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@ Pseudozufallszahlen-Generatoren (kurz PZG) f werden mit einem
Startwert x — dem sogenannten Keim (engl. seed) — fir die Erzeugung
einer ,zufalligen" Bitfolge f(x) gestartet

@ Dabei wird die Eingabe x zuféllig unter Gleichverteilung gewahlt und die
Ausgabe f(x) sollte langer sein als x und méglichst zufallig aussehen

@ Zudem sollte f von einem deterministischen Algorithmus effizient
berechenbar sein




Linear-Kongruenz-Generator =

@ Beim Linear-Kongruenz-Generator wird der Keim xp zufallig aus der

Menge Z, = {0,1,...n— 1} gewahlt

@ Die Parameter a und b sind ebenfalls aus Z,

Algorithmus LinGen,; 5 5(x0)
1 for i:=1to /do
2 X; '= axj_1 + b mod n
3 b; :== x; mod 2
4 output(b; ... by)
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@ Beim Power-Generator wird der Keim xq zuféllig aus der Menge Z,
gewahlt

Algorithmus PowerGen, ; «(xp)
1 for i:=1to/do
2 Xj:=x7_1modn
3  bj:=x; mod?2
4 output(b; ... b))

Es gibt zwei interessante Spezialfalle des Powergenerators:

@ RSA-Generator (RSAGEN) mit n = p - g wobei p und g groBe
Primzahlen sind und ggT(e, p(n)) =1 ist

@ Quadratischer-Reste-Generator (BBS) mit e = 2 (siehe unten)
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Wir betrachten ab jetzt nur noch den Fall, dass sowohl x als auch f(x)

Bitfolgen sind und die Lange der Ausgabe f(x) nur von der Lange der
Eingabe x abhangt

Definition
@ Sei /: N — N eine Funktion mit ¢(k) > k + 1 firr alle k > 0

e Ein /(k)-Generator ist eine Funktion f auf {0,1}*, die Strings der Lange
k auf Strings der Lange ¢(k) abbildet und effizient berechenbar ist

4
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Definition

@ Seien (Xk) und (Yx), kK > 0, Familien von Zufallsvariablen mit
Wertebereich W(Xj), W(Yx) C {0,1}%) und sei e : N — R eine
Funktion

@ Ein e-Unterscheider zwischen (Xj) und (Yk) ist ein effizienter
probabilistischer Algorithmus D mit:

Pr[D(Xi) = 1] — Pr[D(Y4) = 1] > £(¢(k))

e Hierbei ist Pr[D(Xk) = 1] die Wahrscheinlichkeit, dass D bei einer
zufallig gemaB X gewahlten Eingabe akzeptiert (bzw. 1 ausgibt)

@ In diesem Fall heiBen die beiden Familien (Xy) und (Yk)
e-unterscheidbar

@ Ein /(k)-Generator f heiBt c-unterscheidbar, falls die beiden Familien
(f(Uk)) und (Ug)) von Zufallsvariablen e-unterscheidbar sind, wobei
U, eine auf {0,1}" gleichverteilte Zufallsvariable ist
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Definition (Fortsetzung)

@ Eine Funktion € : N — R heiBt vernachlassigbar, wenn fiir jedes
Polynom p eine Zahl ny € N existiert, so dass €(n) < 1/p(n) fir alle
n > ng gilt

o f heiBt (kryptografisch) sicher, falls f nur fiir vernachlassigbare
Funktionen € : N — R™ c-unterscheidbar ist

@ Ein ¢(k)-Generator f ist also genau dann sicher, wenn fiir jeden
Unterscheider D und jedes Polynom p nur fiir endlich viele Werte von k

PrID(f(Uk)) = 1] = Pr[D(Uyxy) = 1] = 1/p(£(k))
ist

@ Unterscheider fungieren also als Gegner von Pseudozufallsgeneratoren
und werden iblicherweise durch probabilistische Schaltkreise
polynomieller GréBe modelliert
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@ Betrachte folgenden Unterscheider D fiir den ¢(k)-Generator f mit
l(k) = k+1 und f(x) = 1x fir alle x € {0,1}*:

