
Vorlesungsskript

Kryptologie
Wintersemester 2020/21

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

3. Dezember 2020

ii

Inhaltsverzeichnis

1 Kryptografische Hashverfahren 1
1.1 Einführung . 1
1.2 Schlüssellose Hashfunktionen (MDCs) . 3

1.2.1 Vergleich von Sicherheitsanforderungen 4
1.2.2 Das Zufallsorakelmodell (ZOM) 5
1.2.3 Iterierte Hashfunktionen . 8
1.2.4 Die Merkle-Damgaard-Konstruktion 9
1.2.5 Die MD4-Hashfunktion . 10
1.2.6 Die MD5-Hashfunktion . 11
1.2.7 Die SHA-1-Hashfunktion . 12
1.2.8 Die SHA-2-Familie . 13
1.2.9 Kryptoanalyse von Hashfunktionen 14
1.2.10 Die Sponge-Konstruktion . 16
1.2.11 SHA-3 . 18

1.3 Nachrichten-Authentikationscodes (MACs) 18
1.3.1 Angriffe gegen symmetrische Hashfunktionen 19
1.3.2 Informationstheoretische Sicherheit von MACs 20
1.3.3 CBC-MACs . 29
1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC) 30

2 Elliptische Kurven 32
2.1 Elliptische Kurven über den reellen Zahlen 32

1

1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
grität von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegrität eine ähnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr nützlich. Auf weitere Anwendungsmöglichkeiten werden
wir später eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch repräsentati-
ve Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für h muss
somit „charakteristische Merkmale“ von x in den Hashwert h(x) einfließen lassen. Da
der Fingerabdruck eines Menschen ganz ähnliche Eigenschaften besitzt (was ihn für
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(x) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebräuchlich sind auch die Bezeich-
nungen kryptografische Prüfsumme oder message digest (englische Bezeichnung für
„Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

schlüssellos symmetrisch

MDCs
(Integritätsschutz)

Sonstige
Hashverfahren

MACs
(Authentikation)

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während
einer (räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

• „Teilnehmerauthentikation“ (entity authentication, identification)
– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei

ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesi-

x x′

y
y

?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.

1.2 Schlüssellose Hashfunktionen (MDCs) 3

x x′

y
hk(x′)

?= y′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal
Alice Bobk

k: Symmetrischer Authentikationsschlüssel
y = hk(x): MAC-Wert für x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x über einen authentisierten Kanal und prüft, ob der
Datensatz nach der Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Signaturen gebildet werden. Abbildung 1.3 zeigt, wie
sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch der
Hashwert über den unsicheren Kanal gesendet wird.

Möchte Alice eine Nachricht x an Bob übermitteln, so berechnet sie den
zugehörigen MAC-Wert y = hk(x) und fügt diesen der Nachricht x hinzu.
Bob überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem er
seinerseits den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis
mit y′ vergleicht. Der geheime Authentikationsschlüssel k muss hierbei genau
wie bei einem symmetrischen Kryptosystem über einen gesicherten Kanal
vereinbart werden.

Indem Alice ihre Nachricht x um den Hashwert y = hk(x) ergänzt, gibt sie Bob nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.2 Schlüssellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).

4 1 Kryptografische Hashverfahren

Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n,m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.
Problem P1: Bestimmung eines Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn
die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.
Problem P2: Bestimmung eines zweiten Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Angreifer dagegen mit folgender
Problemstellung konfrontiert.
Problem P3: Bestimmung einer Kollision

Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h : X → Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,

1.2 Schlüssellose Hashfunktionen (MDCs) 5

1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert und andernfalls ? aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit ε ein Kollisionspaar findet. �

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 2. Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ W (h)}. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h : X →
Y nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y) aller mn Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion mit
„idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Angreifer die

1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi)
4 return(?)

Abbildung 1.6: Bestimmung eines Urbilds für einen Hashwert

einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Eine Zufallsfunktion h eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) für einen Text x auch dann noch schwer vorhersagbar ist, wenn der
Angreifer bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FindPreimage(h, y, q) gibt im ZOM mit Wahrscheinlichkeit ε = 1− (1−1/m)q
ein Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds für einen Hashwert

1.2 Schlüssellose Hashfunktionen (MDCs) 7

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FindSecondPreimage(h, x, q) gibt im ZOM mit Wahrscheinlichkeit ε =
1− (1− 1/m)q−1 ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer

Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag.∗

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

mindestens eine Kugel mehr als einmal gezogen wird. Für m = 365 und q = 23 ergibt
dies einen Wert von ungefähr 0,507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 6. Collision(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1), . . . , h(xi−1)}.”
∗Da die Häufigkeiten der Geburtstage in Wirklichkeit nicht ganz gleichmäßig über das Jahr verteilt
sind, ist die Wahrscheinlichkeit sogar noch etwas höher.

8 1 Kryptografische Hashverfahren

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i+ 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(
m− 1
m

)(
m− 2
m

)
· · ·

(
m− q + 1

m

)
.

�

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e− 1

m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ 1− e−

q2
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε
√
m

mit cε =
√

2ε. Diese Abschätzung ist nur für ε-Werte nahe Null hinreichend genau. Eine
bessere Abschätzung ergibt sich aus der Approximation ε ≈ 1− e− q2

2m :

q ≈ c′ε
√
m

mit c′ε =
√

2 ln 1
1−ε . Für ε = 1/2 ergibt sich somit q ≈

√
(2 ln 2)m ≈ 1,17

√
m.

Besitzt also eine binäre Hashfunktion h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128
Bit, so müssen im ZOM q ≈ 1,17 · 264 Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu
können, sollte eine Hashfunktion mindestens eine Hashwertlänge von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.

1.2 Schlüssellose Hashfunktionen (MDCs) 9

Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei
y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von
Strings zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,
h(zi−1yi), i = 1, . . . , r.

Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g
die Identität verwendet.)

Um ĥ(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft.

Definition 7. Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei, falls es keine Strings
x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(x̃) an einer Stelle x̃ 6= x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch ĥ kollisionsresistent.

Beweis. Wir nehmen an, dass es gelingt, ein Kollisionspaar (x, x̃) für ĥ zu finden (d.h.
ĥ(x) = ĥ(x̃) und x 6= x̃). Sei

y(x) = y1y2 . . . yk−1yk und y(x̃) = ỹ1ỹ2 . . . ỹl−1ỹl mit k ≤ l.

Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , k} mit yi 6= ỹl−k+i existieren. Weiter seien
zi (i = 0, . . . , k) und z̃j (j = 0, . . . , l) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zk) = ĥ(x) = ĥ(x̃) = g(z̃l) auch zk = z̃l gelten. Sei imax
der größte Index i ∈ {1, . . . , k} mit zi−1yi 6= z̃l−k+i−1ỹl−k+i. Dann bilden zimax−1yimax und
z̃l−k+imax−1ỹl−k+imax wegen

h(zimax−1yimax) = zimax = z̃l−k+imax = h(z̃l−k+imax−1ỹl−k+imax)

ein Kollisionspaar für h. �

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0m benutzt, die optionale
Ausgabetransformation entfällt, und für y(x) wird im Fall t ≥ 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir später.)
Für x = ε sei y(x) = 0t und für x ∈ {0, 1}n mit n > 0 sei k = d n

t−1e und x =
x1x2 . . . xk−1xk mit |x1| = |x2| = . . . = |xk−1| = t − 1 sowie |xk| = t − 1 − d, wobei
0 ≤ d < t − 1. Im Fall k = 1 ist dann y(x) = 0x0d1bint−1(d) und für k > 1 ist

10 1 Kryptografische Hashverfahren

y(x) = y1 · · · yk+1, wobei

yi =



0x1, i = 1,
1xi, 2 ≤ i < k,

1xk0d, i = k,

1bint−1(d), i = k + 1,

(1.1)

und bint−1(d) die durch führende Nullen auf die Länge t− 1 aufgefüllte Binärdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffixfrei.

