
Vorlesungsskript

Kryptologie
Wintersemester 2020/21

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

11. Februar 2021

ii

Inhaltsverzeichnis

1 Kryptografische Hashverfahren 1
1.1 Einführung . 1
1.2 Schlüssellose Hashfunktionen (MDCs) . 3

1.2.1 Vergleich von Sicherheitsanforderungen 4
1.2.2 Das Zufallsorakelmodell (ZOM) 5
1.2.3 Iterierte Hashfunktionen . 8
1.2.4 Die Merkle-Damgaard-Konstruktion 9
1.2.5 Die MD4-Hashfunktion . 10
1.2.6 Die MD5-Hashfunktion . 11
1.2.7 Die SHA-1-Hashfunktion . 12
1.2.8 Die SHA-2-Familie . 13
1.2.9 Kryptoanalyse von Hashfunktionen 14
1.2.10 Die Sponge-Konstruktion . 16
1.2.11 SHA-3 . 18

1.3 Nachrichten-Authentikationscodes (MACs) 18
1.3.1 Angriffe gegen symmetrische Hashfunktionen 19
1.3.2 Informationstheoretische Sicherheit von MACs 20
1.3.3 CBC-MACs . 29
1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC) 30

2 Elliptische Kurven 32
2.1 Elliptische Kurven über den reellen Zahlen 32
2.2 Elliptische Kurven über endlichen Körpern 34

3 Digitale Signaturverfahren 37
3.1 Das RSA-Signaturverfahren . 38
3.2 Das ElGamal-Signaturverfahren . 39
3.3 Das Schnorr-Signaturverfahren . 41
3.4 Der Digital Signature Algorithm (DSA) 42
3.5 ECDSA (Elliptic Curve DSA) . 43
3.6 One-time Signatur (Lamport 1979) . 44
3.7 Full Domain Hash (FDH) Signaturen . 47
3.8 Verbindliche Signaturen (undeniable signatures) 50
3.9 Fail-Stop-Signaturen . 54

4 Pseudozufallszahlen-Generatoren 58
4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren 58
4.2 Quadratische Reste . 62
4.3 Der BBS-Generator . 64
4.4 Quadratische Pseudoreste . 65
4.5 Sicherheit des BBS-Generators . 66

1

1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
grität von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegrität eine ähnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr nützlich. Auf weitere Anwendungsmöglichkeiten werden
wir später eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch repräsentati-
ve Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für h muss
somit „charakteristische Merkmale“ von x in den Hashwert h(x) einfließen lassen. Da
der Fingerabdruck eines Menschen ganz ähnliche Eigenschaften besitzt (was ihn für
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(x) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebräuchlich sind auch die Bezeich-
nungen kryptografische Prüfsumme oder message digest (englische Bezeichnung für
„Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

schlüssellos symmetrisch

MDCs
(Integritätsschutz)

Sonstige
Hashverfahren

MACs
(Authentikation)

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während
einer (räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

• „Teilnehmerauthentikation“ (entity authentication, identification)
– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei

ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesi-

x x′

y
y

?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.

1.2 Schlüssellose Hashfunktionen (MDCs) 3

x x′

y
hk(x′)

?= y′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal
Alice Bobk

k: Symmetrischer Authentikationsschlüssel
y = hk(x): MAC-Wert für x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x über einen authentisierten Kanal und prüft, ob der
Datensatz nach der Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Signaturen gebildet werden. Abbildung 1.3 zeigt, wie
sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch der
Hashwert über den unsicheren Kanal gesendet wird.

Möchte Alice eine Nachricht x an Bob übermitteln, so berechnet sie den
zugehörigen MAC-Wert y = hk(x) und fügt diesen der Nachricht x hinzu.
Bob überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem er
seinerseits den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis
mit y′ vergleicht. Der geheime Authentikationsschlüssel k muss hierbei genau
wie bei einem symmetrischen Kryptosystem über einen gesicherten Kanal
vereinbart werden.

Indem Alice ihre Nachricht x um den Hashwert y = hk(x) ergänzt, gibt sie Bob nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.2 Schlüssellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).

4 1 Kryptografische Hashverfahren

Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n,m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.
Problem P1: Bestimmung eines Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn
die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.
Problem P2: Bestimmung eines zweiten Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Angreifer dagegen mit folgender
Problemstellung konfrontiert.
Problem P3: Bestimmung einer Kollision

Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h : X → Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,

1.2 Schlüssellose Hashfunktionen (MDCs) 5

1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert und andernfalls ? aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit ε ein Kollisionspaar findet. �

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 2. Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ W (h)}. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h : X →
Y nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y) aller mn Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion mit
„idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Angreifer die

1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi)
4 return(?)

Abbildung 1.6: Bestimmung eines Urbilds für einen Hashwert

einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Eine Zufallsfunktion h eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) für einen Text x auch dann noch schwer vorhersagbar ist, wenn der
Angreifer bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FindPreimage(h, y, q) gibt im ZOM mit Wahrscheinlichkeit ε = 1− (1−1/m)q
ein Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds für einen Hashwert

1.2 Schlüssellose Hashfunktionen (MDCs) 7

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FindSecondPreimage(h, x, q) gibt im ZOM mit Wahrscheinlichkeit ε =
1− (1− 1/m)q−1 ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer

Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag.∗

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

mindestens eine Kugel mehr als einmal gezogen wird. Für m = 365 und q = 23 ergibt
dies einen Wert von ungefähr 0,507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 6. Collision(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1), . . . , h(xi−1)}.”
∗Da die Häufigkeiten der Geburtstage in Wirklichkeit nicht ganz gleichmäßig über das Jahr verteilt
sind, ist die Wahrscheinlichkeit sogar noch etwas höher.

8 1 Kryptografische Hashverfahren

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i+ 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(
m− 1
m

)(
m− 2
m

)
· · ·

(
m− q + 1

m

)
.

�

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e− 1

m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ 1− e−

q2
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε
√
m

mit cε =
√

2ε. Diese Abschätzung ist nur für ε-Werte nahe Null hinreichend genau. Eine
bessere Abschätzung ergibt sich aus der Approximation ε ≈ 1− e− q2

2m :

q ≈ c′ε
√
m

mit c′ε =
√

2 ln 1
1−ε . Für ε = 1/2 ergibt sich somit q ≈

√
(2 ln 2)m ≈ 1,17

√
m.

Besitzt also eine binäre Hashfunktion h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128
Bit, so müssen im ZOM q ≈ 1,17 · 264 Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu
können, sollte eine Hashfunktion mindestens eine Hashwertlänge von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.

1.2 Schlüssellose Hashfunktionen (MDCs) 9

Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei
y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von
Strings zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,
h(zi−1yi), i = 1, . . . , r.

Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g
die Identität verwendet.)

Um ĥ(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft.

Definition 7. Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei, falls es keine Strings
x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(x̃) an einer Stelle x̃ 6= x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch ĥ kollisionsresistent.

Beweis. Wir nehmen an, dass es gelingt, ein Kollisionspaar (x, x̃) für ĥ zu finden (d.h.
ĥ(x) = ĥ(x̃) und x 6= x̃). Sei

y(x) = y1y2 . . . yk−1yk und y(x̃) = ỹ1ỹ2 . . . ỹl−1ỹl mit k ≤ l.

Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , k} mit yi 6= ỹl−k+i existieren. Weiter seien
zi (i = 0, . . . , k) und z̃j (j = 0, . . . , l) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zk) = ĥ(x) = ĥ(x̃) = g(z̃l) auch zk = z̃l gelten. Sei imax
der größte Index i ∈ {1, . . . , k} mit zi−1yi 6= z̃l−k+i−1ỹl−k+i. Dann bilden zimax−1yimax und
z̃l−k+imax−1ỹl−k+imax wegen

h(zimax−1yimax) = zimax = z̃l−k+imax = h(z̃l−k+imax−1ỹl−k+imax)

ein Kollisionspaar für h. �

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0m benutzt, die optionale
Ausgabetransformation entfällt, und für y(x) wird im Fall t ≥ 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir später.)
Für x = ε sei y(x) = 0t und für x ∈ {0, 1}n mit n > 0 sei k = d n

t−1e und x =
x1x2 . . . xk−1xk mit |x1| = |x2| = . . . = |xk−1| = t − 1 sowie |xk| = t − 1 − d, wobei
0 ≤ d < t − 1. Im Fall k = 1 ist dann y(x) = 0x0d1bint−1(d) und für k > 1 ist

10 1 Kryptografische Hashverfahren

y(x) = y1 · · · yk+1, wobei

yi =



0x1, i = 1,
1xi, 2 ≤ i < k,

1xk0d, i = k,

1bint−1(d), i = k + 1,

(1.1)

und bint−1(d) die durch führende Nullen auf die Länge t− 1 aufgefüllte Binärdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffixfrei.

Beweis. Seien x 6= x̃ zwei Texte mit |x| ≤ |x̃|. Wir müssen zeigen, dass y(x) = y1y2 . . . yk+1
kein Suffix von y(x̃) = ỹ1ỹ2 . . . ỹl+1 ist. Im Fall x = ε ist dies klar. Für x 6= ε machen wir
folgende Fallunterscheidung.
1. Fall: |x| 6≡t−1 |x̃|. Dann folgt d 6= d̃ und somit yk+1 6= ỹl+1.
2. Fall: |x| = |x̃|. In diesem Fall ist k = l. Wegen x 6= x̃ existiert ein Index i ∈

{1, . . . , k} mit xi 6= x̃i. Dies impliziert yi 6= ỹi, also ist y(x) kein Suffix von y(x̃).
3. Fall: |x| 6= |x̃| und |x| ≡t−1 |x̃|. In diesem Fall ist k < l. Da y(x) mit einer Null

beginnt, aber das (l − k + 1)-te Bit von y(x̃) eine Eins ist, kann y(x) kein Suffix
von y(x̃) sein. �

Nun kommen wir zum Fall t = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

f(x1 . . . xn) = f(x1) . . . f(x2) mit f(0) = 0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion h bei der
Berechnung von ĥ(x) im Fall t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(x)| ≤ 2(n+1)-mal aufgerufen. Im Fall t > 1 werden dagegen nur k+1 = d n

t−1e+1
Aufrufe benötigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlänge von MD4 beträgt l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wörtern.

Operatoren auf {0, 1}32

X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen

1.2 Schlüssellose Hashfunktionen (MDCs) 11

Während die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes a3a2a1a0, 0 ≤ ai ≤ 255 zusammengesetztes Wort repräsentiert die Zahl
a0224 + a1216 + a228 + a3) ausgeführt wird, verwendet SHA-1 eine big endian Architektur
(d.h. a3a2a1a0, 0 ≤ ai ≤ 255 repräsentiert die Zahl a3224 + a2216 + a128 + a0). Der
MD4-Algorithmus benutzt die folgenden Konstanten yj, zj, sj, j = 0, . . . , 47

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1

zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15

und folgende Funktionen fj, j = 0, . . . , 47

fj(X, Y, Z) :=


(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 15,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 16, . . . , 31,
X ⊕ Y ⊕ Z, j = 32, . . . , 47.

Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen aufgespürt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 47 do
9 (A,B,C,D) := (D, (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.6 Die MD5-Hashfunktion

Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von MD4. Die Bitlänge
von MD5 beträgt wie bei MD4 l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.

12 1 Kryptografische Hashverfahren

Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der die Funktion
fj(X, Y, Z) = Y ⊕ (X ∨ ¬Z) verwendet wird. Außerdem wurde die in Runde 2 von MD4
verwendete Funktion durch fj(X, Y, Z) := (X ∧ Z) ∨ (Y ∧ ¬Z), j = 16 . . . 31, ersetzt.
Die y-Konstanten sind definiert als yj := die ersten 32 Bit der Binärdarstellung von
abs(sin(j + 1)), 0 ≤ j ≤ 63, und für zj und sj werden folgende Konstanten benutzt.

zj
j = 0, . . . , 15 zj = j : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 zj = (5j + 1) mod 16 : 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
j = 32, . . . , 47 zj = (3j + 5) mod 16 : 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
j = 48, . . . , 63 zj = 7j mod 16 : 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

sj
j = 0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
j = 16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
j = 32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
j = 48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (für die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 63 do
9 (A,B,C,D) := (D,B + (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behörde
NIST (National Institute of Standards and Technology) im August 1991 veröffentlichten
DSS (Digital Signature Standard). Die Bitlänge von SHA-1 beträgt l = 160 Bit. Bei
einer Wortlänge von 32 Bit entspricht dies 5 Wörtern. SHA-1 unterscheidet sich nur
geringfügig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu führt, dass
nach Berechnung von ca. 261 Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280

Berechnungen erforderlich sein müssten). Diese potentielle Schwäche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle

1.2 Schlüssellose Hashfunktionen (MDCs) 13

ausführt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 79

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f1bbcdc
j = 60, . . . , 79 ca62c1d6

und folgende Funktionen fj, j = 0, . . . , 79

fj(X, Y, Z) :=



(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 19,
X ⊕ Y ⊕ Z, j = 20, . . . , 39,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 40, . . . , 59,
X ⊕ Y ⊕ Z, j = 60, . . . , 79.

SHA-1(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 for t := 16 to 79 do
8 X[t] := (X[t− 3]⊕X[t− 8]⊕X[t− 14]⊕X[t− 16])←↩ 1
9 (A,B,C,D,E) := (H0, H1, H2, H3, H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C,D) + E +X[j] +Kj

12 (A,B,C,D,E) := (temp,A,B ←↩ 30, C,D)
13 (H0, H1, H2, H3, H4) := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E)
14 output H0H1H2H3H4

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veröffentlichte die US-Behörde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlänge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 63 (in

14 1 Kryptografische Hashverfahren

Hexadezimaldarstellung).

428a2f98, 71374491, b5c0fbcf, e9b5dba5, 3956c25b, 59f111f1, 923f82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f, 4a7484aa, 5cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, a4506ceb, bef9a3f7, c67178f2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, . . . , 311. SHA-256 arbeitet wie folgt.

SHA-256(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4, H5, H6, H7) := (6a09e667, bb67ae85, 3c6ef372, a54ff53a,
4 510e527f, 9b05688c, 1f83d9ab, 5be0cd19)
5 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
6 for i := 1 to r do
7 sei Mi = X[0] · · ·X[15]
8 for t := 16 to 63 do
9 s0 := (X[t− 15] ↪→ 7)⊕ (X[t− 15] ↪→ 18)⊕ (X[t− 15]→ 3)

10 s1 := (X[t− 2] ↪→ 17)⊕ (X[t− 2] ↪→ 19)⊕ (X[t− 2]→ 10)
11 X[t] := X[t− 16] + s0 +X[t− 7] + s1
12 (A,B,C,D,E, F,G,H) := (H0, H1, H2, H3, H4, H5, H6, H7)
13 for j := 0 to 63 do
14 s0 := (A ↪→ 2)⊕ (A ↪→ 13)⊕ (A ↪→ 22)
15 maj := (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C)
16 t2 := s0 +maj
17 s1 := (E ↪→ 6)⊕ (E ↪→ 11)⊕ (E ↪→ 25)
18 ch := (E ∧ F)⊕ (¬E ∧G)
19 t1 := H + s1 + ch+Kj +X[j]
20 (A,B,C,D,E, F,G,H) := (t1 + t2, A,B,C,D + t1, E, F,G)
21 (H0, H1, H2, H3, H4, H5, H6, H7)
22 := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E,H5 + F,H6 +G,H7 +H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von H0, . . . , H7 in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
binären Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwächen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen für MD4
mittels “hand calculation” finden lassen.
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” für
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar

1.2 Schlüssellose Hashfunktionen (MDCs) 15

für die MD5 Kompressionsfunktion.
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benötigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschätzt.
Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
führten. Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit, Kollisionen
für MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im März 2006
auf eine Minute verkürzt.
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 261 Hashwertberechnungen (anstelle von 280 bei einem Geburts-
tagsangriff) aufspürt.
In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen für den auf 62 Runden reduzierten SHA-0 Algorithmus vor.
Schließlich wurde im August 2004 die Berechnung einer Kollision für den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 251 Hashwerte berechnet, die ca. 80 000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benötigten.
Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode für MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 240 senken lässt. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfügig auf 239 Hashwertberechnungen
verbessert.
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Daraufhin kündigte die amerikanische Behörde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulösen.
Im Jahr 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar für den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269 Hashwertberechnungen
an. Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 263 Berechnungen. In
2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem geschätzten Aufwand
von 251 bis 257 Berechnungen veröffentlicht.
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.
Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs für den SHA-3-Algorithmus ausgewählt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzulösen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen ähnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfügung zu stellen.

16 1 Kryptografische Hashverfahren

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge (Schwamm) bezeichnet. Auf der Basis dieser Entwurfsmethode lassen sich außer
Hashfunktionen bspw. auch Pseudozufallsgeneratoren gewinnen. Der Aufbau eines Spon-
ges ähnelt oberflächlich betrachtet der in 1.2.3 vorgestellten Konstruktion von iterierten
Hashfunktionen, weist aber einige Unterschiede auf. So basiert ein Sponge statt auf
einer Kompressionsfunktion h auf einer Permutation (oder allgemeiner Transformati-
on) f : {0, 1}b → {0, 1}b, die wie h iteriert angewendet wird. Dabei wird der aktuelle
b-Bitblock in zwei Teilblöcke der Länge r und c unterteilt, die als äußerer bzw. innerer
Zustand bezeichnet werden. Wie der Name schon sagt, verbleiben die Bits des inneren
Zustands im Sponge, d.h. sie dienen nur zur Berechnung des nächsten Zustands und wer-
den im Gegensatz zu den Bits des äußeren Zustands nicht unmittelbar für die Gewinnung
der Ausgabe genutzt. Die Anzahl c der Bits des inneren Zustands wird als Kapazität
des Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter. Die Anzahl r der
Bits des äußeren Zustands heißt Bitrate , wobei r + c = b gelten muss.
Bevor die Funktion f im Kern des Algorithmus iteriert angewendet wird, um eine
Zustandsfolge zu generieren, wird ein Preprocessing ausgeführt. Die Anforderungen an
diese Funktion definieren wir vorab.

Definition 10. Sei r ≥ 1. Eine Funktion y : {0, 1}∗ → ⋃
k≥1{0, 1}kr der Form y(x) = xz

heißt Paddingfunktion für Bitrate r ≥ 1. Eine solche Funktion heißt sponge-konform
für Bitrate r ≥ 1, falls gilt:
• ∀n ≥ 0 ∃z∀x ∈ {0, 1}n : y(x) = xz,
• ∀k ≥ 0 ∀x 6= x′ : y(x) 6= y(x′)0kr.

Es ist leicht zu sehen, dass die Funktion pad10∗1r : {0, 1}∗ → {0, 1}∗ definiert durch

pad10∗1r(x) = x10d1 mit d = min
{
i ≥ 0

∣∣∣ |x|+ 2 + i ≡r 0
}

eine sponge-konforme Paddingfunktion für die Bitrate r ist. Tatsächlich ist pad10∗1r
sogar für jede Bitrate r′ ≥ 1 sponge-konform. Ohne die abschließende 1 wäre dies nicht
der Fall.

Definition 11. Sei y eine Paddingfunktion für r ≥ 1 und sei f : {0, 1}b → {0, 1}b. Für
x ∈ {0, 1}∗ sei y(x) = y1 . . . yk mit |yi| = r für i = 1, . . . , k. Wir definieren die Zustände

si =


0b i = 0
f(si−1 ⊕ (yi0c)) 1 ≤ i ≤ k (Absorptionsphase)
f(si−1) i > k (Squeezing-Phase)

Weiter bezeichne zi für i ≥ 1 die ersten r Bit von sk+i−1. Zudem sei m = b l
r
c und z′m+1 sei

das Präfix von zm+1 der Länge l−mr. Dann ist die Funktion Spongef,y,r : N×{0, 1}∗ →
{0, 1}∗ wie folgt definiert: Spongef,y,r(l, x) = z1 . . . zmz

′
m+1. Für die Analyse definieren

wir noch die Funktionen

Absorbf,r(y1 . . . yk) = sk und Squeezef,r(l, sk) = z1 . . . zmz
′
m+1

Den Aufwand, für festes l ein Kollisionspaar x, x′ mit x 6= x′ und Spongef,y,r(l, x) =
Spongef,y,r(l, x′) zu finden, können wir nach oben durch den Aufwand abschätzen, ein Paar

1.2 Schlüssellose Hashfunktionen (MDCs) 17

Prozedur InnerCollision(f, r, q,S)
1 c := b− r, wobei f : {0, 1}b → {0, 1}b
2 initialisiere den Multi-Digraphen G = (V,A) := ({0, 1}c , ∅)
3 for i := 1 to q do
4 wähle u ∈ V und x ∈ {0, 1}r nach Strategie S
5 x′u′ := f(xu)
6 A := A ∪ {(u, u′)x,x′}
7 if ∃ zwei Pfade (0c, u1)x0,x′0

, (u1, u2)x1,x′1
, . . . , (uk−1, uk)xk−1,x

′
k−1

und

8 (0c, v1)y0,y′0
, (v1, v2)y1,y′1

, . . . , (vl−1, vl)yl−1,y
′
l−1

in G mit uk = vl then
9 return(x0(x′0 ⊕ x1) . . . (x′k−2 ⊕ xk−1), y0(y′0 ⊕ y1) . . . (y′l−2 ⊕ yl−1))

10 else
11 return(?)

