
Kryptologie

Johannes Köbler

Institut für Informatik
Humboldt-Universität zu Berlin

WS 2020/21

Pseudozufallszahlen-Generatoren 276

Pseudozufallszahlen-Generatoren (kurz PZG) f werden mit einem
Startwert x – dem sogenannten Keim (engl. seed) – für die Erzeugung
einer „zufälligen“ Bitfolge f (x) gestartet
Dabei wird die Eingabe x zufällig unter Gleichverteilung gewählt und die
Ausgabe f (x) sollte länger sein als x und möglichst zufällig aussehen
Zudem sollte f von einem deterministischen Algorithmus effizient
berechenbar sein

Linear-Kongruenz-Generator 277

Beispiel
Beim Linear-Kongruenz-Generator wird der Keim x0 zufällig aus der
Menge Zn = {0, 1, . . . n − 1} gewählt
Die Parameter a und b sind ebenfalls aus Zn

Algorithmus LinGenn,l ,a,b(x0)
1 for i := 1 to l do
2 xi := axi−1 + b mod n
3 bi := xi mod 2
4 output(b1 . . . bl)

Power-Generator 278

Beispiel
Beim Power-Generator wird der Keim x0 zufällig aus der Menge Z∗n
gewählt

Algorithmus PowerGenn,l ,e(x0)
1 for i := 1 to l do
2 xi := x e

i−1 mod n
3 bi := xi mod 2
4 output(b1 . . . bl)

Es gibt zwei interessante Spezialfälle des Powergenerators:
RSA-Generator (RsaGen) mit n = p · q wobei p und q große
Primzahlen sind und ggT(e, ϕ(n)) = 1 ist
Quadratischer-Reste-Generator (BBS) mit e = 2 (siehe unten)

Kryptografische Sicherheit von Pseudozufallsgeneratoren279

Wir betrachten ab jetzt nur noch den Fall, dass sowohl x als auch f (x)
Bitfolgen sind und die Länge der Ausgabe f (x) nur von der Länge der
Eingabe x abhängt

Definition
Sei ` : N→ N eine Funktion mit `(k) ≥ k + 1 für alle k ≥ 0
Ein `(k)-Generator ist eine Funktion f auf {0, 1}∗, die Strings der Länge
k auf Strings der Länge `(k) abbildet und effizient berechenbar ist

Kryptografische Sicherheit von Pseudozufallsgeneratoren280

Definition
Seien (Xk) und (Yk), k ≥ 0, Familien von Zufallsvariablen mit
Wertebereich W (Xk),W (Yk) ⊆ {0, 1}`(k) und sei ε : N→ R+ eine
Funktion
Ein ε-Unterscheider zwischen (Xk) und (Yk) ist ein effizienter
probabilistischer Algorithmus D mit:

Pr[D(Xk) = 1]− Pr[D(Yk) = 1] ≥ ε(`(k))

Hierbei ist Pr[D(Xk) = 1] die Wahrscheinlichkeit, dass D bei einer
zufällig gemäß Xk gewählten Eingabe akzeptiert (bzw. 1 ausgibt)
In diesem Fall heißen die beiden Familien (Xk) und (Yk)
ε-unterscheidbar
Ein `(k)-Generator f heißt ε-unterscheidbar, falls die beiden Familien
(f (Uk)) und (U`(k)) von Zufallsvariablen ε-unterscheidbar sind, wobei
Un eine auf {0, 1}n gleichverteilte Zufallsvariable ist

Kryptografische Sicherheit von Pseudozufallsgeneratoren281

Definition (Fortsetzung)
Eine Funktion ε : N→ R heißt vernachlässigbar, wenn für jedes
Polynom p eine Zahl n0 ∈ N existiert, so dass ε(n) < 1/p(n) für alle
n ≥ n0 gilt
f heißt (kryptografisch) sicher, falls f nur für vernachlässigbare
Funktionen ε : N→ R+ ε-unterscheidbar ist

Ein `(k)-Generator f ist also genau dann sicher, wenn für jeden
Unterscheider D und jedes Polynom p nur für endlich viele Werte von k