Beweis. Seien x 6= x̃ zwei Texte mit |x| ≤ |x̃|. Wir müssen zeigen, dass y(x) = y1y2 . . . yk+1
kein Suffix von y(x̃) = ỹ1ỹ2 . . . ỹl+1 ist. Im Fall x = ε ist dies klar. Für x 6= ε machen wir
folgende Fallunterscheidung.
1. Fall: |x| 6≡t−1 |x̃|. Dann folgt d 6= d̃ und somit yk+1 6= ỹl+1.
2. Fall: |x| = |x̃|. In diesem Fall ist k = l. Wegen x 6= x̃ existiert ein Index i ∈

{1, . . . , k} mit xi 6= x̃i. Dies impliziert yi 6= ỹi, also ist y(x) kein Suffix von y(x̃).
3. Fall: |x| 6= |x̃| und |x| ≡t−1 |x̃|. In diesem Fall ist k < l. Da y(x) mit einer Null

beginnt, aber das (l − k + 1)-te Bit von y(x̃) eine Eins ist, kann y(x) kein Suffix
von y(x̃) sein. �

Nun kommen wir zum Fall t = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

f(x1 . . . xn) = f(x1) . . . f(x2) mit f(0) = 0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion h bei der
Berechnung von ĥ(x) im Fall t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(x)| ≤ 2(n+1)-mal aufgerufen. Im Fall t > 1 werden dagegen nur k+1 = d n

t−1e+1
Aufrufe benötigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlänge von MD4 beträgt l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wörtern.

Operatoren auf {0, 1}32

X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen

1.2 Schlüssellose Hashfunktionen (MDCs) 11

Während die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes a3a2a1a0, 0 ≤ ai ≤ 255 zusammengesetztes Wort repräsentiert die Zahl
a0224 + a1216 + a228 + a3) ausgeführt wird, verwendet SHA-1 eine big endian Architektur
(d.h. a3a2a1a0, 0 ≤ ai ≤ 255 repräsentiert die Zahl a3224 + a2216 + a128 + a0). Der
MD4-Algorithmus benutzt die folgenden Konstanten yj, zj, sj, j = 0, . . . , 47

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1

zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15

und folgende Funktionen fj, j = 0, . . . , 47

fj(X, Y, Z) :=


(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 15,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 16, . . . , 31,
X ⊕ Y ⊕ Z, j = 32, . . . , 47.

Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen aufgespürt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 47 do
9 (A,B,C,D) := (D, (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.6 Die MD5-Hashfunktion

Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von MD4. Die Bitlänge
von MD5 beträgt wie bei MD4 l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.

12 1 Kryptografische Hashverfahren

Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der die Funktion
fj(X, Y, Z) = Y ⊕ (X ∨ ¬Z) verwendet wird. Außerdem wurde die in Runde 2 von MD4
verwendete Funktion durch fj(X, Y, Z) := (X ∧ Z) ∨ (Y ∧ ¬Z), j = 16 . . . 31, ersetzt.
Die y-Konstanten sind definiert als yj := die ersten 32 Bit der Binärdarstellung von
abs(sin(j + 1)), 0 ≤ j ≤ 63, und für zj und sj werden folgende Konstanten benutzt.

zj
j = 0, . . . , 15 zj = j : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 zj = (5j + 1) mod 16 : 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
j = 32, . . . , 47 zj = (3j + 5) mod 16 : 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
j = 48, . . . , 63 zj = 7j mod 16 : 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

sj
j = 0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
j = 16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
j = 32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
j = 48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (für die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 63 do
9 (A,B,C,D) := (D,B + (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behörde
NIST (National Institute of Standards and Technology) im August 1991 veröffentlichten
DSS (Digital Signature Standard). Die Bitlänge von SHA-1 beträgt l = 160 Bit. Bei
einer Wortlänge von 32 Bit entspricht dies 5 Wörtern. SHA-1 unterscheidet sich nur
geringfügig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu führt, dass
nach Berechnung von ca. 261 Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280

Berechnungen erforderlich sein müssten). Diese potentielle Schwäche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle

1.2 Schlüssellose Hashfunktionen (MDCs) 13

ausführt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 79

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f1bbcdc
j = 60, . . . , 79 ca62c1d6

und folgende Funktionen fj, j = 0, . . . , 79

fj(X, Y, Z) :=



(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 19,
X ⊕ Y ⊕ Z, j = 20, . . . , 39,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 40, . . . , 59,
X ⊕ Y ⊕ Z, j = 60, . . . , 79.

SHA-1(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 for t := 16 to 79 do
8 X[t] := (X[t− 3]⊕X[t− 8]⊕X[t− 14]⊕X[t− 16])←↩ 1
9 (A,B,C,D,E) := (H0, H1, H2, H3, H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C,D) + E +X[j] +Kj

12 (A,B,C,D,E) := (temp,A,B ←↩ 30, C,D)
13 (H0, H1, H2, H3, H4) := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E)
14 output H0H1H2H3H4

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veröffentlichte die US-Behörde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlänge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 63 (in

14 1 Kryptografische Hashverfahren

Hexadezimaldarstellung).

428a2f98, 71374491, b5c0fbcf, e9b5dba5, 3956c25b, 59f111f1, 923f82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f, 4a7484aa, 5cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, a4506ceb, bef9a3f7, c67178f2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, . . . , 311. SHA-256 arbeitet wie folgt.

SHA-256(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4, H5, H6, H7) := (6a09e667, bb67ae85, 3c6ef372, a54ff53a,
4 510e527f, 9b05688c, 1f83d9ab, 5be0cd19)
5 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
6 for i := 1 to r do
7 sei Mi = X[0] · · ·X[15]
8 for t := 16 to 63 do
9 s0 := (X[t− 15] ↪→ 7)⊕ (X[t− 15] ↪→ 18)⊕ (X[t− 15]→ 3)

10 s1 := (X[t− 2] ↪→ 17)⊕ (X[t− 2] ↪→ 19)⊕ (X[t− 2]→ 10)
11 X[t] := X[t− 16] + s0 +X[t− 7] + s1
12 (A,B,C,D,E, F,G,H) := (H0, H1, H2, H3, H4, H5, H6, H7)
13 for j := 0 to 63 do
14 s0 := (A ↪→ 2)⊕ (A ↪→ 13)⊕ (A ↪→ 22)
15 maj := (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C)
16 t2 := s0 +maj
17 s1 := (E ↪→ 6)⊕ (E ↪→ 11)⊕ (E ↪→ 25)
18 ch := (E ∧ F)⊕ (¬E ∧G)
19 t1 := H + s1 + ch+Kj +X[j]
20 (A,B,C,D,E, F,G,H) := (t1 + t2, A,B,C,D + t1, E, F,G)
21 (H0, H1, H2, H3, H4, H5, H6, H7)
22 := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E,H5 + F,H6 +G,H7 +H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von H0, . . . , H7 in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
binären Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwächen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen für MD4
mittels “hand calculation” finden lassen.
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” für
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar

1.2 Schlüssellose Hashfunktionen (MDCs) 15

für die MD5 Kompressionsfunktion.
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benötigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschätzt.
Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
führten. Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit, Kollisionen
für MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im März 2006
auf eine Minute verkürzt.
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 261 Hashwertberechnungen (anstelle von 280 bei einem Geburts-
tagsangriff) aufspürt.
In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen für den auf 62 Runden reduzierten SHA-0 Algorithmus vor.
Schließlich wurde im August 2004 die Berechnung einer Kollision für den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 251 Hashwerte berechnet, die ca. 80 000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benötigten.
Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode für MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 240 senken lässt. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfügig auf 239 Hashwertberechnungen
verbessert.
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Daraufhin kündigte die amerikanische Behörde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulösen.
Im Jahr 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar für den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269 Hashwertberechnungen
an. Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 263 Berechnungen. In
2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem geschätzten Aufwand
von 251 bis 257 Berechnungen veröffentlicht.
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.
Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs für den SHA-3-Algorithmus ausgewählt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzulösen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen ähnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfügung zu stellen.

