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Eigenschaften von handschriftlichen Signaturen

@ Die durch die Unterschrift gekennzeichnete Person hat tberpriifbar die
Unterschrift geleistet

@ Die Unterschrift ist nicht auf ein anderes Dokument iibertragbar, ohne
ihre Giiltigkeit zu verlieren

@ Das signierte Dokument kann nachtraglich nicht unbemerkt verandert
werden

Eine direkte Ubertragung dieser Eigenschaften in die digitale Welt ist nicht
moglich

Die digitale Signatur wird nicht physikalisch, sondern logisch (inhaltlich) an
ein elektronisches Dokument bzw. Text gebunden und die Fahigkeit, einen
individuellen Schriftzug auszufiihren, wird durch geheimes Wissen ersetzt
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Definition

Ein digitales Signaturverfahren besteht aus
@ einer Menge X von Texten

@ einer endlichen Menge Y von Signaturen
@ einem Schliisselraum K
°

einer Menge S C K x K von Schliisselpaaren (k, k), bestehend aus
einem Signierschliissel k und einem Verifikationsschlissel k

einem Signieralgorithmus sig : K x X — Y und

@ einem Verifikationsalgorithmus ver : K x X x Y — {0, 1}, so dass
ver(k, x,y) =1 fir alle Paare (k,k) € Sund (x,y) € X x Y mit
y = sig(k, x) gilt
Im Fall ver(k,x,y) =1 heiBt y giiltige Signatur fiir den Text x (unter k),
andernfalls ungiiltig
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Ein wichtiger Unterschied zu MACs besteht darin, dass digitale
Signaturverfahren asymmetrisch sind

Aufgrund dieser Asymmetrie kann Bob namlich auch einem Dritten
gegeniliber nachweisen, dass eine von Alice erzeugte Signatur y
tatsachlich von Alice stammt

Bei Verwendung eines MACs zur Authentifikation einer Nachricht x
kénnte Bob die Nachricht manipuliert und den MAC-Wert auch selbst
erzeugt haben, weshalb Alice ihre Urheberschaft von x erfolgreich
abstreiten kann

Ein weiterer Vorteil von digitalen Signaturen gegeniiber MACs ist, dass
eine von Alice geleistete Signatur von allen verifizierbar ist, sofern sie
den offentlichen Verifikationsschliissel von Alice kennen

Um bspw. die Authentizitat eines Software-Updates x zu gewahrleisten,
kann eine SW-Firma x zusammen mit ihrer Signatur y fiir x verschicken
Bei Verwendung eines MACs miisste die SW-Firma dagegen mit jedem
einzelnen Kunden K; einen symmetrischen Schliissel k; vereinbaren und
den zugehoérigen MAC-Wert y; = hy,(x) versenden




Klassifikation von Angriffen gegen Signaturverfahren el

Angriff bei bekanntem Verifikationsschliissel (key-only attack)
Dem Angreifer ist nur der 6ffentliche Verifikationsschliissel k bekannt und
er versucht, ein Paar (x, y) mit ver(k,x,y) =1 zu finden. Jedes solche
Paar, das nicht von Alice unter Verwendung des geheimen
Signierschliissels erzeugt wurde, wird als Falschung bezeichnet

Angriff bei bekannter Signatur (known signature attack)

Der Angreifer kennt neben k die Signaturen y; = sig(l;,x,-) fur eine Reihe
von Texten xi, ..., Xq, auf deren Auswahl er keinen Einfluss hat, und
versucht, eine Falschung (x, y) mit x & {x1,...,xq} zu finden

Angriff bei frei wahlbaren Texten (chosen document attack)
Der Angreifer kann die Texte xi, ..., xq selbst wahlen, erhalt die
Signaturen aber erst, nachdem er alle Texte vorgelegt hat

Angriff bei adaptiv wahlbaren Texten

Der Angreifer kann die Wahl des Textes x;;1 von den Signaturen
vi,-...,Y; abhangig machen



Erfolgskriterien fir die Falschung digitaler Signaturen ez

uneingeschréanktes Falschungsvermogen (total break)
Der Angreifer hat einen Weg gefunden, die Funktion x — sig(k, x) bei
Kenntnis von k effizient zu berechnen

selektives Falschungsvermogen (selective forgery)
Der Angreifer kann fiir Texte seiner Wahl die zugehérigen Signaturen
bestimmen (eventuell mit Hilfe des legalen Unterzeichners)

nichtselektives (existentielles) Falschungsvermogen
Der Angreifer kann fiir bestimmte Texte x, auf deren Wahl er keinen
Einfluss hat, die zugehorige digitale Signatur bestimmen
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@ Das RSA-Kryptosystem wurde 1978 von Rivest, Shamir und Adleman
veroffentlicht

@ Wahrend es beim Primzahlproblem nur um die Frage , Ist n prim?* geht,
muss beim Faktorisierungsproblem im Falle einer zusammengesetzten
Zahl mindestens ein nicht-trivialer Faktor berechnet werden

@ Genauer gesagt beruht das RSA-Verfahren darauf, dass die Primzahl-
eigenschaft zwar effizient getestet werden kann, aber keine effizienten
Faktorisierungsalgorithmen bekannt sind

Schliisselgenerierung

Fir jeden Teilnehmer X werden zwei Primzahlen p, g und zwei Exponenten
e,d mit ed =) 1 generiert, wobei n = pq und p(n) = (p —1)(q — 1) ist
Offentlicher Schliissel: kx = (e, n)

Privater Schliissel: ki = (d, n)
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Ver- und Entschlisselung

@ Jede Nachricht x wird durch eine Folge x1, x>, ... von Zahlen x; € Zj,
dargestellt, die einzeln wie folgt ver- und entschliisselt werden:

o RSA((e, n),x) = xmod n
o RSA7Y((d,n),y) = y? mod n
@ Der Schliisselraum ist also
K = {(c, n) | es gibt Primzahlen p und g mit n = pq und c € Z;,(,\}
und
S={((e;n),(d,n)) € K x K | ed =) 1}
ist die Menge aller zueinander passenden Schliisselpaare

e Die Chiffrierfunktionen RSA(, ;) und RSA( n) sind durch Wieder-
holtes Quadrieren und Multiplizieren effizient berechenbar
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Ver- und Entschliisselung
Der folgende Satz garantiert die Korrektheit des RSA-Systems

Fiir jedes Schliisselpaar ((e, n),(d,n)) € S und alle x € Z, gilt

ed_
=n X

Beweis.

@ Sei n = pq und sei z eine natiirliche Zahl mit ed = zp(n) + 1

e Wir zeigen x°¢ =, x. Die Kongruenz x®¢ =, x folgt analog und beide

Kongruenzen zusammen implizieren x¢¢ =, x
o Wegen (n) = (p—1)(q — 1) und wegen xP~1 =, 1 fiir x %, 0 folgt
€ — yze(m+1 _  z(p—1)(q-1), _ (Xp—l)Z(q—l)X =, x

d




Das RSA-Signaturverfahren 186

Definition
@ Beim RSA-Signaturverfahren ist

K = {(a, n)|n = pq fir Primzahlen p,q und a € Zf;(n)}
und S die Relation S = {((d, n), (e, n)) € K x K|de =,y 1}
o Signiert wird mittels sig(d, n,x) := x? mod n, wobei X = Y = Z, ist
@ Die Verifikationsbedingung ist
)L ye=ax
ver(e, n. x,y) = { 0, sonst

Fur alle ((d, n), (e,n)) € S und x,y € Z, gilt

1, sig(d,n,x) =y,
ver(e,n,x,y) = { . ( )sonst

Der Beweis folgt direkt aus der Korrektheit des RSA-Kryptosystems |
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@ Wir betrachten eine Reihe von Angriffen gegen das RSA-Signatur-
verfahren und (berlegen anschlieBend, durch welche MaBnahmen sich
diese abwehren lassen

@ Ein Angreifer kann leicht eine existentielle Falschung bei bekanntem
Verifikationsschliissel erhalten, indem er zu einer beliebigen Signatur
y € Y den Text x = y® mod n wahlt

@ Zudem ist eine existentielle Félschung bei bekannten Signaturen
moglich, falls der Angreifer zwei signierte Texte (x1, y1), (x2, y2) mit
ver(k, xi,yi;) = 1 kennt

e Wegen yf =, x; fur i = 1,2 folgt namlich (y1y2)¢ =, yf¥5 =n x1x2 und
somit ver(k,xixo mod n, y1y» mod n) =1

@ Weiterhin ist eine selektive Falschung bei frei wahlbarem Text moglich

e Kennt der Angreifer namlich bereits die Signatur y’ fiir einen beliebigen
Text x' € Z und kann er sich die Signatur y” fiir " = xx’~! mod n
beschaffen, so kann er daraus die Signatur y = y’y” mod n fiir den
Text x berechnen
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@ Diese Angriffe kann man vereiteln, indem man den Text x mit
Redundanz versieht (indem man z.B. anstelle von x den Text xx
signiert)

@ Um auch langere Texte effizient signieren zu kdnnen, wird i.a. jedoch
eine geeignete Hashfunktion h benutzt und nicht der gesamte Text x,
sondern nur der Hashwert h(x) signiert
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Bei der Signaturerstellung bendtigte Eigenschaften einer Hashfunktion h

