
Kryptologie

Johannes Köbler

Institut für Informatik
Humboldt-Universität zu Berlin

WS 2020/21

Digitale Signaturverfahren 178

Eigenschaften von handschriftlichen Signaturen
Die durch die Unterschrift gekennzeichnete Person hat überprüfbar die
Unterschrift geleistet
Die Unterschrift ist nicht auf ein anderes Dokument übertragbar, ohne
ihre Gültigkeit zu verlieren
Das signierte Dokument kann nachträglich nicht unbemerkt verändert
werden

Eine direkte Übertragung dieser Eigenschaften in die digitale Welt ist nicht
möglich

Lösung:
Die digitale Signatur wird nicht physikalisch, sondern logisch (inhaltlich) an
ein elektronisches Dokument bzw. Text gebunden und die Fähigkeit, einen
individuellen Schriftzug auszuführen, wird durch geheimes Wissen ersetzt

Digitale Signaturverfahren 179

Definition
Ein digitales Signaturverfahren besteht aus

einer Menge X von Texten
einer endlichen Menge Y von Signaturen
einem Schlüsselraum K
einer Menge S ⊆ K × K von Schlüsselpaaren (k̂, k), bestehend aus
einem Signierschlüssel k̂ und einem Verifikationsschlüssel k
einem Signieralgorithmus sig : K × X → Y und
einem Verifikationsalgorithmus ver : K × X × Y → {0, 1}, so dass
ver(k, x , y) = 1 für alle Paare (k̂, k) ∈ S und (x , y) ∈ X × Y mit
y = sig(k̂, x) gilt

Im Fall ver(k, x , y) = 1 heißt y gültige Signatur für den Text x (unter k),
andernfalls ungültig

Digitale Signaturverfahren 180

Ein wichtiger Unterschied zu MACs besteht darin, dass digitale
Signaturverfahren asymmetrisch sind
Aufgrund dieser Asymmetrie kann Bob nämlich auch einem Dritten
gegenüber nachweisen, dass eine von Alice erzeugte Signatur y
tatsächlich von Alice stammt
Bei Verwendung eines MACs zur Authentifikation einer Nachricht x
könnte Bob die Nachricht manipuliert und den MAC-Wert auch selbst
erzeugt haben, weshalb Alice ihre Urheberschaft von x erfolgreich
abstreiten kann
Ein weiterer Vorteil von digitalen Signaturen gegenüber MACs ist, dass
eine von Alice geleistete Signatur von allen verifizierbar ist, sofern sie
den öffentlichen Verifikationsschlüssel von Alice kennen
Um bspw. die Authentizität eines Software-Updates x zu gewährleisten,
kann eine SW-Firma x zusammen mit ihrer Signatur y für x verschicken
Bei Verwendung eines MACs müsste die SW-Firma dagegen mit jedem
einzelnen Kunden Ki einen symmetrischen Schlüssel ki vereinbaren und
den zugehörigen MAC-Wert yi = hki (x) versenden

Klassifikation von Angriffen gegen Signaturverfahren 181

Angriff bei bekanntem Verifikationsschlüssel (key-only attack)
Dem Angreifer ist nur der öffentliche Verifikationsschlüssel k bekannt und
er versucht, ein Paar (x , y) mit ver(k, x , y) = 1 zu finden. Jedes solche
Paar, das nicht von Alice unter Verwendung des geheimen
Signierschlüssels erzeugt wurde, wird als Fälschung bezeichnet
Angriff bei bekannter Signatur (known signature attack)
Der Angreifer kennt neben k die Signaturen yi = sig(k̂, xi) für eine Reihe
von Texten x1, . . . , xq, auf deren Auswahl er keinen Einfluss hat, und
versucht, eine Fälschung (x , y) mit x 6∈ {x1, . . . , xq} zu finden
Angriff bei frei wählbaren Texten (chosen document attack)
Der Angreifer kann die Texte x1, . . . , xq selbst wählen, erhält die
Signaturen aber erst, nachdem er alle Texte vorgelegt hat
Angriff bei adaptiv wählbaren Texten
Der Angreifer kann die Wahl des Textes xi+1 von den Signaturen
y1, . . . , yi abhängig machen

Erfolgskriterien für die Fälschung digitaler Signaturen 182

uneingeschränktes Fälschungsvermögen (total break)
Der Angreifer hat einen Weg gefunden, die Funktion x 7→ sig(k̂, x) bei
Kenntnis von k effizient zu berechnen
selektives Fälschungsvermögen (selective forgery)
Der Angreifer kann für Texte seiner Wahl die zugehörigen Signaturen
bestimmen (eventuell mit Hilfe des legalen Unterzeichners)
nichtselektives (existentielles) Fälschungsvermögen
Der Angreifer kann für bestimmte Texte x , auf deren Wahl er keinen
Einfluss hat, die zugehörige digitale Signatur bestimmen

Das RSA-Kryptosystem 183

Das RSA-Kryptosystem wurde 1978 von Rivest, Shamir und Adleman
veröffentlicht
Während es beim Primzahlproblem nur um die Frage „Ist n prim?“ geht,
muss beim Faktorisierungsproblem im Falle einer zusammengesetzten
Zahl mindestens ein nicht-trivialer Faktor berechnet werden
Genauer gesagt beruht das RSA-Verfahren darauf, dass die Primzahl-
eigenschaft zwar effizient getestet werden kann, aber keine effizienten
Faktorisierungsalgorithmen bekannt sind

Schlüsselgenerierung
Für jeden Teilnehmer X werden zwei Primzahlen p, q und zwei Exponenten
e, d mit ed ≡ϕ(n) 1 generiert, wobei n = pq und ϕ(n) = (p − 1)(q − 1) ist
Öffentlicher Schlüssel: kX = (e, n)
Privater Schlüssel: k ′X = (d , n)

Das RSA-Kryptosystem 184

Ver- und Entschlüsselung
Jede Nachricht x wird durch eine Folge x1, x2, . . . von Zahlen xi ∈ Zn
dargestellt, die einzeln wie folgt ver- und entschlüsselt werden:

RSA((e, n), x) = x e mod n
RSA−1((d , n), y) = yd mod n

Der Schlüsselraum ist also
K = {(c, n) | es gibt Primzahlen p und q mit n = pq und c ∈ Z∗ϕ(n)}

und
S = {((e, n), (d , n)) ∈ K × K | ed ≡ϕ(n) 1}

ist die Menge aller zueinander passenden Schlüsselpaare
Die Chiffrierfunktionen RSA(e,n) und RSA−1

(d ,n) sind durch Wieder-
holtes Quadrieren und Multiplizieren effizient berechenbar

Das RSA-Kryptosystem 185

Ver- und Entschlüsselung
Der folgende Satz garantiert die Korrektheit des RSA-Systems

Satz
Für jedes Schlüsselpaar ((e, n), (d , n)) ∈ S und alle x ∈ Zn gilt

x ed ≡n x

Beweis.
Sei n = pq und sei z eine natürliche Zahl mit ed = zϕ(n) + 1
Wir zeigen x ed ≡p x . Die Kongruenz x ed ≡q x folgt analog und beide
Kongruenzen zusammen implizieren x ed ≡n x
Wegen ϕ(n) = (p − 1)(q − 1) und wegen xp−1 ≡p 1 für x 6≡p 0 folgt

x ed = x zϕ(n)+1 = x z(p−1)(q−1)x = (xp−1)z(q−1)x ≡p x �

Das RSA-Signaturverfahren 186

Definition
Beim RSA-Signaturverfahren ist

K = {(a, n)|n = pq für Primzahlen p, q und a ∈ Z∗ϕ(n)}
und S die Relation S = {((d , n), (e, n)) ∈ K × K |de ≡ϕ(n) 1}
Signiert wird mittels sig(d , n, x) := xd mod n, wobei X = Y = Zn ist
Die Verifikationsbedingung ist

ver(e, n, x , y) =
{

1, y e ≡n x
0, sonst

Satz
Für alle ((d , n), (e, n)) ∈ S und x , y ∈ Zn gilt

ver(e, n, x , y) =
{

1, sig(d , n, x) = y ,
0, sonst

Der Beweis folgt direkt aus der Korrektheit des RSA-Kryptosystems

Das RSA-Signaturverfahren 187

Wir betrachten eine Reihe von Angriffen gegen das RSA-Signatur-
verfahren und überlegen anschließend, durch welche Maßnahmen sich
diese abwehren lassen
Ein Angreifer kann leicht eine existentielle Fälschung bei bekanntem
Verifikationsschlüssel erhalten, indem er zu einer beliebigen Signatur
y ∈ Y den Text x = y e mod n wählt
Zudem ist eine existentielle Fälschung bei bekannten Signaturen
möglich, falls der Angreifer zwei signierte Texte (x1, y1), (x2, y2) mit
ver(k, xi , yi) = 1 kennt
Wegen y e

i ≡n xi für i = 1, 2 folgt nämlich (y1y2)e ≡n y e
1 y e

2 ≡n x1x2 und
somit ver(k, x1x2 mod n, y1y2 mod n) = 1
Weiterhin ist eine selektive Fälschung bei frei wählbarem Text möglich
Kennt der Angreifer nämlich bereits die Signatur y ′ für einen beliebigen
Text x ′ ∈ Z∗n und kann er sich die Signatur y ′′ für x ′′ = xx ′−1 mod n
beschaffen, so kann er daraus die Signatur y = y ′y ′′ mod n für den
Text x berechnen

Das RSA-Signaturverfahren 188

Diese Angriffe kann man vereiteln, indem man den Text x mit
Redundanz versieht (indem man z.B. anstelle von x den Text xx
signiert)
Um auch längere Texte effizient signieren zu können, wird i.a. jedoch
eine geeignete Hashfunktion h benutzt und nicht der gesamte Text x ,
sondern nur der Hashwert h(x) signiert

Das RSA-Signaturverfahren 189

Bei der Signaturerstellung benötigte Eigenschaften einer Hashfunktion h
Die verwendete Hashfunktion h sollte die Einwegeigenschaft haben, da
sonst der Angreifer zu einem y ∈ Y einen passenden Text x mit
h(x) = y bestimmen kann (zumindest wenn das Signaturverfahren
anfällig gegen eine existentielle Fälschung ist, wie etwa RSA)
Angenommen der Angreifer kennt bereits ein Paar (x , y) mit
ver(k, h(x), y) = 1
Dann sollte h zumindest schwach kollisionsresistent sein, da sonst der
Angreifer ein x ′ mit h(x ′) = h(x) berechnen und das Paar (x ′, y)
bestimmen könnte
Falls sich der Angreifer für bestimmte von ihm selbst gewählte Texte x
die zugehörige Signatur y beschaffen kann, so sollte h sogar
kollisionsresistent sein
Andernfalls könnte der Angreifer ein Kollisonspaar (x , x ′) für h finden,
sich den (unverdächtigen) Text x signieren lassen und die erhaltene
Signatur y für den Text x ′ verwenden

