Vorlesungsskript
Kryptologie

Wintersemester 2020/21

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

5. November 2020

ii

Inhaltsverzeichnis

1 Kryptografische Hashverfahren
1.1 Einfihrung
1.2 Schlissellose Hashfunktionen (MDCs)

1.2.1 Vergleich von Sicherheitsanforderungen
1.2.2 Das Zufallsorakelmodell (ZOM)
1.2.3 Iterierte Hashfunktionen

1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o Integritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
gritdt von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegritéit eine dhnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr niitzlich. Auf weitere Anwendungsmoglichkeiten werden
wir spater eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text z eine zwar kompakte aber dennoch représentati-
ve Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift fiir A muss
somit ,charakteristische Merkmale“ von x in den Hashwert h(z) einflielen lassen. Da
der Fingerabdruck eines Menschen ganz dhnliche Eigenschaften besitzt (was ihn fiir
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(z) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebrauchlich sind auch die Bezeich-
nungen kryptografische Priifsumme oder message digest (englische Bezeichnung fiir
,Nachrichtenextrakt*).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren
Kryptografische
Hashverfahren
Sonstige
Hashverfahren

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

(Integritatsschutz) (Authentikation)

— Wie lésst sich sicherstellen, dass eine Nachricht (oder eine Datei) wihrend
einer (rdumlichen oder auch zeitlichen) Ubertragung nicht verindert wurde?

— Wie lasst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

e Teilnehmerauthentikation (entity authentication, identification)

— Wie kann sich eine Person (oder ein Geréit) anderen gegeniiber zweifelsfrei
ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhéngt (sieche Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kiirzel MDC auch als eine Abkiirzung fiir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritéit eines Datensatzes x sicherzustellen, der iiber einen ungesi-

@ ======================> @
h h
é Authentisierter Kanal A 4 (echt)
> |y=h()

falsch

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.

1.2 Schliissellose Hashfunktionen (MDCs) 3

Ungesicherter !
hk hk
é) Kanal l (echt)
S-S S-S S-S S-S CSCSCSCSESSES=S=S=S=S=S=S=CS =) h x/ ; /
@)=y falsch
<) > O

Gesicherter Kanal

k: Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Wert fir x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x tiber einen authentisierten Kanal und priift, ob der
Datensatz nach der Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséachlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschliefflich digitale Signaturen gebildet werden. Abbildung 1.3 zeigt, wie
sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch der
Hashwert iiber den unsicheren Kanal gesendet wird.

Mochte Alice eine Nachricht x an Bob tibermitteln, so berechnet sie den
zugehorigen MAC-Wert y = hy(x) und fiigt diesen der Nachricht x hinzu.
Bob iiberpriift die Echtheit der empfangenen Nachricht (z2',y'), indem er
seinerseits den zu z’ gehorigen Hashwert hy(x’) berechnet und das Ergebnis
mit y’ vergleicht. Der geheime Authentikationsschliissel k£ muss hierbei genau
wie bei einem symmetrischen Kryptosystem tiber einen gesicherten Kanal
vereinbart werden.

Indem Alice ihre Nachricht 2 um den Hashwert y = hy(x) ergdnzt, gibt sie Bob nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
iiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h 6ffentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).

4 1 Kryptografische Hashverfahren

Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fur h, falls
h(z) =y ist. Ein Paar (z,2') mit h(z) = h(z') heifit Kollisionspaar fiir h. Die Anzahl
||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heifit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (z,y) zu erzeugen. Fiur bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text z € X mit h(z) = y.

Falls es einen immensen Aufwand erfordert, fiir einen vorgegebenen Hashwert y einen Text
x mit h(xz) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benotigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Fine Hashfkt. h: X — Y und ein Text z € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit grofem Aufwand ein weiterer Text &’ # x
mit dem gleichen Hashwert h(z') = h(z) finden lésst, heifit h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benétigt. Beim Versuch, eine
digitale Signatur zu félschen (siehe unten), sieht sich der Angreifer dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Fine Hashtkt. h: X — Y.
Gesucht: Texte x # ' € X mit h(z") = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand l6sen lésst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h: X — Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,

1.2 Schliissellose Hashfunktionen (MDCs) 5

1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der fiir ein zufillig aus X gewahltes x mit
Erfolgswahrscheinlichkeit ¢ ein zweites Urbild 2’ fiir h liefert und andernfalls 7 aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit € ein Kollisionspaar findet. O

Als néchstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 2. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fiir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | x € X} ein Urbild mit h(z) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.

