Vorlesungsskript
Kryptologie

Wintersemester 2020/21

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

28. Januar 2021

1

Inhaltsverzeichnis

1 Kryptografische Hashverfahren

1.1
1.2

1.3

Einfithrung
Schliissellose Hashfunktionen (MDCs)
1.2.1 Vergleich von Sicherheitsanforderungen
1.2.2 Das Zufallsorakelmodell (ZOM)
1.2.3 TIterierte Hashfunktionen
1.2.4 Die Merkle-Damgaard-Konstruktion
1.2.5 Die MD4-Hashfunktion
1.2.6 Die MD5-Hashfunktion
1.2.7 Die SHA-1-Hashfunktion
1.2.8 Die SHA-2-Familie
1.2.9 Kryptoanalyse von Hashfunktionen
1.2.10 Die Sponge-Konstruktion L.
1.2.11 SHA-3
Nachrichten-Authentikationscodes (MACs)
1.3.1 Angriffe gegen symmetrische Hashfunktionen
1.3.2 Informationstheoretische Sicherheit von MACs
1.3.3 CBC-MACs
1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC)

2 Elliptische Kurven

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Elliptische Kurven iiber den reellen Zahlen
Elliptische Kurven iiber endlichen Kérpern

Digitale Signaturverfahren

Das RSA-Signaturverfahren L.
Das ElGamal-Signaturverfahren 00000
Das Schnorr-Signaturverfahren
Der Digital Signature Algorithm (DSA)
ECDSA (Elliptic Curve DSA)
One-time Signatur (Lamport 1979)
Full Domain Hash (FDH) Signaturen
Verbindliche Signaturen (undeniable signatures)
Fail-Stop-Signaturen

1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o Integritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
gritdt von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegritéit eine dhnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr niitzlich. Auf weitere Anwendungsmoglichkeiten werden
wir spater eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text z eine zwar kompakte aber dennoch représentati-
ve Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift fiir A muss
somit ,charakteristische Merkmale“ von x in den Hashwert h(z) einflielen lassen. Da
der Fingerabdruck eines Menschen ganz dhnliche Eigenschaften besitzt (was ihn fiir
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(z) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebrauchlich sind auch die Bezeich-
nungen kryptografische Priifsumme oder message digest (englische Bezeichnung fiir
,Nachrichtenextrakt*).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren
Kryptografische
Hashverfahren
Sonstige
Hashverfahren

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

(Integritatsschutz) (Authentikation)

— Wie lésst sich sicherstellen, dass eine Nachricht (oder eine Datei) wihrend
einer (rdumlichen oder auch zeitlichen) Ubertragung nicht verindert wurde?

— Wie lasst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

e Teilnehmerauthentikation (entity authentication, identification)

— Wie kann sich eine Person (oder ein Geréit) anderen gegeniiber zweifelsfrei
ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhéngt (sieche Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kiirzel MDC auch als eine Abkiirzung fiir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritéit eines Datensatzes x sicherzustellen, der iiber einen ungesi-

@ ======================> @
h h
é Authentisierter Kanal A 4 (echt)
> |y=h()

falsch

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.

1.2 Schliissellose Hashfunktionen (MDCs) 3

Ungesicherter !
hk hk
é) Kanal l (echt)
S-S S-S S-S S-S CSCSCSCSESSES=S=S=S=S=S=S=CS =) h x/ ; /
@)=y falsch
<) > O

Gesicherter Kanal

k: Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Wert fir x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x tiber einen authentisierten Kanal und priift, ob der
Datensatz nach der Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséachlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschliefflich digitale Signaturen gebildet werden. Abbildung 1.3 zeigt, wie
sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch der
Hashwert iiber den unsicheren Kanal gesendet wird.

Mochte Alice eine Nachricht x an Bob tibermitteln, so berechnet sie den
zugehorigen MAC-Wert y = hy(x) und fiigt diesen der Nachricht x hinzu.
Bob iiberpriift die Echtheit der empfangenen Nachricht (z2',y'), indem er
seinerseits den zu z’ gehorigen Hashwert hy(x’) berechnet und das Ergebnis
mit y’ vergleicht. Der geheime Authentikationsschliissel k£ muss hierbei genau
wie bei einem symmetrischen Kryptosystem tiber einen gesicherten Kanal
vereinbart werden.

Indem Alice ihre Nachricht 2 um den Hashwert y = hy(x) ergdnzt, gibt sie Bob nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
iiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h 6ffentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).

4 1 Kryptografische Hashverfahren

Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fur h, falls
h(z) =y ist. Ein Paar (z,2') mit h(z) = h(z') heifit Kollisionspaar fiir h. Die Anzahl
||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heifit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (z,y) zu erzeugen. Fiur bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text z € X mit h(z) = y.

Falls es einen immensen Aufwand erfordert, fiir einen vorgegebenen Hashwert y einen Text
x mit h(xz) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benotigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Fine Hashfkt. h: X — Y und ein Text z € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit grofem Aufwand ein weiterer Text &’ # x
mit dem gleichen Hashwert h(z') = h(z) finden lésst, heifit h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benétigt. Beim Versuch, eine
digitale Signatur zu félschen (siehe unten), sieht sich der Angreifer dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Fine Hashtkt. h: X — Y.
Gesucht: Texte x # ' € X mit h(z") = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand l6sen lésst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h: X — Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,

1.2 Schliissellose Hashfunktionen (MDCs) 5

1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der fiir ein zufillig aus X gewahltes x mit
Erfolgswahrscheinlichkeit ¢ ein zweites Urbild 2’ fiir h liefert und andernfalls 7 aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit € ein Kollisionspaar findet. O

Als néchstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 2. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fiir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | x € X} ein Urbild mit h(z) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.

Sei C = {h ' (y) | y € W(h)}. Dann hat B eine Erfolgswahrscheinlichkeit von

] fel-1_1 S0 = (n—m)/n
SRl e = w 2l =) = (= m)n >

ceC ceC

N | —

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h: X —
Y nach oben abzuschéatzen. Sind X und Y vorgegeben, so kénnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren®, dass wir fiir jedes x € X zufallig ein y € Y wahlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse F'(X,Y) aller m™ Funktionen von X nach Y zu wahlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X|| eine bestimmte
Grofle tibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion mit
sidealen“ kryptografischen Eigenschaften. Offensichtlich besteht fiir den Angreifer die

1 wahle zufallig z € X

> y:=h(x)

5 x' = Aly)

1 if = # 2’ then return(z,z’) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} CX
2 for each z; € Xy do

3 if h(z;) =y then return(z;)

1 return(?)

Abbildung 1.6: Bestimmung eines Urbilds fiir einen Hashwert

einzige Moglichkeit, Informationen iiber A zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

Eine Zufallsfunktion A eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) fiir einen Text = auch dann noch schwer vorhersagbar ist, wenn der
Angreifer bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei Xo = {x1,..., 2} eine beliebige Menge von k verschiedenen Texten
aus X und seienyy, ..., yx € Y. Dann gilt fir eine zufillig aus F(X,Y') gewdhlte Funktion
h und fiir jedes Paar (z,y) € (X — Xo) X Y,

Prih(x) = y|h(z;) = y; furi=1,...,k] =1/m.

Um eine obere Komplexitéitsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FINDPREIMAGE(h, y, q) gibt im ZOM mit Wahrscheinlichkeit ¢ = 1—(1—1/m)?
ein Urbild von y aus (unabhdingig von der Wahl der Menge X).

Beweis. Sei y € Y fest und sei Xy = {z1,...,2,}. Firi = 1,...,¢ bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhangig
und ihre Wahrscheinlichkeit ist Pr[E;] = 1/m (i =1,...,q). Also folgt

Pr[EAU...UE,]=1-Pr[EiN...NE]=1-(1-1/m)".

Prozedur FindSecondPreimage(h,z,q)
y = h(z)
wahle eine beliebige Menge X, = {zy,...,241} C X —{z}
for each z; € Xy do
if h(z;) =y then return(x;)
return(?)

E N N VN

ot

Abbildung 1.7: Bestimmung eines 2. Urbilds fiir einen Hashwert

1.2 Schliissellose Hashfunktionen (MDCs) 7

Prozedur Collision(h,q)

1 wahle eine beliebige Menge X, = {z1,...,2,} CX
> for each z; € Xy do y; := h(x;)
5 if Ji#j:y; =y, then return(z;,z;) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fiir h(z) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lésst sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FINDSECONDPREIMAGE(h, x,q) gibt im ZOM mit Wahrscheinlichkeit ¢ =
1—(1—=1/m)? " ein zweites Urbild xo # x von y = h(x) aus.

Ist g vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen € ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ &~ m/2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (x, z") aufzuspiiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofier 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag.*

Tatséchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

L—(m—1)(m—2)-(m—q+1)/m*"

mindestens eine Kugel mehr als einmal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt
dies einen Wert von ungefahr 0,507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von ¢ abhéngen. Tragt man aber jeden Text x unter dem Suchwort
h(z) in eine (herkémmliche) Hashtabelle der GroSe ¢ ein, so wird der Zeitaufwand fiir
die Bearbeitung jedes einzelnen Textes = im wesentlichen durch die Berechnung von h(z)
bestimmt.

Satz 6. COLLISION(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

(m—1)(m-—2)---(m—q+1)

e=1-—
ma—1

ein Kollisionspaar (x,z') fir h aus.

Beweis. Sei Xo = {z1,...,2,}. Firi=1,...,q bezeichne E; das Ereignis

“h(x;) & {h(x1),..., h(x;i_1)}.”

*Da die Haufigkeiten der Geburtstage in Wirklichkeit nicht ganz gleichméfig iiber das Jahr verteilt
sind, ist die Wahrscheinlichkeit sogar noch etwas hoher.

8 1 Kryptografische Hashverfahren

Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt ? aus” und fiiri =1, ..., ¢
gilt
m—i+1

PI'[E1|E1 N...N Eifl] =
m

Dies fiihrt auf die Erfolgswahrscheinlichkeit

e = 1=-Pr[EyN...NE,]
= 1- PI‘[El]PI‘[EQ | El] cee PI‘[Eq | E1 Nn...N Eq—l]

)

Mit 1 — 2 ~ e~ folgt

¢!) ¢! —i _1 Nty _alg—1) _ 4 2
5:1—|| 1—7 %1—|Iem:1—€m i=1 :1_6 2m %1_6 anzq/Qm.
X m .
i=1 =1

Somit erhalten wir die Abschiatzung

q = cv/m

mit ¢. = v/2¢. Diese Abschitzung ist nur fiir e-Werte nahe Null hinreichend genau. Eine
2

bessere Abschétzung ergibt sich aus der Approximation e ~ 1 — ¢~ 2m

q ~ c/m

mit ¢, = /2In 7. Fiir e = 1/2 ergibt sich somit ¢ &~ /(2In2)m ~ 1,17y/m.

Besitzt also eine bindre Hashfunktion h: {0,1}" — {0, 1}™ die Hashwertlange m = 128
Bit, so miissen im ZOM ¢ ~ 1,17 - 25 Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu
konnen, sollte eine Hashfunktion mindestens eine Hashwertlange von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h: {0, 1}’”” — {0, 1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0, 1}

konstruieren lasst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.

Preprocessing: Transformiere z € {0, 1}* mittels einer Funktion

y: {07 1}* - U{07 1}”

r>1

zu einem String y(x) mit der Eigenschaft |y(z)| =, 0.

1.2 Schliissellose Hashfunktionen (MDCs) 9

Processing: Sei IV € {0,1}™ ein offentlich bekannter Initialisierungsvektor und sei

y(x) = y1 -y, mit |y;| =t fiir ¢ = 1,...,r. Berechne eine Folge z, ..., 2, von
Strings z; € {0,1}™ wie folgt:
1V, i=0,
zi =
h(zi—lyi)7 1= 1,...,7".

Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z.), wobei
g: {0,1}™ — {0,1} eine offentlich bekannte Funktion ist. (Meist wird fiir g
die Identitat verwendet.)

Um h(z) zu berechnen, muss also die Kompressionsfunktion i genau r-mal aufgeru-
fen werden. Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschatft.

Definition 7. Eine Funktion y: {0,1}* — {0, 1}* heifit suffizfrei, falls es keine Strings
x # T und z in {0,1}* mit y(Z) = zy(z) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(Z) an einer Stelle & # x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffizfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch h kollisionsresistent.

Beweis. Wir nehmen an, dass es gelingt, ein Kollisionspaar (x,z) fiir h zu finden (d.h.
h(z) = h(Z) und = #). Sei

y(z) = y2 - Ye—1ye und y(T) = G192 . .. GG mit k < L.

Da y suffixfrei ist, muss ein Index i € {1,...,k} mit y; # §;_x4; existieren. Weiter seien
2 (i=0,...,k)und Z; (=0,...,1) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(z;) = h(x) = k(&) = g(3) auch z, = 7 gelten. Sei ipas
der grofite Index i € {1,...,k} mit z;_1y; # Zi_kri-1U1_k+i- Dann bilden z;, . qy; . und
Zl—ktimaz—1Yl—k-+ima, WEZEN

P(Zinmae—1Yimas) = Zimaz = Z—ktimas = M Z-ktimas—1U—k+imas)

ein Kollisionspaar fiir h. O

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0™ benutzt, die optionale
Ausgabetransformation entfillt, und fiir y(z) wird im Fall t > 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir spéter.)

Fir z = ¢ sei y(r) = 0" und fir z € {0,1}" mit n > 0 sei k¥ = [%] und = =
1Ty . .. T 1Zp Mit x| = |za| = ... = |xp_q| =t — 1 sowie |z = t — 1 — d, wobei
0 <d<t—1 Im Fall £k = 1 ist dann y(x) = 0x0%1bin,_;(d) und fiir & > 1 ist

10 1 Kryptografische Hashverfahren

y(:v) = Y1 - - Y41, WObel

OZEl, 1=]_,
12y, 2<i<k,
12,07, 1=k,

Lbing_1(d), i=k+1,

und bin;_1(d) die durch fithrende Nullen auf die Lange t — 1 aufgefiillte Binardarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffizfrei.

Beweis. Seien x # ¥ zwei Texte mit |z| < |Z|. Wir miissen zeigen, dass y() = y1y2 - . - Ykt1
kein Suffix von y(Z) = 4192 . . . §i41 ist. Im Fall = ¢ ist dies klar. Fiir x # ¢ machen wir
folgende Fallunterscheidung.

1. Fall: |z| #,_; |Z|. Dann folgt d # d und somit Y41 # Jis1-

2. Fall: |z| = |Z|. In diesem Fall ist £ = [. Wegen = # T existiert ein Index i €
{1,...,k} mit x; # Z;. Dies impliziert y; # ¥, also ist y(z) kein Suffix von y(Z).

3. Fall: |z| # |Z| und |z| =;— |Z|. In diesem Fall ist k£ < [. Da y(z) mit einer Null
beginnt, aber das (I — k + 1)-te Bit von y(Z) eine Eins ist, kann y(z) kein Suffix
von y(Z) sein. 0

Nun kommen wir zum Fall ¢ = 1. Sei y die durch y(x) := 11f(z) definierte Funktion,
wobei f wie folgt definiert ist:

flzy...xn) = f(z1) ... f(zg) mit f(0) =0 und f(1)=01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion A bei der
Berechnung von ﬁ(m) im Fall ¢ = 1 fur jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(z)| < 2(n+1)-mal aufgerufen. Im Fall ¢ > 1 werden dagegen nur k+1 = [;"5]+1
Aufrufe benotigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlainge von MD4 betriagt | = 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wortern.

Operatoren auf {0,1}3
X AY | bitweises ,,Und” von X und Y
X VY | bitweises ,,Oder” von X und Y
X @Y | bitweises ,,exklusives Oder® von X und Y
=X | bitweises Komplement von X
X +Y | Ganzzahl-Addition modulo 232
X — s | Rechtsshift um s Stellen
X < s | zirkuldrer Linksshift um s Stellen

1.2 Schliissellose Hashfunktionen (MDCs) 11

Wihrend die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes azasaiag, 0 < a; < 255 zusammengesetztes Wort reprasentiert die Zahl
a02?* + a12'% + a22® + a3) ausgefiihrt wird, verwendet SHA-1 eine big endian Architektur
(d.h. azasaiag, 0 < a; < 255 reprisentiert die Zahl a32* + a»2' + ;2% + ag). Der
MD4-Algorithmus benutzt die folgenden Konstanten y;, 2;,s;, j =0,...,47

y; (in Hexadezimaldarstellung)
i=0,....15 0
j=16,...,31 5a827999
7 =32,...,47 6ed9ebal
j

j=0,...,15 | 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15
j=16,...,31] 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
j=32,...,47] 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
5
j=0,...,15 | 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11, 19
j=16,...,31]3,5,9,13,3,5,9,13, 3,5, 9,13, 3, 5, 9, 13
j=32,...,47]3,9,11,15,3,9,11,15,3,9, 11, 15,3,9, 11, 15

und folgende Funktionen f;, 7 =0,...,47

(X AY)V (=X A Z), = 0,....15,
(XY, Z) = {(XAY)V(XAZ)V(YANZ), j=16,...,31,
XovYacz j=132,... .47,

Fiir MD4 konnten nach ca. 22 Hashwertberechnungen Kollisionen aufgespiirt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(z)

1 input z € {0,1}*, |z| =n

oy :=x10%bing(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

1+ seiy=M---M,, r=(n+1+k+64)/512

5 for 1:=1 to r do

6 seli M; = X|[0]--- X[15]

7 (A,B,C, D) = (Hl,HQ,Hg,H4)

8 for j:=0 to 47 do

9 (A,B,C,D):=(D,(A+ f;(B,C,D)+ X[z + y;j) < s;,B,C)
10 (Hl,HQ,Hg,H4) = <H1+A,H2+B,H3+C7H4+D)

11 output H HyHsH,

1.2.6 Die MD5-Hashfunktion

Der MD?5 ist eine 1991 von Rivest prasentierte verbesserte Version von MD4. Die Bitlange
von MD5 betragt wie bei MD4 [= 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.

12 1 Kryptografische Hashverfahren

Zudem besitzt MD5 eine zusétzliche 4. Runde (j = 48,...,63), in der die Funktion
(XY, Z) =Y & (X V~Z) verwendet wird. AuBerdem wurde die in Runde 2 von MD4
verwendete Funktion durch f;(X,Y,Z) := (X ANZ)V (Y AN=Z), j = 16...31, ersetzt.
Die y-Konstanten sind definiert als y; := die ersten 32 Bit der Binardarstellung von
abs(sin(j + 1)), 0 < j <63, und fiir z; und s; werden folgende Konstanten benutzt.

Zj

j=0,...,15 | z;=j: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
j=16,...,31 |z = (55 +1)mod 16 : 1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12
j=32,...,47 | z; = (35 +5) mod 16 : 5,8,11,14,1,4,7,10,13,0,3,6,9,12,15,2

J=48,...,63| z; = 77 mod 16 : 0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
Sj

j=0,...,15 7,12,17,22,7,12,17,22,7,12,17,22,7,12,17, 22

j=16,...,31 5,9,14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20

j=32,...,47 4,11,16,23,4,11,16,23,4, 11, 16,23, 4,11, 16, 23

j=48,...,63 6,10,15,21,6,10,15,21,6, 10, 15,21, 6, 10, 15, 21

Fiir MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (fiir die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MDb5(z)

1 input z € {0,1}*,|z| =n

> y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
3 (Hy, He, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

vosel y=M,---M,, r=(n+1+k+64)/512

5 for 1:=1 to r do

6 seli M; = X][0]--- X[15]

7 (A,B,C,D) := (Hy, Hy, H3, Hy)

8 for j:=0 to 63 do

9 (A,B,C,D):=(D,B+ (A+ f;(B,C,D)+ X|[zj] + y;) < s;,B,C)
10 (Hl,Hg,H3,H4) = (H1+A,H2+B,H3+O,H4+D)
11 output H HyH3;H,

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behorde
NIST (National Institute of Standards and Technology) im August 1991 veroffentlichten
DSS (Digital Signature Standard). Die Bitldnge von SHA-1 betrigt [= 160 Bit. Bei
einer Wortlange von 32 Bit entspricht dies 5 Wortern. SHA-1 unterscheidet sich nur
geringfiigig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu fithrt, dass
nach Berechnung von ca. 26! Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertldnge von 160 Bit ca. 250
Berechnungen erforderlich sein miissten). Diese potentielle Schwéche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkuldren Shift um eine Bitstelle

1.2 Schliissellose Hashfunktionen (MDCs)

13

ausfiihrt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten K, j =0,...,79

K; (in Hexadezimaldarstellung)
j=0,...,19 5a827999
7 =20,...,39 6ed9ebal
j=40,...,59 8 f1bbedce
j=260,...,79 ca62cld6

und folgende Funktionen f;, j =0,...,79

(XAY)V (=X AZ), j= 0,...,19,
XeYoZ, j=20,...,39,
LXY, 2) = .
(XAY)V(XANZ)V(YANZ), j=40,...,59,
XY@z, j=60,...,79
SHA-1(x)

input = € {0,1}*, |z| =n

y:= x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
(Hy, Hy, Hy, H3, Hy) := (67452301, e fcdab89, 98badc fe, 10325476, c3d2e1 f0)
sei y=M,---M,, r=(n+1+k+64)/512

5 for ¢:=1 to r do

6 seli M; = X|[0]--- X[15]

7 for t:=16 to 79 do

8 X[t =Xt-3]eX[t—-8 e X[t—14]eX[t—-16]) « 1

9 (A,B,C,D,E) = (Hy, Hy,Hs, H3, Hy)

10 for j:=0 to 79 do

11 temp := (A< 5)+ f;(B,C,D) + E+ X[j] + K;

12 (A,B,C,D, E) := (temp, A, B <> 30,C, D)

13 (Hy,Hy,Hy, H3, Hy) := (Hy+ A Hy+ B,Hy + C,Hs + D,Hy + F)

14 output HOH1H2H3H4

[N

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veroffentlichte die US-Behorde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.

SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlinge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten K, j =0,...,63 (in

14 1 Kryptografische Hashverfahren

Hexadezimaldarstellung).

428a2 98, 71374491, b5¢0 fbcf, e9b5dbab, 3956¢25b, 59 f111f1,923 f82a4, ablcheds,
d807aa98, 12835601, 243185be, 550c7dc3, T2bebd74, 80debl fe, 9bdc06a7, c19bf174,
e49b69cl, efbed786, 0fc19dc6, 240calce, 2de92c6 f, 4aT7484aa, 5¢b0a9de, 76 fI88da,
983e5152, a831¢66d, b00327¢8, bf597 fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6df ¢, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722¢85,
a2bfe8al, a81a664b, c24b8070, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376¢08, 2748774c, 34b0bcbb, 391c0ch3, 4edS8aada, 5b9ccad f, 682e6 f 3,
748 f82ee, 78aH636 f, 84c87814, 8cc70208, 90be f f fa, a4b06¢ceb, be f9ad f7, c6T1T8f2

Dies sind jeweils die ersten 32 Bit der bindren Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, ...,311. SHA-256 arbeitet wie folgt.

SHA-256(x)

1 input z € {0,1}*, |z =n

oy = x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
3 (Ho, Hl, HQ, H3, H4, H5, H(;, H7) = (6@096667, bb67a€85, 3C6€f372, a54ff53a,
| 510e527 f,9b05688c¢, 1 f83d9ab, 5be0cd19)

5 sel y=»M;---M,, r=n+1+k+64)/512

¢ for i:=1 to r do

7 seli M; = X][0]--- X[15]

8 for t:=16 to 63 do

9 s0:= (X[t —15] = 7) @& (X[t — 15] — 18) @ (X[t — 15] — 3)

" sl = (X[t—2] = 17) & (X[t — 2] = 19) & (X[t — 2] — 10)
11 Xt] == X[t —16] 4+ s0 + X[t — 7] + s1
12 (A,B,C,D,E, F7 G7 H) = (H07H17H27H37H47H57H67H7>

13 for j:=0 to 63 do
14 s0:=(A—>2)® (A= 13)d (A — 22)

15 maj = (ANB) @ (ANC)@ (BAC)
16 t2 := s0 +may

17 sl:=(F<—=6)®(F<—=11)® (F < 25)
18 ch:=(ENF)® (-EANG)

tl:=H+sl+ch+ K; + X|[j]

(A,B,C,D,E,F,G,H) = (t1 +12,A,B,C,D +t1,E, F,G)

21 (Ho,Hl,HQ,Hg,H4,H5,H6,H7>

22 = (Hy+A,Hi+B,Hy,+C,Hy+ D,H,+ E,Hs + F,Hs + G,H; + H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von Hy, ..., H; in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
bindren Nachkommastellen der Wurzeln der Primzahlen 2,3,5,7,11,13,17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwéchen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen fiir MD4
mittels “hand calculation” finden lassen.

In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” fiir
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar

1.2 Schliissellose Hashfunktionen (MDCs) 15

fiir die MD5 Kompressionsfunktion.

Im August 2004 wurden schliellich Kollisionen fiir MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benétigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschétzt.

Im Mérz 2005 veroffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
fithrten. Nur wenige Tage spater beschrieb Vlastimil Klima eine Moglichkeit, Kollisionen
fir MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im Marz 2006
auf eine Minute verkiirzt.

Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 28! Hashwertberechnungen (anstelle von 2%° bei einem Geburts-
tagsangriff) aufsptrt.

In 2004 fanden Biham und Chen Beinahe-Kollisionen fiir den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen fiir den auf 62 Runden reduzierten SHA-0 Algorithmus vor.

SchlieBlich wurde im August 2004 die Berechnung einer Kollision fiir den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 25! Hashwerte berechnet, die ca. 80000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benotigten.

Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode fiir MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 2%° senken lisst. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfiigig auf 2%° Hashwertberechnungen
verbessert.

Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Darauthin kiindigte die amerikanische Behorde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzuldsen.

Im Jahr 2005 veroffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar fiir den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig spater kiindigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 2%° Hashwertberechnungen
an. Im August 2005 erfuhr der benétigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 2% Berechnungen. In
2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem geschiatzten Aufwand
von 2% bis 2°7 Berechnungen veréffentlicht.

Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs fiir den SHA-3-Algorithmus ausgewéhlt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzuldsen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen ahnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfligung zu stellen.

16 1 Kryptografische Hashverfahren

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge (Schwamm) bezeichnet. Auf der Basis dieser Entwurfsmethode lassen sich aufler
Hashfunktionen bspw. auch Pseudozufallsgeneratoren gewinnen. Der Aufbau eines Spon-
ges dhnelt oberflachlich betrachtet der in 1.2.3 vorgestellten Konstruktion von iterierten
Hashfunktionen, weist aber einige Unterschiede auf. So basiert ein Sponge statt auf
einer Kompressionsfunktion h auf einer Permutation (oder allgemeiner Transformati-
on) f:{0,1}* = {0,1}", die wie h iteriert angewendet wird. Dabei wird der aktuelle
b-Bitblock in zwei Teilblocke der Lange r und ¢ unterteilt, die als &uflerer bzw. innerer
Zustand bezeichnet werden. Wie der Name schon sagt, verbleiben die Bits des inneren
Zustands im Sponge, d.h. sie dienen nur zur Berechnung des nachsten Zustands und wer-
den im Gegensatz zu den Bits des dufleren Zustands nicht unmittelbar fiir die Gewinnung
der Ausgabe genutzt. Die Anzahl ¢ der Bits des inneren Zustands wird als Kapazitat
des Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter. Die Anzahl r der
Bits des dufleren Zustands heifit Bitrate , wobei r + ¢ = b gelten muss.

Bevor die Funktion f im Kern des Algorithmus iteriert angewendet wird, um eine
Zustandsfolge zu generieren, wird ein Preprocessing ausgefiihrt. Die Anforderungen an
diese Funktion definieren wir vorab.

Definition 10. Seir > 1. Eine Funktion y: {0,1}* — U>1{0, 1}*" der Form y(z) = xz
heifst Paddingfunktion fir Bitrate r > 1. Eine solche Funktion heifst sponge-konform
fur Bitrate r > 1, falls gilt:

e Vn >032Ve € {0,1}" : y(z) = zz,
o Vi >0Vx # 2 : y(x) # y(a)0.

Es ist leicht zu sehen, dass die Funktion pad10*1,: {0,1}* — {0,1}* definiert durch
pad10°1, (z) = x10"1 mit d = min {i > 0 |[z| +2+i =, 0}

eine sponge-konforme Paddingfunktion fiir die Bitrate r ist. Tatsédchlich ist pad10*1,
sogar fur jede Bitrate ' > 1 sponge-konform. Ohne die abschliefende 1 wére dies nicht
der Fall.

Definition 11. Sei y eine Paddingfunktion fir r > 1 und sei f : {0,1}" — {0, 1}". Fir
v e€{0,1} seiy(x) =yi...yp mit |y;| =1 fiiri=1,... k. Wir definieren die Zustinde

0° i=0
Si =9 f(sic1 @ (y,0°) 1<i<k (Absorptionsphase)
f(si-1) i>k (Squeezing-Phase)

Weiter bezeichne z; firi > 1 die ersten r Bit von sSky;—1. Zudem sei m = L%J und z,, | sei
das Prifiz von zy41 der Linge | —mr. Dann ist die Funktion Sponge;, . : N x {0,1}" —
{0,1}" wie folgt definiert: Sponge;, (I, x) = 21 ... z2m2,,,. Fir die Analyse definieren
wir noch die Funktionen

Absorby,(y1...yx) = sk und Squeeze; (I, s,) = z1. .. ZmZma1

Den Aufwand, fiir festes [ein Kollisionspaar x, 2z’ mit x # 2’ und Sponge;, .(I,x) =
Sponge;, (I, z') zu finden, kénnen wir nach oben durch den Aufwand abschétzen, ein Paar

1.2 Schliissellose Hashfunktionen (MDCs) 17

Prozedur InnerCollision(f,r,q,S)

L eci=b—r, wobei f:{0,1}" — {0,1}"

> initialisiere den Multi-Digraphen G = (V,A) := ({0,1}°,0)
3 for 1:=1 to ¢ do

i wahle ueV und z €{0,1}" nach Strategie S

5 2'u = f(zu)

6 A=AU{(u,v)p}

7 if 3 zwei Pfade (0% ui1)pgar, (W1, U2)zy s - - -5 (Uk—1, Uk)ay_y 0 UN
(0%, v1) o> (V15 V2) s s - - -5 (U121, Ul)ylil,y;_l in G mit w, = v; then
o return(zo(zy @ 1) ... (2o D 1), %Yo B y1) - (Yi—2 B Y1-1))

10 else

11 return(?)

oo

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

z,2" € Up>1{0, 1}*¥" mit x # 2/ und Absorby, (y(x)) = Absorby, (y(z')) zu finden. Hierbei
reicht es, ein inneres Kollisionspaar, d.h. zwei Strings w =y; ..., ys Z W =y} ..., Y
zu finden, so dass die inneren Zusténde von s, = Absorby,(w) und sj, = Absorby,(w')
gleich sind. Setzen wir namlich yy41 und yp 1 auf die dufleren Zusténde von s; und sj,,
so folgt fiir die Eingaben = wyx1, und 2’ = w'yy, ;-

Absorby,(z) = f(sk® (ye10%)) = f(07s}) = f(0"s})
f (s @ (Yho110)) = Absorby,(z'),

wobei % den inneren Zustand von s; bezeichnet. Falls das Suffix z von y(z) = zz nur
von |z| mod r abhangt, gilt wegen |z| =, |2’| dann auch die Gleichheit Absorb;, (y(z))=
Absorby,(y(2')) und somit Sponge, , .(I,r) = Sponge,, .(I,2').

Um eine solche innere Kollision zu finden, hilft es, sich die 2¢ inneren Zustande u € {0, 1}¢
als Knoten eines gerichteten Multigraphen G vorzustellen, der fiir jedes Paar (zu, z'u’)
mit f(zu) = 2'v’ eine Kante (u, '), ,» von w nach v’ mit dem Label z, 2" enthalt. Ziel ist
es dann, zwei verschiedene Pfade von 0° zu demselben Knoten v zu finden, wobei zwei
Pfade auch dann verschieden sind, wenn sich die Kanten nur in den Labeln unterscheiden.
Wird f durch eine Zufallsfunktion modelliert (ZOM), so lassen bereits berechnete Werte
von f keine Riickschliisse auf die Werte fiir andere Argumente zu. Anders als beim ZOM
fiir eine Hashfunktion kann es sich dennoch fiir den Angreifer lohnen, die Argumente von
f adaptiv nach einer Strategie S zu wéhlen. Der Algorithmus InnerCollision fasst
dieses Vorgehen zusammen.

Satz 12. Fir jede Strategie S gibt INNERCOLLISION(f,7,q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit hochstens
1] (1 i)
e=1-— - —
20

i=1
ein inneres Kollisionspaar (z,z") aus. Wahit S nur von 0° aus erreichbare Knoten u und
kein Argument xu mehrmals, so ist die Erfolgswahrscheinlichkeit exakt €.

Beweis. Sei F; das FEreignis “G enthalt nach ¢ Durchlaufen keine zwei verschiedenen
Pfade von 0¢ zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0¢ aus

18 1 Kryptografische Hashverfahren

erreichbaren Knoten ein zweiter Pfad von 0¢ aus geschlossen werden kann und nach ¢ — 1
Durchlédufen hochstens i von 2¢ Knoten erreichbar sind, gilt (unabhéngig von S):

Wiéhlt S nur erreichbare Knoten u und kein Argument zu mehrfach, so sind unter
Annahme von E; N...N E;_; auch i Knoten erreichbar (sonst giabe es bereits zwei Pfade
von 0° zu einem Knoten in) und es gilt sogar Gleichheit. Analog zum Beweis vom
Satz 6 folgt der behauptete Wert ¢, mit Gleichheit im Fall der Wahl erreichbarer Knoten
durch S. O

Auch hier lasst sich ¢ in Abhéngigkeit von € mittels 1 — z &~ e~ abschétzen und es folgt:

< | 1
g~ c22, c.=1/2In
1—¢

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen f,,w = 27 € {0,...,6} als Kern des Sponges Sponge; oadi0°1 s
sowie verschiedene Kombinationen von Bitraten r und Ausgabeldngen [(¢ ist durch
25w — r bestimmt).

Jede Funktion f,, : {0,1}”**** — {0,1}°*°*" bildet ein zweidimensionales Feld A aus
w-Bit-Wortern auf ein ebensolches Feld f,,(A) ab. Dabei wird (12 4 log, w)-mal eine
Rundenfunktion f’ : {0,1}>*** x {0,1}* — {0,1}>*>** aufgerufen, die A und eine
Rundenkonstante RC; auf A’ abbildet.

Es gilt

1.2.11 SHA-3

fulA, RC) = tre(x(m(p(0(A))))),

wobei 6, p, , x und tze Bijektionen von {0, 1}°*** nach {0,1}°*°** sind. Die Funktion
6 besteht aus @-Operationen und ist so gewéhlt, dass sich §7(A) an moglichst vielen
Bits dndert, falls eines in A geflippt wird. Danach permutieren die Funktionen p und 7
die Bits von A innerhalb und zwischen den Wortern. Ahnlich einer S-Box im SPN ist
X eine nichtlineare Funktion (die einzige solche in der Definition von f!), die nur auf
5-Bit-Blocken arbeitet (jedes Bit hingt sogar nur von 2 anderen ab). Schlussendlich setzt
tre das Wort Ay auf Ago ® RC.

Fir die Werte [€ {224,256, 384,512} definiert der Standard FIPS 202:
SHA3-I(z) = Spongey,, sad1e+1, ([, 201), wobei r = 1600 — 2I.

Das zusétzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, [, 7 unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Eine Hashfamilie H = (X,Y, K, H) wird durch folgende Komponenten
beschrieben.:

e X, eine endliche oder unendliche Menge von Texten,

1.3 Nachrichten-Authentikationscodes (MACs) 19

e Y, endliche Menge aller moglichen Hashwerte, ||Y|| < || X,

o K, endlicher Schliisselraum (key space), wobei jeder Schliissel k € K eine
Hashfunktion hy: X —Y in H spezifiziert, d.h. H = {hy | k € K}.

Im folgenden werden wir die Grofle || X || des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schliisselraumes K mit [bezeichnen. Wir nennen dann ‘H auch eine
(n, m,1)-Hashfamilie oder einen (n, m,1)-MAC.

Damit ein geheimer Schliissel k fiir die Authentifizierung mehrerer Nachrichten be-
nutzt werden kann, ohne dass dies einem potentiellen Angreifer zur nichtautorisierten
Berechnung von giiltigen MAC-Werten verhilft, sollte folgende Bedingung erfiillt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schliissel £ generierten

Text-Hashwert-Paaren (x1, hy(x1)), ..., (zn, he(z,)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (z,y) mit y = hy(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Angreifer nicht
moglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.
Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritédtsschutz fiir mehrere
Datensatze auf die Geheimhaltung eines Schliissels k& zurtickgefiihrt werden.

Um die Datensatze xq,...,x, gegen unbefugt vorgenommene Veranderun-
gen zu schiitzen, legt man sie zusammen mit ihren MAC-Werten y; =
hi(x1), ..., Yn = hi(x,) auf einem unsicheren Speichermedium ab und be-

wahrt den geheimen Schliissel k£ an einem sicheren Ort auf. Bei einem spéateren
Zugriff auf einen Datensatz x; lasst sich dessen Unversehrtheit durch einen
Vergleich von y; mit dem Ergebnis hx(z;) einer erneuten MAC-Berechnung
iiberpriifen.

Da auf diese Weise ein wirksamer Schutz der Datensdtze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensatze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von MAC-Werten zum Ziel.
Das heift, der Angreifer versucht, MAC-Werte hy(x) ohne Kenntnis des geheimen Schliis-
sels k zu berechnen. Entsprechend der Art des zur Verfiigung stehenden Textmaterials
lassen sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation
Der Angreifer kennt nur den benutzten MAC und versucht ein Paar (z,y) mit
hi(x) = y zu generieren, wobei k der (dem Angreifer unbekannte) Schliissel ist.
Substitution
Der Angreifer versucht in Kenntnis eines Paares (z, hi(x)) ein Paar (2/,y") mit
x’ # x und hy(z') =y’ zu generieren.
Angriff bei bekanntem Text (known-text attack)
Der Angreifer kennt fiir eine Reihe von Texten 1, ..., z, (die er nicht selbst wéhlen

20 1 Kryptografische Hashverfahren

konnte) die zugehorigen MAC-Werte hy(x1),...,hx(z,) und versucht, ein Paar
(', y") mit hg(2z') = ¢ und 2’ & {x1,...,2,} zu generieren.

Angriff bei frei wahlbarem Text (chosen-text attack)
Der Angreifer kann die Texte x; selbst wéahlen.

Angriff bei adaptiv wahlbarem Text (adaptive chosen-text attack)
Der Angreifer kann die Wahl des Textes x; von den zuvor erhaltenen MAC-Werten
hi(x;), j < i, abhdngig machen.
Wechseln die Anwender nach jeder MAC-Wertberechnung den Schliissel, so gentigt es,
dass H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von M ACs

Modell: Schliissel £ und Nachrichten x werden unabhingig geméfl einer Wahrscheinlich-
keitsverteilung p(k,) = p(k)p(x) generiert, welche dem Angreifer bekannt ist. Wir
nehmen 0.B.d.A. an, dass p(z) > 0 und p(k) > 0 fur alle x € X und k € K gilt.

Erfolgswahrscheinlichkeit fiir Impersonation

Sei « die Wahrscheinlichkeit, mit der sich ein Angreifer bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.

Fir ein Paar (z,y) sei p(x — y) die Wahrscheinlichkeit, dass ein zuféllig gewéhlter
Schliissel den Text x auf den MAC-Wert y abbildet:

plx—=y) =pyle)= > plk).

keK (z,y)

wobei K(z,y) = {k € K | hx(z) = y} alle Schliissel enthilt, die = auf y abbilden. D.h.
p(x — y) ist die Wahrscheinlichkeit, dass Bob das Paar (z,y) als echt akzeptiert. Somit
gibt p(z — y) die Wahrscheinlichkeit an, mit der einem Angreifer bei Wahl des Paares
(x,y) eine Impersonation gelingt, weshalb wir diese Wahrscheinlichkeit auch mit a(z,y)
bezeichnen. Schlieflich ist a(z) = max{a(z,y) | y € Y} die Wahrscheinlichkeit, mit der
einem Angreifer bei optimaler Strategie eine Impersonation mit dem Text x gelingt, und
es gilt o = max{a(z) |z € X}.

Beispiel 14. Sei K = {1,2,3}, X = {a,b,¢,d} und Y = {0,1}. Wir beschreiben H
durch die zugehérige Authentikationsmatrix. Die Zeilen und Spalten dieser Matrix

werden mit den Schlisseln k € K und den Texten x € X indiziert und ihr Fintrag in
Zeile k und Spalte x ist der Wert hi(x).

10,1] [0,2] 03] |0,4]

‘ a b c d
025 1| 0 0 0 1
0,30 1 1 0 1
0,45 3| 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(z) bzw. p(k) an. Dann hat der
Angreifer folgende Erfolgsaussichten a(x), falls er an Bob den Text x senden mdchte.

1.3 Nachrichten-Authentikationscodes (MACs) 21

x a b c d
p(z —0) 0,7 0,25 0,55 0,45
p(zx—1)103 0,75 045 0,55

a(x) 0,7 0,75 0,55 0,55

Folglich ist o = 0,75. <

Satz 15. Fir alle x € X ist a(z) > - und daher gilt o > %

1
m

Beweis. Sei x € X beliebig. Dann gilt

Sop—=y) =3 3 plk)=3 pk)=1.

yey yeY keK (z,y) keK

Somit existiert fiir jedes z € X ein y € Y mit p(z — y) > % und dies impliziert

1
= —y) > —.
o(z) = maxp(z = y) = —

O

Bemerkung 16. Wie der Beweis zeigt, gilt o = % genau dann, wenn fir alle Paare
(x,y) € X xY gilt,
1

>, plk)=—.

keK (z,9) m

D.h. bei Gleichverteilung der Schliissel muss in jeder Spalte der Authentikationsmatrix
jeder MAC-Wert gleich oft vorkommen. Dies ldisst sich am einfachsten dadurch erreichen,
dass man K =Y setzt und fir hy die konstante Funktion hy(x) = k wdhlt.

Das folgende Lemma bendtigen wir fiir den Beweis des ndchsten Satzes.

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) C R*. Dann
gilt log E(X) > E(log X).

Beweis. Sei W(X) = {xy,...,2,} und fiir i = 1,...,n sei p; = Pr[X¥ = x;]. Da die
Funktion z +— log, x konkav ist, folgt mit der Jensenschen Ungleichung

log E(X) = 10822(2]%%) > sz’ log, z; = E(log).

Satz 18. Fir jeden MAC (X,Y, K, H) gilt:

a> > 1/1).

> SHE-HEE)

Hierbei sind X,Y, K Zufallsvariablen, die die Verteilungen der Nachrichten, der MAC-
Werte und der Schlissel beschreiben.

Der Wert von a kann also um so kleiner werden, je gleichmafBiger die Schliisselverteilung
ist und je mehr Information die Beobachtung eines giiltigen Paares (z,y) tiber den
Schliissel liefert.

22 1 Kryptografische Hashverfahren

Beweis. Da a = max,, a(z,y) ist, folgt E(a(X,Y)) = X, ,p(z,y)a(r,y) < a, wobei
E(a(X,))) die Erfolgswahrscheinlichkeit eines (probabilistischen) Angreifers ist, der
das Paar (z,y) gemif der Verteilung (X', }) wéhlt. Somit folgt unter Anwendung von
Lemma 17,

loga >log E(a(X,Y)) > E(log (X, Y)) = > _ p(x,y) logp(y|z) = —H(Y|X).
Y —~— ——
p@)p(ylr) —log orims
Wegen
HK,Y,X)=HX)+ HY|X)+ HK|X,Y)
und
HK,Y,X)= HK,X) +HY|K,X).
=H(K)+H(X) -0

gilt zudem H(Y|X) = H(K) — H(K | X,Y) und somit loga > H(K | X,Y) — H(K). O

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt

1
K) =3 p(k)log O 0,45-1,152 +0,3- 1,737 + 0,25 - 2,0 = 1,54.
p p

Um H(K|X,Y) zu bestimmen, bendtigen wir die gemeinsame Verteilung von X, sowie
die bedingten Verteilungen IC,,, fiir alle Paare (z,y) € X x Y.

(@y) [(@0) (a1) (b,0) (01 (0) (1) (d.0) (d.1)

p(z,y) 0,07 0,03 0,05 015 0,165 0,135 0,18 0,22
p(1]z,y) Z 0 1 0 = 0 0 z
p(2]z,y) 0 1 0 2 £ 0 0 z
9 3
p(3|x,y) i 0 0 H 0 1 1 0
H(K|z,y) ||~ 0,94 0 0 =~097 ~099 0 0 ~0,99

Hierbei gilt p(z,y) = p(z)p(y|z) = p(z)p(x — y). Somit ist
H(K|X,Y) = pry (Klx,y) =~ 0,52

und wir erhalten die untere Schranke

1 1 1

@z QH(K)—-H(K|X, y) ~ 91,54-0,52 91,02 ~ 0,493.

Erfolgswahrscheinlichkeit fiir Substitution

Bezeichne 8 die Wahrscheinlichkeit, mit der ein Angreifer bei optimaler Strategie eine
von Alice gesendete Nachricht z durch eine andere Nachricht 2’ ersetzen kann, ohne dass
Bob dies bemerkt. Dabei gehen wir davon aus, dass der Angreifer keinen Einfluss auf die
Wahl der von Alice gesendeten Nachricht = hat.

Falls der Angreifer ein von Alice gesendetes Paar (x,y) durch das Paar (z/,y) ersetzt,
ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

p(&} ==Y, z y') _ ZkeK(x,y,x’,y/) p(k)
p(z—y) YkeK(wy) P(F)

pa' =y |z —y) =

1.3 Nachrichten-Authentikationscodes (MACs) 23

dass ein zuféllig gewéahlter Schliissel & den Text 2’ auf ¢ abbildet, wenn bereits bekannt
ist, dass hy(xz) = y ist. Falls Alice also das Paar (z,y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Angreifers

Bla,y) = max p(a’ =y |z y).
z' 2y

Man beachte, dass 3(z,y) nur im Fall p(x,y) > 0 definiert ist. Da der Angreifer keinen
Einfluss auf die Wahl von (z,y) hat, ist 5 gleich dem Erwartungswert von §(x,y) unter
der Verteilung p(x,y), mit der Alice diese Paare generiert. Somit ergibt sich 8 zu

B=EBX.Y)= > pyby).

rzeX,yeYy

Wegen p(z,y) = p(z)p(x — y) konnen wir 5 unter Verwendung der Funktion

B'(x,y) = B, y)p(x = y) = :Cr,r;é%,p(ﬂf’ =y, T y)

auch einfacher mittels der Formel 5 = 3>, x p(x) >,cy B'(x,y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

(=) Pl o) 8wy | sy | By
@) @D | 60) 61 | @) @) | @0 (@
(@0) 0,25 0,45 0.25 0,45 0,45 0,25 | 045 | 0.7 | 0.643
(@) 0 0,3 038 0 0 03| 03| 03 | 1
w0 | 0,25 0 0,25 0 0 0,25 0.25 | 0,25 | 1
w1 | 0,45 0.3 0,3 045|045 03| 045 075 | 06
o) | 0,25 03] 025 03 0 0,55 0.55 | 0,55 | 1
ey | 0,45 0| 0 0,45 045 0 | 045 | 045 | 1
@ | 0,45 0 | 0 045 0 0,45 045 | 045 | 1
an | 025 0302 03055 0 055 | 055 | 1

Die optimalen Wahlmdglichkeiten des Angreifers, ein Paar (x,y) durch ein anderes Paar
(«',y') zu ersetzen, sind in der Tabelle fett gedruckt. Fir B erhalten wir somit den Wert

Bo= Y plx)d By

rzeX yey
= 0,1(0,45 4 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.

Als néchstes zeigen wir fir £ die gleiche untere Schranke wie fiir .
Satz 21. Fir alle (z,y) € X XY mit p(x,y) > 0 ist 5(z,y) > % und daher gilt § > %

Beweis. Sei (x,y) € X xY ein Paar mit p(z,y) > 0. Dann gilt fir beliebige 2’ € X —{z},

! RTAY k
Y. p(=y e y) = Lyey ek (@ y'ay) P(R)

=1.
y'EY ZkEK(:r,y) p(k)

24 1 Kryptografische Hashverfahren

Somit existiert ein ¥’ € Y mit p(2’' — ¢/ |z +— y) > % und dies impliziert

1
x, = max p(a' =y |z—y) > —.
B(z,y) p imvy,p(ylzmy) 2 —
Folglich ist
1 1
B= > playbay)>— > ply)=—.
zeX,yeY m zeX,yeyY m

O

Beispiel 22. Sei X =Y ={0,1,2} = Z3 und sei K = Z3 x Z3. Fiir k = (a,b) € K und
x e X set
hi(z) = ax + b mod 3.

Die zugehirige Authentikationsmatriz ist

N R O N R OB~ OO
— O N ON RN O
O = = O NN~ O

AN - N I N -IIN SN AN N N TN
M m R o oo
N = O N = O N O

S N N e e N N N

Wir nehmen an, dass der Schliissel unter Gleichverteilung gewdhlt wird. Ersetzt der
Angreifer ein Paar (z,y) durch ein Paar (x',y') mit ' # x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schliissel akzeptiert. Dies liegt daran, dass in
je 2 Spalten der Authentikationsmatriz jedes MAC-Wertepaar genau einmal vorkommt.
Folglich ist p(2' — ' |x — y) = 1/3 und somit hat B den optimalen Wert f =1/3. <

Lemma 23. Sei (X,Y, K, H) ein MAC mit § = % Dann gilt
p@’ =y e —y)=1/m
fiir alle Doppelpaare (z,y,x',y') mit x # 2.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(x +— y) > 0
gilt. Ware néamlich
p(a’ =y e y) > 1/m,

dann ware auch

Blz,y) = I,I;éaX,p(x’ =yl y) > 1/m.
T/ F#x,y

Da fiir alle Paare (u,v) mit p(u — v) > 0 nach Satz 21 die Ungleichung S(u,v) > 1/m
gilt und zudem p(z,y) = p(x)p(x — y) > 0 ist, folgt hieraus

B= > pley)bzy) >1/m,

zeX,yeyY

1.3 Nachrichten-Authentikationscodes (MACs) 25

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits
pla’ =y |z —y) <1/m,

muss wegen

> opa' =y lz—y) =1
y'ey

auch ein MAC-Wert y” mit p(z' — y" |z — y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.

Es bleibt zu zeigen, dass p(z — y) > 0 fiir alle Paare (z,y) gilt. Ware p(x +— y) =0, so
wirde fiir ein beliebiges Paar (u,v) mit p(u +— v) > 0 auch p(z — y|u — v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung 5 =1/m. O

Satz 24. Ein MAC (X,Y, K, H) erfillt § = % genau dann, wenn
plz =y, 2’ = y)=1/m?
fiir alle Doppelpaare (z,y,x',y") mit x # ' gilt.
Beweis. Sei (X,Y, K, H) ein MAC mit § = % Nach obigem Lemma impliziert dies, dass
pla’ =y |z y) =1/m
fir alle Doppelpaare (x,y,2’,y') mit z # 2’ gilt. Dies impliziert nun
pla’ = y) = Zy:p(ﬂs = yp(a’ =y e y) =1/m
und daher

p(x =y, 2 = y) =p = y)p(r = yla' = y) =1/m?

Umgekehrt rechnet man leicht nach, dass die Bedingung 5 = % erfiillt ist, wenn fiir alle
Doppelpaare (z,y,z',y') mit z # 2’ die Gleichheit p(z — y, 2" — /) = 1/m? gilt. O

Bemerkung 25. Nach obigem Satz gilt 5 = % genau dann, wenn fir alle Doppelpaare
(z,y,2',y") mit x # 2’ gilt,

ple—=y 2 —=y)= > pk)=—=.
keK (z,y,x'y")

D.h. bei Gleichverteilung der Schliissel gilt § = % genau dann, wenn in je zwei Spalten
der Authentikationsmatrixz jedes MAC-Wertepaar gleich oft vorkommdt.

Ab jetzt setzen wir voraus, dass der Schliissel unter Gleichverteilung gewéahlt wird, d.h.

es gilt p(k) = m fir alle k € K.

Definition 26. Fin MAC (X,Y, K, H) heifit 2-universal, falls fir alle z,x' € X mit
x #£ 2 und alle y,y €Y gilt:

K]

1K (2, y,2",y) || = m2

Ein MAC (X,Y, K, H) ist also genau dann 2-universal, wenn fir alle Textpaare z, 2’ € X
mit z # 2’ jedes MAC-Wertpaar y,4' € Y mit Wk 1/m? auftritt.

26 1 Kryptografische Hashverfahren

Bemerkung 27. Bei der Konstruktion von 2-universalen MACSs spielt der Parameter

= Hmiz‘l etne wichtige Rolle. Da A notwendigerweise positiv und ganzzahlig ist, muss

insbesondere || K|| > m? gelten.

Im Folgenden nennen wir einen 2-universalen (n,m,[)-MAC mit A\ = [/m? kurz einen
(n,m, 1, \)-MAC.

Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schliisseln genau
dann die Bedingung 8 = % erfilllt, wenn er 2-universal ist. Auf Grund von Bemerkung 16
nimmt in diesem Fall auch a den optimalen Wert % an.

Der néchste Satz zeigt eine einfache Konstruktionsmoglichkeit von 2-universalen MACs
mit dem Parameterwert A = 1.

Satz 28. Sei p prim und fir a,b,x € Z, sei
hap(z) = az + b mod p.
Dann ist (X,Y,K,H) mit X =Y =Z, und K = 7, X Z, ein (p,p,p*, 1)-MAC.

Beweis. Wir miissen zeigen, dass die Grofle von K(z,y,2’,y’) fir alle Doppelpaare
(z,y,2',y") mit x # 2’ konstant ist. Ein Schliissel (a,b) gehort genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

axr+b =, v,
ar’' +b =, o

erfilllt. Da dies jedoch nur auf den Schliissel (a, b) mit

= (¥ —y)(@' =) modp,
b = y—ay —y)(@ —2)" modp
zutrifft, folgt || K (2, v, z,y)| = 1. O

Die Hashfunktionen des vorigen Satzes erfiillen wegen n = m = p nicht die Kompressions-
eigenschaft. Zwar ldsst sich n noch geringfiigig von p auf p + 1 (und somit der Quotient
n/m von 1 auf p%) vergroBern, ohne K und Y zu verdndern (sieche Ubungen). Wie der
néchste Satz zeigt, ldsst sich eine stidrkere Kompression mit dem Parameterwert A = 1
jedoch nicht realisieren.

Satz 29. Fir einen (n,m,1,1)-MAC gilt

n 1

IN

m

|

und somit | =m? > (n — 1)? sowie n/m < ™ (~ 1).

Beweis. O.B.d.A. sei K = {1,...,l} und Y = {1,...,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung 7w: Y — Y der MAC-Werte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC fiihrt. Also konnen wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthalt.
Da A 2-universal ist, gilt:

e In jeder Zeile i = 2,...,m? kommt héchstens eine Eins vor.

e Jede Spalte j enthélt eine Eins in Zeile 1 und m — 1 Einsen in den iibrigen Zeilen.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Da in den Zeilen i = 2,...,m? insgesamt genau n(m — 1) Einsen vorkommen, folgt

Anzahl der Zeilen > Anzahl der Zeilen mit einer Eins,

m2 1+n(m—1)
was m? — 1 > n(m — 1) bzw. n < m + 1 impliziert. O

Der néchste Satz liefert 2-universale MACs mit beliebig grofem Kompressionsfaktor. Fiir
den Beweis benotigen wir das folgende Lemma.