Pr[D(f (Uk)) = 1]− Pr[D(U`(k)) = 1] ≥ 1/p(`(k))
ist
Unterscheider fungieren also als Gegner von Pseudozufallsgeneratoren
und werden üblicherweise durch probabilistische Schaltkreise
polynomieller Größe modelliert

Kryptografische Sicherheit von Pseudozufallsgeneratoren282

Beispiel
Betrachte folgenden Unterscheider D für den `(k)-Generator f mit
`(k) = k + 1 und f (x) = 1x für alle x ∈ {0, 1}∗:

1 input y = y1 · · · yk+1 ∈ {0, 1}k+1

2 output(y1)

Dann gilt Pr[D(f (Uk)) = 1] = 1 und Pr[D(Uk+1) = 1] = 1/2 und somit
Pr[D(f (Uk)) = 1]− Pr[D(Uk+1) = 1] = 1/2

für alle k
Folglich ist f (1/2)-unterscheidbar
Da die konstante Funktion n 7→ 1/2 nicht vernachlässigbar ist, ist der
Generator f nicht sicher /

Kryptografische Sicherheit von Pseudozufallsgeneratoren283

Es ist nicht bekannt, ob kryptografisch sichere PZGen existieren
Eine notwendige Bedingung hierfür ist P 6= NP, da P = NP die Existenz
eines effizienten Unterscheiders impliziert, welcher genau die Strings im
Bild von f akzeptiert
Ob diese Bedingung auch hinreichend ist, ist ebenfalls nicht bekannt
Man kann jedoch zeigen, dass die Existenz von kryptografisch sicheren
PZGen äquivalent zur Existenz von Einwegfunktionen ist
Bei manchen Anwendungen ist es wichtig, dass kein effizienter
Algorithmus das nächste Bit der Pseudozufallsfolge korrekt vorhersagen
kann
Es ist nicht schwer zu sehen, dass ein sicherer PZG diese Bedingung
erfüllt

Kryptografische Sicherheit von Pseudozufallsgeneratoren284

Definition
Sei f ein `(k)-Generator
Für i ∈ {1, . . . , `(k)} bezeichne fi(x) das i-te Bit und für
i ∈ {0, . . . , `(k)} bezeichne f[i](x) die Folge der ersten i Bits von f (x)
Ein next bit predictor (NBP) N für f ist ein effizienter probabilistischer
Algorithmus, der bei jeder Eingabe (v , 1`(k)) mit v ∈ {0, 1}i−1 für ein
i ∈ {1, . . . , `(k)} ein Bit N(v , 1`(k)) ausgibt
N heißt ε-next bit predictor (ε-NBP) für f , falls für alle k gilt:

Pr[N(f[I−1](Uk), 1`(k)) = fI(Uk)] ≥ 1/2 + ε(`(k))
wobei die Zufallsvariable I auf der Menge {1, . . . , `(k)} gleichverteilt ist

Kryptografische Sicherheit von Pseudozufallsgeneratoren285

Beispiel
Betrachte folgenden NBP N für den `(k)-Generator f mit `(k) = k + 1
und f (x) = 1x für alle x ∈ {0, 1}∗:

1 input (v , 1n) mit v = v1 · · · vi−1 ∈ {0, 1}i−1 für ein i ∈ {1, . . . , n}
2 output(1)

Dann gilt

Pr[N(f[i−1](Uk)) = fi(Uk)] =

1, i = 1
1/2, i = 2, . . . k + 1

Somit gilt

Pr[N(f[I−1](Uk)) = fI(Uk)] = 1
k + 1

k+1∑
i=1

Pr[N(f[i−1](Uk)) = fi(Uk)]

= 1/2 + 1/(2k + 2)︸ ︷︷ ︸
2`(k)

N ist also ein (1/2`)-NBP für f /

Kryptografische Sicherheit von Pseudozufallsgeneratoren286

Satz. Sei f ein `(k)-Generator und sei ε : N→ R+ eine Funktion.
Falls es einen ε-NBP für f gibt, so ex. auch ein ε-Unterscheider für f