Sei C = {h ' (y) | y € W(h)}. Dann hat B eine Erfolgswahrscheinlichkeit von

] fel-1_1 S0 = (n—m)/n
SRl e = w 2l =) = (= m)n >

ceC ceC

N | —

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h: X —
Y nach oben abzuschéatzen. Sind X und Y vorgegeben, so kénnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren®, dass wir fiir jedes x € X zufallig ein y € Y wahlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse F'(X,Y) aller m™ Funktionen von X nach Y zu wahlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X|| eine bestimmte
Grofle tibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion mit
sidealen“ kryptografischen Eigenschaften. Offensichtlich besteht fiir den Angreifer die

1 wahle zufallig z € X

> y:=h(x)

5 x' = Aly)

1 if = # 2’ then return(z,z’) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} CX
2 for each z; € Xy do

3 if h(z;) =y then return(z;)

1 return(?)

Abbildung 1.6: Bestimmung eines Urbilds fiir einen Hashwert

einzige Moglichkeit, Informationen iiber A zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

Eine Zufallsfunktion A eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) fiir einen Text = auch dann noch schwer vorhersagbar ist, wenn der
Angreifer bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei Xo = {x1,..., 2} eine beliebige Menge von k verschiedenen Texten
aus X und seienyy, ..., yx € Y. Dann gilt fir eine zufillig aus F(X,Y') gewdhlte Funktion
h und fiir jedes Paar (z,y) € (X — Xo) X Y,

Prih(x) = y|h(z;) = y; furi=1,...,k] =1/m.

Um eine obere Komplexitéitsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FINDPREIMAGE(h, y, q) gibt im ZOM mit Wahrscheinlichkeit ¢ = 1—(1—1/m)?
ein Urbild von y aus (unabhdingig von der Wahl der Menge X).

Beweis. Sei y € Y fest und sei Xy = {z1,...,2,}. Firi = 1,...,¢ bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhangig
und ihre Wahrscheinlichkeit ist Pr[E;] = 1/m (i =1,...,q). Also folgt

Pr[EAU...UE,]=1-Pr[EiN...NE]=1-(1-1/m)".

Prozedur FindSecondPreimage(h,z,q)
y = h(z)
wahle eine beliebige Menge X, = {zy,...,241} C X —{z}
for each z; € Xy do
if h(z;) =y then return(x;)
return(?)

E N N VN

ot

Abbildung 1.7: Bestimmung eines 2. Urbilds fiir einen Hashwert

1.2 Schliissellose Hashfunktionen (MDCs) 7

Prozedur Collision(h,q)

1 wahle eine beliebige Menge X, = {z1,...,2,} CX
> for each z; € Xy do y; := h(x;)
5 if Ji#j:y; =y, then return(z;,z;) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fiir h(z) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lésst sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FINDSECONDPREIMAGE(h, x,q) gibt im ZOM mit Wahrscheinlichkeit ¢ =
1—(1—=1/m)? " ein zweites Urbild xo # x von y = h(x) aus.

Ist g vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen € ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ &~ m/2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (x, z") aufzuspiiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofier 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag.*

Tatséchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

L—(m—1)(m—2)-(m—q+1)/m*"

mindestens eine Kugel mehr als einmal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt
dies einen Wert von ungefahr 0,507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von ¢ abhéngen. Tragt man aber jeden Text x unter dem Suchwort
h(z) in eine (herkémmliche) Hashtabelle der GroSe ¢ ein, so wird der Zeitaufwand fiir
die Bearbeitung jedes einzelnen Textes = im wesentlichen durch die Berechnung von h(z)
bestimmt.

Satz 6. COLLISION(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

(m—1)(m-—2)---(m—q+1)

e=1-—
ma—1

ein Kollisionspaar (x,z') fir h aus.