Lemma 30. Sei A eine (k x £)-Matriz tiber einem endlichen Kérper F, deren k Zeilen
linear unabhdngig sind. Dann besitzt das lineare Gleichungssystem

Arx =y
fiir jedes y € F* genau ||F||“* Lisungen x € F’.
Beweis. Siehe Ubungen. O
Satz 31. Sei p prim und fir x = (z1,...,74) € {0,1}% und k = (ky,. .., k) € ZZ sei
d
hi(x) = ko = Z k;x; mod p.
i=1

Dann ist (X,Y, K, H) mit X = {0,1}¢—{0%}, Y = Z, und K = Zg ein (21—1, p, p?, p?2)-
MAC.

Beweis. Wir miussen zeigen, dass die Grofle von K(z,y,2',y') fir alle Doppelpaare
(z,y,2',y") mit x # 2’ konstant ist. Es gilt

ke K(x,y,2',y) & he(x) =y Ahi(z)) =y
&S k-x=yANk-2' =1y

Fassen wir = x1---x4 und o’ = 2 --- 2/, zu einer Matrix A zusammen, so ist dies
aquivalent zu

k1
()0
oL, / . / .
Ty Ly kg Yy
Da die beiden Zeilen von A verschieden und damit linear unabhéngig sind, folgt mit

obigem Lemma, dass genau || K (x,y,2',9')|| = p®~2 Schliissel k = (ki, ..., k) mit dieser
Eigenschaft existieren. O

Bemerkung 32. Obige Konstruktion liefert einen \-Wert von HT%” = p%=2. Durch
Erweiterung von X auf eine geeignete Teilmenge X' C Zg lasst sich der Textraum von

2¢ — 1 auf ’f%ll vergréfiern (siehe Ubungen). Dies fiihrt auf einen beliebig grof§ wihlbaren

Kompressionsfaktor 7= = pZZ:j) ~ p?72 bei einem \-Wert von \ = p?=2. Wie der ndchste
Satz zeigt, ldsst sich dies nicht mit einem kleineren \-Wert (bzw. nicht mit einer kleineren

Schlissellinge) erreichen.

Im Beweis des néchsten Satzes benotigen wir folgendes Lemma.

28 1 Kryptografische Hashverfahren

Lemma 33. Flir beliebige reelle Zahlen by, ..., b, € R gilt (zg’;l bi>2 <m¥r, b2

Beweis. Da die Funktion x + x? konvex ist, folgt mit der Jensenschen Ungleichung
(X b;/m)? < 3 b?/m und somit

(Zbi>2 =m? (sz/mf <m) b

<02 /m 0

Satz 34. Fir jeden (n,m,l, \)-MAC gilt

Am?>n(m—1)+1
-

und somit n/m < (A —1/m?)-"=(~).

Beweis. O.B.d.A. kénnen wir wieder K = {ky,...,k} und Y = {1,...,m} annchmen,
und dass die erste Zeile der Authentikationsmatrix nur aus Einsen besteht. Fiir jede Zeile
i =1,...,1 bezeichne e; die Anzahl der Einsen in dieser Zeile (also e; = n). Da in jeder
Spalte jeder MAC-Wert genau Am-mal vorkommt, gilt

! I
Y eg=dnm und > e =Anm—n=n(Am—1).
i=1 i=2
Sei z = !_, z;, wobei z; die Anzahl von Spaltenpaaren (j,j') mit j # j' und hy,(z;) =
hi,(z;) = 1 ist. Dann folgt

l l

z:;zi:Zei(ei—l) =Y el => e=Y e —n(Am—1).

!
=2 =2 =2 =2
Mit obigem Lemma ergibt sich

e) (-)2

S
2
D iy

Da andererseits in jedem Spaltenpaar das MAC-Wertepaar (1,1) in genau A Zeilen
vorkommt (genauer: einmal in Zeile 1 und (A — 1)-mal in den Zeilen 7 = 2,...,[), und da
n(n — 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z=(A—=1n(n—1).

Somit erhalten wir

(A—l)n(n—l):z:Ze?—n()\m—l)Z(n()\m_l))Q—n(/\m—l)

l
i=2 I—-1

(A =Dnn—1)+n(hm—1)Mm* - 1) > (n(Am — 1))?

(An —n — X+ m)(Am? — 1) > n(Am — 1)?

—N°m? + X*m® > dnm? + An — A+ Am — 2 nm

M (m? —m?) > An(m —1)? +m — 1)

Am? > n(m—1) + 1.

S A

1.3 Nachrichten-Authentikationscodes (MACs) 29

1.3.3 CBC-MACs

Als Basis fir die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.

Sei (M,C, K, E, D) ein symmetrisches Kryptosystem mit M = C = {0, 1}'. Zudem sei
IV := 0" und sei k € K ein geheimer Schlissel. Sei y eine Funktion fiir den Preprocessing-
Schritt, die fiir jeden Text x € {0,1}* einen nichtleeren Bitstring y(z) € U,>,{0, 1}*"
liefert, dessen Lange durch ¢ teilbar ist.

Berechnung von hy(z):

L y=y@)=y1...ys, n>1, y; €{0,1}
2 zo:=1V
3
A

for i=1 to n do
zi = E(k,zi.1 @)
5 output hi(x) =z,

Die MAC-Wertlange betragt also ¢t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so lasst sich leicht ein Angriff mit 2 adaptiven Fragen ausfithren. Kennt der Angreifer
die MAC-Werte z = hi(z) und 2/ = hi(2’) fir die Texte x = x;---x, und 2’ =
(Tps1 B IV @ 2)Tpya - Tym, wobel |x;| =t fir i = 1,...,n + m ist, so muss auch der
Text 2" = x1 -+ Tpyy den MAC-Wert hy(2”) = 2’ haben.

Diesen Angriff kann man zwar ausschlieen, indem man eine feste Linge nt fir die Texte
vorschreibt, wodurch die Anwendbarkeit des CBC-MACs allerdings eingeschrankt wird.
Der folgende Geburtstagsangriff ist auch bei fester Textlinge moglich.

Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff erméglicht es, mit ¢ + 1 MAC-Fragen (wobei ¢ ~ 1,17 - 2%) den MAC-
Wert hy(x) fiir einen zuvor nicht erfragten Text = zu finden, wobei x = z1...z, €
{0, 1} abgesehen vom ersten ¢-Bitblock z1 € {0, 1} beliebig wahlbar ist. Hierzu wéhlt
der Angreifer zunichst n — 2 beliebige Blocke 3, ..., 2, € {0,1} und ¢ ~ 1,17 - 23
paarweise verschiedene Blocke z},..., 2% € {0,1}'. AnschlieBend wéhlt er zufillig g
weitere Blocke xd, ... x4 € {0,1} und erfragt die MAC-Werte z; = hy,(z") fiir die Texte
vt =airies o w,,i=1,...,q.
Wegen 1 #] fir i # j sind auch die Texte z', ..., 27 paarweise verschieden. Seien
z1,..., z{ die nach der ersten Iteration des CBC-MACSs berechneten Kryptotexte 2! =
E,(IV & z}). Da die Blocke 7% zufillig gewihlt werden, sind auch die Eingangsblécke
2t @ b fiir die 2. Tteration zufillig, d.h. es gilt
Pridi£j:2{@a,=z @z =Pr[Fi#£j 2, =0~ 5
Da die Gleichheit der Eingangsblocke 2! @ x und 2] @ 23 fiir die 2. Iteration mit der
Gleichheit der Ausgangsblécke 2% und zJ der n-ten Iteration und damit mit der Gleichheit
der zugehoérigen MAC-Werte 2 und 27 dquivalent ist, kann der Angreifer das Indexpaar
(1,7) mit 2z} @ xb = 2] ® 27 auch leicht finden, sofern es existiert (was wir im Folgenden
annehmen).
Da % #] gilt, sind auch die Blocke 2z} = E(IV @x}) und 2 = Ek(IVEBZE{) verschieden.
Wegen 2! @zl = 2] @ sind dann auch die beiden Blocke z% und x3 verschieden. O.B.d.A.

30 1 Kryptografische Hashverfahren

gelte x5 # x5 (sonst vertauschen wir die Indizes ¢ und 7). Nun erfragt der Angreifer fiir u =
zh ®xy € {0,1} — {0} den MAC-Wert 3; = hy,(#7) fiir den Text &7/ = 2 (x Qu)zs - - - p,
welcher zugleich MAC-Wert des Textes 7' = zt (24 ® u)xs - - ¥, = ¥ixow3 -+ - 1, ist, den
er zuvor nicht erfragt hat.

Definition 35. Sei 0 < e <1 und sei g € N. Fin (g, q)-Falscher fir einen MAC H ist

ein probabilistischer Algorithmus A, der q Fragen xy, ..., x4 stellt und aus den Antworten
z; = hg(x;) mit Wahrscheinlichkeit mindestens € (bei zufdllig gewdihltem Schlissel k) ein
Paar (x, z) berechnet mit x & {x1,...,2,} und hy(x) = 2.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text z; darf von den MAC-Werten
der Texte x1,...,x;_; abhdngen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Falschungen (d.h. der Angreifer kann den MAC-Wert fiir einen Text
seiner Wahl generieren) und existientiellen Félschungen (d.h. der Angreifer kann den
MAC-Wert fiir irgendeinen Text @ & {z1,...,2,} generieren, auf dessen Wahl er keinen
Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC fihrt auf
einen (%, q + 1)-Falscher fir g ~ 1,17 - 25. Dabei ist nur die letzte MAC-Frage adaptiv
und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. <

Eine Variante dieses Angriffs ist auch bei Verwendung einer Preprocessing-Funktion
moglich. Meist wird hierzu die Funktion y : = — y(z) = yo...y, mit yo = bin,(|x|)
und y; ...y, = 20™71* verwendet, wobei n = [|z|/t] ist. Der erste Block 3 = bing(|z|)
kodiert also die Lénge von x als Binédrzahl, die mit fithrenden Nullen auf die Lange t
erweitert wird, und der letzte Block wird ebenfalls mit Nullen auf die Lange ¢ aufgefiillt.

1.3.4 Kombination einer Hashfunktion mit einem MAC (HMACQC)

Falls der Textraum eines MAC den Werteraum eines anderen MAC enthélt, lassen sich
diese leicht komponieren (Nested-MAC oder NMAC).

Definition 37. Seien H; = (X, Y, K1, F) mit F ={fx | k € K1} und Hy = (Y, Z, K3, G)
mit G = {gr | k € Ky} MACs. Dann ist HyoHy = (X, Z, K, H) die Komposition von
Hq und Ha, wobei K = Ky x Ky und H = {gg, o fx, | (k1,k2) € K} ist.

Beispiel 38. Wdhilt man fir Hs einen MAC mit fester Textlinge und fir Hi eine
(schliissellose) Hashfunktion (etwa SHA-1), so erhdlt man einen so genannten HMAC
(Hash-MAC). q

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schliisseln komponiert werden, wobei jedoch beidesmal
derselbe Schliissel benutzt wird. Seien

ipad = 36 ...36 und opad = 5C'...5C
N—— —_———

64mal 64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:
HMAC(z) = SHA-1((k & opad)SHA-1((k & ipad)x)).

Hierbei fungiert die Funktion fi(x) = SHA-1((k @ ipad)x) als Hashfunktion mit Schlissel,
die beliebig lange Texte hasht, und der MAC gx(y) = SHA-1((k & opad)y) wird nur

1.3 Nachrichten-Authentikationscodes (MACs) 31

auf Bitstrings der Lange 512 angewendet. Wie der folgende Satz zeigt, geniigt es, wenn
fr kollisionsresistent und g, berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 39. Ein (e, q)-Kollisionsangreifer fir einen MAC H = (X,Y, K, H) ist ein
probabilistischer Algorithmus A, der q Fragen x4, ..., x, stellt und aus den Antworten
y; = hg(x;) mit Wahrscheinlichkeit mindestens € ein Paar (x,z') berechnet mit hy(x) =
hi(x'), wobei k der dem Angreifer unbekannte (und zufillig gewdhlte) Schliissel ist.

Da der Angreifer den Schliissel k& nicht kennt, ist ein Kollisionsangriff gegen einen
MAC H meist schwieriger zu realisieren als ein Kollisionsangriff gegen eine schliissellose
Hashfunktion. Andererseits ist die Kenntnis des Schliissels bei einem Geburtstagsangriff
nicht von Vorteil.

Satz 40. Seien Hy = (XY, K1, F), Hy = (Y, Z,Ky,G) MACs. Falls fir Hy kein
adaptiver (1, q+1)-Kollisionsangriff und fir Hs kein adaptiver (g9, q)-Fdlscher existieren,
dann ezistiert auch fir H = Hy o Hs kein adaptiver (g1 + €3, q)-Fdlscher.

Beweis. Sei A ein adaptiver (e, g)-Félscher fiir . Seien z, ..., z, die Fragen, die A an
sein Orakel g, o fx, stellt, und seien z; = g, (fx, (z;)) die erhaltenen Antworten. Zudem
sei (z, z) die Ausgabe von A. Wir miissen zeigen, dass die Erfolgswk von A

Priz & {x1, ..., 2.} N g, (fr, (7)) = 2] < &1+ €2
B c

ist, wobei (kq, ko) zufillig aus K = K; x Ky gewéhlt wird.

Behauptung 41. Priz & {1, ..., 2} A fi, (%) € {fia (1), .., fin(xg)}] < 1.
B D

Hierzu betrachten wir den adaptiven Kollisionsangreifer A’ gegen H, der zufillig einen
Schliissel ky € Ky wahlt und A wie folgt simuliert.

Fir jede Frage x; von A erfragt A" den MAC-Wert y; = f, (z;) und gibt an A
die Antwort z; = gi,(y;) zuriick. Sobald A ein Paar (x, z) ausgibt, erfragt A’
den MAC-Wert y = f, () und gibt im Fall z & {z1,..., .} Ay € {y1,..., Y.}
das Paar (z,x;) fir einen beliebigen Index ¢ mit y = y; aus.

Da A’ genau dann Erfolg hat, wenn das Ereignis B N D eintritt, folgt Behauptung 41.

Behauptung 42. Pr[fkl (‘7;) g {fkl (Il)a Cee 7fk1 (x(J)} N G, (f/ﬂ (1;)) = Z] < &2.
D c

Hierzu betrachten wir den adaptiven Félscher A” gegen Hs, der zufillig einen Schliissel
ki € Ky wahlt und A wie folgt simuliert.

A" gibt bei jeder Anfrage x; von A die Antwort des Orakels g, auf die Frage
Yi = fr, (z;) zuriick und sobald A ein Paar (z,z) ausgibt, gibt A” das Paar

(fr, (), 2) aus.

Da A” genau dann Erfolg hat, wenn das Ereignis D N C' eintritt, folgt Behauptung 42.
Damit folgt

Pr(BNC)=Pr(BNDNC)+Pr(BNDNC) < e+ &y

<eg <e1

32

2 Elliptische Kurven

2.1 Elliptische Kurven iiber den reellen Zahlen

Definition 43. Seien a,b € R. Fine elliptische Kurve E tber R enthdlt alle Lésungen
(z,y) € R? der Gleichung y?> = x> + ax + b und zusdtzlich den Punkt O (Punkt im
Unendlichen; siehe Ubungen). Im Fall 4a® + 27b* = 0 heifit E singuldr, sonst nicht-
singuldr.

Beispiel 44. Betrachte die durch y* = x® — 4x definierte elliptische Kurve E.

/7 /
N \

Punkte: (—2,0), (0,0), (2,0), (-1,v/3), (=1,—v3), (3,V15), (3, —V/15).

Auf den nicht-singuldren Punkten von E lédsst sich eine additive Gruppenoperation
+ definieren. Die Idee dabei ist, dass die Addition von 3 beliebigen Punkten von F,
die auf einer Geraden liegen, das neutrale Element O ergeben soll. Hierbei werden
Tangentialpunkte doppelt und Wendepunkte dreifach gezéhlt und den parallel zur y-
Achse verlaufenden Geraden wird zusétzlich noch der Punkt O hinzugerechnet (d.h. alle
Geraden, die parallel zur y-Achse verlaufen, schneiden sich im Punkt O) und es werden
nur solche Geraden g betrachtet, auf denen bei dieser Zahlweise 3 Punkte von F liegen.

Um nun die Summe R = P + @ von zwei gegebenen Punkten P = {x1,3;} und
Q = {x2,y2} zu berechnen, bestimmen wir zuerst die Gerade g, auf der P und @ liegen,
wobei g im Fall P = () die Tangente an E im Punkt P ist.
Falls g parallel zur y-Achse verlauft, ist 21 = x5 und y; = —y» (also @ = (21, —y1)). Da in
diesem Fall zudem der Punkt O auf g liegt, erhalten wir die Gleichung P + Q(+0) = O
bzw. —P = Q = (x1, —y1).
Falls g nicht parallel zur y-Achse verlauft, konnen wir P + @) wie folgt berechnen.
P # Q: In diesem Fall gilt x; # xo. Zudem ist ¢ = {(z,y) € R?ly = Az + pu} mit
A= % und g = y; — Ary = Yo — Azo. Wir zeigen zuerst, dass es einen Punkt
R = (3,y3) € R? gibt mit
Eng={PQ,R}.

Fir alle (z,y) € EN g gilt

(Ar +p)? =2 +ax+b

2.1 Elliptische Kurven tiber den reellen Zahlen 33

~ 2 = A% 4 (o —2uN)x + b — 2 = 0.

p(z)
p lésst sich in C vollstdndig in Linearfaktoren zerlegen,

p(x) = (x —a1)(x — 22) (2 — x3).
Da sich der Koeffizient —)\? von 22 aus der linearen Zerlegung von p(x) zu
—)\2 = —T1 — X2 — XT3
berechnet, muss w3 = A\ — z; — x5 sein. Da R auch auf g liegt, ist zudem y3 =
AMrz — 21) + 1.
Folglich ist P+ Q = —R = (x3, —y3) = (A* — 2y — 29, AM(xy — 23) — y1).
P = Q: In diesem Fall gilt 1 = x5 und y; = yo # 0. Sei g die Tangente durch P an F.
Wir zeigen, dass es einen Punkt R = (x3,y3) € R? gibt mit
gNE ={P,R}.

Die Steigung A\ von g erhalten wir durch implizites Differenzieren:

_dy — 9 (1, 1) _ 3at+a

T

dr %—Z(Il,yl) 2y

A

wobei F(z,y) =y* — 23

— ar — b ist. Zur Begriindung sei
T(z,y) = c(z —x1) +d(y — y1)

die Tangentialebene an die Flidche F(z,y) im Punkt (x1,y1, F(z1,y1)) = (21,41, 0).