Die verwendete Hashfunktion h sollte die Einwegeigenschaft haben, da
sonst der Angreifer zu einem y € Y einen passenden Text x mit

h(x) = y bestimmen kann (zumindest wenn das Signaturverfahren
anfallig gegen eine existentielle Falschung ist, wie etwa RSA)

Angenommen der Angreifer kennt bereits ein Paar (x, y) mit

ver(k, h(x).y) = 1

Dann sollte h zumindest schwach kollisionsresistent sein, da sonst der
Angreifer ein x’ mit h(x") = h(x) berechnen und das Paar (x',y)
bestimmen konnte

Falls sich der Angreifer fiir bestimmte von ihm selbst gewahlte Texte x
die zugehorige Signatur y beschaffen kann, so sollte h sogar
kollisionsresistent sein

Andernfalls kénnte der Angreifer ein Kollisonspaar (x, x") fir h finden,
sich den (unverdachtigen) Text x signieren lassen und die erhaltene
Signatur y fir den Text x” verwenden
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@ Fiir ein beliebiges Element a einer multiplikativen Gruppe G ist die
Exponentiation exp¢ , : x — a* zur Basis a eine Bijektion zwischen der
Menge Zor(a) = {0,1,...,0rd(a) — 1} und der Untergruppe (a)

@ Die zugehorige Umkehrabbildung spielt in der Kryptografie eine
wichtige Rolle

Definition
@ Seien a,b € G mit b € (a)
@ Dann heiBt der eindeutig bestimmte Exponent x € Zgq(5) mit a* = b
Index oder diskreter Logarithmus von b zur Basis a in G, kurz
x = logg ,(b)

o Im Fall G = Zj, schreiben wir auch einfach log,, ,(b) anstelle von
|ogZ;‘n,a(b)
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e Die Funktion exp,, , : x > a~ ist effizient berechenbar (siehe unten)

@ Dagegen sind bis heute keine effizienten Verfahren zur Berechnung von
log,,, 2(b) bekannt (falls a und m geeignet gewahlt werden)

Beispiel

@ Das Element a = 2 hat in der Gruppe G = Z]; die maximal mogliche
Ordnung ordy;(2) = ||G|| = 10

e Die folgenden Tabellen zeigen den Werteverlauf der Funktionen expy; »
und logy; 5

x[0123456789 b 12345678910
212485109736  log;1,(b) [0182497365

<
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Fir manche Anwendungen sind Elemente a € G nitzlich, mit denen sich
die gesamte Gruppe erzeugen |3sst

Definition

@ Sei G eine endliche Gruppe der Ordnung ||G|| = m

@ Ein Element g € G mit ordg(g) = m heiBt Erzeuger von G
@ G heiBt zyklisch, falls G mindestens einen Erzeuger besitzt

Ein Element a € G ist also genau dann ein Erzeuger, wenn die von a
erzeugte Untergruppe (a) die gesamte Gruppe G umfasst

Satz (GauB)

Genau fiir m € {1,2,4, p*,2p* | 2 < p prim} ist die Gruppe Z¥, zyklisch
(ohne Beweis)
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e Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige
asymmetrische Kryptosystem probabilistisch und beruht wie dieses auf
dem diskreten Logarithmus

@ Sei p eine groBe Primzahl und « ein Erzeuger von Zj
(p und « sind offentlich)

@ Jeder Teilnehmer B wahlt eine geheime Zahl a € Z,—1 ={0,...,p—2}
und gibt 5 = a? mod p als Teil seines 6ffentlichen Verifikations-
schliissels bekannt:

Signierschliissel: k = (p,a, a)
Verifikationsschliissel: k = (p, a, 3)

@ Der Textraum ist X = Z,_1 und der Signaturenraum ist

Y =7y xZp-1\ {0}
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@ Signaturerstellung: Um einen Text x € X zu signieren, wahlt der
Signierer zufallig eine Zahl z € Z7,_; und berechnet die Signatur
sig(k.x,2) = (1.6) € Y
mit ¥ = a? mod pund 6 = (x — ay)z 1 mod p — 1
@ Falls § = 0 ist, muss eine neue Zufallszahl z gewahlt und der Vorgang
wiederholt werden
e Verifikation: Es gilt ver(k, x, (v,8)) = 1, falls 879 =, o ist
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Lemma

Eine Signatur (-, ) mit ord(y) = p — 1 erfillt genau dann die
Verifikationsbedingung 3779 =p @, wenn es ein z € Z;_; mit

sig(k,x,z) = (v, ) gibt

Beweis.

e Wegen v = o mod p ist z durch v (und ~y durch z) eindeutig bestimmt

o Weiter ist 379° =, a®a?’ =, o™+

@ Da « ein Erzeuger von Zj, ist, gilt die Kongruenz a+20 =, o genau
dann, wenn ay + z0 =p_1 x ist, was wiederum mit 6 =,_1 (x — ay)z~
aquivalent ist 0

1

Bemerkung

Da der Signieralgorithmus fiir die Berechnung von v = o mod p eine
Zufallszahl z € Z;,_; wahlt, hat jedes von sig erzeugte y die Ordnung
ord(y) = ord(a*) = ord(«)/ ggT(ord(a), z) = ord(a) = p — 1
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Beispiel
@ Sei p =467, a =2, a= 127 und 8 = a® mod p = 2'%" mod 467 = 132
@ Um den Text x = 100 € Zp_1 = Zs4ee mit dem Signierschliissel

k = (p,a, a) = (467,2,127) zu signieren,
o wahlt Alice die geheime Zufallszahl z = 213 € Zj,_,
(~ z~1 mod 466 = 431) und
o erhalt

v = 2213 mod 467 = 29 und § = (100 — 127-29)431 mod 466 = 51,
d.h. sig(k, x,z) = (29,51)

e Um die Giiltigkeit dieser Signatur fiir den Text x = 100 mit dem
Verifikationsschlissel k = (p, «, 3) = (467,2,132) zu prifen,

o verifiziert Bob die Kongruenz

BTy =, 132%920°" =, 189 =, 21 =, o
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e Falls der Angreifer in der Gruppe Zj, den diskreten Logarithmus von 3
zur Basis a bestimmen kann, so kann er den geheimen Schlissel
a = log,, 5 berechnen
@ Als nachstes betrachten wir verschiedene Szenarien fiir einen selektiven
Angriff bei bekanntem Verifikationsschliissel
@ Der Angreifer wahlt zu einem gegebenen Text x zuerst ~ und versucht,
ein passendes § zu finden:
o Mit o = 379° mod p folgt § = log., (a*377)
o D.h. die Bestimmung von ¢ ist eine Instanz des diskreten
Logarithmus Problems (kurz: DLP)
@ Der Angreifer wahlt zu einem gegebenen Text x zuerst ¢ und versucht
dann ein v mit o = 79° mod p zu finden

o Hierfiir ist kein effizientes Verfahren bekannt
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@ Der Angreifer versucht, zu einem gegebenen Text x gleichzeitig
passende Zahlen v und ¢ mit & = 879° mod p zu finden
o Auch hierfiir ist kein effizientes Verfahren bekannt
@ Versucht der Angreifer bei einem nichtselektiven Angriff, zuerst v und §
zu wahlen und dazu einen passenden Text x zu finden, so muss er den
diskreten Logarithmus x = log,, 377° bestimmen
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@ Eine existentielle Falschung lasst sich jedoch wie folgt durchfiihren
(falls keine Hashfunktion benutzt wird)

o Der Angreifer wahlt beliebige Zahlen u € Zp_1, v € Zj,_; und
berechnet v = a“3Y mod p

o Dann ist (v, d) genau dann eine giltige Signatur fiir einen Text x,
wenn o =, B7(atBY)? ist

o Dies ist wiederum aquivalent zur Kongruenz =% = BITVe die
sich im Fall ggT(v,p—1) =1 fiir den Text x = ud mod p — 1
mittels 6 = —yv~! mod p — 1 erfiillen lasst

o Bei Wahl von v =1 erhalten wir z.B. die giiltige Signatur
(7,0) = (a“B mod p, —a"B mod p — 1) fiir den Text
x = ud mod p — 1, wobei u € Z,_1 beliebig gewahlt werden kann
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Bemerkung

Bei der Benutzung des ElGamal-Signaturverfahrens sind folgende Punkte
zu beachten

@ Die Zufallszahl z muss geheim gehalten werden

@ Zufallszahlen diirfen nicht mehrfach verwendet werden

e Kennt namlich der Angreifer zu einer Signatur (x, (v, d)) die Zufallszahl
z, so kann er wegen § =p_1 (x — ay)z~ ! im Fall ggT(v,p — 1) = 1 die
geheime Zahl

a=(x—2z6)y ! mod (p—1)
als eindeutige Losung der Kongruenz

ya =p_1 X — 20 (x)

berechnen
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e Kennt namlich der Angreifer zu einer Signatur (x, (v, 0)) die Zufallszahl

z, so kann er die geheime Zahl a als eindeutige Lésung der Kongruenz
ya=p_1 X — 26 (*)

berechnen

o Ist allgemeiner ggT(v,p —1) = g > 1, so ist g ein Teiler von v und
von p — 1 sowie wegen (%) auch von x — z¢

