smartly Turing reducible to (C,D) via the
deterministic oracle Turing machine M , and let (C,D) be representable in T .
Consider the NP-sets

A′ = {x | x ∈ A and M(x) accepts}

B′ = {x | x ∈ B and M(x) rejects} .

By ”M(x) accepts” we mean that M accepts the input x by a computation
where all oracle queries that are positively answered are verified by a com-
putation of a nondeterministic machine for C and all negative answers are
verified by D. Since the reduction is smart we have A = A′ and B = B′. For
T ⊢ A′ ∩ B′ = ∅ it suffices to show in T the uniqueness of the computation
of M on inputs x from A ∪ B. Because T is an extension of S1

2 it can prove
the uniqueness of computations of the deterministic machine M , and the pos-
sibility to answer an oracle query both positively and negatively is excluded
by T ⊢ C ∩D = ∅. 2
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From this we conclude:

Proposition 27 Suppose (A,B) is a smart ≤T -complete pair. Let T ⊇ S1
2 be

an arithmetic theory in which (A,B) is representable. Then the pair (U1(P ), U2)
is ≤s-complete for all DNPP where P is the proof system corresponding to T .

PROOF. We choose arithmetic representations ϕ and ψ of A and B, respec-
tively, and define the theory T as S1

2 + ¬ϕ ∨ ¬ψ. Then by the last lemma all
DNPP are representable in T . By Theorem 7 this implies that all pairs are
representable in the proof system P = EF +‖¬ϕ∨¬ψ‖ and therefore the pair
(U1(P ), U2) is ≤s-complete by Theorem 14. 2

It is not clear whether the class of pairs representable in some theory T is
also closed under ≤T -reductions. This corresponds to the open problem from
[8] whether the existence of a ≤T -complete pair implies the existence of a
≤p-complete DNPP.

8 A Weak Reduction Between Proof Systems

Besides ≤ and ≤p we can also study weaker reductions for propositional proof
systems. In [17] a weak reduction ≤′ is defined between proof systems P and Q
as follows: P ≤′ Q holds if for all polynomials p there exists a polynomial q such
that P ⊢≤p(|ϕ|) ϕ implies Q ⊢≤q(|ϕ|) ϕ for all tautologies ϕ. Using the notation
⊢∗ which hides the actual polynomials we can also express the reduction ≤′

more compactly as: P ≤′ Q if and only if for all sets Φ of tautologies P ⊢∗ Φ
implies Q ⊢∗ Φ.

Let us try to motivate the above definition. If we express combinatorial prin-
ciples in propositional logic we arrive at collections Φ of tautologies that typ-
ically contain one tautology per input length. We say that a proof system P
proves a combinatorial principle if there exist polynomially long P -proofs of
the corresponding collection of tautologies. If P ≤ Q, then every principle that
is provable in P is also provable in Q. The Q-proofs are allowed to be longer
than the P -proofs but only up to fixed polynomial amount independent of
the principle proven. The reduction ≤′ is more flexible as it allows a different
polynomial increase for each principle.

It is clear from the above explanation that ≤ is a refinement of ≤′. We observe
that it is indeed a proper refinement, i.e., we can separate ≤ and ≤′. It is,
however, not possible to achieve this separation with regular proof systems.
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Proposition 28 (1) Let P be a proof system that is not polynomially bounded.
Then there exists a proof system Q such that P ≤′ Q but P 6≤ Q.

(2) Let Φ and Ψ be polynomial-time decidable sets of tautologies. Then EF +
Φ ≤′ EF + Ψ implies EF + Φ ≤ EF + Ψ.

PROOF. To prove part 1 let P be a proof system that is not polynomially
bounded. We define the system Q. Q-proofs consist of multiple copies of P -
proofs where the number of copies depends on the length of the P -proof, more
precisely Q(π) = ϕ if there exists a P -proof π′ of ϕ such that π = (π′)l where
the number l of the copies of π′ is determined as follows. Let k be a number
such that |ϕ|k−1 ≤ |π′| < |ϕ|k. Then l is chosen as l = |ϕ|(k−1)k. Hence we have

|ϕ|k−1|ϕ|(k−1)k = |ϕ|k
2−1 ≤ |π| < |ϕ|k|ϕ|(k−1)k = |ϕ|k

2

.

P is ≤′-simulated by Q because for each polynomial p majorized by nk we
can choose q as nk

2

, i.e., P ⊢≤|ϕ|k ϕ implies Q ⊢≤|ϕ|k2 ϕ. But if P is not
polynomially bounded, then for each k there exist formulas ϕ requiring P -
proofs π′ of lengths > |ϕ|k, and hence |ϕ|k

2−1 ≤ |π| forces a super-polynomial
increase in the proof length in the transformation from P -proofs π′ into Q-
proofs π. Hence there is no polynomial q such that P ⊢≤m ϕ implies Q ⊢≤q(m)

ϕ, i.e., P 6≤ Q.

Now we prove part 2. Let Φ and Ψ be polynomial-time decidable sets of
tautologies. Let us denote the systems EF + Φ and EF + Ψ by P and Q,
respectively. The regularity of P implies P ⊢∗ ‖RFN(P )‖n. Because P ≤′ Q
we also have Q ⊢∗ ‖RFN(P )‖n. This implies P ≤ Q, as claimed. 2

However, Kraj́ıček and Pudlák [17] proved that the reductions ≤ and ≤′ are
equivalent with respect to the existence of optimal proof systems.

9 Proof Systems with Equivalent Canonical Pairs

Already in Sect. 7 we have used the close relation between the simulation order
of proof systems and the reductions between canonical pairs. Essentially, this
connection rests upon the fact that DNPP(P ) is a subclass of DNPP(Q) if the
proof systems P is simulated by the system Q. For the canonical pairs this is
expressed by the observation from Proposition 18 that a simulation of P by
Q implies a ≤p-reduction from the canonical pair of P to the canonical pair
of Q.
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We will now explore how tight the connection between the simulation order
of proof systems and reductions in the lattice of pairs really is, i.e., to what
extend the opposite implication of Proposition 18 is valid. If P 6≤ Q, then we
cannot hope to reduce (Ref(P ), SAT∗) to (Ref(Q), SAT∗) by a reduction of
the form (ϕ, 1m) 7→ (ϕ, 1n) that changes only the proof length but leaves the
formula unchanged. However, unlike in the case of simulations between proof
systems the reductions between canonical pairs have the flexibility to change
the formula.

The aim of this section is to provide different techniques for the construction
of non-equivalent proof systems with equivalent canonical pairs. One such
example is given by Pudlák in [23] where he shows that two versions of the
cutting planes proof system CP which do not ≤-simulate each other have
≤p-equivalent canonical pairs. Here we search for general conditions on proof
systems which imply the equivalence of the canonical pairs. The first condition
will be the ≤′-equivalence of the proof systems. For this we show an analogue
of Proposition 18 for ≤′.

Proposition 29 Let P be a proof system that is closed under disjunctions
and let Q be a proof system such that P ≤′ Q. Then (Ref(P ), SAT∗) ≤p

(Ref(Q), SAT∗).

PROOF. We claim that for some suitable polynomial q the mapping

(ϕ, 1m) 7→ (ϕ ∨⊥m, 1q(m))

performs the desired ≤p-reduction where ⊥m stands for ⊥ ∨ . . . ∨ ⊥ (m
disjuncts). To see this let first (ϕ, 1m) ∈ Ref(P ). Because P is closed un-
der disjunctions there exists a polynomial p such that P ⊢≤m ϕ implies
P ⊢≤p(m) ϕ ∨ ⊥m. Because of P ≤′ Q there is a polynomial q such that
Q ⊢≤q(m) ϕ ∨⊥m, i.e., (ϕ ∨ ⊥m, 1q(m)) ∈ Ref(Q).

If (ϕ, 1m) ∈ SAT∗, then the satisfiability of ¬ϕ is transferred to ¬(ϕ ∨⊥m) ≡
¬ϕ ∧⊤ ∧ . . . ∧⊤. 2

Combining Propositions 28 and 29 we get the afore mentioned counterexam-
ples to the converse of Proposition 18.

Corollary 30 Let P be a proof system that is closed under disjunctions and
is not polynomially bounded. Then there exists a proof system Q such that
P 6≡ Q and (Ref(P ), SAT∗) ≡p (Ref(Q), SAT∗).

The proof systems P and Q from the last corollary have equivalent canonical
pairs and are also ≤′-equivalent. Moreover, Proposition 29 implies that the
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≤p-degree of the canonical pair is already determined by the ≤′-degree of the
system:

Corollary 31 Let P and Q be ≤′-equivalent proof systems that are closed
under disjunctions. Then (Ref(P ), SAT∗) ≡p (Ref(Q), SAT∗).

Nevertheless we can also construct proof systems that have equivalent canon-
ical pairs but are not ≤′-equivalent. We show this in the next theorem.

Theorem 32 Let P be a line-based proof system that allows efficient deduc-
tion and let Φ be a sparse set of tautologies that can be decided and generated
in polynomial time. Then (Ref(P ), SAT∗) ≡p (Ref(P ∪ Φ), SAT∗).

PROOF. As P is simulated by P ∪ Φ we get (Ref(P ), SAT∗) ≤p (Ref(P ∪
Φ), SAT∗).

Now we describe the converse reduction. Let p be the polynomial from the
efficient deduction property of P . Because Φ is a sparse set there exists a
polynomial q such that for each number m the set Φ contains at most q(m)
tautologies of length ≤ m. Let Φm = Φ∩Σ≤m be the set of these tautologies.

Then (Ref(P ∪ Φ), SAT∗) reduces to (Ref(P ), SAT∗) via the function

(ψ, 1m) 7→ ( (
∧

ϕ∈Φm

ϕ) → ψ, 1p(mq(m)+m)) .

To verify the claim assume that (ψ, 1m) ∈ Ref(P ∪Φ). Let π be a P ∪Φ-proof
of ψ of length ≤ m. This proof π can use only formulas of length ≤ m from Φ
of which there are only ≤ q(m) many. Hence the tautologies used in the proof
π are contained in

∧

ϕ∈Φm
ϕ. Therefore we know that π is also a proof for ψ in

the proof system P ∪ Φm. Using the efficient deduction property of P we get
a P -proof of size ≤ p(mq(m) +m) of (

∧

ϕ∈Φm
ϕ) → ψ.

Now assume (ψ, 1m) ∈ SAT∗. Then ¬ψ is satisfiable. Therefore also the for-
mula (

∧

ϕ∈Φm
ϕ)∧¬ψ is satisfiable because

∧

ϕ∈Φm
ϕ is a tautology. Hence the

image of (ψ, 1m) is contained in SAT∗. 2

If we start with a well defined line-based system P , then also P ∪Φ will have
good properties (it will lose closure under substitutions). Hence both P and
P ∪Φ can be chosen to satisfy a reasonable amount of the normality conditions
of Sect. 2. As for any non-optimal proof system there exists a sequence of hard
tautologies Φ which separates P and P ∪ Φ with respect to ≤′, we obtain:
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Corollary 33 For any non-optimal line-based proof system P with efficient
deduction there exists a sparse set Φ of tautologies that can be decided and
generated in polynomial time such that P ∪ Φ 6≤′ P and (Ref(P ), SAT∗) ≡p

(Ref(P ∪ Φ), SAT∗).

Because F admits efficient deduction (Theorem 1) we can formulate the fol-
lowing corollary:

Corollary 34 Let Φ be a sparse set of tautologies that can be decided and
generated in polynomial time. Then we have (Ref(F ), SAT∗) ≡p (Ref(F ∪
Φ), SAT∗).

10 Different Scenarios for DNPP(P )

In Sect. 5 we showed that the canonical pair of a proof system P is ≤p-hard for
DNPP(P ) provided that the system P has sufficient closure properties. In the
next theorem we give examples for proof systems P where the canonical pair of
P is not hard for DNPP(P ). Proving such a result requires a suitable hypothesis
as P = NP for example implies that all pairs with nonempty components
are ≤p-complete for the class of all DNPP. Here the assumption is that the
canonical pair of F is not ≤p-complete, and this assumption even characterizes
the assertion.

Theorem 35 There exists a sparse polynomial-time constructible set Φ of
tautologies such that the canonical pair of F ∪ Φ is not ≤p-hard for the class
DNPP(F ∪ Φ) if and only if (Ref(F ), SAT∗) is not ≤p-complete for all pairs.

PROOF. For the first direction assume that for some sparse polynomial-
time constructible set Φ ⊆ TAUT the canonical pair of F ∪ Φ is not ≤p-hard
for DNPP(F ∪ Φ). Then there exists a disjoint NP-pair (A,B) that is not
≤p-reducible to the canonical pair of F ∪ Φ. By Corollary 34 we know that
the canonical pairs of F and F ∪ Φ are ≤p-equivalent. Therefore (A,B) 6≤p

(Ref(F ), SAT∗) and hence the canonical pair of F is not ≤p-complete.

For the opposite direction assume that F is not ≤p-complete. Then there exists
a disjoint NP-pair (A,B) such that (A,B) 6≤p (Ref(F ), SAT∗). We choose
some representations ϕn and ψn of A and B, respectively, and define the
system P as P = F ∪ {¬ϕn ∨ ¬ψn | n ≥ 0}. By definition we have P ⊢∗

¬ϕn ∨ ¬ψn, hence (A,B) is representable in P . By Corollary 34 we have
(Ref(F ), SAT∗) ≡p (Ref(P ), SAT∗). Hence (A,B) ≤p (Ref(P ), SAT∗) would
imply (A,B) ≤p (Ref(F ), SAT∗) in contradiction to our assumption. 2
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Table 1
The class DNPP(P ) for different types of proof systems

weak systems P resolution, cutting planes

(Ref(P ),SAT∗) ≤p-hard for DNPP(P )