Dann gilt
oF
c= %(37173/1) = _335% —a
und OF
d=— = 2.
By (xhyl) Y1

Da die Tangente g sowohl in der Tangentialebene T als auch in der z,y-Ebene
verlauft, folgt

(r,y)eg & T(z,y)=0

c
< Y—u :—g(ff—%)’

woraus sich A = —¢ ergibt. Genau wie im 1. Fall erhalten wir nun P+Q = P+ P =

.Z‘2 a
2P = —R = (w3, ~y3)) = (N’ — 1 — 22, \(w1 — 23) — y1) mit \ = 325; :

Satz 45. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.

e + ist abgeschlossen auf E.
e + ist kommutativ

o Jeder Punkt hat ein Inverses —P. P ist selbstinvers, falls P = —P ist. Dies gilt
fiir P = O und alle Kurvenpunkte der Form P = (x,0).

e + ist assoziativ (ohne Beweis!).

34 2 FElliptische Kurven

2.2 Elliptische Kurven iiber endlichen Korpern

Definition 46. Sei F, ein endlicher Kérper mit ¢ = p" fiir eine Primzahl p > 3. Fur
a,b € F, mit 4a® + 27b* # 0 heifst
E={(z,y) €F, |y’ =2+ az + b} U{O}

elliptische Kurve tiber Fy. Die Gruppenoperation + ist auf E wie folgt definiert.

e O ist neutrales Element, d.h. VP € E—-{O0}: P+ O =0+ P =P.

e Das Inverse zu P = (z,y) € E\ {O} ist =P = P = (z, —y).

o Fir P,Q € E\{O} ist
O, P=Q
R, sonst

rro-

wobei sich R = (x3,y3) wie folgt aus P = (x1,y1) und Q = (x2,y2) berechnet:
3 = AN —x — 29
ys = AMar—a3) —

(2 =) (w2 —21)™", P#Q

(327 + a)(2y1) ™, P=Q

Satz 47. (E,O,+) bildet eine abelsche Gruppe (ohne Beweis).

wobei \ = {

Beispiel 48. Sei E definiert durch y* = 1* + x + 6 tiber Z,, p = 11. Zur Erinnerung:
Im Fall p =4 3 lassen sich fir z € QR, die Wurzeln y durch 42" mod p bestimmen.

x 0[1] 2 3 14| 5 |6] 7 8 191 10
z=24+1+6 6 8] 5 3 18] 4 |8 4 9 | 7] 4
y=+yvzmod 11| — | —[47[56|—|29|—12;9]3;8]—12;9

Da die Gruppe (E,+,0) die Grofe |[E| = 13 hat und 13 prim ist, ist die Ordnung
jedes Elements der Kurve 1 oder 13. Da nur das neutrale Element O die Ordnung
1 haben kann, haben alle anderen Elemente P € E — {O} die Ordnung 13 und sind
daher Erzeuger der Gruppe. Folglich ist (E,+,O) zyklisch und somit isomorph zu Zy3:
(E,+,0) = (Zy3,+,0).
Berechnung von 2g = (2,7) + (2,7) = (5,2):

A= 3224127 '"mod11=2-3"=2-4mod 11 =8

r3 = 8 —-2-2mod1l=5

ys = 8(2—5)—T7mod 11 =2

Berechnung von 3g =29+ g = (5,2) + (2,7) = (8,3):

A= (T-2)(2-5)"mod 11 =5-(=3)"" mod 11 = 2
r3 = 2°—5—2mod 11 =38
y3 = 2-(5b—8)—2mod11=3

k11234 5 [6 78 9 [10]11]12]13
k- 9(2,7)](5,2)[(8,3)[(10,2)[(3,6)[(7,9)[(7,2)[(3.5)[(10,9)[(8,8)[5. 9)[(2,4) [O]

2.2 Elliptische Kurven tiber endlichen Kérpern 35

Satz 49. (Hasse) Fir die Anzahl | E| von Punkten einer elliptischen Kurve dber einem
endlichen Korper IF, gilt

q+1-2/q<||E|| <q+1+2\q (ohne Beweis).

Bemerkung 50. Es gibt einen effizienten Algorithmus (von Schoof) mit Zeitkomplexitit
O(log® q), der || E|| bei Eingabe von a,b und q berechnet.

Satz 51. Sei E eine elliptische Kurve tiber F,. Dann ist (E,O,+) isomorph zu
(Z1,,0,4) X (Zy,,0,4), wobei ny,ne € NT sind und ny Teiler von ny und von q — 1 ist
(ohne Beweis).

Bemerkung 52. Fulls ny ein Teiler von ny ist, ist die (additive) Gruppe Zyn, X Zn,
genau dann zyklisch, wenn ny =1 (und somit Zy, X Ly, = Zy,) ist. Fine hinreichende
Bedingung hierfir ist, dass | E|| quadratfrei (also das Produkt von paarweise verschiedenen
Primzahlen) ist.

Im Fall ny > 1 ist ' dagegen nicht zyklisch, hat aber eine nicht-triviale zyklische
Untergruppe, die zu Z,, isomorph ist und fir kryptografische Anwendungen benutzt
werden kann.

Kompakte Darstellung von Punkten auf E

Fir den Fall, dass sich Quadratwurzeln effizient in IF, berechnen lassen, gibt es eine
einfache Moglichkeit, Punkte auf einer elliptischen Kurve iiber IF, kompakter darzustellen.
Ist zum Beispiel ¢ = p prim mit p =4 3, so lassen sich die Wurzeln ++/z mod p von
z€ QR, = {zmod p | z € Z}} (QR steht fiir quadratischer Rest) effizient mittels

+/z = £2PTV/4 mod p berechnen.

Folgende Funktion liefert dann eine kompakte Darstellung.

PointCompress: E — {O} — Z, X Zy mit (z,y) — (z,y mod 2).

Fir die Rekonstruktion konnen wir folgende Prozedur benutzen. Sei E eine elliptische
Kurve y* = 2% + ax + b iiber F, und sei p(z) = 2* + az + 0.

Prozedur PointDeCompress(z,b)

1 z:=p(x) mod p
oy = 2Pt/ 4 mod p
if y>=, 2z then
1 if y#%,0 then y:=p—y
5 output(z,y)
¢ else output(‘‘error’’)

Effiziente Berechnung von Vielfachen von Punkten auf E

In Z;, berechnen wir Potenzen a® mod m durch ‘wiederholtes Quadieren und Multi-
plizieren’. Ahnlich kénnen wir in einer elliptischen Kurve E die Vielfachen mP eines
Punktes P durch ‘wiederholtes Verdoppeln und Addieren’ berechnen. Da in E additive
Inverse sehr leicht zu berechnen sind, kann m P durch ‘wiederholtes Verdoppeln, Addieren
und Subtrahieren’ noch effizienter berechnet werden. Hierzu reprasentieren wir m in

NAF-Darstellung (Non Adjacent Form).

36 2 FElliptische Kurven

Definition 53. (¢;_1,...,c0) € {—1,0,1} heifst SBR-Darstellung (Signed Binary
Representation) einer Zahl ¢ € 7, falls

-1
Z 2 =c
i=0

ist. Ist von je zwei benachbarten Ziffern ¢; mindestens eine 0, so heifit (¢;—1,...,¢o)
NAF-Darstellung von c.

Beispiel 54. Sowohl (0,1,0,1,1) als auch (1,0,—1,0,—1) sind SBR-Darstellungen von
c=142+8=11=-1—-4+16. N

Satz 55. Jede Zahl ¢ € Z hat eine eindeutige NAF-Darstellung (Beweis siehe Ubungen,).

Berechnung einer NAF-Darstellung aus der Bindrdarstellung: Ersetze jeden Teilstring
der Form (0,1,...,1) von rechts beginnend durch den Teilstring (1,0,...,0,—1).

Beispiel 56. Um die NAF-Darstellung von ¢ =79 zu berechnen, bestimmen wir zuerst
die Bindrdarstellung von c. Es gilt 7919 = 1011115. Mit obiger Transformationsregel ergibt
sich
(0, 1, 0, 1,1, 1, 1)
| S —
~ (0, 1, 1,0,0,0,—1)
——
~(1,0,—-1,0,0,0,—1) <

Zur effizienten Berechnung von () = c¢P benutzen wir das Horner-Schema

c:chQj:(...(...(082+CS_1)2+-~~+ci)2+-~~+cl)2—i—00,

d;
welches auf das folgende iterative Schema zur Berechnung der Punkte Q; = d;P =
> i ;27 P fiihrt:
O, 1=s+1
Qi = ,
2Qi+1+CiP, ’L:S7...,0.
Damit erhalten wir folgenden Algorithmus zur Berechnung von Q) = Qg = cP:

Prozedur DoubleAddSub(P, c,...,c)
Q=0

1
5> for 7:=s downto 0 do
3
|

Q = 2@ + Cz‘P
output(Q)

Da eine (s+ 1)-Bitzahl im Durchschnitt s/2 Nullen in Bindrdarstellung und (2/3)s Nullen
in NAF-Darstellung enthilt (sieche Ubungen), benétigt DoubleAddSub bei Verwendung
von NAF ca. (4/3)s Additionen/Subtraktionen im Vergleich zu ca. (3/2)s Additionen im
Binarfall. Dies entspricht einer Beschleunigung um ca. 11 Prozent.

37

3 Digitale Signaturverfahren

Handschriftliche Signaturen

e Die durch die Unterschrift gekennzeichnete Person hat tiberpriitbar die Unterschrift
geleistet.

e Die Unterschrift ist nicht auf ein anderes Dokument iibertragbar, ohne ihre Giiltig-
keit zu verlieren.

e Das signierte Dokument kann nachtraglich nicht unbemerkt verédndert werden.
Eine direkte Ubertragung dieser Eigenschaften in die digitale Welt ist nicht moglich.

Losung: Die digitale Signatur wird nicht physikalisch, sondern logisch (inhaltlich) an ein
elektronisches Dokument bzw. Text gebunden und die Fahigkeit, einen individuellen
Schriftzug auszufithren, wird durch geheimes Wissen ersetzt.

Definition 57. FEin digitales Signaturverfahren besteht aus:
e ciner Menge X von Texten,
e ciner endlichen Menge Y von Signaturen,
e cinem Schliisselraum K,

e ciner Menge S C K x K wvon Schliisselpaaren (lAc, k), bestehend aus einem Signier-
schliissel k und einem Verifikationsschliissel k,

e cinem Signieralgorithmus sig: K x X — Y und
o cinem Verifikationsalgorithmus ver : K x X xYV — {0,1}, so dass
ver(k,x,y) =1 fir alle Paare (k,k) € S und (z,y) € X xY mity = sig(k,x) gilt.
Im Fall ver(k,xz,y) =1 heifit y giiltige Signatur fir den Text x (unter k), andernfalls
ungtiltig.

Ein wichtiger Unterschied zu MACs besteht darin, dass digitale Signaturverfahren asym-
metrisch sind. Aufgrund dieser Asymmetrie kann Bob ndmlich auch einem Dritten
gegeniiber nachweisen, dass eine von Alice erzeugte Signatur y tatsdchlich von Alice
stammt. Bei Verwendung eines MACs zur Authentifikation einer Nachricht = kénnte Bob
die Nachricht manipuliert und den MAC-Wert auch selbst erzeugt haben, weshalb Alice
ihre Urheberschaft von x erfolgreich abstreiten kann.

Ein weiterer Vorteil von digitalen Signaturen gegentiber MACs ist, dass eine von Alice
geleistete Signatur von allen verifizierbar ist, sofern sie den o6ffentlichen Verifikations-
schliissel von Alice kennen. Um bspw. die Authentizitat eines Software-Updates = zu
gewéhrleisten, kann eine SW-Firma das Update z zusammen mit ihrer Signatur y fir
x verschicken. Bei Verwendung eines MACs miisste die SW-Firma dagegen mit jedem
einzelnen Kunden K; einen symmetrischen Schliissel k; vereinbaren und den zugehérigen

MAC-Wert y; = hy,(z) versenden.

38 3 Digitale Signaturverfahren

Klassifikation von Angriffen gegen Signaturverfahren

Angriff bei bekanntem Verifikationsschliissel (key-only attack): Dem Angreifer ist
nur der offentliche Verifikationsschliissel & bekannt und er versucht, ein Paar
(x,y) mit ver(k,z,y) = 1 zu finden. Jedes solche Paar, das nicht von Alice unter
Verwendung des geheimen Signierschliissels erzeugt wurde, wird als Falschung
bezeichnet.

Angriff bei bekannter Signatur (known signature attack): Der Angreifer kennt ne-
ben k die Signaturen y; = sz'g(/%,xi) fir eine Reihe von Texten zy, ..., 1, auf
deren Auswahl er keinen Einfluss hat, und versucht, eine Félschung (z,y) mit
r & {z1,..., 74} zu finden.

Angriff bei frei wahlbaren Texten (chosen document attack): Der Angreifer kann
die Texte x1, ..., x4 selbst wéhlen, erhalt die Signaturen aber erst, nachdem er alle
Texte vorgelegt hat.

Angriff bei adaptiv wahlbaren Texten: Der Angreifer kann die Wahl des Textes ;11
von den Signaturen yi,...,¥y; abhéngig machen.

Erfolgskriterien fiir die Falschung digitaler Signaturen

uneingeschrinktes Falschungsvermogen (total break): Der Angreifer hat einen Weg
gefunden, die Funktion z sz’g(l%, x) bei Kenntnis von k effizient zu berechnen.

selektives Falschungsvermogen (selective forgery): Der Angreifer kann fiir Texte sei-
ner Wahl die zugehérigen Signaturen bestimmen (eventuell mit Hilfe des legalen
Unterzeichners).

nichtselektives (existentielles) Falschungsvermogen: Der Angreifer kann fiir be-
stimmte Texte z, auf deren Wahl er keinen Einfluss hat, die zugehorige digitale
Signatur bestimmen.

3.1 Das RSA-Signaturverfahren

Beim RSA-Signaturverfahren ist K = {(a,n)|n = pq fir Primzahlen p,q und a €
Lyt und S die Relation S = {(d,n,e,n) € K x K|de =, 1}. Signiert wird mittels
sig(d,n,z) := ¢ mod n, wobei X =Y = Z,, und die Verifikationsbedingung ist

€ —

I, y¥*'=7

ver(e,n,z,y) = { 0 const

Satz 58. Fir alle (d,n,e,n) € S und z,y € Z,, gilt:

1, sig(d,n,z) =y,

ver(e,n,z,y) = { 0 onst

Beweis. Folgt direkt aus der Korrektheit des RSA-Kryptosystems. O

Wir betrachten eine Reihe von Angriffen gegen das RSA-Signaturverfahren und tiberlegen
anschlieend, durch welche Mafinahmen sich diese abwehren lassen.
e [ist nicht schwer, eine nichtselektive Falschung bei bekanntem Verifikationsschliis-

sel durchzufithren. Hierzu wéhlt der Angreifer zu einer beliebigen Signatur y € Y
den Text x = y° mod n.

3.2 Das ElGamal-Signaturverfahren 39

e Zudem ist eine existentielle Falschung bei bekannten Signaturen moglich, falls
der Angreifer zwei signierte Texte (z1,y1), (z2,y2) mit ver(k,z;,y;) = 1 kennt.
Wegen y§ =, x; fir i = 1,2 folgt ndmlich (y192)¢ =, y$yS =, 122 und somit
ver(k, z1z2 mod n, y;y2 mod n) = 1.

e Weiterhin kann der Angreifer bei frei wahlbaren Texten sogar eine selektive Fél-
schung durchfithren. Ist bereits die Signatur fir einen beliebigen Text ' € Z
bekannt und kann sich der Angreifer die Signatur fiir den Text 2” = z - 2/~ mod n
beschaffen, so kann er daraus wie oben eine giltige Signatur fiir den Text x
berechnen.

Diese Angriffe kann man vereiteln, indem man den Text 2 mit Redundanz versieht (indem
man z.B. anstelle von x den Text zx signiert). Um auch ldngere Texte effizient signieren
zu konnen, wird i.a. jedoch eine geeignete Hashfunktion h benutzt und nicht der gesamte
Text x, sondern nur der Hashwert h(x) signiert.

Bei der Signaturerstellung bendétigte Eigenschaften einer Hashfunktion A

e Die verwendete Hashfunktion h sollte die Einwegeigenschaft haben, da sonst der
Angreifer zu einem y € Y einen passenden Text x mit h(z) = y bestimmen kann
(zumindest wenn das Signaturverfahren anfillig gegen eine existentielle Félschung
ist, wie etwa RSA).

e Angenommen der Angreifer kennt bereits ein Paar (x,y) mit ver(k, h(z),y) = 1.
Dann sollte hA zumindest schwach kollisionsresistent sein, da sonst der Angreifer ein
x’ mit h(z") = h(x) berechnen und das Paar (z’,y) bestimmen konnte.

e Falls sich der Angreifer fiir bestimmte von ihm selbst gewéhlte Texte x die zugehorige
Signatur y beschaffen kann, so sollte h sogar kollisionsresistent sein. Andernfalls
konnte der Angreifer ein Kollisonspaar (z, z’) fiir h finden, sich den (unverdéchtigen)
Text x signieren lassen und die erhaltene Signatur y fiir den Text 2’ verwenden.

3.2 Das ElGamal-Signaturverfahren

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige asymmetrische
Kryptosystem probabilistisch und beruht wie dieses auf dem diskreten Logarithmus.
Sei p eine grofie Primzahl und « ein Erzeuger von Z; (p und « sind &ffentlich). Jeder
Teilnehmer B wahlt eine geheime Zahl a € Z,_; = {0,...,p — 2} und gibt § = o mod p
als Teil seines Offentlichen Verifikationsschliissels bekannt:

Signierschliissel: k= (p, v, a),
Verifikationsschliissel: &k = (p, a, 3).
Der Textraum ist X = Z,_; und der Signaturenraum ist Y = Z5 x Z,_ \ {0}.

Signaturerstellung: Um einen Text x € X zu signieren, wahlt der Signierer zufillig
eine Zahl z € Z; | und berechnet die Signatur sig(k,z,2) = (7,0) € Y mit v = o mod p
und § = (x —a7y)z~! mod p — 1. Falls § = 0 ist, muss eine neue Zufallszahl z gewéhlt und
der Vorgang wiederholt werden.

Verifikation: ver(k, z, (v,9)) = 1, falls 879° =, a® ist.

Lemma 59. Eine Signatur (v,9) mit ord(vy) = p — 1 erfillt genau dann die Verifikati-
onsbedingung B77° =, a®, wenn es ein z € Zy mit sig(k,x,2) = (7,6) gibt.