Beweis. Sei Xo = {z1,...,2,}. Firi=1,...,q bezeichne E; das Ereignis

“h(x;) & {h(x1),..., h(x;i_1)}.”

*Da die Haufigkeiten der Geburtstage in Wirklichkeit nicht ganz gleichméfig iiber das Jahr verteilt
sind, ist die Wahrscheinlichkeit sogar noch etwas hoher.

8 1 Kryptografische Hashverfahren

Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt ? aus” und fiiri =1, ..., ¢
gilt
m—i+1

PI'[E1|E1 N...N Eifl] =
m

Dies fiihrt auf die Erfolgswahrscheinlichkeit

e = 1=-Pr[EyN...NE,]
= 1- PI‘[El]PI‘[EQ | El] cee PI‘[Eq | E1 Nn...N Eq—l]

)

Mit 1 — 2 ~ e~ folgt

¢!) ¢! —i _1 Nty _alg—1) _ 4 2
5:1—|| 1—7 %1—|Iem:1—€m i=1 :1_6 2m %1_6 anzq/Qm.
X m .
i=1 =1

Somit erhalten wir die Abschiatzung

q = cv/m

mit ¢. = v/2¢. Diese Abschitzung ist nur fiir e-Werte nahe Null hinreichend genau. Eine
2

bessere Abschétzung ergibt sich aus der Approximation e ~ 1 — ¢~ 2m

q ~ c/m

mit ¢, = /2In 7. Fiir e = 1/2 ergibt sich somit ¢ &~ /(2In2)m ~ 1,17y/m.

Besitzt also eine bindre Hashfunktion h: {0,1}" — {0, 1}™ die Hashwertlange m = 128
Bit, so miissen im ZOM ¢ ~ 1,17 - 25 Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu
konnen, sollte eine Hashfunktion mindestens eine Hashwertlange von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h: {0, 1}’”” — {0, 1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0, 1}

konstruieren lasst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.

Preprocessing: Transformiere z € {0, 1}* mittels einer Funktion

y: {07 1}* - U{07 1}”

r>1

zu einem String y(x) mit der Eigenschaft |y(z)| =, 0.

1.2 Schliissellose Hashfunktionen (MDCs) 9

Processing: Sei IV € {0,1}™ ein offentlich bekannter Initialisierungsvektor und sei

y(x) = y1 -y, mit |y;| =t fiir ¢ = 1,...,r. Berechne eine Folge z, ..., 2, von
Strings z; € {0,1}™ wie folgt:
v, i =0,
Zi; =
h(zi—lyi)7 1= 1, Lo,

Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z,), wobei
g: {0,1}™ — {0,1} eine offentlich bekannte Funktion ist. (Meist wird fiir ¢
die Identitat verwendet.)

Um h(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschaft.

Definition 7. Eine Funktion y: {0,1}* — {0, 1}* heifst suffixfrei, falls es keine Strings
r # & und z in {0,1}* mit y(Z) = zy(z) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(Z) an einer Stelle T # x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Fulls die Preprocessing-Funktion y suffizfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch h kollisionsresistent.

Beweis. Wir nehmen an, dass es gelingt, ein Kollisionspaar (x,Z) fiir h zu finden (d.h.
h(z) = h(Z) und = #). Sei

y(x) =y1y2 - Yp—1yk und y(Z) = 192 - . . Y14 mit k < [.

Da y suffixfrei ist, muss ein Index ¢ € {1,...,k} mit y; # §,_r,; existieren. Weiter seien
2 (i=0,....,k)und Z; (j =0,...,1) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(z;) = fz(x) = ﬁ(i) = ¢g(Z) auch z, = 2 gelten. Sei i,0,
der grofite Index i € {1,...,k} mit z;_1y; # Z1_g+i—1U1—k+i- Dann bilden z;,_ 1y, . und
Zl—ktimas—1Yl—k+imas WeEEN

h(zimaz—lyz‘mw) = Zimaz — Fl—k+imaz — h(zl—kﬂ'maz—lyl—kwmz)

ein Kollisionspaar fir h. O

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen

