
A Tight Karp-Lipton Collapse Result
in Bounded Arithmetic

Olaf Beyersdorff1 and Sebastian Müller2?

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
smueller@informatik.hu-berlin.de

Abstract. Cook and Kraj́ıček [9] have obtained the following Karp-
Lipton result in bounded arithmetic: if the theory PV proves NP ⊆
P/poly , then PH collapses to BH, and this collapse is provable in PV .
Here we show the converse implication, thus answering an open ques-
tion from [9]. We obtain this result by formalizing in PV a hard/easy
argument of Buhrman, Chang, and Fortnow [3].
In addition, we continue the investigation of propositional proof systems
using advice, initiated by Cook and Kraj́ıček [9]. In particular, we ob-
tain several optimal and even p-optimal proof systems using advice. We
further show that these p-optimal systems are equivalent to natural ex-
tensions of Frege systems.
Keywords: Karp-Lipton Theorem, Advice, Optimal Propositional Proof
Systems, Bounded Arithmetic, Extended Frege

1 Introduction

The classical Karp-Lipton Theorem states that NP ⊆ P/poly implies a collapse of
the polynomial hierarchy PH to its second level [15]. Subsequently, these collapse
consequences have been improved by Köbler and Watanabe [16] to ZPPNP and
by Sengupta and Cai to Sp

2 (cf. [4]). This currently forms the strongest known
collapse result of this kind.

Recently, Cook and Kraj́ıček [9] have considered the question which collapse
consequences can be obtained if the assumption NP ⊆ P/poly is provable in
some weak arithmetic theory. This assumption seems to be stronger than in the
classical Karp-Lipton results, because in addition to the inclusion NP ⊆ P/poly
we require an easy proof for it. In particular, Cook and Kraj́ıček showed that
if NP ⊆ P/poly is provable in PV , then PH collapses to the Boolean hierarchy
BH, and this collapse is provable in PV . For stronger theories, the collapse
consequences become weaker. Namely, if PV is replaced by S1

2 , then PH ⊆
PNP[O(log n)], and for S2

2 one gets PH ⊆ PNP [9]. Still all these consequences are
presumably stronger than in Sengupta’s result above, because PNP ⊆ Sp

2.
In [9] Cook and Kraj́ıček ask whether under the above assumptions, their

collapse consequences for PH are optimal in the sense that also the converse
? Supported by DFG grants KO 1053/5-1 and KO 1053/5-2

implications hold. In this paper we give an affirmative answer to this question for
the theory PV . Thus PV proves NP ⊆ P/poly if and only if PV proves PH ⊆ BH.
To show this result we use the assertion coNP ⊆ NP/O(1) as an intermediate
assumption. Surprisingly, Cook and Kraj́ıček [9] have shown that provability
of this assumption in PV is equivalent to the provability of NP ⊆ P/poly in
PV . While such a trade-off between nondeterminism and advice seems rather
unlikely to hold unconditionally, Buhrman, Chang, and Fortnow [3] proved that
coNP ⊆ NP/O(1) holds if and only if PH collapses to BH. Their proof in [3]
refines the hard/easy argument of Kadin [14]. We formalize this technique in
PV and thus obtain that coNP ⊆ NP/O(1) is provable in PV if and only if PV
proves PH ⊆ BH. Combined with the mentioned results from [9], this implies
that PV ` PH ⊆ BH is equivalent to PV ` NP ⊆ P/poly .

Assumptions of the form coNP ⊆ NP/O(1) play a dominant role in the above
Karp-Lipton results. These hypotheses essentially ask whether advice is helpful
to decide propositional tautologies. Motivated by this observation, Cook and
Kraj́ıček [9] started to investigate propositional proof systems taking advice.
In the second part of this paper we continue this line of research. We give a
quite general definition of functional propositional proof systems with advice.
Of particular interest are those systems where the advice depends on the proof
(input advice) or on the proven formula (output advice).

In our investigation we focus on the question whether there exist optimal
proof systems for different advice measures. While the existence of optimal
propositional proof systems without advice is a long-standing open question,
posed by Kraj́ıček and Pudlák [18], we obtain optimal proof systems with input
advice for each advice class. Such a result was already obtained by Cook and
Kraj́ıček [9], who prove that there is a system with one bit of input advice which
is optimal for all systems using up to logarithmically many advice bits. We ex-
tend the proof method from [9] to obtain even p-optimal systems with input
advice within each class of systems with super-logarithmic advice function.

These optimality results only leave open the question whether the classes of
proof systems with constant advice contain p-optimal systems. We prove that
for each constant k, there is a proof system which p-simulates all systems with
k advice bits, but itself uses k + 1 bits of advice. We also use a technique of
Sadowski [20] to show that the existence of p-optimal proof systems for SAT2

implies the existence of p-optimal propositional proof systems using k advice
bits for each constant k.

In contrast to these optimality results for input advice, we show that we
cannot expect similar results for proof systems with output advice, unless PH ⊆
BH already implies PH ⊆ DP.

Finally, we consider classical proof systems like Frege systems using ad-
vice. We show that our optimal and p-optimal proof systems with advice are
p-equivalent to extensions of Frege systems, thus demonstrating that these p-
optimal proof systems admit a robust and meaningful definition.

Due to space constraints, a number of proofs is omitted or only briefly
sketched in this extended abstract.