Beweis.
Sei N ein ε-NBP für f und betrachte folgenden Unterscheider D

1 input v = v1 · · · vn
2 wähle i ∈R {1, . . . , n}
3 output(N(v1 · · · vi−1, 1n)⊕ vi ⊕ 1)

D gibt also bei Eingabe v = v1 · · · vn genau dann 1 aus, wenn der
Prediktor N bei Eingabe (v1 · · · vi−1, 1n) das i-te Bit von v richtig rät,
wobei i zufällig aus {1, . . . , n} gewählt wird
Daher gilt für alle k ≥ 0,

Pr[D(f (Uk)) = 1] = Pr[N(f[I−1](Uk), 1`(k)) = fI(Uk)] ≥ 1/2+ε(`(k)),
wobei I eine auf {1, . . . , `(k)} gleichverteilte Zufallsvariable ist

Kryptografische Sicherheit von Pseudozufallsgeneratoren287

Beweis (Fortsetzung)
Andererseits ist klar, dass für jeden NBP N

Pr[N(B1, . . . ,BI−1, 1`(k)) = BI] = 1/2,
ist, wobei B1, . . . ,B`(k) unabhängig und gleichverteilt auf {0, 1} sind
Folglich gilt wegen U`(k) = B1 . . .B`(k)

Pr[D(U`(k)) = 1] = Pr[N(B1, . . . ,BI−1, 1`(k)) = BI] = 1/2
und es folgt

Pr[D(f (Uk)) = 1]︸ ︷︷ ︸
≥1/2+ε(`(k))

−Pr[D(U`(k)) = 1]︸ ︷︷ ︸
=1/2

≥ ε(`(k)),

D ist also ein ε(`(k))-Unterscheider für f �

Kryptografische Sicherheit von Pseudozufallsgeneratoren288

Definition
Ein probabilistischer Algorithmus P heißt ε-previous bit predictor (ε-PBP)
für einen `(k)-Generator f , falls für alle k gilt,

Pr[P(fI+1(Uk) · · · f`(k)(Uk), 1`(k)) = fI(Uk)] ≥ 1/2 + ε(`(k))
wobei I eine auf {1, . . . , `(k)} gleichverteilte Zufallsvariable ist

Vollkommen analog zu obigem Satz lässt sich der folgende Satz beweisen

Satz
Falls es einen ε-PBP für f gibt, so ex. auch ein ε-Unterscheider für f

Kryptografische Sicherheit von Pseudozufallsgeneratoren289

Interessanterweise lässt sich aus einem Unterscheider auch ein NBP bzw.
ein PBP gewinnen

Satz
Falls es einen ε-Unterscheider für f gibt, so ex. auch ein (ε/`)-NBP für f

Beweis.
Sei D ein ε-Unterscheider für f , d.h. es gilt

Pr[D(f (Uk)) = 1]− Pr[D(U`(k)) = 1] ≥ ε(`(k))
für alle k ≥ 0
Die Ausgabe D(y) = 1 deutet also darauf hin, dass y tendenziell ein
Pseudozufallsstring ist, während die Ausgabe D(y) = 0 darauf
hindeutet, dass y ein echter Zufallsstring ist

Kryptografische Sicherheit von Pseudozufallsgeneratoren290

Beweis (Fortsetzung)
Betrachte folgenden probabilistischen Algorithmus N

1 input (v1 · · · vi−1, 1n) mit 1 ≤ i ≤ n
2 rate zufällig bi , . . . , bn ∈R {0, 1}
3 output(D(v1 · · · vi−1bi · · · bn)⊕ bi ⊕ 1)

N sagt also das i-te Bit vi mit bi vorher, falls D(v1 · · · vi−1bi · · · bn) = 1
ist (also D seine Eingabe v1 · · · vi−1bi · · · bn für pseudozufällig hält),
und sonst mit bi ⊕ 1
Betrachte für i = 1, . . . , `(k) + 1 die Zufallsvariablen

Hi = f[i−1](Uk)Bi · · ·B`(k),

wobei Uk , Bi , . . . ,B`(k) unabhängig und gleichverteilt auf {0, 1}k bzw.
auf {0, 1} sind
Insbesondere ist also H1 = B1 · · ·B`(k) = U`(k) gleichverteilt auf
{0, 1}`(k) und H`(k)+1 = f (Uk) pseudozufällig verteilt auf {0, 1}`(k)