1input y = y1 - yy1 € {0, 1}KF2
2 output(y;)

e Dann gilt Pr[D(f(Ux)) = 1] = 1 und Pr[D(Uk+1) = 1] = 1/2 und somit
Pr[D(f(Ux)) = 1] — Pr[D(Uk+1) = 1] = 1/2
fur alle k
@ Folglich ist £ (1/2)-unterscheidbar

@ Da die konstante Funktion n — 1/2 nicht vernachlassigbar ist, ist der
Generator f nicht sicher d
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@ Es ist nicht bekannt, ob kryptografisch sichere PZGen existieren

@ Eine notwendige Bedingung hierfiir ist P # NP, da P = NP die Existenz
eines effizienten Unterscheiders impliziert, welcher genau die Strings im
Bild von f akzeptiert

@ Ob diese Bedingung auch hinreichend ist, ist ebenfalls nicht bekannt

@ Man kann jedoch zeigen, dass die Existenz von kryptografisch sicheren
PZGen aquivalent zur Existenz von Einwegfunktionen ist
@ Bei manchen Anwendungen ist es wichtig, dass kein effizienter

Algorithmus das nachste Bit der Pseudozufallsfolge korrekt vorhersagen
kann

@ Es ist nicht schwer zu sehen, dass ein sicherer PZG diese Bedingung
erfillt
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Definition
@ Sei f ein {(k)-Generator
e Firie{l,...,¢(k)} bezeichne fj(x) das i-te Bit und fir
i €{0,...,L(k)} bezeichne f;(x) die Folge der ersten i Bits von f(x)
@ Ein next bit predictor (NBP) N fiir f ist ein effizienter probabilistischer
Algorithmus, der bei jeder Eingabe (v, 1%%)) mit v € {0,1}~! fiir ein
ie{1,...,0(k)} ein Bit N(v,14k) ausgibt
@ N heiBt e-next bit predictor (e-NBP) fiir f, falls fiir alle k gilt:
PrIN(fy—yy(Us), 100) = fi(U)] = 1/2 + e(£(k))
wobei die Zufallsvariable | auf der Menge {1,...,¢(k)} gleichverteilt ist |
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@ Betrachte folgenden NBP N fiir den ¢(k)-Generator f mit (k) = k + 1
und f(x) = 1x fur alle x € {0,1}*:

1 input (v,1") mit v =vy---v;i_1 € {0,1}~ L fiirein i € {1,...,n}
2 output(1)
e Dann gilt
PrIN(fi—y(U) = (U = T
r e k)) = Til\Uk)] =
li=1] 1/2, i=2,...k+1
@ Somit gilt

k+1
PN -(Uk)) = (U] = -5 O PANG (V) = (U]

i=1
1/2 +1/(2k + 2)

20(k)
e N ist also ein (1/2¢)-NBP fiir f N
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Satz. Sei f ein {(k)-Generator und sei € : N — R™ eine Funktion.

Falls es einen e-NBP fiir f gibt, so ex. auch ein e-Unterscheider fiir f

Beweis.

@ Sei N ein e-NBP fiir f und betrachte folgenden Unterscheider D

1input v=vy---v,
2 wahleieg{l,...,n}
3 output(N(vy---vi_1,1")® v; ® 1)

@ D gibt also bei Eingabe v = vy - -- v, genau dann 1 aus, wenn der
Prediktor N bei Eingabe (v1 - --v;_1,1") das i-te Bit von v richtig rat,
wobei i zufallig aus {1,...,n} gewahlt wird

@ Dabher gilt fur alle kK > 0,

PrD(F(Ux)) = 1] = PrN(fy—1(Uk), 1) = fi(Uk)] = 1/2+e(£(k)),
wobei / eine auf {1,...,4(k)} gleichverteilte Zufallsvariable ist
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Beweis (Fortsetzung)
@ Andererseits ist klar, dass fiir jeden NBP N

Pr[N(Bl7 2o a g B, 1£(k)) = B/] = 1/27
ist, wobei By, ..., By) unabhangig und gleichverteilt auf {0,1} sind
@ Folglich gilt wegen Ug(k) =B... Bg(k)
Pr[D(Uyxy) = 1] = Pr[N(By, ..., Bi_1,1¥) = B = 1/2
und es folgt
Pr[D(f(Uy)) = 1] = Pr[D(Ugx)) = 1] = (£(k)),
=>1/2+¢e(4(k)) =1/2
e D ist also ein ¢(¢(k))-Unterscheider fiir f O
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Definition
Ein probabilistischer Algorithmus P heiBt e-previous bit predictor (e-PBP)
fur einen £(k)-Generator f, falls fiir alle k gilt,

PrIP(fira(Uk) -+~ fugry(Ui), 1°09) = fi(Ui)] > 1/2 +e(€(k))
wobei [ eine auf {1,...,¢(k)} gleichverteilte Zufallsvariable ist

Vollkommen analog zu obigem Satz lasst sich der folgende Satz beweisen J

Falls es einen e-PBP fiir f gibt, so ex. auch ein e-Unterscheider fiir £
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Interessanterweise lasst sich aus einem Unterscheider auch ein NBP bzw.
ein PBP gewinnen

Falls es einen e-Unterscheider fiir f gibt, so ex. auch ein (¢/¢)-NBP fir f

Beweis.
@ Sei D ein e-Unterscheider fiir f, d.h. es gilt

PrID(f(Uk)) = 1] = Pr[D(Uyx)) = 1] = (¢(k))
fur alle k >0

@ Die Ausgabe D(y) = 1 deutet also darauf hin, dass y tendenziell ein
Pseudozufallsstring ist, wahrend die Ausgabe D(y) = 0 darauf
hindeutet, dass y ein echter Zufallsstring ist
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Beweis (Fortsetzung)

@ Betrachte folgenden probabilistischen Algorithmus N

Linput (vi---vi—1,1")mit 1 <i<n
2 rate zuféllig b;,...,b, €g {0,1}
3 output(D(vy -« vi_1bi---b,) @ b ® 1)

e N sagt also das i-te Bit v; mit b; vorher, falls D(vy - - vj_1b;--- by) =1
ist (also D seine Eingabe vy - - - vj_1b; - - - b, fir pseudozufallig halt),
und sonst mit b; 1

@ Betrachte fir i =1,...,4(k) + 1 die Zufallsvariablen
H; = fii_1j(Uk)Bi - - - Byy),
wobei U, B;, ..., By unabhangig und gleichverteilt auf {0, 1}% bzw.
auf {0, 1} sind
e Insbesondere ist also Hy = By - - - Byk) = Uyx) gleichverteilt auf
{0,135 und Hy(x)11 = f(Ux) pseudozufallig verteilt auf {0, 1}(%)
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Behauptung

Es gilt
PrIN(fi—1)(Uk), 1) = fi(Ui)] = 1/24Pr[D(Hi11) = 1] -Pr[D(H;) = 1]

Beweis.
Wegen N(f;_1(Ux), 1°9) = D(f;_13(Ui)Bi - - Byiy) @ Bi & 1 folgt
Hi
PrIN(fi—1(U), 1'W) = fi(U)] = Pr[D(H}) @ Bi & 1 = fi(Uj)]
= Pr[D(H;)) =1AB; = fi(Uc)] + Pr[D(H;) =0A B; # fi(Ux)]
Pr[Bi=f;(U)]—Pr[Bi=fi(U ) AD(H;)=0]  Pr[D(H;)=0]—Pr[D(H;)=0ABi=f;(Uy)]
= Pr[Bi = fi(Uk)] + Pr[D(H;) =0] — 2Pr[D(H;) =0 A B; = fi(Ux)]
1/2 1-Pr[D(H;)=1] Pr[D(Hi11)=0ABi=fi(Uy)]
=Pr[D(Hi4+1)=0] Pr[B;=f(U)]
= 1/2+ Pr[D(Hi+1) = 1] — Pr[D(H;) = 1] 1-PrD(His1)=1]  1/2 [
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Beweis (Schluss)
@ Sei [ eine auf {1,...,¢(k)} gleichverteilte Zufallsvariable
e Dann folgt

PrIN(f-1(Ue), 1) = (U]
=1/2+4 Pr[D(H+1) = 1] — Pr[D(H;) = 1] (nach obiger Beh.)