@ Setzen wir i := /g und X := (x — zd)/g, so fuhrt (%) auf die
Kongruenz p1a =(,_1)/¢ A (**), aus der sich wegen
ggT (i, (p—1)/g) = 1 folgende g Kandidaten a; fiir a gewinnen lassen:

a0 = p ‘A mod (p—1)/g und a; := ap+i(p—1)/g firi=1,...,g—1

@ Unter ag, ..., ag—1 lasst sich a durch Priifen der Bedingung a® =, /8
eindeutig bestimmen
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e Sind andererseits (xi, (7,01)) und (x2, (7, 02)) mit demselben z
generierte Signaturen, dann folgt wegen 579 =, o fur i € {1,2},

761—52 = e B BN @2(61—52) = QXX

= 2(51 = 52) =p-1 X1 — X2

@ Aus dieser Kongruenz lassen sich d = ggT (41 — 2, p — 1) Kandidaten
fir z gewinnen und daraus wie oben a berechnen, falls d nicht zu groB
ist
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@ Da die Primzahl p beim ElGamal-Signaturverfahren mindestens eine
512-Bit-Zahl (besser 1024-Bit-Zahl) sein sollte, betragt die Signatur-
ldnge 1024 bzw 2048 Bit

@ Folgende Variante des ElIGamal-Signaturverfahrens, die als eine Vorstufe
zum DSA betrachtet werden kann, wurde von Schnorr vorgeschlagen
@ Die zugrunde liegende Idee ist folgende:
o Indem wir fiir o ein Element der Ordnung g mit g ~ 2160 wahlen,
reduziert sich die Signaturldnge auf 2 - 160 = 320 Bit
o Die Berechnungen werden aber nach wie vor modulo p mit
p ~ 21924 qusgefiihrt, so dass das Problem des diskreten
Logarithmus zur Basis « in Zj, hart bleibt
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@ Sei g ein Erzeuger von Z7, wobei p die Bauart p — 1 = mq fiir eine
Primzahl g = =1 & 2160 hat

m
e Dann ist o = g(P~1)/4 ein Element in Zy, der Ordnung ordp(a) = q

i ord _ —1 o N
° da ord(g’) = ggT(i,o(récrf)(g)) - ggT((pfl)/q,p—l) = q ist (s. Ubungen)
e Weiter sei h: {0,1}* — Z, eine Hashfunktion, die jedem Text
x € X ={0,1}* einen Hashwert in Zg zuordnet
@ Das Schnorr-Verfahren benutzt folgende Schlissel:

Signierschliissel: k = (p,q,0,a), a€ Zg
Verifikationsschliissel: k = (p, a, 8), 8 = @ mod p
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@ Das Schnorr-Verfahren benutzt folgende Schliissel:
Signierschliissel: k = (p,q,,a), a € Zg
Verifikationsschliissel: k = (p,a, ), 5 = a? mod p
@ Signaturerstellung
Um einen Text x € X zu signieren, wahlt der Signierer zufallig eine
geheime Zahl z € Z; (ElGamal: z € Z,_;) und berechnet die Signatur

sig(k, x,z) = (v,9),
wobei v = h(xbin(a* mod p)) und § = (z + ay) mod g
(ElGamal: v = a? mod p und 6§ = (x — ay)z~! mod p — 1) ist
@ Der Signaturraum ist also Y := Zq X Zgq

@ Verifikation
Es gilt ver(k, x,v,d) = 1, falls h(xbin(a’8~" mod p)) = v
(ElGamal: 87+ =, o) ist
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Beispiel
Seien ¢ =101, p=78g+1=7879 und g =3
@ Dann ergibt sich o zu o = g(P~1)/9 = 378 mod p = 170
@ Fiir a =75 ergibt sich 5 zu 8 = &? mod p = 170”® mod 7879 = 4567
@ Um einen Text x € {0,1}" mit dem Signierschliissel
k = (p,q,a,a) = (7879,101, 170, 75) zu signieren,
o wahlt Alice die geheime Zufallszahl z = 50 € Z7 und
o berechnet den Wert o mod p = 170°° mod 7879 = 2518

o Dies fiihrt auf den Hashwert v = h(xbin(2518)) € Zq
o Unter der Annahme, dass h(xbin(2518)) = 96 ist, erhalt Alice wegen

0 =50+ 75-96 mod 101 =79
die Signatur sig(k, x, z) = (96, 79)
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Beispiel (Fortsetzung)

e Um die Giiltigkeit der Signatur sig(k, x,z) = (96, 79) fiir den Text x
mit dem Verifikationsschliissel k = (p, a, ) = (7879, 170, 4567) zu
prifen,

o berechnet Bob die Zahl
o’ B =, 17070456770 =, 2518
o und verifiziert die Gleichheit h(xbin(2518)) = 96 N
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@ Der DSA wurde im August 1991 vom National Institute of Standards

and Technology (NIST) fiir die Verwendung im Digital Signature
Standard (DSS) empfohlen

@ Der DSS enthalt neben dem DSA (urspriinglich der einzige im DSS
definierte Algorithmus) als weitere Algorithmen die RSA-Signatur und
ECDSA (siehe unten)

@ Der DSA lasst sich durch eine Reihe von Modifikationen aus dem
ElGamal-Verfahren erhalten, das wie folgt arbeitet




Der Digital Signature Algorithm (DSA) A

o ElGamal-Verfahren:
o Signaturerstellung: Um einen Text x € X zu signieren, wahlt der
Signierer zufallig eine Zahl z € Zj,_; und berechnet die Signatur
sig(k,x,z) = (1,6) € Y

mit v = a? mod p und § = (x —ay)z ' mod p — 1

o Falls § = 0 ist, muss eine neue Zufallszahl z gewéhlt und der
Vorgang wiederholt werden

o Verifikation: Es gilt ver(k, x, (7,0)) = 1, falls 879° =, o ist

e Folge der Modifikationen fiir den Ubergang zu DSA:

o § als Lésung von z0 — ay =p_1 x (d.-h. § = (x + ay)z™ 1)

o Dies fiihrt auf die Verifikationsbedingung o*37 =, o
(axaa'y = oZx+ar)z *1)

o Ist x + afy € Z;,_4, dann existiert 5~ = (x+ afy) lzmodp—1

o Dies fiihrt auf d|e Verifikationsbedingung %~ ﬁ75 ' =
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Sei nun wie bei Schnorr p = mg + 1 mit g ~ 219 prim und sei a € Zy,
mit ordp(a) = ¢

Dann kann bei der Verifikation von a0 ' 379" =, v auf der
Exponentenebene modulo q gerechnet werden

Da v jedoch rechts nicht als Exponent, sondern als Basiszahl,
vorkommt, muss auch die linke Seite modulo q reduziert werden

Beim DSA hat der Signierschliissel also die Form k = (p, g, , a), wobei

a € Zyg ist

Der zugehorige Verifikationsschlissel ist k = (p, g, v, 8) mit

8 =ca®mod p

Zudem gilt X =Zgq und Y =Zq x Zg

Zu gegebenem x € X wird zuféllig eine geheime Zahl z € Z gewahlt
sig(k,z,x) = (v,8), wobei {7 = (a* mod p) mod q

§=(x+ay)z'modgqec Zy

Im Fall v = 0 oder § = 0 muss ein neues z gewahlt werden
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@ Die Verifikationsbedingung ist

1, (aB mod dg=
Ver(k7x’%5):{, (a4 mod p) mod g = 7,

0, sonst,

wobei e = x6~! mod g und d = v6~! mod q ist
@ Die Korrektheit ergibt sich wie folgt:
o Im Fall sig(k,z,x) = (v,9) ist

—1 —1 —1 —1
af d — O[Xé aa'yé = Clé (x+av) =, a(x+a’y) z(x+ay) =

=p
woraus sich
(a*89 mod p) mod g = (a® mod p) mod q = v
ergibt

211

z
p O
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@ Seien q =101, p=78q+1=7879, g =3 (ordp(3)=p—1)
~ a = 3" mod p = 170 hat Ordnung q

o Wir wihlen a =75 € Zg, d.h. = a® mod p = 170" mod p = 4567

@ Um den Text x = 22 € Zq zu signieren, wahlen wir die geheime
Zufallszahl z = 50 € Z;, (~» z~! = 99) und erhalten dann

v = (170° mod 7879) mod 101

2518 mod 101

94

§ = (22+75-94)-99 mod 101
= 97 (~ 61 =25)

d.h. sig(p, g, o, z, x) = (94,97), wobei k = (p,q,a,a)




Der Digital Signature Algorithm (DSA) 218

Beispiel (Fortsetzung)

@ Um diese Signatur zu priifen berechnen wir:
e = x0'modg
22 - 25 mod 101
45
d = v 1modg
94 - 25 mod 101
= 27
~ (a®B9 mod p) mod g = (170*°4547%" mod 7879) mod 101 = 94 <

vy
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@ Der ECDSA wurde im Jahr 2000 als FIPS (Federal Information
Processing Standard) 186-2 Standard deklariert

@ Sei E eine elliptische Kurve liber einem endlichen Kérper Fjn

@ Sei A € E ein Punkt der Ordnung g (g prim), so dass das
Diskrete-Logarithmus-Problem zur Basis A in E schwierig ist