16 1 Kryptografische Hashverfahren

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge (Schwamm) bezeichnet. Auf der Basis dieser Entwurfsmethode lassen sich außer
Hashfunktionen bspw. auch Pseudozufallsgeneratoren gewinnen. Der Aufbau eines Spon-
ges ähnelt oberflächlich betrachtet der in 1.2.3 vorgestellten Konstruktion von iterierten
Hashfunktionen, weist aber einige Unterschiede auf. So basiert ein Sponge statt auf
einer Kompressionsfunktion h auf einer Permutation (oder allgemeiner Transformati-
on) f : {0, 1}b → {0, 1}b, die wie h iteriert angewendet wird. Dabei wird der aktuelle
b-Bitblock in zwei Teilblöcke der Länge r und c unterteilt, die als äußerer bzw. innerer
Zustand bezeichnet werden. Wie der Name schon sagt, verbleiben die Bits des inneren
Zustands im Sponge, d.h. sie dienen nur zur Berechnung des nächsten Zustands und wer-
den im Gegensatz zu den Bits des äußeren Zustands nicht unmittelbar für die Gewinnung
der Ausgabe genutzt. Die Anzahl c der Bits des inneren Zustands wird als Kapazität
des Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter. Die Anzahl r der
Bits des äußeren Zustands heißt Bitrate , wobei r + c = b gelten muss.
Bevor die Funktion f im Kern des Algorithmus iteriert angewendet wird, um eine
Zustandsfolge zu generieren, wird ein Preprocessing ausgeführt. Die Anforderungen an
diese Funktion definieren wir vorab.

Definition 10. Sei r ≥ 1. Eine Funktion y : {0, 1}∗ → ⋃
k≥1{0, 1}kr der Form y(x) = xz

heißt Paddingfunktion für Bitrate r ≥ 1. Eine solche Funktion heißt sponge-konform
für Bitrate r ≥ 1, falls gilt:
• ∀n ≥ 0 ∃z∀x ∈ {0, 1}n : y(x) = xz,
• ∀k ≥ 0 ∀x 6= x′ : y(x) 6= y(x′)0kr.

Es ist leicht zu sehen, dass die Funktion pad10∗1r : {0, 1}∗ → {0, 1}∗ definiert durch

pad10∗1r(x) = x10d1 mit d = min
{
i ≥ 0

∣∣∣ |x|+ 2 + i ≡r 0
}

eine sponge-konforme Paddingfunktion für die Bitrate r ist. Tatsächlich ist pad10∗1r
sogar für jede Bitrate r′ ≥ 1 sponge-konform. Ohne die abschließende 1 wäre dies nicht
der Fall.

Definition 11. Sei y eine Paddingfunktion für r ≥ 1 und sei f : {0, 1}b → {0, 1}b. Für
x ∈ {0, 1}∗ sei y(x) = y1 . . . yk mit |yi| = r für i = 1, . . . , k. Wir definieren die Zustände

si =


0b i = 0
f(si−1 ⊕ (yi0c)) 1 ≤ i ≤ k (Absorptionsphase)
f(si−1) i > k (Squeezing-Phase)

Weiter bezeichne zi für i ≥ 1 die ersten r Bit von sk+i−1. Zudem sei m = b l
r
c und z′m+1 sei

das Präfix von zm+1 der Länge l−mr. Dann ist die Funktion Spongef,y,r : N×{0, 1}∗ →
{0, 1}∗ wie folgt definiert: Spongef,y,r(l, x) = z1 . . . zmz

′
m+1. Für die Analyse definieren

wir noch die Funktionen

Absorbf,r(y1 . . . yk) = sk und Squeezef,r(l, sk) = z1 . . . zmz
′
m+1

Den Aufwand, für festes l ein Kollisionspaar x, x′ mit x 6= x′ und Spongef,y,r(l, x) =
Spongef,y,r(l, x′) zu finden, können wir nach oben durch den Aufwand abschätzen, ein Paar

1.2 Schlüssellose Hashfunktionen (MDCs) 17

Prozedur InnerCollision(f, r, q,S)
1 c := b− r, wobei f : {0, 1}b → {0, 1}b
2 initialisiere den Multi-Digraphen G = (V,A) := ({0, 1}c , ∅)
3 for i := 1 to q do
4 wähle u ∈ V und x ∈ {0, 1}r nach Strategie S
5 x′u′ := f(xu)
6 A := A ∪ {(u, u′)x,x′}
7 if ∃ zwei Pfade (0c, u1)x0,x′0

, (u1, u2)x1,x′1
, . . . , (uk−1, uk)xk−1,x

′
k−1

und

8 (0c, v1)y0,y′0
, (v1, v2)y1,y′1

, . . . , (vl−1, vl)yl−1,y
′
l−1

in G mit uk = vl then
9 return(x0(x′0 ⊕ x1) . . . (x′k−2 ⊕ xk−1), y0(y′0 ⊕ y1) . . . (y′l−2 ⊕ yl−1))

10 else
11 return(?)

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

x, x′ ∈ ⋃k≥1{0, 1}kr mit x 6= x′ und Absorbf,r(y(x)) = Absorbf,r(y(x′)) zu finden. Hierbei
reicht es, ein inneres Kollisionspaar, d.h. zwei Strings w = y1 . . . , yk 6= w′ = y′1 . . . , y

′
k′

zu finden, so dass die inneren Zustände von sk = Absorbf,r(w) und s′k′ = Absorbf,r(w′)
gleich sind. Setzen wir nämlich yk+1 und yk′+1 auf die äußeren Zustände von sk und s′k′ ,
so folgt für die Eingaben x = wyk+1 und x′ = w′y′k′+1:

Absorbf,r(x) = f(sk ⊕ (yk+10c)) = f(0rsi
k) = f(0rs′ik′)

= f(s′k′ ⊕ (y′k′+10c)) = Absorbf,r(x′),

wobei si
j den inneren Zustand von sj bezeichnet. Falls das Suffix z von y(x) = xz nur

von |x| mod r abhängt, gilt wegen |x| ≡r |x′| dann auch die Gleichheit Absorbf,r(y(x))=
Absorbf,r(y(x′)) und somit Spongef,y,r(l, x) = Spongef,y,r(l, x′).
Um eine solche innere Kollision zu finden, hilft es, sich die 2c inneren Zustände u ∈ {0, 1}c
als Knoten eines gerichteten Multigraphen G vorzustellen, der für jedes Paar (xu, x′u′)
mit f(xu) = x′u′ eine Kante (u, u′)x,x′ von u nach u′ mit dem Label x, x′ enthält. Ziel ist
es dann, zwei verschiedene Pfade von 0c zu demselben Knoten v zu finden, wobei zwei
Pfade auch dann verschieden sind, wenn sich die Kanten nur in den Labeln unterscheiden.
Wird f durch eine Zufallsfunktion modelliert (ZOM), so lassen bereits berechnete Werte
von f keine Rückschlüsse auf die Werte für andere Argumente zu. Anders als beim ZOM
für eine Hashfunktion kann es sich dennoch für den Angreifer lohnen, die Argumente von
f adaptiv nach einer Strategie S zu wählen. Der Algorithmus InnerCollision fasst
dieses Vorgehen zusammen.

Satz 12. Für jede Strategie S gibt InnerCollision(f, r, q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit höchstens

ε = 1−
q∏
i=1

(
1− i

2c
)

ein inneres Kollisionspaar (x, x′) aus. Wählt S nur von 0c aus erreichbare Knoten u und
kein Argument xu mehrmals, so ist die Erfolgswahrscheinlichkeit exakt ε.

Beweis. Sei Ei das Ereignis “G enthält nach i Durchläufen keine zwei verschiedenen
Pfade von 0c zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0c aus

18 1 Kryptografische Hashverfahren

erreichbaren Knoten ein zweiter Pfad von 0c aus geschlossen werden kann und nach i− 1
Durchläufen höchstens i von 2c Knoten erreichbar sind, gilt (unabhängig von S):

Pr[Ei |E1 ∩ . . . ∩ Ei−1] ≥ 1− i

2c .