(U1(P ), U2) ≤s-hard for DNPP(P )

(I1(P ), I2(P )) p-separable [23]

reductions (I1(P ), I2(P )) ≤p (U1(P ), U2) ≡p (Ref(P ),SAT∗)

(U1(P ), U2) 6≤p (I1(P ), I2(P )) unless P is weakly automatizable

closure of DNPP(P ) under ≤p and ≤s

properties closed under modus ponens and substitutions by constants

efficient interpolation [15], no reflection for resolution [1]

strong systems P extensions EF + ‖Φ‖ of EF

by polynomial-time computable sets of true Πb
1-formulas Φ

(Ref(P ),SAT∗) ≤p-complete for DNPP(P )

(U1(P ), U2) ≤s-complete for DNPP(P )

(I1(P ), I2(P )) ≤s-complete for DNPP(P )

reductions (I1(P ), I2(P )) ≡s (U1(P ), U2) ≡p (Ref(P ),SAT∗)

closure of DNPP(P ) under smart ≤T , ≤p and ≤s

properties efficiently closed under modus ponens and substitutions

no efficient interpolation under cryptographic assumptions [19]

reflection property [18], regular

other systems P extensions F ∪ Φ of F by suitable choices

of polynomial-time constructible sets Φ ⊆ TAUT

(Ref(P ),SAT∗) not ≤p-hard for DNPP(P )*

reductions (I1(P ), I2(P )) ≤p (U1(P ), U2), (Ref(P ),SAT∗) ≤p (U1(P ), U2)

DNPP(P ) is not closed under ≤p*

properties closed under modus ponens

not closed under substitutions by constants*

* unless (Ref(F ),SAT∗) is ≤p-complete for all DNPP

In Table 1 we summarize some of the results for the class DNPP(P ) for some
typical proof systems P . This comparison demonstrates that proof systems P
with different properties give rise to different scenarios for DNPP(P ) and the
reductions between the NP-pairs associated with P .
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Some interesting questions are still unanswered by Table 1. For instance, how
do (Ref(P ), SAT∗) and (U1(P ), U2) compare with respect to the strong re-
duction ≤s? At least for regular systems we know that (Ref(P ), SAT∗) ≤s

(U1(P ), U2). Since U1(P ) is NP-complete the NP-completeness of Ref(P ) is a
necessary condition for the opposite reduction to exist. To determine the com-
plexity of Ref(P ) for natural proof systems seems to be an interesting open
problem. Approaching this question we note the following:

Proposition 36 (1) For every proof system P that is closed under disjunc-
tions there is a proof system P ′ with P ′ ≡p P such that Ref(P ′) is NP-
complete.

(2) On the other hand there are proof systems P and P ′ such that P ≡p P
′

and Ref(P ) is decidable in polynomial time while Ref(P ′) is NP-complete.

PROOF. To show part 1 of the proposition let P be a proof system that
is closed under disjunctions. Closure under disjunctions implies in particular
the existence of polynomial-size proofs of all formulas of the form ϕ ∨ ⊤ for
arbitrary formulas ϕ. We define P ′ as

P ′(π) =



























P (π′) if π = 0q(|P (π′)|)1π′

ϕ ∨ ⊤ if π = (ϕ, α) and α is a satisfying assignment for ϕ

⊤ otherwise

with some polynomial q such that q(n) ≥ max{|(ϕ, α)| | |ϕ ∨ ⊤| = n}. Ob-
viously P ′ is a correct proof system with P ≡p P

′. Furthermore Ref(P ′) is
NP-complete because SAT reduces to Ref(P ′) via ϕ 7→ (ϕ ∨ ⊤, 1q(|ϕ∨⊤|)).

For part 2 we define the proof system P as follows: (π, ϕ) is a P -proof of ϕ,
if either π is a correct truth-table evaluation of ϕ with all entries 1, or ϕ is of
the form ψ ∨⊤ for some formula ψ and π = 1‖Var(ψ)‖.

The proof system P satisfies the condition P ⊢∗ ψ ∨ ⊤ for all formulas ψ.
Hence by the proof of part 1 of this proposition there is a proof system P ′

with P ≡p P
′ and NP-complete Ref(P ′). On the other hand the set Ref(P ) is

easily checked to be decidable in polynomial time. 2

The second part of the above proposition tells us that the complexity of Ref(P )
is not a robust property, i.e., it is not determined by the ≤p-degree of the proof
system P . For strong systems P simulating bounded-depth Frege systems
we know that the set Ref(P ) cannot be decided in polynomial time under
cryptographic assumptions. Hence the exact characterization of the complexity
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of Ref(P ) seems to be an interesting open problem. Are those sets candidates
for languages with complexity intermediate between P and NP-complete?
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