40 3 Digitale Signaturverfahren

Beweis. Wegen v = o mod pist z durch v (und «y durch z) eindeutig bestimmt. Weiter ist
B0 =, a®a® =, a®*#_ Da «a ein Erzeuger von Z., ist, gilt die Kongruenz a®+# =, a"
genau dann, wenn ay + 20 =, 1 x ist, was wiederum mit 6 =, ; (z — ay)z~! dquivalent
ist. O

Beispiel 60. Seip = 467, o = 2, a = 127 und 3 = a® mod p = 2'*" mod 467 = 132.
Um den Text v = 100 € Z,_1 = Zage mit dem Signierschlissel k= (p, v, a) = (467,2,127)
zu signieren, wahlt Alice die geheime Zufallszahl z = 213 € Z_, (~ 2z~ mod 466 = 431)
und erhdlt

v = 22" mod 467 = 29 und J = (100 — 127 - 29)431 mod 466 = 51,

d.h. sig(k,z,z) = (29,51). Um die Giiltigkeit dieser Signatur fir den Text x = 100 mit
dem Verifikationsschlissel k = (p,a,) = (467,2,132) zu prifen, verifiziert Bob die
Kongruenz

B0 =, 1322929°! =, 189 =, 2! = o”

Zur Sicherheit des ElGamal-Systems

L. Falls der Angreifer in der Gruppe Z;, den diskreten Logarithmus von [zur Basis o
bestimmen kann, so kann er den geheimen Schliissel a = log,, 5 berechnen.

2. Als néchstes betrachten wir verschiedene Szenarien fiir einen selektiven Angriff bei
bekanntem Verifikationsschliissel.

a) Der Angreifer wiahlt zu einem gegebenen Text x zuerst « und versucht, ein
passendes § zu finden. Mit o® = £7v° mod p folgt § = log, a”377. D.h. die
Bestimmung von 4 ist eine Instanz des diskreten Logarithmus Problems (kurz:
DLP).

b) Der Angreifer wéihlt zu einem gegebenen Text x zuerst § und versucht dann
ein v mit a® = $77° mod p zu finden. Hierfiir ist kein effizientes Verfahren
bekannt.

¢) Der Angreifer versucht, zu einem gegebenen Text x gleichzeitig passende
Zahlen v und ¢ zu finden. Auch hierfiir ist kein effizientes Verfahren bekannt.

3. Versucht der Angreifer bei einem nichtselektiven Angriff, zuerst v und § zu wéhlen
und dazu einen passenden Text x zu finden, so muss er den diskreten Logarithmus
r = log,, 377° bestimmen.

4. Eine existentielle Félschung lasst sich jedoch wie folgt durchfithren (falls keine
Hashfunktion benutzt wird). Der Angreifer wahlt beliebige Zahlen u € Z,_,
v € Zy_, und berechnet v = a3 mod p. Dann ist (v,d) genau dann eine giiltige
Signatur fiir einen Text z, wenn a® =, 37(a*3)? ist. Dies ist wiederum dquivalent
zur Kongruenz o®~ % =, 377 die sich im Fall ggT(v,p — 1) = 1 fiir den Text
x = ud mod p — 1 mittels 6 = —yv~! mod p — 1 erfiillen lisst. Bei Wahl von v = 1
erhalten wir z.B. die giiltige Signatur (vy,d0) = (a“f mod p, —a*$ mod p — 1) fir
den Text x = ud mod p — 1, wobei u € Z,_; beliebig gewéhlt werden kann.

Bemerkung 61. Bei der Benutzung des ElGamal-Signaturverfahrens sind folgende
Punkte zu beachten.

1. Die Zufallszahl z muss geheim gehalten werden.

3.3 Das Schnorr-Signaturverfahren 41

2. Zufallszahlen dirfen nicht mehrfach verwendet werden.

Kennt namlich der Angreifer zu einer Signatur (z, (,9)) die Zufallszahl z, so kann er
wegen 0 =, 1 (z —ay)z~! im Fall ggT(y,p — 1) = 1 die geheime Zahl

a=(x—26)y ' mod (p—1)

als eindeutige Losung der Kongruenz ya =,_1 © — 20 (x) berechnen. Ist allgemeiner
99T (v,p—1) = g > 1, so ist g ein Teiler von v und von p — 1 sowie wegen (x) auch
von x — zd. Setzen wir p = /g und X := (x — 20)/g, so fithrt (x) auf die Kongruenz
pa =@p-1)/g A (¥*), aus der sich wegen ggT'(i, (p — 1)/g) = 1 folgende g Kandidaten q;
fiir a gewinnen lassen:

ap = p *Amod (p—1)/gund a; :=ag +i(p—1)/g firi=1,...,9 — L.

Unter ay, ..., a1 lasst sich a durch Prifen der Bedingung a® =, 8 eindeutig bestimmen.

Sind andererseits (1, (7,601)) und (22, (7, d2)) mit demselben z generierte Signaturen,

dann folgt wegen 377" =, a® und 7% =, a®,

51—6y _

=, Q122 = az(51752) _

ol =, a"17 " = 2(6; — 02) =po1 T1 — Ta.
Aus dieser Kongruenz lassen sich d = ggT'(6; — 2, p — 1) Kandidaten fiir z gewinnen und

daraus wie oben a berechnen, falls d nicht zu grof3 ist.

3.3 Das Schnorr-Signaturverfahren

Da die Primzahl p beim ElGamal-Signaturverfahren mindestens eine 512-Bit-Zahl (besser
1024-Bit-Zahl) sein sollte, betragt die Signaturlédnge 1024 bzw 2048 Bit. Folgende Variante
des ElGamal-Signaturverfahrens, die als eine Vorstufe zum DSA betrachtet werden kann,
wurde von Schnorr vorgeschlagen.

Die zugrunde liegende Idee ist folgende: Indem wir fiir @ ein Element der Ordnung ¢ mit

q ~ 299 wihlen, reduziert sich die Signaturlinge auf 2- 160 = 320 Bit. Die Berechnungen

werden aber nach wie vor modulo p mit p ~ 21924 ausgefiihrt, so dass das Problem des

diskreten Logarithmus zur Basis « in Z; hart bleibt.

Sei g ein Erzeuger von Z;, wobei p die Bauart p—1 = mg fiir eine Primzahl ¢ = p;l—l ~ 2100

hat. Dann ist a = ¢g®~Y/7 ein Element in Zy der Ordnung ord,(a) = q (da ord(g') =
ordlg) _ — pl = q ist; siehe Ubungen). Weiter sei h : {0,1}* — Z, eine

ggT(i,ord(g)) — egT((p=1)/q.p—1)
Hashfunktion, die jedem Text x € X = {0,1}* einen Hashwert in Z, zuordnet.

Signierschliissel: i = (p,q,a,a), a € Z,,
Verifikationsschliissel: k= (p, «, 5), f = a® mod p.

Signaturerstellung: Um einen Text x € X zu signieren, wahlt der Signierer zufillig
eine geheime Zahl z € Z; und berechnet

sig(k,z,z) = (7,9),
wobei v = h(xzbin(a® mod p)) und § = (z + ay) mod ¢ ist. Der Signaturraum ist also
Y i=Z, x Z,.
Verifikation: ver(k,v,d) = 1, falls h(zbin(a’ 3~ mod p)) = ist.

42 3 Digitale Signaturverfahren

Beispiel 62. Sei ¢ =101, p="78¢+ 1 =7879, g =3, a = ¢®» /9 = 37 mod p = 170,
a =75 und B = a®mod p = 170 mod 7879 = 4567. Um einen Text x € {0,1}*
mit dem Signierschliissel k = (p,a,a) = (7879,170,75) zu signieren, wdhlt Alice die
geheime Zufallszahl z = 50 € Z; und berechnet den Wert o mod p = 170°° mod 7879 =
2518. Dies fiihrt auf den Hashwert v = h(xbin(2518)) € Z,. Unter der Annahme, dass
h(zbin(2518)) = 96 ist, erhdlt Alice wegen

0 =50+ 75-96 mod 101 = 79

die Signatur sig(k,z,z) = (96,79). Um die Giiltigkeit dieser Signatur fir den Text x mit
dem Verifikationsschlissel k = (p, «,) = (7879, 170,4567) zu priifen, berechnet Bob die
Zahl

B0 =, 170745679 =, 2518

und verifiziert die Gleichheit h(xbin(2518)) = 96. <

3.4 Der Digital Signature Algorithm (DSA)

Der DSA wurde im August 1991 vom National Institute of Standards and Technology
(NIST) fiir die Verwendung im Digital Signature Standard (DSS) empfohlen. Der DSS
enthilt neben dem DSA (urspriinglich der einzige im DSS definierte Algorithmus) als
weitere Algorithmen die RSA-Signatur und ECDSA (siche unten). Ausgehend vom
ElGamal-Verfahren lasst sich der DSA durch folgende Modifikationen erhalten:
1. ¢ als Losung von 20 — ay =, x (d.h. § = (x 4+ ay)z!) ~ Verifikationsbedingung:
Oémﬁv =, ,.}/6 (O[a:acw =, az(w-{—av)z’l)
2. Ist + ay € Z}_,, dann existiert ' = (z + ay)"'z mod p — 1 ~» Verifikation
durch: a* g7 =, 4
3. Sei nun wie bei Schnorr p = mg+1 mit ¢ ~ 2'% prim und sei a € Z} mit ord,(a) = q.
Dann kann bei der Verifikation von a® ' g1 =, v auf der Exponentenebene
modulo q gerechnet werden. Da 7 jedoch rechts nicht als Exponent, sondern als
Basiszahl, vorkommt, muss auch die linke Seite modulo q reduziert werden.

Beim DSA hat der Signierschliissel also die Form k = (p, ¢, v, a), wobei a € Z; ist, und
der zugehorige Verifikationsschliissel ist £ = (p, ¢, , f) mit f = a* mod p. Zudem gilt
X =Z;und Y =Z, x L.

Zu gegebenem x € X wird zuféllig eine geheime Zahl z € Z; gewahlt.

) e
sig(h. 2.7) = (.6), wobei {7~ (@7 modp)modg
0= (x+ay)z~" modq € Z;

Im Fall v = 0 oder § = 0 muss ein neues z gewdhlt werden. Die Verifikationsbedingung
ist
1, (a*f%mod p) mod g = 7,

/Uer(k7 x? 77 5) - {

0, sonst,

wobei e = 26! mod ¢ und d = v6~! mod ¢ ist.
Korrektheit: Im Fall sig(k, z,) = (7,) ist

-1 —1 -1 —1
aof d =, axé aa’yé =, OZ5 (z+ay) =, a(x—i—a'y) z(z+ay) =, o

3.5 ECDSA (Elliptic Curve DSA) 43

woraus sich
(a®B% mod p) mod ¢ = (a* mod p) mod ¢ = v

ergibt.
Beispiel 63. ¢ =101, p=78¢+1=7879, g =3 (ord,(3)=p—1)
~ a = 3" mod p =170 hat Ordnung q

Wir wihlen a = 75 € Z;, d.h. 3 = a®mod p = 170 mod p = 4547. Um den Text
x = 22 € Z; zu signieren, wihlen wir die geheime Zufallszahl z = 50 € Z;, (~ z71=99)
und erhalten dann

v = (170°° mod 7879) mod 101
= 2518 mod 101

= 94
§ = (22+75-94) 99 mod 101
97 (~ 6t = 25)

d.h. sig(p,q, o, z,x) = (94,97), wobei k= (p,q,,a)
Um diese Signatur zu prifen berechnen wir:

e = 0 'modygq

22 - 25 mod 101
45

76! mod ¢

= 9425 mod 101
= 27

=y
I

~ (a4 mod p) mod g = (170*°4547%7 mod 7879) mod 101 = 94. g

3.5 ECDSA (Elliptic Curve DSA)

Im Jahr 2000 als FIPS 186-2 als Standard deklariert.

Sei E eine elliptische Kurve iiber einem endlichen Kérper Fy». Sei A € E ein Punkt
der Ordnung ¢ (¢ prim), so dass das Diskrete-Logarithmus-Problem zur Basis A in E
schwierig ist. Zudem sei h: {0, 1}* — Z, eine kryptografische Hashfunktion.

Textraum: X ={0,1}%,
Signaturraum: Y =7, x Z,
Signierschliissel: k= (E,q,A,m), m € Z,

Verifikationsschliissel: k& = (E,q, A, B), wobei B =m - A.
Signaturerstellung: Um einen Text x € X zu signieren, wahlt der Signierer zufallig
eine geheime Zahl z € Z; und berechnet

sig(k, @, 2) = (3,0),

44 3 Digitale Signaturverfahren

wobei
(u,v) = zZA
v = wumodgq
§ = (h(z)+my)z~' mod q

Hierbei wird u als eine Zahl in {0,...,p" — 1} interpretiert. Falls v = 0 oder 6 = 0 ist,
muss eine neue Zufallszahl z gewdhlt und der Vorgang wiederholt werden.

Verifikation: ver(k,z,v,0) = 1, falls « mod ¢ = 7 ist, wobei

e = h(z)6 ' modq
d = ~5 'modygq
(u,v) = eA+dB

Korrektheit der Verifikation beim ECDSA:

(u,v) = eA+dB
= (h(z)6 A+ (v0H)mA
= (h(z) +my)§ A
= 2zA (da (h(z) +my)6 ' =, 2)

Beispiel 64. Sei E iiber Zyy definiert durch y* = x* + x + 6. Wir wihlen A = (2,7),
m=7—=p=11,¢q=13,B=TA = (7,2).

Um einen Text x mit dem Hashwert h(x) = 4 unter Verwendung des Signierschliissels
k= (E,q, A,m) und der Zufallszahl z = 3 signieren, berechnet Alice

(u,v) = zA=3-(2,7)=(8,3)
v = umodgq=2_8
§ = (4+7-8)3 " mod13 =7

und erhilt die Signatur sig(k,z, x) = (8,7). Um diese Signatur mit dem Verifikations-
schlissel k = (F,q, A, B) zu tberprifen, berechnet Bob

e == h(r)d'modg=4-7"mod13=4-2mod 13 =38
= 6 'modqg=28-2mod 13 =3
(u,v) == eA+dB=8-(2,7)+3-(7,2) =(8,3)
und testet die Kongruenz u =, 7. <

3.6 One-time Signatur (Lamport 1979)

Leslie Lamport konnte zeigen, dass sich digitale Signaturen auf der Basis einer Einweg-
funktion f konstruieren lassen. Damit die Signatur allerdings sicher ist, muss fiir jeden
Text ein neues Schliisselpaar (]AC, k) generiert werden, d.h. der Signierschlissel k darf nur
zum Signieren eines einzelnen Textes verwendet werden.

3.6 One-time Signatur (Lamport 1979) 45

Seien U und V endliche Mengen und sei f : U — V eine Funktion. Zudem sei ¢ > 1 die
vorgegebene Textlinge, d.h. der Textraum ist X = {0, 1}¢. Der Signaturraum ist dann
Y = U~

Um ein Schlisselpaar (/2:, k) zu generieren, wird zuféllig eine Folge von 2¢ Elementen
wp fire=1,...,f und b = 0,1 aus U gewéhlt und der Signierschliissel k= (E?Zﬁ?)
gebildet.

Der zugehorige Verifikationsschliissel ist dann k& = (E?Zﬁ;’) mit v;, = f(u;p) fir alle
t=1,...,4und b=0,1.

Signaturerstellung: Die Signatur fiir einen Text x = z; ...z, € X ist

A~

sig(k,x) = (Urgyy - s Ura,)-
Verifikation: Fiir eine Signatur y = (uq, ..., u,) und einen Text x = ...z, gilt

L, flu) = v, firi=1,...,¢,

ver(k,z,y) =

() {0, sonst.

Beispiel 65. Wir wdhlen als Einwegfunktion eine Funktion der Form f : Z, — Z; mit
f(u) = g* mod p, wobei g ein Erzeuger von Ly, ist.

Z.B. seip="T879 und g = 3, also f(u) = 3" mod 7879. Weiter sei { = 3.

Dann erhalten wir fir den zufdllig gewdhlten Signierschlissel k= (2%331 43@2 éiig) den

zugehorigen Verifikationsschlissel k = (:212(7]2 35?3 g%i) Die Signatur y fiir den Text
x =110 ist dann

~

y = sig(k,z) = (u11,ug1,us0) = (803, 735,2467).

Fir diese Signatur y = (uq, ug, u3) ist ver(k,z,y) =1, da f(u;) = v;p, firi=1,2,3 gilt:
i=1: f(u1) = f(803) = 3% mod 7879 = 4672 = vy ,,
i =21 f(us) = f(735) = 37 mod 7879 = 3810 = vy,
i =31 fluz) = f(2467) = 3267 mod 7879 = 4721 = vy, 4

Ahnlich wie bei MACs kénnen wir einen Angriff gegen ein digitales Signaturverfahren wie
folgt modellieren. Hierbei nehmen wir an, dass der Angreifer die Texte, deren Signaturen
er kennt, adaptiv wahlen kann (existentielle Falschung bei adaptiv wéihlbaren Texten).

Definition 66. Sei 0 < ¢ < 1 und sei ¢ € N. Ein (g, q)-Falscher fir ein digitales
Signaturverfahren ist ein probabilistischer Algorithmus A, der bei Eingabe eines Verifikati-
onsschlissels k (wobei das Schlisselpaar (IAC, k) zufillig gewdhlt wird) nach den Signaturen
Yi = sig(/%,xi) von q Texten x1, ..., x4 fragt und mit Wahrscheinlichkeit mindestens €
eine Falschung (z,y) mit ver(k,z,y) =1 und x & {z1, ..., 2.} ausgibt.

Satz 67. Sei f : U — V eine Funktion. Falls fiir die zugehérige one-time Signatur
ein (g,0)-Fdlscher LAMPORT-FALSCHUNG (k) existiert, dann ldsst sich fir ein zufdllig
gewdhltes u €r U mit Wahrscheinlichkeit mindestens €/2 ein Urbild von v = f(u)
bestimmen.

Beweis. Betrachte folgenden probabilistischen Algorithmus LAMPORT-URBILD(v).

46 3 Digitale Signaturverfahren

Prozedur Lamport-Urbild(v)

1 wahle zufallig ein Indexpaar (j,a) und setze v;,:=v
> for all (i,0) € [{] x {0,}\ {(j,a)} do

3 wahle zufdllig u;, €g U und setze v := f(u;p)

k= ()

5 (x1...20 (uq,...,up)) =: Lamport-Falschung(k)

¢ if f(uj) =v then output(u;) else output(?)

o~

Wie iiblich bezeichnen wir die Zufallsvariablen, die die Wahl von v, j, a, k und (z,y) =
(x1...20 (uq,...,up)) beschreiben, mit entsprechenden Grofibuchstaben. Dann miissen
wir zeigen, dass U; mit Wahrscheinlichkeit mindestens /2 ein f-Urbild von V' ist, wobei
V' die Wahl von v = f(u) fir ein zufillig gewahltes u €g U beschreibt.