Kryptografische Sicherheit von Pseudozufallsgeneratoren291

Behauptung
Es gilt
Pr[N(f[i−1](Uk), 1`(k)) = fi(Uk)] = 1/2+Pr[D(Hi+1) = 1]−Pr[D(Hi) = 1]

Beweis.
Wegen N(f[i−1](Uk), 1`(k)) = D(f[i−1](Uk)Bi · · ·B`(k)︸ ︷︷ ︸

Hi

)⊕ Bi ⊕ 1 folgt

Pr[N(f[i−1](Uk), 1`(k)) = fi(Uk)] = Pr[D(Hi)⊕ Bi ⊕ 1 = fi(Uk)]

= Pr[D(Hi) = 1 ∧ Bi = fi(Uk)]︸ ︷︷ ︸
Pr[Bi =fi (Uk)]−Pr[Bi =fi (Uk)∧D(Hi)=0]

+ Pr[D(Hi) = 0 ∧ Bi 6= fi(Uk)]︸ ︷︷ ︸
Pr[D(Hi)=0]−Pr[D(Hi)=0∧Bi =fi (Uk)]

= Pr[Bi = fi(Uk)]︸ ︷︷ ︸
1/2

+ Pr[D(Hi) = 0]︸ ︷︷ ︸
1−Pr[D(Hi)=1]

− 2Pr[D(Hi) = 0 ∧ Bi = fi(Uk)]︸ ︷︷ ︸
Pr[D(Hi+1)=0∧Bi =fi (Uk)]

=Pr[D(Hi+1)=0]︸ ︷︷ ︸
1−Pr[D(Hi+1)=1]

Pr[Bi =fi (Uk)]︸ ︷︷ ︸
1/2= 1/2 + Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1] �

Kryptografische Sicherheit von Pseudozufallsgeneratoren292

Beweis (Schluss)
Sei I eine auf {1, . . . , `(k)} gleichverteilte Zufallsvariable
Dann folgt

Pr[N(f[I−1](Uk), 1`(k)) = fI(Uk)]

= 1/2 + Pr[D(HI+1) = 1]− Pr[D(HI) = 1] (nach obiger Beh.)

= 1/2 +
`(k)∑
i=1

Pr[I = i]︸ ︷︷ ︸
1/`(k)

(Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1])

= 1/2 + (Pr[D(H`(k)+1︸ ︷︷ ︸
f (Uk)

) = 1]− Pr[D(H1︸︷︷︸
U`(k)

) = 1])/`(k)

= 1/2 + (Pr[D(f (Uk)) = 1]− Pr[D(U`(k)) = 1]︸ ︷︷ ︸
≥ε(`(k))

)/`(k)

≥ 1/2 + ε(`(k))/`(k) �

Kryptografische Sicherheit von Pseudozufallsgeneratoren293

Ganz ähnlich wie der obige Satz lässt sich auch folgendes Resultat beweisen

Satz
Falls es einen ε-Unterscheider für f gibt, so ex. auch ein (ε/`)-PBP für f

Quadratische Reste 294

Als nächstes betrachten wir den BBS-Generator
Dieser beruht auf dem Problem, die Lösbarkeit von quadratischen
Kongruenzgleichungen zu entscheiden

Definition
Ein Element a ∈ Z∗m heißt quadratischer Rest modulo m
(kurz: a ∈ QRm), falls ein x ∈ Z∗m mit x2 ≡m a existiert
Die Menge QNRm := Z∗m \ QRm enthält alle quadratischen
Nichtreste modulo m
Für eine Primzahl p > 2 und eine Zahl a ∈ Z heißt

L(a, p) =
(a

p

)
=


1, a mod p ∈ QRp
−1, a mod p ∈ QNRp
0, sonst

das Legendre-Symbol von a modulo p

Quadratische Reste 295

Die quadratische Kongruenz x2 ≡m a besitzt also für ein a ∈ Z∗m genau
dann eine Lösung, wenn a ∈ QRm ist
Da mit a, b ∈ QRm auch ab ∈ QRm ist, bildet QRm eine Untergruppe
von Z∗m
Wie das folgende Lemma zeigt, kann die Lösbarkeit von x2 ≡m a für
primes m effizient entschieden werden

Quadratische Reste 296

Lemma
Sei a ∈ Z∗p, p > 2 prim, und sei g ein beliebiger Erzeuger von Z∗p
Dann sind die folgenden drei Bedingungen äquivalent:
1) a ∈ QRp
2) a(p−1)/2 ≡p 1
3) logp, g(a) ist gerade

Beweis.
1)⇒ 2): Ist a ∈ QRp, d. h. b2 ≡p a für ein b ∈ Z∗p, so folgt mit dem Satz

von Fermat
a(p−1)/2 ≡p b p−1 ≡p 1

2)⇒ 3): Gilt a ≡p gk für ein ungerades k = 2 · j + 1, so folgt

a(p−1)/2 ≡p gk(p−1)/2 ≡p g (p−1)jg (p−1)/2 ≡p g (p−1)/2 ≡p −1 6≡p 1

3)⇒ 1): Ist a ≡p gk für k = 2j , so folgt a ≡p (g j)2, also a ∈ QRp �

Quadratische Reste 297

Somit zerfällt Zp in die drei Teilmengen QRp, QNRp und Zp \Z∗p = {0}
Die beiden Teilmengen QRp und QNRp enthalten jeweils (p − 1)/2
Elemente
Zudem ist das Produkt ab von a, b ∈ Z∗p genau dann in QRp, wenn
a, b ∈ QRp oder a, b ∈ QNRp sind
Als weitere Folgerung erhalten wir folgende Formel zur effizienten
Berechnung des Legendre-Symbols

Quadratische Reste 298

Satz (Eulers Kriterium)
Für alle a ∈ Z und p > 2 prim gilt

a(p−1)/2 ≡p

(a
p

)

Beweis.
Es ist klar, dass diese Kongruenz im Fall a ≡p 0 gilt
Nach obigem Lemma gilt sie auch im Fall a mod p ∈ QRp, da dann
a(p−1)/2 ≡p 1 =

(
a
p

)
ist

Es bleibt also der Fall, dass a mod p ∈ QNRp ist
Da das Polynom x2 − 1 in Zp höchstens zwei Nullstellen hat und neben
x = 1 nach dem Satz von Fermat auch a(p−1)/2 mod p eine Nullstelle
ist, muss a(p−1)/2 ≡p ±1 sein
Daraus folgt nun a(p−1)/2 ≡p −1, da im Fall a(p−1)/2 ≡p 1 die Zahl
a mod p in QRp und somit nicht in QNRp wäre �

Quadratische Reste 299

Korollar
Für alle a, b ∈ Z und p > 2 prim gilt(

−1
p

)
= (−1)(p−1)/2 =

{
1, p ≡4 1
−1, p ≡4 3(

ab
p

)
=
(

a
p

)
·
(

b
p

)
Als weiteres Korollar aus Eulers Kriterium erhalten wir eine Methode,
quadratische Kongruenzgleichungen im Fall p ≡4 3 effizient zu lösen
Im Fall p ≡4 1 ist dagegen kein effizienter deterministischer
Lösungsalgorithmus bekannt
Allerdings gibt es hierfür effiziente probabilistische Algorithmen
(z.B. von Tonelli und Shanks)

Quadratische Reste 300

Korollar
Sei p > 2 prim, dann besitzt die quadratische Kongruenzgleichung
x2 ≡p a für jedes a ∈ QRp in Zp genau zwei Lösungen
Im Fall p ≡4 3 sind dies ±ak mod p (für k = (p + 1)/4), wovon nur
ak mod p ein quadratischer Rest ist

Beweis.
Da a ∈ QRp ist, existiert ein b ∈ Z∗p mit b2 ≡p a
Mit b ist auch −b Lösung von x2 ≡p a mit −b 6≡p b (p ist ungerade)
Da Zp ein Körper ist, existieren keine weiteren Lösungen
Im Fall p ≡4 3 liefert Eulers Kriterium für k = (p + 1)/4 die Kongruenz