2 Preliminaries

Let Σ = {0, 1}. Σn denotes the set of strings of length n, and (Σn)k the set of
k-tuples of Σn. Let πi : (Σ∗)k → Σ∗ be the projection to the ith string, and let
π∗i : Σ∗ → {0, 1} be the projection to the ith bit of a string. Let π∗−i and π−i

be projections deleting the ith string from a tuple or the ith bit from a string,
respectively. Although we enumerate the bits of a string starting with 0, we
will speak of the first bit, the second bit, etc. of a string, and thus for example
π∗1(a0a1a2) = a0 and π∗−1(a0a1a2) = a1a2.

Let 〈·〉 be a polynomial-time computable function, mapping tuples of strings
to strings. Its inverse will be denoted by enc.

Complexity Classes. We assume familiarity with standard complexity classes
(cf. [1]). In particular, we will need the Boolean hierarchy BH which is the closure
of NP under the Boolean operations ∪, ∩, and .̄ The levels of BH are denoted
BHk and are inductively defined by BH1 = NP and BHk+1 = {L1 \ L2 | L1 ∈
NP and L2 ∈ BHk}. The second level BH2 is also denoted by Dp. The Boolean
hierarchy coincides with PNP[O(1)], consisting of all languages which can be solved
in polynomial time with constantly many queries to an NP-oracle. For each
level BHk it is known that k non-adaptive queries to an NP-oracle suffice, i.e.,
BHk ⊆ P

NP[k]
tt (cf. [2]).

Complete problems BLk for BHk are inductively given by BL1 = SAT and

BL2k = {〈x1, . . . , x2k〉 | 〈x1, . . . , x2k−1〉 ∈ BL2k−1 and x2k ∈ SAT}
BL2k+1 = {〈x1, . . . , x2k+1〉 | 〈x1, . . . , x2k〉 ∈ BL2k or x2k+1 ∈ SAT} .

Observe that 〈x1, . . . , xk〉 ∈ BLk if and only if there exists an i ≤ k, such
that xi is satisfiable and the largest such i is odd.

Complexity classes with advice were first considered by Karp and Lipton
[15]. For each function k : N → Σ∗ and each language L we let L/k = {x |
〈x, k(|x|)〉 ∈ L}. If C is a complexity class and F is a class of functions, then
C/F = {L/k | L ∈ C, k ∈ F}.

Propositional Proof Systems. Propositional proof systems were defined in a
general way by Cook and Reckhow [11] as polynomial-time computable functions
P which have as their range the set of all tautologies. A string π with P (π) = ϕ
is called a P -proof of the tautology ϕ. Equivalently, propositional proof systems
can be defined as polynomial-time computable relations P (π, ϕ) such that ϕ is
a tautology if and only if (∃π)P (π, ϕ) holds. A propositional proof system P is
polynomially bounded if all tautologies have polynomial size P -proofs.

Proof systems are compared according to their strength by simulations in-
troduced in [11] and [18]. A proof system S simulates a proof system P (denoted
by P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and
P -proofs π of ϕ there is an S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof π′

can even be computed from π in polynomial time we say that S p-simulates P

and denote this by P ≤p S. If the systems P and S mutually (p-)simulate each
other, they are called (p-)equivalent. A proof system is called (p-)optimal if it
(p-)simulates all proof systems.

A prominent class of propositional proof systems is formed by extended Frege
systems EF which are usual textbook proof systems based on axioms and rules,
augmented by the possibility to abbreviate complex formulas by propositional
variables to reduce the proof size (cf. [11, 17]).

3 Representing Complexity Classes by Bounded Formulas

The relations between computational complexity and bounded arithmetic are
rich and varied, and we refer to [17, 10] for background information. Here we
will use the two-sorted formulation of arithmetic theories [8, 10]. In this setting
we have two sorts: numbers and finite sets of numbers, which are interpreted
as strings. Number variables will be denoted by lower case letter x, y, n, . . .
and string variables by upper case letters X,Y, . . . The two-sorted vocabulary
includes the symbols +, ·,≤, 0, 1, and the function |X| for the length of strings.

Our central arithmetic theory will be the theory VPV , which is the two-
sorted analogue of Cook’s PV [7]. In addition to the above symbols, the language
of VPV contains names for all polynomial-time computable functions (where the
running time is measured in terms of the length of the inputs with numbers coded
in unary). The theory VPV is axiomatized by definitions for all these functions
as well as by the number induction scheme for open formulas.

Bounded quantifiers for strings are of the form (∀X ≤ t)ϕ and (∃X ≤ t)ϕ,
abbreviating (∀X)(|X| ≤ t → ϕ) and (∃X)(|X| ≤ t ∧ ϕ), respectively (where t
is a number term not containing X). We use similar abbreviations for = in-
stead of ≤. By counting alternations of quantifiers, a hierarchy ΣB

i , ΠB
i of

bounded formulas is defined. The first level ΣB
1 contains formulas of the type

(∃X1 ≤ t1) . . . (∃Xk ≤ tk)ϕ with only bounded number quantifiers occurring in
ϕ. Similarly, ΠB

1 -formulas are of the form (∀X1 ≤ t1) . . . (∀Xk ≤ tk)ϕ.
As we want to investigate the provability of various complexity-theoretic as-

sumptions in arithmetic theories, we need to formalize complexity classes within
bounded arithmetic. To this end we associate with each complexity class C a
class of arithmetic formulas FC. The formulas FC describe C, in the sense that
for each A ⊆ Σ∗ we have A ∈ C if and only if A is definable by an FC-formula
ϕ(X) with a free string variable X.

It is well known that ΣB
1 -formulas describe NP-sets in this sense, and this

connection extends to the formula classes ΣB
i and ΠB

i and the respective levels
Σp

i and Πp
i of the polynomial hierarchy. Given this connection, we can model the

levels BHk of the Boolean hierarchy by formulas of the type

ϕ1(X) ∧ ¬(ϕ2(X) ∧ . . .¬(ϕk−1(X) ∧ ¬ϕk(X)) . . .) (1)

with ΣB
1 -formulas ϕ1, . . . , ϕk.

Another way to speak about complexity classes in arithmetic theories is to
consider complete problems for the respective classes. For the satisfiability prob-

lem SAT we can build an open formula Sat(T,X), stating that T codes a satisfy-
ing assignment for the propositional formula coded by X. In VPV we can prove
that (∃T ≤ |X|)Sat(T,X) is NP-complete, in the sense, that every ΣB

1 -formula
ϕ is provably equivalent to (∃T ≤ |X|)Sat(T, Fϕ(X)) for some polynomial-time
computable function Fϕ.

Using this fact, we can express the classes BHk in VPV equivalently as:

Lemma 1. For every formula ϕ describing a language from BHk as in (1) there
is a polynomial-time computable function F : Σ∗ → (Σ∗)k such that VPV proves
the equivalence of ϕ and

(∃T1, T3, . . . , T2·bk/2c+1 ≤ t)(∀T2, T4, . . . , T2·bk/2c ≤ t)
(. . . ((Sat(T1, π1(F (X))) ∧ ¬Sat(T2, π2(F (X))))

∨Sat(T3, π3(F (X)))) ∧ · · · ∧k ¬k+1Sat(Tk, πk(F (X))))

(2)

where ∧k = ∧ if k is even and ∨ otherwise, ¬k = ¬ . . .¬ (k-times), and t is a
number term bounding |F (X)|. We will abbreviate (2) by BLk(F (X)).

Similarly, we can define the class P
NP[k]
tt by all formulas of the type

(∃T1 . . . Tk ≤ t)(Sat(T1, F1(X)) ∧ · · · ∧ Sat(Tk, Fk(X)) ∧ ϕ1(X)) ∨ · · · ∨
(∀T1 . . . Tk ≤ t)(¬Sat(T1, F1(X)) ∧ · · · ∧ ¬Sat(Tk, Fk(X)) ∧ ϕ2k(X))

(3)

where ϕ1, . . . , ϕ2k are open formulas, F1, . . . , Fk are polynomial-time computable
functions, and t is a term bounding |Fi(X)| for i = 1, . . . , k. In (3), every com-
bination of negated and unnegated Sat-formulas appears in the disjunction.

With these arithmetic representations we can prove inclusions between com-
plexity classes in arithmetic theories. Let A and B are complexity classes repre-
sented by the formula classes A and B, respectively. Then we use VPV ` A ⊆ B
to abbreviate that for every formula ϕA ∈ A there exists a formula ϕB ∈ B, such
that VPV ` ϕA(X) ↔ ϕB(X).

In the following, we will use the same notation for complexity classes and their
respective representations. Hence we can write statements like VPV ` PH ⊆ BH,
with the precise meaning explained above. For example, using Lemma 1 it is
straightforward to verify:

Lemma 2. For every number k we have VPV ` BHk ⊆ P
NP[k]
tt .

Finally, we will consider complexity classes that take advice. Let A be a class
of formulas. Then VPV ` A ⊆ NP/k abbreviates that, for every ϕ ∈ A there
exist ΣB

1 -formulas ϕ1, . . . , ϕ2k , such that

VPV ` (∀n)
∨

1≤i≤2k

(∀X) (|X| = n→ (ϕ(X) ↔ ϕi(X))) . (4)

Similarly, using the self-reducibility of SAT, we can formalize the assertion
VPV ` NP ⊆ P/poly as

VPV ` (∀n)(∃C ≤ t(n))(∀X ≤ n)(∀T ≤ n)(Sat(T,X) → Sat(C(X), X))

where t is a number term and C(X) is a term expressing the output of the circuit
C on input X (cf.[9]).

4 The Karp-Lipton Collapse Result in VPV

In this section we will prove that the Karp-Lipton collapse PH ⊆ BH from [9]
is optimal in VPV , in the sense that VPV ` NP ⊆ P/poly is equivalent to
VPV ` PH ⊆ BH. For this we will use the following complexity-theoretic result.

Theorem 3 (Buhrman, Chang, Fortnow [3]). For every constant k we have
coNP ⊆ NP/k if and only if PH ⊆ BH2k .

While the forward implication of Theorem 3 is comparatively easy, and was
shown to hold relative to VPV by Cook and Kraj́ıček [9], the backward im-
plication was proven in [3] by a sophisticated hard/easy argument. In the se-
quel, we will formalize this argument in VPV , thereby answering a question of
Cook and Kraj́ıček [9], who asked whether VPV ` PH ⊆ BH already implies
VPV ` coNP ⊆ NP/O(1).