Wählt S nur erreichbare Knoten u und kein Argument xu mehrfach, so sind unter
Annahme von E1 ∩ . . .∩Ei−1 auch i Knoten erreichbar (sonst gäbe es bereits zwei Pfade
von 0c zu einem Knoten in G) und es gilt sogar Gleichheit. Analog zum Beweis vom
Satz 6 folgt der behauptete Wert ε, mit Gleichheit im Fall der Wahl erreichbarer Knoten
durch S. �

Auch hier lässt sich q in Abhängigkeit von ε mittels 1− x ≈ e−x abschätzen und es folgt:

q ≈ cε2
c
2 , cε =

√
2 ln 1

1− ε .

1.2.11 SHA-3

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen fw, w = 2i, i ∈ {0, . . . , 6} als Kern des Sponges Spongefw,pad10∗1r,r

,
sowie verschiedene Kombinationen von Bitraten r und Ausgabelängen l (c ist durch
25w − r bestimmt).
Jede Funktion fw : {0, 1}5×5×w → {0, 1}5×5×w bildet ein zweidimensionales Feld A aus
w-Bit-Wörtern auf ein ebensolches Feld fw(A) ab. Dabei wird (12 + log2 w)-mal eine
Rundenfunktion f ′w : {0, 1}5×5×w × {0, 1}w → {0, 1}5×5×w aufgerufen, die A und eine
Rundenkonstante RCi auf A′ abbildet.
Es gilt

f ′w(A,RC) = ιRC(χ(π(ρ(θ(A))))),

wobei θ, ρ, π, χ und ιRC Bijektionen von {0, 1}5×5×w nach {0, 1}5×5×w sind. Die Funktion
θ besteht aus ⊕-Operationen und ist so gewählt, dass sich θ−1(A) an möglichst vielen
Bits ändert, falls eines in A geflippt wird. Danach permutieren die Funktionen ρ und π
die Bits von A innerhalb und zwischen den Wörtern. Ähnlich einer S-Box im SPN ist
χ eine nichtlineare Funktion (die einzige solche in der Definition von f ′w), die nur auf
5-Bit-Blöcken arbeitet (jedes Bit hängt sogar nur von 2 anderen ab). Schlussendlich setzt
ιRC das Wort A0,0 auf A0,0 ⊕RC.
Für die Werte l ∈ {224, 256, 384, 512} definiert der Standard FIPS 202:

SHA3-l(x) = Spongef64,pad10∗1r,r
(l, x01), wobei r = 1600− 2l.

Das zusätzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, l, r unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Eine Hashfamilie H = (X, Y,K,H) wird durch folgende Komponenten
beschrieben:
• X, eine endliche oder unendliche Menge von Texten,

1.3 Nachrichten-Authentikationscodes (MACs) 19

• Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖,
• K, endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K eine
Hashfunktion hk : X → Y in H spezifiziert, d.h. H = {hk | k ∈ K}.

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schlüsselraumes K mit l bezeichnen. Wir nennen dann H auch eine
(n,m, l)-Hashfamilie oder einen (n,m, l)-MAC.
Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer Nachrichten be-
nutzt werden kann, ohne dass dies einem potentiellen Angreifer zur nichtautorisierten
Berechnung von gültigen MAC-Werten verhilft, sollte folgende Bedingung erfüllt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel k generierten
Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x, y) mit y = hk(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Angreifer nicht
möglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritätsschutz für mehrere
Datensätze auf die Geheimhaltung eines Schlüssels k zurückgeführt werden.

Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene Veränderun-
gen zu schützen, legt man sie zusammen mit ihren MAC-Werten y1 =
hk(x1), . . . , yn = hk(xn) auf einem unsicheren Speichermedium ab und be-
wahrt den geheimen Schlüssel k an einem sicheren Ort auf. Bei einem späteren
Zugriff auf einen Datensatz xi lässt sich dessen Unversehrtheit durch einen
Vergleich von yi mit dem Ergebnis hk(xi) einer erneuten MAC-Berechnung
überprüfen.

Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensätze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von MAC-Werten zum Ziel.
Das heißt, der Angreifer versucht, MAC-Werte hk(x) ohne Kenntnis des geheimen Schlüs-
sels k zu berechnen. Entsprechend der Art des zur Verfügung stehenden Textmaterials
lassen sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation

Der Angreifer kennt nur den benutzten MAC und versucht ein Paar (x, y) mit
hk(x) = y zu generieren, wobei k der (dem Angreifer unbekannte) Schlüssel ist.

Substitution
Der Angreifer versucht in Kenntnis eines Paares (x, hk(x)) ein Paar (x′, y′) mit
x′ 6= x und hk(x′) = y′ zu generieren.

Angriff bei bekanntem Text (known-text attack)
Der Angreifer kennt für eine Reihe von Texten x1, . . . , xr (die er nicht selbst wählen

20 1 Kryptografische Hashverfahren

konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr) und versucht, ein Paar
(x′, y′) mit hk(x′) = y′ und x′ 6∈ {x1, . . . , xr} zu generieren.

Angriff bei frei wählbarem Text (chosen-text attack)
Der Angreifer kann die Texte xi selbst wählen.

Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack)
Der Angreifer kann die Wahl des Textes xi von den zuvor erhaltenen MAC-Werten
hk(xj), j < i, abhängig machen.

Wechseln die Anwender nach jeder MAC-Wertberechnung den Schlüssel, so genügt es,
dass H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von MACs

Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Angreifer bekannt ist. Wir
nehmen o.B.d.A. an, dass p(x) > 0 und p(k) > 0 für alle x ∈ X und k ∈ K gilt.

Erfolgswahrscheinlichkeit für Impersonation

Sei α die Wahrscheinlichkeit, mit der sich ein Angreifer bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.
Für ein Paar (x, y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein zufällig gewählter
Schlüssel den Text x auf den MAC-Wert y abbildet:

p(x 7→ y) = p(y|x) =
∑

k∈K(x,y)
p(k).

wobei K(x, y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf y abbilden. D.h.
p(x 7→ y) ist die Wahrscheinlichkeit, dass Bob das Paar (x, y) als echt akzeptiert. Somit
gibt p(x 7→ y) die Wahrscheinlichkeit an, mit der einem Angreifer bei Wahl des Paares
(x, y) eine Impersonation gelingt, weshalb wir diese Wahrscheinlichkeit auch mit α(x, y)
bezeichnen. Schließlich ist α(x) = max{α(x, y) | y ∈ Y } die Wahrscheinlichkeit, mit der
einem Angreifer bei optimaler Strategie eine Impersonation mit dem Text x gelingt, und
es gilt α = max{α(x) | x ∈ X}.

Beispiel 14. Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}. Wir beschreiben H
durch die zugehörige Authentikationsmatrix. Die Zeilen und Spalten dieser Matrix
werden mit den Schlüsseln k ∈ K und den Texten x ∈ X indiziert und ihr Eintrag in
Zeile k und Spalte x ist der Wert hk(x).

0,1 0,2 0,3 0,4

a b c d

0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Angreifer folgende Erfolgsaussichten α(x), falls er an Bob den Text x senden möchte.

1.3 Nachrichten-Authentikationscodes (MACs) 21

x a b c d

p(x 7→ 0) 0,7 0,25 0,55 0,45
p(x 7→ 1) 0,3 0,75 0,45 0,55
α(x) 0,7 0,75 0,55 0,55

Folglich ist α = 0,75. /

Satz 15. Für alle x ∈ X ist α(x) ≥ 1
m

und daher gilt α ≥ 1
m
.

Beweis. Sei x ∈ X beliebig. Dann gilt∑
y∈Y

p(x 7→ y) =
∑
y∈Y

∑
k∈K(x,y)

p(k) =
∑
k∈K

p(k) = 1.

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m

und dies impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m
.

�

Bemerkung 16. Wie der Beweis zeigt, gilt α = 1
m

genau dann, wenn für alle Paare
(x, y) ∈ X × Y gilt, ∑

k∈K(x,y)
p(k) = 1

m
.