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

x, x′ ∈ ⋃k≥1{0, 1}kr mit x 6= x′ und Absorbf,r(y(x)) = Absorbf,r(y(x′)) zu finden. Hierbei
reicht es, ein inneres Kollisionspaar, d.h. zwei Strings w = y1 . . . , yk 6= w′ = y′1 . . . , y

′
k′

zu finden, so dass die inneren Zustände von sk = Absorbf,r(w) und s′k′ = Absorbf,r(w′)
gleich sind. Setzen wir nämlich yk+1 und yk′+1 auf die äußeren Zustände von sk und s′k′ ,
so folgt für die Eingaben x = wyk+1 und x′ = w′y′k′+1:

Absorbf,r(x) = f(sk ⊕ (yk+10c)) = f(0rsi
k) = f(0rs′ik′)

= f(s′k′ ⊕ (y′k′+10c)) = Absorbf,r(x′),

wobei si
j den inneren Zustand von sj bezeichnet. Falls das Suffix z von y(x) = xz nur

von |x| mod r abhängt, gilt wegen |x| ≡r |x′| dann auch die Gleichheit Absorbf,r(y(x))=
Absorbf,r(y(x′)) und somit Spongef,y,r(l, x) = Spongef,y,r(l, x′).
Um eine solche innere Kollision zu finden, hilft es, sich die 2c inneren Zustände u ∈ {0, 1}c
als Knoten eines gerichteten Multigraphen G vorzustellen, der für jedes Paar (xu, x′u′)
mit f(xu) = x′u′ eine Kante (u, u′)x,x′ von u nach u′ mit dem Label x, x′ enthält. Ziel ist
es dann, zwei verschiedene Pfade von 0c zu demselben Knoten v zu finden, wobei zwei
Pfade auch dann verschieden sind, wenn sich die Kanten nur in den Labeln unterscheiden.
Wird f durch eine Zufallsfunktion modelliert (ZOM), so lassen bereits berechnete Werte
von f keine Rückschlüsse auf die Werte für andere Argumente zu. Anders als beim ZOM
für eine Hashfunktion kann es sich dennoch für den Angreifer lohnen, die Argumente von
f adaptiv nach einer Strategie S zu wählen. Der Algorithmus InnerCollision fasst
dieses Vorgehen zusammen.

Satz 12. Für jede Strategie S gibt InnerCollision(f, r, q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit höchstens

ε = 1−
q∏
i=1

(
1− i

2c
)

ein inneres Kollisionspaar (x, x′) aus. Wählt S nur von 0c aus erreichbare Knoten u und
kein Argument xu mehrmals, so ist die Erfolgswahrscheinlichkeit exakt ε.

Beweis. Sei Ei das Ereignis “G enthält nach i Durchläufen keine zwei verschiedenen
Pfade von 0c zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0c aus

18 1 Kryptografische Hashverfahren

erreichbaren Knoten ein zweiter Pfad von 0c aus geschlossen werden kann und nach i− 1
Durchläufen höchstens i von 2c Knoten erreichbar sind, gilt (unabhängig von S):

Pr[Ei |E1 ∩ . . . ∩ Ei−1] ≥ 1− i

2c .

Wählt S nur erreichbare Knoten u und kein Argument xu mehrfach, so sind unter
Annahme von E1 ∩ . . .∩Ei−1 auch i Knoten erreichbar (sonst gäbe es bereits zwei Pfade
von 0c zu einem Knoten in G) und es gilt sogar Gleichheit. Analog zum Beweis vom
Satz 6 folgt der behauptete Wert ε, mit Gleichheit im Fall der Wahl erreichbarer Knoten
durch S. �

Auch hier lässt sich q in Abhängigkeit von ε mittels 1− x ≈ e−x abschätzen und es folgt:

q ≈ cε2
c
2 , cε =

√
2 ln 1

1− ε .

1.2.11 SHA-3

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen fw, w = 2i, i ∈ {0, . . . , 6} als Kern des Sponges Spongefw,pad10∗1r,r

,
sowie verschiedene Kombinationen von Bitraten r und Ausgabelängen l (c ist durch
25w − r bestimmt).
Jede Funktion fw : {0, 1}5×5×w → {0, 1}5×5×w bildet ein zweidimensionales Feld A aus
w-Bit-Wörtern auf ein ebensolches Feld fw(A) ab. Dabei wird (12 + log2 w)-mal eine
Rundenfunktion f ′w : {0, 1}5×5×w × {0, 1}w → {0, 1}5×5×w aufgerufen, die A und eine
Rundenkonstante RCi auf A′ abbildet.
Es gilt

f ′w(A,RC) = ιRC(χ(π(ρ(θ(A))))),

wobei θ, ρ, π, χ und ιRC Bijektionen von {0, 1}5×5×w nach {0, 1}5×5×w sind. Die Funktion
θ besteht aus ⊕-Operationen und ist so gewählt, dass sich θ−1(A) an möglichst vielen
Bits ändert, falls eines in A geflippt wird. Danach permutieren die Funktionen ρ und π
die Bits von A innerhalb und zwischen den Wörtern. Ähnlich einer S-Box im SPN ist
χ eine nichtlineare Funktion (die einzige solche in der Definition von f ′w), die nur auf
5-Bit-Blöcken arbeitet (jedes Bit hängt sogar nur von 2 anderen ab). Schlussendlich setzt
ιRC das Wort A0,0 auf A0,0 ⊕RC.
Für die Werte l ∈ {224, 256, 384, 512} definiert der Standard FIPS 202:

SHA3-l(x) = Spongef64,pad10∗1r,r
(l, x01), wobei r = 1600− 2l.

Das zusätzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, l, r unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Eine Hashfamilie H = (X, Y,K,H) wird durch folgende Komponenten
beschrieben:
• X, eine endliche oder unendliche Menge von Texten,

1.3 Nachrichten-Authentikationscodes (MACs) 19

• Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖,
• K, endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K eine
Hashfunktion hk : X → Y in H spezifiziert, d.h. H = {hk | k ∈ K}.

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schlüsselraumes K mit l bezeichnen. Wir nennen dann H auch eine
(n,m, l)-Hashfamilie oder einen (n,m, l)-MAC.
Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer Nachrichten be-
nutzt werden kann, ohne dass dies einem potentiellen Angreifer zur nichtautorisierten
Berechnung von gültigen MAC-Werten verhilft, sollte folgende Bedingung erfüllt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel k generierten
Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x, y) mit y = hk(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Angreifer nicht
möglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritätsschutz für mehrere
Datensätze auf die Geheimhaltung eines Schlüssels k zurückgeführt werden.

Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene Veränderun-
gen zu schützen, legt man sie zusammen mit ihren MAC-Werten y1 =
hk(x1), . . . , yn = hk(xn) auf einem unsicheren Speichermedium ab und be-
wahrt den geheimen Schlüssel k an einem sicheren Ort auf. Bei einem späteren
Zugriff auf einen Datensatz xi lässt sich dessen Unversehrtheit durch einen
Vergleich von yi mit dem Ergebnis hk(xi) einer erneuten MAC-Berechnung
überprüfen.

Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensätze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von MAC-Werten zum Ziel.
Das heißt, der Angreifer versucht, MAC-Werte hk(x) ohne Kenntnis des geheimen Schlüs-
sels k zu berechnen. Entsprechend der Art des zur Verfügung stehenden Textmaterials
lassen sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation

Der Angreifer kennt nur den benutzten MAC und versucht ein Paar (x, y) mit
hk(x) = y zu generieren, wobei k der (dem Angreifer unbekannte) Schlüssel ist.

Substitution
Der Angreifer versucht in Kenntnis eines Paares (x, hk(x)) ein Paar (x′, y′) mit
x′ 6= x und hk(x′) = y′ zu generieren.

Angriff bei bekanntem Text (known-text attack)
Der Angreifer kennt für eine Reihe von Texten x1, . . . , xr (die er nicht selbst wählen

20 1 Kryptografische Hashverfahren

konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr) und versucht, ein Paar
(x′, y′) mit hk(x′) = y′ und x′ 6∈ {x1, . . . , xr} zu generieren.

Angriff bei frei wählbarem Text (chosen-text attack)
Der Angreifer kann die Texte xi selbst wählen.

Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack)
Der Angreifer kann die Wahl des Textes xi von den zuvor erhaltenen MAC-Werten
hk(xj), j < i, abhängig machen.

Wechseln die Anwender nach jeder MAC-Wertberechnung den Schlüssel, so genügt es,
dass H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von MACs

Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Angreifer bekannt ist. Wir
nehmen o.B.d.A. an, dass p(x) > 0 und p(k) > 0 für alle x ∈ X und k ∈ K gilt.

Erfolgswahrscheinlichkeit für Impersonation

Sei α die Wahrscheinlichkeit, mit der sich ein Angreifer bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.
Für ein Paar (x, y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein zufällig gewählter
Schlüssel den Text x auf den MAC-Wert y abbildet:

p(x 7→ y) = p(y|x) =
∑

k∈K(x,y)
p(k).

wobei K(x, y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf y abbilden. D.h.
p(x 7→ y) ist die Wahrscheinlichkeit, dass Bob das Paar (x, y) als echt akzeptiert. Somit
gibt p(x 7→ y) die Wahrscheinlichkeit an, mit der einem Angreifer bei Wahl des Paares
(x, y) eine Impersonation gelingt, weshalb wir diese Wahrscheinlichkeit auch mit α(x, y)
bezeichnen. Schließlich ist α(x) = max{α(x, y) | y ∈ Y } die Wahrscheinlichkeit, mit der
einem Angreifer bei optimaler Strategie eine Impersonation mit dem Text x gelingt, und
es gilt α = max{α(x) | x ∈ X}.

Beispiel 14. Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}. Wir beschreiben H
durch die zugehörige Authentikationsmatrix. Die Zeilen und Spalten dieser Matrix
werden mit den Schlüsseln k ∈ K und den Texten x ∈ X indiziert und ihr Eintrag in
Zeile k und Spalte x ist der Wert hk(x).

0,1 0,2 0,3 0,4

a b c d

0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Angreifer folgende Erfolgsaussichten α(x), falls er an Bob den Text x senden möchte.

1.3 Nachrichten-Authentikationscodes (MACs) 21

x a b c d

p(x 7→ 0) 0,7 0,25 0,55 0,45
p(x 7→ 1) 0,3 0,75 0,45 0,55
α(x) 0,7 0,75 0,55 0,55

Folglich ist α = 0,75. /

Satz 15. Für alle x ∈ X ist α(x) ≥ 1
m

und daher gilt α ≥ 1
m
.

Beweis. Sei x ∈ X beliebig. Dann gilt∑
y∈Y

p(x 7→ y) =
∑
y∈Y

∑
k∈K(x,y)

p(k) =
∑
k∈K

p(k) = 1.

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m

und dies impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m
.

�

Bemerkung 16. Wie der Beweis zeigt, gilt α = 1
m

genau dann, wenn für alle Paare
(x, y) ∈ X × Y gilt, ∑

k∈K(x,y)
p(k) = 1

m
.

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der Authentikationsmatrix
jeder MAC-Wert gleich oft vorkommen. Dies lässt sich am einfachsten dadurch erreichen,
dass man K = Y setzt und für hk die konstante Funktion hk(x) = k wählt.

Das folgende Lemma benötigen wir für den Beweis des nächsten Satzes.

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) ⊆ R+. Dann
gilt logE(X) ≥ E(logX).

Beweis. Sei W (X) = {x1, . . . , xn} und für i = 1, . . . , n sei pi = Pr[X = xi]. Da die
Funktion x 7→ log2 x konkav ist, folgt mit der Jensenschen Ungleichung

logE(X) = log2(
∑

pixi) ≥
∑

pi log2 xi = E(logX).
�

Satz 18. Für jeden MAC (X, Y,K,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) (≥ 1/l).

Hierbei sind X ,Y ,K Zufallsvariablen, die die Verteilungen der Nachrichten, der MAC-
Werte und der Schlüssel beschreiben.
Der Wert von α kann also um so kleiner werden, je gleichmäßiger die Schlüsselverteilung
ist und je mehr Information die Beobachtung eines gültigen Paares (x, y) über den
Schlüssel liefert.

22 1 Kryptografische Hashverfahren

Beweis. Da α = maxx,y α(x, y) ist, folgt E(α(X ,Y)) = ∑
x,y p(x, y)α(x, y) ≤ α, wobei

E(α(X ,Y)) die Erfolgswahrscheinlichkeit eines (probabilistischen) Angreifers ist, der
das Paar (x, y) gemäß der Verteilung (X ,Y) wählt. Somit folgt unter Anwendung von
Lemma 17,

logα ≥ logE(α(X ,Y)) ≥ E(logα(X ,Y)) =
∑
x,y

p(x, y)︸ ︷︷ ︸
p(x)p(y|x)

log p(y |x)︸ ︷︷ ︸
− log 1

p(y|x)

= −H(Y |X).

Wegen
H(K,Y ,X) = H(X) +H(Y |X) +H(K|X ,Y)

und
H(K,Y ,X) = H(K,X)︸ ︷︷ ︸

=H(K)+H(X)

+H(Y |K,X)︸ ︷︷ ︸
=0

.

gilt zudem H(Y |X) = H(K)−H(K | X ,Y) und somit logα ≥ H(K | X ,Y)−H(K). �

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt

H(K) =
∑
k

p(k) log 1
p(k) = 0,45 · 1,152 + 0,3 · 1,737 + 0,25 · 2,0 = 1,54.

Um H(K|X ,Y) zu bestimmen, benötigen wir die gemeinsame Verteilung von X ,Y sowie
die bedingten Verteilungen Kx,y für alle Paare (x, y) ∈ X × Y .

(x, y) (a, 0) (a, 1) (b, 0) (b, 1) (c, 0) (c, 1) (d, 0) (d, 1)
p(x, y) 0,07 0,03 0,05 0,15 0,165 0,135 0,18 0,22
p(1|x, y) 5

14 0 1 0 5
11 0 0 5

11
p(2|x, y) 0 1 0 2

5
6
11 0 0 6

11
p(3|x, y) 9

14 0 0 3
5 0 1 1 0

H(K|x, y) ≈ 0,94 0 0 ≈ 0,97 ≈ 0,99 0 0 ≈ 0,99

Hierbei gilt p(x, y) = p(x)p(y|x) = p(x)p(x 7→ y). Somit ist

H(K|X ,Y) =
∑
x,y

p(x, y)H(K|x, y) ≈ 0,52

und wir erhalten die untere Schranke

α ≥ 1
2H(K)−H(K|X ,Y) ≈

1
21,54−0,52 = 1

21,02 ≈ 0,493.
/

Erfolgswahrscheinlichkeit für Substitution

Bezeichne β die Wahrscheinlichkeit, mit der ein Angreifer bei optimaler Strategie eine
von Alice gesendete Nachricht x durch eine andere Nachricht x′ ersetzen kann, ohne dass
Bob dies bemerkt. Dabei gehen wir davon aus, dass der Angreifer keinen Einfluss auf die
Wahl der von Alice gesendeten Nachricht x hat.
Falls der Angreifer ein von Alice gesendetes Paar (x, y) durch das Paar (x′, y′) ersetzt,
ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

p(x′ 7→ y′ |x 7→ y) = p(x 7→ y, x′ 7→ y′)
p(x 7→ y) =

∑
k∈K(x,y,x′,y′) p(k)∑
k∈K(x,y) p(k) ,

1.3 Nachrichten-Authentikationscodes (MACs) 23

dass ein zufällig gewählter Schlüssel k den Text x′ auf y′ abbildet, wenn bereits bekannt
ist, dass hk(x) = y ist. Falls Alice also das Paar (x, y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Angreifers

β(x, y) := max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y).

Man beachte, dass β(x, y) nur im Fall p(x, y) > 0 definiert ist. Da der Angreifer keinen
Einfluss auf die Wahl von (x, y) hat, ist β gleich dem Erwartungswert von β(x, y) unter
der Verteilung p(x, y), mit der Alice diese Paare generiert. Somit ergibt sich β zu

β = E(β(X ,Y)) =
∑

x∈X,y∈Y
p(x, y)β(x, y).

Wegen p(x, y) = p(x)p(x 7→ y) können wir β unter Verwendung der Funktion

β′(x, y) = β(x, y)p(x 7→ y) = max
x′ 6=x,y′

p(x′ 7→ y′, x 7→ y)

auch einfacher mittels der Formel β = ∑
x∈X p(x)∑y∈Y β

′(x, y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

p(x′ 7→y′, x 7→y)
(x,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x,y) p(x 7→y) β(x,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,7 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,75 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 0,55 1

Die optimalen Wahlmöglichkeiten des Angreifers, ein Paar (x, y) durch ein anderes Paar
(x′, y′) zu ersetzen, sind in der Tabelle fett gedruckt. Für β erhalten wir somit den Wert

β =
∑
x∈X

p(x)
∑
y∈Y

β′(x, y)

= 0,1(0,45 + 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.

/

Als nächstes zeigen wir für β die gleiche untere Schranke wie für α.

Satz 21. Für alle (x, y) ∈ X ×Y mit p(x, y) > 0 ist β(x, y) ≥ 1
m

und daher gilt β ≥ 1
m
.

Beweis. Sei (x, y) ∈ X×Y ein Paar mit p(x, y) > 0. Dann gilt für beliebige x′ ∈ X−{x},

∑
y′∈Y

p(x′ 7→ y′ |x 7→ y) =
∑
y′∈Y

∑
k∈K(x′,y′;x,y) p(k)∑

k∈K(x,y) p(k) = 1.

24 1 Kryptografische Hashverfahren

Somit existiert ein y′ ∈ Y mit p(x′ 7→ y′ |x 7→ y) ≥ 1
m

und dies impliziert

β(x, y) = max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y) ≥ 1
m
.

Folglich ist
β =

∑
x∈X,y∈Y

p(x, y)β(x, y) ≥ 1
m

∑
x∈X,y∈Y

p(x, y) = 1
m
.

�

Beispiel 22. Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3. Für k = (a, b) ∈ K und
x ∈ X sei

hk(x) = ax+ b mod 3.

Die zugehörige Authentikationsmatrix ist

0 1 2
(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Wir nehmen an, dass der Schlüssel unter Gleichverteilung gewählt wird. Ersetzt der
Angreifer ein Paar (x, y) durch ein Paar (x′, y′) mit x′ 6= x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schlüssel akzeptiert. Dies liegt daran, dass in
je 2 Spalten der Authentikationsmatrix jedes MAC-Wertepaar genau einmal vorkommt.
Folglich ist p(x′ 7→ y′ |x 7→ y) = 1/3 und somit hat β den optimalen Wert β = 1/3. /

Lemma 23. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Dann gilt

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(x 7→ y) > 0
gilt. Wäre nämlich

p(x′ 7→ y′ |x 7→ y) > 1/m,

dann wäre auch
β(x, y) = max

x′ 6=x,y′
p(x′ 7→ y′ |x 7→ y) > 1/m.

Da für alle Paare (u, v) mit p(u 7→ v) > 0 nach Satz 21 die Ungleichung β(u, v) ≥ 1/m
gilt und zudem p(x, y) = p(x)p(x 7→ y) > 0 ist, folgt hieraus

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) > 1/m,

1.3 Nachrichten-Authentikationscodes (MACs) 25

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits

p(x′ 7→ y′ |x 7→ y) < 1/m,

muss wegen ∑
y′′∈Y

p(x′ 7→ y′′ |x 7→ y) = 1

auch ein MAC-Wert y′′ mit p(x′ 7→ y′′ |x 7→ y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.
Es bleibt zu zeigen, dass p(x 7→ y) > 0 für alle Paare (x, y) gilt. Wäre p(x 7→ y) = 0, so
würde für ein beliebiges Paar (u, v) mit p(u 7→ v) > 0 auch p(x 7→ y |u 7→ v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung β = 1/m. �

Satz 24. Ein MAC (X, Y,K,H) erfüllt β = 1
m

genau dann, wenn

p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt.

Beweis. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Nach obigem Lemma impliziert dies, dass

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. Dies impliziert nun

p(x′ 7→ y′) =
∑
y

p(x 7→ y)p(x′ 7→ y′ |x 7→ y) = 1/m

und daher
p(x 7→ y, x′ 7→ y′) = p(x′ 7→ y′)p(x 7→ y |x′ 7→ y′) = 1/m2.

Umgekehrt rechnet man leicht nach, dass die Bedingung β = 1
m

erfüllt ist, wenn für alle
Doppelpaare (x, y, x′, y′) mit x 6= x′ die Gleichheit p(x 7→ y, x′ 7→ y′) = 1/m2 gilt. �

Bemerkung 25. Nach obigem Satz gilt β = 1
m

genau dann, wenn für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ gilt,

p(x 7→ y, x′ 7→ y′) =
∑

k∈K(x,y,x′,y′)
p(k) = 1

m2 .

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m

genau dann, wenn in je zwei Spalten
der Authentikationsmatrix jedes MAC-Wertepaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung gewählt wird, d.h.
es gilt p(k) = 1

‖K‖ für alle k ∈ K.

Definition 26. Ein MAC (X, Y,K,H) heißt 2-universal, falls für alle x, x′ ∈ X mit
x 6= x′ und alle y, y′ ∈ Y gilt:

‖K(x, y, x′, y′)‖ = ‖K‖
m2 .

Ein MAC (X, Y,K,H) ist also genau dann 2-universal, wenn für alle Textpaare x, x′ ∈ X
mit x 6= x′ jedes MAC-Wertpaar y, y′ ∈ Y mit Wk 1/m2 auftritt.

26 1 Kryptografische Hashverfahren

Bemerkung 27. Bei der Konstruktion von 2-universalen MACs spielt der Parameter
λ = ‖K‖

m2 eine wichtige Rolle. Da λ notwendigerweise positiv und ganzzahlig ist, muss
insbesondere ‖K‖ ≥ m2 gelten.

Im Folgenden nennen wir einen 2-universalen (n,m, l)-MAC mit λ = l/m2 kurz einen
(n,m, l, λ)-MAC.
Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schlüsseln genau
dann die Bedingung β = 1

m
erfüllt, wenn er 2-universal ist. Auf Grund von Bemerkung 16

nimmt in diesem Fall auch α den optimalen Wert 1
m

an.
Der nächste Satz zeigt eine einfache Konstruktionsmöglichkeit von 2-universalen MACs
mit dem Parameterwert λ = 1.

Satz 28. Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax+ b mod p.

