
On Graph Isomorphism for Restricted Graph

Classes⋆

Johannes Köbler

Institut für Informatik, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
koebler@informatik.hu-berlin.de

Abstract. Graph isomorphism (GI) is one of the few remaining prob-
lems in NP whose complexity status couldn’t be solved by classifying
it as being either NP-complete or solvable in P. Nevertheless, efficient
(polynomial-time or even NC) algorithms for restricted versions of GI
have been found over the last four decades. Depending on the graph
class, the design and analysis of algorithms for GI use tools from various
fields, such as combinatorics, algebra and logic.
In this paper, we collect several complexity results on graph isomorphism
testing and related algorithmic problems for restricted graph classes from
the literature. Further, we provide some new complexity bounds (as well
as easier proofs of some known results) and highlight some open ques-
tions.

1 Introduction

In this section we briefly review some important complexity results for graph iso-
morphism as well as for related problems as, e.g., computing the automorphism
group Aut(X) of a given graph X in terms of a generating set of automorphisms
(we refer to this problem as AUT) or the canonization problem (i.e., renaming
the vertices of a given graph in such a way that all isomorphic graphs become
equal). It is easy to see that GI reduces to both problems (in fact, in the unre-
stricted case, GI and AUT are polynomial-time equivalent, whereas it is open
whether canonization reduces to GI). Formal definitions of these and other con-
cepts used in the paper are deferred to the next section. In some sense, graph
isomorphism represents a whole class of algorithmic problems; for example, GI is
polynomial-time equivalent to the isomorphism problem for semigroups as well
as for finite automata [15]. For the interesting relationships between GI and iso-
morphism testing for other algebraic structures like groups and rings we refer
the reader to the excellent surveys [1, 5].

Two graphs X and Y are isomorphic (denoted by X ∼= Y) if there is a
bijective mapping g between the vertices of X and the vertices of Y that preserves
the adjacency relation, i.e., g relates edges to edges and non-edges to non-edges.
Graph Isomorphism is the problem of deciding whether two given graphs are
isomorphic. The problem has received considerable attention since it is one of

⋆ Work supported by a DST-DAAD project grant for exchange visits.

the few natural problems in NP that are neither known to be NP-complete nor
known to be solvable in polynomial time.

There is some evidence that GI is not NP-complete. First of all, GI is
polynomial-time equivalent to its counting version #GI which consists in com-
puting the number of isomorphisms between two given graphs [40]. In contrast,
the counting versions of NP-complete problems (like #SAT) are typically much
harder; in fact they are #P-complete and hence at least as hard as any problem
in the polynomial-time hierarchy [46]. More strikingly, the complement of GI be-
longs to the class AM of decision problems whose positive instances have short
membership proofs checkable by a probabilistic verifier [7]. As a consequence,
GI is not NP-complete unless the polynomial hierarchy collapses to its second
level [16, 45].

A promising approach in tackling the graph isomorphism problem for general
graphs is to design efficient algorithms for restricted graph classes. In fact, Luks’
efficient GI algorithm for graphs of bounded degree [38] yields the fastest known
general graph isomorphism algorithm due to Babai, Luks, and Zemlyachenko [6,
11, 49]. The strongest known hardness result due to Torán [47] says that GI is
hard for the class DET of problems that are NC1 reducible to the computation
of the determinant of a given integer matrix (cf. [20]). DET is a subclass of
NC2 (even of TC1) and contains NL as well as all logspace counting classes like
ModkL, C=L, PL and L(#L) [2, 17].

The first significant complexity result for restricted graph classes is the linear
time canonization algorithm for trees, designed by Hopcroft and Tarjan [29],
and independently by Zemlyachenko [48]. Miller and Reif [42] later gave an NC
algorithm for tree canonization, based on tree contraction methods. Then Lindell
came up with a logspace algorithm for tree canonization [37]. As shown in [34],
this upper bound is optimal, since tree isomorphism is also hard for L under AC0

reductions. If we consider complexity bounds below L, then the representation
that we use to encode the input trees becomes important. For trees encoded in
the string representation, Buss [18] located the canonization problem even in
NC1 (which is also optimal [34]).

Shortly after the linear time canonization algorithm for trees was found,
Hopcroft, Tarjan and Wong designed a linear time canonization algorithm for
planar graphs [28, 30]. This line of research has been pursued by Lichtenstein,
Miller, Filotti, and Mayer, culminating in a polynomial-time GI algorithm for
graphs of bounded genus [36, 41, 33]. In 1991, Miller and Reif [42] designed an
AC1 algorithm for planar graph isomorphism.

Using a group theoretic approach, Babai showed in 1979 that GI is decidable
in random polynomial time for the class CGb of colored graphs with constant
color multiplicity b. More precisely, the vertices of a graph in CGb are colored in
such a way that at most b vertices have the same color and we are only inter-
ested in isomorphisms that preserve the colors. Inspired by Babai’s work, Furst,
Hopcroft and Luks [22] developed efficient solutions for various permutation
group problems and as a byproduct they could eliminate the need for random-
ness in Babai’s algorithm. Both algorithms exploit, in a significant manner, the

fact that the automorphism group Aut(X) of a graph X with constant color
class size, is contained in the product of constant size symmetric groups. For
such groups the pointwise stabilizer series can be used to successively compute
generators for the groups in the series.