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der Authentikationsmatrix
jeder MAC-Wert gleich oft vorkommen. Dies lässt sich am einfachsten dadurch erreichen,
dass man K = Y setzt und für hk die konstante Funktion hk(x) = k wählt.

Das folgende Lemma benötigen wir für den Beweis des nächsten Satzes.

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) ⊆ R+. Dann
gilt logE(X) ≥ E(logX).

Beweis. Sei W (X) = {x1, . . . , xn} und für i = 1, . . . , n sei pi = Pr[X = xi]. Da die
Funktion x 7→ log2 x konkav ist, folgt mit der Jensenschen Ungleichung

logE(X) = log2(
∑

pixi) ≥
∑

pi log2 xi = E(logX).
�

Satz 18. Für jeden MAC (X, Y,K,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) (≥ 1/l).

Hierbei sind X ,Y ,K Zufallsvariablen, die die Verteilungen der Nachrichten, der MAC-
Werte und der Schlüssel beschreiben.
Der Wert von α kann also um so kleiner werden, je gleichmäßiger die Schlüsselverteilung
ist und je mehr Information die Beobachtung eines gültigen Paares (x, y) über den
Schlüssel liefert.

22 1 Kryptografische Hashverfahren

Beweis. Da α = maxx,y α(x, y) ist, folgt E(α(X ,Y)) = ∑
x,y p(x, y)α(x, y) ≤ α, wobei

E(α(X ,Y)) die Erfolgswahrscheinlichkeit eines (probabilistischen) Angreifers ist, der
das Paar (x, y) gemäß der Verteilung (X ,Y) wählt. Somit folgt unter Anwendung von
Lemma 17,

logα ≥ logE(α(X ,Y)) ≥ E(logα(X ,Y)) =
∑
x,y

p(x, y)︸ ︷︷ ︸
p(x)p(y|x)

log p(y |x)︸ ︷︷ ︸
− log 1

p(y|x)

= −H(Y |X).

Wegen
H(K,Y ,X) = H(X) +H(Y |X) +H(K|X ,Y)

und
H(K,Y ,X) = H(K,X)︸ ︷︷ ︸

=H(K)+H(X)

+H(Y |K,X)︸ ︷︷ ︸
=0

.

gilt zudem H(Y |X) = H(K)−H(K | X ,Y) und somit logα ≥ H(K | X ,Y)−H(K). �

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt

H(K) =
∑
k

p(k) log 1
p(k) = 0,45 · 1,152 + 0,3 · 1,737 + 0,25 · 2,0 = 1,54.

Um H(K|X ,Y) zu bestimmen, benötigen wir die gemeinsame Verteilung von X ,Y sowie
die bedingten Verteilungen Kx,y für alle Paare (x, y) ∈ X × Y .

(x, y) (a, 0) (a, 1) (b, 0) (b, 1) (c, 0) (c, 1) (d, 0) (d, 1)
p(x, y) 0,07 0,03 0,05 0,15 0,165 0,135 0,18 0,22
p(1|x, y) 5

14 0 1 0 5
11 0 0 5

11
p(2|x, y) 0 1 0 2

5
6
11 0 0 6

11
p(3|x, y) 9

14 0 0 3
5 0 1 1 0

H(K|x, y) ≈ 0,94 0 0 ≈ 0,97 ≈ 0,99 0 0 ≈ 0,99

Hierbei gilt p(x, y) = p(x)p(y|x) = p(x)p(x 7→ y). Somit ist

H(K|X ,Y) =
∑
x,y

p(x, y)H(K|x, y) ≈ 0,52

und wir erhalten die untere Schranke

α ≥ 1
2H(K)−H(K|X ,Y) ≈

1
21,54−0,52 = 1

21,02 ≈ 0,493.
/

Erfolgswahrscheinlichkeit für Substitution

Bezeichne β die Wahrscheinlichkeit, mit der ein Angreifer bei optimaler Strategie eine
von Alice gesendete Nachricht x durch eine andere Nachricht x′ ersetzen kann, ohne dass
Bob dies bemerkt. Dabei gehen wir davon aus, dass der Angreifer keinen Einfluss auf die
Wahl der von Alice gesendeten Nachricht x hat.
Falls der Angreifer ein von Alice gesendetes Paar (x, y) durch das Paar (x′, y′) ersetzt,
ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

p(x′ 7→ y′ |x 7→ y) = p(x 7→ y, x′ 7→ y′)
p(x 7→ y) =

∑
k∈K(x,y,x′,y′) p(k)∑
k∈K(x,y) p(k) ,

1.3 Nachrichten-Authentikationscodes (MACs) 23

dass ein zufällig gewählter Schlüssel k den Text x′ auf y′ abbildet, wenn bereits bekannt
ist, dass hk(x) = y ist. Falls Alice also das Paar (x, y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Angreifers

β(x, y) := max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y).

Man beachte, dass β(x, y) nur im Fall p(x, y) > 0 definiert ist. Da der Angreifer keinen
Einfluss auf die Wahl von (x, y) hat, ist β gleich dem Erwartungswert von β(x, y) unter
der Verteilung p(x, y), mit der Alice diese Paare generiert. Somit ergibt sich β zu

β = E(β(X ,Y)) =
∑

x∈X,y∈Y
p(x, y)β(x, y).

Wegen p(x, y) = p(x)p(x 7→ y) können wir β unter Verwendung der Funktion

β′(x, y) = β(x, y)p(x 7→ y) = max
x′ 6=x,y′

p(x′ 7→ y′, x 7→ y)

auch einfacher mittels der Formel β = ∑
x∈X p(x)∑y∈Y β

′(x, y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

p(x′ 7→y′, x 7→y)
(x,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x,y) p(x 7→y) β(x,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,7 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,75 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 0,55 1

Die optimalen Wahlmöglichkeiten des Angreifers, ein Paar (x, y) durch ein anderes Paar
(x′, y′) zu ersetzen, sind in der Tabelle fett gedruckt. Für β erhalten wir somit den Wert

β =
∑
x∈X

p(x)
∑
y∈Y

β′(x, y)

= 0,1(0,45 + 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.

/

Als nächstes zeigen wir für β die gleiche untere Schranke wie für α.

Satz 21. Für alle (x, y) ∈ X ×Y mit p(x, y) > 0 ist β(x, y) ≥ 1
m

und daher gilt β ≥ 1
m
.

Beweis. Sei (x, y) ∈ X×Y ein Paar mit p(x, y) > 0. Dann gilt für beliebige x′ ∈ X−{x},

∑
y′∈Y

p(x′ 7→ y′ |x 7→ y) =
∑
y′∈Y

∑
k∈K(x′,y′;x,y) p(k)∑

k∈K(x,y) p(k) = 1.

24 1 Kryptografische Hashverfahren

Somit existiert ein y′ ∈ Y mit p(x′ 7→ y′ |x 7→ y) ≥ 1
m

und dies impliziert

β(x, y) = max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y) ≥ 1
m
.

Folglich ist
β =

∑
x∈X,y∈Y

p(x, y)β(x, y) ≥ 1
m

∑
x∈X,y∈Y

p(x, y) = 1
m
.

�

Beispiel 22. Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3. Für k = (a, b) ∈ K und
x ∈ X sei

hk(x) = ax+ b mod 3.

Die zugehörige Authentikationsmatrix ist

0 1 2
(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Wir nehmen an, dass der Schlüssel unter Gleichverteilung gewählt wird. Ersetzt der
Angreifer ein Paar (x, y) durch ein Paar (x′, y′) mit x′ 6= x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schlüssel akzeptiert. Dies liegt daran, dass in
je 2 Spalten der Authentikationsmatrix jedes MAC-Wertepaar genau einmal vorkommt.
Folglich ist p(x′ 7→ y′ |x 7→ y) = 1/3 und somit hat β den optimalen Wert β = 1/3. /

Lemma 23. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Dann gilt

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(x 7→ y) > 0
gilt. Wäre nämlich

p(x′ 7→ y′ |x 7→ y) > 1/m,

dann wäre auch
β(x, y) = max

x′ 6=x,y′
p(x′ 7→ y′ |x 7→ y) > 1/m.