(k)
=1/2+ Z Pr[/ = i]J(Pr[D(H;+1) = 1] — Pr[D(H;) = 1])
=1
1/6(k)
= 1/2+ (PrlD(Hy+1) = 1] = PriD( f ) = 1])/4(k)
F(Uy) Ue(k)
= 1/24 (Pr[D(f(Uk)) = 1] — Pr[D(Uyx)) = 1])/(k)
>e(£(k))

> 1/2 -+ £(£(K)),/ (k) 0
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Ganz ahnlich wie der obige Satz lasst sich auch folgendes Resultat beweisenJ

Falls es einen e-Unterscheider fiir f gibt, so ex. auch ein (¢/¢)-PBP fir f
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@ Als nachstes betrachten wir den BBS-Generator

@ Dieser beruht auf dem Problem, die Lésbarkeit von quadratischen
Kongruenzgleichungen zu entscheiden

Definition

@ Ein Element a € Z}, heiBt quadratischer Rest modulo m
(kurz: a € QR,,), falls ein x € Z%, mit x2 =, a existiert

e Die Menge QNR,, :=Z%, \ QR,, enthilt alle quadratischen
Nichtreste modulo m

@ Fiir eine Primzahl p > 2 und eine Zahl a € Z heiBt

5 1, amodp € QR,
L(a,p) = () =4 —1, amodp e QNR,
& 0, sonst

das Legendre-Symbol von a modulo p
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e Die quadratische Kongruenz x? =, a besitzt also fiir ein a € Z*, genau

dann eine Losung, wenn a € QR,, ist

e Da mit a, b € QR,, auch ab € QR,, ist, bildet QR,,, eine Untergruppe
von Z7,

2

@ Wie das folgende Lemma zeigt, kann die Losbarkeit von x< =, a fiir

primes m effizient entschieden werden
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@ Sei a € Zy, p > 2 prim, und sei g ein beliebiger Erzeuger von Zj,
@ Dann sind die folgenden drei Bedingungen aquivalent:

1) a€QR,

2) alp=1)/2 =

3) log, (a) ist gerade

Beweis.
1) = 2): Ist a € QR,, d.h. b2 =, a fiir ein b € Z?, so folgt mit dem Satz
von Fermat

alP—1)/2 =, pP~t =, 1

2) = 3): Gilt a =, g fiir ein ungerades k =2 - j + 1, so folgt
a(p—1)/2 =, ghlp=1)/2 =, gP~1iglp=1)/2 =, glP—1)/2 =, —1%,1

3) = 1): Ist a =, gk fiir k = 2j, so folgt a =, (g/)?, also a € QR, 0
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Somit zerfillt Z in die drei Teilmengen QR,, QNR, und Z,, \ Z;, = {0}

Die beiden Teilmengen QR, und QNR,, enthalten jeweils (p — 1)/2
Elemente

Zudem ist das Produkt ab von a, b € Zj, genau dann in QR,,, wenn
a,b € QR, oder a, b € QNR,, sind

Als weitere Folgerung erhalten wir folgende Formel zur effizienten
Berechnung des Legendre-Symbols




Quadratische Reste 298

Satz (Eulers Kriterium)

Fir alle a € Z und p > 2 prim gilt

(p—1)/2 — (a)
a =
p p

Beweis.

@ Es ist klar, dass diese Kongruenz im Fall a =, 0 gilt

@ Nach obigem Lemma gilt sie auch im Fall a mod p € QR,, da dann
aP~12 =1 = (i) ist

@ Es bleibt also der Fall, dass a mod p € QNR,, ist

e Da das Polynom x? — 1 in Z, hdchstens zwei Nullstellen hat und neben
x = 1 nach dem Satz von Fermat auch a(P~1/2 mod p eine Nullstelle
ist, muss a(P~1)/2 =, +1 sein

e Daraus folgt nun a(P—1)/2 =, —1, daim Fall alp=1)/2 =, 1 die Zahl
amod p in QR, und somit nicht in QNR, ware O
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Korollar
Fir alle a, b € Z und p > 2 prim gilt

o (F)=(-e-v2= { L p=el
g —L, pP=s
L (2)-()-0)

@ Als weiteres Korollar aus Eulers Kriterium erhalten wir eine Methode,
quadratische Kongruenzgleichungen im Fall p =4 3 effizient zu I6sen

o Im Fall p =4 1 ist dagegen kein effizienter deterministischer
Losungsalgorithmus bekannt

@ Allerdings gibt es hierfiir effiziente probabilistische Algorithmen
(z.B. von Tonelli und Shanks)
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Korollar
@ Sei p > 2 prim, dann besitzt die quadratische Kongruenzgleichung
x2 =, a fiir jedes a € QR, in Z, genau zwei Lésungen

e Im Fall p =4 3 sind dies =a* mod p (fiir k = (p + 1)/4), wovon nur
ak mod p ein quadratischer Rest ist

Beweis.

Da a € QR,, ist, existiert ein b € Z;‘, mit b2 =pa

e Mit b ist auch —b Lésung von x2 =, a mit —b %, b (p ist ungerade)
@ Da Z, ein Korper ist, existieren keine weiteren Lésungen

e Im Fall p =4 3 liefert Eulers Kriterium fir k = (p + 1)/4 die Kongruenz

()2 = alPHD/2 = g1 5= 4

Da mit a auch a¥ mod p € QR,, ist, folgt

(#)-()()--() -

Also ist —ak mod p ein quadratischer Nichtrest O
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@ Sei n = pq fir Primzahlen p, g mit p =4 g =4 3

e Dann besitzt die quadratische Kongruenz x? =, a fiir jedes a € QR,,
genau vier Lésungen, wovon genau eine ein quadratlscher Rest ist

Beweis.
e Mit x> =, a besitzen wegen n = pq auch die beiden Kongruenzen
x2 =p a und x2 =4 a Losungen, und zwar jeweils genau zwei
up = alPtD/4 mod pEQR, = —a(Pt1)/% mod p € QNR,
vi = al9t /4 mod g € QRq vy = —al@t1)/4 mod g € QNRq

@ Mit dem chinesischen Restsatz lasst sich fiir jedes Paar (/,) € [2] x [2]
eine Losung x;; des folgenden Systems bestimmen

X =p Uj

X =q Vj
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Beweis (Fortsetzung).
e Die Kongruenz x> =, a kann nicht mehr als diese vier Lésungen haben,

da sonst fiir mindestens eine der beiden Kongruenzen x? =p a und

x2 =4 a mehr als zwei Lésungen existieren wiirden
o Wegen
xj € QR, = Is:2=,x; = ° =, uiAs? =qv; = U, EQR, AV EQR,
kénnen xi 2, X2 1, X2,2 keine quadratischen Reste modulo n sein
@ Da aber u; und v; quadratische Reste modulo p bzw. g sind, gibt es
Zahlen s € Zj, und t € Zg mit s? =p U1 und t2 =q V1
e Folglich erfiillt die Lésung w € Z}, des Systems
X=ps
X=qt
die Kongruenzen
2_ 2 _ _ 2 2 _
W™ =p S =p Ul =pX1,1 und w =q t =q V1 =q X1,1

und somit w? =, x1.1, d.h. x11 € QR, O
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@ Als weitere fiir die Kryptografie interessante zahlentheoretische
Funktionen erhalten wir somit fiir jedes n = pq, wobei p, g Primzahlen
mit p =4 q =4 3 sind, die diskrete Quadratfunktion x — x> mod n,
die nach vorigem Satz eine Permutation auf QR,, ist

@ lhre Umkehrfunktion x — /x mod n heiBt diskrete Quadratwurzel-
funktion auf QR,,

