Übungsblatt 10

Besprechung der mündlichen Aufgaben am 10.–13. 1. 2023 Bearbeitung des Moodle-MC-Tests bis 10. 1. 2023, 8:00 Uhr Abgabe der schriftlichen Lösungen bis 17. 1. 2023, 23:59 Uhr

Aufgabe 58 Sei $L = \{a^i b^j c^k d^l \mid i = 0 \text{ oder } j = k = l\}.$ mündlich

- (a) Beschreiben Sie, wie sich eine kontextfreie Grammatik für $\{ab^nc^nd^n\mid n\geq 0\}$ in eine für $\{a^nb^nc^n\mid n\geq 0\}$ umbauen ließe und folgern Sie: $\{ab^nc^nd^n\mid n\geq 0\}\notin\mathsf{CFL}$.
- (b) Zeigen Sie, wie man aus einem beliebigen PDA M_A und einem beliebigen DFA M_B einen PDA M für die Sprache $A \cap B$ konstruiert, wobei $A = L(M_A)$ und $B = L(M_B)$.
- (c) Zeigen Sie, dass die Sprache L nicht kontextfrei sein kann, da sonst auch die Sprache $\{ab^nc^nd^n\mid n\geq 0\}$ kontextfrei sein müsste.
- (d) Zeigen Sie, dass die Pumpingzahl (sogar nach beiden Pumping-Lemmata) für L den Wert eins hat.

$$S \to 2S, A \tag{1,2}$$

$$2a \rightarrow aa2$$
 (3)

$$2A \to aA$$
 (4)

$$A \to a$$
 (5)

- (a) Welche Sprache erzeugt die Grammatik G? (2 Punkte)
- (b) Geben Sie für jede der Regeln 1 bis 5 an, welche Funktion sie in der Grammatik hat. (4 Punkte)
- (c) Ist $L(G) \in CFL$? Begründen Sie kurz. (2 Punkte)
- (d) Geben Sie eine kontextsensitive Grammatik für $\{a^{3^n+1} \mid n \in \mathbb{N}\}$ an. (3 Punkte)

Sei $M = (\{p,q\},\{a,b\},\{\#\},p,\delta,\#)$, wobei δ wie folgt definiert ist:

$$pa\# \to p\#\#$$
 (1) $qb\# \to q\varepsilon$ (4)

$$pa\# \to q\varepsilon$$
 (2) $q\varepsilon\# \to q\varepsilon$ (5)

- $pa\# \to p\#$ (3)
- (a) Begründen Sie kurz, warum $L(M) = \{a^n b^m \mid n > m \ge 0\}$ gilt.
- (b) Konstruieren Sie nach dem Verfahren aus der Vorlesung aus M einen äquivalenten PDA M' mit nur einem Zustand.
- (c) Konstruieren Sie aus M' eine äquivalente kontextfreie Grammatik. Verwenden Sie das Verfahren aus der Vorlesung.

Aufgabe 61 Gegeben sei der PDA $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ **8+2 Punkte** mit $Z = \{p, q\}, \Sigma = \{a, b, c\}, \Gamma = \{A, B, \#\}$ und der Überführungsfunktion

- (a) Konstruieren Sie zu M eine äquivalente kontextfreie Grammatik G nach den Verfahren aus der Vorlesung. Sie müssen nur G selbst angeben, nicht den zu M äquivalenten PDA mit nur einem Zustand. (8 Punkte)
- (b) Geben Sie eine explizite Beschreibung für L(M) an. (2 Zusatzpunkte)

Aufgabe 62 Betrachten Sie folgende Sprache: $L = \{w \in \{a,b\}^* \mid \#_a(w) = 2\#_b(w)\}$

 $m\ddot{u}ndlich$

Geben Sie einen PDA M für L an.

Aufgabe 63 Betrachten Sie folgende Sprache:

6 Punkte

$$L = \{a^n b^m c^m \mid n, m \ge 0\}$$

Geben Sie einen PDA M für L an.

Aufgabe 64

5 Punkte

- (a) Zeigen Sie, dass Kellerautomaten, die über Endzustände akzeptieren (FS-PDAs), genau dieselben Sprachen akzeptieren, wie PDAs (diese akzeptieren durch Leeren des Kellers). (mündlich)
 - Bemerkung: Dies impliziert $DCFL \subseteq CFL$.
- (b) Zeigen Sie, dass deterministische PDAs (diese akzeptieren durch Leeren des Kellers) genau die präfixfreien Sprachen in DCFL charakterisieren. (5 Punkte)