Da für alle Paare (u, v) mit p(u 7→ v) > 0 nach Satz 21 die Ungleichung β(u, v) ≥ 1/m
gilt und zudem p(x, y) = p(x)p(x 7→ y) > 0 ist, folgt hieraus

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) > 1/m,

1.3 Nachrichten-Authentikationscodes (MACs) 25

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits

p(x′ 7→ y′ |x 7→ y) < 1/m,

muss wegen ∑
y′′∈Y

p(x′ 7→ y′′ |x 7→ y) = 1

auch ein MAC-Wert y′′ mit p(x′ 7→ y′′ |x 7→ y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.
Es bleibt zu zeigen, dass p(x 7→ y) > 0 für alle Paare (x, y) gilt. Wäre p(x 7→ y) = 0, so
würde für ein beliebiges Paar (u, v) mit p(u 7→ v) > 0 auch p(x 7→ y |u 7→ v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung β = 1/m. �

Satz 24. Ein MAC (X, Y,K,H) erfüllt β = 1
m

genau dann, wenn

p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt.

Beweis. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Nach obigem Lemma impliziert dies, dass

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. Dies impliziert nun

p(x′ 7→ y′) =
∑
y

p(x 7→ y)p(x′ 7→ y′ |x 7→ y) = 1/m

und daher
p(x 7→ y, x′ 7→ y′) = p(x′ 7→ y′)p(x 7→ y |x′ 7→ y′) = 1/m2.

Umgekehrt rechnet man leicht nach, dass die Bedingung β = 1
m

erfüllt ist, wenn für alle
Doppelpaare (x, y, x′, y′) mit x 6= x′ die Gleichheit p(x 7→ y, x′ 7→ y′) = 1/m2 gilt. �

Bemerkung 25. Nach obigem Satz gilt β = 1
m

genau dann, wenn für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ gilt,

p(x 7→ y, x′ 7→ y′) =
∑

k∈K(x,y,x′,y′)
p(k) = 1

m2 .

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m

genau dann, wenn in je zwei Spalten
der Authentikationsmatrix jedes MAC-Wertepaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung gewählt wird, d.h.
es gilt p(k) = 1

‖K‖ für alle k ∈ K.

Definition 26. Ein MAC (X, Y,K,H) heißt 2-universal, falls für alle x, x′ ∈ X mit
x 6= x′ und alle y, y′ ∈ Y gilt:

‖K(x, y, x′, y′)‖ = ‖K‖
m2 .

Ein MAC (X, Y,K,H) ist also genau dann 2-universal, wenn für alle Textpaare x, x′ ∈ X
mit x 6= x′ jedes MAC-Wertpaar y, y′ ∈ Y mit Wk 1/m2 auftritt.

26 1 Kryptografische Hashverfahren

Bemerkung 27. Bei der Konstruktion von 2-universalen MACs spielt der Parameter
λ = ‖K‖

m2 eine wichtige Rolle. Da λ notwendigerweise positiv und ganzzahlig ist, muss
insbesondere ‖K‖ ≥ m2 gelten.

Im Folgenden nennen wir einen 2-universalen (n,m, l)-MAC mit λ = l/m2 kurz einen
(n,m, l, λ)-MAC.
Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schlüsseln genau
dann die Bedingung β = 1

m
erfüllt, wenn er 2-universal ist. Auf Grund von Bemerkung 16

nimmt in diesem Fall auch α den optimalen Wert 1
m

an.
Der nächste Satz zeigt eine einfache Konstruktionsmöglichkeit von 2-universalen MACs
mit dem Parameterwert λ = 1.

Satz 28. Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax+ b mod p.

Dann ist (X, Y,K,H) mit X = Y = Zp und K = Zp × Zp ein (p, p, p2, 1)-MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Ein Schlüssel (a, b) gehört genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ax+ b ≡p y,

ax′ + b ≡p y′

erfüllt. Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y′ − y)(x′ − x)−1 mod p,
b = y − x(y′ − y)(x′ − x)−1 mod p

zutrifft, folgt ‖K(x′, y′, x, y)‖ = 1. �

Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht die Kompressions-
eigenschaft. Zwar lässt sich n noch geringfügig von p auf p+ 1 (und somit der Quotient
n/m von 1 auf p+1

p
) vergrößern, ohne K und Y zu verändern (siehe Übungen). Wie der

nächste Satz zeigt, lässt sich eine stärkere Kompression mit dem Parameterwert λ = 1
jedoch nicht realisieren.

Satz 29. Für einen (n,m, l, 1)-MAC gilt

n ≤ m+ 1

und somit l = m2 ≥ (n− 1)2 sowie n/m ≤ m+1
m

(≈ 1).

Beweis. O.B.d.A. sei K = {1, . . . , l} und Y = {1, . . . ,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung π : Y → Y der MAC-Werte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC führt. Also können wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthält.
Da A 2-universal ist, gilt:
• In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor.
• Jede Spalte j enthält eine Eins in Zeile 1 und m− 1 Einsen in den übrigen Zeilen.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m− 1) Einsen vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m− 1) bzw. n ≤ m+ 1 impliziert. �

Der nächste Satz liefert 2-universale MACs mit beliebig großem Kompressionsfaktor. Für
den Beweis benötigen wir das folgende Lemma.

Lemma 30. Sei A eine (k × `)-Matrix über einem endlichen Körper F, deren k Zeilen
linear unabhängig sind. Dann besitzt das lineare Gleichungssystem

Ax = y

für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`.

Beweis. Siehe Übungen. �

Satz 31. Sei p prim und für x = (x1, . . . , xd) ∈ {0, 1}d und k = (k1, . . . , kd) ∈ Zdp sei

hk(x) = kx =
d∑
i=1

kixi mod p.

Dann ist (X, Y,K,H) mit X = {0, 1}d−{0d}, Y = Zp und K = Zdp ein (2d−1, p, pd, pd−2)-
MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Es gilt

k ∈ K(x, y, x′, y′) ⇔ hk(x) = y ∧ hk(x′) = y′

⇔ k · x = y ∧ k · x′ = y′.

Fassen wir x = x1 · · ·xd und x′ = x′1 · · ·x′d zu einer Matrix A zusammen, so ist dies
äquivalent zu (

x1 · · · xd
x′1 · · · x′d

)
·


k1...
kd

 =
(
y

y′

)
.

Da die beiden Zeilen von A verschieden und damit linear unabhängig sind, folgt mit
obigem Lemma, dass genau ‖K(x, y, x′, y′)‖ = pd−2 Schlüssel k = (k1, . . . , kd) mit dieser
Eigenschaft existieren. �

Bemerkung 32. Obige Konstruktion liefert einen λ-Wert von ‖K‖
m2 = pd−2. Durch

Erweiterung von X auf eine geeignete Teilmenge X ′ ⊆ Zdp lässt sich der Textraum von
2d − 1 auf pd−1

p−1 vergrößern (siehe Übungen). Dies führt auf einen beliebig groß wählbaren
Kompressionsfaktor n

m
= pd−1

p(p−1) ≈ pd−2 bei einem λ-Wert von λ = pd−2. Wie der nächste
Satz zeigt, lässt sich dies nicht mit einem kleineren λ-Wert (bzw. nicht mit einer kleineren
Schlüssellänge) erreichen.

Im Beweis des nächsten Satzes benötigen wir folgendes Lemma.

28 1 Kryptografische Hashverfahren

Lemma 33. Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2
≤ m

∑m
i=1 b

2
i .

Beweis. Da die Funktion x 7→ x2 konvex ist, folgt mit der Jensenschen Ungleichung
(∑ bi/m)2 ≤ ∑ b2

i /m und somit(∑
bi
)2

= m2
(∑

bi/m
)2

︸ ︷︷ ︸
≤
∑

b2
i /m

≤ m
∑

b2
i .

�

Satz 34. Für jeden (n,m, l, λ)-MAC gilt

λm2︸ ︷︷ ︸
=l

≥ n(m− 1) + 1

und somit n/m ≤ (λ− 1/m2) m
m−1(≈ λ).