In a breakthrough result, Luks in 1982 was able to design an algorithm
for computing Aut(X) in polynomial time for graphs of bounded degree [38].
To achieve this result, Luks considerably refined the group-theoretic techniques
used in earlier algorithms. By combining Luks’ algorithm with a preprocessing
procedure due to Zemlyachenko [49] (see also [6]) for reducing the color valence

of the input graphs, Babai and Luks obtained an 2O(
√

n log n) time-bounded GI
algorithm, where n denotes the number of vertices in the input graphs (see [11]).
This is the fastest algorithm known for the unrestricted graph isomorphism

problem. In [11] it is also shown that for general graphs there is a 2O(n1/2+o(1))

canonizing algorithm which closely matches the running time of the best known
decision algorithm.

Later, Luks in [39] gave a remarkable NC algorithm for the bounded color
class case. Building on [39], Arvind, Kurur and Vijayaraghavan further improved
Luks’ NC upper bound by showing that GI for graphs in CGb (we denote this
restriction of GI by GIb) is in the ModkL hierarchy (and hence in TC1), where
the constant k and the level of the hierarchy depend on b [4]. Prior to this result,
Torán showed that GIb2 is hard for the logspace counting class ModbL [47].
Torán’s lower bound has been extended in [4] where it is shown that for each
level in the ModkL hierarchy there is a constant b such that GIb is hard for this
level.

The pointwise stabilizer series approach has also been applied by Babai, Grig-
oryev and Mount to compute the automorphism group for graphs with bounded
eigenvalue multiplicity [10]. By applying group theory to a greater extent, Babai,
Luks, and Séress were able to show that isomorphism testing for these graph
classes is in NC [12, 8, 39]. However, it is still open whether also Luks’ efficient
GI algorithm for graphs with bounded degree is parallelizable.

Question 1. Is GI for graphs with bounded degree in NC?

Ponomarenko proved that GI for graphs with excluded minors is decidable in
P [43]. In 1990, Bodlaender gave a polynomial-time GI algorithm for graphs of
bounded treewidth [14]. This class contains all series-parallel graphs, all outer-
planar graphs, all graphs with constant bandwidth (or cutwidth) and all chordal
graphs with constant clique-size.

Very recently, Grohe and Verbitsky [26] improved Bodlaender’s upper bound
by showing that GI for graphs of bounded treewidth is in TC1. This follows by
combining the following two results which are interesting on their own.

First, they show that a parallel version of the r-round k-dimensional Weis-
feiler-Lehman algorithm (r-round WLk for short) can be implemented as a
logspace uniform family of TC circuits of depth O(r) and polynomial size. As
a consequence, for any class C for which the multidimensional WL algorithm
correctly decides GI on C in O(log n) rounds, GI on C is decidable by a TC1

algorithm.

As a second ingredient of the proof, Grohe and Verbitsky show that for
r = O(k log n), the r-round WL4k+3 correctly decides GI on all graphs of
treewidth at most k. This latter result is obtained by designing a winning strat-
egy for a suitable Ehrenfeucht-Fräıssé game with 4k + 4 pebbles and r moves.
An interesting question in this context is whether this approach can be extended
to the canonization version of WL.

Question 2. Do graphs of bounded treewidth admit an NC (or even TC1) can-
onization?

As Grohe and Verbitsky use the WL algorithm to solve GI for graphs with
bounded treewidth, it follows that these graphs have a TC1 computable com-
plete normal form (also called invariant). Although, as shown by Gurevich, can-
onization is polynomial-time reducible to computing a complete normal form
[27], it is not clear whether such a reduction is computable in NC for graphs
with bounded treewidth.

Another possibility to answer Question 2 affirmatively may be to use a vari-
ation of the WL algorithm to canonize the input graph. For example, in [32,
Theorem 1.9.4] Immerman and Lander propose the following procedure: as soon
as the refinement process stabilizes choose any vertex (or tuple) from the lexico-
graphically smallest color class of size at least two and individualize it (i.e., give
it a new color). Then restart WL and repeat the process until all color classes
are singletons. The resulting (total) refinement induces unique names for all the
vertices. An interesting question is whether this variant of WL indeed computes
a canon for all graphs of bounded treewidth, and, provided the answer is yes,
whether this task can be performed in a logarithmic number of rounds.

2 Preliminaries

In this section we fix the notation and give formal definitions for some of the
concepts used in this paper. For other basic definitions we refer the reader to
[35] or to any textbook on complexity like [13].

We denote the symmetric group of all permutations on a set A by Sym(A)
and by Sn in case A = {1, . . . , n}. Let G be a subgroup of Sym(A) and let a ∈ A.
Then the set {b ∈ A | ∃g ∈ G : g(a) = b} of all elements b ∈ A reachable from a
via a permutation g ∈ G is called the orbit of a in G.

2.1 Colored graphs

Let X = (V, E) denote a (finite) hypergraph, i.e., E is a subset of the power
set P(V) of V . We always assume that the vertex set is of the form V = [n],
where [n] denotes the set {1, . . . , n}. For a subset U ⊆ V , we use X [U] to denote
the induced subgraph (U, E(U)) of X , where E(U) = {e ∈ E | e ⊆ U}. For
usual graphs, i.e., E ⊆

(

V
2

)

= {e ⊆ v | ‖e‖ = 2}, we use ΓX(u) to denote the
neighborhood {v ∈ V | {u, v} ∈ E} of vertex u in the graph X (if X is clear from
the context we omit the subscript). Further, for disjoint subsets U, U ′ ⊆ V , we

use X [U, U ′] to denote the induced bipartite subgraph (U ∪ U ′, E(U, U ′)), where
E(U, U ′) contains all edges e ∈ E with e ∩ U 6= ∅ and e ∩ U ′ 6= ∅.