(ak)2 = a(p+1)/2 = a(p−1)/2 · a ≡p a
Da mit a auch ak mod p ∈ QRp ist, folgt(

−ak

p

)
=
(
−1
p

)
·
(

ak

p

)
= −

(
ak

p

)
= −1

Also ist −ak mod p ein quadratischer Nichtrest �

Quadratische Reste 301

Satz
Sei n = pq für Primzahlen p, q mit p ≡4 q ≡4 3
Dann besitzt die quadratische Kongruenz x2 ≡n a für jedes a ∈ QRn
genau vier Lösungen, wovon genau eine ein quadratischer Rest ist

Beweis.
Mit x2 ≡n a besitzen wegen n = pq auch die beiden Kongruenzen
x2 ≡p a und x2 ≡q a Lösungen, und zwar jeweils genau zwei

u1 = a(p+1)/4 mod p ∈ QRp u2 = −a(p+1)/4 mod p ∈ QNRp

v1 = a(q+1)/4 mod q ∈ QRq v2 = −a(q+1)/4 mod q ∈ QNRq

Mit dem chinesischen Restsatz lässt sich für jedes Paar (i , j) ∈ [2]× [2]
eine Lösung xij des folgenden Systems bestimmen

x ≡p ui
x ≡q vj

Quadratische Reste 302

Beweis (Fortsetzung).
Die Kongruenz x2 ≡n a kann nicht mehr als diese vier Lösungen haben,
da sonst für mindestens eine der beiden Kongruenzen x2 ≡p a und
x2 ≡q a mehr als zwei Lösungen existieren würden
Wegen

xij ∈ QRn ⇒ ∃s :s2≡n xij ⇒ s2≡p ui ∧s2≡q vj ⇒ ui ∈QRp∧vj ∈QRq

können x1,2, x2,1, x2,2 keine quadratischen Reste modulo n sein
Da aber u1 und v1 quadratische Reste modulo p bzw. q sind, gibt es
Zahlen s ∈ Z∗p und t ∈ Z∗q mit s2 ≡p u1 und t2 ≡q v1

Folglich erfüllt die Lösung w ∈ Z∗n des Systems
x ≡p s
x ≡q t

die Kongruenzen
w2 ≡p s2 ≡p u1 ≡p x1,1 und w2 ≡q t2 ≡q v1 ≡q x1,1

und somit w2 ≡n x1,1, d.h. x1,1 ∈ QRn

Quadratische Reste 303

Als weitere für die Kryptografie interessante zahlentheoretische
Funktionen erhalten wir somit für jedes n = pq, wobei p, q Primzahlen
mit p ≡4 q ≡4 3 sind, die diskrete Quadratfunktion x 7→ x2 mod n,
die nach vorigem Satz eine Permutation auf QRn ist
Ihre Umkehrfunktion x 7→

√
x mod n heißt diskrete Quadratwurzel-

funktion auf QRn

Es ist bekannt, dass die effiziente Berechnung dieser Wurzelfunktion
äquivalent zur effizienten Faktorisierung von n ist

Der BBS-Generator 304

Der BBS-Pseudozufallsgenerator wurde 1986 von Blum, Blum und
Shub vorgestellt und verwendet die Quadratfunktion

x2 : QRn 7→ QRn

mit n = p · q für p, q prim und p ≡4 q ≡4 3
Seine Sicherheit beruht auf der Annahme, dass das Problem schwer ist,
ohne Kenntnis der Primfaktoren von n für ein x ∈ Z∗n zu entscheiden,
ob x ∈ QRn ist
Als Keim wird eine zufällig aus Z∗n gewählte Zahl x0 verwendet
Dann ist x1 = x2

0 mod n ein zufällig aus QRn gewählter quadratischer
Rest
Beginnend mit x1 wird durch wiederholtes Quadrieren eine Folge von
Zahlen xi ∈ QRn berechnet, deren Paritäten die Bits der Ausgabefolge
liefern