Diskrete Logarithmen 190

Für ein beliebiges Element a einer multiplikativen Gruppe G ist die
Exponentiation expG,a : x 7→ ax zur Basis a eine Bijektion zwischen der
Menge Zord(a) = {0, 1, . . . , ord(a)− 1} und der Untergruppe 〈a〉
Die zugehörige Umkehrabbildung spielt in der Kryptografie eine
wichtige Rolle

Definition
Seien a, b ∈ G mit b ∈ 〈a〉
Dann heißt der eindeutig bestimmte Exponent x ∈ Zord(a) mit ax = b
Index oder diskreter Logarithmus von b zur Basis a in G, kurz

x = logG,a(b)

Im Fall G = Z∗m schreiben wir auch einfach logm,a(b) anstelle von
logZ∗m,a(b)

Diskrete Logarithmen 191

Die Funktion expm,a : x 7→ ax ist effizient berechenbar (siehe unten)
Dagegen sind bis heute keine effizienten Verfahren zur Berechnung von
logm,a(b) bekannt (falls a und m geeignet gewählt werden)

Beispiel
Das Element a = 2 hat in der Gruppe G = Z∗11 die maximal mögliche
Ordnung ord11(2) = ‖G‖ = 10
Die folgenden Tabellen zeigen den Werteverlauf der Funktionen exp11,2
und log11,2

x 0 1 2 3 4 5 6 7 8 9
2x 1 2 4 8 5 10 9 7 3 6

b 1 2 3 4 5 6 7 8 9 10
log11,2(b) 0 1 8 2 4 9 7 3 6 5

/

Zyklische Gruppen 192

Für manche Anwendungen sind Elemente a ∈ G nützlich, mit denen sich
die gesamte Gruppe erzeugen lässt

Definition
Sei G eine endliche Gruppe der Ordnung ‖G‖ = m
Ein Element g ∈ G mit ordG(g) = m heißt Erzeuger von G
G heißt zyklisch, falls G mindestens einen Erzeuger besitzt

Ein Element a ∈ G ist also genau dann ein Erzeuger, wenn die von a
erzeugte Untergruppe 〈a〉 die gesamte Gruppe G umfasst

Satz (Gauß)
Genau für m ∈ {1, 2, 4, pk , 2pk | 2 < p prim} ist die Gruppe Z∗m zyklisch
(ohne Beweis)

Das ElGamal-Signaturverfahren 193

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige
asymmetrische Kryptosystem probabilistisch und beruht wie dieses auf
dem diskreten Logarithmus
Sei p eine große Primzahl und α ein Erzeuger von Z∗p
(p und α sind öffentlich)
Jeder Teilnehmer B wählt eine geheime Zahl a ∈ Zp−1 = {0, . . . , p− 2}
und gibt β = αa mod p als Teil seines öffentlichen Verifikations-
schlüssels bekannt:
Signierschlüssel: k̂ = (p, α, a)
Verifikationsschlüssel: k = (p, α, β)
Der Textraum ist X = Zp−1 und der Signaturenraum ist
Y = Z∗p × Zp−1 \ {0}

Das ElGamal-Signaturverfahren 194

Signaturerstellung: Um einen Text x ∈ X zu signieren, wählt der
Signierer zufällig eine Zahl z ∈ Z∗p−1 und berechnet die Signatur

sig(k̂, x , z) = (γ, δ) ∈ Y
mit γ = αz mod p und δ = (x − aγ)z−1 mod p − 1
Falls δ = 0 ist, muss eine neue Zufallszahl z gewählt und der Vorgang
wiederholt werden
Verifikation: Es gilt ver(k, x , (γ, δ)) = 1, falls βγγδ ≡p α

x ist

Das ElGamal-Signaturverfahren 195

Lemma
Eine Signatur (γ, δ) mit ord(γ) = p − 1 erfüllt genau dann die
Verifikationsbedingung βγγδ ≡p α

x , wenn es ein z ∈ Z∗p−1 mit
sig(k̂, x , z) = (γ, δ) gibt

Beweis.
Wegen γ ≡ αz mod p ist z durch γ (und γ durch z) eindeutig bestimmt
Weiter ist βγγδ ≡p α

aγαzδ ≡p α
aγ+zδ

Da α ein Erzeuger von Z∗p ist, gilt die Kongruenz αaγ+zδ ≡p α
x genau

dann, wenn aγ + zδ ≡p−1 x ist, was wiederum mit δ ≡p−1 (x − aγ)z−1

äquivalent ist �

Bemerkung
Da der Signieralgorithmus für die Berechnung von γ = αz mod p eine
Zufallszahl z ∈ Z∗p−1 wählt, hat jedes von sig erzeugte γ die Ordnung
ord(γ) = ord(αz) = ord(α)/ ggT(ord(α), z) = ord(α) = p − 1

Das ElGamal-Signaturverfahren 196

Beispiel
Sei p = 467, α = 2, a = 127 und β = αa mod p = 2127 mod 467 = 132
Um den Text x = 100 ∈ Zp−1 = Z466 mit dem Signierschlüssel
k̂ = (p, α, a) = (467, 2, 127) zu signieren,

wählt Alice die geheime Zufallszahl z = 213 ∈ Z∗p−1
(z−1 mod 466 = 431) und
erhält
γ = 2213 mod 467 = 29 und δ = (100−127 ·29)431 mod 466 = 51,
d.h. sig(k̂, x , z) = (29, 51)

Um die Gültigkeit dieser Signatur für den Text x = 100 mit dem
Verifikationsschlüssel k = (p, α, β) = (467, 2, 132) zu prüfen,

verifiziert Bob die Kongruenz
βγγδ ≡p 132292951 ≡p 189 ≡p 2100 ≡p α

x
/

Zur Sicherheit des ElGamal-Systems 197

Falls der Angreifer in der Gruppe Z∗p den diskreten Logarithmus von β
zur Basis α bestimmen kann, so kann er den geheimen Schlüssel
a = logα β berechnen
Als nächstes betrachten wir verschiedene Szenarien für einen selektiven
Angriff bei bekanntem Verifikationsschlüssel
Der Angreifer wählt zu einem gegebenen Text x zuerst γ und versucht,
ein passendes δ zu finden:

Mit αx ≡ βγγδ mod p folgt δ = logγ(αxβ−γ)
D.h. die Bestimmung von δ ist eine Instanz des diskreten
Logarithmus Problems (kurz: DLP)

Der Angreifer wählt zu einem gegebenen Text x zuerst δ und versucht
dann ein γ mit αx ≡ βγγδ mod p zu finden

Hierfür ist kein effizientes Verfahren bekannt

Zur Sicherheit des ElGamal-Systems 198

Der Angreifer versucht, zu einem gegebenen Text x gleichzeitig
passende Zahlen γ und δ mit αx ≡ βγγδ mod p zu finden

Auch hierfür ist kein effizientes Verfahren bekannt
Versucht der Angreifer bei einem nichtselektiven Angriff, zuerst γ und δ
zu wählen und dazu einen passenden Text x zu finden, so muss er den
diskreten Logarithmus x = logα βγγδ bestimmen

Zur Sicherheit des ElGamal-Systems 199

Eine existentielle Fälschung lässt sich jedoch wie folgt durchführen
(falls keine Hashfunktion benutzt wird)

Der Angreifer wählt beliebige Zahlen u ∈ Zp−1, v ∈ Z∗p−1 und
berechnet γ = αuβv mod p
Dann ist (γ, δ) genau dann eine gültige Signatur für einen Text x ,
wenn αx ≡p β

γ(αuβv)δ ist
Dies ist wiederum äquivalent zur Kongruenz αx−uδ ≡p β

γ+vδ, die
sich im Fall ggT(v , p − 1) = 1 für den Text x = uδ mod p − 1
mittels δ = −γv−1 mod p − 1 erfüllen lässt
Bei Wahl von v = 1 erhalten wir z.B. die gültige Signatur
(γ, δ) = (αuβ mod p,−αuβ mod p − 1) für den Text
x = uδ mod p − 1, wobei u ∈ Zp−1 beliebig gewählt werden kann

Zur Sicherheit des ElGamal-Systems 200

Bemerkung
Bei der Benutzung des ElGamal-Signaturverfahrens sind folgende Punkte
zu beachten

Die Zufallszahl z muss geheim gehalten werden
Zufallszahlen dürfen nicht mehrfach verwendet werden

Kennt nämlich der Angreifer zu einer Signatur (x , (γ, δ)) die Zufallszahl
z , so kann er wegen δ ≡p−1 (x − aγ)z−1 im Fall ggT(γ, p − 1) = 1 die
geheime Zahl

a = (x − zδ)γ−1 mod (p − 1)
als eindeutige Lösung der Kongruenz

γa ≡p−1 x − zδ (∗)
berechnen

Zur Sicherheit des ElGamal-Systems 201

Kennt nämlich der Angreifer zu einer Signatur (x , (γ, δ)) die Zufallszahl
z , so kann er die geheime Zahl a als eindeutige Lösung der Kongruenz

γa ≡p−1 x − zδ (∗)
berechnen
Ist allgemeiner ggT (γ, p − 1) = g ≥ 1, so ist g ein Teiler von γ und
von p − 1 sowie wegen (∗) auch von x − zδ
Setzen wir µ := γ/g und λ := (x − zδ)/g , so führt (∗) auf die
Kongruenz µa ≡(p−1)/g λ (∗∗), aus der sich wegen
ggT (µ, (p − 1)/g) = 1 folgende g Kandidaten ai für a gewinnen lassen:

a0 := µ−1λ mod (p−1)/g und ai := a0+i(p−1)/g für i = 1, . . . , g−1
Unter a0, . . . , ag−1 lässt sich a durch Prüfen der Bedingung αai ≡p β
eindeutig bestimmen

Zur Sicherheit des ElGamal-Systems 202

Sind andererseits (x1, (γ, δ1)) und (x2, (γ, δ2)) mit demselben z
generierte Signaturen, dann folgt wegen βγγδi ≡p α

xi für i ∈ {1, 2},

γδ1−δ2 ≡p α
x1−x2 ⇒ αz(δ1−δ2) ≡p α

x1−x2

⇒ z(δ1 − δ2) ≡p−1 x1 − x2

Aus dieser Kongruenz lassen sich d = ggT (δ1 − δ2, p − 1) Kandidaten
für z gewinnen und daraus wie oben a berechnen, falls d nicht zu groß
ist

Das Schnorr-Signaturverfahren 203

Da die Primzahl p beim ElGamal-Signaturverfahren mindestens eine
512-Bit-Zahl (besser 1024-Bit-Zahl) sein sollte, beträgt die Signatur-
länge 1024 bzw 2048 Bit
Folgende Variante des ElGamal-Signaturverfahrens, die als eine Vorstufe
zum DSA betrachtet werden kann, wurde von Schnorr vorgeschlagen
Die zugrunde liegende Idee ist folgende:

Indem wir für α ein Element der Ordnung q mit q ≈ 2160 wählen,
reduziert sich die Signaturlänge auf 2 · 160 = 320 Bit
Die Berechnungen werden aber nach wie vor modulo p mit
p ≈ 21024 ausgeführt, so dass das Problem des diskreten
Logarithmus zur Basis α in Z∗p hart bleibt

Das Schnorr-Signaturverfahren 204

Sei g ein Erzeuger von Z∗p, wobei p die Bauart p − 1 = mq für eine
Primzahl q = p−1

m ≈ 2160 hat
Dann ist α = g (p−1)/q ein Element in Z∗p der Ordnung ordp(α) = q

da ord(g i) = ord(g)
ggT(i ,ord(g)) = p−1

ggT((p−1)/q,p−1) = q ist (s. Übungen)

Weiter sei h : {0, 1}∗ → Zq eine Hashfunktion, die jedem Text
x ∈ X = {0, 1}∗ einen Hashwert in Zq zuordnet
Das Schnorr-Verfahren benutzt folgende Schlüssel:
Signierschlüssel: k̂ = (p, q, α, a), a ∈ Zq
Verifikationsschlüssel: k = (p, α, β), β = αa mod p

Das Schnorr-Signaturverfahren 205

Das Schnorr-Verfahren benutzt folgende Schlüssel:
Signierschlüssel: k̂ = (p, q, α, a), a ∈ Zq
Verifikationsschlüssel: k = (p, α, β), β = αa mod p
Signaturerstellung
Um einen Text x ∈ X zu signieren, wählt der Signierer zufällig eine
geheime Zahl z ∈ Z∗q (ElGamal: z ∈ Z∗p−1) und berechnet die Signatur

sig(k̂, x , z) = (γ, δ),
wobei γ = h(xbin(αz mod p)) und δ = (z + aγ) mod q
(ElGamal: γ = αz mod p und δ = (x − aγ)z−1 mod p − 1) ist
Der Signaturraum ist also Y := Zq × Zq

Verifikation
Es gilt ver(k, x , γ, δ) = 1, falls h(xbin(αδβ−γ mod p)) = γ
(ElGamal: βγγδ ≡p α

x) ist

Das Schnorr-Signaturverfahren 206

Beispiel
Seien q = 101, p = 78q + 1 = 7879 und g = 3
Dann ergibt sich α zu α = g (p−1)/q = 378 mod p = 170
Für a = 75 ergibt sich β zu β = αa mod p = 17075 mod 7879 = 4567
Um einen Text x ∈ {0, 1}∗ mit dem Signierschlüssel
k̂ = (p, q, α, a) = (7879, 101, 170, 75) zu signieren,

wählt Alice die geheime Zufallszahl z = 50 ∈ Z∗q und
berechnet den Wert αz mod p = 17050 mod 7879 = 2518
Dies führt auf den Hashwert γ = h(xbin(2518)) ∈ Zq
Unter der Annahme, dass h(xbin(2518)) = 96 ist, erhält Alice wegen

δ = 50 + 75 · 96 mod 101 = 79
die Signatur sig(k̂, x , z) = (96, 79)

Das Schnorr-Signaturverfahren 207

Beispiel (Fortsetzung)

Um die Gültigkeit der Signatur sig(k̂, x , z) = (96, 79) für den Text x
mit dem Verifikationsschlüssel k = (p, α, β) = (7879, 170, 4567) zu
prüfen,

berechnet Bob die Zahl
αδβ−γ ≡p 170794567−96 ≡p 2518

und verifiziert die Gleichheit h(xbin(2518)) = 96 /

Der Digital Signature Algorithm (DSA) 208

Der DSA wurde im August 1991 vom National Institute of Standards
and Technology (NIST) für die Verwendung im Digital Signature
Standard (DSS) empfohlen
Der DSS enthält neben dem DSA (ursprünglich der einzige im DSS
definierte Algorithmus) als weitere Algorithmen die RSA-Signatur und
ECDSA (siehe unten)
Der DSA lässt sich durch eine Reihe von Modifikationen aus dem
ElGamal-Verfahren erhalten, das wie folgt arbeitet

Der Digital Signature Algorithm (DSA) 209

ElGamal-Verfahren:
Signaturerstellung: Um einen Text x ∈ X zu signieren, wählt der
Signierer zufällig eine Zahl z ∈ Z∗p−1 und berechnet die Signatur

sig(k̂, x , z) = (γ, δ) ∈ Y
mit γ = αz mod p und δ = (x − aγ)z−1 mod p − 1
Falls δ = 0 ist, muss eine neue Zufallszahl z gewählt und der
Vorgang wiederholt werden
Verifikation: Es gilt ver(k, x , (γ, δ)) = 1, falls βγγδ ≡p α

x ist
Folge der Modifikationen für den Übergang zu DSA:

δ als Lösung von zδ − aγ ≡p−1 x (d.h. δ = (x + aγ)z−1)
Dies führt auf die Verifikationsbedingung αxβγ ≡p γ

δ

(αxαaγ ≡p α
z(x+aγ)z−1)

Ist x + aγ ∈ Z∗p−1, dann existiert δ−1 = (x + aγ)−1z mod p − 1
Dies führt auf die Verifikationsbedingung αxδ−1

βγδ
−1 ≡p γ

Der Digital Signature Algorithm (DSA) 210

Sei nun wie bei Schnorr p = mq + 1 mit q ≈ 2160 prim und sei α ∈ Z∗p
mit ordp(α) = q
Dann kann bei der Verifikation von αxδ−1

βγδ
−1 ≡p γ auf der

Exponentenebene modulo q gerechnet werden
Da γ jedoch rechts nicht als Exponent, sondern als Basiszahl,
vorkommt, muss auch die linke Seite modulo q reduziert werden
Beim DSA hat der Signierschlüssel also die Form k̂ = (p, q, α, a), wobei
a ∈ Z∗q ist
Der zugehörige Verifikationsschlüssel ist k = (p, q, α, β) mit
β = αa mod p
Zudem gilt X = Zq und Y = Zq × Z∗q
Zu gegebenem x ∈ X wird zufällig eine geheime Zahl z ∈ Z∗q gewählt

sig(k̂, z , x) = (γ, δ), wobei

γ = (αz mod p) mod q
δ = (x + aγ)z−1 mod q ∈ Z∗q

Im Fall γ = 0 oder δ = 0 muss ein neues z gewählt werden

Der Digital Signature Algorithm (DSA) 211

Die Verifikationsbedingung ist

ver(k, x , γ, δ) =

1, (αeβd mod p) mod q = γ,

0, sonst,

wobei e = xδ−1 mod q und d = γδ−1 mod q ist
Die Korrektheit ergibt sich wie folgt:

Im Fall sig(k̂, z , x) = (γ, δ) ist

αeβd ≡p α
xδ−1

αaγδ−1 ≡p α
δ−1(x+aγ) ≡p α

(x+aγ)−1z(x+aγ) ≡p α
z

woraus sich
(αeβd mod p) mod q = (αz mod p) mod q = γ

ergibt

Der Digital Signature Algorithm (DSA) 212

Beispiel
Seien q = 101, p = 78q + 1 = 7879, g = 3 (ordp(3) = p − 1)

 α = 378 mod p = 170 hat Ordnung q

Wir wählen a = 75 ∈ Z∗q, d.h. β = αa mod p = 17075 mod p = 4567
Um den Text x = 22 ∈ Zq zu signieren, wählen wir die geheime
Zufallszahl z = 50 ∈ Z∗q (z−1 = 99) und erhalten dann

γ = (17050 mod 7879) mod 101
= 2518 mod 101
= 94

δ = (22 + 75 · 94) · 99 mod 101
= 97 (δ−1 = 25)

d.h. sig(p, q, α, z , x) = (94, 97), wobei k̂ = (p, q, α, a)

Der Digital Signature Algorithm (DSA) 213

Beispiel (Fortsetzung)
Um diese Signatur zu prüfen berechnen wir:

e = xδ−1 mod q
= 22 · 25 mod 101
= 45

d = γδ−1 mod q
= 94 · 25 mod 101
= 27

 (αeβd mod p) mod q = (17045454727 mod 7879) mod 101 = 94 /

Der ECDSA (Elliptic Curve DSA) 214

Der ECDSA wurde im Jahr 2000 als FIPS (Federal Information
Processing Standard) 186-2 Standard deklariert
Sei E eine elliptische Kurve über einem endlichen Körper Fpn

Sei A ∈ E ein Punkt der Ordnung q (q prim), so dass das
Diskrete-Logarithmus-Problem zur Basis A in E schwierig ist
Zudem sei h : {0, 1}∗ → Zq eine kryptografische Hashfunktion
Der ECDSA besteht aus folgenden Komponenten:
Textraum: X = {0, 1}∗
Signaturraum: Y = Z∗q × Z∗q
Signierschlüssel: k̂ = (E , q,A,m), m ∈ Z∗q
Verifikationsschlüssel: k = (E , q,A,B), wobei B = m · A ist

Der ECDSA (Elliptic Curve DSA) 215

Signaturerstellung: Um einen Text x ∈ X zu signieren,
wählt der Signierer zufällig eine geheime Zahl z ∈ Z∗q und
berechnet sig(k̂, x , z) = (γ, δ) mit

(u, v) := zA
γ := u mod q
δ := (h(x) + mγ)z−1 mod q

Hierbei wird u als eine Zahl in {0, . . . , pn − 1} interpretiert
Falls γ = 0 oder δ = 0 ist, muss eine neue Zufallszahl z gewählt und
der Vorgang wiederholt werden

Der ECDSA (Elliptic Curve DSA) 216

Verifikation: ver(k, x , γ, δ) = 1, falls u mod q = γ ist, wobei
e := h(x)δ−1 mod q
d := γδ−1 mod q