@ Es ist bekannt, dass die effiziente Berechnung dieser Wurzelfunktion
aquivalent zur effizienten Faktorisierung von n ist
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@ Der BBS-Pseudozufallsgenerator wurde 1986 von Blum, Blum und
Shub vorgestellt und verwendet die Quadratfunktion
x*: QR, — QR,
mit n=p-q fir p,qg primund p=4q=43
@ Seine Sicherheit beruht auf der Annahme, dass das Problem schwer ist,

ohne Kenntnis der Primfaktoren von n fiir ein x € Z}, zu entscheiden,
ob x € QR,, ist

@ Als Keim wird eine zufllig aus Z}, gewahlte Zahl xp verwendet

e Dann ist x; = xZ mod n ein zufillig aus QR,, gewahlter quadratischer
Rest

@ Beginnend mit x; wird durch wiederholtes Quadrieren eine Folge von
Zahlen x; € QR,, berechnet, deren Paritaten die Bits der Ausgabefolge
liefern
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Algorithmus BBS,, ¢(xp)

1 for i:=1to /¢ do
2 x;:=x?,;modn
3 bj:=x; mod?2

4 output(by, ... by)

Beispiel
Wahlen wir z. B. die Primzahlen p =11, ¢ = 19, also n = 209, und als

Keim xg = 20, so erhalten wir die Pseudo-Zufallsbitfolge
BBS209(20) = 11001100. ..

ilo 1 2 3 4 5 6 7 8
x [20 191 115 58 20 191 115 58 20
bi/O 1 1 0 0 1 1 0 0 .. q
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Zum Nachweis der Sicherheit des BBS-Generators erweitern wir das
Legendre-Symbol zum Jacobi-Symbol

Definition
e Das Jacobi-Symbol ist fir alle a und alle ungeraden
m = p;t - p > 3 durch
a\e
&)

om=(3)-(2)"

definiert, wobei p; < --- < p, die Primfaktoren von m sind
a

m) =1, aber a € QNR,,, kein quadratischer Rest modulo m,
so heiBt a quadratischer Pseudorest modulo m (kurz: a € QR.,)

o Ist zwar (
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@ Man beachte, dass im Gegensatz zum Legendre-Symbol die Eigenschaft
(2) =1 fur ein a € Z7, nicht immer mit a € QR,,, gleichbedeutend ist

m
@ Zum Beispiel gibt es in Z¥ (n = p - g fur Primzahlen p und g mit
p =4 q =4 3) wie wir gesehen haben, genau ¢(n)/4 quadratische Reste
und 3¢(n)/4 quadratische Nichtreste

@ Dagegen gilt nur fir die Halfte aller a € Zj, die Gleichung (2) = —1
@ Folglich gibt es in diesem Fall genau so viele quadratische Reste wie
quadratische Pseudoreste

@ Interessanterweise ist das Jacobi-Symbol auch ohne Kenntnis der
Primfaktorzerlegung des Moduls effizient berechenbar

@ Der Algorithmus basiert auf den folgenden beiden Satzen, die wir ohne
Beweis angeben
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Satz (Quadratisches Reziprozitatsgesetz, GauB)

Seien m, n > 2, ungerade und teilerfremd. Dann gilt

(;) : (':) — (—1)(m-Dn-D/4

Fir ungerades m gilt
-
— = |— 8
m
m?—1

@ Man beachte, dass ™= genau dann gerade ist, wenn m =g 1 oder
m =g 7 gilt

@ Zudem ist (m — 1)(n — 1)/4 genau dann gerade, wenn m =4 1 oder
n=41gilt
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Korollar

Seien a und m gegeben mit m > 3 ungerade und ggT(a, m) = 1; dann lasst
sich (2) durch einen Algorithmus der Zeitkomplexitat O(n3%) berechnen

4

Beweis.