Dann ist (X, Y,K,H) mit X = Y = Zp und K = Zp × Zp ein (p, p, p2, 1)-MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Ein Schlüssel (a, b) gehört genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ax+ b ≡p y,

ax′ + b ≡p y′

erfüllt. Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y′ − y)(x′ − x)−1 mod p,
b = y − x(y′ − y)(x′ − x)−1 mod p

zutrifft, folgt ‖K(x′, y′, x, y)‖ = 1. �

Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht die Kompressions-
eigenschaft. Zwar lässt sich n noch geringfügig von p auf p+ 1 (und somit der Quotient
n/m von 1 auf p+1

p
) vergrößern, ohne K und Y zu verändern (siehe Übungen). Wie der

nächste Satz zeigt, lässt sich eine stärkere Kompression mit dem Parameterwert λ = 1
jedoch nicht realisieren.

Satz 29. Für einen (n,m, l, 1)-MAC gilt

n ≤ m+ 1

und somit l = m2 ≥ (n− 1)2 sowie n/m ≤ m+1
m

(≈ 1).

Beweis. O.B.d.A. sei K = {1, . . . , l} und Y = {1, . . . ,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung π : Y → Y der MAC-Werte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC führt. Also können wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthält.
Da A 2-universal ist, gilt:
• In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor.
• Jede Spalte j enthält eine Eins in Zeile 1 und m− 1 Einsen in den übrigen Zeilen.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m− 1) Einsen vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m− 1) bzw. n ≤ m+ 1 impliziert. �

Der nächste Satz liefert 2-universale MACs mit beliebig großem Kompressionsfaktor. Für
den Beweis benötigen wir das folgende Lemma.

Lemma 30. Sei A eine (k × `)-Matrix über einem endlichen Körper F, deren k Zeilen
linear unabhängig sind. Dann besitzt das lineare Gleichungssystem

Ax = y

für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`.

Beweis. Siehe Übungen. �

Satz 31. Sei p prim und für x = (x1, . . . , xd) ∈ {0, 1}d und k = (k1, . . . , kd) ∈ Zdp sei

hk(x) = kx =
d∑
i=1

kixi mod p.

Dann ist (X, Y,K,H) mit X = {0, 1}d−{0d}, Y = Zp und K = Zdp ein (2d−1, p, pd, pd−2)-
MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Es gilt

k ∈ K(x, y, x′, y′) ⇔ hk(x) = y ∧ hk(x′) = y′

⇔ k · x = y ∧ k · x′ = y′.

Fassen wir x = x1 · · ·xd und x′ = x′1 · · ·x′d zu einer Matrix A zusammen, so ist dies
äquivalent zu (

x1 · · · xd
x′1 · · · x′d

)
·


k1...
kd

 =
(
y

y′

)
.

Da die beiden Zeilen von A verschieden und damit linear unabhängig sind, folgt mit
obigem Lemma, dass genau ‖K(x, y, x′, y′)‖ = pd−2 Schlüssel k = (k1, . . . , kd) mit dieser
Eigenschaft existieren. �

Bemerkung 32. Obige Konstruktion liefert einen λ-Wert von ‖K‖
m2 = pd−2. Durch

Erweiterung von X auf eine geeignete Teilmenge X ′ ⊆ Zdp lässt sich der Textraum von
2d − 1 auf pd−1

p−1 vergrößern (siehe Übungen). Dies führt auf einen beliebig groß wählbaren
Kompressionsfaktor n

m
= pd−1

p(p−1) ≈ pd−2 bei einem λ-Wert von λ = pd−2. Wie der nächste
Satz zeigt, lässt sich dies nicht mit einem kleineren λ-Wert (bzw. nicht mit einer kleineren
Schlüssellänge) erreichen.

Im Beweis des nächsten Satzes benötigen wir folgendes Lemma.

28 1 Kryptografische Hashverfahren

Lemma 33. Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2
≤ m

∑m
i=1 b

2
i .

Beweis. Da die Funktion x 7→ x2 konvex ist, folgt mit der Jensenschen Ungleichung
(∑ bi/m)2 ≤ ∑ b2

i /m und somit(∑
bi
)2

= m2
(∑

bi/m
)2

︸ ︷︷ ︸
≤
∑

b2
i /m

≤ m
∑

b2
i .

�

Satz 34. Für jeden (n,m, l, λ)-MAC gilt

λm2︸ ︷︷ ︸
=l

≥ n(m− 1) + 1

und somit n/m ≤ (λ− 1/m2) m
m−1(≈ λ).

Beweis. O.B.d.A. können wir wieder K = {k1, . . . , kl} und Y = {1, . . . ,m} annehmen,
und dass die erste Zeile der Authentikationsmatrix nur aus Einsen besteht. Für jede Zeile
i = 1, . . . , l bezeichne ei die Anzahl der Einsen in dieser Zeile (also e1 = n). Da in jeder
Spalte jeder MAC-Wert genau λm-mal vorkommt, gilt

l∑
i=1

ei = λnm und
l∑

i=2
ei = λnm− n = n(λm− 1).

Sei z = ∑l
i=2 zi, wobei zi die Anzahl von Spaltenpaaren (j, j′) mit j 6= j′ und hki

(xj) =
hki

(xj′) = 1 ist. Dann folgt

z =
l∑

i=2
zi =

l∑
i=2

ei(ei − 1) =
l∑

i=2
e2
i −

l∑
i=2

ei =
l∑

i=2
e2
i − n(λm− 1).

Mit obigem Lemma ergibt sich

l∑
i=2

e2
i ≥

(∑l
i=2 ei

)2

l − 1 = (n(λm− 1))2

l − 1 .

Da andererseits in jedem Spaltenpaar das MAC-Wertepaar (1, 1) in genau λ Zeilen
vorkommt (genauer: einmal in Zeile 1 und (λ− 1)-mal in den Zeilen i = 2, . . . , l), und da
n(n− 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z = (λ− 1)n(n− 1).

Somit erhalten wir

(λ− 1)n(n− 1) = z =
l∑

i=2
e2
i − n(λm− 1) ≥ (n(λm− 1))2

l − 1 − n(λm− 1)

⇒ ((λ− 1)n(n− 1) + n(λm− 1))(λm2 − 1) ≥ (n(λm− 1))2

⇒ (λn− n− λ+ λm)(λm2 − 1) ≥ n(λm− 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn− λ+ λm− 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m− 1)2 +m− 1)
⇒ λm2 ≥ n(m− 1) + 1.

�

1.3 Nachrichten-Authentikationscodes (MACs) 29

1.3.3 CBC-MACs

Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C,K,E,D) ein symmetrisches Kryptosystem mit M = C = {0, 1}t. Zudem sei
IV := 0t und sei k ∈ K ein geheimer Schlüssel. Sei y eine Funktion für den Preprocessing-
Schritt, die für jeden Text x ∈ {0, 1}∗ einen nichtleeren Bitstring y(x) ∈ ⋃n≥1{0, 1}tn
liefert, dessen Länge durch t teilbar ist.
Berechnung von hk(x):

1 y := y(x) = y1 . . . yn, n ≥ 1, yi ∈ {0, 1}t
2 z0 := IV
3 for i = 1 to n do
4 zi := E(k, zi−1 ⊕ yi)
5 output hk(x) = zn

Die MAC-Wertlänge beträgt also t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so lässt sich leicht ein Angriff mit 2 adaptiven Fragen ausführen. Kennt der Angreifer
die MAC-Werte z = hk(x) und z′ = hk(x′) für die Texte x = x1 · · ·xn und x′ =
(xn+1 ⊕ IV ⊕ z)xn+2 · · ·xn+m, wobei |xi| = t für i = 1, . . . , n+m ist, so muss auch der
Text x′′ = x1 · · ·xn+m den MAC-Wert hk(x′′) = z′ haben.
Diesen Angriff kann man zwar ausschließen, indem man eine feste Länge nt für die Texte
vorschreibt, wodurch die Anwendbarkeit des CBC-MACs allerdings eingeschränkt wird.
Der folgende Geburtstagsangriff ist auch bei fester Textlänge möglich.

Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermöglicht es, mit q + 1 MAC-Fragen (wobei q ≈ 1,17 · 2 t
2) den MAC-

Wert hk(x) für einen zuvor nicht erfragten Text x zu finden, wobei x = x1 . . . xn ∈
{0, 1}tn abgesehen vom ersten t-Bitblock x1 ∈ {0, 1}t beliebig wählbar ist. Hierzu wählt
der Angreifer zunächst n − 2 beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und q ≈ 1,17 · 2 t

2

paarweise verschiedene Blöcke x1
1, . . . , x

q
1 ∈ {0, 1}t. Anschließend wählt er zufällig q

weitere Blöcke x1
2, . . . , x

q
2 ∈ {0, 1}t und erfragt die MAC-Werte zi = hk(xi) für die Texte

xi = xi1x
i
2x3 · · ·xn, i = 1, . . . , q.

Wegen xi1 6= xj1 für i 6= j sind auch die Texte x1, . . . , xq paarweise verschieden. Seien
z1

1 , . . . , z
q
1 die nach der ersten Iteration des CBC-MACs berechneten Kryptotexte zi1 =

Ek(IV ⊕ xi1). Da die Blöcke xi2 zufällig gewählt werden, sind auch die Eingangsblöcke
zi1 ⊕ xi2 für die 2. Iteration zufällig, d.h. es gilt

Pr[∃i 6= j : zi1 ⊕ xi2 = zj1 ⊕ x
j
2] = Pr[∃i 6= j : xi2 = xj2] ≈

1
2 .

Da die Gleichheit der Eingangsblöcke zi1 ⊕ xi2 und zj1 ⊕ xj2 für die 2. Iteration mit der
Gleichheit der Ausgangsblöcke zin und zjn der n-ten Iteration und damit mit der Gleichheit
der zugehörigen MAC-Werte zi und zj äquivalent ist, kann der Angreifer das Indexpaar
(i, j) mit zi1 ⊕ xi2 = zj1 ⊕ x

j
2 auch leicht finden, sofern es existiert (was wir im Folgenden

annehmen).
Da xi1 6= xj1 gilt, sind auch die Blöcke zi1 = Ek(IV ⊕xi1) und zj1 = Ek(IV ⊕xj1) verschieden.
Wegen zi1⊕xi2 = zj1⊕x

j
2 sind dann auch die beiden Blöcke xi2 und xj2 verschieden. O.B.d.A.

30 1 Kryptografische Hashverfahren

gelte xi2 6= x2 (sonst vertauschen wir die Indizes i und j). Nun erfragt der Angreifer für u =
xi2⊕x2 ∈ {0, 1}t−{0t} den MAC-Wert z̃j = hk(x̃j) für den Text x̃j = xj1(xj2⊕u)x3 · · ·xn,
welcher zugleich MAC-Wert des Textes x̃i = xi1(xi2 ⊕ u)x3 · · ·xn = xi1x2x3 · · ·xn ist, den
er zuvor nicht erfragt hat.

Definition 35. Sei 0 ≤ ε ≤ 1 und sei q ∈ N. Ein (ε, q)-Fälscher für einen MAC H ist
ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xq stellt und aus den Antworten
zi = hk(xi) mit Wahrscheinlichkeit mindestens ε (bei zufällig gewähltem Schlüssel k) ein
Paar (x, z) berechnet mit x 6∈ {x1, . . . , xq} und hk(x) = z.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text xi darf von den MAC-Werten
der Texte x1, . . . , xi−1 abhängen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Fälschungen (d.h. der Angreifer kann den MAC-Wert für einen Text
seiner Wahl generieren) und existientiellen Fälschungen (d.h. der Angreifer kann den
MAC-Wert für irgendeinen Text x 6∈ {x1, . . . , xq} generieren, auf dessen Wahl er keinen
Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC führt auf
einen (1

2 , q + 1)-Fälscher für q ≈ 1,17 · 2 t
2 . Dabei ist nur die letzte MAC-Frage adaptiv

und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. /

Eine Variante dieses Angriffs ist auch bei Verwendung einer Preprocessing-Funktion
möglich. Meist wird hierzu die Funktion y : x 7→ y(x) = y0 . . . yn mit y0 = bint(|x|)
und y1 . . . yn = x0nt−|x| verwendet, wobei n = d|x|/te ist. Der erste Block y0 = bint(|x|)
kodiert also die Länge von x als Binärzahl, die mit führenden Nullen auf die Länge t
erweitert wird, und der letzte Block wird ebenfalls mit Nullen auf die Länge t aufgefüllt.

1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum eines MAC den Werteraum eines anderen MAC enthält, lassen sich
diese leicht komponieren (Nested-MAC oder NMAC).

Definition 37. Seien H1 = (X, Y,K1, F) mit F = {fk | k ∈ K1} und H2 = (Y, Z,K2, G)
mit G = {gk | k ∈ K2} MACs. Dann ist H1 ◦ H2 = (X,Z,K,H) die Komposition von
H1 und H2, wobei K = K1 ×K2 und H = {gk2 ◦ fk1 | (k1, k2) ∈ K} ist.

Beispiel 38. Wählt man für H2 einen MAC mit fester Textlänge und für H1 eine
(schlüssellose) Hashfunktion (etwa SHA-1), so erhält man einen so genannten HMAC
(Hash-MAC). /

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schlüsseln komponiert werden, wobei jedoch beidesmal
derselbe Schlüssel benutzt wird. Seien

ipad = 36 . . . 36︸ ︷︷ ︸
64mal

und opad = 5C . . . 5C︸ ︷︷ ︸
64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:

HMACk(x) = SHA-1((k ⊕ opad)SHA-1((k ⊕ ipad)x)).

Hierbei fungiert die Funktion fk(x) = SHA-1((k⊕ ipad)x) als Hashfunktion mit Schlüssel,
die beliebig lange Texte hasht, und der MAC gk(y) = SHA-1((k ⊕ opad)y) wird nur

1.3 Nachrichten-Authentikationscodes (MACs) 31

auf Bitstrings der Länge 512 angewendet. Wie der folgende Satz zeigt, genügt es, wenn
fk kollisionsresistent und gk berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 39. Ein (ε, q)-Kollisionsangreifer für einen MAC H = (X, Y,K,H) ist ein
probabilistischer Algorithmus A, der q Fragen x1, . . . , xn stellt und aus den Antworten
yi = hk(xi) mit Wahrscheinlichkeit mindestens ε ein Paar (x, x′) berechnet mit hk(x) =
hk(x′), wobei k der dem Angreifer unbekannte (und zufällig gewählte) Schlüssel ist.

Da der Angreifer den Schlüssel k nicht kennt, ist ein Kollisionsangriff gegen einen
MAC H meist schwieriger zu realisieren als ein Kollisionsangriff gegen eine schlüssellose
Hashfunktion. Andererseits ist die Kenntnis des Schlüssels bei einem Geburtstagsangriff
nicht von Vorteil.

Satz 40. Seien H1 = (X, Y,K1, F), H2 = (Y, Z,K2, G) MACs. Falls für H1 kein
adaptiver (ε1, q+1)-Kollisionsangriff und für H2 kein adaptiver (ε2, q)-Fälscher existieren,
dann existiert auch für H = H1 ◦ H2 kein adaptiver (ε1 + ε2, q)-Fälscher.

Beweis. Sei A ein adaptiver (ε, q)-Fälscher für H. Seien x1, . . . , xq die Fragen, die A an
sein Orakel gk2 ◦ fk1 stellt, und seien zi = gk2(fk1(xi)) die erhaltenen Antworten. Zudem
sei (x, z) die Ausgabe von A. Wir müssen zeigen, dass die Erfolgswk von A

Pr[x 6∈ {x1, . . . , xq}︸ ︷︷ ︸
B

∧ gk2(fk1(x)) = z︸ ︷︷ ︸
C

] < ε1 + ε2

ist, wobei (k1, k2) zufällig aus K = K1 ×K2 gewählt wird.
Behauptung 41. Pr[x 6∈ {x1, . . . , xq}︸ ︷︷ ︸

B

∧ fk1(x) ∈ {fk1(x1), . . . , fk1(xq)}︸ ︷︷ ︸
D

] < ε1.

Hierzu betrachten wir den adaptiven Kollisionsangreifer A′ gegen H1, der zufällig einen
Schlüssel k2 ∈ K2 wählt und A wie folgt simuliert.

Für jede Frage xi von A erfragt A′ den MAC-Wert yi = fk1(xi) und gibt an A
die Antwort zi = gk2(yi) zurück. Sobald A ein Paar (x, z) ausgibt, erfragt A′
den MAC-Wert y = fk1(x) und gibt im Fall x 6∈ {x1, . . . , xq}∧y ∈ {y1, . . . , yq}
das Paar (x, xi) für einen beliebigen Index i mit y = yi aus.

Da A′ genau dann Erfolg hat, wenn das Ereignis B ∩D eintritt, folgt Behauptung 89.
Behauptung 42. Pr[fk1(x) 6∈ {fk1(x1), . . . , fk1(xq)}︸ ︷︷ ︸

D

∧ gk2(fk1(x)) = z︸ ︷︷ ︸
C

] < ε2.

Hierzu betrachten wir den adaptiven Fälscher A′′ gegen H2, der zufällig einen Schlüssel
k1 ∈ K1 wählt und A wie folgt simuliert.

A′′ gibt bei jeder Anfrage xi von A die Antwort des Orakels gk2 auf die Frage
yi = fk1(xi) zurück und sobald A ein Paar (x, z) ausgibt, gibt A′′ das Paar
(fk1(x), z) aus.

Da A′′ genau dann Erfolg hat, wenn das Ereignis D ∩ C eintritt, folgt Behauptung 42.
Damit folgt

Pr(B ∩ C) = Pr(B ∩D ∩ C)︸ ︷︷ ︸
<ε2

+Pr(B ∩D ∩ C)︸ ︷︷ ︸
<ε1

< ε1 + ε2.

�

32

2 Elliptische Kurven

2.1 Elliptische Kurven über den reellen Zahlen

Definition 43. Seien a, b ∈ R. Eine elliptische Kurve E über R enthält alle Lösungen
(x, y) ∈ R2 der Gleichung y2 = x3 + ax + b und zusätzlich den Punkt O (Punkt im
Unendlichen; siehe Übungen). Im Fall 4a3 + 27b2 = 0 heißt E singulär, sonst nicht-
singulär.

Beispiel 44. Betrachte die durch y2 = x3 − 4x definierte elliptische Kurve E.

x

y

Punkte: (−2, 0), (0, 0), (2, 0), (−1,
√

3), (−1,−
√

3), (3,
√

15), (3,−
√

15).

Auf den nicht-singulären Punkten von E lässt sich eine additive Gruppenoperation
+ definieren. Die Idee dabei ist, dass die Addition von 3 beliebigen Punkten von E,
die auf einer Geraden liegen, das neutrale Element O ergeben soll. Hierbei werden
Tangentialpunkte doppelt und Wendepunkte dreifach gezählt und den parallel zur y-
Achse verlaufenden Geraden wird zusätzlich noch der Punkt O hinzugerechnet (d.h. alle
Geraden, die parallel zur y-Achse verlaufen, schneiden sich im Punkt O) und es werden
nur solche Geraden g betrachtet, auf denen bei dieser Zählweise 3 Punkte von E liegen.
Um nun die Summe R = P + Q von zwei gegebenen Punkten P = {x1, y1} und
Q = {x2, y2} zu berechnen, bestimmen wir zuerst die Gerade g, auf der P und Q liegen,
wobei g im Fall P = Q die Tangente an E im Punkt P ist.
Falls g parallel zur y-Achse verläuft, ist x1 = x2 und y1 = −y2 (also Q = (x1,−y1)). Da in
diesem Fall zudem der Punkt O auf g liegt, erhalten wir die Gleichung P +Q(+O) = O
bzw. −P = Q = (x1,−y1).
Falls g nicht parallel zur y-Achse verläuft, können wir P +Q wie folgt berechnen.
P 6= Q: In diesem Fall gilt x1 6= x2. Zudem ist g = {(x, y) ∈ R2|y = λx + µ} mit

λ = y2−y1
x2−x1

und µ = y1 − λx1 = y2 − λx2. Wir zeigen zuerst, dass es einen Punkt
R = (x3, y3) ∈ R2 gibt mit

E ∩ g = {P,Q,R}.

Für alle (x, y) ∈ E ∩ g gilt

(λx+ µ)2 = x3 + ax+ b

2.1 Elliptische Kurven über den reellen Zahlen 33

; x3 − λ2x2 + (a− 2µλ)x+ b− µ2︸ ︷︷ ︸
p(x)

= 0.

p lässt sich in C vollständig in Linearfaktoren zerlegen,

p(x) = (x− x1)(x− x2)(x− x3).

Da sich der Koeffizient −λ2 von x2 aus der linearen Zerlegung von p(x) zu

−λ2 = −x1 − x2 − x3

berechnet, muss x3 = λ2 − x1 − x2 sein. Da R auch auf g liegt, ist zudem y3 =
λ(x3 − x1) + y1.
Folglich ist P +Q = −R = (x3,−y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1).

P = Q: In diesem Fall gilt x1 = x2 und y1 = y2 6= 0. Sei g die Tangente durch P an E.
Wir zeigen, dass es einen Punkt R = (x3, y3) ∈ R2 gibt mit

g ∩ E = {P,R}.

Die Steigung λ von g erhalten wir durch implizites Differenzieren:

λ = dy

dx
=
−∂F

∂x
(x1, y1)

∂F
∂y

(x1, y1)
= 3x2

1 + a

2y1
,

wobei F (x, y) = y2 − x3 − ax− b ist. Zur Begründung sei

T (x, y) = c(x− x1) + d(y − y1)

die Tangentialebene an die Fläche F (x, y) im Punkt (x1, y1, F (x1, y1)) = (x1, y1, 0).
Dann gilt

c = ∂F

∂x
(x1, y1) = −3x2

1 − a

und
d = ∂F

∂y
(x1, y1) = 2y1.

Da die Tangente g sowohl in der Tangentialebene T als auch in der x, y-Ebene
verläuft, folgt

(x, y) ∈ g ⇔ T (x, y) = 0
⇔ y − y1 = − c

d
(x− x1),

woraus sich λ = − c
d
ergibt. Genau wie im 1. Fall erhalten wir nun P +Q = P +P =

2P = −R = (x3,−y3)) = (λ2 − x1 − x2, λ(x1 − x3)− y1) mit λ = 3x2
1+a

2y1
.