Assuming VPV ` PH ⊆ BH, we claim that there is some constant k such
that VPV ` PH ⊆ BHk. This follows, because PH ⊆ BH implies PH = BH = Σp

2.
Therefore every problem in PH can be reduced to a fixed Σp

2-complete problem.
Since this problem is contained in some level BHk of BH, it can be reduced to
an appropriate BHk-complete problem as well. Thus PH ⊆ BHk.

Therefore, BHk is provably closed under complement in VPV , i.e., there
exists a polynomial-time computable function h such that

VPV ` BLk(X1, . . . , Xk) ↔ ¬BLk(h(X1, . . . , Xk)) . (5)

Given h, we define the notion of a hard sequence. This concept was defined
in [6] as a generalization of the notion of hard strings from [14]. Hard strings
were first used to show that BH ⊆ Dp implies a collapse of PH [14].

Definition 4. Let h be a function as in (5). A sequence x̄ = (x1, . . . , xr) of
strings is a hard sequence of order r for length n, if for all i ≤ r, xi is an
unsatisfiable formula of length n, and for all (k − r)-tuples ū of formulas of
length n, the formula πk−r+i(h(ū, x̄)) is unsatisfiable.

A hard sequence x̄ of order r for length n is not extendable if, for every
unsatisfiable formula x of length n the sequence x_x̄ is not hard. Finally, a
maximal hard sequence is a hard sequence of maximal order. Maximal hard
sequences are obviously not extendable. Note that the empty sequence is a hard
sequence for every length.

To use this definition in VPV , we we note that the notion of a maximal
hard sequence can be formalized by a bounded predicate MaxHS . Maximal hard
sequences allow us to define the unsatisfiability of propositional formulas by a
ΣB

1 -formula, as stated in the following lemma.

Lemma 5. Assume that h is a polynomial-time computable function which for
some constant k satisfies (5). Then VPV proves the formula

(∀n)(∀X = n)(∀r ≤ k)(∀H ∈ (Σn)k−r−1) (MaxHS (H) →
[(∀T ≤ n)¬Sat(T,X) ↔ (∃T ≤ n)(∃Ū ∈ (Σn)r)Sat(T, πr+1(h(Ū ,X,H)))]) .

By the preceding lemma, given maximal hard sequences, we can describe
ΠB

1 -formulas by ΣB
1 -formulas. Most part of the proof of the next theorem will

go into the construction of such sequences. It will turn out, that, assuming
VPV ` PH ⊆ BH2k , we can construct 2k ΣB

1 -formulas, whose disjunction decides
the elements of a maximal hard sequence as in (4).

Theorem 6. If VPV ` PH ⊆ BH2k , then VPV ` coNP ⊆ NP/k.

Proof. Assuming VPV ` PH ⊆ BH2k , there exists a polynomial-time com-
putable function h, such that for tuples X̄ = (X1, . . . , X2k) we have VPV `
BL2k(X̄) ↔ ¬BL2k(h(X̄)). Thus, by Lemma 5, given a maximal hard sequence
for length n, we can define (∀T ≤ n)¬Sat(T,X) by a ΣB

1 -formula. Therefore,
our aim is to construct such a sequence using k bits of advice.

To this end, for i > 0 let HardSeqBits(1n, i) hold, if and only if the ith bit of
the encoding of the lexically shortest maximal hard sequence for length n is 1.
HardSeqBits can be defined by a bounded predicate.

By the assumption VPV ` PH ⊆ BH2k and Lemma 2, there is a formula ψ
as in (3), with appropriate polynomial-time computable functions F1, . . . , F2k

and open formulas ϕ1, . . . , ϕ22k , such that the predicate HardSeqBits(X) is
VPV -provably equivalent to ψ. Without loss of generality, we may assume, that
|Fi(1n, a)| = |Fj(1n, b)| for all i, j and a, b.

Using ψ we can prove VPV ` HardSeqBits ∈ NP/k (we omit the details due
to space constraints). This means that we can construct ΣB

1 -formulas ψz
HSB (X)

of the form (∃Y ≤ t)ϕz
HSB (X,Y) with open formulas ϕz

HSB for z = 0, . . . , 2k − 1
such that

VPV ` (∀n)
∨

0≤z<2k

(∀X = n) (HardSeqBits(X) ↔ (∃Y ≤ t)ϕz
HSB (X,Y)) .

In this formula, z is the order of a maximal hard sequence for length n. Observe
that z, acting as the advice, can be non-uniformly obtained from n.

Provided the right z, there is a ΣB
1 -formula EasyUnSatz(X) that, for ev-

ery X of length n, is VPV -equivalent to (∀T ≤ n)¬Sat(T,X). This formula
EasyUnSatz(X) is defined as

(∃C ≤ t′) (∀i ≤ |C|)(∃Y ≤ t)[(π∗i+1(C) = 1 ↔ ϕz
HSB (1|X|, i, Y))

∧ (∃T ≤ |X|)(∃Ū ∈ (Σn)2
k−1−|enc(C)|)

Sat(T, π2k−|enc(C)|(h(Ū ,X, enc(C))))]

for an appropriate number term t′. Now, by line 1 of this formula, C is the
encoding of some maximal hard sequence. As in Lemma 5, C is used to define
¬Sat by a ΣB

1 -formula (lines 2 and 3). Thus, we have

VPV ` (∀n)
∨

0≤z<2k

(∀X = n)[(∀T ≤ n)¬Sat(T,X) ↔ EasyUnSatz(X)] .