@ Zudem sei h: {0,1}* — Zq eine kryptografische Hashfunktion
@ Der ECDSA besteht aus folgenden Komponenten:
Textraum: X = {0,1}*
Signaturraum: Y = Zg X Zg
Signierschliissel: k = (E,q,A, m), m € Z
Verifikationsschliissel: k = (E, g, A, B), wobei B =m - A ist
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@ Signaturerstellung: Um einen Text x € X zu signieren,
o wahlt der Signierer zufallig eine geheime Zahl z € Z7 und
o berechnet sig(k, x,z) = (v,68) mit

(u,v) = ZA
v = umodg
§ = (h(x)+my)z~ mod q
@ Hierbei wird u als eine Zahl in {0, ..., p" — 1} interpretiert

@ Falls v =0 oder § = 0 ist, muss eine neue Zufallszahl z gewahlt und
der Vorgang wiederholt werden
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e Verifikation: ver(k,x,v,d) =1, falls u mod g =  ist, wobei

e = h(x)6tmodgq
d = v 1modgq
(u,v) = eA+dB

o Korrektheit der Verifikation beim ECDSA:
(u,v) = eA+dB
= (h(x)0"HA+ (y6 HmA
= (h(x)+ my)s A
= zA (da (h(x) + my)6~t =, 2)
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@ Sei E lUber Z11 definiert durch y2 =x34+x+6

e Wirwahlen A=(2,7), m=7 —>p=11,q=13,B=7A=(7,2)

@ Um einen Text x mit dem Hashwert h(x) = 4 unter Verwendung des
Signierschlissels k = (E, g, A, m) und der Zufallszahl z = 3 signieren,

o berechnet Alice

(u,v) == zA=3-(2,7)=(8,3)
v = wumodg=238
§ = (4+7-8)31mod13=7

o und erhlt die Signatur sig(k,z,x) = (8,7)
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Beispiel (Fortsetzung)

e Um diese Signatur mit dem Verifikationsschlissel k = (E, g, A, B) zu
uberpriifen,
o berechnet Bob
e = h(x)0*modg=4-7"1mod13=4-2mod 13 =8
d = 46 1modg=8-2mod13=3
(u,v) = eA+dB=8-(2,7)+3-(7,2) =(8,3)
o und testet die Kongruenz u =, v N
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@ Leslie Lamport konnte 1979 zeigen, dass sich digitale Signaturen auf
der Basis einer Einwegfunktion f konstruieren lassen

o Damit die Signc::tur allerdings sicher ist, muss fiir jeden Text ein neues
Schlisselpaar (k, k) generiert werden

@ Ein Signierschlissel k darf also nur zum Signieren eines einzelnen
Textes verwendet werden

@ Seien U und V endliche Mengen und sei f : U — V eine Funktion

@ Zudem sei £ > 1 die vorgegebene Textlange, d.h. der Textraum ist
X ={0,1}¢

@ Der Signaturraum ist dann Y = U¢

@ Um ein Schliisselpaar (lA<, k) zu generieren, wird zufallig eine Folge von
2¢ Elementen u;p, fir i =1,...,/ und b= 0,1 aus U gewahlt und der
Signierschliissel k = (”1’0"'”2?) gebildet

upg...u
@ Der zugehorige Verifikationsschliissel ist dann k = (2222) mit
vip = f(ujp) firallei=1,...,f£und b=0,1
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@ Signaturerstellung: Die Signatur fiir einen Text x = x1...x; € X ist
sig(k,x) = (U1xqs---» Utx,)

e Verifikation: Fiir eine Signatur y = (u1, ..., uy) und einen Text
X =x1...x gilt

1, f(u,-) = Vix far i = ].7 000 ,E,

0, sonst

ver(k,x,y) = {
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e Wir wahlen als Einwegfunktion eine Funktion der Form f : Z7, — Z7
mit f(u) = g“ mod p, wobei g ein Erzeuger von Z ist
Z.B. sei p=7879 und g = 3, also f(u) = 3" mod 7879
Weiter sei £ = 3
Dann erhalten wir fiir den zuféllig gewahlten Signierschliissel

~ /5831 4285 2467 i . /2009 268 4721
k= (%03 732 ea49) den Verifikationsschlissel k = (555 5570 5731)

@ Die Signatur y fir den Text x = 110 ist dann
y = Slg(ll%7 X) = (ul7x1 yU2 x5 7”3,X3) = (U1’1,U271,U370) = (803, 7357 2467)

Fir diese Signatur y = (uy, up, u3) ist ver(k,x,y) =1, da f(u;) = v
fur i =1,2,3 gilt:

i=1:f(u)=f(803) =380 mod 7879 = 4672 = vy 4
i=2:f(u) = f(735) = 37 mod 7879 = 3810 = vy ,,
i=3:f(us) = f(2467) = 32457 mod 7879 = 4721 = v3 ,, o
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@ Ahnlich wie bei MACs kdnnen wir einen Angriff gegen ein digitales
Signaturverfahren wie folgt modellieren

@ Hierbei nehmen wir an, dass der Angreifer die Texte, deren Signaturen
er kennt, adaptiv wahlen kann

@ Es handelt sich also um eine existentielle Falschung bei adaptiv
wahlbaren Texten

Definition. Sei 0 <e <1 undseigeN

e Ein (e, q)-Félscher fir ein digitales Signaturverfahren ist ein

probabilistischer Algorithmus A, der

o bei Eingabe eines Verifikationsschliissels k, wobei das Schliisselpaar
(k, k) zufallig gewahlt wird

o nach den Signaturen y; = sig(lA<,x,-) von q Texten xi,...,xq adaptiv
fragt und

o mit Wahrscheinlichkeit mindestens ¢ eine Falschung (x,y) mit
x & {x1,...,xq} und ver(k,x,y) =1 ausgibt
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Satz. Sei f : U — V eine Funktion

Falls fir die zugehdrige one-time Signatur ein (e, 0)-Falscher
LAMPORT-FALSCHUNG (k) existiert, dann l3sst sich fiir ein zufallig
gewahltes u €g U mit Wahrscheinlichkeit mindestens /2 ein Urbild von
v = f(u) bestimmen

Beweis.

Betrachte folgenden probabilistischen Algorithmus LAMPORT-URBILD(v):

Prozedur Lamport-Urbild(v)

1 wahle zufillig ein Indexpaar (j,a) und setze vj , == v
2 for all (i,b) € [¢] x {0,1}\ {(j,a)} do
3 wahle zufillig u;jp €g U und setze v;p, == f(ujp)
4 k = (VLO--~V£,0)
Vi,1-Ve1
5 (x1...x¢,(v1,...,u7)) =: LAMPORT-FALSCHUNG(k)
6 if f(u;) = v then output(u;) else output(?)
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Beweis (Fortsetzung)

@ Wie Ublich bezeichnen wir die Zufallsvariablen, die die Wahl von v, j, a,
k und (x,y) = (x1...x¢, (u1,...,up)) beschreiben, mit entsprechenden
GroBbuchstaben

@ Dann missen wir zeigen, dass U; mit Wahrscheinlichkeit mindestens
/2 ein f-Urbild von V ist, wobei V' die Wahl von v = f(u) fiir ein
zufallig gewahltes u €g U beschreibt

@ Da die Verteilung von K identisch zur Schliisselgenerierung der
Lamport-Signatur und LAMPORT-FALSCHUNG ein (e, 0)-Falscher ist,
folgt

Priver(K,X,Y)=1] >¢
@ Da zudem K (und damit auch (X, Y)) unabhangig von (J, A) und auch

J und A unabhiangig voneinander sind, ist A von (J, K, X, Y’) und
damit auch von X, unabhangig
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Beweis (Schluss)
@ Sei p die Erfolgswk von LAMPORT-URBILD bei Eingabe V
o Wegen
ver(k,xi...xp, (Ut ... up)) =1Ax=a = f(u)=vjx=Vja=V
folgt nun
p > Prlver(K,X,Y)=1AX,=A]
= Prlver(K,X,Y)=1]Pr[X; = A| ver(K, X, Y) =1]
>e =1/2

g/2 O

A\
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Als nachstes untersuchen wir die Sicherheit der Lamport-Signatur, falls der
Angreifer in der Lage ist, sich fir einen beliebigen Text x" seiner Wahl eine
gultige Signatur y’ zu beschaffen

Satz. Sei f : U — V eine Funktion.

Falls fur die zugehdrige one-time Signatur ein (e, 1)-Falscher
LAMPORT-FALSCHUNG’(k) existiert, so lasst sich fiir ein zufallig
gewahltes u €g U mit Wahrscheinlichkeit > ¢/2¢ ein f-Urbild von
v = f(u) bestimmen

Fur den Beweis betrachten wir folgenden probabilistischen Algorithmus
Lamport-Urbild’ und zeigen, dass er fir ein zufillig gewahltes v €g U
bei Eingabe v = f(u) mit Wahrscheinlichkeit > ¢/2¢ ein f-Urbild von v
ausgibt
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Fiir den Beweis betrachten wir folgenden probabilistischen Algorithmus
Lamport-Urbild’ und zeigen, dass er fiir ein zufallig gewahltes u €g U
bei Eingabe v = f(u) mit Wahrscheinlichkeit > ¢/2¢ ein f-Urbild von v
ausgibt:

A W N =
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Prozedur Lamport-Urbild’(v)

wahle zufillig ein Indexpaar (j,a) und setze vj 5 == v
for all (i,b) # (j,a) do

wahle zufillig u;jp €g U und setze v;p, == f(ujp)
k = (V1,o~--Ve,o)

V1,1--Ve 1
simuliere LAMPORT-FALSCHUNG’(k) und beantworte die Frage x’
Mit Ug 1.5 Ug g (falls xJ’ = aist, brich ab und gib ? aus);
sei (x,y) = (xy...xp, (v1,...,up)) die erzeugte Ausgabe
if f(u;) = v then output(u;) else output(?)
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Beweis.