Da die Verteilung von K identisch zur Schliisselgenerierung der Lamport-Signatur und
LAMPORT-FALSCHUNG ein (g, 0)-Falscher ist, folgt

Priver(K,X,Y)=1] > ¢.

Da zudem K (und damit auch (X,Y’)) unabhéngig von (J, A) und auch J und A
unabhéngig voneinander sind, ist A von (J, K, X,Y’) und damit auch von X ; unabhéngig.

Sei p die Erfolgswk von LAMPORT-URBILD bei Eingabe V. Wegen
ver(k,xy...x¢, (ur,...,u)) = 1Az =a = f(u;) = Vo, = Vja =0
folgt nun

p > Priver(K, X, Y)=1AX,=A4]
Priver(K,X,Y)=1]Pr[X; = A|ver(K,X,Y)=1] = ¢/2.
1/2 0

Als néchstes untersuchen wir die Sicherheit der Lamport-Signatur, falls der Angreifer
in der Lage ist, sich fiir einen beliebigen Text 2’ seiner Wahl eine giiltige Signatur 3’ zu
beschaffen.

Satz 68. Sei f : U — V eine Funktion. Falls fiir die zugehorige one-time Signatur ein
(¢,1)-Filscher LAMPORT-FALSCHUNG' (k) existiert, so ldsst sich fiir ein zufdllig gewdhltes
u €r U mit Wahrscheinlichkeit > /20 ein f-Urbild von v = f(u) bestimmen.

Fiir den Beweis betrachten wir folgenden probabilistischen Algorithmus

Prozedur Lamport-Urbild’(v)

. wahle zufallig ein Indexpaar (j,a) und setze v;,:=v
> for all (i,b) # (j,a) do

3 wahle zufalllg Ui b €r U und setze Vip 1= f(uiyb)

1 k - (Ulyo..AU‘g’())

v1,1-.-V¢,1
5 simuliere Lamport-Falschung’(k) und beantworte die Frage z’ mit
Ui, Uy, (falls a:; =a 1ist, brich ab und gib ? aus); sei
(z,y) = (x1...24, (ug,...,up)) die erzeugte Ausgabe

s if f(u;) =v then output(u;) else output(?)

3.7 Full Domain Hash (FDH) Signaturen 47

und zeigen, dass Lamport-Urbild’ fiir ein zufillig gewéahltes u €r U bei Eingabe
v = f(u) mit Wahrscheinlichkeit > ¢/2¢ ein f-Urbild von v ausgibt.

Beweis. Sei p’ die Erfolgswk von LAMPORT-URBILD’ bei Eingabe V. Es ist klar, dass u;
im Fall ver(k, 21 ... 2, (u1,...,u)) =1 A 2 # x; = a ein Urbild von v ist. Allerdings
kann LAMPORT-URBILD’ nur dann die Frage nach der Signatur von z’ beantworten, wenn
2’ # a ist. Da also die Simulation von LAMPORT-FALSCHUNG’(k) teilweise abgebrochen
wird (und die Abbruchbedingung von (j,a) abhéngt), konnen wir nicht mehr davon
ausgehen, dass diese Simulation mit Wahrscheinlichkeit e eine Falschung (x,y) liefert
und (z,y) unabhéngig von (j,a) ist.

Durch eine einfache Modifikation von LAMPORT-URBILD’(v) erhalten wir jedoch eine
Prozedur LAMPORT-URBILD* (ohne Eingabe), deren Ausgabeverhalten mit der von
LAMPORT-URBILD’(V) identisch ist, und von der wir zeigen konnen, dass sie mit Wahr-
scheinlichkeit p* > ¢/2¢ Erfolg hat (also nicht Fragezeichen ausgibt).

Prozedur Lamport-Urbild*

1 wahle zufallig ein Indexpaar (j,a)
> for all (i,0) do wahle zufallig w;, € U und setze v;; := f(u;p)
3 k= <v1,o...ve,o)
V1,1---V¢,1
1 simuliere Lamport-Falschung’(k) und beantworte die Frage z’ mit
Urary- - Urg; S€1 (z,y) = (21... 2 (u,...,u)) die erzeugte Ausgabe
5 if f(uj) = vja A7) # a then output(u;) else output(?)

Im Unterschied zu LAMPORT-URBILD’(v) wahlt sich LAMPORT-URBILD* also die Eingabe
v = vj, gemaf der Verteilung von V' selbst und kennt daher auch ein Urbild u;, von
Vjq. Somit kann LAMPORT-URBILD* bei der Simulation von LAMPORT-FALSCHUNG (k)
die Frage nach der Signatur von 2z’ auch im Fall 2, = a beantworten. Die Bedingung
fir die Ausgabe von u; ist jedoch bei beiden Prozeduren dieselbe, d.h. die Ausgabe von
LAMPORT-URBILD* hat dieselbe Verteilung wie die von LAMPORT-URBILD’(V') und
somit gilt p’ = p*. Der einzige Unterschied ist, dass immer wenn LAMPORT-URBILD’(V)
in Zeile 4 ein Fragezeichen ausgibt, LAMPORT-URBILD™* dies erst in Zeile 5 tut. Da in der
Prozedur LAMPORT-URBILD* die ZV (J, A) unabhéngig von (K, X', X,Y) ist, folgt nun

Pr[f(Us) = Via N X # A
> Prlver(K,X,Y)=1AX,;=AAX) # A
= Priver(K,X,Y) =1]Pr[X) # X, = A|ver(K,X,Y) =1] > ¢/2¢.

>1/2¢

p*

O

Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die sich jedoch teilweise
beheben lassen (siehe Ubungen). So ldsst sich sowohl die Lénge des privaten Signierschliis-
sels (mittels Pseudozufallsgeneratoren) als auch des 6ffentlichen Verifikationsschliissels
(mittels Hash-Listen) verringern. Zudem konnen bei Verwendung von Hash-Bédumen mit
demselben Schliisselpaar auch mehrere Nachrichten signiert und verifiziert werden.

3.7 Full Domain Hash (FDH) Signaturen

Sei F = {fx|k € K} eine Familie von Falltiir-Permutationen auf einer Menge U, d.h. es
lassen sich (zuféllig) Schliisselpaare (k, k) € K x K generieren, so dass gilt:

48 3 Digitale Signaturverfahren

o fi(fe(u)) =ufiralleueU.

e fi ist eine Einweg-Permutation auf U, d.h. fir ein zufallig gewahltes Schlisselpaar
(k,k) € K x K und ein zuféllig gewihltes v € U ist es schwer, ohne Kenntnis von k
ein Urbild v mit fy(u) = v zu finden (genauer: jedem effizienten Angreifer gelingt
dies nur mit vernachlassigbarer Wahrscheinlichkeit).

Weiter sei h : {0,1}* — U eine Funktion.

Die auf 7 und % basierende FDH-Signatur funktioniert wie folgt. Zuerst wird ein Schliissel-
paar (k, k) € K x K generiert, wobei k als Signierschliissel und k als Verifikationsschliissel
fungiert. Der Textraum ist X = {0,1}* und der Signaturenraum ist U.

Signaturerstellung: Die Signatur fiir einen Text x € X ist
sig(k,) = fi(h(x)).

Verifikation: Fiir eine Signatur y € U und einen Text x € {0, 1}* gilt

L fily) = h(z),

ver(k, 3,9) {0, sonst.

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer Hashfunktion auf
diesem Prinzip. Ein Problem hierbei ist allerdings, dass die benutzten RSA-Falltiir-
Permutationen einen Definitionsbereich der Grofie 219%* haben, um eine ausreichend
grofle Sicherheit zu erreichen, wogegen die benutzten Hashfunktionen nur eine Linge von
160 Bit haben. In der Praxis behilft man sich damit, dass man die 160-Bit-Hashwerte
durch eine deterministische Paddingfunktion auf 1024-Bit aufblaht, was die Sicherheit
allerdings beeintrachtigen kann.

Sicherheitsanalyse der FDH-Signatur im ZOM

Bei Verwendung einer Zufallsfunktion G : {0,1}* — U (vgl. Zufalls-Orakel-Modell, ZOM)
anstelle von h lasst sich die Falschungssicherheit der resultierenden FDH-Signatur aus der
Falltiireigenschaft von F herleiten. Das ZOM modelliert eine Hashfunktion mit optimalen
kryptografischen Eigenschaften, d.h. die Zufallsvariablen U, = G(z) sind stochastisch
unabhéangig und gleichverteilt auf U. Zudem fillt der Wertebereich von G den gesamten
Definitionsbereich der Funktionen f; aus (full domain hash).

Wir betrachten zuerst den Fall einer existentiellen Félschung bei bekanntem Verifikations-
schlissel, d.h. der Angreifer muss eine Falschung (z,y) mit ver(k,x,y) = 1 produzieren
ohne auch nur eine Signatur 3’ fiir einen Text x’ zu kennen.

Sei FDH-Falschung ein probabilistischer Algorithmus, der fiir einen zufillig generierten
Verifikationsschliissel £ mit Wahrscheinlichkeit € eine existentielle Falschung (z,y) mit
fr(y) = G(x) ausgibt. Dabei nehmen wir an, dass FDH-Falschung eine Folge von ¢
verschiedenen Fragen zy,...,z, an G stellt. Es ist klar, dass ein solcher Angriff im Fall
x & {z1,...,x,} mit der Wahrscheinlichkeit ¢ = 1/||U]| gelingt. Da diese Erfolgswk durch
Ausgabe eines beliebigen Paares (x,y) bereits mit ¢ = 0 Fragen an G erreicht wird,
kénnen wir zudem annehmen, dass x € {z1,...,z,} enthalten ist (sofern ¢ > 1 ist).

Betrachte folgenden Invertierungsalgorithmus fiir fy.

Prozedur FDH-Invert(k,v)

3.7 Full Domain Hash (FDH) Signaturen 49

1 wahle zufallig j ez {1,...,q}

> simuliere FDH-Falschung(k) und beantworte dabei die Frage z; im
Fall ¢ =7 durch v; =v und sonst durch ein zufallig gewahltes
v; €EgU; sei (x,y) die erzeugte Ausgabe

3 if fi(y) = v then output(y) else output(?)

Satz 69. Fulls FDH-Falschung(k) fir einen zufillig gewdhlten Verifikationsschlissel k
mit Wahrscheinlichkeit € eine Filschung (x,y) mit fi(y) = G(x) ausgibt und dabei ¢ > 1
Fragen an G stellt, so gibt FDH-Invert(k,v) fir einen zufilligen Verifikationsschlissel
k und ein zufilliges v €g U mit Wahrscheinlichkeit > €/q ein fi-Urbild von v aus.

Beweis. Seien J, K, U, V, X, Xi,...,X, Zufallsvariablen, die die Wahl von j, &, u,
v, T, T1,..., T, beschreiben. Da die Eingabe v gleichverteilt ist, erhalt FDH-Falschung
auf die Fragen z,...,z, an G zufillig gewéhlte Strings vy, ..., v, als Antwort, was dem
ZOM entspricht. Daher liefert die Simulation von FDH-Falschung(k) fir einen zufillig
generierten Schliissel & mit Wahrscheinlichkeit ¢ eine Félschung (x,y) mit fi(y) = G(x):

Prlf(Y) = G(X)] = e.

Wir wollen zeigen, dass Pr[fx(Y) = V| > ¢/q ist. Da © € {x,...,2,} enthalten ist,
existiert ein ¢ mit « = x; und die Gleichheit fi(y) = G(x) impliziert fi(y) = G(z;) = v,
was im Fall ¢ = j wiederum fj(y) = v; = v impliziert:

ver(k,z,y) =1Nz; =2 = fi(y) =v.

Daher folgt
Pr(fx(Y) =V] = Pr[fx(Y) = G(X) A X, = X].

Da zudem j € {1,..., ¢} zufillig gewéhlt und die Fragen z, ..., z, unabhingig voneinan-
der durch zufallige vy, . . ., v, beantwortet werden (nach Voraussetzung trifft dies auch auf
vj = v zu), erhélt FDH-Falschung weder durch k£ noch durch die Antworten vy, ..., v,
irgendeine Information iiber j. Daher ist die Zufallsvariable J stochastisch unabhédngig
von K, Xy,...,X,, X sowie Y und somit auch von der Zufallsvariablen I, die den Index
i€{l,...,q} mit z = x; bestimmt. Daher folgt

Prife(Y)=V] > Pr[fx(Y)
= Pr[fx(Y)

GX)NJ =1
GX)Pr[J = T| fx(Y) = G(X)]

1/q

= Prlfx(Y) =G(X)]/q = ¢/q 0

Falls sich also f; nur mit einer vernachliassigbaren Wahrscheinlichkeit < &’ effizient
invertieren lésst, so gelingt einem &hnlich effizienten Angreifer, der nicht mehr als ¢ Hash-
wertberechnungen durchfithrt, im ZOM hochstens mit einer (ebenfalls vernachlédssigbaren)
Wabhrscheinlichkeit ¢ < g¢’ eine existentielle Falschung fiir die FDH-Signatur.

Als néchstes beweisen wir die Félschungssicherheit der FDH-Signatur im ZOM gegeniiber
einem existentiellen Angriff mit adaptiv gewédhlten Texten.

Sei FDH-Falschung’ ein probabilistischer Algorithmus, der fiir einen zufillig generierten
Verifikationsschlissel k£ mit Wahrscheinlichkeit ¢ eine existentielle Falschung (z,y) mit
fr(y) = G(z) ausgibt und insgesamt fir ¢ Texte xq,..., 2, den Wert G(z;) oder die

20 3 Digitale Signaturverfahren

Signatur sig(l%,:ri) erfragt. Dabei konnen wir 0.B.d.A. annehmen, dass FDH-Falschung’
zwar den G-Wert aber nicht die Signatur von x erfragt und vor jeder Signaturfrage den
G-Wert des betreffenden Textes erfragt.

Satz 70. Fualls FDH-Falschung’ (k) fir einen zufdillig gewdhlten Verifikationsschlissel k
mit Wahrscheinlichkeit € eine Falschung (z,y) mit fr(y) = G(x) berechnet und dabei fiir
q Texte x; den Wert G(z;) sowie im Fall z; # x evtl. auch die Signatur sig(k,z;) erfragt,
so lasst sich fir einen zufdlligen Verifikationsschliissel k und ein zufdlliges v €g U mit
Wahrscheinlichkeit > €/q ein fi.-Urbild von v bestimmen.

Fiir den Beweis (siche Ubungen) betrachten wir folgenden probabilistischen Algorithmus

Prozedur FDH-Invert’(k,v)

I wahle zufallig jegr{l,...,q}

> simuliere FDH-Falschung’(k) und beantworte dabei jede Frage z; an
G im Fall i=j durch v; =v und sonst durch v; = f;(u;), wobei u,
zufallig aus U gewahlt wird; falls spater die Signatur von z;
erfragt wird, gib w; als Antwort (falls :=j ist, brich ab und
gib ? aus); sei (z,y) die erzeugte Ausgabe

3 if fi(y) = v then output(y) else output(?)

und zeigen fiir einen zufalligen Verifikationsschliissel £ und ein zufélliges v € U,

Pr[FDH-Invert’(k,v) findet ein f-Urbild von v] > ¢/q.

3.8 Verbindliche Signaturen (undeniable signatures)

In manchen Féllen ist es fiir den Unterzeichner eines Textes nicht wiinschenswert, dass
jeder dazu in der Lage ist, die Giiltigkeit einer vorgelegten Signatur zu verifizieren.

Zum Beispiel konnte eine Softwarefirma (Alice) ihre Produkte mit einer Signatur versehen,
die u.a. Virenfreiheit garantiert.

Problem: Neben den legalen Erwerbern der Software (Bob) kénnen sich auch Kaufin-
teressenten auf dem Schwarzmarkt von der Giiltigkeit einer Signatur (und damit von der
Virenfreiheit des signierten Produkts) iiberzeugen.

Losung: Die Giltigkeit einer Signatur lasst sich nur unter Mitwirkung von Alice verifi-
zieren.

Neues Problem: Alice konnte versuchen, eine von ihr erzeugte giiltige Signatur abzu-
leugnen, indem sie ihre Verifikation sabotiert.

Losung: Es gibt zusétzlich ein Ableugnungsprotokoll (disavowal protocol), mit dem Alice
die Ungiiltigkeit von Signaturen nachweisen kann. Falls Alice die Giiltigkeit einer Signatur
bestreitet und sich dennoch weigert, die Ungiiltigkeit mithilfe des Ableugnungsprotokolls
zu beweisen, kann man davon ausgehen, dass die Signatur giiltig ist.

Das Signaturverfahren von Chaum und van Antwerpen

Bei diesem Signaturverfahren wird eine Primzahl p = 2¢ + 1 benutzt, wobei auch ¢ prim
ist, so dass das Diskrete Logarithmus Problem in Z; hart ist. Sei a € Z; ein Element der
Ordnung ¢ und sei G' = {a%|a € Z,}, die von « in Zj erzeugte Untergruppe.

3.8 Verbindliche Signaturen (undeniable signatures) 51

Der Text- und Signaturraum ist X = Y = G. Der Signierschlissel hat die Form
k = (p,a,a), a € Z; und der zugehorige Verifikationsschliissel ist k& = (p, , 3) mit
B = a® mod p.

Signaturerstellung: Die Signatur fiir einen Text x € G ist

~

sig(k,x) = z* mod p.

Will Bob eine von Alice geleistete Signatur y € G fiir einen Text x € G verifizieren, so
fithrt er zusammen mit Alice folgendes Protokoll aus.

Verifikationsprotokoll:
1. Bob wihlt zufillig e, f € Z, und und sendet ¢ = y°3/ mod p an Alice.
2. Alice sendet d = ¢* ' m°d ¢ mod p zuriick an Bob.
3. Bob akzeptiert y als giiltig, falls d =, z°a/ ist.