This concludes the proof. ut

With this result we can now prove the optimality of the following Karp-Lipton
collapse result of Cook and Kraj́ıček [9]:

Theorem 7 (Cook and Kraj́ıček [9]). If VPV proves NP ⊆ P/poly, then
PH ⊆ BH, and this collapse is provable in VPV .

To show the converse implication, we use the following surprising trade-off
between advice and nondeterminism in VPV :

Theorem 8 (Cook and Kraj́ıček [9]). VPV ` NP ⊆ P/poly if and only if
VPV ` coNP ⊆ NP/O(1).

We remark that the proof of Theorem 8 uses strong witnessing arguments
in form of the Herbrand Theorem and the KPT witnessing theorem [19]. Thus
it seems unlikely, that a similar result holds without assuming provability of
NP ⊆ P/poly and coNP ⊆ NP/O(1) in some weak arithmetic theory. Theorem 7
can be obtained as a consequence of Theorem 8 and a complexity-theoretic proof
of coNP ⊆ NP/O(1) ⇒ PH ⊆ BH (cf. [3, 9]).

Combining Theorems 6, 7, and 8 we can now state the optimality of the
Karp-Lipton collapse PH ⊆ BH in VPV .

Corollary 9. The theory VPV proves NP ⊆ P/poly if and only if VPV proves
that the polynomial hierarchy collapses to the Boolean hierarchy.

The backward direction of this result can also be obtained in a less direct
way using a recent result of Jeřábek [13]. The argument goes as follows:3 by
results of Zambella [21], PV ` PH = BH implies PV = S2. The latter, however,
implies PV ` NP ⊆ P/poly by a result of Jeřábek [13].

5 Propositional Proof Systems with Advice

Cook and Kraj́ıček [9] defined propositional proof systems with advice, both in
the functional and in the relational setting for proof systems. For both models,
different concepts of proof systems with advice arise that not only differ in the
amount of advice, but also in the way the advice is used by the proof system.

Our general model of computation for functional proof systems with advice
is a Turing transducer with several tapes: an input tape containing the proof,
possibly several work tapes for the computation of the machine, an output tape
where we output the proven formula, and an advice tape containing the advice.
We start with a quite general definition for functional proof systems with advice
which subsumes the definitions given in [9].

Definition 10. Let k : N → N be a function on natural numbers. A general
functional propositional proof system with k bits of advice, abbreviated general
fpps/k, consists of two functions f and ` such that

1. ` : Σ∗ → {1n | n ≥ 0} is computable in polynomial time.

3 We are grateful to an anonymous referee for supplying this alternative argument.

2. f : Σ∗ → TAUT is a surjective polynomial-time computable function which
on input π uses k(|`(π)|) bits of advice depending only on |`(π)|.
Let us give some explanation for this definition. For each length n there is a

unique advice string of length k(n). Which of these strings is used at a particular
computation of f is determined by the function ` which computes from the input
π the relevant advice length. In the functional definition of propositional proof
systems, there are two natural options for this function `: the advice may depend
on the length of the input (i.e. the proof) or the length of the output (i.e. the
proven formula).

Definition 11. Let (f, `) be a general fpps/k using advice function k(n).

1. We say that f has input advice if for all inputs π we have `(π) = 1|π|, i.e.,
the proof system f uses k(|π|) bits of advice.

2. f has output advice if for all inputs π, the length of the output f(π) does
not depend on the advice (i.e., the content of the advice tape) and we have
`(π) = 1|f(π)|, i.e., the proof system f uses k(|f(π)|) bits of advice.

We remark that Cook and Kraj́ıček [9] defined a more restrictive concept
of proof systems with output advice, which they called length-determined func-
tional proof systems.

The notions of (p-)simulations and (p-)optimality are easily generalized to
proof systems with advice. For p-simulations we will use polynomial-time com-
putable functions without advice (unless stated otherwise). We say that a proof
system f is (p-)optimal for some class F of advice systems if f (p-)simulates
every system in F and f ∈ F .

In the next proposition we observe that fpps/k with input advice are already
as strong as any general fpps/k (Definition 10).

Proposition 12. Let k : N → N be a monotone function and let (f, `) be a
general fpps/k with advice function k. Then there exists a functional proof system
f ′ with k bits of input advice such that f and f ′ are p-equivalent.

In the relational setting for propositional proof systems, advice can be easily
implemented as follows:

Definition 13 (Cook, Kraj́ıček [9]). A propositional proof system with k(n)
bits of advice, abbreviated pps/k, is a relation P such that for all x ∈ Σ∗ we have
x ∈ TAUT if and only if (∃y)P (y, x), and P is can be decided by a polynomial-
time (in |x|+ |y|) algorithm which uses k(|x|) bits of advice.

It is easy to see that, as in the classical case without advice, relational proof
systems with advice and functional proof systems with output advice are two
formulations of the same concept:

Proposition 14. Let k : N → N be a function. Then every fpps/k with output
advice is p-equivalent to some pps/k. Conversely, every pps/k is p-equivalent to
an fpps/k with output advice.

As in the classical theorem of Cook and Reckhow [11], we get the following
equivalence:

Theorem 15. Let k be any function. Then there exists a polynomially bounded
fpps/k with output advice if and only if coNP ⊆ NP/k.

6 Optimal Proof Systems with Advice

In this section we will investigate the question whether there exist optimal or
p-optimal propositional proof systems with advice. A strong positive result was
shown by Cook and Kraj́ıček [9].