Satz 45. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.
• + ist abgeschlossen auf E.
• + ist kommutativ
• Jeder Punkt hat ein Inverses −P . P ist selbstinvers, falls P = −P ist. Dies gilt
für P = O und alle Kurvenpunkte der Form P = (x, 0).
• + ist assoziativ (ohne Beweis!).

34 2 Elliptische Kurven

2.2 Elliptische Kurven über endlichen Körpern

Definition 46. Sei Fq ein endlicher Körper mit q = pn für eine Primzahl p > 3. Für
a, b ∈ Fq mit 4a3 + 27b2 6= 0 heißt

E = {(x, y) ∈ Fq | y2 = x3 + ax+ b} ∪ {O}

elliptische Kurve über Fq. Die Gruppenoperation + ist auf E wie folgt definiert.
• O ist neutrales Element, d.h. ∀P ∈ E − {O} : P +O = O + P = P .
• Das Inverse zu P = (x, y) ∈ E \ {O} ist −P = P = (x,−y).
• Für P,Q ∈ E \ {O} ist

P +Q =

O, P = Q

R, sonst

wobei sich R = (x3, y3) wie folgt aus P = (x1, y1) und Q = (x2, y2) berechnet:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

wobei λ =

(y2 − y1)(x2 − x1)−1, P 6= Q

(3x2
1 + a)(2y1)−1, P = Q

Satz 47. (E,O,+) bildet eine abelsche Gruppe (ohne Beweis).

Beispiel 48. Sei E definiert durch y2 = x3 + x + 6 über Zp, p = 11. Zur Erinnerung:
Im Fall p ≡4 3 lassen sich für z ∈ QRp die Wurzeln y durch ±z p+1

4 mod p bestimmen.

x 0 1 2 3 4 5 6 7 8 9 10
z = x3 + x+ 6 6 8 5 3 8 4 8 4 9 7 4
y = ±

√
z mod 11 − − 4; 7 5; 6 − 2; 9 − 2; 9 3; 8 − 2; 9

Da die Gruppe (E,+,O) die Größe ‖E‖ = 13 hat und 13 prim ist, ist die Ordnung
jedes Elements der Kurve 1 oder 13. Da nur das neutrale Element O die Ordnung
1 haben kann, haben alle anderen Elemente P ∈ E − {O} die Ordnung 13 und sind
daher Erzeuger der Gruppe. Folglich ist (E,+,O) zyklisch und somit isomorph zu Z13:
(E,+,O) ∼= (Z13,+, 0).
Berechnung von 2g = (2, 7) + (2, 7) = (5, 2):

λ = (3 · 22 + 1)(2 · 7)−1 mod 11 = 2 · 3−1 = 2 · 4 mod 11 = 8
x3 = 82 − 2− 2 mod 11 = 5
y3 = 8(2− 5)− 7 mod 11 = 2

Berechnung von 3g = 2g + g = (5, 2) + (2, 7) = (8, 3):

λ = (7− 2)(2− 5)−1 mod 11 = 5 · (−3)−1 mod 11 = 2
x3 = 22 − 5− 2 mod 11 = 8
y3 = 2 · (5− 8)− 2 mod 11 = 3

k 1 2 3 4 5 6 7 8 9 10 11 12 13
k · g (2, 7) (5, 2) (8, 3) (10, 2) (3, 6) (7, 9) (7, 2) (3, 5) (10, 9) (8, 8) (5, 9) (2, 4) O /

2.2 Elliptische Kurven über endlichen Körpern 35

Satz 49. (Hasse) Für die Anzahl ‖E‖ von Punkten einer elliptischen Kurve über einem
endlichen Körper Fq gilt

q + 1− 2√q ≤ ‖E‖ ≤ q + 1 + 2√q (ohne Beweis).

Bemerkung 50. Es gibt einen effizienten Algorithmus (von Schoof) mit Zeitkomplexität
O(log8 q), der ‖E‖ bei Eingabe von a, b und q berechnet.

Satz 51. Sei E eine elliptische Kurve über Fq. Dann ist (E,O,+) isomorph zu
(Zn1 , 0,+)× (Zn2 , 0,+), wobei n1, n2 ∈ N+ sind und n1 Teiler von n2 und von q − 1 ist
(ohne Beweis).

Bemerkung 52. Falls n1 ein Teiler von n2 ist, ist die (additive) Gruppe Zn1 × Zn2

genau dann zyklisch, wenn n1 = 1 (und somit Zn1 × Zn2
∼= Zn2) ist. Eine hinreichende

Bedingung hierfür ist, dass ‖E‖ quadratfrei (also das Produkt von paarweise verschiedenen
Primzahlen) ist.
Im Fall n1 > 1 ist E dagegen nicht zyklisch, hat aber eine nicht-triviale zyklische
Untergruppe, die zu Zn2 isomorph ist und für kryptografische Anwendungen benutzt
werden kann.

Kompakte Darstellung von Punkten auf E

Für den Fall, dass sich Quadratwurzeln effizient in Fq berechnen lassen, gibt es eine
einfache Möglichkeit, Punkte auf einer elliptischen Kurve über Fq kompakter darzustellen.
Ist zum Beispiel q = p prim mit p ≡4 3, so lassen sich die Wurzeln ±

√
z mod p von

z ∈ QRp = {x2 mod p | x ∈ Z∗p} (QR steht für quadratischer Rest) effizient mittels
±
√
z = ±z(p+1)/4 mod p berechnen.

Folgende Funktion liefert dann eine kompakte Darstellung.
PointCompress: E − {O} → Zp × Z2 mit (x, y) 7→ (x, y mod 2).
Für die Rekonstruktion können wir folgende Prozedur benutzen. Sei E eine elliptische
Kurve y2 = x3 + ax+ b über Fp und sei p(x) = x3 + ax+ b.

Prozedur PointDeCompress(x, b)
1 z := p(x) mod p
2 y := z(p+1)/4 mod p
3 if y2 ≡p z then
4 if y 6≡2 b then y := p− y
5 output(x, y)
6 else output(‘‘error’’)

Effiziente Berechnung von Vielfachen von Punkten auf E

In Z∗m berechnen wir Potenzen ae mod m durch ‘wiederholtes Quadieren und Multi-
plizieren’. Ähnlich können wir in einer elliptischen Kurve E die Vielfachen mP eines
Punktes P durch ‘wiederholtes Verdoppeln und Addieren’ berechnen. Da in E additive
Inverse sehr leicht zu berechnen sind, kann mP durch ‘wiederholtes Verdoppeln, Addieren
und Subtrahieren’ noch effizienter berechnet werden. Hierzu repräsentieren wir m in
NAF-Darstellung (Non Adjacent Form).

36 2 Elliptische Kurven

Definition 53. (cl−1, . . . , c0) ∈ {−1, 0, 1}l heißt SBR-Darstellung (Signed Binary
Representation) einer Zahl c ∈ Z, falls

l−1∑
i=0

ci2i = c

ist. Ist von je zwei benachbarten Ziffern ci mindestens eine 0, so heißt (cl−1, . . . , c0)
NAF-Darstellung von c.

Beispiel 54. Sowohl (0, 1, 0, 1, 1) als auch (1, 0,−1, 0,−1) sind SBR-Darstellungen von
c = 1 + 2 + 8 = 11 = −1− 4 + 16. /

Satz 55. Jede Zahl c ∈ Z hat eine eindeutige NAF-Darstellung (Beweis siehe Übungen).

Berechnung einer NAF-Darstellung aus der Binärdarstellung: Ersetze jeden Teilstring
der Form (0, 1, . . . , 1) von rechts beginnend durch den Teilstring (1, 0, . . . , 0,−1).

Beispiel 56. Um die NAF-Darstellung von c = 79 zu berechnen, bestimmen wir zuerst
die Binärdarstellung von c. Es gilt 7910 = 1011112. Mit obiger Transformationsregel ergibt
sich

(0, 1, 0, 1, 1, 1, 1︸ ︷︷ ︸)
; (0, 1, 1︸ ︷︷ ︸, 0, 0, 0,−1)
; (1, 0,−1, 0, 0, 0,−1) /

Zur effizienten Berechnung von Q = cP benutzen wir das Horner-Schema

c =
s∑
j=0

cj2j = (. . . (. . . (cs2 + cs−1)2 + · · ·+ ci)︸ ︷︷ ︸
di

2 + · · ·+ c1)2 + c0,

welches auf das folgende iterative Schema zur Berechnung der Punkte Qi = diP =∑s
j=i cj2j−iP führt:

Qi =

O, i = s+ 1
2Qi+1 + ciP, i = s, . . . , 0.

Damit erhalten wir folgenden Algorithmus zur Berechnung von Q = Q0 = cP :

Prozedur DoubleAddSub(P, cs, . . . , c0)
1 Q := O
2 for i := s downto 0 do
3 Q := 2Q+ ciP
4 output(Q)

Da eine (s+1)-Bitzahl im Durchschnitt s/2 Nullen in Binärdarstellung und (2/3)s Nullen
in NAF-Darstellung enthält (siehe Übungen), benötigt DoubleAddSub bei Verwendung
von NAF ca. (4/3)s Additionen/Subtraktionen im Vergleich zu ca. (3/2)s Additionen im
Binärfall. Dies entspricht einer Beschleunigung um ca. 11 Prozent.

37

3 Digitale Signaturverfahren

Handschriftliche Signaturen

• Die durch die Unterschrift gekennzeichnete Person hat überprüfbar die Unterschrift
geleistet.
• Die Unterschrift ist nicht auf ein anderes Dokument übertragbar, ohne ihre Gültig-

keit zu verlieren.
• Das signierte Dokument kann nachträglich nicht unbemerkt verändert werden.

Eine direkte Übertragung dieser Eigenschaften in die digitale Welt ist nicht möglich.

Lösung: Die digitale Signatur wird nicht physikalisch, sondern logisch (inhaltlich) an ein
elektronisches Dokument bzw. Text gebunden und die Fähigkeit, einen individuellen
Schriftzug auszuführen, wird durch geheimes Wissen ersetzt.

Definition 57. Ein digitales Signaturverfahren besteht aus:
• einer Menge X von Texten,
• einer endlichen Menge Y von Signaturen,
• einem Schlüsselraum K,
• einer Menge S ⊆ K ×K von Schlüsselpaaren (k̂, k), bestehend aus einem Signier-
schlüssel k̂ und einem Verifikationsschlüssel k,
• einem Signieralgorithmus sig : K ×X → Y und
• einem Verifikationsalgorithmus ver : K × X × Y → {0, 1}, so dass
ver(k, x, y) = 1 für alle Paare (k̂, k) ∈ S und (x, y) ∈ X × Y mit y = sig(k̂, x) gilt.

Im Fall ver(k, x, y) = 1 heißt y gültige Signatur für den Text x (unter k), andernfalls
ungültig.

Ein wichtiger Unterschied zu MACs besteht darin, dass digitale Signaturverfahren asym-
metrisch sind. Aufgrund dieser Asymmetrie kann Bob nämlich auch einem Dritten
gegenüber nachweisen, dass eine von Alice erzeugte Signatur y tatsächlich von Alice
stammt. Bei Verwendung eines MACs zur Authentifikation einer Nachricht x könnte Bob
die Nachricht manipuliert und den MAC-Wert auch selbst erzeugt haben, weshalb Alice
ihre Urheberschaft von x erfolgreich abstreiten kann.
Ein weiterer Vorteil von digitalen Signaturen gegenüber MACs ist, dass eine von Alice
geleistete Signatur von allen verifizierbar ist, sofern sie den öffentlichen Verifikations-
schlüssel von Alice kennen. Um bspw. die Authentizität eines Software-Updates x zu
gewährleisten, kann eine SW-Firma das Update x zusammen mit ihrer Signatur y für
x verschicken. Bei Verwendung eines MACs müsste die SW-Firma dagegen mit jedem
einzelnen Kunden Ki einen symmetrischen Schlüssel ki vereinbaren und den zugehörigen
MAC-Wert yi = hki

(x) versenden.

38 3 Digitale Signaturverfahren

Klassifikation von Angriffen gegen Signaturverfahren

Angriff bei bekanntem Verifikationsschlüssel (key-only attack): Dem Angreifer ist
nur der öffentliche Verifikationsschlüssel k bekannt und er versucht, ein Paar
(x, y) mit ver(k, x, y) = 1 zu finden. Jedes solche Paar, das nicht von Alice unter
Verwendung des geheimen Signierschlüssels erzeugt wurde, wird als Fälschung
bezeichnet.

Angriff bei bekannter Signatur (known signature attack): Der Angreifer kennt ne-
ben k die Signaturen yi = sig(k̂, xi) für eine Reihe von Texten x1, . . . , xq, auf
deren Auswahl er keinen Einfluss hat, und versucht, eine Fälschung (x, y) mit
x 6∈ {x1, . . . , xq} zu finden.

Angriff bei frei wählbaren Texten (chosen document attack): Der Angreifer kann
die Texte x1, . . . , xq selbst wählen, erhält die Signaturen aber erst, nachdem er alle
Texte vorgelegt hat.

Angriff bei adaptiv wählbaren Texten: Der Angreifer kann die Wahl des Textes xi+1
von den Signaturen y1, . . . , yi abhängig machen.

Erfolgskriterien für die Fälschung digitaler Signaturen

uneingeschränktes Fälschungsvermögen (total break): Der Angreifer hat einen Weg
gefunden, die Funktion x 7→ sig(k̂, x) bei Kenntnis von k effizient zu berechnen.

selektives Fälschungsvermögen (selective forgery): Der Angreifer kann für Texte sei-
ner Wahl die zugehörigen Signaturen bestimmen (eventuell mit Hilfe des legalen
Unterzeichners).

nichtselektives (existentielles) Fälschungsvermögen: Der Angreifer kann für be-
stimmte Texte x, auf deren Wahl er keinen Einfluss hat, die zugehörige digitale
Signatur bestimmen.

3.1 Das RSA-Signaturverfahren

Beim RSA-Signaturverfahren ist K = {(a, n)|n = pq für Primzahlen p, q und a ∈
Z∗ϕ(n)} und S die Relation S = {(d, n, e, n) ∈ K ×K|de ≡ϕ(n) 1}. Signiert wird mittels
sig(d, n, x) := xd mod n, wobei X = Y = Zn, und die Verifikationsbedingung ist

ver(e, n, x, y) =
{

1, ye ≡n x
0, sonst.

Satz 58. Für alle (d, n, e, n) ∈ S und x, y ∈ Zn gilt:

ver(e, n, x, y) =
{

1, sig(d, n, x) = y,

0, sonst.

Beweis. Folgt direkt aus der Korrektheit des RSA-Kryptosystems. �

Wir betrachten eine Reihe von Angriffen gegen das RSA-Signaturverfahren und überlegen
anschließend, durch welche Maßnahmen sich diese abwehren lassen.
• Es ist nicht schwer, eine nichtselektive Fälschung bei bekanntem Verifikationsschlüs-

sel durchzuführen. Hierzu wählt der Angreifer zu einer beliebigen Signatur y ∈ Y
den Text x = ye mod n.

3.2 Das ElGamal-Signaturverfahren 39

• Zudem ist eine existentielle Fälschung bei bekannten Signaturen möglich, falls
der Angreifer zwei signierte Texte (x1, y1), (x2, y2) mit ver(k, xi, yi) = 1 kennt.
Wegen yei ≡n xi für i = 1, 2 folgt nämlich (y1y2)e ≡n ye1ye2 ≡n x1x2 und somit
ver(k, x1x2 mod n, y1y2 mod n) = 1.
• Weiterhin kann der Angreifer bei frei wählbaren Texten sogar eine selektive Fäl-
schung durchführen. Ist bereits die Signatur für einen beliebigen Text x′ ∈ Z∗n
bekannt und kann sich der Angreifer die Signatur für den Text x′′ = x · x′−1 mod n
beschaffen, so kann er daraus wie oben eine gültige Signatur für den Text x
berechnen.

Diese Angriffe kann man vereiteln, indem man den Text x mit Redundanz versieht (indem
man z.B. anstelle von x den Text xx signiert). Um auch längere Texte effizient signieren
zu können, wird i.a. jedoch eine geeignete Hashfunktion h benutzt und nicht der gesamte
Text x, sondern nur der Hashwert h(x) signiert.

Bei der Signaturerstellung benötigte Eigenschaften einer Hashfunktion h

• Die verwendete Hashfunktion h sollte die Einwegeigenschaft haben, da sonst der
Angreifer zu einem y ∈ Y einen passenden Text x mit h(x) = y bestimmen kann
(zumindest wenn das Signaturverfahren anfällig gegen eine existentielle Fälschung
ist, wie etwa RSA).
• Angenommen der Angreifer kennt bereits ein Paar (x, y) mit ver(k, h(x), y) = 1.

Dann sollte h zumindest schwach kollisionsresistent sein, da sonst der Angreifer ein
x′ mit h(x′) = h(x) berechnen und das Paar (x′, y) bestimmen könnte.
• Falls sich der Angreifer für bestimmte von ihm selbst gewählte Texte x die zugehörige
Signatur y beschaffen kann, so sollte h sogar kollisionsresistent sein. Andernfalls
könnte der Angreifer ein Kollisonspaar (x, x′) für h finden, sich den (unverdächtigen)
Text x signieren lassen und die erhaltene Signatur y für den Text x′ verwenden.

3.2 Das ElGamal-Signaturverfahren

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige asymmetrische
Kryptosystem probabilistisch und beruht wie dieses auf dem diskreten Logarithmus.
Sei p eine große Primzahl und α ein Erzeuger von Z∗p (p und α sind öffentlich). Jeder
Teilnehmer B wählt eine geheime Zahl a ∈ Zp−1 = {0, . . . , p− 2} und gibt β = αa mod p
als Teil seines öffentlichen Verifikationsschlüssels bekannt:
Signierschlüssel: k̂ = (p, α, a),
Verifikationsschlüssel: k = (p, α, β).
Der Textraum ist X = Zp−1 und der Signaturenraum ist Y = Z∗p × Zp−1 \ {0}.
Signaturerstellung: Um einen Text x ∈ X zu signieren, wählt der Signierer zufällig
eine Zahl z ∈ Z∗p−1 und berechnet die Signatur sig(k̂, x, z) = (γ, δ) ∈ Y mit γ = αz mod p
und δ = (x− aγ)z−1 mod p− 1. Falls δ = 0 ist, muss eine neue Zufallszahl z gewählt und
der Vorgang wiederholt werden.
Verifikation: ver(k, x, (γ, δ)) = 1, falls βγγδ ≡p αx ist.

Lemma 59. Eine Signatur (γ, δ) mit ord(γ) = p− 1 erfüllt genau dann die Verifikati-
onsbedingung βγγδ ≡p αx, wenn es ein z ∈ Z∗p−1 mit sig(k̂, x, z) = (γ, δ) gibt.

40 3 Digitale Signaturverfahren

Beweis. Wegen γ ≡ αz mod p ist z durch γ (und γ durch z) eindeutig bestimmt. Weiter ist
βγγδ ≡p αaγαzδ ≡p αaγ+zδ. Da α ein Erzeuger von Z∗p ist, gilt die Kongruenz αaγ+zδ ≡p αx
genau dann, wenn aγ + zδ ≡p−1 x ist, was wiederum mit δ ≡p−1 (x− aγ)z−1 äquivalent
ist. �

Beispiel 60. Sei p = 467, α = 2, a = 127 und β = αa mod p = 2127 mod 467 = 132.
Um den Text x = 100 ∈ Zp−1 = Z466 mit dem Signierschlüssel k̂ = (p, α, a) = (467, 2, 127)
zu signieren, wählt Alice die geheime Zufallszahl z = 213 ∈ Z∗p−1 (; z−1 mod 466 = 431)
und erhält

γ = 2213 mod 467 = 29 und δ = (100− 127 · 29)431 mod 466 = 51,

d.h. sig(k̂, x, z) = (29, 51). Um die Gültigkeit dieser Signatur für den Text x = 100 mit
dem Verifikationsschlüssel k = (p, α, β) = (467, 2, 132) zu prüfen, verifiziert Bob die
Kongruenz

βγγδ ≡p 132292951 ≡p 189 ≡p 2100 ≡p αx

/

Zur Sicherheit des ElGamal-Systems

1. Falls der Angreifer in der Gruppe Z∗p den diskreten Logarithmus von β zur Basis α
bestimmen kann, so kann er den geheimen Schlüssel a = logα β berechnen.

2. Als nächstes betrachten wir verschiedene Szenarien für einen selektiven Angriff bei
bekanntem Verifikationsschlüssel.
a) Der Angreifer wählt zu einem gegebenen Text x zuerst γ und versucht, ein

passendes δ zu finden. Mit αx ≡ βγγδ mod p folgt δ = logγ αxβ−γ. D.h. die
Bestimmung von δ ist eine Instanz des diskreten Logarithmus Problems (kurz:
DLP).

b) Der Angreifer wählt zu einem gegebenen Text x zuerst δ und versucht dann
ein γ mit αx ≡ βγγδ mod p zu finden. Hierfür ist kein effizientes Verfahren
bekannt.

c) Der Angreifer versucht, zu einem gegebenen Text x gleichzeitig passende
Zahlen γ und δ zu finden. Auch hierfür ist kein effizientes Verfahren bekannt.

3. Versucht der Angreifer bei einem nichtselektiven Angriff, zuerst γ und δ zu wählen
und dazu einen passenden Text x zu finden, so muss er den diskreten Logarithmus
x = logα βγγδ bestimmen.

4. Eine existentielle Fälschung lässt sich jedoch wie folgt durchführen (falls keine
Hashfunktion benutzt wird). Der Angreifer wählt beliebige Zahlen u ∈ Zp−1,
v ∈ Z∗p−1 und berechnet γ = αuβv mod p. Dann ist (γ, δ) genau dann eine gültige
Signatur für einen Text x, wenn αx ≡p βγ(αuβv)δ ist. Dies ist wiederum äquivalent
zur Kongruenz αx−uδ ≡p βγ+vδ, die sich im Fall ggT(v, p − 1) = 1 für den Text
x = uδ mod p− 1 mittels δ = −γv−1 mod p− 1 erfüllen lässt. Bei Wahl von v = 1
erhalten wir z.B. die gültige Signatur (γ, δ) = (αuβ mod p,−αuβ mod p − 1) für
den Text x = uδ mod p− 1, wobei u ∈ Zp−1 beliebig gewählt werden kann.