Der BBS-Generator 305

Algorithmus BBSn,`(x0)
1 for i := 1 to ` do
2 xi := x2

i−1 mod n
3 bi := xi mod 2
4 output(b1, . . . b`)

Beispiel
Wählen wir z. B. die Primzahlen p = 11, q = 19, also n = 209, und als
Keim x0 = 20, so erhalten wir die Pseudo-Zufallsbitfolge
BBS209(20) = 11001100 . . .

i 0 1 2 3 4 5 6 7 8 . . .

xi 20 191 115 58 20 191 115 58 20 . . .

bi 0 1 1 0 0 1 1 0 0 . . . /

Quadratische Pseudoreste 306

Zum Nachweis der Sicherheit des BBS-Generators erweitern wir das
Legendre-Symbol zum Jacobi-Symbol

Definition
Das Jacobi-Symbol ist für alle a und alle ungeraden
m = pe1

1 · · · per
r ≥ 3 durch

J (a,m) =
(a

m

)
=
(a

p1

)e1
· · ·

(a
pr

)er

definiert, wobei p1 < · · · < pr die Primfaktoren von m sind
Ist zwar

(a
m
)

= 1, aber a ∈ QNRm kein quadratischer Rest modulo m,
so heißt a quadratischer Pseudorest modulo m (kurz: a ∈ Q̃Rm)

Quadratische Pseudoreste 307

Man beachte, dass im Gegensatz zum Legendre-Symbol die Eigenschaft(a
m
)

= 1 für ein a ∈ Z∗m nicht immer mit a ∈ QRm gleichbedeutend ist
Zum Beispiel gibt es in Z∗n (n = p · q für Primzahlen p und q mit
p ≡4 q ≡4 3) wie wir gesehen haben, genau ϕ(n)/4 quadratische Reste
und 3ϕ(n)/4 quadratische Nichtreste
Dagegen gilt nur für die Hälfte aller a ∈ Z∗n die Gleichung

(a
m
)

= −1
Folglich gibt es in diesem Fall genau so viele quadratische Reste wie
quadratische Pseudoreste
Interessanterweise ist das Jacobi-Symbol auch ohne Kenntnis der
Primfaktorzerlegung des Moduls effizient berechenbar
Der Algorithmus basiert auf den folgenden beiden Sätzen, die wir ohne
Beweis angeben

Quadratische Pseudoreste 308

Satz (Quadratisches Reziprozitätsgesetz, Gauß)
Seien m, n > 2, ungerade und teilerfremd. Dann gilt(n

m

)
·
(m

n

)
= (−1)(m−1)(n−1)/4

Satz
Für ungerades m gilt(2

m

)
= (−1)

m2−1
8

Man beachte, dass m2−1
8 genau dann gerade ist, wenn m ≡8 1 oder

m ≡8 7 gilt
Zudem ist (m − 1)(n − 1)/4 genau dann gerade, wenn m ≡4 1 oder
n ≡4 1 gilt

Quadratische Pseudoreste 309

Korollar
Seien a und m gegeben mit m ≥ 3 ungerade und ggT(a,m) = 1; dann lässt
sich

(a
m
)
durch einen Algorithmus der Zeitkomplexität O(n3) berechnen

Beweis.
Dies folgt, ähnlich wie beim euklidischen Algorithmus, aus den folgenden
Gleichungen

(a
m

)
=



1, a = 1(
m mod a

a

)
(−1)(a−1)(m−1)/4, a 6= 1 ungerade(

b
m

)
, a = 22kb, b ungerade(

b
m

)
(−1)(m2−1)/8, a = 22k+1b, b ungerade �

Beispiel. Das Jacobi-Symbol von 73 modulo 83 ist(
73
83

)
=
(

10
73

)
(−1)82·72/4︸ ︷︷ ︸

=1

=
(

2
73

)
︸ ︷︷ ︸

=1

(
5
73

)
=
(

3
5

)
(−1)72·4/4︸ ︷︷ ︸

=1

=
(

2
3

)
= −1

/

Quadratische Pseudoreste 310

Sei n = pq das Produkt zweier Primzahlen p, q mit p ≡4 q ≡4 3
Wie bereits erwähnt, ist das Finden einer Wurzel für ein gegebenes
x ∈ Z∗n genau so schwer wie die Faktorisierung von n
Tatsächlich wird bereits das zugehörige Entscheidungsproblem, ob eine
gegebene Zahl x ∈ Z∗n eine Wurzel hat (also ein quadratischer Rest ist),
als schwierig betrachtet
Da dieses Problem für Eingaben x mit Jacobisymbol

