Übungsblatt 2

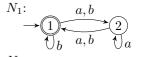
Besprechung der mündlichen Aufgaben am 1.-4.11.2022 Bearbeitung des Moodle-MC-Tests bis 1.11.2022, 8:00 Uhr Abgabe der schriftlichen Lösungen bis 8. 11. 2022, 23:59 Uhr

Pro schriftlicher Aufgabe ist eine PDF-Datei abzugeben. Schreiben Sie alle Namen, alle Matrikelnummern, die Abgabegruppe (z.B. AG123) aus Moodle in jede PDF-Datei. Benennen Sie die PDF-Datei nach Aufgabe und Nachnamen wie folgt: A013-Musterfrau-Beispiel.pdf für Aufgabe 13 von Lisa Musterfrau und Mark Beispiel.

Aufgabe 9 Seien A, B, C Sprachen. Zeigen oder widerlegen Sie: $m\ddot{u}ndlich$

- (a) $\{a\}^* \setminus \{a\} = (\{a\}^* \setminus \{a\})^*$,
- (b) $A(B \cup C) = AB \cup AC$,
- (c) $A(B \cap C) = AB \cap AC$.

Aufgabe 10 mündlich


Sei $L_1 \subseteq \{a,b\}^*$ die Sprache der Wörter, die *aba* als Teilwort enthalten.

- (a) Geben Sie einen NFA N für L_1 an und zeigen Sie, dass $L(N) = L_1$ ist.
- (b) Konstruieren Sie den zu N gehörigen Potenzmengenautomaten.

Aufgabe 11 Betrachten Sie die NFAs N_1 und N_2 .

 $m\ddot{u}ndlich$

(a) Konstruieren Sie den Kreuzprodukt-NFA N mit $L(N) = L(N_1) \cap L(N_2)$. Die Konstruktion ist analog zu der von Kreuzprodukt-DFAs aus der Vorlesung.

(b) Geben Sie explizite Beschreibungen (Mengenschreibweise oder informell) der Sprachen $L(N_1)$, $L(N_2)$ und L(N) an.

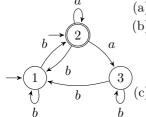
Aufgabe 12 5 Punkte

Sei $L \subseteq \Sigma^*$ eine reguläre Sprache. Zeigen Sie, dass dann auch die folgenden Sprachen regulär sind, indem Sie beschreiben wie Sie aus einem beliebigen DFA für L einen DFA (oder NFA) für diese Sprachen konstruieren. Begründen Sie jeweils auch die Korrektheit des von Ihnen konstruierten Automaten.

- (a) prefix(L) = { $x \in \Sigma^* \mid \exists y \in \Sigma^* : xy \in L$ }, (mündlich)
- (b) suffix(L) = { $x \in \Sigma^* \mid \exists y \in \Sigma^* : yx \in L$ }, (mündlich)
- (c) L^{+} , (mündlich)
- (d) $L^R = \{x^R \mid x \in L\}.(x^R \text{ bezeichnet das gespiegelte Wort, z.B.})$ (5 Punkte) $abcd^R = dcba$

Aufgabe 13 Betrachten Sie die Sprachen

8 Punkte


 $A = \{u \in \{a, b\}^* \mid u \text{ endet mit } b\} \text{ und } B = \{v \in \{a, b\}^* \mid \#_a(v) \text{ ist ungerade}\}.$

- (a) Geben Sie für jede der Sprachen A bzw. B je einen DFA (M_A bzw. M_B) mit genau 2 Zuständen an. (2 Punkte)
- (b) Konstruieren Sie aus M_A und M_B mit dem Algorithmus aus der Vorlesung einen NFA N für das Produkt L=AB. (4 Punkte)
- (c) Konstruieren Sie aus M_B einen NFA N_{B^*} für die Sternhülle B^* von B mit dem Algorithmus aus der Vorlesung. (2 Punkte)

Aufgabe 14 Gegeben sei folgender NFA N.

an.

9 Punkte

- (a) Geben Sie die Sprache L(N) an. (1 Punkt)
- (b) Wandeln Sie den NFA N mittels der in der Vorlesung vorgestellten Potenzmengenautomatenkonstruktion in einen DFA M um. Lassen Sie dabei überflüssige (d.h. vom neuen Startzustand nicht erreichbare) Zustände weg. (7 Punkte)
 (c) Geben Sie sämtliche in M nicht erreichbaren Zustände

Aufgabe 15 Sei $\Sigma = \{a, b\}$.

8 Punkte

(1 Punkt)

Geben Sie kurze explizite Beschreibungen der Sprachen $L(\gamma_i)$, $i \in \{1, 2, 3\}$ an, z.B. "enthält genau die Wörter, die mit a beginnen" für $L(a(a|b)^*)$. Es genügt nicht, nur in Mengenschreibweise zu übersetzen (d.h. nicht $\{a,b\}^*$ $\{bab\}$ $\{a,b\}^*$ bei a)).

(a)
$$\gamma_1 = (a|b)^*bab(a|b)^*$$
 (1 Punkt)

(b)
$$\gamma_2 = (a|b)^* a(a|b)^* a(a|b)^* |(a|b)^* b(a|b)^* b(a|b)^*$$
 (1 Punkt)

(c)
$$\gamma_3 = (aab|abb|bab|bbb)^*(a|b|\varepsilon)(a|b|\varepsilon)$$
 (2 Punkte)

Geben Sie kurze reguläre Ausdrücke γ_4 bis γ_6 für die Sprachen L_4 bis L_6 an.

(d)
$$L_4 = \{x_1 \dots x_n \in \Sigma^* \mid n \in \mathbb{N}, (x_1 = x_n \text{ oder } n = 0)\}$$
 (1 Punkt)

(e)
$$L_5 = L_4^*$$
 (1 Punkt)

(f)
$$L_6 = \{x \in \Sigma^* \mid \text{die Anzahl der } bs \text{ in } x \text{ ist ungleich } 2\}$$
 (2 Punkte)