Bemerkung 61. Bei der Benutzung des ElGamal-Signaturverfahrens sind folgende
Punkte zu beachten.

1. Die Zufallszahl z muss geheim gehalten werden.

3.3 Das Schnorr-Signaturverfahren 41

2. Zufallszahlen dürfen nicht mehrfach verwendet werden.

Kennt nämlich der Angreifer zu einer Signatur (x, (γ, δ)) die Zufallszahl z, so kann er
wegen δ ≡p−1 (x− aγ)z−1 im Fall ggT(γ, p− 1) = 1 die geheime Zahl

a = (x− zδ)γ−1 mod (p− 1)

als eindeutige Lösung der Kongruenz γa ≡p−1 x − zδ (∗) berechnen. Ist allgemeiner
ggT (γ, p − 1) = g ≥ 1, so ist g ein Teiler von γ und von p − 1 sowie wegen (∗) auch
von x − zδ. Setzen wir µ := γ/g und λ := (x − zδ)/g, so führt (∗) auf die Kongruenz
µa ≡(p−1)/g λ (∗∗), aus der sich wegen ggT (µ, (p− 1)/g) = 1 folgende g Kandidaten ai
für a gewinnen lassen:

a0 := µ−1λ mod (p− 1)/g und ai := a0 + i(p− 1)/g für i = 1, . . . , g − 1.

Unter a0, . . . , ag−1 lässt sich a durch Prüfen der Bedingung αai ≡p β eindeutig bestimmen.
Sind andererseits (x1, (γ, δ1)) und (x2, (γ, δ2)) mit demselben z generierte Signaturen,
dann folgt wegen βγγδ1 ≡p αx1 und βγγδ2 ≡p αx2 ,

γδ1−δ2 ≡p αx1−x2 ⇒ αz(δ1−δ2) ≡p αx1−x2 ⇒ z(δ1 − δ2) ≡p−1 x1 − x2.

Aus dieser Kongruenz lassen sich d = ggT (δ1− δ2, p− 1) Kandidaten für z gewinnen und
daraus wie oben a berechnen, falls d nicht zu groß ist.

3.3 Das Schnorr-Signaturverfahren

Da die Primzahl p beim ElGamal-Signaturverfahren mindestens eine 512-Bit-Zahl (besser
1024-Bit-Zahl) sein sollte, beträgt die Signaturlänge 1024 bzw 2048 Bit. Folgende Variante
des ElGamal-Signaturverfahrens, die als eine Vorstufe zum DSA betrachtet werden kann,
wurde von Schnorr vorgeschlagen.
Die zugrunde liegende Idee ist folgende: Indem wir für α ein Element der Ordnung q mit
q ≈ 2160 wählen, reduziert sich die Signaturlänge auf 2 · 160 = 320 Bit. Die Berechnungen
werden aber nach wie vor modulo p mit p ≈ 21024 ausgeführt, so dass das Problem des
diskreten Logarithmus zur Basis α in Z∗p hart bleibt.
Sei g ein Erzeuger von Z∗p, wobei p die Bauart p−1 = mq für eine Primzahl q = p−1

m
≈ 2160

hat. Dann ist α = g(p−1)/q ein Element in Z∗p der Ordnung ordp(α) = q (da ord(gi) =
ord(g)

ggT(i,ord(g)) = p−1
ggT((p−1)/q,p−1) = q ist; siehe Übungen). Weiter sei h : {0, 1}∗ → Zq eine

Hashfunktion, die jedem Text x ∈ X = {0, 1}∗ einen Hashwert in Zq zuordnet.

Signierschlüssel: k̂ = (p, q, α, a), a ∈ Zq,
Verifikationsschlüssel: k = (p, α, β), β = αa mod p.
Signaturerstellung: Um einen Text x ∈ X zu signieren, wählt der Signierer zufällig
eine geheime Zahl z ∈ Z∗q und berechnet

sig(k̂, x, z) = (γ, δ),

wobei γ = h(xbin(αz mod p)) und δ = (z + aγ) mod q ist. Der Signaturraum ist also
Y := Zq × Zq.
Verifikation: ver(k, γ, δ) = 1, falls h(xbin(αδβ−γ mod p)) = γ ist.

42 3 Digitale Signaturverfahren

Beispiel 62. Sei q = 101, p = 78q + 1 = 7879, g = 3, α = g(p−1)/q = 378 mod p = 170,
a = 75 und β = αa mod p = 17075 mod 7879 = 4567. Um einen Text x ∈ {0, 1}∗
mit dem Signierschlüssel k̂ = (p, α, a) = (7879, 170, 75) zu signieren, wählt Alice die
geheime Zufallszahl z = 50 ∈ Z∗q und berechnet den Wert αz mod p = 17050 mod 7879 =
2518. Dies führt auf den Hashwert γ = h(xbin(2518)) ∈ Zq. Unter der Annahme, dass
h(xbin(2518)) = 96 ist, erhält Alice wegen

δ = 50 + 75 · 96 mod 101 = 79

die Signatur sig(k̂, x, z) = (96, 79). Um die Gültigkeit dieser Signatur für den Text x mit
dem Verifikationsschlüssel k = (p, α, β) = (7879, 170, 4567) zu prüfen, berechnet Bob die
Zahl

βγγδ ≡p 170794567−96 ≡p 2518
und verifiziert die Gleichheit h(xbin(2518)) = 96. /

3.4 Der Digital Signature Algorithm (DSA)

Der DSA wurde im August 1991 vom National Institute of Standards and Technology
(NIST) für die Verwendung im Digital Signature Standard (DSS) empfohlen. Der DSS
enthält neben dem DSA (ursprünglich der einzige im DSS definierte Algorithmus) als
weitere Algorithmen die RSA-Signatur und ECDSA (siehe unten). Ausgehend vom
ElGamal-Verfahren lässt sich der DSA durch folgende Modifikationen erhalten:

1. δ als Lösung von zδ − aγ ≡p−1 x (d.h. δ = (x+ aγ)z−1) ; Verifikationsbedingung:
αxβγ ≡p γδ (αxαaγ ≡p αz(x+aγ)z−1)

2. Ist x + aγ ∈ Z∗p−1, dann existiert δ−1 = (x + aγ)−1z mod p − 1 ; Verifikation
durch: αxδ−1

βγδ
−1 ≡p γ

3. Sei nun wie bei Schnorr p = mq+1 mit q ≈ 2160 prim und sei α ∈ Z∗p mit ordp(α) = q.
Dann kann bei der Verifikation von αxδ

−1
βγδ

−1 ≡p γ auf der Exponentenebene
modulo q gerechnet werden. Da γ jedoch rechts nicht als Exponent, sondern als
Basiszahl, vorkommt, muss auch die linke Seite modulo q reduziert werden.

Beim DSA hat der Signierschlüssel also die Form k̂ = (p, q, α, a), wobei a ∈ Z∗q ist, und
der zugehörige Verifikationsschlüssel ist k = (p, q, α, β) mit β = αa mod p. Zudem gilt
X = Zq und Y = Zq × Z∗q.
Zu gegebenem x ∈ X wird zufällig eine geheime Zahl z ∈ Z∗p gewählt.

sig(k̂, z, x) = (γ, δ), wobei

γ = (αz mod p) mod q
δ = (x+ aγ)z−1 mod q ∈ Z∗q

Im Fall γ = 0 oder δ = 0 muss ein neues z gewählt werden. Die Verifikationsbedingung
ist

ver(k, x, γ, δ) =

1, (αeβd mod p) mod q = γ,

0, sonst,

wobei e = xδ−1 mod q und d = γδ−1 mod q ist.
Korrektheit: Im Fall sig(k̂, z, x) = (γ, δ) ist

αeβd ≡p αxδ
−1
αaγδ

−1 ≡p αδ
−1(x+aγ) ≡p α(x+aγ)−1z(x+aγ) ≡p αz

3.5 ECDSA (Elliptic Curve DSA) 43

woraus sich
(αeβd mod p) mod q = (αz mod p) mod q = γ

ergibt.

Beispiel 63. q = 101, p = 78q + 1 = 7879, g = 3 (ordp(3) = p− 1)

; α = 378 mod p = 170 hat Ordnung q

Wir wählen a = 75 ∈ Z∗q, d.h. β = αa mod p = 17075 mod p = 4547. Um den Text
x = 22 ∈ Z∗p zu signieren, wählen wir die geheime Zufallszahl z = 50 ∈ Z∗p (; z−1 = 99)
und erhalten dann

γ = (17050 mod 7879) mod 101
= 2518 mod 101
= 94

δ = (22 + 75 · 94) · 99 mod 101
= 97 (; δ−1 = 25)

d.h. sig(p, q, α, z, x) = (94, 97), wobei k̂ = (p, q, α, a)
Um diese Signatur zu prüfen berechnen wir:

e = xδ−1 mod q
= 22 · 25 mod 101
= 45

d = γδ−1 mod q
= 94 · 25 mod 101
= 27

; (αeβd mod p) mod q = (17045454727 mod 7879) mod 101 = 94. /

3.5 ECDSA (Elliptic Curve DSA)

Im Jahr 2000 als FIPS 186-2 als Standard deklariert.
Sei E eine elliptische Kurve über einem endlichen Körper Fpn . Sei A ∈ E ein Punkt
der Ordnung q (q prim), so dass das Diskrete-Logarithmus-Problem zur Basis A in E
schwierig ist. Zudem sei h : {0, 1}∗ → Zq eine kryptografische Hashfunktion.

Textraum: X = {0, 1}∗,
Signaturraum: Y = Z∗q × Z∗q,
Signierschlüssel: k̂ = (E, q, A,m), m ∈ Z∗q,
Verifikationsschlüssel: k = (E, q, A,B), wobei B = m · A.
Signaturerstellung: Um einen Text x ∈ X zu signieren, wählt der Signierer zufällig
eine geheime Zahl z ∈ Z∗q und berechnet

sig(k̂, x, z) = (γ, δ),

44 3 Digitale Signaturverfahren

wobei

(u, v) := zA

γ := u mod q
δ := (h(x) +mγ)z−1 mod q

Hierbei wird u als eine Zahl in {0, . . . , pn − 1} interpretiert. Falls γ = 0 oder δ = 0 ist,
muss eine neue Zufallszahl z gewählt und der Vorgang wiederholt werden.
Verifikation: ver(k, x, γ, δ) = 1, falls u mod q = γ ist, wobei

e := h(x)δ−1 mod q
d := γδ−1 mod q

(u, v) := eA+ dB

Korrektheit der Verifikation beim ECDSA:

(u, v) = eA+ dB

= (h(x)δ−1)A+ (γδ−1)mA
= (h(x) +mγ)δ−1A

= zA (da (h(x) +mγ)δ−1 ≡q z)

Beispiel 64. Sei E über Z11 definiert durch y2 = x3 + x + 6. Wir wählen A = (2, 7),
m = 7 → p = 11, q = 13, B = 7A = (7, 2).
Um einen Text x mit dem Hashwert h(x) = 4 unter Verwendung des Signierschlüssels
k̂ = (E, q, A,m) und der Zufallszahl z = 3 signieren, berechnet Alice

(u, v) := zA = 3 · (2, 7) = (8, 3)
γ := u mod q = 8
δ := (4 + 7 · 8)3−1 mod 13 = 7

und erhält die Signatur sig(k̂, z, x) = (8, 7). Um diese Signatur mit dem Verifikations-
schlüssel k = (E, q, A,B) zu überprüfen, berechnet Bob

e := h(x)δ−1 mod q = 4 · 7−1 mod 13 = 4 · 2 mod 13 = 8
d := γδ−1 mod q = 8 · 2 mod 13 = 3

(u, v) := eA+ dB = 8 · (2, 7) + 3 · (7, 2) = (8, 3)

und testet die Kongruenz u ≡q γ. /

3.6 One-time Signatur (Lamport 1979)

Leslie Lamport konnte zeigen, dass sich digitale Signaturen auf der Basis einer Einweg-
funktion f konstruieren lassen. Damit die Signatur allerdings sicher ist, muss für jeden
Text ein neues Schlüsselpaar (k̂, k) generiert werden, d.h. der Signierschlüssel k̂ darf nur
zum Signieren eines einzelnen Textes verwendet werden.

3.6 One-time Signatur (Lamport 1979) 45

Seien U und V endliche Mengen und sei f : U → V eine Funktion. Zudem sei ` ≥ 1 die
vorgegebene Textlänge, d.h. der Textraum ist X = {0, 1}`. Der Signaturraum ist dann
Y = U `.
Um ein Schlüsselpaar (k̂, k) zu generieren, wird zufällig eine Folge von 2` Elementen
ui,b für i = 1, . . . , ` und b = 0, 1 aus U gewählt und der Signierschlüssel k̂ =

(
u1,0...u`,0
u1,1...u`,1

)
gebildet.
Der zugehörige Verifikationsschlüssel ist dann k =

(
v1,0...v`,0
v1,1...v`,1

)
mit vi,b = f(ui,b) für alle

i = 1, . . . , ` und b = 0, 1.
Signaturerstellung: Die Signatur für einen Text x = x1 . . . x` ∈ X ist

sig(k̂, x) = (u1,x1 , . . . , u`,x`
).

Verifikation: Für eine Signatur y = (u1, . . . , u`) und einen Text x = x1 . . . x` gilt

ver(k, x, y) :=

1, f(ui) = vi,xi
für i = 1, . . . , `,

0, sonst.

Beispiel 65. Wir wählen als Einwegfunktion eine Funktion der Form f : Z∗p → Z∗p mit
f(u) = gu mod p, wobei g ein Erzeuger von Z∗p ist.
Z.B. sei p = 7879 und g = 3, also f(u) = 3u mod 7879. Weiter sei ` = 3.
Dann erhalten wir für den zufällig gewählten Signierschlüssel k̂ =

(
5831 4285 2467
803 735 6449

)
den

zugehörigen Verifikationsschlüssel k =
(

2009 268 4721
4672 3810 5731

)
. Die Signatur y für den Text

x = 110 ist dann

y = sig(k̂, x) = (u1,1, u2,1, u3,0) = (803, 735, 2467).

Für diese Signatur y = (u1, u2, u3) ist ver(k, x, y) = 1, da f(ui) = vi,xi
für i = 1, 2, 3 gilt:

i = 1 : f(u1) = f(803) = 3803 mod 7879 = 4672 = v1,x1

i = 2 : f(u2) = f(735) = 3735 mod 7879 = 3810 = v2,x2

i = 3 : f(u3) = f(2467) = 32467 mod 7879 = 4721 = v3,x3 /

Ähnlich wie bei MACs können wir einen Angriff gegen ein digitales Signaturverfahren wie
folgt modellieren. Hierbei nehmen wir an, dass der Angreifer die Texte, deren Signaturen
er kennt, adaptiv wählen kann (existentielle Fälschung bei adaptiv wählbaren Texten).

Definition 66. Sei 0 ≤ ε ≤ 1 und sei q ∈ N. Ein (ε, q)-Fälscher für ein digitales
Signaturverfahren ist ein probabilistischer Algorithmus A, der bei Eingabe eines Verifikati-
onsschlüssels k (wobei das Schlüsselpaar (k̂, k) zufällig gewählt wird) nach den Signaturen
yi = sig(k̂, xi) von q Texten x1, . . . , xq fragt und mit Wahrscheinlichkeit mindestens ε
eine Fälschung (x, y) mit ver(k, x, y) = 1 und x 6∈ {x1, . . . , xq} ausgibt.

Satz 67. Sei f : U → V eine Funktion. Falls für die zugehörige one-time Signatur
ein (ε, 0)-Fälscher Lamport-Fälschung(k) existiert, dann lässt sich für ein zufällig
gewähltes u ∈R U mit Wahrscheinlichkeit mindestens ε/2 ein Urbild von v = f(u)
bestimmen.

Beweis. Betrachte folgenden probabilistischen Algorithmus Lamport-Urbild(v).

46 3 Digitale Signaturverfahren

Prozedur Lamport-Urbild(v)
1 wähle zufällig ein Indexpaar (j, a) und setze vj,a := v
2 for all (i, b) ∈ [`]× {0, } \ {(j, a)} do
3 wähle zufällig ui,b ∈R U und setze vi,b := f(ui,b)
4 k :=

(
v1,0...v`,0
v1,1...v`,1

)
5 (x1 . . . x`, (u1, . . . , u`)) =: Lamport-Fälschung(k)
6 if f(uj) = v then output(uj) else output(?)

Wie üblich bezeichnen wir die Zufallsvariablen, die die Wahl von v, j, a, k und (x, y) =
(x1 . . . x`, (u1, . . . , u`)) beschreiben, mit entsprechenden Großbuchstaben. Dann müssen
wir zeigen, dass UJ mit Wahrscheinlichkeit mindestens ε/2 ein f -Urbild von V ist, wobei
V die Wahl von v = f(u) für ein zufällig gewähltes u ∈R U beschreibt.
Da die Verteilung von K identisch zur Schlüsselgenerierung der Lamport-Signatur und
Lamport-Fälschung ein (ε, 0)-Fälscher ist, folgt

Pr[ver(K,X, Y) = 1] ≥ ε.

Da zudem K (und damit auch (X, Y)) unabhängig von (J,A) und auch J und A
unabhängig voneinander sind, ist A von (J,K,X, Y) und damit auch von XJ unabhängig.
Sei p die Erfolgswk von Lamport-Urbild bei Eingabe V . Wegen

ver(k, x1 . . . x`, (u1, . . . , u`)) = 1 ∧ xj = a =⇒ f(uj) = vj,xj
= vj,a = v

folgt nun

p ≥ Pr[ver(K,X, Y) = 1 ∧XJ = A]
= Pr[ver(K,X, Y) = 1] Pr[XJ = A | ver(K,X, Y) = 1]︸ ︷︷ ︸

1/2

= ε/2.

�

Als nächstes untersuchen wir die Sicherheit der Lamport-Signatur, falls der Angreifer
in der Lage ist, sich für einen beliebigen Text x′ seiner Wahl eine gültige Signatur y′ zu
beschaffen.

Satz 68. Sei f : U → V eine Funktion. Falls für die zugehörige one-time Signatur ein
(ε, 1)-Fälscher Lamport-Fälschung’(k) existiert, so lässt sich für ein zufällig gewähltes
u ∈R U mit Wahrscheinlichkeit ≥ ε/2` ein f -Urbild von v = f(u) bestimmen.

Für den Beweis betrachten wir folgenden probabilistischen Algorithmus

Prozedur Lamport-Urbild’(v)
1 wähle zufällig ein Indexpaar (j, a) und setze vj,a := v
2 for all (i, b) 6= (j, a) do
3 wähle zufällig ui,b ∈R U und setze vi,b := f(ui,b)
4 k :=

(
v1,0...v`,0
v1,1...v`,1

)
5 simuliere Lamport-Fälschung’(k) und beantworte die Frage x′ mit

u1,x′1 , . . . , u`,x′` (falls x′j = a ist, brich ab und gib ? aus); sei
(x, y) = (x1 . . . x`, (u1, . . . , u`)) die erzeugte Ausgabe

6 if f(uj) = v then output(uj) else output(?)

3.7 Full Domain Hash (FDH) Signaturen 47

und zeigen, dass Lamport-Urbild’ für ein zufällig gewähltes u ∈R U bei Eingabe
v = f(u) mit Wahrscheinlichkeit ≥ ε/2` ein f -Urbild von v ausgibt.

Beweis. Sei p′ die Erfolgswk von Lamport-Urbild’ bei Eingabe V . Es ist klar, dass uj
im Fall ver(k, x1 . . . x`, (u1, . . . , u`)) = 1 ∧ x′j 6= xj = a ein Urbild von v ist. Allerdings
kann Lamport-Urbild’ nur dann die Frage nach der Signatur von x′ beantworten, wenn
x′j 6= a ist. Da also die Simulation von Lamport-Fälschung’(k) teilweise abgebrochen
wird (und die Abbruchbedingung von (j, a) abhängt), können wir nicht mehr davon
ausgehen, dass diese Simulation mit Wahrscheinlichkeit ε eine Fälschung (x, y) liefert
und (x, y) unabhängig von (j, a) ist.
Durch eine einfache Modifikation von Lamport-Urbild’(v) erhalten wir jedoch eine
Prozedur Lamport-Urbild∗ (ohne Eingabe), deren Ausgabeverhalten mit der von
Lamport-Urbild’(V) identisch ist, und von der wir zeigen können, dass sie mit Wahr-
scheinlichkeit p∗ ≥ ε/2` Erfolg hat (also nicht Fragezeichen ausgibt).

Prozedur Lamport-Urbild∗

1 wähle zufällig ein Indexpaar (j, a)
2 for all (i, b) do wähle zufällig ui,b ∈R U und setze vi,b := f(ui,b)
3 k :=

(
v1,0...v`,0
v1,1...v`,1

)
4 simuliere Lamport-Fälschung’(k) und beantworte die Frage x′ mit

u1,x′1 , . . . , u`,x′`; sei (x, y) = (x1 . . . x`, (u1, . . . , u`)) die erzeugte Ausgabe
5 if f(uj) = vj,a ∧ x′j 6= a then output(uj) else output(?)

Im Unterschied zu Lamport-Urbild’(v) wählt sich Lamport-Urbild∗ also die Eingabe
v = vj,a gemäß der Verteilung von V selbst und kennt daher auch ein Urbild uj,a von
vj,a. Somit kann Lamport-Urbild∗ bei der Simulation von Lamport-Fälschung’(k)
die Frage nach der Signatur von x′ auch im Fall x′j = a beantworten. Die Bedingung
für die Ausgabe von uj ist jedoch bei beiden Prozeduren dieselbe, d.h. die Ausgabe von
Lamport-Urbild∗ hat dieselbe Verteilung wie die von Lamport-Urbild’(V) und
somit gilt p′ = p∗. Der einzige Unterschied ist, dass immer wenn Lamport-Urbild’(V)
in Zeile 4 ein Fragezeichen ausgibt, Lamport-Urbild∗ dies erst in Zeile 5 tut. Da in der
Prozedur Lamport-Urbild∗ die ZV (J,A) unabhängig von (K,X ′, X, Y) ist, folgt nun

p∗ = Pr[f(UJ) = VJ,A ∧X ′J 6= A]
≥ Pr[ver(K,X, Y) = 1 ∧XJ = A] ∧X ′J 6= A]
= Pr[ver(K,X, Y) = 1] Pr[X ′J 6= XJ = A | ver(K,X, Y) = 1]︸ ︷︷ ︸

≥1/2`

≥ ε/2`.
�

Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die sich jedoch teilweise
beheben lassen (siehe Übungen). So lässt sich sowohl die Länge des privaten Signierschlüs-
sels (mittels Pseudozufallsgeneratoren) als auch des öffentlichen Verifikationsschlüssels
(mittels Hash-Listen) verringern. Zudem können bei Verwendung von Hash-Bäumen mit
demselben Schlüsselpaar auch mehrere Nachrichten signiert und verifiziert werden.

3.7 Full Domain Hash (FDH) Signaturen

Sei F = {fk|k ∈ K} eine Familie von Falltür-Permutationen auf einer Menge U , d.h. es
lassen sich (zufällig) Schlüsselpaare (k̂, k) ∈ K ×K generieren, so dass gilt:

48 3 Digitale Signaturverfahren

• fk̂(fk(u)) = u für alle u ∈ U .
• fk ist eine Einweg-Permutation auf U , d.h. für ein zufällig gewähltes Schlüsselpaar

(k̂, k) ∈ K ×K und ein zufällig gewähltes v ∈ U ist es schwer, ohne Kenntnis von k̂
ein Urbild u mit fk(u) = v zu finden (genauer: jedem effizienten Angreifer gelingt
dies nur mit vernachlässigbarer Wahrscheinlichkeit).

Weiter sei h : {0, 1}∗ → U eine Funktion.
Die auf F und h basierende FDH-Signatur funktioniert wie folgt. Zuerst wird ein Schlüssel-
paar (k̂, k) ∈ K×K generiert, wobei k̂ als Signierschlüssel und k als Verifikationsschlüssel
fungiert. Der Textraum ist X = {0, 1}∗ und der Signaturenraum ist U .
Signaturerstellung: Die Signatur für einen Text x ∈ X ist

sig(k̂, x) = fk̂(h(x)).

Verifikation: Für eine Signatur y ∈ U und einen Text x ∈ {0, 1}∗ gilt

ver(k, x, y) :=

1, fk(y) = h(x),
0, sonst.

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer Hashfunktion auf
diesem Prinzip. Ein Problem hierbei ist allerdings, dass die benutzten RSA-Falltür-
Permutationen einen Definitionsbereich der Größe 21024 haben, um eine ausreichend
große Sicherheit zu erreichen, wogegen die benutzten Hashfunktionen nur eine Länge von
160 Bit haben. In der Praxis behilft man sich damit, dass man die 160-Bit-Hashwerte
durch eine deterministische Paddingfunktion auf 1024-Bit aufbläht, was die Sicherheit
allerdings beeinträchtigen kann.

Sicherheitsanalyse der FDH-Signatur im ZOM

Bei Verwendung einer Zufallsfunktion G : {0, 1}∗ → U (vgl. Zufalls-Orakel-Modell, ZOM)
anstelle von h lässt sich die Fälschungssicherheit der resultierenden FDH-Signatur aus der
Falltüreigenschaft von F herleiten. Das ZOM modelliert eine Hashfunktion mit optimalen
kryptografischen Eigenschaften, d.h. die Zufallsvariablen Ux = G(x) sind stochastisch
unabhängig und gleichverteilt auf U . Zudem füllt der Wertebereich von G den gesamten
Definitionsbereich der Funktionen fk aus (full domain hash).
Wir betrachten zuerst den Fall einer existentiellen Fälschung bei bekanntem Verifikations-
schlüssel, d.h. der Angreifer muss eine Fälschung (x, y) mit ver(k, x, y) = 1 produzieren
ohne auch nur eine Signatur y′ für einen Text x′ zu kennen.
Sei FDH-Fälschung ein probabilistischer Algorithmus, der für einen zufällig generierten
Verifikationsschlüssel k mit Wahrscheinlichkeit ε eine existentielle Fälschung (x, y) mit
fk(y) = G(x) ausgibt. Dabei nehmen wir an, dass FDH-Fälschung eine Folge von q
verschiedenen Fragen x1, . . . , xq an G stellt. Es ist klar, dass ein solcher Angriff im Fall
x 6∈ {x1, . . . , xq} mit der Wahrscheinlichkeit ε = 1/‖U‖ gelingt. Da diese Erfolgswk durch
Ausgabe eines beliebigen Paares (x, y) bereits mit q = 0 Fragen an G erreicht wird,
können wir zudem annehmen, dass x ∈ {x1, . . . , xq} enthalten ist (sofern q ≥ 1 ist).
Betrachte folgenden Invertierungsalgorithmus für fk.

Prozedur FDH-Invert(k, v)

3.7 Full Domain Hash (FDH) Signaturen 49

1 wähle zufällig j ∈R {1, . . . , q}
2 simuliere FDH-Fälschung(k) und beantworte dabei die Frage xi im

Fall i = j durch vj = v und sonst durch ein zufällig gewähltes
vi ∈R U; sei (x, y) die erzeugte Ausgabe

3 if fk(y) = v then output(y) else output(?)

Satz 69. Falls FDH-Fälschung(k) für einen zufällig gewählten Verifikationsschlüssel k
mit Wahrscheinlichkeit ε eine Fälschung (x, y) mit fk(y) = G(x) ausgibt und dabei q ≥ 1
Fragen an G stellt, so gibt FDH-Invert(k, v) für einen zufälligen Verifikationsschlüssel
k und ein zufälliges v ∈R U mit Wahrscheinlichkeit ≥ ε/q ein fk-Urbild von v aus.

Beweis. Seien J , K, U , V , X, X1, . . . , Xq Zufallsvariablen, die die Wahl von j, k, u,
v, x, x1, . . . , xq beschreiben. Da die Eingabe v gleichverteilt ist, erhält FDH-Fälschung
auf die Fragen x1, . . . , xq an G zufällig gewählte Strings v1, . . . , vq als Antwort, was dem
ZOM entspricht. Daher liefert die Simulation von FDH-Fälschung(k) für einen zufällig
generierten Schlüssel k mit Wahrscheinlichkeit ε eine Fälschung (x, y) mit fk(y) = G(x):

Pr[fK(Y) = G(X)] = ε.

Wir wollen zeigen, dass Pr[fK(Y) = V] ≥ ε/q ist. Da x ∈ {x1, . . . , xq} enthalten ist,
existiert ein i mit x = xi und die Gleichheit fk(y) = G(x) impliziert fk(y) = G(xi) = vi,
was im Fall i = j wiederum fk(y) = vj = v impliziert:

ver(k, x, y) = 1 ∧ xj = x =⇒ fk(y) = v.

Daher folgt
Pr[fK(Y) = V] ≥ Pr[fK(Y) = G(X) ∧XJ = X].

Da zudem j ∈ {1, . . . , q} zufällig gewählt und die Fragen x1, . . . , xq unabhängig voneinan-
der durch zufällige v1, . . . , vq beantwortet werden (nach Voraussetzung trifft dies auch auf
vj = v zu), erhält FDH-Fälschung weder durch k noch durch die Antworten v1, . . . , vq
irgendeine Information über j. Daher ist die Zufallsvariable J stochastisch unabhängig
von K, X1, . . . , Xq, X sowie Y und somit auch von der Zufallsvariablen I, die den Index
i ∈ {1, . . . , q} mit x = xi bestimmt. Daher folgt

Pr[fK(Y) = V] ≥ Pr[fK(Y) = G(X) ∧ J = I]
= Pr[fK(Y) = G(X)] Pr[J = I | fK(Y) = G(X)]︸ ︷︷ ︸

1/q

= Pr[fK(Y) = G(X)]/q = ε/q
�

Falls sich also fk nur mit einer vernachlässigbaren Wahrscheinlichkeit ≤ ε′ effizient
invertieren lässt, so gelingt einem ähnlich effizienten Angreifer, der nicht mehr als q Hash-
wertberechnungen durchführt, im ZOM höchstens mit einer (ebenfalls vernachlässigbaren)
Wahrscheinlichkeit ε ≤ qε′ eine existentielle Fälschung für die FDH-Signatur.
Als nächstes beweisen wir die Fälschungssicherheit der FDH-Signatur im ZOM gegenüber
einem existentiellen Angriff mit adaptiv gewählten Texten.
Sei FDH-Fälschung’ ein probabilistischer Algorithmus, der für einen zufällig generierten
Verifikationsschlüssel k mit Wahrscheinlichkeit ε eine existentielle Fälschung (x, y) mit
fk(y) = G(x) ausgibt und insgesamt für q Texte x1, . . . , xq den Wert G(xi) oder die

50 3 Digitale Signaturverfahren

Signatur sig(k̂, xi) erfragt. Dabei können wir o.B.d.A. annehmen, dass FDH-Fälschung’
zwar den G-Wert aber nicht die Signatur von x erfragt und vor jeder Signaturfrage den
G-Wert des betreffenden Textes erfragt.

Satz 70. Falls FDH-Fälschung’(k) für einen zufällig gewählten Verifikationsschlüssel k
mit Wahrscheinlichkeit ε eine Fälschung (x, y) mit fk(y) = G(x) berechnet und dabei für
q Texte xi den Wert G(xi) sowie im Fall xi 6= x evtl. auch die Signatur sig(k̂, xi) erfragt,
so lässt sich für einen zufälligen Verifikationsschlüssel k und ein zufälliges v ∈R U mit
Wahrscheinlichkeit ≥ ε/q ein fk-Urbild von v bestimmen.

Für den Beweis (siehe Übungen) betrachten wir folgenden probabilistischen Algorithmus

Prozedur FDH-Invert’(k, v)
1 wähle zufällig j ∈R {1, . . . , q}
2 simuliere FDH-Fälschung’(k) und beantworte dabei jede Frage xi an

G im Fall i = j durch vj = v und sonst durch vi = fk(ui), wobei ui
zufällig aus U gewählt wird; falls später die Signatur von xi
erfragt wird, gib ui als Antwort (falls i = j ist, brich ab und
gib ? aus); sei (x, y) die erzeugte Ausgabe

3 if fk(y) = v then output(y) else output(?)

und zeigen für einen zufälligen Verifikationsschlüssel k und ein zufälliges v ∈R U ,

Pr[FDH-Invert’(k, v) findet ein fk-Urbild von v] ≥ ε/q.

3.8 Verbindliche Signaturen (undeniable signatures)

In manchen Fällen ist es für den Unterzeichner eines Textes nicht wünschenswert, dass
jeder dazu in der Lage ist, die Gültigkeit einer vorgelegten Signatur zu verifizieren.
Zum Beispiel könnte eine Softwarefirma (Alice) ihre Produkte mit einer Signatur versehen,
die u.a. Virenfreiheit garantiert.
Problem: Neben den legalen Erwerbern der Software (Bob) können sich auch Kaufin-
teressenten auf dem Schwarzmarkt von der Gültigkeit einer Signatur (und damit von der
Virenfreiheit des signierten Produkts) überzeugen.
Lösung: Die Gültigkeit einer Signatur lässt sich nur unter Mitwirkung von Alice verifi-
zieren.
Neues Problem: Alice könnte versuchen, eine von ihr erzeugte gültige Signatur abzu-
leugnen, indem sie ihre Verifikation sabotiert.
Lösung: Es gibt zusätzlich ein Ableugnungsprotokoll (disavowal protocol), mit dem Alice
die Ungültigkeit von Signaturen nachweisen kann. Falls Alice die Gültigkeit einer Signatur
bestreitet und sich dennoch weigert, die Ungültigkeit mithilfe des Ableugnungsprotokolls
zu beweisen, kann man davon ausgehen, dass die Signatur gültig ist.

Das Signaturverfahren von Chaum und van Antwerpen

Bei diesem Signaturverfahren wird eine Primzahl p = 2q + 1 benutzt, wobei auch q prim
ist, so dass das Diskrete Logarithmus Problem in Z∗p hart ist. Sei α ∈ Z∗p ein Element der
Ordnung q und sei G = {αa|a ∈ Zq}, die von α in Z∗p erzeugte Untergruppe.

3.8 Verbindliche Signaturen (undeniable signatures) 51

Der Text- und Signaturraum ist X = Y = G. Der Signierschlüssel hat die Form
k̂ = (p, α, a), a ∈ Z∗q und der zugehörige Verifikationsschlüssel ist k = (p, α, β) mit
β = αa mod p.
Signaturerstellung: Die Signatur für einen Text x ∈ G ist

sig(k̂, x) = xa mod p.

Will Bob eine von Alice geleistete Signatur y ∈ G für einen Text x ∈ G verifizieren, so
führt er zusammen mit Alice folgendes Protokoll aus.
Verifikationsprotokoll:

1. Bob wählt zufällig e, f ∈ Zq und und sendet c = yeβf mod p an Alice.
2. Alice sendet d = ca

−1 mod q mod p zurück an Bob.
3. Bob akzeptiert y als gültig, falls d ≡p xeαf ist.

Es ist leicht zu sehen, dass Bob eine gültige Signatur y = xa mod p mit Wk 1 als gültig
akzeptiert, falls sich beide an das Verifikationsprotokoll halten:

xeαf ≡p (xaeαaf)︸ ︷︷ ︸
yeβf≡pc

a−1 mod q ≡p ca
−1 mod q ≡p d.

Beispiel 71. Sei p = 467 = 2 · 233 + 1 mit q = 233. Da g = 2 ein Erzeuger von
Z∗p ist, hat α = g2 = 4 die gewünschte Ordnung q = p−1

2 . Da α die Untergruppe
QRp der quadratischen Reste erzeugt, ist G = QRp. Wählen wir den Signierschlüssel
k̂ = (p, α, a) = (467, 4, 101), so erhalten wir k = (p, α, β) = (467, 4, 449) als zugehörigen
Verifikationsschlüssel. Die Signatur für x = 119 ∈ G berechnet sich wie folgt:

sig(k̂, x) = xa mod p = 119101 mod 467 = 129 = y

Verifikation von y = 129 für x = 119 unter k:
1. Bob wählt e, f ∈ Zq (e = 38, f = 164) und sendet

c = yeβf mod p = 12938449164 mod 467 = 13 an Alice.
2. Alice sendet d = ca

−1 mod q mod p = 9 an Bob zurück.
3. Bob akzeptiert, da d = xeαf = 119384164 mod 467 = 9 ist. /

Bemerkung 72. Die Wahl von p der Form p = 2q+1 mit q prim dient folgenden Zielen:
• Die Ordnung q der Untergruppe G von Z∗p ist prim (dies erlaubt die Berechnung
von a−1 mod q in Schritt 2 des Verifikationsprotokolls).
• G ist eine möglichst große Untergruppe von Z∗p mit primer Ordnung.

Behauptung 73. Bob akzeptiert eine ungültige Signatur y 6≡p xa nur mit Wahrschein-
lichkeit 1/q (auch wenn sich Alice nicht an das Verifikationsprotokoll hält).

Beweis. Alice steht in Zeile 2 des Verifikationsprotokolls vor der Aufgabe, eine Zahl
d ∈ G zu finden, so dass Bob in Zeile 3 akzeptiert. Das wäre für Alice problemlos möglich,
wenn sie e und f kennen würde. Alice hat aber nur partielles Wissen über das Paar (e, f),
nämlich dass es die Kongruenz

c ≡p yeβf (3.1)

erfüllt. Da es für jedes e ∈ Zq genau ein f ∈ Zq gibt, so dass das Paar (e, f) die Kongruenz
(3.1) erfüllt, gibt es genau q solche Paare in Zq ×Zq. Da Alice nur c kennt, sind aus ihrer

52 3 Digitale Signaturverfahren

Sicht diese q Paare alle gleichwahrscheinlich. Wir zeigen nun, dass unabhängig davon,
welches d ∈ G Alice an Bob sendet, genau eines dieser q Paare zusätzlich die Kongruenz

d ≡p xeαf (3.2)

erfüllt. Folglich akzeptiert Bob mit der Wahrscheinlichkeit 1/q.
Seien c′, d′, x′, y′ ∈ Zq die zu c, d, x, y ∈ G gehörigen Exponenten, d.h. c ≡p αc

′
, . . . , y ≡p

αy
′ . Dann erfüllt ein Paar (e, f) genau dann die beiden Kongruenzen (3.1) und (3.2),

wenn Folgendes gilt:

c ≡p yeβf
d ≡p xeαf

⇔ αc
′ ≡p αy

′e · αaf
αd
′ ≡p αx

′e · αf ⇔ c′ ≡q y′e+ af

d′ ≡q x′e+ f
⇔

(
y′ a

x′ 1

)
︸ ︷︷ ︸

A

(
e

f

)
≡q

(
c′

d′

)
.

Wegen αy′ ≡p y 6≡p xa ≡p αx
′a folgt y′ 6≡q x′a und daher ist detA ≡q y′ − x′a 6≡q 0. �

Möchte nun Alice Bob gegenüber nachweisen, dass eine Signatur y ungültig ist, so führen
beide folgendes Protokoll aus.

Ableugnungsprotokoll
1 Bob wählt zufällig e1, f1 ∈ Zq und sendet c1 = ye1βf1 mod p an Alice.

2 Alice sendet d1 = ca
−1 mod q

1 mod p zurück.
3 Bob testet, ob d1 6≡p xe1αf1 ist.
4 Bob wählt zufällig e2, f2 ∈ Zq und sendet c2 = ye2βf2 mod p an Alice.

5 Alice sendet d2 = ca
−1 mod q

2 mod p zurück.
6 Bob testet, ob d2 6≡p xe2αf2 ist.
7 Bob erkennt y als ungültig an, falls mindestens einer der Tests

in Schritt 3 oder 6 erfolgreich war und (d1α
−f1)e2 ≡p (d2α

−f2)e1 gilt.

Bei den Schritten 1-3 und 4-6 handelt es sich jeweils um eine fehlgeschlagene Verifikation
der Signatur y (sofern der Test von Bob in Zeile 3 bzw. 6 positiv ausfällt). In Schritt 7
führt Bob zusätzlich einen Konsistenztest aus, um sich davon zu überzeugen, dass Alice
die Zahlen d1 und d2 gemäß dem Protokoll gewählt hat.

Beispiel 74. Sei p = 467, q = 233, α = 4, a = 101, β = 449. Wir nehmen an, dass der
Text x = 286 mit der Alice zugeschriebenen Signatur y = 83 unterschrieben ist und Alice
Bob davon überzeugen möchte, dass y ungültig ist.

1. Bob wählt e1 = 45, f1 = 4 und sendet c1 = 305 an Alice.
2. Alice antwortet mit d1 = ca

−1
1 = 109

3. Bob verifiziert, dass 2864544 ≡p 149 6≡p 109 gilt.
4. Bob wählt e2 = 125, f2 = 9 und sendet c2 = 270 an Alice.
5. Alice antwortet mit d2 = ca

−1
2 = 68

6. Bob verifiziert, dass 28612549 ≡p 25 6≡p 68 gilt.
7. Bob erkennt y als ungültig an, da (109 · 4−4)125 ≡p 188 ≡p (68 · 4−9)45 ist und somit

die Konsistenzbedingung erfüllt ist. /

Es bleibt zu zeigen, dass sich Bob von der Ungültigkeit einer Signatur y im Fall y 6≡p xa
mit sehr hoher und im Fall y ≡p xa nur mit sehr kleiner Wahrscheinlichkeit überzeugen
lässt (auch wenn sich im zweiten Fall Alice nicht an das Ableugnungsprotokoll hält).

3.8 Verbindliche Signaturen (undeniable signatures) 53

Behauptung 75. Im Fall y 6≡p xa erkennt Bob y mit Wahrscheinlichkeit 1 − 1
q2 als

ungültig an, falls sich beide an das Ableugnungsprotokoll halten.

Beweis. Nach Behauptung 73 beträgt die Wahrscheinlichkeit, dass beide Tests in Schritt
3 und 6 fehlschlagen genau 1

q2 . Wegen β ≡p αa, ci ≡p yeiβfi und di ≡p ca
−1 mod q
i für

i ∈ {1, 2} folgt

diα
−fi ≡p (yeiβfi︸ ︷︷ ︸

ci

)a−1
α−fi ≡p yeia

−1
βfia

−1︸ ︷︷ ︸
αfi

α−fi ≡p yeia
−1

und somit
(d1α

−f1)e2 ≡p ye1a−1e2 ≡p ye2a−1e1 ≡p (d2α
−f2)e1 ,

d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfüllt. �

Behauptung 76. Im Fall y ≡p xa erkennt Bob y nur mit einer Wahrscheinlichkeit ≤ 1
q

als ungültig an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hält.

Beweis. Bob erkennt y nur dann als ungültig an, wenn

(d1 6≡p xe1αf1 oder d2 6≡p xe2αf2) und (d1α
−f1)e2 ≡p (d2α

−f2)e1

gilt. Da die beiden Fälle d1 6≡p xe1αf1 und d2 6≡p xe2αf2 symmetrisch sind, reicht es, einen
davon zu betrachten.
Wir nehmen also an, dass Alice eine Zahl d1 6≡p xe1αf1 an Bob sendet. Nachdem Alice
die Zahl c2 in Zeile 4 von Bob erhalten hat, weiß sie nur, dass das von Bob gewählte Paar
(e2, f2) die Kongruenz c2 ≡p ye2βf2 erfüllt. Wie wir bereits im Beweis zu Behauptung 73
gesehen haben, trifft dies auf genau q Paare zu. Wir zeigen nun, dass für jedes d2 ∈ G
genau eines dieser q Paare (e2, f2) die Konsistenzbedingung

(d1α
−f1)e2 ≡p (d2α

−f2)e1

erfüllt. Dies beweist, dass unabhängig davon, welches d2 Alice an Bob sendet, Bob y nur
mit Wahrscheinlichkeit 1/q als ungültig akzeptiert.
Sei u = d1α

−f1 mod p und seien c′2, d′2, x′, u′ ∈ Zq die zu c2, d2, x, u gehörigen Exponenten.
Dann gilt

c2 ≡p ye2βf2

(d1α
−f1︸ ︷︷ ︸
u

)e2 ≡p (d2α
−f2)e1 ⇔ c′2 ≡q x′ae2 + af2

u′e2 ≡q d′2e1 − e1f2
⇔
(
x′a a

u′ e1

)
︸ ︷︷ ︸

A

(
e2
f2

)
≡q

(
c′2
d′2e1

)
.

Wegen
xe1 ≡p xe1αf1︸ ︷︷ ︸

6≡pd1

α−f1 6≡p d1α
−f1 ≡p u

folgt x′e1 6≡q u′ und somit ist detA = x′ae1 − u′a = a(x′e1 − u′) 6≡q 0. �

54 3 Digitale Signaturverfahren

3.9 Fail-Stop-Signaturen

Ein Nachteil aller bisher betrachteten Signaturverfahren ist, dass Alice eine vorgelegte
Fälschung (x, y) nicht als solche nachweisen kann. Dies liegt daran, dass Alice einen
Dritten nicht davon überzeugen kann, dass sie die Signatur y nicht selbst erzeugt hat. Bei
sog. Fail-Stop-Signaturen ist genau dies möglich: Sollte es einem Angreifer gelingen, das
Signaturverfahren zu brechen (“fail”) und eine Fälschung (x, y) zu generieren, so kann
Alice dies mit hoher Wahrscheinlichkeit beweisen und somit ihre Signatur widerrufen
(“stop”).

Das van Heyst-Pedersen Signaturverfahren

Definition 77. Sei p = 2q + 1 prim, p, q prim und sei α ∈ Z∗p ein Element der Ordnung
q. Weiter sei G = {αa|a ∈ Zq} die von α in Z∗p erzeugte Untergruppe und β = αa mod p
für ein a ∈ Z∗q.
Die Zahlen p, q, α, β werden von einer vertrauenswürdigen Instanz generiert und bekannt
gegeben, a wird jedoch vor allen Teilnehmern geheim gehalten.
Der Textraum ist X = Zq und der Signaturenraum ist Y = Zq × Zq.
Um einen Signierschlüssel zu generieren, wird zufällig ein 4-Tupel k̂ = (a1, b1, a2, b2) ∈R Z4

q

gewählt. Der zugehörige Verifikationsschlüssel ist k = (γ1, γ2) = (αa1βb1 , αa2βb2) ∈ G2.
Signaturerstellung: Die Signatur für einen Text x ∈ Zq unter k̂ = (a1, b1, a2, b2) ∈ Z4

q

ist
sig(k̂, x) = (y1, y2) = (a1 + xa2 mod q, b1 + xb2 mod q).

Verifikation: Für einen Verifikationsschlüssel k = (γ1, γ2), eine Signatur y = (y1, y2) ∈
Zq × Zq und einen Text x ∈ Zq gilt

ver(k, x, y) =

1, γ1γ
x
2 ≡p αy1βy2 ,

0, sonst.

Beispiel 78. Die vertrauenswürdige Instanz (TTP, trusted third party) generiert
• Primzahlen p und q mit p = 2q + 1 = 2 · 1733 + 1 = 3467, sowie
• ein Element α = 4 ∈ Z∗p mit ordp(α) = q und
• eine geheime Zahl a = 1567 ∈ Z∗q und
• gibt die Zahlen p, q, α und β = αa mod p = 41567 mod p = 514 bekannt, hält aber
a geheim.

Wählt Alice k̂ = (a1, b1, a2, b2) = (888, 1024, 786, 999) als Signierschlüssel, so berechnet
sich der zugehörige Verifikationsschlüssel zu k = (γ1, γ2) mit

γ1 = αa1βb1 = 48885141024 = 3405

und
γ2 = αa2βb2 = 4786514999 = 2281.

Um den Text x = 1650 zu signieren, berechnet Alice mit dem Signierschlüssel k̂ =
(a1, b1, a2, b2) = (888, 1024, 786, 999) die Signatur y = sig(k̂, x) = (y1, y2) mit

y1 = a1 + xa2 mod q = 888 + 1650 · 786 mod q = 1504 und
y2 = b1 + xb2 mod q = 1024 + 1650 · 999 mod q = 1291.

3.9 Fail-Stop-Signaturen 55

Um die Signatur y = (1504, 1291) zu überprüfen, testet Bob mit dem Verifikationsschlüssel
k = (γ1, γ2) = (3405, 2281) die Verifikationsbedingung

γ1γ
x
2 = 3405 · 22811650 ≡p 2282 ≡p 415045141291 = αy1βy2 .

/

Betrachte die Menge

S = {(k̂, k) | k̂ = (a1, b1, a2, b2) ∈ Z4
q, k = (αa1βb1 , αa2βb2) ∈ G×G}

aller möglichen Schlüsselpaare. Für einen Verifikationsschlüssel k ∈ G×G sei

S(k) = {k̂ ∈ Z4
q | (k̂, k) ∈ S}

die Menge aller Signierschlüssel, die zu k passen, und für einen Text x und eine Signatur
y = (y1, y2) sei

S(k, x, y) = {k̂ ∈ S(k) | sig(k̂, x) = y}

die Menge aller Signierschlüssel in S(k), die für x die Signatur y berechnen.

Lemma 79. Für jeden Signierschlüssel k̂ ∈ S(k) und jedes Paar (x, y) mit sig(k̂, x) = y
ist die Verifikationsbedingung ver(k, x, y) = 1 erfüllt.

Beweis. Sei k̂ = (a1, b1, a2, b2) und sig(k̂, x) = y = (y1, y2). Wegen k̂ ∈ S(k) folgt
k = (γ1, γ2) = (αa1βb1 , αa2βb2) und daher gilt

γ1γ
x
2 ≡p αa1βb1(αa2βb2)x

≡p αa1+xa2βb1+xb2

≡p αy1βy2

�

Anders gesagt gibt es im Fall ver(k, x, y) = 0 keinen Signierschlüssel k̂ ∈ S(k) mit
sig(k̂, x) = y, d.h. S(k, x, y) = ∅. Das nächste Lemma zeigt, dass S(k, x, y) im Fall
ver(k, x, y) = 1 genau q Signierschlüssel enthält.

Lemma 80. Zu jedem Paar (x, y) mit ver(k, x, y) = 1 gibt es genau q Signierschlüssel
k̂ ∈ S(k) mit sig(k̂, x) = y.

Beweis. Wir zeigen zuerst, dass S(k) für jeden Verifikationsschlüssel k = (γ1, γ2) genau
q2 Signierschlüssel enthält. Ein Signierschlüssel k̂ = (a1, b1, a2, b2) ist genau dann in S(k),
wenn er die beiden Kongruenzen

αa1βb1 ≡p γ1
αa2βb2 ≡p γ2

erfüllt. Seien c1, c2 ∈ Zq eindeutig bestimmte Exponenten mit γ1 ≡p αc1 und γ2 ≡p αc2 .
Dann sind diese Kongruenzen äquivalent zu

a1 + ab1 ≡q c1
a2 + ab2 ≡q c2

bzw.
(

1 a 0 0
0 0 1 a

)
︸ ︷︷ ︸

A


a1
b1
a2
b2

 ≡q
(
c1
c2

)
(∗)

56 3 Digitale Signaturverfahren

Da A den Rang 2 hat, folgt ‖S(k)‖ = q2 (siehe Übungen, Aufgabe 19). Sei nun (x, y) ein
Paar mit x ∈ Zq und y = (y1, y2) ∈ Zq×Zq. Dann ist ein Signierschlüssel k̂ = (a1, b1, a2, b2)
genau dann in S(k, x, y), wenn er die Kongruenzen

a1 + ab1 ≡q c1
a2 + ab2 ≡q c2
a1 + xa2 ≡q y1
b1 + xb2 ≡q y2

bzw.


1 a 0 0
0 0 1 a

1 0 x 0
0 1 0 x


︸ ︷︷ ︸

A′


a1
b1
a2
b2

 ≡q

c1
c2
y1
y2


︸ ︷︷ ︸

s′

(∗∗)

erfüllt. Wir zeigen, dass sowohl die Matrix A′ als auch die um den Vektor s′ erweiterte
Matrix A′s′ den Rang r = rang(A′) = rang(A′s′) = 3 haben.

Dies impliziert, dass das lineare Gleichungssystem (∗∗) genau q4−r = q Lösungen hat
(siehe Übungen). Seien r1, . . . , r4 die Zeilen von A′. Dann gilt rang(A′) ≥ 3, da die Zeilen
r2, r3, r4 linear unabhängig sind, und rang(A′) ≤ 3, da r1 = r3 + ar4− xr2 ist. Damit hat
(∗∗) im Falle der Lösbarkeit genau q4−3 = q Lösungen. Zum Nachweis der Lösbarkeit von
(**) zeigen wir, dass die in A′ bestehende Zeilenabhängigkeit r1 = r3 + ar4 − xr2 im Fall
ver(k, x, y) = 1 auch für den Spaltenvektor s′ auf der rechten Seite von (**) gilt:

γ1γ
x
2 ≡p αy1βy2 ⇒ c1 + xc2 ≡q y1 + ay2 ⇒ c1 ≡q y1 + ay2 − xc2.

Da somit die Erweiterung der Matrix A′ um den Spaltenvektor s′ deren Rang im Fall
ver(k, x, y) = 1 nicht erhöht, ist (**) in diesem Fall lösbar. �

Lemma 81. Für alle x, x′ ∈ Zq und y = (y1, y2), y′ = (y′1, y′2) ∈ Z2
q mit x′ 6= x gilt

‖S(k, x, y) ∩ S(k, x′, y′)‖ ≤ 1.

Im Fall ver(k, x, y) = ver(k, x′, y′) = 1 gilt sogar Gleichheit.

Beweis. Die Bedingung k̂ = (a1, b1, a2, b2) ∈ S(k, x, y) ∩ S(k, x′, y′) ist äquivalent zu

1 a 0 0
0 0 1 a

1 0 x 0
0 1 0 x

1 0 x′ 0
0 1 0 x′


︸ ︷︷ ︸

A′′


a1
b1
a2
b2

 =



c1
c2
y1
y2
y′1
y′2


︸ ︷︷ ︸

s′′

(∗ ∗ ∗)

wobei wieder γ1 ≡p αc1 , γ2 ≡p αc2 ist. Wir zeigen, dass die Zeilen r1, r2, r4, r6 von A′′

linear unabhängig sind und somit A′′ den Rang rang(A) = 4 hat. Daraus folgt, dass
(***) höchstens eine Lösung hat.
Aus l1r1 +l2r2 +l4r4 +l6r6 = ~0 folgt nämlich l1 = l2 = 0 und l4 +l6 = 0 sowie l4x+l6x′ = 0,
was l6 = −l4 sowie l4(x− x′) = 0 und somit wegen x− x′ 6= 0 auch l4 = l6 = 0 impliziert.
Da auch die Zeilen r3, . . . , r6 von A′′ linear unabhängig sind, lässt sich k̂ bei Kenntnis
zweier Signaturen y = sig(k̂, x) und y′ = sig(k̂, x′) für zwei Texte x 6= x′ leicht bestimmen,
d.h. es handelt sich um ein One-time-Signaturverfahren.
Um die Lösbarkeit von (***) im Fall ver(k, x, y) = ver(k, x′, y′) = 1 nachzuweisen,
zeigen wir, dass die in A′′ bestehenden Zeilenabhängigkeiten r3 = r1 + xr2 − ar4 und

3.9 Fail-Stop-Signaturen 57

r5 = r1 + x′r2 − ar6 auch für den Spaltenvektor s′′ auf der rechten Seite von (***) gelten:
Aus ver(k, x, y) = 1 folgt

γ1γ
x
2 ≡p αy1βy2 ⇒ c1 + xc2 ≡q y1 + ay2 ⇒ y1 ≡q c1 + xc2 − ay2

und analog folgt aus ver(k, x′, y′) = 1 die Kongruenz y′1 ≡q c1 + x′c2 − ay′2. �

Im nächsten Satz zeigen wir, dass ein Angreifer, der den Verifikationsschlüssel k und eine
von Alice für einen Text x erzeugte Signatur y = sig(k̂, x) kennt, nur mit Wahrschein-
lichkeit höchstens 1/q ein Paar (x′, y′) mit x′ 6= x und y′ = sig(k̂, x′) finden kann. Dies
gilt auch, wenn der Angreifer über unbeschränkte Rechenressourcen verfügt.
Lemma 82. Für alle x, x′ ∈ Zq, y, y′ ∈ Z2

q und k = (γ1, γ2) ∈ G2 mit x′ 6= x und
ver(k, x, y) = 1 gilt

Probk̂∈RZ4
q
[sig(k̂, x′) = y′︸ ︷︷ ︸

A

| k̂ ∈ S(k, x, y)︸ ︷︷ ︸
B

] ≤ 1
q

Beweis. Es gilt

Pr[A|B] = Prob[A ∩B]
Prob[B] = ‖S(k, x′, y′) ∩ S(k, x, y)‖

‖S(k, x, y)‖ ≤ 1
q
.

�

Frage: Wie funktioniert der Fail-Stop-Mechanismus? D.h. wie kann Alice bei Vorlage
eines Paares (x′, y′) mit ver(k, x′, y′) = 1 und y′ 6= sig(k̂, x′) beweisen, dass die gültige
Signatur y′ nicht von ihr erzeugt wurde?
Antwort: Sie berechnet y′′ = sig(k̂, x′) und benutzt das Tripel (x′, y′, y′′), um a zu
berechnen. Wegen

ver(k, x′, y′′1 , y′′2) = 1 = ver(k, x′, y′1, y′2)
folgt

αy
′
1βy

′
2 ≡p γ1γ

x′

2 ≡p αy
′′
1 βy

′′
2 und somit y′1 + ay′2 ≡q y′′1 + ay′′2 ,

weshalb
a = (y′′1 − y′1)(y′2 − y′′2)−1 mod q

ist. Dabei ist zu beachten, dass die Gleichheit von y′2 und y′′2 wegen αy′1βy′2 ≡p αy
′′
1 βy

′′
2 auch

die Gleichheit von y′1 und y′′1 (also y′ = y′′) implizieren würde, was wir ausgeschlossen
haben.
Beispiel 83 (Fortsetzung von Beispiel 78). Wird Alice nun mit dem Paar (x′, y′) =
(x′, (y′1, y′2)) = (464, (1339, 730)) konfrontiert, das wegen

γ1γ
x′

2 = 3405 · 2281464 ≡p 2300 ≡p 41339514730 = αy
′
1βy

′
2

die Verifikationsbedingung ver(k, x′, y′) = 1 erfüllt, so berechnet Alice zunächst
y′′ = sig(k, x′) = (y′′1 , y′′2)

mit
y′′1 = a1 + x′a2 mod q = 888 + 464 · 786 mod q = 1662 und
y′′2 = b1 + x′b2 mod q = 1024 + 464 · 999 mod q = 116,

um sich zu vergewissern, dass y′ 6= y′′ ist. Hieraus erhält sie dann a zu

a = y′′1 − y′1
y′2 − y′′2

mod q = 1662− 1339
730− 116 mod q = 1567

/

58

4 Pseudozufallszahlen-Generatoren

Pseudozufallszahlen-Generatoren (kurz PZG) f werden mit einem Startwert x – dem
sogenannten Keim (engl. seed) – für die Erzeugung einer „zufälligen“ Bitfolge f(x)
gestartet. Dabei wird die Eingabe x zufällig unter Gleichverteilung gewählt und die
Ausgabe f(x) sollte länger sein als x und möglichst zufällig aussehen. Zudem sollte f
von einem deterministischen Algorithmus effizient berechenbar sein.

Linear-Kongruenz-Generator

Der Keim x0 wird zufällig aus der Menge Zn = {0, 1, . . . n− 1} gewählt. Die Parameter
a und b sind ebenfalls aus Zn.

Algorithmus LinGenn,l,a,b(x0)
1 for i := 1 to l do
2 xi := axi−1 + b mod n
3 bi := xi mod 2
4 output(b1 . . . bl)

Power-Generator

Der Keim x0 wird zufällig aus der Menge Z∗n gewählt.

Algorithmus PowerGenn,l,e(x0)
1 for i := 1 to l do
2 xi := xei−1 mod n
3 bi := xi mod 2
4 output(b1 . . . bl)

Es gibt zwei interessante Spezialfälle des Powergenerators:
• RSA-Generator (RsaGen) mit n = p · q wobei p, q ∈ IP und ggT(e, ϕ(n)) = 1
• Quadratischer-Reste-Generator (BBS) mit e = 2 (siehe folgenden Abschnitt).

4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren

Wir betrachten ab jetzt nur noch den Fall, dass sowohl x als auch f(x) Bitfolgen sind
und die Länge der Ausgabe nur von der Länge der Eingabe abhängt.
Sei l = l(k) ≥ k+ 1 eine Funktion. Ein l(k)-Generator ist eine Funktion f auf {0, 1}∗, die
Strings der Länge k auf Strings der Länge l(k) abbildet und in Polynomialzeit berechenbar
ist.
Seien (Xk) und (Yk) Familien von Zufallsvariablen mit Wertebereich W (Xk),W (Yk) ⊆
{0, 1}l(k) und sei ε : N → R+ eine Funktion. Ein ε-Unterscheider zwischen (Xk) und

4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren 59

(Yk) ist ein in Polynomialzeit berechenbarer probabilistischer Algorithmus D, so dass für
unendlich viele Werte von k gilt:

Pr[D(Xk) = 1]− Pr[D(Yk) = 1] ≥ ε(l(k)).

Hierbei ist Pr[D(Xk) = 1] die Wahrscheinlichkeit, dass D bei einer zufällig gemäß Xk

gewählten Eingabe akzeptiert (bzw. 1 ausgibt). In diesem Fall heißen die beiden Familien
(Xk) und (Yk) ε-unterscheidbar.
Ein l(k)-Generator f heißt ε-unterscheidbar, falls die beiden Familien (f(Uk)) und
(Ul(k)) von Zufallsvariablen ε-unterscheidbar sind, wobei Un eine auf {0, 1}n gleichver-
teilte Zufallsvariable ist. f heißt (kryptografisch) sicher, falls f für kein Polynom p
1/p-unterscheidbar ist. f ist also genau dann sicher, wenn f nur für vernachlässigbare
Funktionen ε-unterscheidbar ist.

Beispiel 84. Betrachte folgenden Unterscheider D für den (k + 1)-Generator f mit
f(x) = 1x für alle x ∈ {0, 1}∗.

1 input y = y1 · · · yk+1 ∈ {0, 1}k+1

2 output(y1)

Dann gilt Pr[D(f(Uk)) = 1] = 1 und Pr[D(Uk+1) = 1] = 1/2 und somit

Pr[D(f(Uk)) = 1]− Pr[D(Uk+1) = 1] = 1/2

für alle k. Folglich ist f (1/2)-unterscheidbar. /

Es ist nicht bekannt, ob kryptografisch sichere PZGen existieren. Eine notwendige
Bedingung hierfür ist P 6= NP, da P = NP die Existenz eines effizienten Unterscheiders
impliziert, welcher genau die Strings im Bild von f akzeptiert. Ob diese Bedingung auch
hinreichend ist, ist ebenfalls nicht bekannt. Man kann jedoch zeigen, dass die Existenz
von kryptografisch sicheren PZGen äquivalent zur Existenz von Einwegfunktionen ist.
Bei manchen Anwendungen ist es wichtig, dass kein effizienter Algorithmus das nächste
Bit der Pseudozufallsfolge korrekt vorhersagen kann. Es ist nicht schwer zu sehen, dass
ein sicherer PZG diese Bedingung erfüllt.
Ein probabilistischer Algorithmus N heißt ε-next bit predictor (ε-NBP) für f , falls für
unendlich viele k

Pr[N(f[I−1](Uk), 1l(k)) = fI(Uk)] ≥ 1/2 + ε(l(k))

ist, wobei die Zufallsvariable I auf der Menge {1, . . . , l(k)} gleichverteilt ist. Hierbei
bezeichnet fi(x) das i-te Bit und f[i](x) die Folge der ersten i Bits von f(x).

Beispiel 85. Betrachte folgenden NBP N für den (k + 1)-Generator f mit f(x) = 1x
für alle x ∈ {0, 1}∗.

1 input (y, 1l) mit y = y1 · · · yi−1 ∈ {0, 1}i−1 für ein i ∈ {1, . . . , l}
2 output(1)

Dann gilt

Pr[N(f[i−1](Uk)) = fi(Uk)] =

1, i = 1
1/2, i = 2, . . . k + 1

60 4 Pseudozufallszahlen-Generatoren

und somit

Pr[N(f[I−1](Uk)) = fI(Uk)] = (1/(k+1))
k+1∑
i=1

Pr[N(f[i−1](Uk)) = fi(Uk)] = 1/2+1/(2k + 2)︸ ︷︷ ︸
2l(k)

.

Folglich ist N ein (1/2l)-NBP für f . /

Satz 86. Falls es einen ε-NBP N für f gibt, so ex. auch ein ε-Unterscheider für f .

Beweis. Sei N ein ε-NBP für f und betrachte folgenden Unterscheider D.

1 input y = y1 · · · yl
2 wähle i ∈R {1, . . . , l}
3 output(N(y1 · · · yi−1, 1l)⊕ yi ⊕ 1)

D gibt also bei Eingabe y = y1 · · · yl genau dann 1 aus, wenn der Prediktor N bei Eingabe
y1 · · · yi−1 das i-te Bit von y richtig rät, wobei i zufällig gewählt wird. Daher ist

Pr[D(f(Uk)) = 1] = Pr[N(f(I−1)(Uk), 1l) = fI(Uk)] ≥ 1/2 + ε.