Dies folgt, ahnlich wie beim euklidischen Algorithmus, aus den folgenden
Gleichungen

1, a=1
(a> B (m maOd a) (_1)(3—1)(m—1)/4, B 7& 1 ungerade
" (%> ’ a=22kp b ungerade
(&) (~ym-nre, 2= 2%Hb b ungerade

v

Beispiel. Das Jacobi-Symbol von 73 modulo 83 ist

(8)- B == (5) (3) - () - (3) -

=1 > =1 <

y
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@ Sei n = pq das Produkt zweier Primzahlen p, g mit p =4 g =4 3

@ Wie bereits erwahnt, ist das Finden einer Wurzel fiir ein gegebenes
x € 7y, genau so schwer wie die Faktorisierung von n

@ Tatsachlich wird bereits das zugehorige Entscheidungsproblem, ob eine
gegebene Zahl x € Z}, eine Wurzel hat (also ein quadratischer Rest ist),
als schwierig betrachtet

@ Da dieses Problem fiir Eingaben x mit Jacobisymbol (¥) = —1 trivial
ist, werden sie nicht als Eingaben zugelassen

Quadratische-Reste-Problem (QR-Problem):
Gegeben: Zahlen n und x € Z} mit Jacobisymbol (%) =1, wobei n das
Produkt zweier unbekannter Primzahlen ist
Gefragt: Ist x € QR,?

Beim QR-Problem geht es also darum, quadratische Reste von
quadratischen Pseudoresten zu unterscheiden
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@ Wir zeigen nun, dass sich aus jedem effizienten Unterscheider fiir den
BBS-Generator ein effizienter probabilistischer Algorithmus fiir das
QR-Problem gewinnen |asst

@ Im Umkehrschluss bedeutet dies, dass der BBS-Generator sicher ist,
falls das QR-Problem hart ist

@ Sei also D ein effizienter e-Unterscheider fiir den Generator BBS,

@ Dann ex. ein effizienter (¢/¢)-PBP P fiir BBS,

@ Der folgende Satz zeigt, wie sich aus einem §-PBP P fiir BBS, ¢ ein
probabilistischer Algorithmus gewinnen lasst, der das QR-Problem bei
einer zuféllig gewahlten Eingabe x €g QR, U 6@, mit einem Vorteil
von ¢ korrekt entscheidet

Falls es einen §-PBP fiir den Generator BBS, ¢ gibt, so lasst sich fiir ein
zufalliges x €g QR,, U QR,, mit Wahrscheinlichkeit > 1/2 + § entscheiden,
ob x € QR,, ist
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Beweis.
@ Sei P ein 0-PBP fiir den Generator BBS, ¢
@ Betrachte folgenden Entscheidungsalgorithmus fiir das QR-Problem:

Algorithmus QR-Test(x, n)

wahle j eg {1,...,¢}
Xj =X
for j:=i+1to{do

Xj 1= xj2_1 mod n

b; := xj mod 2
b,' =S P(bi+1 000 bg, ].Z)
if x =, b; then output(1) else output(0)

N o o W N =

@ Dann folgt die Aussage des Satzes unmittelbar aus folgender
Behauptung
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Behauptung
PrXERQRnUé)T?,, [QR-Test(x,n) =1 x € QR,] >1/2446
Beweis.

e Wird x zufillig aus QR, U /Q\F/in gewahlt, so ist xj11 = x2 mod n ein
zufalliger quadratischer Rest in QR,,

@ Die Eingabe fiir den PBP P besteht also aus ¢ — i konsekutiven Bits
bit1 - be einer mit BBS, ; generierten Pseudozufallsfolge

o Daher liefert die Ausgabe b; von P(bjy1--- by, 1%) in Zeile 6 mit Wahr-
scheinlichkeit 1/2 + ¢ die Paritat der diskreten Wurzel /X;11 von Xj11

e DaxeQR,U éan und xj41 = x2 mod n ist, gilt \/xiy1 € {x,n— x}

@ Zudem hat ,/Xjy1 wegen x Z2 n — x genau dann die gleiche Paritat wie

X, wenn x = ,/Xj41 ist

@ Da dies wiederum mit x € QR,, dquivalent ist, folgt die Behauptung




	Pseudozufallszahlen-Generatoren
	Kryptografische Sicherheit von Pseudozufallsgeneratoren
	Quadratische Reste
	Der BBS-Generator
	Quadratische Pseudoreste
	Sicherheit des BBS-Generators


