Übungsblatt 2

Besprechung der mündlichen Aufgaben am 20.11.2020 Abgabe der schriftlichen Lösungen bis 24.11.2020, 23:59 Uhr

Aufgabe 9 mündlich

Sei $h: X \to Y$ eine balancierte (n, m)-Kompressionsfunktion (d.h. $||h^{-1}(y)|| = n/m$ für alle Hashwerte y und es gilt $m \le n/2$). Sei A ein probabilistischer Invertierungsalgorithmus für h, der mit Wahrscheinlichkeit ε für einen zufällig gewählten Hashwert y ein Urbild x mit h(x) = y berechnet.

- (a) Konstruieren Sie einen Las-Vegas Algorithmus B, der mit Wahrscheinlichkeit mindestens $\varepsilon/2$ eine Kollision für h aufspürt (und sonst? ausgibt).
- (b) Wieviele Hashwertberechnungen führt B höchstens aus, falls A nicht mehr als q Hashwertberechnungen benötigt?

Aufgabe 10 mündlich

Für eine feste (n,m)-Hashfunktion $h\colon X\to Y$ und für $y\in Y$ sei $h^{-1}(y)=\{x\in X\mid h(x)=y\}$ die Menge aller Texte mit Hashwert y und $c_y=\|h^{-1}(y)\|$ deren Anzahl. Weiter sei $s(h)=\|\{\{x,x'\}\in\binom{X}{2}\mid h(x)=h(x')\}\|$ die Anzahl aller Kollisionspaare von h. Für eine auf Y gleichverteilte Zufallsvariable $\mathcal Y$ bezeichne $\sigma(h)$ die Varianz und $\overline{c}(h)$ den Erwartungswert von $c_{\mathcal Y}$.

- (a) Bestimmen Sie $\sigma(h)$ und $\overline{c}(h)$.
- (b) Zeigen Sie: $s(h) = \frac{1}{2} (m\sigma(h) + n^2/m n)$.
- (c) Zeigen Sie, dass $s(h) \ge \frac{1}{2} \left(n^2/m n \right)$ ist, wobei Gleichheit genau dann gilt, wenn h balanciert ist.

Aufgabe 11 mündlich

Sei $h:\{0,1\}^{m+t} \to \{0,1\}^m$ eine kollisionsresistente Kompressionsfunktion. Welche zusätzliche Eigenschaft sollte h besitzen, damit folgende Konstruktion eine kollisionsresistente Hashfunktion $\hat{h}\colon \bigcup_{r>1}\{0,1\}^{rt} \to \{0,1\}^m$ liefert?

Sei $IV = 0^m$ und sei $x = x_1 \cdots x_r$ mit $|x_i| = t$ für $i = 1, \dots, r$. Berechne eine Folge y_0, \dots, y_r von Strings $y_i \in \{0, 1\}^m$ mit

$$y_i = \begin{cases} IV, & i = 0, \\ h(y_{i-1}x_i), & i = 1, \dots, r, \end{cases}$$

und definiere $\hat{h}(x) = y_r$.

Aufgabe 12 mündlich

Seien X,Y Zufallsvariablen mit endlichen Wertebereichen W(X) bzw. W(Y). Dann ist die **Entropie** von X definiert als $H(X) = \sum_{x \in W(X)} p(x) \operatorname{Inf}_X(x)$, wobei

$$\operatorname{Inf}_X(x) = \begin{cases} \log_2(1/p(x)), & p(x) > 0\\ 0, & \text{sonst} \end{cases}$$

der Informationsgehalt von x ist. Weiter sei $H(X,Y) = \sum_{x,y} p(x,y) \log_2 \frac{1}{p(x,y)}$ die Entropie der Zufallsvariablen (X,Y) mit Wertebereich $W(X) \times W(Y)$ und $H(X|Y) = \sum_y p(y)H(X|y)$ mit $H(X|y) = \sum_x p(x|y) \log_2 \frac{1}{p(x|y)}$ die bedingte Entropie von X unter Y. Zeigen Sie:

- (a) $H(X) \leq \log_2(n)$, wobei n = ||W|| ist und Gleichheit genau im Fall p(x) = 1/n für alle $x \in W$ eintritt.
- (b) H(X,Y) = H(Y) + H(X|Y) = H(X) + H(Y|X).
- (c) $H(X,Y) \leq H(X) + H(Y)$, mit Gleichheit genau dann, wenn X und Y stochastisch unabhängig sind.

Aufgabe 13 10 Punkte

- (a) Schreiben Sie ein Programm, das bei Eingabe von m und q die exakte Erfolgswahrscheinlichkeit ε von Collision(h,q) im ZOM berechnet.
- (b) Vergleichen Sie die exakten Werte für m=365 und $q=1,\,5,\,10,\,15,\,20,\,22,\,23,\,25,\,30$ mit den approximativen Werten $1-e^{-\frac{q^2}{2m}}$ bzw. $q^2/2m$.
- (c) Schreiben Sie ein Programm, das bei Eingabe von m und ε die Anzahl q von Hashwertberechnungen berechnet, die Collision(h,q) im ZOM benötigt, um eine Erfolgswahrscheinlichkeit von mindestens ε zu erreichen.
- (d) Vergleichen Sie für $\varepsilon = 1/2$ und $m \in \{10, 50, 100, 200, 365, 1000\}$ die exakten Werte von q mit den approximativen Werten $1, 17\sqrt{m}$ bzw. \sqrt{m} .