Es ist leicht zu sehen, dass Bob eine giiltige Signatur y = x® mod p mit Wk 1 als giiltig
akzeptiert, falls sich beide an das Verifikationsprotokoll halten:

a~1 mod ¢ -1
ol =, (z*a) =, " mdi= g
——
yeBf=pc

-p

Beispiel 71. Sei p = 467 = 2233+ 1 mit ¢ = 233. Da g = 2 ein Erzeuger von
Zy, ist, hat o = ¢* = 4 die gewiinschte Ordnung q = %. Da o die Untergruppe
QR, der quadratischen Reste erzeugt, ist G = QR,. Waihlen wir den Signierschlissel
k= (p,o,a) = (467,4,101), so erhalten wir k = (p, a, B) = (467,4,449) als zugehirigen
Verifikationsschliissel. Die Signatur fir x = 119 € G berechnet sich wie folgt:

sig(k,z) = 2% mod p = 119'° mod 467 = 129 =y
Verifikation von y = 129 fir x = 119 unter k:

1. Bob wdhlt e, f € Z, (e =38, f = 164) und sendet
c =y mod p = 1293844964 mod 467 = 13 an Alice.

2. Alice sendet d = ¢* ' ™49 mod p =9 an Bob zuriick.
3. Bob akzeptiert, da d = x°af = 119%%4'%* mod 467 = 9 ist. dq

Bemerkung 72. Die Wahl von p der Form p = 2q+1 mit q prim dient folgenden Zielen:

e Die Ordnung q der Untergruppe G von Z, ist prim (dies erlaubt die Berechnung
von a~! mod ¢ in Schritt 2 des Verifikationsprotokolls).

o G ist eine maglichst grofe Untergruppe von Z; mit primer Ordnung.

Behauptung 73. Bob akzeptiert eine ungiiltige Signatur y %, x* nur mit Wahrschein-
lichkeit 1/q (auch wenn sich Alice nicht an das Verifikationsprotokoll hdlt).

Beweis. Alice steht in Zeile 2 des Verifikationsprotokolls vor der Aufgabe, eine Zahl
d € G zu finden, so dass Bob in Zeile 3 akzeptiert. Das ware fiir Alice problemlos moglich,
wenn sie e und f kennen wiirde. Alice hat aber nur partielles Wissen iiber das Paar (e, f),
namlich dass es die Kongruenz

c =, ye s (3.1)

erfiillt. Da es fiir jedes e € Z, genau ein f € Z, gibt, so dass das Paar (e, f) die Kongruenz
(3.1) erfillt, gibt es genau ¢ solche Paare in Z, x Z,. Da Alice nur ¢ kennt, sind aus ihrer

52 3 Digitale Signaturverfahren

Sicht diese ¢ Paare alle gleichwahrscheinlich. Wir zeigen nun, dass unabhangig davon,
welches d € G Alice an Bob sendet, genau eines dieser ¢ Paare zuséatzlich die Kongruenz

d =, r°af (3.2)

erfiillt. Folglich akzeptiert Bob mit der Wahrscheinlichkeit 1/g.

Seien ¢, d',x',y' € Z, die zu ¢, d,z,y € G gehdrigen Exponenten, d.h. c =, o, ...,y =,
a¥". Dann erfiillt ein Paar (e, f) genau dann die beiden Kongruenzen (3.1) und (3.2),
wenn Folgendes gilt:

c=,y°B’ af =, ave - af
p Y0 s ¢, 7

’ . N c’qu’ejLaf{:) y a\fe)_ (c
d =, z°a’ ot =, a”¢ . of d=,2'e+f o 1\f) I\d)"
———
A
Wegen oY’ =, y #, 1* =, o folgt y #, 2'a und daher ist detA =,y — 2'a #,0. O

Mochte nun Alice Bob gegeniiber nachweisen, dass eine Signatur y ungiiltig ist, so fithren
beide folgendes Protokoll aus.

Ableugnungsprotokoll

| Bob wahlt zufallig ey, f1 € Z, und sendet c¢; = y® 3% mod p an Alice.
Alice sendet d; = ¢ ™99 modp zuriick.

Bob testet, ob d; #, z*a’t ist.

Bob wahlt zuf&llig e, f> € Z, und sendet c; = 232 mod p an Alice.
5 Alice sendet dy=c% ™% mod p zuriick.

¢ Bob testet, ob dy #, 2a/? ist.

Bob erkennt y als ungiltig an, falls mindestens einer der Tests
in Schritt 3 oder 6 erfolgreich war und (dija)% =, (dya=/2)* gilt.

= w [V}

-3

Bei den Schritten 1-3 und 4-6 handelt es sich jeweils um eine fehlgeschlagene Verifikation
der Signatur y (sofern der Test von Bob in Zeile 3 bzw. 6 positiv ausféllt). In Schritt 7
fiihrt Bob zusétzlich einen Konsistenztest aus, um sich davon zu tiberzeugen, dass Alice
die Zahlen d; und dy geméfl dem Protokoll gewéhlt hat.

Beispiel 74. Sei p = 467,q = 233, = 4,a = 101, 5 = 449. Wir nehmen an, dass der
Text x = 286 mit der Alice zugeschriebenen Signatur y = 83 unterschrieben ist und Alice
Bob davon tiberzeugen maochte, dass y ungiiltig ist.

1. Bob wdhlt e; = 45, f; = 4 und sendet ¢c; = 305 an Alice.

Alice antwortet mit dy = ¢ = 109

Bob verifiziert, dass 286*°4* =, 149 #, 109 gilt.

Bob wdhlt e = 125, fo =9 und sendet co = 270 an Alice.

Alice antwortet mit dy = ¢ ' = 68

Bob verifiziert, dass 286'*°4° =, 25 #,, 68 gilt.

Bob erkennt y als ungiiltig an, da (109-47*)12° =, 188 =, (68 -479)% ist und somit
die Konsistenzbedingung erfillt ist. 4

NS G e e

Es bleibt zu zeigen, dass sich Bob von der Ungiiltigkeit einer Signatur y im Fall y #, 2*
mit sehr hoher und im Fall y =, 2 nur mit sehr kleiner Wahrscheinlichkeit iiberzeugen
lasst (auch wenn sich im zweiten Fall Alice nicht an das Ableugnungsprotokoll hélt).

3.8 Verbindliche Signaturen (undeniable signatures) 33

Behauptung 75. Im Fall y #, x° erkennt Bob y mit Wahrscheinlichkeit 1 — q% als
ungiltig an, falls sich beide an das Ableugnungsprotokoll halten.

Beweis. Nach Behauptung 73 betrégt die Wahrscheinlichkeit, dass beide Tests in Schritt
3 und 6 fehlschlagen genau q%. Wegen 3 =, a%, ¢; =, ¥ und d; =, ¢f ™7 fir

i € {1,2} folgt

eia_l

—f. . . -1 _r .q—1 q—1 _f.
diOé fi Ep (yezﬁfz)a o fi Ep yeza /sza Q fi = Yy
_\.’-/ ——

C; afi

und somit

(dloffl)eQ =, yela’lez =, yeza’lm =, (dzoffz)el,

d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfillt. O

Behauptung 76. Im Fall y =, 2* erkennt Bob y nur mit einer Wahrscheinlichkeit <
als ungiiltig an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hdlt.

1
q

Beweis. Bob erkennt y nur dann als ungiiltig an, wenn
(dy #, 20’ oder dy #, v°2a’?) und (dia)2 =, (dya™2)*

gilt. Da die beiden Fille d; %, ¢ a/* und dy #, 2°2a/? symmetrisch sind, reicht es, einen
davon zu betrachten.

Wir nehmen also an, dass Alice eine Zahl d; #, '/t an Bob sendet. Nachdem Alice
die Zahl ¢, in Zeile 4 von Bob erhalten hat, weif§ sie nur, dass das von Bob gewéhlte Paar
(e, fo) die Kongruenz ¢, =, y©23% erfiillt. Wie wir bereits im Beweis zu Behauptung 73
gesehen haben, trifft dies auf genau ¢ Paare zu. Wir zeigen nun, dass fir jedes dy € G
genau eines dieser ¢ Paare (e, f3) die Konsistenzbedingung

(dla—fl)ez Ep (an_fQ)el

erfiillt. Dies beweist, dass unabhéngig davon, welches dy Alice an Bob sendet, Bob y nur
mit Wahrscheinlichkeit 1/q als ungiiltig akzeptiert.

Sei u = dya™* mod p und seien dy, dy, 2’ v’ € Z, die zu ¢z, ds, z,u gehérigen Exponenten.
Dann gilt

Co = €2 f2 o
(d th)ez :P ?(/d i—fz)el o 0’2 = x'aes + afs o 2a a €2 — 6/2 .
;,_/ -Pr 2 U,€2 Eq d/2€1 — €1f2 u €1 f2 K dl261
u —_———

A

Wegen
el — el f1 *fl *fl —
=, 2o’ « %, di«a =, u
P2 p “1 p
iépdl

folgt 2'e; #, v’ und somit ist detA = 2’ae; — v'a = a(x’e; — u') #, 0. O

54 3 Digitale Signaturverfahren

3.9 Fail-Stop-Signaturen

Ein Nachteil aller bisher betrachteten Signaturverfahren ist, dass Alice eine vorgelegte
Félschung (z,y) nicht als solche nachweisen kann. Dies liegt daran, dass Alice einen
Dritten nicht davon iiberzeugen kann, dass sie die Signatur y nicht selbst erzeugt hat. Bei
sog. Fail-Stop-Signaturen ist genau dies moglich: Sollte es einem Angreifer gelingen, das
Signaturverfahren zu brechen (“fail”) und eine Falschung (z,y) zu generieren, so kann
Alice dies mit hoher Wahrscheinlichkeit beweisen und somit ihre Signatur widerrufen

(“StOp”).

Das van Heyst-Pedersen Signaturverfahren

Definition 77. Seip =2q+1 prim, p,q prim und sei « € Z,, ein Element der Ordnung
q. Weiter sei G = {a®la € Z,} die von o in Zy, erzeugte Untergruppe und 3 = o mod p
Jir ein a € Z;,.
Die Zahlen p, q, o, B werden von einer vertrauenswiirdigen Instanz generiert und bekannt
gegeben, a wird jedoch vor allen Teilnehmern geheim gehalten.
Der Textraum ist X = Z, und der Signaturenraum ist Y = Zy X Zy.
Um einen Signierschlissel zu generieren, wird zufdllig ein 4-Tupelfc = (ay,by,a2,b2) €Eg Zg
gewdhlt. Der zugehérige Verifikationsschliissel ist k = (71, 72) = (a® 8%, a®23%2) € G2
Signaturerstellung: Die Signatur fir einen Text x € Z, unter k= (a1,b1,a9,by) € Z;‘
15t

sig(k,z) = (y1,12) = (a1 + way mod g, by + xby mod ¢).
Verifikation: Fir einen Verifikationsschlissel k = (71,72), eine Signatur y = (y1,ys2) €
ZLq X ZLq und einen Text x € Z, gilt

1 T — Y1 [QY2
ver(k,z,y) =4’ Nz =p ot B,
0, sonst.

Beispiel 78. Die vertrauenswiirdigen Instanz (TTP, trusted third party) generiert
e Primzahlen p und g mit p=2q+1=2-1733 + 1 = 3467, sowie
e cin Element a = 4 € Z; mit ordy(a) = q und
e cine geheime Zahl a = 1567 € Z; und

e qibt die Zahlen p, q, o und = a® mod p = 47" mod p = 514 bekannt, hdilt aber
a geheim.

Wihlt Alice k = (a1,b1,a9,by) = (888,1024,786,999) als Signierschlissel, so berechnet
sich der zugehorige Verifikationsschlissel zu k = (y1,v2) mit

M = o™ = 458514102 = 3405

und
Yo = a®2 P2 = 47651499 = 2281
Um den Text v = 1650 zu signieren, berechnet Alice mit dem Signierschlissel k=
(a1,b1,as2,by) = (888,1024,786,999) die Signatur y = sig(k,x) = (y1,y2) mit
Y1 = a1+ xay mod g = 888 + 1650 - 786 mod g = 1504 und
Yo = by 4+ xby mod g = 1024 + 1650 - 999 mod ¢ = 1291.

3.9 Fail-Stop-Signaturen 55

Um die Signatur y = (1504, 1291) zu dberprifen, testet Bob mit dem Verifikationsschlissel
k = (71,72) = (3405,2281) die Verifikationsbedingung

N5 = 3405 - 2281190 =, 2282 =, 415141 = o1 g2,

Betrachte die Menge
S ={(k,k) | k = (a1,b1, a2,b5) € Zit, k = (™ ™, a"2") € G x G}
aller moglichen Schliisselpaare. Fiir einen Verifikationsschliissel k£ € G x G sei
S(k)={k €zl (k,k) e S}

die Menge aller Signierschliissel, die zu k passen, und fiir einen Text x und eine Signatur
y = (Y1, y2) sei R R
S(k,x,y) = {k € S(k) | sig(k, z) = y}

die Menge aller Signierschliissel in S(k), die fiir x die Signatur y berechnen.

Lemma 79. Fiir jeden Signierschlissel k € S(k) und jedes Paar (x,y) mit sig(k,z) =y
ist die Verifikationsbedingung ver(k,z,y) = 1 erfillt.

Beweis. Sei k = (a1, b1, a2,b) und sig(k,z) = y = (y1,42). Wegen k € S(k) folgt
k= (71,7) = (@™ a®3%) und daher gilt

_ b b
W = a B ()"
=, 1 traz 6b1 +axba

Ep ayl ﬁyz -
Anders gesagt gibt es im Fall ver(k,z,y) = 0 keinen Signierschliissel k& € S(k) mit

sig(l%,x) =y, d.h. S(k,z,y) = 0. Das nachste Lemma zeigt, dass S(k,z,y) im Fall
ver(k,z,y) = 1 genau ¢ Signierschliissel enthalt.

Lemma 80. Zu jedem Paar (x,y) mit ver(k,z,y) = 1 gibt es genau q Signierschliissel
ke S(k) mit sig(k,x) =y.

Beweis. Wir zeigen zuerst, dass S(k) fir jeden Verifikationsschliissel k£ = (71,72) genau
q? Signierschliissel enthélt. Ein Signierschliissel k = (a1, by, ag, bo) ist genau dann in S(k),
wenn er die beiden Kongruenzen

aal Bbl Ep ’71
aagﬁbg Ep ,.)/2

erfillt. Seien ¢, c; € Z, eindeutig bestimmte Exponenten mit v; =, o und 7, =, a®.
Dann sind diese Kongruenzen aquivalent zu

ay +aby =4 1 1 a 0 0 by cy
bzw. =
as + aby =, o o (0 01 a as T\ ¢ (+)

1 by

26 3 Digitale Signaturverfahren

Da A den Rang 2 hat, folgt ||S(k)|| = ¢* (siche Ubungen, Aufgabe 19). Sei nun (x,y) ein
Paar mit ¢ € Z, und y = (y1,ys2) € ZyxZ,. Dann ist ein Signierschlissel & = (ay, by, az, ba)
genau dann in S(k, z,y), wenn er die Kongruenzen

a +aby =4 1 1 a 0 0 aq 1
as + aby =4 o - 0 01 a by _ Co (%)
ay + zag =4 10z O as oy
by + xby =, Yo 01 0 =z ba Yo
A —

erfilllt. Wir zeigen, dass sowohl die Matrix A" als auch die um den Vektor s’ erweiterte
Matrix A’s’” den Rang r = rang(A’) = rang(A’s’) = 3 haben.

Dies impliziert, dass das lineare Gleichungssystem (**) genau ¢*~" = ¢ Losungen hat
(siehe Ubungen). Seien 7y, ..., 74 die Zeilen von A’. Dann gilt rang(A’) > 3, da die Zeilen
9,73, 4 linear unabhéngig sind, und rang(A’) < 3, da ry = r3+ ary — xre ist. Damit hat
(%*) im Falle der Losbarkeit genau ¢*~3 = ¢ Lésungen. Zum Nachweis der Losbarkeit von
(**) zeigen wir, dass die in A’ bestehende Zeilenabhangigkeit r; = r3 + ary — xry im Fall
ver(k,z,y) = 1 auch fiir den Spaltenvektor s" auf der rechten Seite von (**) gilt:

NYe =p @B = o twey =gyt ay: = o1 =4 Y1+ ays — 0.

Da somit die Erweiterung der Matrix A" um den Spaltenvektor s" deren Rang im Fall
ver(k,z,y) = 1 nicht erhoht, ist (**) in diesem Fall 1osbar. O

Lemma 81. Fir alle x,2" € Zq und y = (y1,%2),y" = (1, v4) € L2 mit &’ # x gilt
15k, z,y) NSk, ',y < 1.
Im Fall ver(k,z,y) = ver(k,2’',y") =1 gilt sogar Gleichheit.

Beweis. Die Bedingung k = (ay,b1,a9,by) € S(k,z,y) N S(k,2',y") ist dquivalent zu

1 a 0 O 1
00 1 a aq Co
1 0 O by | (% % %)
01 0 =« ao Y
1 0 2" 0 by v
01 0 o Y4
A —

wobei wieder 11 =, a®, v, =, o ist. Wir zeigen, dass die Zeilen ry,ry, 74,76 von A”

linear unabhéngig sind und somit A” den Rang rang(A) = 4 hat. Daraus folgt, dass
(***) hochstens eine Losung hat.

Aus iy +Hlore +Hlyra+lgre = 0 folgt namlich I; = Iy = 0 und I3 +1g = 0 sowie Iy + gz’ = 0,
was lg = —ly sowie l4(z — 2’) = 0 und somit wegen x — z’ # 0 auch l; = lg = 0 impliziert.
Da auch die Zeilen r3, ..., 76 von A” linear unabhéngig sind, lasst sich k bei Kenntnis
zweier Signaturen y = sig(k, z) und i = sig(k, ') fiir zwei Texte z # 2’ leicht bestimmen,
d.h. es handelt sich um ein One-time-Signaturverfahren.

Um die Losbarkeit von (***) im Fall ver(k,z,y) = ver(k,2’,y’) = 1 nachzuweisen,
zeigen wir, dass die in A” bestehenden Zeilenabhéngigkeiten r3 = r; + xry — ary und

3.9 Fail-Stop-Signaturen o7

***)

r5 = r1 + a'ry — arg auch fur den Spaltenvektor s” auf der rechten Seite von (gelten:

Aus ver(k,z,y) = 1 folgt
MY =p @' B = o+ xcy =gy +ays = Y1 =, 01+ xC — ays

und analog folgt aus ver(k,2’,y’) = 1 die Kongruenz v} =, ¢; + 'co — ayh. O

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgaard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen
	1.2.10 Die Sponge-Konstruktion
	1.2.11 SHA-3

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 CBC-MACs
	1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC)

	2 Elliptische Kurven
	2.1 Elliptische Kurven über den reellen Zahlen
	2.2 Elliptische Kurven über endlichen Körpern

	3 Digitale Signaturverfahren
	3.1 Das RSA-Signaturverfahren
	3.2 Das ElGamal-Signaturverfahren
	3.3 Das Schnorr-Signaturverfahren
	3.4 Der Digital Signature Algorithm (DSA)
	3.5 ECDSA (Elliptic Curve DSA)
	3.6 One-time Signatur (Lamport 1979)
	3.7 Full Domain Hash (FDH) Signaturen
	3.8 Verbindliche Signaturen (undeniable signatures)
	3.9 Fail-Stop-Signaturen