Beweis. O.B.d.A. können wir wieder K = {k1, . . . , kl} und Y = {1, . . . ,m} annehmen,
und dass die erste Zeile der Authentikationsmatrix nur aus Einsen besteht. Für jede Zeile
i = 1, . . . , l bezeichne ei die Anzahl der Einsen in dieser Zeile (also e1 = n). Da in jeder
Spalte jeder MAC-Wert genau λm-mal vorkommt, gilt

l∑
i=1

ei = λnm und
l∑

i=2
ei = λnm− n = n(λm− 1).

Sei z = ∑l
i=2 zi, wobei zi die Anzahl von Spaltenpaaren (j, j′) mit j 6= j′ und hki

(xj) =
hki

(xj′) = 1 ist. Dann folgt

z =
l∑

i=2
zi =

l∑
i=2

ei(ei − 1) =
l∑

i=2
e2
i −

l∑
i=2

ei =
l∑

i=2
e2
i − n(λm− 1).

Mit obigem Lemma ergibt sich

l∑
i=2

e2
i ≥

(∑l
i=2 ei

)2

l − 1 = (n(λm− 1))2

l − 1 .

Da andererseits in jedem Spaltenpaar das MAC-Wertepaar (1, 1) in genau λ Zeilen
vorkommt (genauer: einmal in Zeile 1 und (λ− 1)-mal in den Zeilen i = 2, . . . , l), und da
n(n− 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z = (λ− 1)n(n− 1).

Somit erhalten wir

(λ− 1)n(n− 1) = z =
l∑

i=2
e2
i − n(λm− 1) ≥ (n(λm− 1))2

l − 1 − n(λm− 1)

⇒ ((λ− 1)n(n− 1) + n(λm− 1))(λm2 − 1) ≥ (n(λm− 1))2

⇒ (λn− n− λ+ λm)(λm2 − 1) ≥ n(λm− 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn− λ+ λm− 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m− 1)2 +m− 1)
⇒ λm2 ≥ n(m− 1) + 1.

�

1.3 Nachrichten-Authentikationscodes (MACs) 29

1.3.3 CBC-MACs

Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C,K,E,D) ein symmetrisches Kryptosystem mit M = C = {0, 1}t. Zudem sei
IV := 0t und sei k ∈ K ein geheimer Schlüssel. Sei y eine Funktion für den Preprocessing-
Schritt, die für jeden Text x ∈ {0, 1}∗ einen nichtleeren Bitstring y(x) ∈ ⋃n≥1{0, 1}tn
liefert, dessen Länge durch t teilbar ist.
Berechnung von hk(x):

1 y := y(x) = y1 . . . yn, n ≥ 1, yi ∈ {0, 1}t
2 z0 := IV
3 for i = 1 to n do
4 zi := E(k, zi−1 ⊕ yi)
5 output hk(x) = zn

Die MAC-Wertlänge beträgt also t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so lässt sich leicht ein Angriff mit 2 adaptiven Fragen ausführen. Kennt der Angreifer
die MAC-Werte z = hk(x) und z′ = hk(x′) für die Texte x = x1 · · ·xn und x′ =
(xn+1 ⊕ IV ⊕ z)xn+2 · · ·xn+m, wobei |xi| = t für i = 1, . . . , n+m ist, so muss auch der
Text x′′ = x1 · · ·xn+m den MAC-Wert hk(x′′) = z′ haben.
Diesen Angriff kann man zwar ausschließen, indem man eine feste Länge nt für die Texte
vorschreibt, wodurch die Anwendbarkeit des CBC-MACs allerdings eingeschränkt wird.
Der folgende Geburtstagsangriff ist auch bei fester Textlänge möglich.

Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermöglicht es, mit q + 1 MAC-Fragen (wobei q ≈ 1,17 · 2 t
2) den MAC-

Wert hk(x) für einen zuvor nicht erfragten Text x zu finden, wobei x = x1 . . . xn ∈
{0, 1}tn abgesehen vom ersten t-Bitblock x1 ∈ {0, 1}t beliebig wählbar ist. Hierzu wählt
der Angreifer zunächst n − 2 beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und q ≈ 1,17 · 2 t

2

paarweise verschiedene Blöcke x1
1, . . . , x

q
1 ∈ {0, 1}t. Anschließend wählt er zufällig q

weitere Blöcke x1
2, . . . , x

q
2 ∈ {0, 1}t und erfragt die MAC-Werte zi = hk(xi) für die Texte

xi = xi1x
i
2x3 · · ·xn, i = 1, . . . , q.

Wegen xi1 6= xj1 für i 6= j sind auch die Texte x1, . . . , xq paarweise verschieden. Seien
z1

1 , . . . , z
q
1 die nach der ersten Iteration des CBC-MACs berechneten Kryptotexte zi1 =

Ek(IV ⊕ xi1). Da die Blöcke xi2 zufällig gewählt werden, sind auch die Eingangsblöcke
zi1 ⊕ xi2 für die 2. Iteration zufällig, d.h. es gilt

Pr[∃i 6= j : zi1 ⊕ xi2 = zj1 ⊕ x
j
2] = Pr[∃i 6= j : xi2 = xj2] ≈

1
2 .

Da die Gleichheit der Eingangsblöcke zi1 ⊕ xi2 und zj1 ⊕ xj2 für die 2. Iteration mit der
Gleichheit der Ausgangsblöcke zin und zjn der n-ten Iteration und damit mit der Gleichheit
der zugehörigen MAC-Werte zi und zj äquivalent ist, kann der Angreifer das Indexpaar
(i, j) mit zi1 ⊕ xi2 = zj1 ⊕ x

j
2 auch leicht finden, sofern es existiert (was wir im Folgenden

annehmen).
Da xi1 6= xj1 gilt, sind auch die Blöcke zi1 = Ek(IV ⊕xi1) und zj1 = Ek(IV ⊕xj1) verschieden.
Wegen zi1⊕xi2 = zj1⊕x

j
2 sind dann auch die beiden Blöcke xi2 und xj2 verschieden. O.B.d.A.

30 1 Kryptografische Hashverfahren

gelte xi2 6= x2 (sonst vertauschen wir die Indizes i und j). Nun erfragt der Angreifer für u =
xi2⊕x2 ∈ {0, 1}t−{0t} den MAC-Wert z̃j = hk(x̃j) für den Text x̃j = xj1(xj2⊕u)x3 · · ·xn,
welcher zugleich MAC-Wert des Textes x̃i = xi1(xi2 ⊕ u)x3 · · ·xn = xi1x2x3 · · ·xn ist, den
er zuvor nicht erfragt hat.

Definition 35. Sei 0 ≤ ε ≤ 1 und sei q ∈ N. Ein (ε, q)-Fälscher für einen MAC H ist
ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xq stellt und aus den Antworten
zi = hk(xi) mit Wahrscheinlichkeit mindestens ε (bei zufällig gewähltem Schlüssel k) ein
Paar (x, z) berechnet mit x 6∈ {x1, . . . , xq} und hk(x) = z.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text xi darf von den MAC-Werten
der Texte x1, . . . , xi−1 abhängen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Fälschungen (d.h. der Angreifer kann den MAC-Wert für einen Text
seiner Wahl generieren) und existientiellen Fälschungen (d.h. der Angreifer kann den
MAC-Wert für irgendeinen Text x 6∈ {x1, . . . , xq} generieren, auf dessen Wahl er keinen
Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC führt auf
einen (1

2 , q + 1)-Fälscher für q ≈ 1,17 · 2 t
2 . Dabei ist nur die letzte MAC-Frage adaptiv

und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. /

Eine Variante dieses Angriffs ist auch bei Verwendung einer Preprocessing-Funktion
möglich. Meist wird hierzu die Funktion y : x 7→ y(x) = y0 . . . yn mit y0 = bint(|x|)
und y1 . . . yn = x0nt−|x| verwendet, wobei n = d|x|/te ist. Der erste Block y0 = bint(|x|)
kodiert also die Länge von x als Binärzahl, die mit führenden Nullen auf die Länge t
erweitert wird, und der letzte Block wird ebenfalls mit Nullen auf die Länge t aufgefüllt.