Sei p’ die Erfolgswk von LAMPORT-URBILD’ bei Eingabe V

LAMPORT-URBILD’ kann die Frage von LAMPORT-FALSCHUNG’(k)
nach der Signatur von x’ nur dann beantworten, wenn XJ{ =% aist

Es ist klar, dass in diesem Fall u; ein Urbild von v ist, wenn zudem
ver(k,xi...xg, (u1,...,u)) =1 A x; = agilt
Da jedoch die Simulation von LAMPORT-FALSCHUNG’(k) eventuell

abgebrochen wird (und die Abbruchbedingung von (j, a) abhangt),
kdnnen wir nicht mehr davon ausgehen, dass diese Simulation mit
Wahrscheinlichkeit ¢ eine Falschung (x, y) liefert und (X, Y)
unabhéangig von (J, A) ist

Durch eine einfache Modifikation von LAMPORT-URBILD’(v) erhalten
wir jedoch eine Prozedur LAMPORT-URBILD* (ohne Eingabe), deren
Ausgabeverhalten mit der von LAMPORT-URBILD’( V) identisch ist,
und von der wir zeigen koénnen, dass sie mit Wahrscheinlichkeit

p* > e/2( Erfolg hat (also nicht Fragezeichen ausgibt):
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Beweis (Fortsetzung)

@ Durch eine einfache Modifikation von LAMPORT-URBILD’(v) erhalten

AW N R

o1
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wir jedoch eine Prozedur LAMPORT-URBILD* (ohne Eingabe), deren
Ausgabeverhalten mit der von LAMPORT-URBILD’( V) identisch ist,
und von der wir zeigen konnen, dass sie mit Wahrscheinlichkeit

p* > e/2¢ Erfolg hat (also nicht Fragezeichen ausgibt):

Prozedur Lamport-Urbild*

wahle zufillig ein Indexpaar (j, a)
for all (i, b) do wahle zuféllig u; , €r U und setze v; p := f(ujp)

e (V1,0---V2,0
k = (Vl,l---V£,1)
simuliere LAMPORT-FALSCHUNG’(k) und beantworte die Frage x’
mit Uity oy Up s
sei (x,y)=(x1...xs, (u1,...,up)) die erzeugte Ausgabe

if f(u;) = vja A X/ # a then output(u;) else output(?)
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Beweis (Fortsetzung)

@ Im Unterschied zu LAMPORT-URBILD’(v) wahlt sich
LAMPORT-URBILD* also die Eingabe v = v; , gemaB der Verteilung
von V selbst und kennt daher auch ein Urbild uj 5 von v; ,

@ Somit kann LAMPORT-URBILD* bei der Simulation von
LAMPORT-FALSCHUNG’(k) die Frage nach der Signatur von x” auch
im Fall xJ’ = a beantworten

@ Die Bedingung fiir die Ausgabe von u; ist jedoch bei beiden Prozeduren
dieselbe, d.h. die Ausgabe von LAMPORT-URBILD* hat dieselbe
Verteilung wie die von LAMPORT-URBILD’( V) und somit gilt p’ = p*

@ Der einzige Unterschied ist, dass immer wenn LAMPORT-URBILD (V)
in Zeile 5 ein Fragezeichen ausgibt, LAMPORT-URBILD* dies erst in
Zeile 6 tut
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Beweis (Schluss)
e Da in der Prozedur LAMPORT-URBILD* die ZV (J, A) unabhéngig von
(K, X', X,Y) ist, folgt nun
pr = Prlf(U)) = VianX)# Al
> Prlver(K,X,Y) =1AX; = AA X, # Al
= Prlver(K,X,Y)=1]Pr[X) # X, = A| ver(K, X, Y) =1]

>1/2¢
e/2¢ 0

Y

@ Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die
sich jedoch teilweise beheben lassen (siehe Ubungen)

@ So lasst sich sowohl die Lange des privaten Signierschlissels (mittels
Pseudozufallsgeneratoren) als auch des 6ffentlichen Verifikations-
schliissels (mittels Hash-Listen) verringern

@ Zudem kénnen bei Verwendung von Hash-Baumen mit demselben
Schlisselpaar auch mehrere Nachrichten signiert und verifiziert werden
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e Sei F = {fx|k € K} eine Familie von Falltiir-Permutationen auf einer
Menge U, d.h. es lassen sich (zufillig) Schliisselpaare (k, k) € K x K
generieren, so dass gilt:

o fi(fi(u)) = ufiralleue U

o fy ist eine Einweg-Permutation auf U, d.h. fiir ein zufallig gewahltes
Schlisselpaar (lA<,k) € K x K und ein zufallig gewahltes v € U ist es
schwer, ohne Kenntnis von k ein Urbild u mit fi(u) = v zu finden
(genauer: jedem effizienten Angreifer gelingt dies nur mit
vernachlassigbarer Wahrscheinlichkeit)

@ Weiter sei h: {0,1}* — U eine Funktion
@ Die auf F und h basierende FDH-Signatur funktioniert wie folgt:
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@ Die auf F und h basierende FDH-Signatur funktioniert wie folgt:

o Zuerst wird ein Schlisselpaar (IA<, k) € K x K generiert, wobei k als
Signierschliissel und k als Verifikationsschliissel fungiert
o Signaturerstellung: Die Signatur fiir einen Text x € X ist

sig(k, x) = f,(h(x))
o Verifikation: Firr eine Signatur y € U und einen Text x € {0, 1}* gilt

1, fily) = h(x),
0, sonst

ver(k,x,y) = {

@ Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer
Hashfunktion auf diesem Prinzip

@ Ein Problem hierbei ist allerdings, dass die benutzten RSA-Falltiir-
Permutationen einen Definitionsbereich der GréBe 21924 haben, um eine
ausreichend groBe Sicherheit zu erreichen, wogegen die benutzten
Hashfunktionen nur eine Lange von 160 Bit haben
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@ In der Praxis behilft man sich damit, dass man die 160-Bit-Hashwerte
durch eine deterministische Paddingfunktion auf 1024-Bit aufblaht, was
die Sicherheit allerdings beeintrachtigen kann

@ Bei Verwendung einer Zufallsfunktion G : {0,1}* — U (vgl.
Zufalls-Orakel-Modell, ZOM) anstelle von h lasst sich die
Falschungssicherheit der resultierenden FDH-Signatur aus der
Falltiireigenschaft von F herleiten

@ Das ZOM modelliert eine Hashfunktion mit optimalen kryptografischen
Eigenschaften, d.h. die Zufallsvariablen U, = G(x) sind stochastisch
unabhangig und gleichverteilt auf U

@ Zudem fiillt der Wertebereich von G den gesamten Definitionsbereich
der Funktionen f aus (full domain hash)

@ Wir betrachten zuerst den Fall einer existentiellen Falschung bei
bekanntem Verifikationsschlissel, d.h. der Angreifer muss eine
Falschung (x,y) mit ver(k, x,y) = 1 produzieren, ohne auch nur eine
Signatur y’ fiir einen Text x’ zu kennen
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Sei FDH-F&alschung ein probabilistischer Algorithmus, der fir einen
zufallig generierten Verifikationsschliissel k mit Wahrscheinlichkeit €
eine existentielle Falschung (x, y) mit f(y) = G(x) ausgibt

Dabei nehmen wir an, dass FDH-F&lschung eine Folge von g
verschiedenen Fragen xi,...,xq an G stellt
Es ist klar, dass ein solcher Angriff im Fall x & {x1,...,xq} mit der

Wahrscheinlichkeit € = 1/||U|| gelingt

Da diese Erfolgswk durch Ausgabe eines beliebigen Paares (x, y) bereits
mit g = 0 Fragen an G erreicht wird, kénnen wir zudem annehmen,
dass x € {xi,...,Xq} enthalten ist (sofern g > 1 ist)

Betrachte folgenden Invertierungsalgorithmus fiir fy:
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Prozedur FDH-Invert(k,v)

1 wahle zufillig jeg{l,...,q}

2 simuliere FDH-F&lschung(k) und beantworte dabei die Frage x; im
Fall i = j durch v; = v und sonst durch ein zufallig gewahltes
vi €R Ui; sei (x,y) die erzeugte Ausgabe

3 if fx(y) = v then output(y) else output(?)