Theorem 16 (Cook, Kraj́ıček [9]). There exists a functional propositional
proof system P with one bit of input advice which p-simulates all functional
propositional proof systems with k(n) bits of input advice for k(n) = O(log n).
The p-simulation is computed by a polynomial-time algorithm using k(n) bits of
advice.

In terms of simulations rather than p-simulations this result yields:

Corollary 17. The class of all general fpps/O(log n) contains an optimal func-
tional proof system with one bit of input advice.

In the next definition we single out a large class of natural advice functions
with at least logarithmic growth rate.

Definition 18. A function k is polynomially monotone if k is computable in
polynomial time and there exists a polynomial p, such that for each x, y ∈ Σ∗,
|y| ≥ p(|x|) implies |k(y)| > |k(x)|.

Polylogarithmic functions and polynomials are examples for polynomially
monotone functions. If we consider proof systems with polynomially monotone
advice functions, then we obtain p-optimal proof systems within each such class.
This is the content of the next theorem which we prove by the same technique
as was used for Theorem 16.

Theorem 19. Let k(n) be a polynomially monotone function. Then the class of
all general fpps/k contains a p-optimal proof system.

Proof. Let k be a function as above. Since k is polynomially monotone we can
find a polynomial-time computable function ` : Σ∗ → 1∗ such that for each x ∈
Σ∗ we have k(|`(x)|) ≥ k(|x|)+1. Let ‖·‖ be an encoding of deterministic Turing
transducers by natural numbers. Without loss of generality we may assume that
every machine M has running time |x|‖M‖. Further, we need a polynomial-time
computable function 〈·, ·, ·〉 mapping triples of N bijectively to N.

We will define a functional proof system (P, `) using advice function k, which
is p-optimal for the class of all general fpps/k. Let Q be a system from the class
of all general fpps/k. By Proposition 12 we may assume that Q has input advice.

First we will define a polynomial-time computable function fQ translating Q-
proofs into P -proofs and then we will describe how P works. We set fQ(π) = π1m

where m is determined from the equation m+ |π| = 〈|π| , ‖Q‖ , |π|‖Q‖〉.
Now we define the system P : upon input x we first compute the unique

numbersm1,m2,m3 such that |x| = 〈m1,m2,m3〉. Let π = x1 . . . xm1 be the first
m1 bits of x. Then we determine the machine Q from the encoding m2 = ‖Q‖.
By the construction of `, the system P receives at least one more bit of advice
than Q. We can therefore use the first advice bit of P to certify that Q is indeed a
correct propositional proof system when it is supplied with the last k(|π|) advice
bits of P . Therefore, if the first advice bit of P is 1, P simulates Q on input π for
m3 steps, where it passes the last k(|π|) advice bits of P to Q. Otherwise, if the
first advice bit of P is 0, P outputs >. Apparently, P is correct and p-simulates
every fpps/k Q with input advice via the polynomial-time computable function
fQ. Thus, by Proposition 12, P also p-simulates every general fpps/k. ut

In a similar way we get:

Proposition 20. For each constant k ≥ 0 there exists an fpps with k + 1 bits
of input advice that p-simulates every fpps with k bits of input advice.

Proof. (Sketch) The proof uses the same construction as in the proof of The-
orem 19 with the following difference in the usage of advice: the last k advice
bits of the new fpps/(k + 1) P are the advice bits for the machine Q which we
simulate, if the first of the k + 1 advice bits certifies that Q is correct, i.e., it
only produces tautologies. ut

Regarding the two previous results there remains the question whether we
also have a p-optimal system within the class of all general fpps/k for constant k.
Going back to the proof of Proposition 20, we observe that the proof system with
k+ 1 advice bits, which simulates each with k bits, does not really need the full
power of these k + 1 bits, but in fact only needs 2k + 1 different advice strings.
Assuming the existence of a p-optimal proof system for SAT2 (the canonical
complete problem for Σp

2), we can manage to reduce the amount of the necessary
advice to exactly k bits, thus obtaining a p-optimal system within the class of
all general fpps/k.

Theorem 21. Assume that there exists a p-optimal proof system for SAT2.
Then for each constant k ≥ 1 the class of all general fpps/k contains a p-optimal
proof system.

Proof. Similarly as in Sadowski’s characterization of the existence of p-optimal
propositional proof systems [20], we can prove:

There exists a p-optimal proof system for SAT2 if and only if there exists
a recursive enumeration Mi, i ∈ N, of deterministic polynomial-time
Turing machines such that
1. for every i ∈ N we have L(Mi) ⊆ SAT2 and

2. for every polynomial-time decidable subset L ⊆ SAT2 there exists an
index i such that L ⊆ L(Mi).