Andererseits ist klar, dass jeder NBP das i-te Bit yi einer rein zufälligen Eingabe y genau
mit Wahrscheinlichkeit 1/2 richtig rät, und somit Pr[D(Ul(k)) = 1] = 1/2 ist. �

Ein probabilistischer Algorithmus P heißt ε-previous bit predictor (ε-PBP) für f , falls
für unendlich viele k gilt:

Pr[P (fI+1(Uk) · · · fl(k)(Uk), 1l(k)) = fI(Uk)] ≥ 1/2 + ε(l(k)).

Vollkommen analog zu obigem Satz lässt sich der folgende Satz beweisen.

Satz 87. Falls es einen ε-PBP N für f gibt, so ex. auch ein ε-Unterscheider für f .

Interessanterweise lässt sich aus einem Unterscheider auch ein NBP bzw. PBP gewinnen.
Um also die Sicherheit eines PZG f zu beweisen, genügt der Nachweis, dass es für kein
Polynom p einen (1/p)-NBP für f gibt.

Satz 88. Falls es einen ε-Unterscheider D für f gibt, so ex. auch ein (ε/l)-NBP für f .

Beweis. Sei D ein ε-Unterscheider für f , d.h. es gilt

Pr[D(f(Uk)) = 1]− Pr[D(Ul(k)) = 1] ≥ ε(l(k))

für alle k ≥ 0. Die Ausgabe D(y) = 0 deutet also darauf hin, dass y tendenziell ein
echter Zufallsstring ist, während die Ausgabe D(y) = 1 darauf hindeutet, dass y ein
Pseudozufallsstring ist. Wir zeigen, dass folgender probabilistische Algorithmus N ein
(ε/l)-NBP für f ist.

1 input (y1 · · · yi−1, 1l) mit 1 ≤ i ≤ l
2 rate zufällig bi, . . . , bl ∈R {0, 1}
3 output(D(y1 · · · yi−1bi · · · bl)⊕ bi ⊕ 1)

4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren 61

N sagt also das i-te Bit yi mit bi vorher, falls D den String y1 · · · yi−1bi · · · bl für pseu-
dozufällig hält (also D(y1 · · · yi−1bi · · · bl) = 1 ist), und sonst mit bi ⊕ 1. Betrachte für
i = 1, . . . , l(k) + 1 die Zufallsvariablen

Hi = f[i−1](Uk)Bi · · ·Bl(k),

wobei Uk, Bi, . . . , Bl(k) unabhängig und gleichverteilt auf {0, 1}k bzw. {0, 1} sind. Insbe-
sondere ist also H1 = B1 · · ·Bl(k) = Ul(k) gleichverteilt auf {0, 1}l(k) und Hl(k)+1 = f(Uk)
pseudozufällig verteilt auf {0, 1}l(k).

Behauptung 89. Es gilt

Pr[N(f[i−1](Uk), 1l(k)) = fi(Uk)] = 1/2 + Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1].

Beweis. Wegen

N(f[i−1](Uk), 1l(k)) = D(f[i−1](Uk)Bi · · ·Bl(k)︸ ︷︷ ︸
Hi

)⊕Bi ⊕ 1 = D(Hi)⊕Bi ⊕ 1

folgt

Pr[N(f[i−1](Uk), 1`(k)) = fi(Uk)] = Pr[D(Hi)⊕Bi ⊕ 1 = fi(Uk)]
= Pr[D(Hi) = 1 ∧Bi = fi(Uk)]︸ ︷︷ ︸

Pr[Bi=fi(Uk)]−Pr[Bi=fi(Uk)∧D(Hi)=0]

+ Pr[D(Hi) = 0 ∧Bi 6= fi(Uk)]︸ ︷︷ ︸
Pr[D(Hi)=0]−Pr[D(Hi)=0∧Bi=fi(Uk)]

= Pr[Bi = fi(Uk)]︸ ︷︷ ︸
1/2

+ Pr[D(Hi) = 0]︸ ︷︷ ︸
1−Pr[D(Hi)=1]

− 2 Pr[D(Hi) = 0 ∧Bi = fi(Uk)]︸ ︷︷ ︸
Pr[D(Hi+1)=0∧Bi=fi(Uk)]

=Pr[D(Hi+1)=0]︸ ︷︷ ︸
1−Pr[D(Hi+1)=1]

Pr[Bi=fi(Uk)]︸ ︷︷ ︸
1/2

= 1/2 + Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1].

Sei die Zufallsvariable I auf {1, . . . , l(k)} gleichverteilt. Dann folgt

Pr[N(f[I−1](Uk), 1l(k)) = fI(Uk)] = 1/2 + Pr[D(HI) = 1]− Pr[D(HI+1) = 1]

= 1/2 +
l(k)∑
i=1

Pr[I = i]︸ ︷︷ ︸
1/l(k)

(Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1])

= 1/2 + (Pr[D(H1︸︷︷︸
Ul(k)

) = 1]− Pr[D(Hl(k)+1︸ ︷︷ ︸
f(Uk)

) = 1])/l(k)

= 1/2 + (Pr[D(f(Uk)) = 1]− Pr[D(U`(k)) = 1]︸ ︷︷ ︸
≥ε(`(k))

)/`(k)

≥ 1/2 + ε(`(k))/`(k)

�

Ganz ähnlich wie der obige Satz lässt sich auch folgendes Resultat beweisen.

Satz 90. Falls es einen ε-Unterscheider D für f gibt, so ex. auch ein (ε/l)-PBP für f .

62 4 Pseudozufallszahlen-Generatoren

4.2 Quadratische Reste

In diesem Abschnitt beschäftigen wir uns mit dem Problem, Lösungen für eine quadrati-
sche Kongruenzgleichung

x2 ≡m a (4.1)

zu bestimmen. Zunächst gehen wir der Frage nach, wie sich feststellen lässt, ob überhaupt
Lösungen existieren.

Definition 91. Ein Element a ∈ Z∗m heißt quadratischer Rest modulo m (kurz:
a ∈ QRm), falls ein x ∈ Z∗m existiert mit x2 ≡m a. QNRm := Z∗m \ QRm ist die Menge
der quadratischen Nichtreste modulo m.
Fallsm = p prim ist, lassen sich quadratische Reste effizient von quadratischen Nichtresten
modulo p unterscheiden. Sei p > 2 eine Primzahl und a ∈ Z. Dann heißt

L(a, p) =
(
a

p

)
=


1, a mod p ∈ QRp
−1, a mod p ∈ QNRp

0, sonst

das Legendre-Symbol von a modulo p.

Die Kongruenzgleichung (4.1) besitzt also für ein a ∈ Z∗m genau dann eine Lösung, wenn
a ∈ QRm ist. Da mit a, b ∈ QRm auch ab ∈ QRm ist, bildet QRm eine Untergruppe von
Z∗m. Wie das folgende Lemma zeigt, kann die Lösbarkeit von (4.1) für primes m effizient
entschieden werden.

Lemma 92. Sei a ∈ Z∗p, p > 2 prim, und sei g ein beliebiger Erzeuger von Z∗p. Dann
sind die folgenden drei Bedingungen äquivalent:

1. a ∈ QRp.
2. a(p−1)/2 ≡p 1,
3. logp, g(a) ist gerade,

Beweis.
1⇒ 2: Sei a ∈ QRp, d. h. b2 ≡p a für ein b ∈ Z∗p. Dann folgt mit dem Satz von Fermat,

a(p−1)/2 ≡p b p−1 ≡p 1.

2⇒ 3: Angenommen, a ≡p gk für ein ungerades k = 2 · j + 1. Dann ist

a(p−1)/2 ≡p gj·(p−1)︸ ︷︷ ︸
≡p1

g(p−1)/2 ≡p g(p−1)/2 6≡p 1.

3⇒ 1: Ist a ≡p gk für k = 2j gerade, so folgt a ≡p (gj)2, also a ∈ QRp.
�

Somit zerfällt Zp in die drei Teilmengen QRp, QNRp und Zp \ Z∗p = {0}, wobei die ersten
beiden jeweils (p − 1)/2 Elemente enthalten. Zudem ist das Produkt ab von a, b ∈ Z∗p
genau dann in QRp, wenn a, b ∈ QRp oder a, b ∈ QNRp sind. Als weitere Folgerung
erhalten wir folgende Formel zur effizienten Berechnung des Legendre-Symbols.

4.2 Quadratische Reste 63

Satz 93 (Eulers Kriterium). Für alle a ∈ Z und p > 2 prim gilt

a(p−1)/2 ≡p
(
a

p

)
.

Beweis. Es ist klar, dass diese Kongruenz im Fall a ≡p 0 gilt. Nach obigem Lemma gilt
dies auch im Fall a mod p ∈ QRp, da dann a(p−1)/2 ≡p 1 ist.
Es bleibt also der Fall, dass a mod p ∈ QNRp ist. Da die Kongruenz x2 ≡p 1 nach dem
Satz von Lagrange modulo p nur die beiden Lösungen ±1 hat und a(p−1)/2 nach dem
Satz von Fermat eine Lösung dieser Kongruenz ist, muss a(p−1)/2 ≡p −1 sein. Andernfalls
wäre a(p−1)/2 ≡p 1 und somit a mod p ∈ QRp (d.h. a mod p 6∈ QNRp). �

Korollar 94. Für alle a, b ∈ Z und p > 2 prim gilt

1.
(
−1
p

)
= (−1)(p−1)/2 =

{
1, p ≡4 1,
−1, p ≡4 3,

2.
(
ab
p

)
=
(
a
p

)
·
(
b
p

)
.

Als weiteres Korollar aus Eulers Kriterium erhalten wir eine Methode, quadratische Kon-
gruenzgleichungen im Fall p ≡4 3 effizient zu lösen. Im Fall p ≡4 1 ist dagegen kein
effizienter deterministischer Lösungsalgorithmus bekannt. Allerdings gibt es hierfür einen
effizienten probabilistischen Algorithmus von Adleman, Manders und Miller (1977).

Korollar 95. Sei p > 2 prim, dann besitzt die quadratische Kongruenzgleichung x2 ≡p a
für jedes a ∈ QRp genau zwei Lösungen. Im Fall p ≡4 3 sind dies ±ak mod p (für
k = (p+ 1)/4), wovon nur ak mod p ein quadratischer Rest ist.

Beweis. Sei a ∈ QRp, d. h. es existiert ein b ∈ Z∗p mit b2 ≡p a. Mit b ist auch −b eine
Lösung von x2 ≡p a, die von b verschieden ist (p ist ungerade). Nach Lagrange existieren
keine weiteren Lösungen.
Sei nun p ≡4 3. Dann gilt (

−b
p

)
=
(
−1
p

)
·
(
b

p

)
= −

(
b

p

)

nach Korollar 94. Demnach ist genau eine der beiden Lösungen ±b ein quadratischer
Rest. Schließlich liefert Eulers Kriterium die Kongruenz a(p−1)/2 ≡p 1. Daher folgt für
k = (p+ 1)/4 die Kongruenz

(ak)2 = a(p+1)/2 = a(p−1)/2 · a ≡p a.

Da mit a auch ak mod p ein quadratischer Rest ist, ist −ak mod p ein quadratischer
Nichtrest. �

Satz 96. Sei n = pq für Primzahlen p, q mit p ≡4 q ≡ 3. Dann besitzt die quadratische
Kongruenz x2 ≡n a für jedes a ∈ QRn genau vier Lösungen, wovon genau eine ein
quadratischer Rest ist.

Beweis. Mit x2 ≡n a besitzen wegen n = pq auch die beiden quadratischen Kongruenzen
x2 ≡p a und x2 ≡q a Lösungen, und zwar jeweils genau zwei (siehe Korollar 95):

64 4 Pseudozufallszahlen-Generatoren

y1 = a(p+1)/4 mod p ∈ QRp, y2 = −a(p+1)/4 mod p ∈ QNRp, z1 = a(q+1)/4 mod q ∈ QRq
und z2 = −a(q+1)/4 mod q ∈ QNRq. Mit dem Chinesischen Restsatz können wir vier
verschiedene Lösungen xi,j, 1 ≤ i, j ≤ 2 mit

x ≡p yi
x ≡q zj

bestimmen. Es können aber auch nicht mehr als diese vier Lösungen existieren, da sich
daraus für mindestens eine der beiden Kongruenzen x2 ≡p a und x2 ≡q a mehr als zwei
Lösungen ableiten ließen.
Wegen

x ∈ QRn ⇒ ∃u : u2 ≡n x
⇒ ∃u : u2 ≡p x ≡q u2

⇒ x mod p ∈ QRp ∧ x mod q ∈ QRq

können x1,2, x2,1, x2,2 keine quadratischen Reste modulo n sein.
Weiterhin gibt es Zahlen l ∈ Z∗p, k ∈ Z∗q mit l2 ≡p y1 und k2 ≡q z1. Sei m ∈ Z∗n eine
Lösung für das System

x ≡p l
x ≡q k

Dann folgt
x1,1 ≡p y1 ≡p l2 ≡p m2 und x1,1 ≡q z1 ≡q k2 ≡q m2

und daher x1,1 ≡n m2. Also ist x1,1 ein quadratischer Rest modulo n. �

Als weitere zahlentheoretische Funktion mit für die Kryptografie wichtigen Eigenschaften
erhalten wir somit die Quadratfunktion x2 : QRn → QRn, die nach vorigem Satz bijektiv
ist (falls n = pq für Primzahlen p, q mit p ≡4 q ≡ 3). Ihre Umkehrfunktion x 7→

√
x

heißt diskrete Wurzelfunktion, und kann (nur) bei Kenntnis der Primfaktoren p und
q von n effizient berechnet werden. Es ist bekannt, dass die Berechnung dieser Funktion
äquivalent zur Faktorisierung von n ist. Ohne Kenntnis der Faktoren von n ist dagegen
nicht einmal ein effizientes Verfahren bekannt, mit dem man für ein gegebenes a ∈ Z∗n
entscheiden kann, ob a ∈ QRn ist oder nicht.

4.3 Der BBS-Generator

Der BBS-Pseudozufallsgenerator von Blum, Blum und Shub 1986 verwendet die Qua-
dratfunktion

x2 : QRn 7→ QRn,

mit n = p · q für p, q prim und p ≡4 q ≡4 3. Seine Sicherheit lässt sich unter der
Voraussetzung beweisen, dass ohne Kenntnis der Faktoren p, q für fast alle y ∈ QRn das
niederwertigste Bit von √y nur mit vernachlässigbarem Vorteil richtig geraten werden
kann. Dies wiederum ist äquivalent dazu, dass sich n nicht effizient faktorisieren lässt.
Als Keim wird eine zufällig aus Z∗n gewählte Zahl x0 verwendet. Daraus werden der
Reihe nach Zahlen xi ∈ QRn durch Quadrieren berechnet, deren Paritäten die Bits der
Ausgabefolge bilden.

4.4 Quadratische Pseudoreste 65

Algorithmus BBSn,l(x0)
1 for i := 1 to l do
2 xi := x2

i−1 mod n
3 bi := xi mod 2
4 output(b1, . . . bl)

Beispiel 97. Wählen wir z. B. die Primzahlen p = 11, q = 19, also n = 209, und als
Keim x0 = 20, so erhalten wir die Pseudo-Zufallsbitfolge BBS209(20) = 11001100 . . .

i 0 1 2 3 4 5 6 7 8 . . .

xi 20 191 115 58 20 191 115 58 20 . . .

bi 0 1 1 0 0 1 1 0 0 . . .

4.4 Quadratische Pseudoreste

Zum Nachweis der Sicherheit des BBS-Generators erweitern wir das Legendre-Symbol
zum Jacobi-Symbol.
Definition 98 (Jacobi-Symbol). Das Jacobi-Symbol ist für alle a und alle ungeraden
m > 3 durch

J (a,m) =
(
a

m

)
=
(
a

p1

)e1

· · ·
(
a

pr

)er

definiert, wobei pe1
1 · · · per

r die Primfaktorzerlegung von m ist. Ist zwar
(
a
m

)
= 1, aber

a ∈ QNRm kein quadratischer Rest modulo m, so heißt a quadratischer Pseudorest
modulo m (kurz: a ∈ Q̃Rm).

Man beachte, dass im Gegensatz zum Legendre-Symbol die Eigenschaft
(
a
m

)
= 1 für

ein a ∈ Z∗m nicht unbedingt mit a ∈ QRm gleichbedeutend ist. Zum Beispiel gibt es in
Z∗n (n = p · q für Primzahlen p und q mit p ≡4 q ≡4 3) wie wir gesehen haben, genau
ϕ(n)/4 quadratische Reste und 3ϕ(n)/4 quadratische Nichtreste, wogegen nur für die
Hälfte aller a ∈ Z∗n die Gleichung

(
a
m

)
= −1 gilt. Folglich gibt es in diesem Fall genau so

viele quadratische Reste wie quadratische Pseudoreste.
Allerdings überträgt sich die in Teil 2 von Korollar 94 festgehaltene Eigenschaft des
Legendre-Symbols auf das Jacobi-Symbol. Interessanterweise ist das Jacobi-Symbol auch
ohne Kenntnis der Primfaktorzerlegung des Moduls effizient berechenbar.
Sei n = pq das Produkt zweier Primzahlen p, q mit der Eigenschaft p ≡4 q ≡4 3. Wie
bereits erwähnt, ist das Finden einer Wurzel für ein gegebenes x ∈ Z∗n genau so schwer wie
die Faktorisierung von n. Tatsächlich wird bereits das zugehörige Entscheidungsproblem,
ob eine gegebene Zahl x ∈ Z∗n eine Wurzel hat (also ein quadratischer Rest ist), als
schwierig betrachtet. Da dieses Problem für Eingaben x mit Jacobisymbol

(
x
n

)
= −1

trivial ist, werden sie nicht als Eingaben zugelassen.
Quadratische-Reste-Problem (QR-Problem):

Gegeben: Zahlen n und x ∈ Z∗n mit Jacobisymbol
(
x
n

)
= 1 (d.h. x ∈ QRn ∪ Q̃Rn),

wobei n das Produkt zweier unbekannter Primzahlen ist.
Gefragt: Ist x ∈ QRn?

Beim QR-Problem geht es also darum, quadratische Reste von quadratischen Pseudoresten
zu unterscheiden.

66 4 Pseudozufallszahlen-Generatoren

4.5 Sicherheit des BBS-Generators

Wir zeigen nun, dass sich aus jedem effizienten Unterscheider für den BBS-Generator
ein effizienter probabilistischer Algorithmus für das QR-Problem gewinnen lässt. Im
Umkehrschluss bedeutet dies, dass der BBS-Generator sicher ist, falls das QR-Problem
hart ist.
Sei also D ein effizienter ε-Unterscheider für den Generator BBSn,l. Dann ex. ein effizienter
(ε/l)-PBP P für BBSn,l. Der folgende Satz zeigt, wie sich aus einem δ-PBP P für BBSn,l
ein Entscheidungsalgorithmus für das QR-Problem gewinnen lässt, der das QR-Problem
bei einer zufällig gewählten Eingabe x ∈R QRn ∪ Q̃Rn mit einem Vorteil von δ korrekt
entscheidet.

Satz 99. Falls es einen effizienten δ-PBP P für BBSn,l gibt, so lässt sich für eine zufällig
aus QRn ∪ Q̃Rn gewählte Eingabe x mit Wahrscheinlichkeit ≥ 1/2 + δ entscheiden, ob
x ∈ QRn ist.

Beweis. Betrachte folgenden Entscheidungsalgorithmus.

Algorithmus QR-Test(x, n)
1 wähle i ∈R {1, . . . , l}
2 zi := x
3 for j := i+ 1 to l do
4 zj := z2

j−1 mod n
5 bj := zj mod 2
6 bi := P (bi+1 · · · bl, 1l)
7 if x ≡2 bi then output(1) else output(0)

Die Aussage des Satzes folgt unmittelbar aus folgender Behauptung.
Behauptung. Pr

x∈RQRn∪Q̃Rn
[QR-Test(x, n) = 1⇔ x ∈ QRn] ≥ 1/2 + δ.

Wird x zufällig aus QRn∪Q̃Rn gewählt, so ist xi+1 = x2 mod n ein zufälliger quadratischer
Rest in QRn, d.h. die Eingabe für den PBP P sind l− i konsekutive Bits einer mit BBSn,l
generierten Pseudozufallsfolge. Daher gibt P mit Wahrscheinlichkeit 1/2+δ die Parität der
diskreten Wurzel √xi+1 mod n aus. Da x ∈ QRn∪Q̃Rn ist, gilt √xi+1 mod n ∈ {x, n−x}.
Zudem hat √xi+1 mod n wegen x 6≡2 n− x genau dann die gleiche Parität wie x, wenn
x = √xi+1 mod n ist. Da dies wiederum mit x ∈ QRn äquivalent ist, folgt die Behauptung.

�

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgaard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen
	1.2.10 Die Sponge-Konstruktion
	1.2.11 SHA-3

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 CBC-MACs
	1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC)

	2 Elliptische Kurven
	2.1 Elliptische Kurven über den reellen Zahlen
	2.2 Elliptische Kurven über endlichen Körpern

	3 Digitale Signaturverfahren
	3.1 Das RSA-Signaturverfahren
	3.2 Das ElGamal-Signaturverfahren
	3.3 Das Schnorr-Signaturverfahren
	3.4 Der Digital Signature Algorithm (DSA)
	3.5 ECDSA (Elliptic Curve DSA)
	3.6 One-time Signatur (Lamport 1979)
	3.7 Full Domain Hash (FDH) Signaturen
	3.8 Verbindliche Signaturen (undeniable signatures)
	3.9 Fail-Stop-Signaturen

	4 Pseudozufallszahlen-Generatoren
	4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren
	4.2 Quadratische Reste
	4.3 Der BBS-Generator
	4.4 Quadratische Pseudoreste
	4.5 Sicherheit des BBS-Generators