Falls FDH-F&1schung(k) fir einen zufillig gewahlten Verifikationsschlissel
k mit Wahrscheinlichkeit € eine Falschung (x,y) mit fx(y) = G(x) ausgibt
und dabei g > 1 Fragen an G stellt, so gibt FDH-Invert(k, v) fiir einen
zufalligen Verifikationsschliissel k und ein zufalliges v €g U mit
Wahrscheinlichkeit > ¢/q ein fi-Urbild von v aus

Da sich mit Wahrscheinlichkeit 1/||U|| ein Urbild erraten lasst, ist der Satz
nur im Fall ¢ > q/||U|| interessant
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Beweis.
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Seien J, K, U, V, X, Xi,..., Xy Zufallsvariablen, die die Wahl von j,
k, u, v, X, x1,...,Xxq beschreiben

Da die Eingabe v gleichverteilt ist, erhdlt FDH-F&lschung auf die
Fragen xi,...,xq an G stochastisch unabhangig unter Gleichverteilung
gewahlte Strings vq, ..., vq4 als Antwort, was dem ZOM entspricht
Daher liefert die Simulation von FDH-Falschung(k) fiir einen zufallig

generierten Schlissel k mit Wahrscheinlichkeit € eine Falschung (x, y)
mit f(y) = G(x):

Prife(Y) = G(X)] =¢
Wir wollen zeigen, dass Pr[fx(Y) = V] > ¢/q ist

Da x € {x1,...,xq} enthalten ist, existiert ein / mit x = x; und die
Gleichheit fi(y) = G(x) impliziert fi(y) = G(x;) = v;
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Beweis (Fortsetzung)
e Folglich gilt die Implikation
und es folgt
Prifc(Y) = V] > Pr[fc(Y) = G(X) A J =]

@ Zudem wird j € {1,..., q} zufallig gewahlt und die Fragen x1,...,Xq
werden unabhangig voneinander durch zufallige vq,...,vg €g U
beantwortet (nach Voraussetzung trifft dies auch auf v; = v zu)

@ Daher erhalt FDH-F&lschung weder durch k noch durch die Antworten
Vi,...,Vq irgendeine Information (iber j
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Beweis (Schluss)
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@ Folglich sind neben der Eingabe K auch die Ausgabe (X, Y') und somit

auch die Zufallsvariable /, die den Index i € {1,...

bestimmt, stochastisch unabhangig von J

@ Daher folgt
Prifk(Y) = V]

>

Prfic(Y) = G(X) A J = 1]

, g} mit x = x;

Prific(Y) = G(X)]PrlJ = 1| ik(Y) = G(X)]

Prific(Y) = G(X)l/a = ¢/q

1/q
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@ Falls sich also fx nur mit einer vernachlassigbaren Wahrscheinlichkeit &’
effizient invertieren lasst, so gelingt einem 3hnlich effizienten Angreifer,
der nicht mehr als g Hashwertberechnungen durchfiihrt, im ZOM
hochstens mit einer (ebenfalls vernachlassigbaren) Wahrscheinlichkeit
e < g¢’ eine existentielle Falschung fir die FDH-Signatur

@ Als nachstes beweisen wir die Falschungssicherheit der FDH-Signatur
im ZOM gegeniiber einem existentiellen Angriff mit adaptiv gewahlten
Texten
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@ Sei FDH-Falschung’ ein probabilistischer Algorithmus, der fiir einen
zufallig generierten Verifikationsschliissel k mit Wahrscheinlichkeit €
eine existentielle Falschung (x,y) mit fx(y) = G(x) ausgibt und
insgesamt fiir g Texte xi, ..., X, den Wert G(x;) oder die Signatur
sig(k, x;) = f;,(G(x:)) erfragt

@ Dabei konnen wir 0.B.d.A. annehmen, dass FDH-F&lschung’ zwar
nicht die Signatur von x, aber den G-Wert von x erfragt und vor jeder
Frage nach der Signatur eines Textes x; den G-Wert von x; erfragt
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Falls FDH-F&lschung’ (k) fir einen zufallig gewahlten Verifikations-
schlissel k mit Wahrscheinlichkeit ¢ eine Falschung (x, y) mit ft(y)= G(x)
berechnet und dabei fiir g Texte x; den Wert G(x;) sowie im Fall x; # x
evtl. auch die Signatur sig(l?,x,-) erfragt, so lasst sich fiir einen zufalligen
Verifikationsschliissel k und ein zufdlliges v €g U mit Wahrscheinlichkeit
> ¢/q ein f,-Urbild von v bestimmen

Fir den Beweis betrachten wir folgenden probabilistischen Algorithmus

Prozedur FDH-Invert’(k,v)

1 wahle zufillig jeg{l,...,q}

2 simuliere FDH-Félschung’(k) und beantworte dabei jede Frage x; an
G im Fall i = j durch v; = v und sonst durch v; = fi(u;), wobei u;
zufallig aus U gewahlt wird; falls spater die Signatur von x; erfragt
wird, gib u; als Antwort (falls i = j ist, brich ab und gib ? aus);
sei (x, y) die erzeugte Ausgabe

3 if fx(y) = v then output(y) else output(?)
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Prozedur FDH-Invert’(k,v)

1 wahle zufillig jer{l,...,q}

2 simuliere FDH-F&lschung’(k) und beantworte dabei jede Frage x; an
G im Fall i = j durch v; = v und sonst durch v; = f(u;), wobei u;
zufallig aus U gewahlt wird; falls spater die Signatur von x; erfragt
wird, gib u; als Antwort (falls i = j ist, brich ab und gib 7 aus);
sei (x,y) die erzeugte Ausgabe

3 if fx(y) = v then output(y) else output(?)

@ Da die Frage nach der Signatur von x; im Fall i = j unbeantwortet
bleibt, ist nicht klar, dass die Simulation von FDH-F&élschung’ (k) mit
Wahrscheinlichkeit € eine Falschung (x,y) mit fi(y) = G(x) findet

e Wir kénnen aber eine Prozedur FDH-Invert*(k) angeben, die nur k als
Eingabe erhilt, so dass die Ausgaben von FDH-Invert*(K) und von
FDH-Invert’(K, V) identisch verteilt sind, und

Pr[FDH-Invert’(K, V) # ?] = Pr[FDH-Invert™(K) # 7] > ¢/q
gilt (siehe Ubungen)
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@ In manchen Fallen ist es fiir den Unterzeichner eines Textes nicht
wiinschenswert, dass jeder dazu in der Lage ist, die Giiltigkeit einer
vorgelegten Signatur zu verifizieren

@ Zum Beispiel konnte eine Softwarefirma (Alice) ihre Produkte mit einer
Signatur versehen, die u.a. Virenfreiheit garantiert

@ Problem: Neben den legalen Erwerbern der Software (Bob) kénnen
sich auch Kaufinteressenten auf dem Schwarzmarkt von der Giiltigkeit
einer Signatur (und damit von der Virenfreiheit des signierten
Produkts) tGberzeugen

o Lasung: Die Gliltigkeit einer Signatur lasst sich nur unter Mitwirkung
von Alice verifizieren

@ Neues Problem: Alice kdnnte versuchen, eine von ihr erzeugte giiltige
Signatur abzuleugnen, indem sie die Verifikation sabotiert
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@ Neues Problem: Alice kdnnte versuchen, eine von ihr erzeugte giiltige
Signatur abzuleugnen, indem sie die Verifikation sabotiert

@ Lasung: Es gibt zusatzlich ein Ableugnungsprotokoll (disavowal
protocol), mit dem Alice die Ungiiltigkeit von (falschen) Signaturen
nachweisen kann

@ Falls Alice die Giiltigkeit einer Signatur bestreitet und sich dennoch
weigert, deren Giltigkeit mithilfe des Ableugnungsprotokolls zu
widerlegen, kann man davon ausgehen, dass die Signatur giiltig ist
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@ Bei dem Signaturverfahren von Chaum und van Antwerpen wird eine
Primzahl p = 2q + 1 und ein Element o € Zj, der Ordnung q benutzt,
wobei g ebenfalls prim und das Diskrete Logarithmus Problem zur Basis
« hart ist

o Sei G = {a’|a € Zy} die von « erzeugte Untergruppe von Zj,
@ Der Text- und Signaturenraumist X =Y = G

o Der Signierschliissel hat die Form k = (p,,a), a € Zy und der
zugehorige Verifikationsschlissel ist k = (p, a, ) mit 5 = a® mod p

@ Signaturerstellung: Die Signatur fiir einen Text x € G ist
sig(k,x) = x? mod p

@ Um eine Signatur y € G von Alice fiir einen Text x € G zu verifizieren,
fihrt Bob zusammen mit Alice folgendes Verifikationsprotokoll aus:
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@ Méchte nun Alice Bob gegeniiber nachweisen, dass eine Signatur y
glltig ist, so fiihren beide folgendes Verifikationsprotokoll aus:

1 Bob wahlt zufillig e, f € Z, und sendet ¢ = yef mod p an Alice
> Alice sendet d = c@ ' M4 d mod p zuriick an Bob
3 Bob akzeptiert y als giiltig, falls x¢af =, d gilt