1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum eines MAC den Werteraum eines anderen MAC enthält, lassen sich
diese leicht komponieren (Nested-MAC oder NMAC).

Definition 37. Seien H1 = (X, Y,K1, F) mit F = {fk | k ∈ K1} und H2 = (Y, Z,K2, G)
mit G = {gk | k ∈ K2} MACs. Dann ist H1 ◦ H2 = (X,Z,K,H) die Komposition von
H1 und H2, wobei K = K1 ×K2 und H = {gk2 ◦ fk1 | (k1, k2) ∈ K} ist.

Beispiel 38. Wählt man für H2 einen MAC mit fester Textlänge und für H1 eine
(schlüssellose) Hashfunktion (etwa SHA-1), so erhält man einen so genannten HMAC
(Hash-MAC). /

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schlüsseln komponiert werden, wobei jedoch beidesmal
derselbe Schlüssel benutzt wird. Seien

ipad = 36 . . . 36︸ ︷︷ ︸
64mal

und opad = 5C . . . 5C︸ ︷︷ ︸
64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:

HMACk(x) = SHA-1((k ⊕ opad)SHA-1((k ⊕ ipad)x)).

Hierbei fungiert die Funktion fk(x) = SHA-1((k⊕ ipad)x) als Hashfunktion mit Schlüssel,
die beliebig lange Texte hasht, und der MAC gk(y) = SHA-1((k ⊕ opad)y) wird nur

1.3 Nachrichten-Authentikationscodes (MACs) 31

auf Bitstrings der Länge 512 angewendet. Wie der folgende Satz zeigt, genügt es, wenn
fk kollisionsresistent und gk berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 39. Ein (ε, q)-Kollisionsangreifer für einen MAC H = (X, Y,K,H) ist ein
probabilistischer Algorithmus A, der q Fragen x1, . . . , xn stellt und aus den Antworten
yi = hk(xi) mit Wahrscheinlichkeit mindestens ε ein Paar (x, x′) berechnet mit hk(x) =
hk(x′), wobei k der dem Angreifer unbekannte (und zufällig gewählte) Schlüssel ist.

Da der Angreifer den Schlüssel k nicht kennt, ist ein Kollisionsangriff gegen einen
MAC H meist schwieriger zu realisieren als ein Kollisionsangriff gegen eine schlüssellose
Hashfunktion. Andererseits ist die Kenntnis des Schlüssels bei einem Geburtstagsangriff
nicht von Vorteil.

Satz 40. Seien H1 = (X, Y,K1, F), H2 = (Y, Z,K2, G) MACs. Falls für H1 kein
adaptiver (ε1, q+1)-Kollisionsangriff und für H2 kein adaptiver (ε2, q)-Fälscher existieren,
dann existiert auch für H = H1 ◦ H2 kein adaptiver (ε1 + ε2, q)-Fälscher.

Beweis. Sei A ein adaptiver (ε, q)-Fälscher für H. Seien x1, . . . , xq die Fragen, die A an
sein Orakel gk2 ◦ fk1 stellt, und seien zi = gk2(fk1(xi)) die erhaltenen Antworten. Zudem
sei (x, z) die Ausgabe von A. Wir müssen zeigen, dass die Erfolgswk von A

Pr[x 6∈ {x1, . . . , xq}︸ ︷︷ ︸
B

∧ gk2(fk1(x)) = z︸ ︷︷ ︸
C

] < ε1 + ε2

ist, wobei (k1, k2) zufällig aus K = K1 ×K2 gewählt wird.
Behauptung 41. Pr[x 6∈ {x1, . . . , xq}︸ ︷︷ ︸

B

∧ fk1(x) ∈ {fk1(x1), . . . , fk1(xq)}︸ ︷︷ ︸
D

] < ε1.

Hierzu betrachten wir den adaptiven Kollisionsangreifer A′ gegen H1, der zufällig einen
Schlüssel k2 ∈ K2 wählt und A wie folgt simuliert.

Für jede Frage xi von A erfragt A′ den MAC-Wert yi = fk1(xi) und gibt an A
die Antwort zi = gk2(yi) zurück. Sobald A ein Paar (x, z) ausgibt, erfragt A′
den MAC-Wert y = fk1(x) und gibt im Fall x 6∈ {x1, . . . , xq}∧y ∈ {y1, . . . , yq}
das Paar (x, xi) für einen beliebigen Index i mit y = yi aus.

Da A′ genau dann Erfolg hat, wenn das Ereignis B ∩D eintritt, folgt Behauptung 41.
Behauptung 42. Pr[fk1(x) 6∈ {fk1(x1), . . . , fk1(xq)}︸ ︷︷ ︸

D

∧ gk2(fk1(x)) = z︸ ︷︷ ︸
C

] < ε2.

Hierzu betrachten wir den adaptiven Fälscher A′′ gegen H2, der zufällig einen Schlüssel
k1 ∈ K1 wählt und A wie folgt simuliert.

A′′ gibt bei jeder Anfrage xi von A die Antwort des Orakels gk2 auf die Frage
yi = fk1(xi) zurück und sobald A ein Paar (x, z) ausgibt, gibt A′′ das Paar
(fk1(x), z) aus.

Da A′′ genau dann Erfolg hat, wenn das Ereignis D ∩ C eintritt, folgt Behauptung 42.
Damit folgt

Pr(B ∩ C) = Pr(B ∩D ∩ C)︸ ︷︷ ︸
<ε2

+Pr(B ∩D ∩ C)︸ ︷︷ ︸
<ε1

< ε1 + ε2.

�

32

2 Elliptische Kurven

2.1 Elliptische Kurven über den reellen Zahlen

Definition 43. Seien a, b ∈ R. Eine elliptische Kurve E über R enthält alle Lösungen
(x, y) ∈ R2 der Gleichung y2 = x3 + ax + b und zusätzlich den Punkt O (Punkt im
Unendlichen; siehe Übungen). Im Fall 4a3 + 27b2 = 0 heißt E singulär, sonst nicht-
singulär.

Beispiel 44. Betrachte die durch y2 = x3 − 4x definierte elliptische Kurve E.

x

y

Punkte: (−2, 0), (0, 0), (2, 0), (−1,
√

3), (−1,−
√

3), (3,
√

15), (3,−
√

15).

Auf den nicht-singulären Punkten von E lässt sich eine additive Gruppenoperation
+ definieren. Die Idee dabei ist, dass die Addition von 3 beliebigen Punkten von E,
die auf einer Geraden liegen, das neutrale Element O ergeben soll. Hierbei werden
Tangentialpunkte doppelt und Wendepunkte dreifach gezählt und den parallel zur y-
Achse verlaufenden Geraden wird zusätzlich noch der Punkt O hinzugerechnet (d.h. alle
Geraden, die parallel zur y-Achse verlaufen, schneiden sich im Punkt O und es werden
nur solche Geraden g betrachtet, auf denen bei dieser Zählweise 3 Punkte von E liegen).
Um nun die Summe R = P + Q von zwei gegebenen Punkten P = {x1, y1} und
Q = {x2, y2} zu berechnen, bestimmen wir zuerst die Gerade g, auf denen P und Q
liegen, wobei g im Fall P = Q die Tangente an E im Punkt P ist. Falls g parallel
zur y-Achse verläuft, ist x1 = x2 und y1 = −y2 (also Q = (x1,−y1)). Da in diesem
Fall zudem der Punkt O auf g liegt, erhalten wir die Gleichung P +Q(+O) = O bzw.
−P = Q = (x1,−y1).

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgaard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen
	1.2.10 Die Sponge-Konstruktion
	1.2.11 SHA-3

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 CBC-MACs
	1.3.4 Kombination einer Hashfunktion mit einem MAC (HMAC)

	2 Elliptische Kurven
	2.1 Elliptische Kurven über den reellen Zahlen