A coloring of X is given by a function c : V → [m]. We represent colored
hypergraphs as triples X = (V, E, C), where C = (C1, . . . , Cm) is the color par-
tition induced by c, i.e., Ci = {u ∈ V | c(u) = i}. We denote the class of all
colored hypergraphs by CHG and the class of all colored graphs by CG. Note
that the class of uncolored (hyper)graphs can also be seen as a subclass of CHG
where all nodes have color 1. In case ‖Ci‖ ≤ b for all i ∈ [m], we refer to X
as a b-bounded (hyper)graph. The class of all b-bounded graphs (hypergraphs) is
denoted by CGb (respectively, CHGb).

2.2 Isomorphisms and automorphisms

Let X = (V, E, C) and Y = (V, E′, C) be hypergraphs and let g be a permutation
on V . We can extend g to a mapping on subsets U = {u1, . . . , uk} of V by

g(U) = {g(u1), . . . , g(uk)}.

g is an isomorphism between hypergraphs X and Y , if g preserves the edge
relation, i.e.,

∀e ⊆ V : e ∈ E ⇔ g(e) ∈ E′

as well as the color relation,

∀i ∈ [m] : g(Ci) = Ci.

We also say that g maps X to Y and write g(X) = Y . If g(X) = X , then g
is called an automorphism of X . We use Aut(X) to denote the automorphism
group of X . Note that the identity mapping on V is always an automorphism.
Any other automorphism is called nontrivial.

The decision problem HGIb consists of deciding whether two given b-bounded
hypergraphs X and Y are isomorphic (GIb denotes the restriction of this prob-
lem to graphs). A related problem is the automorphism problem HGAb (GAb)
of deciding if a given b-bounded hypergraph (respectively, graph) has a non-
trivial automorphism. For uncolored (hyper)graphs X = (V, E) we denote these
problems by HGI, GI, HGA and GA, respectively.

2.3 Normal forms and canonization

In the following we assume an appropriate binary encoding of colored (hy-
per)graphs and we identify each graph X with its encoding. Let D ⊆ CHG
be a graph class and let f : {0, 1}∗ → {0, 1}∗ be a function. We say that f
computes a normal form for D, if

∀X, Y ∈ D : X ∼= Y ⇒ f(X) = f(Y).

If f also fulfils the backward implication, i.e.

∀X, Y ∈ D : X ∼= Y ⇔ f(X) = f(Y),

f is called a complete normal form for D. A normal form f for D that computes
for any graph X ∈ D a graph f(X) that is isomorphic to X , i.e.

∀X, Y ∈ D : X ∼= f(X) ∧ [X ∼= Y ⇒ f(X) = f(Y)],

is called a canonization for D. Note that a canonization for D is also a complete
normal form for D. We call f(X) the canon of X (w.r.t. f). Of course, f(X) is
uniquely determined by any isomorphism g between X and f(X). We call any
such g a canonical relabeling of X (w.r.t. f).

2.4 The Weisfeiler-Lehman algorithm

For the history of this approach to GI we refer the reader to [9, 19, 21]. We
will abbreviate k-dimensional Weisfeiler-Lehman algorithm by WLk. WL1 is
commonly known as the canonical labeling or color refinement algorithm. On
input a colored graph X = (V, E, C), where C = (C1, . . . , Cm), the algorithm
proceeds in rounds starting with the initial coloring C0 = C, i.e., c0 assigns to
each node v ∈ V its color c(v). In each round, each node v ∈ V receives a
new color that depends on the previous colors of v and all its neighbors. More
precisely, in the (i + 1)st round, WL1 assigns to node v the color

ci+1(v) = (ci(v), {{ ci(u) | u ∈ Γ (v)}})

consisting of the preceding color ci(v) and the multiset {{ ci(u) | u ∈ Γ (v)}} of
colors ci(u) for all u ∈ Γ (v). For example, c1(v) = c1(w) if and only if for each
color i ∈ [m], v and w have the same number of neighbors with that color. To
keep the color encoding short, after each round the colors are lexicographically
sorted and renamed (hence the renamed colors are in the range [mi], where
mi = ‖{ci(v) | v ∈ V }‖ ≤ n). However, the algorithm retains a table that can
be used to derive the old color names from the new ones. After r rounds, the
r-round WL1 stops and outputs the multiset {{ cr(v) | v ∈ V }} of colors in the
coloring Cr (together with the tables retained at each round). Note that as long
as Ci+1 is a proper refinement of Ci, the number of colors increases. Hence, the
coloring stabilizes after at most n rounds, i.e. Cs+1 = Cs for some s < n. We
call Cs the WL1-stable coloring of X .

Following the same idea, the k-dimensional version iteratively refines a col-
oring of V k. The initial coloring of a k-tuple v̄ is the isomorphism type of the
subgraph induced by the vertices in v̄ (viewed as a labeled graph where each
vertex is labeled by its color and by the positions in the tuple where it occurs).
The refinement step takes into account the colors of all neighbors of v̄ in the
Hamming metric (see [19, 26] for details).