@ Es ist leicht zu sehen, dass Bob eine giiltige Signatur y = x? mod p mit
Wahrscheinlichkeit 1 als giiltig akzeptiert, falls sich beide an das
Verifikationsprotokoll halten:

ae afya modgq _ almodg _
(X ) =p C =p d

yeBf=pc
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Beispiel
@ Seiq=233und p=2g+1=2-233+1=467

e Da g =2 ein Erzeuger von Zj, ist, hat a = g% = 4 die gewiinschte
Ordnung g = (p — 1)/2

e Da a die Untergruppe QR, = {y> mod p | y € Zy} der quadratischen
Reste in Z;‘, erzeugt, ist G = QR,

o Die Wahl von a = 101 fiithrt auf den Signierschliissel k = (p,a,a) =

(467,4,101) und den Verifikationsschliissel k = (p, «, 5) = (467, 4,449)
@ Die Signatur fiir x = 119 € G berechnet sich wie folgt:

o sig(k,x) = x? mod p = 1191°! mod 467 =129 = y
@ Verifikation der Signatur y = 129 fiir den Text x = 119 unter k:

o Bob wahlt e, f € Zg (e = 38, f = 164) und sendet

c = y¢B" mod p = 1293844916* mod 467 = 13 an Alice
o Alice sendet d = ¢ M4 9 mod p =9 an Bob zuriick
o Bob akzeptiert, da x¢af mod p = 119384164 mod 467 =9 = d ist «
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Bemerkung
Die Wahl von p der Form p = 2q + 1 mit g prim dient folgenden Zielen:

o Die Ordnung g der Untergruppe G von Zj, ist prim (dies erlaubt die
Berechnung von a~! mod g in Schritt 2 des Verifikationsprotokolls)

@ G ist eine moglichst groBe Untergruppe von Z7 mit primer Ordnung
(man beachte, dass die Ordnung von Zy, gleich p — 1, also zusammen-
gesetzt ist)

Behauptung 1

Bob akzeptiert eine ungiiltige Signatur y Z, x? nur mit Wahrscheinlichkeit
1/q (auch wenn sich Alice nicht an das Verifikationsprotokoll halt)
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Beweis.

Alice steht in Zeile 2 des Verifikationsprotokolls vor der Aufgabe, eine
Zahl d € G zu finden, so dass Bob in Zeile 3 akzeptiert

Das ware fiir Alice problemlos méglich, wenn sie e und f kennen wiirde

Alice hat aber nur partielles Wissen (iber das Paar (e, f), namlich dass
es folgende Kongruenz erfillt:

¢ =p yeB* (1)
Da es fiir jedes e € Zg genau ein f € Zq gibt, so dass das Paar (e, f)
die Kongruenz (1) erfiillt, gibt es genau q solche Paare in Zg x Zq

Da Alice nur ¢ kennt, sind aus ihrer Sicht diese g Paare alle gleich-
wahrscheinlich

Wir zeigen nun, dass unabhangig davon, welches d € G Alice an Bob
sendet, genau eines dieser g Paare zusatzlich die Kongruenz

d =, x%f (2)
erfullt
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Beweis (Fortsetzung)

@ Folglich akzeptiert Bob mit Wahrscheinlichkeit 1/q

@ Seien ¢/, d',x",y’ € Zq die zu ¢,d, x,y € G gehorigen Exponenten, d.h.
czpac/,...,yzpay/

@ Dann erfiillt ein Paar (e, f) genau dann die beiden Kongruenzen (1)
und (2), wenn Folgendes gilt:

C=p yeﬂf = a =p a'ea? c =q y'e+ af<:> ya\(e\ _ (¢
d =, xéaf ad' =, a¥'eaf d =4 x'e+f x"1\f) ~9\d’
A

o Wegen o' =,y #, x? =, a*'? folgt y' #4 x"a und daher ist
detA=,y —x'a#40 0
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@ Mochte nun Alice Bob gegeniiber nachweisen, dass eine Signatur y
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ungiiltig ist, so fiihren beide folgendes Ableugnungsprotokoll aus:

1 Bob wahlt zufallig e1, fi € Z; und sendet ¢; = ye 3 mod p an Alice

—1
Alice sendet dy = ¢} mod 4 mod p zuriick

2
3 Bob testet, ob di #, xeaf ist
4 Bob wahlt zufillig e>, f, € Zg und sendet ¢, = ye 3% mod p an Alice

. -1 d ..
5 Alice sendet db = ¢ ™9 mod p zuriick

6 Bob testet, ob db #, x€2af jst
7 Bob erkennt y als ungiltig an, falls der Test in Zeile 3 oder der Test
in Zeile 6 erfolgreich war und (dia=1)®2 =, (dha %)@ gilt

Bei den Schritten 1-3 und 4-6 handelt es sich jeweils um eine fehl-

geschlagene Verifikation der Signatur y (sofern der Test von Bob in
Zeile 3 bzw. 6 positiv ausfallt)

In Schritt 7 fiilhrt Bob zusatzlich einen Konsistenztest aus, um sich

davon zu tiberzeugen, dass Alice die Zahlen d; und d» gemaB dem

Protokoll gewahlt hat
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Beispiel
@ Sei p=467,9g=233,a=4,a=101,5 = 449
@ Wir nehmen an, dass der Text x = 286 mit der Alice zugeschriebenen

Signatur y = 81 unterschrieben ist und Alice Bob davon (iberzeugen
mochte, dass y ungiiltig ist

@ Ausfiihrung des Ableugnungsprotokolls:

o Bob wahlt e; =45, = 4 und sendet ¢; = 305 an Alice
Alice antwortet mit d; = ¢ = = 109
Bob verifiziert, dass 286*°4* =, 149 #, 109 gilt
Bob wahlt e; = 125, = 9 und sendet ¢, = 72 an Alice
Alice antwortet mit d» = ¢§ = = 68
Bob verifiziert, dass 2861254° =, 25 #,, 68 gilt
Bob erkennt y als ungiiltig an, da

(109 - 4~4)1% = 188 =, (68 - 4 °)*°

ist und somit die Konsistenzbedingung erfiillt ist <

©

e © 6 ¢ ¢
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Es bleibt zu zeigen, dass sich Bob von der Ungiiltigkeit einer Signatur y im
Fall y #, x? mit sehr hoher und im Fall y =, x nur mit sehr kleiner
Wabhrscheinlichkeit iiberzeugen lasst (auch wenn sich im zweiten Fall Alice
nicht an das Ableugnungsprotokoll halt)

Behauptung 2

Im Fall y #, x? erkennt Bob y mit Wahrscheinlichkeit 1 — % als ungiltig
an, falls sich beide an das Ableugnungsprotokoll halten
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Behauptung 2

Im Fall y #, x? erkennt Bob y mit Wahrscheinlichkeit 1 — # als ungiiltig
an, falls sich beide an das Ableugnungsprotokoll halten

Beweis.

@ Nach Behauptung 1 betragt die Wahrscheinlichkeit, dass die beiden
Tests in Zeile 3 und 6 fehlschlagen genau %

q
o Wegen 3 =, a?, ¢; =, y* i und d; =, ¢ modd fiir j e {1,2} folgt

_f P o1 o1 ¢ =il
diax f,Ep (ye,ﬁf,)a @ f,Ep ye,a 51‘,3 @ f,Ep ye,a

Ci afi

und somit
dia— e = yaate — eata — 4 —hye
(dha™ )2 =py =pY =p (dha™ )%,

d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfullt [
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Behauptung 3

Im Fall y =, x? erkennt Bob y nur mit einer Wahrscheinlichkeit < Lals
unglltig an, auch wenn sich Alice nicht an das Ableugnungsprotokoll halt

Beweis.
@ Bob erkennt y nur dann als ungiiltig an, wenn Folgendes gilt:
(di #p x®alt oder da #Z, x2a™) und (dia™™)® =, (dha~?)®
o Da die beiden Falle d; #, x®at und d» #, x®2a” symmetrisch sind,
reicht es, einen davon zu betrachten
@ Wir nehmen also an, dass Alice eine Zahl d; %, xaft an Bob sendet

@ Nachdem Alice die Zahl ¢, in Zeile 4 von Bob erhalten hat, weil} sie
nur, dass das von Bob gewahlte Paar (e, f;) die Kongruenz
0 =p ye 3 erfiillt

@ Wie wir bereits im Beweis zu Behauptung 1 gesehen haben, trifft dies
auf genau g Paare zu
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Beweis.

e Wir zeigen nun, dass fiir jedes d» € G genau eines der g Paare (e, f»)
die Konsistenzbedingung (dia™1)® =, (daa™ %)@ erfiillt

@ Dies beweist, dass unabhangig davon, welches d» Alice an Bob sendet,
Bob y nur mit Wahrscheinlichkeit 1/q als ungiiltig akzeptiert

o Sei u= dia~" mod p und seien ¢}, db, x', ' € Zg die zu ¢, da, x, u
gehorigen Exponenten

@ Dann gilt
Q=py2BR  g=qxaetah _ (xaa\le\_ [
(dia M2 =,(ha ) " Ve =, djer—eih ue)\fo) \djer
—— ———

u

A

o Wegen x =, x°© 1aft o h #, dia~1 =, u folgt x'e; #Z4 u' und somit

$—épdl
ist det A = x’ae; — v'a = a(X’€1 — U') Z#q 0 O
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@ Ein Nachteil aller bisher betrachteten Signaturverfahren ist, dass Alice
eine vorgelegte Falschung (x,y) nicht als solche nachweisen kann

@ Dies liegt daran, dass Alice einen Dritten nicht davon (iberzeugen kann,
dass sie die Signatur y nicht selbst erzeugt hat

@ Bei so genannten Fail-Stop-Signaturen ist genau dies moglich

@ Sollte es einem Angreifer gelingen, das Signaturverfahren zu brechen
(“fail”) und eine Félschung (x, y) zu generieren, so kann Alice dies mit
hoher Wahrscheinlichkeit beweisen und somit ihre Signatur widerrufen