(u, v) := eA + dB
Korrektheit der Verifikation beim ECDSA:

(u, v) = eA + dB
= (h(x)δ−1)A + (γδ−1)mA
= (h(x) + mγ)δ−1A
= zA (da (h(x) + mγ)δ−1 ≡q z)

Der ECDSA (Elliptic Curve DSA) 217

Beispiel
Sei E über Z11 definiert durch y2 = x3 + x + 6
Wir wählen A = (2, 7), m = 7 → p = 11, q = 13,B = 7A = (7, 2)
Um einen Text x mit dem Hashwert h(x) = 4 unter Verwendung des
Signierschlüssels k̂ = (E , q,A,m) und der Zufallszahl z = 3 signieren,

berechnet Alice
(u, v) := zA = 3 · (2, 7) = (8, 3)

γ := u mod q = 8
δ := (4 + 7 · 8)3−1 mod 13 = 7

und erhält die Signatur sig(k̂, z , x) = (8, 7)

Der ECDSA (Elliptic Curve DSA) 218

Beispiel (Fortsetzung)
Um diese Signatur mit dem Verifikationsschlüssel k = (E , q,A,B) zu
überprüfen,

berechnet Bob
e := h(x)δ−1 mod q = 4 · 7−1 mod 13 = 4 · 2 mod 13 = 8
d := γδ−1 mod q = 8 · 2 mod 13 = 3

(u, v) := eA + dB = 8 · (2, 7) + 3 · (7, 2) = (8, 3)
und testet die Kongruenz u ≡q γ /

Die One-time-Signatur von Lamport 219

Leslie Lamport konnte 1979 zeigen, dass sich digitale Signaturen auf
der Basis einer Einwegfunktion f konstruieren lassen
Damit die Signatur allerdings sicher ist, muss für jeden Text ein neues
Schlüsselpaar (k̂, k) generiert werden
Ein Signierschlüssel k̂ darf also nur zum Signieren eines einzelnen
Textes verwendet werden
Seien U und V endliche Mengen und sei f : U → V eine Funktion
Zudem sei ` ≥ 1 die vorgegebene Textlänge, d.h. der Textraum ist
X = {0, 1}`

Der Signaturraum ist dann Y = U`

Um ein Schlüsselpaar (k̂, k) zu generieren, wird zufällig eine Folge von
2` Elementen ui ,b für i = 1, . . . , ` und b = 0, 1 aus U gewählt und der
Signierschlüssel k̂ =

(u1,0...u`,0
u1,1...u`,1

)
gebildet

Der zugehörige Verifikationsschlüssel ist dann k =
(v1,0...v`,0

v1,1...v`,1

)
mit

vi ,b = f (ui ,b) für alle i = 1, . . . , ` und b = 0, 1

Die One-time-Signatur von Lamport 220

Signaturerstellung: Die Signatur für einen Text x = x1 . . . x` ∈ X ist
sig(k̂, x) = (u1,x1 , . . . , u`,x`

)

Verifikation: Für eine Signatur y = (u1, . . . , u`) und einen Text
x = x1 . . . x` gilt

ver(k, x , y) =

1, f (ui) = vi ,xi für i = 1, . . . , `,
0, sonst

Die One-time-Signatur von Lamport 221

Beispiel
Wir wählen als Einwegfunktion eine Funktion der Form f : Z∗p → Z∗p
mit f (u) = gu mod p, wobei g ein Erzeuger von Z∗p ist
Z.B. sei p = 7879 und g = 3, also f (u) = 3u mod 7879
Weiter sei ` = 3
Dann erhalten wir für den zufällig gewählten Signierschlüssel
k̂ =

(5831 4285 2467
803 735 6449

)
den Verifikationsschlüssel k =

(2009 268 4721
4672 3810 5731

)
Die Signatur y für den Text x = 110 ist dann

y = sig(k̂, x)=(u1,x1 ,u2,x2 ,u3,x3)=(u1,1,u2,1,u3,0)=(803, 735, 2467)

Für diese Signatur y = (u1, u2, u3) ist ver(k, x , y) = 1, da f (ui) = vi ,xi

für i = 1, 2, 3 gilt:
i = 1 : f (u1) = f (803) = 3803 mod 7879 = 4672 = v1,x1

i = 2 : f (u2) = f (735) = 3735 mod 7879 = 3810 = v2,x2

i = 3 : f (u3) = f (2467) = 32467 mod 7879 = 4721 = v3,x3 /

Die One-time-Signatur von Lamport 222

Ähnlich wie bei MACs können wir einen Angriff gegen ein digitales
Signaturverfahren wie folgt modellieren
Hierbei nehmen wir an, dass der Angreifer die Texte, deren Signaturen
er kennt, adaptiv wählen kann
Es handelt sich also um eine existentielle Fälschung bei adaptiv
wählbaren Texten

Definition. Sei 0 ≤ ε ≤ 1 und sei q ∈ N
Ein (ε, q)-Fälscher für ein digitales Signaturverfahren ist ein
probabilistischer Algorithmus A, der

bei Eingabe eines Verifikationsschlüssels k, wobei das Schlüsselpaar
(k̂, k) zufällig gewählt wird
nach den Signaturen yi = sig(k̂, xi) von q Texten x1, . . . , xq adaptiv
fragt und
mit Wahrscheinlichkeit mindestens ε eine Fälschung (x , y) mit
x 6∈ {x1, . . . , xq} und ver(k, x , y) = 1 ausgibt

Die One-time-Signatur von Lamport 223

Satz. Sei f : U → V eine Funktion
Falls für die zugehörige one-time Signatur ein (ε, 0)-Fälscher
Lamport-Fälschung(k) existiert, dann lässt sich für ein zufällig
gewähltes u ∈R U mit Wahrscheinlichkeit mindestens ε/2 ein Urbild von
v = f (u) bestimmen

Beweis.
Betrachte folgenden probabilistischen Algorithmus Lamport-Urbild(v):

Prozedur Lamport-Urbild(v)
1 wähle zufällig ein Indexpaar (j , a) und setze vj,a := v
2 for all (i , b) ∈ [`]× {0, 1} \ {(j , a)} do
3 wähle zufällig ui ,b ∈R U und setze vi ,b := f (ui ,b)
4 k :=

(v1,0...v`,0
v1,1...v`,1

)
5 (x1 . . . x`, (u1, . . . , u`)) =: Lamport-Fälschung(k)
6 if f (uj) = v then output(uj) else output(?)

Die One-time-Signatur von Lamport 224

Beweis (Fortsetzung)
Wie üblich bezeichnen wir die Zufallsvariablen, die die Wahl von v , j , a,
k und (x , y) = (x1 . . . x`, (u1, . . . , u`)) beschreiben, mit entsprechenden
Großbuchstaben
Dann müssen wir zeigen, dass UJ mit Wahrscheinlichkeit mindestens
ε/2 ein f -Urbild von V ist, wobei V die Wahl von v = f (u) für ein
zufällig gewähltes u ∈R U beschreibt
Da die Verteilung von K identisch zur Schlüsselgenerierung der
Lamport-Signatur und Lamport-Fälschung ein (ε, 0)-Fälscher ist,
folgt

Pr[ver(K ,X ,Y) = 1] ≥ ε

Da zudem K (und damit auch (X ,Y)) unabhängig von (J ,A) und auch
J und A unabhängig voneinander sind, ist A von (J ,K ,X ,Y) und
damit auch von XJ unabhängig

Die One-time-Signatur von Lamport 225

Beweis (Schluss)
Sei p die Erfolgswk von Lamport-Urbild bei Eingabe V
Wegen

ver(k, x1 . . . x`, (u1, . . . , u`)) = 1∧xj = a ⇒ f (uj) = vj,xj = vj,a = v
folgt nun

p ≥ Pr[ver(K ,X ,Y) = 1 ∧ XJ = A]
= Pr[ver(K ,X ,Y) = 1]︸ ︷︷ ︸

≥ε

Pr[XJ = A | ver(K ,X ,Y) = 1]︸ ︷︷ ︸
=1/2

≥ ε/2 �

Die One-time-Signatur von Lamport 226

Als nächstes untersuchen wir die Sicherheit der Lamport-Signatur, falls der
Angreifer in der Lage ist, sich für einen beliebigen Text x ′ seiner Wahl eine
gültige Signatur y ′ zu beschaffen

Satz. Sei f : U → V eine Funktion.
Falls für die zugehörige one-time Signatur ein (ε, 1)-Fälscher
Lamport-Fälschung’(k) existiert, so lässt sich für ein zufällig
gewähltes u ∈R U mit Wahrscheinlichkeit ≥ ε/2` ein f -Urbild von
v = f (u) bestimmen

Für den Beweis betrachten wir folgenden probabilistischen Algorithmus
Lamport-Urbild’ und zeigen, dass er für ein zufällig gewähltes u ∈R U
bei Eingabe v = f (u) mit Wahrscheinlichkeit ≥ ε/2` ein f -Urbild von v
ausgibt

Die One-time-Signatur von Lamport 227

Für den Beweis betrachten wir folgenden probabilistischen Algorithmus
Lamport-Urbild’ und zeigen, dass er für ein zufällig gewähltes u ∈R U
bei Eingabe v = f (u) mit Wahrscheinlichkeit ≥ ε/2` ein f -Urbild von v
ausgibt:

Prozedur Lamport-Urbild’(v)
1 wähle zufällig ein Indexpaar (j , a) und setze vj,a := v
2 for all (i , b) 6= (j , a) do
3 wähle zufällig ui ,b ∈R U und setze vi ,b := f (ui ,b)
4 k :=

(v1,0...v`,0
v1,1...v`,1

)
5 simuliere Lamport-Fälschung’(k) und beantworte die Frage x ′

mit u1,x ′1 , . . . , u`,x ′` (falls x ′j = a ist, brich ab und gib ? aus);
6 sei (x , y) = (x1 . . . x`, (u1, . . . , u`)) die erzeugte Ausgabe
7 if f (uj) = v then output(uj) else output(?)