Assume now that Mi is an enumeration of the easy subsets of SAT2 as above.
For every proof system Q with k bits of input advice we construct a sequence of
propositional formulas

Prf Q
m,n,k(π, ϕ, a) ,

asserting that the computation of Q at input π of length m leads to the output ϕ
of length n under the k advice bits of a. We also choose a propositional formula
Tautn(ϕ) stating that the formula encoded by ϕ is a propositional tautology. As
Q is an fpps/k, the formulas

CorrectQ
m,n,k = (∃a)(∀π, ϕ)

(
Prf Q

m,n,k(π, ϕ, a) → Tautn(ϕ)
)

are quantified Boolean formulas from SAT2 for every n,m ≥ 0. Because these
formulas can be constructed in polynomial time from Q, there exists an index
i ∈ N such that Mi accepts the set {CorrectQ

m,n,k | m,n ≥ 0}.
Now we construct a p-optimal system P with k bits of input advice as fol-

lows: at input x we compute the unique numbers m1, . . . ,m4 such that |x| =
〈m1, . . . ,m4〉. As in the proof of Theorem 19, we set π = x1 . . . xm1 and ‖Q‖ =
m2. The system P then simulates Q(π) with its own k advice bits for m3 steps.
If the simulation does not terminate, then P outputs >. Otherwise, let ϕ be the
output of this simulation. But before also P can output ϕ, we have to check
the correctness of Q for the respective input and output length. To do this, P
simulates the machine Mm4 on input CorrectQ

m1,|ϕ|,k. If Mm4 accepts, then we
output ϕ, and > otherwise.

The advice which P receives is the correct advice for Q, in case that Mm4

certifies that such advice indeed exists. Therefore P is a correct fpps/k. To show
the p-optimality of P , let Q be an fpps/k with input advice and let Mi be the
machine accepting {CorrectQ

m,n,k | m,n ≥ 0}. Then the system Q is p-simulated
by P via the mapping π 7→ π1m where m = 〈|π|, ‖Q‖, |π|‖Q‖, i〉 − |π|. ut

All the optimal and p-optimal proof systems that we have so far constructed
were using input advice. It is a natural question whether we can improve these
constructions to obtain proof systems with output advice that still have the
same optimality conditions. Our next result shows that this is rather unlikely,
as otherwise collapse assumptions of presumably different strength would be
equivalent. This result indicates that input advice for propositional proof systems
is indeed a more powerful concept than output advice.

Theorem 22. Let k ≥ 1 be a constant and assume that there exists an fpps/k
with output advice that simulates every fpps/1. Then the following conditions
are equivalent:

1. The polynomial hierarchy collapses to BH2k .
2. The polynomial hierarchy collapses to BH.

3. coNP ⊆ NP/O(logn).
4. coNP ⊆ NP/k.

Proof. The equivalence of 1 and 4 was shown by Buhrman, Chang, and Fortnow
(Theorem 3), and clearly, item 1 implies item 2. It therefore remains to prove
the implications 2 ⇒ 3 and 3 ⇒ 4.

For the implication 2 ⇒ 3, let us assume PH ⊆ BH. We choose a Σp
2-complete

problem L, which by assumption is contained in BHk′ for some number k′. By
Theorem 3 this implies coNP ⊆ NP/k′ and hence coNP ⊆ NP/O(log n).

For the final implication 3 ⇒ 4, we assume coNP ⊆ NP/O(log n). By Theo-
rem 15 this guarantees the existence of a polynomially bounded system P with
O(log n) bits of output advice. By Theorem 16, P is simulated by a proof system
P ′ with only one bit of input advice. Hence also P ′ is polynomially bounded.
Now we use the hypothesis of the existence of a functional proof system Q with
k bits of output advice which simulates all fpps/1. In particular, P ′ ≤ Q and
therefore Q is a polynomially bounded fpps/k with output advice. Using again
Theorem 15 we obtain coNP ⊆ NP/k. ut

With respect to the optimal proof system from Corollary 17 we obtain:

Corollary 23. The optimal fpps/1 from Corollary 17 is not equivalent to an
fpps/1 with output advice, unless PH ⊆ BH implies PH ⊆ Dp.

7 Classical Proof Systems with Advice

Let us now outline how one can define classical proof systems that use advice.
A priori it is not clear how systems like resolution or Frege can sensibly use
advice, but a canonical way to implement advice into them is to enhance these
systems by further axioms which can be decided in polynomial time with advice.
Cook and Kraj́ıček [9] have defined the notion of extended Frege systems using
advice. We give a more general definition.

Definition 24. Let Φ be a set of tautologies that can be decided in polynomial
time with k(n) bits of advice. We define the system EF + Φ/k as follows. An
EF +Φ/k-proof of a formula ϕ is an EF-proof of an implication ψ → ϕ, where ψ
is a simple substitution instance of a formula from Φ (where simple substitutions
only replace some of the variables by constants).

If π is an EF +Φ/k-proof of a formula ϕ, then the advice used for the verifica-
tion of π neither depends on |π| nor on |ϕ|, but on the length of the substitution
instance ψ from Φ, which is used in π. As |ψ| can be easily determined from π,
EF + Φ/k are systems of the type fpps/k (in fact, this was the motivation for
our general Definition 10).

If we require that the length of ψ in the implication ψ → ϕ is determined by
the length of the proven formula ϕ, then the advice only depends on the output
and hence we get an fpps/k with output advice. This is the case for a collection
of extensions of EF defined by Cook and Kraj́ıček [9], which are motivated

by the proof of Theorem 8. Cook and Kraj́ıček proved that these systems are
polynomially bounded if VPV proves coNP ⊆ NP/O(1).

Our next result shows that the optimal proof systems constructed in Sect. 6
are equivalent to natural extensions of extended Frege systems with advice.

Theorem 25. 1. Let k(n) be a polynomially monotone function. Then there
exists a set Φ ∈ P/k(n) such that EF + Φ/k is p-optimal for the class of all
general fpps/k(n).