(‘stop)
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Sei p=2q+1 prim, p,q prim und sei o € Zj, ein Element der
Ordnung g

Weiter sei G = {a?|a € Z4} die von « in Zj, erzeugte Untergruppe und
B = a? mod p fir ein a € Zg

Die Zahlen p, g, a, 8 werden von einer vertrauenswiirdigen Instanz

generiert und bekannt gegeben, a wird jedoch vor allen Teilnehmern
geheim gehalten

Der Textraum ist X = Zq und der Signaturraum ist Y = Zq4 x Zg

Um einen Signierschliissel zu generieren, wahlt Alice zufallig ein 4-Tupel
k = (a1, by, a2, bo) €r Zj

Der zugehorige Verifikationsschliissel ist dann

k= (11,72) = (™8™, 027) € G
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Definition (Fortsetzung)

@ Signaturerstellung: Die Signatur fiir einen Text x € Zq unter einem
Signierschlissel k = (a1, b1, a2, bp) € Zg ist

sig(k,x) = (y1,y2) = (a1 + xa» mod g, by + xb, mod q)

e Verifikation: Fiir einen Verifikationsschlissel k = (v1,72), einen Text
X € Zg und eine Signatur y = (y1,y2) € Zq X Zgq gilt

]-a 7175 =p Oéylﬁ”?
0, sonst

ver(k,x,y) = {
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Beispiel

@ Die vertrauenswiirdige Instanz (TTP, trusted third party) generiert
o Primzahlen p und g mit p =2q+ 1 =2-1733 + 1 = 3467, sowie
o ein Element o = 4 € Zj, mit ord,(a) = q und
o eine geheime Zahl a = 1567 € Z und
o gibt die Zahlen p, g, o und 3 = a? mod p = 4157 mod p = 514
bekannt, halt aber a geheim
o Wahlt Alice k = (a1, b1, a2, bo) = (888,1024,786,999) als Signier-
schliissel, so berechnet sich der zugehorige Verifikationsschliissel zu
k= (71,72) mit
7 = a1 fP = 48885141024 _ 3405

und

v2 = a®3% = 4780514%%° = 2281
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Beispiel (Fortsetzung)

@ Um den 'I:ext x = 1650 zu signieren, berechnet Alice mit dem Signier-
schliissel k = (a1, b1, az, bo) = (888, 1024, 786,999) die Signatur
y = sig(k, x) = (y1,y2) mit
y1 = a1+ xax mod g =888+ 1650 - 786 mod g = 1504 und
yo = by + xbp mod g = 1024 + 1650 - 999 mod g = 1291
e Um die Signatur y = (1504, 1291) zu lberpriifen, testet Bob mit dem

Verifikationsschliissel k = (71, v2) = (3405, 2281) die Verifikations-
bedingung

M5 = 3405 - 22811%%0 =, 2282 =, 41°%5141%91 = o112
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@ Betrachte die Menge
S={(k,k) | k= (a1, b1, 2, bp) € Z}, k = (o™, a®p7) € Gx G}
aller moglichen Schliisselpaare
@ Fiir einen Verifikationsschliissel k € G x G sei
N P
S(k) ={k€Zy| (k k)€ S}
die Menge aller Signierschliissel, die zu k passen, und
e fiir einen Text x und eine Signatur y = (y1, y2) sei
S(k,x,y) = {k € S(k) | sig(k,x) =y}

die Menge aller Signierschlissel in S(k), die fiir x die Signatur y
berechnen
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Lemma

Fiir jeden Signierschliissel k € S(k) und jedes Paar (x, y) mit sig(l;,x) =y
ist die Verifikationsbedingung ver(k, x,y) = 1 erfiillt

Beweis.

e Sei k = (a1, b1, a2, b2) und sig(lA<,x) =y =(y1,y)

o Wegen k € S(k) folgt k = (71,72) = (8P, @®2 %) und daher gilt
ny = o p(a®pR)

— aal+xazﬁb1+xb2

—5 ol ﬁ)@ O

Anders gesagt gibt es im Fall ver(k,x,y) = 0 keinen Signierschlussel
k € S(k) mit sig(k,x) =y, d.h. S(k,x,y) =0
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Das nachste Lemma zeigt, dass S(k, x,y) im Fall ver(k,x,y) =1 genau g
Signierschliissel enthalt

Lemma

Zu jedem Paar (x,y) mit ver(k x,y) =1 gibt es genau g Signierschliissel
k e S(k) mit sig(k,x) =

Beweis.

e Wir zeigen zuerst, dass S(k) fir jeden Verifikationsschliissel
k = (71,72) genau g Signierschliissel enthalt

e Ein Signierschliissel k = (ay, b1, ap, by) ist genau dann in S(k), wenn er
die beiden Kongruenzen

aalﬁbl Ep ,yl

aagﬁbg =p 72
erfullt
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Beweis (Fortsetzung)
@ Seien c1, ¢ € Zqg eindeutig bestimmte Exponenten mit
Y1 =p a und v =p a?

@ Dann sind diese Kongruenzen aquivalent zu

a1
ar+aby =4 1a00 by a
bzw. =)
a + aby =pe)) 2 <0 01a Z; < (o)) (*)
———

A

e Da A den Rang 2 hat, folgt ||S(k)|| = ¢? (siehe Ubungen, Aufgabe 19)
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Beweis (Fortsetzung)
@ Sei nun (x,y) ein Paar mit x € Zg und y = (y1,)2) € Zg X Zq

@ Dann ist ein Signierschlissel k = (a1, b1, az, by) genau dann in
S(k,x,y), wenn er die Kongruenzen

ar+aby =4 a

1a00 ai c1
3 + abz iq = bzw. (1) 8 1 8 by =3 €2 ()
a + Xxax =g 1 a0 S Zz i
b1 4 xby =4 yo X 2 y2
Al s’
erfullt

@ Wir zeigen, dass sowohl die Matrix A’ als auch die um den Vektor s’
erweiterte Matrix A’s’ den Rang r = rang(A’) = rang(A’s’) = 3 haben

e Dies impliziert, dass das lineare Gleichungssystem (*x) genau g*~" =g

Lésungen hat (siehe Ubungen)
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Beweis (Schluss)

Seien ry,...,rs die Zeilen von A’

Dann gilt rang(A’) > 3, da die Zeilen ry, r3, r4 linear unabhangig sind,
und rang(A’) <3,dar = r+ arg — xrp ist

Damit hat () im Falle der Losbarkeit genau g*~3 = g Lésungen

Zum Nachweis der Lésbarkeit von (**) zeigen wir, dass die in A’ be-
stehende Zeilenabhangigkeit rn = r3 + arg — xry im Fall ver(k,x,y) =1
auch fir den Spaltenvektor s’ auf der rechten Seite von (**) gilt:

MY =p 1 = o+ xa=qyitayy = a=qy1+ap —xo

Da somit die Erweiterung der Matrix A" um den Spaltenvektor s’ deren
Rang im Fall ver(k, x,y) = 1 nicht erhoht, ist (**) in diesem Fall
|6sbar O
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Fir alle x,x’ € Zg und y = (y1,¥2),y' = (y1,¥3) € Z%, mit x” # x gilt
1Sk, x, ) N S(k, X',y < 1
Im Fall ver(k,x,y) = ver(k,x',y’) = 1 gilt sogar Gleichheit

Beweis.

e Die Bedingung k = (a1, by, a2, b2) € S(k,x,y) N S(k,x',y’) ist
aquivalent zu

1 a 0 0 (5]
P o > o |8 Vv
X b Y1

01 0 x (aﬁ)z va [ (xx%)
1 0 xX 0 by %!
01 0 X Y2

———

A// S//

@ wobei wieder v1 =, a, 72 =, a ist
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Beweis (Fortsetzung)

e Wir zeigen, dass die Zeilen r1, o, rg, rg von A” linear unabhangig sind
und somit A” den Rang rang(A) = 4 hat

e Daraus folgt, dass (***) hochstens eine Lésung hat

@ Aus hrn+ b+ larg + lgrg = 0 folgt ndmlich 1 = /L = 0 und
Iy + Is = 0 sowie Igx + lgx’ = 0, was lg = —Iy sowie ly(x — x’) = 0 und
somit wegen x — x’ # 0 auch Iy = I = 0 impliziert

e Da auch die Zeilen rs, ..., rg von A” linear unabhingig sind, lasst sich k
bei Kenntnis zweier Signaturen y = sig(k, x) und y’ = sig(k, x") fir
zwei Texte x # x’ leicht bestimmen, d.h. es handelt sich um ein
One-time-Signaturverfahren
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Beweis (Schluss)

@ Um die Losbarkeit von (***) im Fall ver(k,x,y) = ver(k,x',y') =1
nachzuweisen, zeigen wir, dass die in A” bestehenden
Zeilenabhangigkeiten r3 = r; + xr» — arg und r5 = r, + x’'r, — arg auch
fur den Spaltenvektor s” auf der rechten Seite von (***) gelten

e Aus ver(k,x,y) =1 folgt
MY =p B = at+x=qyitays = y1=qC+xce—ay
@ Analog folgt aus ver(k,x’,y") = 1 die Kongruenz

A / /
Yi=qgCa+Xxc—ay, H
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