Die One-time-Signatur von Lamport 228

Beweis.
Sei p′ die Erfolgswk von Lamport-Urbild’ bei Eingabe V
Lamport-Urbild’ kann die Frage von Lamport-Fälschung’(k)
nach der Signatur von x ′ nur dann beantworten, wenn x ′j 6= a ist
Es ist klar, dass in diesem Fall uj ein Urbild von v ist, wenn zudem
ver(k, x1 . . . x`, (u1, . . . , u`)) = 1 ∧ xj = a gilt
Da jedoch die Simulation von Lamport-Fälschung’(k) eventuell
abgebrochen wird (und die Abbruchbedingung von (j , a) abhängt),
können wir nicht mehr davon ausgehen, dass diese Simulation mit
Wahrscheinlichkeit ε eine Fälschung (x , y) liefert und (X ,Y)
unabhängig von (J ,A) ist
Durch eine einfache Modifikation von Lamport-Urbild’(v) erhalten
wir jedoch eine Prozedur Lamport-Urbild∗ (ohne Eingabe), deren
Ausgabeverhalten mit der von Lamport-Urbild’(V) identisch ist,
und von der wir zeigen können, dass sie mit Wahrscheinlichkeit
p∗ ≥ ε/2` Erfolg hat (also nicht Fragezeichen ausgibt):

Die One-time-Signatur von Lamport 229

Beweis (Fortsetzung)
Durch eine einfache Modifikation von Lamport-Urbild’(v) erhalten
wir jedoch eine Prozedur Lamport-Urbild∗ (ohne Eingabe), deren
Ausgabeverhalten mit der von Lamport-Urbild’(V) identisch ist,
und von der wir zeigen können, dass sie mit Wahrscheinlichkeit
p∗ ≥ ε/2` Erfolg hat (also nicht Fragezeichen ausgibt):

Prozedur Lamport-Urbild∗

1 wähle zufällig ein Indexpaar (j , a)
2 for all (i , b) do wähle zufällig ui ,b ∈R U und setze vi ,b := f (ui ,b)
3 k :=

(v1,0...v`,0
v1,1...v`,1

)
4 simuliere Lamport-Fälschung’(k) und beantworte die Frage x ′

mit u1,x ′1 , . . . , u`,x ′` ;
5 sei (x , y) = (x1 . . . x`, (u1, . . . , u`)) die erzeugte Ausgabe
6 if f (uj) = vj,a ∧ x ′j 6= a then output(uj) else output(?)

Die One-time-Signatur von Lamport 230

Beweis (Fortsetzung)
Im Unterschied zu Lamport-Urbild’(v) wählt sich
Lamport-Urbild∗ also die Eingabe v = vj,a gemäß der Verteilung
von V selbst und kennt daher auch ein Urbild uj,a von vj,a

Somit kann Lamport-Urbild∗ bei der Simulation von
Lamport-Fälschung’(k) die Frage nach der Signatur von x ′ auch
im Fall x ′j = a beantworten
Die Bedingung für die Ausgabe von uj ist jedoch bei beiden Prozeduren
dieselbe, d.h. die Ausgabe von Lamport-Urbild∗ hat dieselbe
Verteilung wie die von Lamport-Urbild’(V) und somit gilt p′ = p∗

Der einzige Unterschied ist, dass immer wenn Lamport-Urbild’(V)
in Zeile 5 ein Fragezeichen ausgibt, Lamport-Urbild∗ dies erst in
Zeile 6 tut

Die One-time-Signatur von Lamport 231

Beweis (Schluss)
Da in der Prozedur Lamport-Urbild∗ die ZV (J ,A) unabhängig von
(K ,X ′,X ,Y) ist, folgt nun

p∗ = Pr[f (UJ) = VJ,A ∧ X ′J 6= A]
≥ Pr[ver(K ,X ,Y) = 1 ∧ XJ = A ∧ X ′J 6= A]
= Pr[ver(K ,X ,Y) = 1] Pr[X ′J 6= XJ = A | ver(K ,X ,Y) = 1]︸ ︷︷ ︸

≥1/2`
≥ ε/2` �

Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die
sich jedoch teilweise beheben lassen (siehe Übungen)
So lässt sich sowohl die Länge des privaten Signierschlüssels (mittels
Pseudozufallsgeneratoren) als auch des öffentlichen Verifikations-
schlüssels (mittels Hash-Listen) verringern
Zudem können bei Verwendung von Hash-Bäumen mit demselben
Schlüsselpaar auch mehrere Nachrichten signiert und verifiziert werden

Full Domain Hash (FDH) Signaturen 232

Sei F = {fk |k ∈ K} eine Familie von Falltür-Permutationen auf einer
Menge U, d.h. es lassen sich (zufällig) Schlüsselpaare (k̂, k) ∈ K × K
generieren, so dass gilt:

fk̂(fk(u)) = u für alle u ∈ U
fk ist eine Einweg-Permutation auf U, d.h. für ein zufällig gewähltes
Schlüsselpaar (k̂, k) ∈ K ×K und ein zufällig gewähltes v ∈ U ist es
schwer, ohne Kenntnis von k̂ ein Urbild u mit fk(u) = v zu finden
(genauer: jedem effizienten Angreifer gelingt dies nur mit
vernachlässigbarer Wahrscheinlichkeit)

Weiter sei h : {0, 1}∗ → U eine Funktion
Die auf F und h basierende FDH-Signatur funktioniert wie folgt:

Full Domain Hash (FDH) Signaturen 233

Die auf F und h basierende FDH-Signatur funktioniert wie folgt:
Zuerst wird ein Schlüsselpaar (k̂, k) ∈ K × K generiert, wobei k̂ als
Signierschlüssel und k als Verifikationsschlüssel fungiert
Signaturerstellung: Die Signatur für einen Text x ∈ X ist

sig(k̂, x) = fk̂(h(x))

Verifikation: Für eine Signatur y ∈ U und einen Text x ∈ {0, 1}∗ gilt

ver(k, x , y) :=

1, fk(y) = h(x),
0, sonst

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer
Hashfunktion auf diesem Prinzip
Ein Problem hierbei ist allerdings, dass die benutzten RSA-Falltür-
Permutationen einen Definitionsbereich der Größe 21024 haben, um eine
ausreichend große Sicherheit zu erreichen, wogegen die benutzten
Hashfunktionen nur eine Länge von 160 Bit haben

Sicherheitsanalyse der FDH-Signatur im ZOM 234

In der Praxis behilft man sich damit, dass man die 160-Bit-Hashwerte
durch eine deterministische Paddingfunktion auf 1024-Bit aufbläht, was
die Sicherheit allerdings beeinträchtigen kann
Bei Verwendung einer Zufallsfunktion G : {0, 1}∗ → U (vgl.
Zufalls-Orakel-Modell, ZOM) anstelle von h lässt sich die
Fälschungssicherheit der resultierenden FDH-Signatur aus der
Falltüreigenschaft von F herleiten
Das ZOM modelliert eine Hashfunktion mit optimalen kryptografischen
Eigenschaften, d.h. die Zufallsvariablen Ux = G(x) sind stochastisch
unabhängig und gleichverteilt auf U
Zudem füllt der Wertebereich von G den gesamten Definitionsbereich
der Funktionen fk aus (full domain hash)
Wir betrachten zuerst den Fall einer existentiellen Fälschung bei
bekanntem Verifikationsschlüssel, d.h. der Angreifer muss eine
Fälschung (x , y) mit ver(k, x , y) = 1 produzieren, ohne auch nur eine
Signatur y ′ für einen Text x ′ zu kennen

Sicherheitsanalyse der FDH-Signatur im ZOM 235

Sei FDH-Fälschung ein probabilistischer Algorithmus, der für einen
zufällig generierten Verifikationsschlüssel k mit Wahrscheinlichkeit ε
eine existentielle Fälschung (x , y) mit fk(y) = G(x) ausgibt
Dabei nehmen wir an, dass FDH-Fälschung eine Folge von q
verschiedenen Fragen x1, . . . , xq an G stellt
Es ist klar, dass ein solcher Angriff im Fall x 6∈ {x1, . . . , xq} mit der
Wahrscheinlichkeit ε = 1/‖U‖ gelingt
Da diese Erfolgswk durch Ausgabe eines beliebigen Paares (x , y) bereits
mit q = 0 Fragen an G erreicht wird, können wir zudem annehmen,
dass x ∈ {x1, . . . , xq} enthalten ist (sofern q ≥ 1 ist)
Betrachte folgenden Invertierungsalgorithmus für fk :

Sicherheitsanalyse der FDH-Signatur im ZOM 236

Prozedur FDH-Invert(k, v)
1 wähle zufällig j ∈R {1, . . . , q}
2 simuliere FDH-Fälschung(k) und beantworte dabei die Frage xi im

Fall i = j durch vj = v und sonst durch ein zufällig gewähltes
vi ∈R U; sei (x , y) die erzeugte Ausgabe

3 if fk(y) = v then output(y) else output(?)

Satz
Falls FDH-Fälschung(k) für einen zufällig gewählten Verifikationsschlüssel
k mit Wahrscheinlichkeit ε eine Fälschung (x , y) mit fk(y) = G(x) ausgibt
und dabei q ≥ 1 Fragen an G stellt, so gibt FDH-Invert(k, v) für einen
zufälligen Verifikationsschlüssel k und ein zufälliges v ∈R U mit
Wahrscheinlichkeit ≥ ε/q ein fk -Urbild von v aus

Da sich mit Wahrscheinlichkeit 1/‖U‖ ein Urbild erraten lässt, ist der Satz
nur im Fall ε > q/‖U‖ interessant

Sicherheitsanalyse der FDH-Signatur im ZOM 237

Beweis.
Seien J , K , U, V , X , X1, . . . ,Xq Zufallsvariablen, die die Wahl von j ,
k, u, v , x , x1, . . . , xq beschreiben
Da die Eingabe v gleichverteilt ist, erhält FDH-Fälschung auf die
Fragen x1, . . . , xq an G stochastisch unabhängig unter Gleichverteilung
gewählte Strings v1, . . . , vq als Antwort, was dem ZOM entspricht
Daher liefert die Simulation von FDH-Fälschung(k) für einen zufällig
generierten Schlüssel k mit Wahrscheinlichkeit ε eine Fälschung (x , y)
mit fk(y) = G(x):

Pr[fK (Y) = G(X)] = ε

Wir wollen zeigen, dass Pr[fK (Y) = V] ≥ ε/q ist
Da x ∈ {x1, . . . , xq} enthalten ist, existiert ein i mit x = xi und die
Gleichheit fk(y) = G(x) impliziert fk(y) = G(xi) = vi