(x
n
)

= −1 trivial
ist, werden sie nicht als Eingaben zugelassen

Quadratische-Reste-Problem (QR-Problem):
Gegeben: Zahlen n und x ∈ Z∗n mit Jacobisymbol

(x
n
)

= 1, wobei n das
Produkt zweier unbekannter Primzahlen ist
Gefragt: Ist x ∈ QRn?

Beim QR-Problem geht es also darum, quadratische Reste von
quadratischen Pseudoresten zu unterscheiden

Sicherheit des BBS-Generators 311

Wir zeigen nun, dass sich aus jedem effizienten Unterscheider für den
BBS-Generator ein effizienter probabilistischer Algorithmus für das
QR-Problem gewinnen lässt
Im Umkehrschluss bedeutet dies, dass der BBS-Generator sicher ist,
falls das QR-Problem hart ist
Sei also D ein effizienter ε-Unterscheider für den Generator BBSn,`

Dann ex. ein effizienter (ε/`)-PBP P für BBSn,`

Der folgende Satz zeigt, wie sich aus einem δ-PBP P für BBSn,` ein
probabilistischer Algorithmus gewinnen lässt, der das QR-Problem bei
einer zufällig gewählten Eingabe x ∈R QRn ∪ Q̃Rn mit einem Vorteil
von δ korrekt entscheidet

Satz
Falls es einen δ-PBP für den Generator BBSn,` gibt, so lässt sich für ein
zufälliges x ∈R QRn ∪ Q̃Rn mit Wahrscheinlichkeit ≥ 1/2 + δ entscheiden,
ob x ∈ QRn ist

Sicherheit des BBS-Generators 312

Beweis.
Sei P ein δ-PBP für den Generator BBSn,`

Betrachte folgenden Entscheidungsalgorithmus für das QR-Problem:

Algorithmus QR-Test(x , n)
1 wähle i ∈R {1, . . . , `}
2 xi := x
3 for j := i + 1 to ` do
4 xj := x2

j−1 mod n
5 bj := xj mod 2
6 bi := P(bi+1 · · · b`, 1`)
7 if x ≡2 bi then output(1) else output(0)

Dann folgt die Aussage des Satzes unmittelbar aus folgender
Behauptung

Sicherheit des BBS-Generators 313

Behauptung
Prx∈RQRn∪Q̃Rn

[QR-Test(x , n) = 1⇔ x ∈ QRn] ≥ 1/2 + δ

Beweis.
Wird x zufällig aus QRn ∪ Q̃Rn gewählt, so ist xi+1 = x2 mod n ein
zufälliger quadratischer Rest in QRn

Die Eingabe für den PBP P besteht also aus `− i konsekutiven Bits
bi+1 · · · b` einer mit BBSn,` generierten Pseudozufallsfolge
Daher liefert die Ausgabe bi von P(bi+1 · · · b`, 1`) in Zeile 6 mit Wahr-
scheinlichkeit 1/2 + δ die Parität der diskreten Wurzel √xi+1 von xi+1

Da x ∈ QRn ∪ Q̃Rn und xi+1 = x2 mod n ist, gilt √xi+1 ∈ {x , n − x}
Zudem hat √xi+1 wegen x 6≡2 n− x genau dann die gleiche Parität wie
x , wenn x = √xi+1 ist
Da dies wiederum mit x ∈ QRn äquivalent ist, folgt die Behauptung �

	Pseudozufallszahlen-Generatoren
	Kryptografische Sicherheit von Pseudozufallsgeneratoren
	Quadratische Reste
	Der BBS-Generator
	Quadratische Pseudoreste
	Sicherheit des BBS-Generators