Since the coloring is stable after at most nk rounds, WLk can be implemented
in polynomial time for each constant dimension k. Further, since the colorings
computed by the WL algorithm in each round only depend on the isomorphism
class of X , it is clear that WL computes a normal form on the class of all graphs.
We say that the r-round WLk works correctly for a graph X , if the output for
X is distinct from all outputs produced for any nonisomorphic graph Y 6∼= X .

It is clear that the r-round WLk computes a complete normal form on a graph
class D, provided that it works correctly for each graph X ∈ D (note that for
some graph classes the latter condition might be stronger than the former).

Of course, WLn needs at most one round to work correctly on all graphs
with n vertices. In fact, already WL1 works correctly on all trees and almost
all graphs (in the Gn,1/2 model), and WL2 succeeds on all graphs of color class
size 3 [32]. Thus there was some hope that a low dimensional WL algorithm
may work correctly on all graphs. However, in 1990 Cai, Fürer and Immerman
[19] proved a striking negative result: For any sublinear dimension k = o(n),
WLk does not work correctly even on graphs of vertex degree 3 and color class
size 4. Nevertheless, it was realized later that a constant-dimensional WL is still
applicable to particular classes of graphs, including planar graphs [23], graphs
of bounded genus [24], and graphs of bounded treewidth [25].

3 Hardness of HGA

To show that there are n-vertex graphs of vertex degree 3 and color class size
4 that are hard instances for WLo(n), Cai, Fürer and Immerman used a graph
gadget that originally appeared in [31]. This gadget has also been used by Torán
in a significant manner to show that GI and GA are hard for various subclasses
of TC1 [47]. Here we use a hypergraph variant of this gadget to show that for
any prime p, HGAp is hard for Modp!L. The proof given here simplifies a proof
of a similar result in [3].

It is well-known that the following problem is ModpL complete (cf. [17]).
Given a homogenous system

∑

j∈[n]

aijxj = 0, i ∈ [k] (1)

of linear equations over the field Zp = Z/pZ, decide whether (1) has a nontrivial
solution x̄ ∈ Z

n
p . This problem remains ModpL complete, if we require that the

support Si = {j ∈ [n] | aij 6= 0} of each equation contains at most three elements
and Sj 6= Sk for j 6= k (these restrictions are not really necessary but they
simplify the reduction and keep the orbit size of the hyperedges in the reduced
hypergraph small). Now consider the following hypergraph X = (V, E, C) with

V =

n
⋃

j=1

Vj , E =

n
⋃

j=1

Zj ∪
k

⋃

i=0

Ei and C = (C1, C
′
1, C

′′
1 , . . . , Cn, C′

n, C′′
n),

where

Vj =Cj ∪ C′
j ∪ C′′

j ,

Cj ={uj
x | x ∈ Zp}, C

′
j = {vj

x | x ∈ Zp}, C
′′
j = {wj

x | x ∈ Zp},

Zj ={{uj
x, vj

x}, {v
j
x, wj

x}, {w
j
x, uj

x+1} | x ∈ Zp}, and

Ei ={{uj
xj

| j ∈ Si} |
∑

j∈[n] aijxj = 0}.

In the hypergraph X we have for each variable xj a cycle Xj = X [Vj] such
that Aut(Xj) is isomorphic to the additive group (Zp, +). Fix any isomorphism
ϕ between Aut(Xj) and Zp and denote the automorphism g ∈ Aut(Xj) with
ϕ(g) = x by gj

x. Then Aut(Xj) is represented as {gj
x | x ∈ Zp} and we have

gj
x ◦ gj

x′ = gj
x+x′ .

For any vector x̄ = (x1, . . . , xn) we use x̄|Si to denote the si-dimensional
projection (xj)j∈Si of x̄ to Si. Since Ei contains for each solution x̄ = (x1, . . . , xn)
of the i-th equation in (1) the hyperedge e(x̄|Si) = {uj

xj
| j ∈ Si}, Ei consists of

exactly psi−1 hyperedges. We use Li to denote the set of vectors x̄ ∈ Z
si
p with

e(x̄) ∈ Ei.
Of course, for p = 2, 3 we can simplify X to the graph X̂ = X [C1 ∪ · · · ∪Cn]

since in these cases the groups Aut(X̂j) are cyclic anyway. Figure 1 shows the

graph X̂ corresponding to the equation x1 + x2 − x3 = 0 over Z3.

e(2, 2, 1)

e(1, 2, 0)

e(0, 2, 2)

e(2, 1, 0)

e(1, 1, 2)

e(0, 1, 2)

e(2, 0, 2)

e(1, 0, 1)

e(0, 0, 0)

u3

2

u3

1

u3

0

u2

2

u2

1

u2

0

u1

2

u1

1

u1

0

Fig. 1. The hypergraph gadget for the equation x1 + x2 − x3 = 0 over Z3.

Now it is easy to see that for each i ∈ [k] the automorphism group Aut(Yi)
of the hypergraph Yi = (Wi, Fi, Ci) where Wi =

⋃

j∈Si
Vj , Fi = Ei ∪

⋃

j∈Si
Zj

and Ci is the restriction of the coloring C to Wi, is isomorphic to the solution
space Li of the equation

∑

j∈Si
aijxj = 0. For example, if Si = {1, 2, 3} and the

i-th equation of (1) is x1 + x2 − x3 = 0, then

Aut(Yi) = {(g1
x1

, g2
x2

, g3
x3

) | x1 + x2 − x3 = 0}.

Hence, a permutation g = (g1
x1

, . . . , gn
xn

) ∈ Aut(X1) × · · · × Aut(Xn) is an
automorphism of X if and only if for all i ∈ [k], the restriction of g to Wi

is an automorphism of Yi, implying that

Aut(X) = {(g1
x1

, . . . , gn
xn

) | (x1, . . . , xn) is a solution of (1)}.

This shows that X ∈ HGAp if and only if the system (1) has a nontrivial solution.
Since the reduction from the given homogenous system (1) to the hypergraph X
can be performed in AC0, it follows that for any prime q ≤ p, HGAp is hard for
the class ModqL under AC0 many-one reductions.

Moreover, since HGAp has an easily computable or-function (just take the
union of the graphs where we assume w.l.o.g. that the input graphs have no
colors in common) and since any set in the class ModmL can be represented
as the union A1, . . . , Ak of sets Ai in ModpiL, where p1, . . . , pk are the prime
factors of m [17], it immediately follows that HGAp is even hard for Modp!L.
Since the orbit size of the hyperedges in the reduced hypergraph is bounded by
p2, we also get that GAp2 is Modp!L hard.

Theorem 3. HGAp and GAp2 are hard for Modp!L.

In [3] it is shown that GA4 (as well as GA5 and HGA2) in fact is complete for
the class Mod2L = ⊕L. The best known upper bound for HGAb, b > 2, is P [3].
We remark that if the hyperedges are all of constant size, i.e., ‖e‖ ≤ k for all
e ∈ E, then HGAb is reducible to GAb′ for b′ = bk which is known to be in TC1

[39, 4]. However, when hyperedges are of unbounded size, it is not clear whether
HGAb is reducible to GAb′ for any constant b′.

Question 4. Is HGAb in NC for some constant b > 2?

Torán’s proof that GI and GA are hard for NL crucially hinges on the fact
that the produced graphs have unbounded color classes. Since already in the
2-bounded case the orbits of the edges of a hypergraph can have exponential
size it might be possible to reduce NL to HGAb (or HGIb) for a constant b. Note
that the orbit size of the edges of a b-bounded graph is at most b2.

Question 5. Is there any constant b for which HGAb (or HGIb) is NL hard?

4 Logspace canonization of 3-bounded graphs

In this section we improve the result from [34] that GI for 2-bounded as well as
for 3-bounded graphs is equivalent to undirected graph reachability (and there-
fore complete for L [44]). We first describe a logspace canonization algorithm
for 2-bounded graphs. This algorithm performs a 1-round WL1 and uses indi-
vidualization to refine the remaining size two color classes. We also sketch how
this algorithm can be improved to handle the 3-bounded case. For the complete
proof we refer the reader to the journal version of [3] (in preparation).

Let X = (V, E, C) be a b-bounded graph and let C = (C1, . . . , Cm). We use
Xi to denote the graph X [Ci] induced by Ci and Xij to denote the bipartite
graph X [Ci, Cj] induced by the pair of color classes Ci and Cj . Since it suffices
to compute a canonical relabeling for X we can assume that all vertices in the
same color class Ci have the same degree and each graph Xi is regular of degree
at most (‖Ci‖ − 1)/2. Otherwise we can either canonically split Ci into smaller
color classes or we can replace Xi by the complement graph. Further, we assume

that the edge set Eij of Xij is of size at most ‖Ci‖ · ‖Cj‖/2, since otherwise, we
can replace Xij by the complement bipartite graph.

We say that two color classes Ci, Cj with ‖Ci‖ = ‖Cj‖ are directly linked, if
Eij is a perfect matching in Xij . Ci and Cj are linked, if Ci is reachable from
Cj by a chain of directly linked color classes. We make use of some basic facts
from [3].

Lemma 6. [3] For any directly linked pair Ci, Cj of color classes there is a bi-
jection πij : Sym(Ci) → Sym(Cj) such that for any automorphism g = (gi, gj) ∈
Aut(Xij) it holds that gj = πij(gi).

Let Gi be the intersection of Aut(Xi) with the projections of Aut(Xij) on Ci

for all j 6= i. Any subgroup of the symmetric group Sym(Ci) of all permutations
on Ci is called a constraint for Ci. We call Gi the direct constraint for Ci.

Lemma 7. [3] For a given b-bounded graph, the direct constraints of each color
class can be determined in deterministic logspace.

We use Lemma 6 to define a symmetric relation on constraints. Let Gi and Gj

be constraints of two directly linked classes Ci and Cj , respectively, and let gij

be the bijection provided by Lemma 6. We say that Gi is directly induced by Gj ,
if gij is an isomorphism between the groups Gi and Gj . Further, a constraint G
is induced by a constraint H , if G is reachable from H via a chain of directly
induced constraints. Note that the latter relation is an equivalence on the set of
all constraints. We call the intersection of all constraints of Ci that are induced
by some direct constraint the induced constraint of Ci and denote it by G′

i.

Lemma 8. [3] For a given b-bounded graph, the induced constraints of each color
class can be determined in deterministic logspace.

Proof. Consider the undirected graph X ′ = (V ′, E′) where V ′ consists of all
constraints G in X and E′ = {(G, H) | G is directly induced by H}. In this graph
we mark all direct constraints computed by Lemma 7 as special nodes. Now, the
algorithm outputs for each color class Ci the intersection of all constraints for
Ci that are reachable from some special node, and since SL = L [44], this can
be done in deterministic logspace. ⊓⊔

We define two special types of constraints. We say that Ci is split, if its induced
constraint G′

i has at least two orbits, and we call the partition of Ci in the orbits
of G′

i the splitting partition of Ci. Further, a class Ci of size b is called whole,
if its induced constraint G′

i is the whole group Sym(Ci). The following lemma
summarizes some properties of whole color classes.

Lemma 9. Let Ci be a whole color class in a b-bounded graph X and let Cj be
a color class such that Eij 6= ∅. Then the following holds.

– X [Ci, ΓXij (Ci)] is semiregular,i.e., the degree of any node u in the bipartite
graph only depends on its (non)membership to Ci.

– If also Cj is whole, then ‖Ci‖ = ‖Cj‖ and Ci, Cj are directly linked.
– If Cj is split or ‖Cj‖ < b, then all vertices in Ci have the same neighborhood

in Xij.

Lemma 9 tells us that the action of an automorphism on a whole color class C is
not influenced by its action on color classes that are either smaller or split, i.e.,
only other whole color classes can influence C. Similarly, it follows that WL1

will never refine any of the whole color classes in X . Let W be the union of all
whole color classes. Then Aut(X [W]) is computable in logspace.

Lemma 10. [34, 3] A generating set for Aut(X [W]) is computable in FL.

Proof. The algorithm works by reducing the problem to reachability in undi-
rected graphs. For each whole color class Ci we create a set Pi of b! nodes (one
for each permutation of Ci). Recall that if Ci and Cj are directly linked, then
each g ∈ Pi induces a unique permutation h = πij(g) on Cj and hence, we put
an undirected edge between g and h. This gives an undirected graph G with
(b − 1)!‖W‖ nodes.

A connected component P in G that picks out at most one element gi from
each set Pi defines a valid automorphism g for the graph X [W], if P contains
only elements gi ∈ Aut(Xi). On the color classes Ci, for which P contains an
element gi ∈ Pi, g acts as gi, and it fixes all nodes of the other color classes.
By collecting these automorphisms we get a generating set for Aut(X [W]) and
since SL = L [44], this can be done in deterministic logspace. ⊓⊔

Now we prove that WL1 on 2-bounded graphs can be implemented in logspace.

Theorem 11. For graphs in CG2 the WL1-stable coloring is computable in FL.

Proof (sketch). Let X = (V, E, C) be a 2-bounded graph with coloring C =
(C1, . . . , Cm). The only way that a color class Ci gets directly split (i.e. by its
direct constraint Gi) is that one node a ∈ Ci is incident to some color class Cj

whereas the other node b ∈ Ci is not. Let Cj be the lexicographically smallest
color class with this property. Then WL1 refines Ci into ({b}, {a}). These are
exactly the refinements that WL1 performs by the initial coloring and they are
clearly computable in logspace.

If Ci gets refined in a later round, then this refinement is caused by a direct
link to a color class that has been refined earlier. Let Cj be the lexicographically
smallest directly split color class which is linked to Ci by a chain (Cj , . . . , Ci)
of directly linked color classes of minimal length. Then WL1 transposes the
refinement of Cj to Ci via the chain (Cj , . . . , Ci). Clearly, also these refinements
are computable in logspace. Finally, observe that the whole color classes never
get refined by WL1. In fact, they form orbits in Aut(X). ⊓⊔

As an easy consequence we get a logspace canonization for all 2-bounded graphs.

Theorem 12. CG2 admits a logspace canonization.

Proof (sketch). Let X = (V, E, C) be a 2-bounded graph with coloring C =
(C1, . . . , Cm). By Theorem 11 the WL1-stable coloring X ′ of X is computable
in logspace. If X ′ assigns unique colors to all vertices, then a canonical labeling
is determined.

Otherwise, for each connected component of linked color classes (of size 2),
the algorithm determines the lexicographically smallest color class C in that
component. Since the nodes of different C’s can be flipped independently, the
algorithm can select in each such color class an arbitrary node and give it a new
color. Now it suffices to run WL1 once more to compute the stable coloring for
the modified graph which will provide unique colors for all vertices. ⊓⊔

We notice that the above proof also shows that the canonization version of WL1

(as proposed in [32, Theorem 1.9.4]) succeeds on the class CG2 (despite the fact
that WL1 does not work correctly on CG2 [32, Corollary 1.6.2]).

Question 13. For which values of k and b does the canonization version of
WLk succeed in canonizing the graphs in CGb?

Similar to the proof of Theorem 11 it can be shown that also for graphs in CG3

the WL1-stable coloring is computable in logspace but it is not clear whether
this generalizes.

Question 14. What is the complexity of computing the WLk-stable coloring for
graphs in CGb?

Immerman and Lander have shown that WL2 works correctly on all 3-bounded
graphs, implying that the canonizing version of WL2 succeeds on the class CG3

[32]. Here we give a logspace canonization algorithm for this class.

Theorem 15. CG3 admits a logspace canonization.

Proof (sketch). Let X = (V, E, C) be a 3-bounded graph with coloring C =
(C1, . . . , Cm). Let Cw denote the subclass of C containing all whole color classes of
size 3 that are linked to the lexicographically smallest whole class Ci and let W be
the set of vertices in these color classes. W.l.o.g. let i = 1 and Cw = (C1, . . . , Cl)
for some l ≤ m.

We first show how to refine the color classes in Cw in a canonical way. We
define a (canonical) reflexive, transitive and connex relation � on C1 such that
u and v are in the same orbit of Aut(X [W]) if and only if u � v as well as
v � u. To define �, for u ∈ C1 consider the set Z(u) of all cycles of color classes
starting (and ending) at C1 such that starting from vertex u ∈ C1 it is possible
to follow this cycle along the edges in E and come back to u. Now define u � v
if Z(u) = Z(v) or the lexicographically smallest cycle in Z(u)∆Z(v) is in Z(v).
Then we can proof the following claim.

Claim. If the three nodes u1, u2, u3 in C1 are cycle-equivalent (i.e. Z(u1) =
Z(u2) = Z(u3)), then the permutation g1 : u1 7→ u2 7→ u3 is extendible to an
automorphism of X [W].

Proof of Claim. The permutation g1 uniquely extends to a permutation g =
(g1, . . . , gl) ∈ Aut(X1)×· · ·×Aut(Xl) on X [W], where we extend g successively
by the lexicographically smallest color class that is linked to a color class on
which g is already defined. If g 6∈ Aut(X [W]), then there must exist two vertices
u, v in two color classes Ci, Cj , respectively, such that

{u, v} ∈ Eij ⇔ {gi(u), gj(v)} 6∈ Eij .

Now let u′ be the vertex in Cj that is linked to u in the spanning tree T along
which g has been extended.

In case u′ = v and {u, v} ∈ Eij it follows that there is a cycle starting at u
following some path in T to u′ = v and then back to u. Starting at gi(u) we reach
gj(v) following the same path through T but proceeding further to Ci we don’t
come back to gi(u), implying that u and gi(u) (and hence also the corresponding
vertices in C1) are not cycle-equivalent.

The other cases are similar. This completes the proof of the claim. ⊳

A similar argument shows that if exactly two of the three vertices u1, u2, u3 are
cycle-equivalent, then there is an automorphism flipping them. Now, we select
any vertex u ∈ C1 with u � v for all v ∈ C1 and give it a new color. As in the
proof of Theorem 12, this can be done in parallel for all connected components
of linked color classes. Running WL1 again on the graph with the individualized
vertices will now refine all whole color classes. Thus we have transformed X into
a canonical 2-bounded refinement and hence we can invoke Theorem 12. ⊓⊔

It follows that for the graph classes GA2 and GA3 all problems related to GI
are complete for L: GA, #GA, #GI, AUT, computing a complete normal form
and canonization. Is this also true for the class of 2-bounded hypergraphs (or
for GA4), i.e., is the canonization problem for these graphs solvable in FL(⊕L)?

Question 16. What is the complexity of computing a canonizing function for
the graph classes CGb and CHGb?

We remark that the TC1 upper bound for GIb given in [4] uses the group theoretic
approach to compute a generating set for Aut(X). Can this approach be adapted
to give also an NC upper bound on the canonization problem for graphs with
bounded color classes?

Acknowledgements

For helpful conversations and suggestions on this work I’m very grateful to
V. Arvind, O. Beyersdorff and O. Verbitsky.

References

1. M. Agrawal and N. Saxena. Automorphisms of finite rings and applications to
complexity of problems. In Proc. 22nd Symposium on Theoretical Aspects of Com-
puter Science, volume 3404 of Lecture Notes in Computer Science, pages 1–17.
Springer-Verlag, 2005.

2. C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoretical
Computer Science, 107(1):3–30, 1993.

3. V. Arvind and J. Köbler. Hypergraph isomorphism testing for bounded color
classes. In Proc. 23rd Symposium on Theoretical Aspects of Computer Science, vol-
ume 3884 of Lecture Notes in Computer Science, pages 384–395. Springer-Verlag,
2006.

4. V. Arvind, P. Kurur, and T. Vijayaraghavan. Bounded color multiplicity graph
isomorphism is in the #L hierarchy. In Proc. 20th Annual IEEE Conference on
Computational Complexity, pages 13–27. IEEE Computer Society Press, 2005.

5. V. Arvind and J. Torán. Isomorphism testing: Pespective and open problems.
Bulletin of the European Association of Theoretical Computer Science (BEATCS),
86, 2005.

6. L. Babai. Moderately exponential bounds for graph isomorphism. In Proc. In-
ternational Symposium on Fundamentals of Computing Theory 81, volume 117 of
Lecture Notes in Computer Science, pages 34–50. Springer-Verlag, 1981.

7. L. Babai. Trading group theory for randomness. In Proc. 17th ACM Symposium
on Theory of Computing, pages 421–429. ACM Press, 1985.

8. L. Babai. A Las Vegas-NC algorithm for isomorphism of graphs with bounded
multiplicity of eigenvalues. In Proc. 27th IEEE Symposium on the Foundations of
Computer Science, pages 303–312. IEEE Computer Society Press, 1986.

9. L. Babai. Automorphism groups, isomorphism, reconstruction. In R. L. Graham,
M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, pages 1447–1540.
Elsevier Science Publishers, 1995.

10. L. Babai, D. Grigoryev, and D. Mount. Isomorphism of graphs with bounded
eigenvalue multiplicity. In Proc. 14th ACM Symposium on Theory of Computing,
pages 310–324. ACM Press, 1982.

11. L. Babai and E. Luks. Canonical labeling of graphs. In Proc. 15th ACM Symposium
on Theory of Computing, pages 171–183, 1983.

12. L. Babai, E. Luks, and Á. Seress. Permutation groups in NC. In Proc. 19th ACM
Symposium on Theory of Computing, pages 409–20. ACM Press, 1987.

13. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, second edition, 1995.

14. H. Bodlaender. Polynomial algorithm for graph isomorphism and chromatic index
on partial k-trees. Journal of Algorithms, 11:631–643, 1990.

15. K. Booth. Isomorphism testing for graphs, semigroups, and finite automata are
polynomially equivalent problems. SIAM Journal on Computing, 7(3):273–279,
1978.

16. R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):27–32, 1987.

17. G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance
of logspace-MOD classes. Mathematical Systems Theory, 25:223–237, 1992.

18. S. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization.
In Computational Logic and Proof Theory, 5th Kurt Gödel Colloquium’97, volume
1289 of Lecture Notes in Computer Science, pages 18–33. Springer-Verlag, 1997.

19. J. Cai, M. Fürer, and N. Immerman. An optimal lower bound for the number of
variables for graph identification. Combinatorica, 12:389–410, 1992.

20. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64:2–22, 1985.

21. S. Evdokimov, M. Karpinski, and I. Ponomarenko. On a new high dimensional
Weisfeiler-Lehman algorithm. Journal of Algebraic Combinatorics, 10:29–45, 1999.

22. M. Furst, J. Hopcroft, and E. Luks. Polynomial time algorithms for permutation
groups. In Proc. 21st IEEE Symposium on the Foundations of Computer Science,
pages 36–41. IEEE Computer Society Press, 1980.

23. M. Grohe. Fixed-points logics on planar graphs. In Proceedings of the 13th Sym-
posium on Logic in Computer Science, pages 6–15, 1998.

24. M. Grohe. Isomorphism testing for embeddable graphs through definability. In
Proc. 32th ACM Symposium on Theory of Computing, pages 63–172, 2000.

25. M. Grohe and J. Mariño. Definability and descriptive complexity on databases of
bounded tree-width. In C. Beeri and P. Bunemann, editors, Proceedings of the 7th
Conference on Database Theory, volume 1540, pages 70–82. Springer-Verlag, 1999.

26. M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a
game. Manuscript, 2006.

27. Y. Gurevich. From invariants to canonization. Bulletin of the European Association
of Theoretical Computer Science (BEATCS), 63, 1997.

28. J. E. Hopcroft and R. E. Tarjan. Isomorphism of planar graphs (working paper).
In R. Miller and J. Thatcher, editors, Complexity of computer computations, pages
131–152. Plenum Press, New York-London, 1972.

29. J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM,
21:549–568620, 1974.

30. J. E. Hopcroft and J. Wong. Linear time algorithm for isomorphisms of planar
graphs. Proc. 6th ACM Symposium on Theory of Computing, pages 172–184, 1974.

31. N. Immerman. Number of quantifiers is better than number of tape cells. Journal
of Computer and System Sciences, 22(3):384–406, 1981.

32. N. Immerman and E. Lander. Describing graphs: a first order approach to graph
canonization. In A. L. Selman, editor, Complexity Theory Retrospective, pages
59–81. Springer-Verlag, 1990.

33. J. M. I.S. Filotti. A polynomial-time algorithm for determining the isomorphism
of graphs of fixed genus. In Proc. 12th ACM Symposium on Theory of Computing,
pages 236–243. ACM Press, 1980.

34. B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph
isomorphism. Journal of Computer and System Sciences, 66:549–566, 2003.

35. J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Struc-
tural Complexity. Progress in Theoretical Computer Science. Birkhäuser, Boston,
1993.

36. D. Lichtenstein. Isomorphism for graphs embaddable on the projective plane. In
Proc. 12th ACM Symposium on Theory of Computing, pages 218–224. ACM Press,
1980.

37. S. Lindell. A logspace algorithm for tree canonization. In Proc. 24th ACM Sym-
posium on Theory of Computing, pages 400–404. ACM Press, 1992.

38. E. Luks. Isomorphism of bounded valence can be tested in polynomial time. Jour-
nal of Computer and System Sciences, 25:42–65, 1982.

39. E. Luks. Parallel algorithms for permutation groups and graph isomorphism. In
Proc. 27th IEEE Symposium on the Foundations of Computer Science, pages 292–
302. IEEE Computer Society Press, 1986.

40. R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8:131–132, 1979.

41. G. Miller. Isomorphism testing for graphs of bounded genus. In Proc. 12th ACM
Symposium on Theory of Computing, pages 225–235. ACM Press, 1980.

42. G. Miller and J. Reif. Parallel tree contraction, part 2: Further applications. SIAM
Journal on Computing, 20:1128–1147, 1991.

43. I. Ponomarenko. The isomorphism problem for classes of graphs that are invariant
with respect to contraction (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), 174:147–177, 1988.

44. O. Reingold. Undirected st-connectivity in log-space. In Proc. 37th ACM Sympo-
sium on Theory of Computing, pages 376–385. ACM Press, 2005.

45. U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and
System Sciences, 37:312–323, 1988.

46. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20:865–877, 1991.

47. J. Torán. On the hardness of graph isomorphism. SIAM Journal on Computing,
33(5):1093–1108, 2004.

48. V. N. Zemlyachenko. Canonical numbering of trees (Russian). Proc. Seminar on
Comb. Anal. at Moscow State University, 1970.

49. V. N. Zemlyachenko, N. Konienko, and R. I. Tyshkevich. Graph isomorphism
problem (Russian). The Theory of Computation I, Notes Sci. Sem. LOMI 118,
1982.