Sicherheitsanalyse der FDH-Signatur im ZOM 238

Beweis (Fortsetzung)
Folglich gilt die Implikation

fk(y) = G(x) ∧ j = i =⇒ fk(y) = vj = v
und es folgt

Pr[fK (Y) = V] ≥ Pr[fK (Y) = G(X) ∧ J = I]
Zudem wird j ∈ {1, . . . , q} zufällig gewählt und die Fragen x1, . . . , xq
werden unabhängig voneinander durch zufällige v1, . . . , vq ∈R U
beantwortet (nach Voraussetzung trifft dies auch auf vj = v zu)
Daher erhält FDH-Fälschung weder durch k noch durch die Antworten
v1, . . . , vq irgendeine Information über j

Sicherheitsanalyse der FDH-Signatur im ZOM 239

Beweis (Schluss)
Folglich sind neben der Eingabe K auch die Ausgabe (X ,Y) und somit
auch die Zufallsvariable I, die den Index i ∈ {1, . . . , q} mit x = xi
bestimmt, stochastisch unabhängig von J
Daher folgt

Pr[fK (Y) = V] ≥ Pr[fK (Y) = G(X) ∧ J = I]
= Pr[fK (Y) = G(X)] Pr[J = I | fK (Y) = G(X)]︸ ︷︷ ︸

1/q

= Pr[fK (Y) = G(X)]/q = ε/q �

Sicherheitsanalyse der FDH-Signatur im ZOM 240

Falls sich also fk nur mit einer vernachlässigbaren Wahrscheinlichkeit ε′
effizient invertieren lässt, so gelingt einem ähnlich effizienten Angreifer,
der nicht mehr als q Hashwertberechnungen durchführt, im ZOM
höchstens mit einer (ebenfalls vernachlässigbaren) Wahrscheinlichkeit
ε ≤ qε′ eine existentielle Fälschung für die FDH-Signatur
Als nächstes beweisen wir die Fälschungssicherheit der FDH-Signatur
im ZOM gegenüber einem existentiellen Angriff mit adaptiv gewählten
Texten

Sicherheitsanalyse der FDH-Signatur im ZOM 241

Sei FDH-Fälschung’ ein probabilistischer Algorithmus, der für einen
zufällig generierten Verifikationsschlüssel k mit Wahrscheinlichkeit ε
eine existentielle Fälschung (x , y) mit fk(y) = G(x) ausgibt und
insgesamt für q Texte x1, . . . , xq den Wert G(xi) oder die Signatur
sig(k̂, xi) = fk̂(G(xi)) erfragt
Dabei können wir o.B.d.A. annehmen, dass FDH-Fälschung’ zwar
nicht die Signatur von x , aber den G-Wert von x erfragt und vor jeder
Frage nach der Signatur eines Textes xi den G-Wert von xi erfragt

Sicherheitsanalyse der FDH-Signatur im ZOM 242

Satz
Falls FDH-Fälschung’(k) für einen zufällig gewählten Verifikations-
schlüssel k mit Wahrscheinlichkeit ε eine Fälschung (x , y) mit fk(y)=G(x)
berechnet und dabei für q Texte xi den Wert G(xi) sowie im Fall xi 6= x
evtl. auch die Signatur sig(k̂, xi) erfragt, so lässt sich für einen zufälligen
Verifikationsschlüssel k und ein zufälliges v ∈R U mit Wahrscheinlichkeit
≥ ε/q ein fk -Urbild von v bestimmen

Für den Beweis betrachten wir folgenden probabilistischen Algorithmus
Prozedur FDH-Invert’(k, v)

1 wähle zufällig j ∈R {1, . . . , q}
2 simuliere FDH-Fälschung’(k) und beantworte dabei jede Frage xi an

G im Fall i = j durch vj = v und sonst durch vi = fk(ui), wobei ui
zufällig aus U gewählt wird; falls später die Signatur von xi erfragt
wird, gib ui als Antwort (falls i = j ist, brich ab und gib ? aus);
sei (x , y) die erzeugte Ausgabe

3 if fk(y) = v then output(y) else output(?)

Sicherheitsanalyse der FDH-Signatur im ZOM 243

Prozedur FDH-Invert’(k, v)
1 wähle zufällig j ∈R {1, . . . , q}
2 simuliere FDH-Fälschung’(k) und beantworte dabei jede Frage xi an

G im Fall i = j durch vj = v und sonst durch vi = fk(ui), wobei ui
zufällig aus U gewählt wird; falls später die Signatur von xi erfragt
wird, gib ui als Antwort (falls i = j ist, brich ab und gib ? aus);
sei (x , y) die erzeugte Ausgabe

3 if fk(y) = v then output(y) else output(?)

Da die Frage nach der Signatur von xi im Fall i = j unbeantwortet
bleibt, ist nicht klar, dass die Simulation von FDH-Fälschung’(k) mit
Wahrscheinlichkeit ε eine Fälschung (x , y) mit fk(y) = G(x) findet
Wir können aber eine Prozedur FDH-Invert∗(k) angeben, die nur k als
Eingabe erhält, so dass die Ausgaben von FDH-Invert∗(K) und von
FDH-Invert’(K ,V) identisch verteilt sind, und

Pr[FDH-Invert’(K ,V) 6= ?] = Pr[FDH-Invert∗(K) 6= ?] ≥ ε/q
gilt (siehe Übungen)

Verbindliche Signaturen (undeniable signatures) 244

In manchen Fällen ist es für den Unterzeichner eines Textes nicht
wünschenswert, dass jeder dazu in der Lage ist, die Gültigkeit einer
vorgelegten Signatur zu verifizieren
Zum Beispiel könnte eine Softwarefirma (Alice) ihre Produkte mit einer
Signatur versehen, die u.a. Virenfreiheit garantiert
Problem: Neben den legalen Erwerbern der Software (Bob) können
sich auch Kaufinteressenten auf dem Schwarzmarkt von der Gültigkeit
einer Signatur (und damit von der Virenfreiheit des signierten
Produkts) überzeugen
Lösung: Die Gültigkeit einer Signatur lässt sich nur unter Mitwirkung
von Alice verifizieren
Neues Problem: Alice könnte versuchen, eine von ihr erzeugte gültige
Signatur abzuleugnen, indem sie die Verifikation sabotiert

Verbindliche Signaturen (undeniable signatures) 245

Neues Problem: Alice könnte versuchen, eine von ihr erzeugte gültige
Signatur abzuleugnen, indem sie die Verifikation sabotiert
Lösung: Es gibt zusätzlich ein Ableugnungsprotokoll (disavowal
protocol), mit dem Alice die Ungültigkeit von (falschen) Signaturen
nachweisen kann
Falls Alice die Gültigkeit einer Signatur bestreitet und sich dennoch
weigert, deren Gültigkeit mithilfe des Ableugnungsprotokolls zu
widerlegen, kann man davon ausgehen, dass die Signatur gültig ist

Das Signaturverfahren von Chaum und van Antwerpen 246

Bei dem Signaturverfahren von Chaum und van Antwerpen wird eine
Primzahl p = 2q + 1 und ein Element α ∈ Z∗p der Ordnung q benutzt,
wobei q ebenfalls prim und das Diskrete Logarithmus Problem zur Basis
α hart ist
Sei G = {αa|a ∈ Zq} die von α erzeugte Untergruppe von Z∗p
Der Text- und Signaturenraum ist X = Y = G
Der Signierschlüssel hat die Form k̂ = (p, α, a), a ∈ Z∗q und der
zugehörige Verifikationsschlüssel ist k = (p, α, β) mit β = αa mod p
Signaturerstellung: Die Signatur für einen Text x ∈ G ist

sig(k̂, x) = xa mod p
Um eine Signatur y ∈ G von Alice für einen Text x ∈ G zu verifizieren,
führt Bob zusammen mit Alice folgendes Verifikationsprotokoll aus:

Das Signaturverfahren von Chaum und van Antwerpen 247

Möchte nun Alice Bob gegenüber nachweisen, dass eine Signatur y
gültig ist, so führen beide folgendes Verifikationsprotokoll aus:

1 Bob wählt zufällig e, f ∈ Zq und sendet c = y eβf mod p an Alice
2 Alice sendet d = ca−1 mod q mod p zurück an Bob
3 Bob akzeptiert y als gültig, falls x eαf ≡p d gilt

Es ist leicht zu sehen, dass Bob eine gültige Signatur y = xa mod p mit
Wahrscheinlichkeit 1 als gültig akzeptiert, falls sich beide an das
Verifikationsprotokoll halten:

x eαf ≡p (xaeαaf)︸ ︷︷ ︸
y eβf≡pc

a−1 mod q ≡p ca−1 mod q ≡p d

Das Signaturverfahren von Chaum und van Antwerpen 248

Beispiel
Sei q = 233 und p = 2q + 1 = 2 · 233 + 1 = 467
Da g = 2 ein Erzeuger von Z∗p ist, hat α = g2 = 4 die gewünschte
Ordnung q = (p − 1)/2
Da α die Untergruppe QRp = {y2 mod p | y ∈ Z∗p} der quadratischen
Reste in Z∗p erzeugt, ist G = QRp

Die Wahl von a = 101 führt auf den Signierschlüssel k̂ = (p, α, a) =
(467, 4, 101) und den Verifikationsschlüssel k = (p, α, β) = (467, 4, 449)
Die Signatur für x = 119 ∈ G berechnet sich wie folgt:

sig(k̂, x) = xa mod p = 119101 mod 467 = 129 = y
Verifikation der Signatur y = 129 für den Text x = 119 unter k:

Bob wählt e, f ∈ Zq (e = 38, f = 164) und sendet
c = y eβf mod p = 12938449164 mod 467 = 13 an Alice
Alice sendet d = ca−1 mod q mod p = 9 an Bob zurück
Bob akzeptiert, da x eαf mod p = 119384164 mod 467 = 9 = d ist /

Das Signaturverfahren von Chaum und van Antwerpen 249

Bemerkung
Die Wahl von p der Form p = 2q + 1 mit q prim dient folgenden Zielen:

Die Ordnung q der Untergruppe G von Z∗p ist prim (dies erlaubt die
Berechnung von a−1 mod q in Schritt 2 des Verifikationsprotokolls)
G ist eine möglichst große Untergruppe von Z∗p mit primer Ordnung
(man beachte, dass die Ordnung von Z∗p gleich p − 1, also zusammen-
gesetzt ist)

Behauptung 1
Bob akzeptiert eine ungültige Signatur y 6≡p xa nur mit Wahrscheinlichkeit
1/q (auch wenn sich Alice nicht an das Verifikationsprotokoll hält)