2. For every constant k ≥ 1 there exists a set Φ ∈ P/k such that EF + Φ/k
p-simulates every general fpps/k − 1.

3. In contrast, none of the extensions of EF as defined in [9] simulates every
general fpps/1, unless items 1 to 4 from Theorem 22 are equivalent.

Comparing the definition of EF with advice from [9] with our Definition 24,
we remark that both definitions are parametrized by a set of tautologies Φ, and
hence they both lead to a whole class of proof systems rather than the extended
Frege system with advice. The drawback of our Definition 24 is, that even in the
base case, where no advice is used, we do not get EF , but again all extensions
EF + Φ with polynomial-time computable Φ ⊆ TAUT. It is known that each
advice-free propositional proof system is p-simulated by such an extension of EF
[17]. In contrast, Cook and Kraj́ıček’s extended Frege systems with advice lead
exactly to EF , if no advice is used. On the other hand, these systems appear to
be strictly weaker than the systems from Definition 24, as indicated by item 3
of Theorem 25.

8 Discussion and Open Problems

In this paper we have shown that PH ⊆ BH is the optimal Karp-Lipton col-
lapse within the theory PV . It remains as an open problem whether also PH ⊆
PNP[O(log n)] and PH ⊆ PNP are optimal within S1

2 and S2
2 , respectively (cf. [9]).

For S1
2 this corresponds to the problem whether coNP ⊆ NP/O(logn) is equiva-

lent to PH ⊆ PNP[O(log n)]. Buhrman, Chang, and Fortnow [3] conjecture coNP ⊆
NP/O(log n) ⇐⇒ PH ⊆ PNP (cf. also [12]). This seems unlikely, as Cook and
Kraj́ıček [9] noted that coNP ⊆ NP/O(log n) implies PH ⊆ PNP[O(log n)]. How-
ever, it does not seem possible to extend the technique from [3] to prove the
converse implication. Is even coNP ⊆ NP/poly ⇐⇒ PH ⊆ PNP true, possibly
with the stronger hypothesis that both inclusions are provable in S2

2? Currently,
coNP ⊆ NP/poly is only known to imply PH ⊆ SNP

2 [5].
With respect to the proof systems with advice we remark that all advice

information we have used for our optimal systems in Sects. 6 and 7 can be
decided in coNP. It would be interesting to know whether we can obtain stronger
proof systems by using more complicated advice.

Acknowledgements

We are grateful to Jan Kraj́ıček and the anonymous referees for helpful comments
and detailed suggestions on how to improve this paper.

References

1. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. Springer-Verlag,
Berlin Heidelberg, 1988.

2. R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoretical Com-
puter Science, 84:199–223, 1991.

3. H. Buhrman, R. Chang, and L. Fortnow. One bit of advice. In Proc. 20th Sympo-
sium on Theoretical Aspects of Computer Science, pages 547–558, 2003.

4. J.-Y. Cai. Sp
2 ⊆ ZPP NP . Journal of Computer and System Sciences, 73(1):25–35,

2007.
5. J.-Y. Cai, V. T. Chakaravarthy, L. A. Hemaspaandra, and M. Ogihara. Competing

provers yield improved Karp-Lipton collapse results. Information and Computa-
tion, 198(1):1–23, 2005.

6. R. Chang and J. Kadin. The Boolean hierarchy and the polynomial hierarchy: A
closer connection. SIAM Journal on Computing, 25(2):340–354, 1996.

7. S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proc.
7th Annual ACM Symposium on Theory of Computing, pages 83–97, 1975.

8. S. A. Cook. Theories for complexity classes and their propositional translations.
In J. Kraj́ıček, editor, Complexity of Computations and Proofs, pages 175–227.
Quaderni di Matematica, 2005.

9. S. A. Cook and J. Kraj́ıček. Consequences of the provability of NP ⊆ P/poly. The
Journal of Symbolic Logic, 72(4):1353–1371, 2007.

10. S. A. Cook and P. Nguyen. Foundations of proof complexity: Bounded
arithmetic and propositional translations. Book in progress, Available from
http://www.cs.toronto.edu/˜sacook.

11. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44:36–50, 1979.

12. L. Fortnow and A. R. Klivans. NP with small advice. In Proc. 20th Annual IEEE
Conference on Computational Complexity, pages 228–234, 2005.

13. E. Jeřábek. Approximate counting by hashing in bounded arithmetic. Preprint,
2007.

14. J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy col-
lapses. SIAM Journal on Computing, 17(6):1263–1282, 1988.

15. R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, pages
302–309. ACM Press, 1980.

16. J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits.
SIAM Journal on Computing, 28(1):311–324, 1998.

17. J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory,
volume 60 of Encyclopedia of Mathematics and Its Applications. Cambridge Uni-
versity Press, Cambridge, 1995.

18. J. Kraj́ıček and P. Pudlák. Propositional proof systems, the consistency of first
order theories and the complexity of computations. The Journal of Symbolic Logic,
54:1063–1079, 1989.

19. J. Kraj́ıček, P. Pudlák, and G. Takeuti. Bounded arithmetic and the polynomial
hierarchy. Annals of Pure and Applied Logic, 52:143–153, 1991.

20. Z. Sadowski. On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

21. D. Zambella. Notes on polynomially bounded arithmetic. The Journal of Symbolic
Logic, 61(3):942–966, 1996.