Das Signaturverfahren von Chaum und van Antwerpen 250

Beweis.
Alice steht in Zeile 2 des Verifikationsprotokolls vor der Aufgabe, eine
Zahl d ∈ G zu finden, so dass Bob in Zeile 3 akzeptiert
Das wäre für Alice problemlos möglich, wenn sie e und f kennen würde
Alice hat aber nur partielles Wissen über das Paar (e, f), nämlich dass
es folgende Kongruenz erfüllt:

c ≡p y eβf (1)
Da es für jedes e ∈ Zq genau ein f ∈ Zq gibt, so dass das Paar (e, f)
die Kongruenz (1) erfüllt, gibt es genau q solche Paare in Zq × Zq

Da Alice nur c kennt, sind aus ihrer Sicht diese q Paare alle gleich-
wahrscheinlich
Wir zeigen nun, dass unabhängig davon, welches d ∈ G Alice an Bob
sendet, genau eines dieser q Paare zusätzlich die Kongruenz

d ≡p x eαf (2)
erfüllt

Das Signaturverfahren von Chaum und van Antwerpen 251

Beweis (Fortsetzung)
Folglich akzeptiert Bob mit Wahrscheinlichkeit 1/q
Seien c ′, d ′, x ′, y ′ ∈ Zq die zu c, d , x , y ∈ G gehörigen Exponenten, d.h.
c ≡p α

c′ , . . . , y ≡p α
y ′

Dann erfüllt ein Paar (e, f) genau dann die beiden Kongruenzen (1)
und (2), wenn Folgendes gilt:

c ≡p y eβf

d ≡p x eαf ⇔
αc′≡p α

y ′eαaf

αd ′≡p α
x ′eαf ⇔

c ′ ≡q y ′e + af
d ′ ≡q x ′e + f

⇔
(

y ′ a
x ′ 1

)
︸ ︷︷ ︸

A

(
e
f

)
≡q

(
c ′
d ′
)

Wegen αy ′ ≡p y 6≡p xa ≡p α
x ′a folgt y ′ 6≡q x ′a und daher ist

det A ≡q y ′ − x ′a 6≡q 0 �

Das Signaturverfahren von Chaum und van Antwerpen 252

Möchte nun Alice Bob gegenüber nachweisen, dass eine Signatur y
ungültig ist, so führen beide folgendes Ableugnungsprotokoll aus:

1 Bob wählt zufällig e1, f1 ∈ Zq und sendet c1 = y e1βf1 mod p an Alice
2 Alice sendet d1 = ca−1 mod q

1 mod p zurück
3 Bob testet, ob d1 6≡p x e1αf1 ist
4 Bob wählt zufällig e2, f2 ∈ Zq und sendet c2 = y e2βf2 mod p an Alice
5 Alice sendet d2 = ca−1 mod q

2 mod p zurück
6 Bob testet, ob d2 6≡p x e2αf2 ist
7 Bob erkennt y als ungültig an, falls der Test in Zeile 3 oder der Test

in Zeile 6 erfolgreich war und (d1α
−f1)e2 ≡p (d2α

−f2)e1 gilt

Bei den Schritten 1-3 und 4-6 handelt es sich jeweils um eine fehl-
geschlagene Verifikation der Signatur y (sofern der Test von Bob in
Zeile 3 bzw. 6 positiv ausfällt)
In Schritt 7 führt Bob zusätzlich einen Konsistenztest aus, um sich
davon zu überzeugen, dass Alice die Zahlen d1 und d2 gemäß dem
Protokoll gewählt hat

Das Signaturverfahren von Chaum und van Antwerpen 253

Beispiel
Sei p = 467, q = 233, α = 4, a = 101, β = 449
Wir nehmen an, dass der Text x = 286 mit der Alice zugeschriebenen
Signatur y = 81 unterschrieben ist und Alice Bob davon überzeugen
möchte, dass y ungültig ist
Ausführung des Ableugnungsprotokolls:

Bob wählt e1 = 45, f1 = 4 und sendet c1 = 305 an Alice
Alice antwortet mit d1 = ca−1

1 = 109
Bob verifiziert, dass 2864544 ≡p 149 6≡p 109 gilt
Bob wählt e2 = 125, f2 = 9 und sendet c2 = 72 an Alice
Alice antwortet mit d2 = ca−1

2 = 68
Bob verifiziert, dass 28612549 ≡p 25 6≡p 68 gilt
Bob erkennt y als ungültig an, da

(109 · 4−4)125 ≡p 188 ≡p (68 · 4−9)45

ist und somit die Konsistenzbedingung erfüllt ist /

Das Signaturverfahren von Chaum und van Antwerpen 254

Es bleibt zu zeigen, dass sich Bob von der Ungültigkeit einer Signatur y im
Fall y 6≡p xa mit sehr hoher und im Fall y ≡p xa nur mit sehr kleiner
Wahrscheinlichkeit überzeugen lässt (auch wenn sich im zweiten Fall Alice
nicht an das Ableugnungsprotokoll hält)

Behauptung 2
Im Fall y 6≡p xa erkennt Bob y mit Wahrscheinlichkeit 1− 1

q2 als ungültig
an, falls sich beide an das Ableugnungsprotokoll halten

Das Signaturverfahren von Chaum und van Antwerpen 255

Behauptung 2
Im Fall y 6≡p xa erkennt Bob y mit Wahrscheinlichkeit 1− 1

q2 als ungültig
an, falls sich beide an das Ableugnungsprotokoll halten

Beweis.
Nach Behauptung 1 beträgt die Wahrscheinlichkeit, dass die beiden
Tests in Zeile 3 und 6 fehlschlagen genau 1

q2

Wegen β ≡p α
a, ci ≡p y eiβfi und di ≡p ca−1 mod q

i für i ∈ {1, 2} folgt

diα
−fi ≡p (y eiβfi︸ ︷︷ ︸

ci

)a−1
α−fi ≡p y ei a−1

βfi a−1︸ ︷︷ ︸
αfi

α−fi ≡p y ei a−1

und somit
(d1α

−f1)e2 ≡p y e1a−1e2 ≡p y e2a−1e1 ≡p (d2α
−f2)e1 ,

d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfüllt �

Das Signaturverfahren von Chaum und van Antwerpen 256

Behauptung 3
Im Fall y ≡p xa erkennt Bob y nur mit einer Wahrscheinlichkeit ≤ 1

q als
ungültig an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hält

Beweis.
Bob erkennt y nur dann als ungültig an, wenn Folgendes gilt:

(d1 6≡p x e1αf1 oder d2 6≡p x e2αf2) und (d1α
−f1)e2 ≡p (d2α

−f2)e1

Da die beiden Fälle d1 6≡p x e1αf1 und d2 6≡p x e2αf2 symmetrisch sind,
reicht es, einen davon zu betrachten
Wir nehmen also an, dass Alice eine Zahl d1 6≡p x e1αf1 an Bob sendet
Nachdem Alice die Zahl c2 in Zeile 4 von Bob erhalten hat, weiß sie
nur, dass das von Bob gewählte Paar (e2, f2) die Kongruenz
c2 ≡p y e2βf2 erfüllt
Wie wir bereits im Beweis zu Behauptung 1 gesehen haben, trifft dies
auf genau q Paare zu

Das Signaturverfahren von Chaum und van Antwerpen 257

Beweis.
Wir zeigen nun, dass für jedes d2 ∈ G genau eines der q Paare (e2, f2)
die Konsistenzbedingung (d1α

−f1)e2 ≡p (d2α
−f2)e1 erfüllt

Dies beweist, dass unabhängig davon, welches d2 Alice an Bob sendet,
Bob y nur mit Wahrscheinlichkeit 1/q als ungültig akzeptiert
Sei u = d1α

−f1 mod p und seien c ′2, d ′2, x ′, u′ ∈ Zq die zu c2, d2, x , u
gehörigen Exponenten
Dann gilt

c2≡p y e2βf2

(d1α
−f1︸ ︷︷ ︸

u

)e2≡p (d2α
−f2)e1

⇔ c ′2≡q x ′ae2+af2
u′e2≡q d ′2e1−e1f2

⇔
(

x ′a a
u′ e1

)
︸ ︷︷ ︸

A

(
e2
f2

)
≡q

(
c ′2

d ′2e1

)

Wegen x e1 ≡p x e1αf1︸ ︷︷ ︸
6≡pd1

α−f1 6≡p d1α
−f1 ≡p u folgt x ′e1 6≡q u′ und somit

ist det A = x ′ae1 − u′a = a(x ′e1 − u′) 6≡q 0 �

Fail-Stop-Signaturen 258

Ein Nachteil aller bisher betrachteten Signaturverfahren ist, dass Alice
eine vorgelegte Fälschung (x , y) nicht als solche nachweisen kann
Dies liegt daran, dass Alice einen Dritten nicht davon überzeugen kann,
dass sie die Signatur y nicht selbst erzeugt hat
Bei so genannten Fail-Stop-Signaturen ist genau dies möglich
Sollte es einem Angreifer gelingen, das Signaturverfahren zu brechen
(“fail”) und eine Fälschung (x , y) zu generieren, so kann Alice dies mit
hoher Wahrscheinlichkeit beweisen und somit ihre Signatur widerrufen
(“stop”)

Das van Heyst-Pedersen Signaturverfahren 259

Definition
Sei p = 2q + 1 prim, p, q prim und sei α ∈ Z∗p ein Element der
Ordnung q
Weiter sei G = {αa|a ∈ Zq} die von α in Z∗p erzeugte Untergruppe und
β = αa mod p für ein a ∈ Z∗q
Die Zahlen p, q, α, β werden von einer vertrauenswürdigen Instanz
generiert und bekannt gegeben, a wird jedoch vor allen Teilnehmern
geheim gehalten
Der Textraum ist X = Zq und der Signaturraum ist Y = Zq × Zq

Um einen Signierschlüssel zu generieren, wählt Alice zufällig ein 4-Tupel
k̂ = (a1, b1, a2, b2) ∈R Z4

q

Der zugehörige Verifikationsschlüssel ist dann
k = (γ1, γ2) = (αa1βb1 , αa2βb2) ∈ G2

Das van Heyst-Pedersen Signaturverfahren 260

Definition (Fortsetzung)
Signaturerstellung: Die Signatur für einen Text x ∈ Zq unter einem
Signierschlüssel k̂ = (a1, b1, a2, b2) ∈ Z4

q ist

sig(k̂, x) = (y1, y2) = (a1 + xa2 mod q, b1 + xb2 mod q)

Verifikation: Für einen Verifikationsschlüssel k = (γ1, γ2), einen Text
x ∈ Zq und eine Signatur y = (y1, y2) ∈ Zq × Zq gilt

ver(k, x , y) =

1, γ1γ
x
2 ≡p α

y1βy2 ,

0, sonst

Das van Heyst-Pedersen Signaturverfahren 261

Beispiel
Die vertrauenswürdige Instanz (TTP, trusted third party) generiert

Primzahlen p und q mit p = 2q + 1 = 2 · 1733 + 1 = 3467, sowie
ein Element α = 4 ∈ Z∗p mit ordp(α) = q und
eine geheime Zahl a = 1567 ∈ Z∗q und
gibt die Zahlen p, q, α und β = αa mod p = 41567 mod p = 514
bekannt, hält aber a geheim

Wählt Alice k̂ = (a1, b1, a2, b2) = (888, 1024, 786, 999) als Signier-
schlüssel, so berechnet sich der zugehörige Verifikationsschlüssel zu
k = (γ1, γ2) mit

γ1 = αa1βb1 = 48885141024 = 3405
und

γ2 = αa2βb2 = 4786514999 = 2281

Das van Heyst-Pedersen Signaturverfahren 262

Beispiel (Fortsetzung)
Um den Text x = 1650 zu signieren, berechnet Alice mit dem Signier-
schlüssel k̂ = (a1, b1, a2, b2) = (888, 1024, 786, 999) die Signatur
y = sig(k̂, x) = (y1, y2) mit

y1 = a1 + xa2 mod q = 888 + 1650 · 786 mod q = 1504 und
y2 = b1 + xb2 mod q = 1024 + 1650 · 999 mod q = 1291

Um die Signatur y = (1504, 1291) zu überprüfen, testet Bob mit dem
Verifikationsschlüssel k = (γ1, γ2) = (3405, 2281) die Verifikations-
bedingung

γ1γ
x
2 = 3405 · 22811650 ≡p 2282 ≡p 415045141291 = αy1βy2

/

Das van Heyst-Pedersen Signaturverfahren 263

Betrachte die Menge
S = {(k̂, k) | k̂ = (a1, b1, a2, b2) ∈ Z4

q, k = (αa1βb1 , αa2βb2) ∈ G×G}
aller möglichen Schlüsselpaare
Für einen Verifikationsschlüssel k ∈ G × G sei

S(k) = {k̂ ∈ Z4
q | (k̂, k) ∈ S}

die Menge aller Signierschlüssel, die zu k passen, und
für einen Text x und eine Signatur y = (y1, y2) sei

S(k, x , y) = {k̂ ∈ S(k) | sig(k̂, x) = y}
die Menge aller Signierschlüssel in S(k), die für x die Signatur y
berechnen

Das van Heyst-Pedersen Signaturverfahren 264

Lemma
Für jeden Signierschlüssel k̂ ∈ S(k) und jedes Paar (x , y) mit sig(k̂, x) = y
ist die Verifikationsbedingung ver(k, x , y) = 1 erfüllt

Beweis.
Sei k̂ = (a1, b1, a2, b2) und sig(k̂, x) = y = (y1, y2)
Wegen k̂ ∈ S(k) folgt k = (γ1, γ2) = (αa1βb1 , αa2βb2) und daher gilt

γ1γ
x
2 ≡p αa1βb1(αa2βb2)x

≡p αa1+xa2βb1+xb2

≡p αy1βy2
�

Anders gesagt gibt es im Fall ver(k, x , y) = 0 keinen Signierschlüssel
k̂ ∈ S(k) mit sig(k̂, x) = y , d.h. S(k, x , y) = ∅

Das van Heyst-Pedersen Signaturverfahren 265

Das nächste Lemma zeigt, dass S(k, x , y) im Fall ver(k, x , y) = 1 genau q
Signierschlüssel enthält

Lemma
Zu jedem Paar (x , y) mit ver(k, x , y) = 1 gibt es genau q Signierschlüssel
k̂ ∈ S(k) mit sig(k̂, x) = y

Beweis.
Wir zeigen zuerst, dass S(k) für jeden Verifikationsschlüssel
k = (γ1, γ2) genau q2 Signierschlüssel enthält
Ein Signierschlüssel k̂ = (a1, b1, a2, b2) ist genau dann in S(k), wenn er
die beiden Kongruenzen

αa1βb1 ≡p γ1
αa2βb2 ≡p γ2

erfüllt

Das van Heyst-Pedersen Signaturverfahren 266

Beweis (Fortsetzung)
Seien c1, c2 ∈ Zq eindeutig bestimmte Exponenten mit
γ1 ≡p α

c1 und γ2 ≡p α
c2

Dann sind diese Kongruenzen äquivalent zu

a1 + ab1 ≡q c1
a2 + ab2 ≡q c2

bzw.
(
1 a 0 0
0 0 1 a

)
︸ ︷︷ ︸

A


a1
b1
a2
b2

 ≡q

(
c1
c2

)
(∗)

Da A den Rang 2 hat, folgt ‖S(k)‖ = q2 (siehe Übungen, Aufgabe 19)

Das van Heyst-Pedersen Signaturverfahren 267

Beweis (Fortsetzung)
Sei nun (x , y) ein Paar mit x ∈ Zq und y = (y1, y2) ∈ Zq × Zq

Dann ist ein Signierschlüssel k̂ = (a1, b1, a2, b2) genau dann in
S(k, x , y), wenn er die Kongruenzen

a1 + ab1 ≡q c1
a2 + ab2 ≡q c2
a1 + xa2 ≡q y1
b1 + xb2 ≡q y2

bzw.


1 a 0 0
0 0 1 a
1 0 x 0
0 1 0 x


︸ ︷︷ ︸

A′


a1
b1
a2
b2

 ≡q


c1
c2
y1
y2


︸ ︷︷ ︸

s′

(∗∗)

erfüllt
Wir zeigen, dass sowohl die Matrix A′ als auch die um den Vektor s ′
erweiterte Matrix A′s ′ den Rang r = rang(A′) = rang(A′s ′) = 3 haben
Dies impliziert, dass das lineare Gleichungssystem (∗∗) genau q4−r = q
Lösungen hat (siehe Übungen)

Das van Heyst-Pedersen Signaturverfahren 268

Beweis (Schluss)
Seien r1, . . . , r4 die Zeilen von A′

Dann gilt rang(A′) ≥ 3, da die Zeilen r2, r3, r4 linear unabhängig sind,
und rang(A′) ≤ 3, da r1 = r3 + ar4 − xr2 ist
Damit hat (∗∗) im Falle der Lösbarkeit genau q4−3 = q Lösungen
Zum Nachweis der Lösbarkeit von (**) zeigen wir, dass die in A′ be-
stehende Zeilenabhängigkeit r1 = r3 + ar4 − xr2 im Fall ver(k, x , y) = 1
auch für den Spaltenvektor s ′ auf der rechten Seite von (**) gilt:

γ1γ
x
2 ≡p α

y1βy2 ⇒ c1 + xc2 ≡q y1 + ay2 ⇒ c1 ≡q y1 + ay2 − xc2

Da somit die Erweiterung der Matrix A′ um den Spaltenvektor s ′ deren
Rang im Fall ver(k, x , y) = 1 nicht erhöht, ist (**) in diesem Fall
lösbar �

Das van Heyst-Pedersen Signaturverfahren 269

Lemma
Für alle x , x ′ ∈ Zq und y = (y1, y2), y ′ = (y ′1, y ′2) ∈ Z2

q mit x ′ 6= x gilt
‖S(k, x , y) ∩ S(k, x ′, y ′)‖ ≤ 1

Im Fall ver(k, x , y) = ver(k, x ′, y ′) = 1 gilt sogar Gleichheit

Beweis.
Die Bedingung k̂ = (a1, b1, a2, b2) ∈ S(k, x , y) ∩ S(k, x ′, y ′) ist
äquivalent zu

1 a 0 0
0 0 1 a
1 0 x 0
0 1 0 x
1 0 x ′ 0
0 1 0 x ′


︸ ︷︷ ︸

A′′

 a1
b1a2
b2

 =


c1c2y1y2
y ′

1
y ′

2


︸ ︷︷ ︸

s′′

(∗ ∗ ∗)

wobei wieder γ1 ≡p α
c1 , γ2 ≡p α

c2 ist

Das van Heyst-Pedersen Signaturverfahren 270

Beweis (Fortsetzung)
Wir zeigen, dass die Zeilen r1, r2, r4, r6 von A′′ linear unabhängig sind
und somit A′′ den Rang rang(A) = 4 hat
Daraus folgt, dass (***) höchstens eine Lösung hat
Aus l1r1 + l2r2 + l4r4 + l6r6 = ~0 folgt nämlich l1 = l2 = 0 und
l4 + l6 = 0 sowie l4x + l6x ′ = 0, was l6 = −l4 sowie l4(x − x ′) = 0 und
somit wegen x − x ′ 6= 0 auch l4 = l6 = 0 impliziert
Da auch die Zeilen r3, . . . , r6 von A′′ linear unabhängig sind, lässt sich k̂
bei Kenntnis zweier Signaturen y = sig(k̂, x) und y ′ = sig(k̂, x ′) für
zwei Texte x 6= x ′ leicht bestimmen, d.h. es handelt sich um ein
One-time-Signaturverfahren

Das van Heyst-Pedersen Signaturverfahren 271

Beweis (Schluss)
Um die Lösbarkeit von (***) im Fall ver(k, x , y) = ver(k, x ′, y ′) = 1
nachzuweisen, zeigen wir, dass die in A′′ bestehenden
Zeilenabhängigkeiten r3 = r1 + xr2 − ar4 und r5 = r1 + x ′r2 − ar6 auch
für den Spaltenvektor s ′′ auf der rechten Seite von (***) gelten
Aus ver(k, x , y) = 1 folgt

γ1γ
x
2 ≡p α

y1βy2 ⇒ c1 + xc2 ≡q y1 + ay2 ⇒ y1 ≡q c1 + xc2 − ay2

Analog folgt aus ver(k, x ′, y ′) = 1 die Kongruenz
y ′1 ≡q c1 + x ′c2 − ay ′2 �

	Digitale Signaturverfahren
	Das RSA-Kryptosystem
	Das RSA-Signaturverfahren
	Diskrete Logarithmen
	Zyklische Gruppen
	Das ElGamal-Signaturverfahren
	Zur Sicherheit des ElGamal-Systems

	Das Schnorr-Signaturverfahren
	Der Digital Signature Algorithm (DSA)
	Der ECDSA (Elliptic Curve DSA)
	Die One-time-Signatur von Lamport
	Full Domain Hash (FDH) Signaturen
	Verbindliche Signaturen
	Fail-Stop-Signaturen

