
Kryptologie

Johannes Köbler

Institut für Informatik
Humboldt-Universität zu Berlin

WS 2020/21



Organisatorisches 1

Aktuelle Infos auf der VL-Webseite unter
https://hu.berlin/vlkrypto

bzw.
https://www.informatik.hu-berlin.de/de/forschung/

gebiete/algorithmenII/Lehre/ws20/krypto

https://hu.berlin/vlkrypto


Ablauf 2

Skript, Folien und Aufgabenblätter
Skript, Folien und Aufzeichnung werden jeweils nach der Vorlesung ins
Netz (Webseite bzw. Moodle) gestellt
Übungsblätter werden in der Regel dienstags veröffentlicht
Die Besprechung der mündlichen Aufgaben erfolgt am Freitag der
Folgewoche. Lösungen dazu können bis zum Tag davor in Moodle
hochgeladen werden, Details siehe dort
Die schriftlichen Aufgaben sind bis Dienstag zwei Wochen nach
Ausgabe um 23:59 Uhr abzugeben
Fragen zu Übung und Vorlesung können im Moodle-Forum auch
asynchron gestellt und diskutiert werden
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Anmeldung
über Agnes
und bei Moodle (wegen Punktevergabe und Bildung von
Abgabegruppen)
Mails von Agnes und von Moodle werden standardmäßig an den
HU-Account gesendet (bitte regelmäßig checken)

Ausgabe der Aufgabenblätter
über Moodle und auf der VL-Webseite

Abgabe von Lösungen
digital über Moodle



Bearbeitung der Übungsaufgaben 4

in Gruppen von bis zu drei Teilnehmern
Lösungen für die schriftlichen Aufgaben sollten als PDF abgegeben
werden
die Abgabe von Lösungsvorschlägen für die mündlichen Aufgaben ist
freiwillig und geht nicht in die Punktewertung ein
Lösungsvorschläge für die mündlichen Aufgaben können auch per
Texteingabe gemacht werden
besonders gut gelungene Lösungen werden mit Zustimmung der/des
Abgebenden im Forum veröffentlicht



Übungsschein und Prüfung 5

Scheinkriterien
Lösen von mindestens 50% der schriftlichen Aufgaben

Prüfungsform
voraussichtlich mündlich
Der Übungsschein ist nicht Prüfungsvoraussetzung
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Gibt es zum organisatorischen Ablauf noch Fragen?



Lernziele 7

Kryptografische Verfahren schaffen Vertrauen in ungeschützten
Umgebungen
Sie ermöglichen sichere Kommunikation über unsichere Kanäle und
können verhindern, dass sich ein Kommunikationspartner unfair verhält
In unsicheren Umgebungen wie dem Internet können sie die aus direkter
Interaktion gewohnte Sicherheit herstellen
Und auch die Interaktion in sicheren Umgebungen wird um
Möglichkeiten erweitert, die ohne Kryptografie nicht denkbar wären
Im Bachelormodul Einführung in die Kryptologie haben wir uns mit
den mathematischen Grundlagen von kryptografischen Verfahren
beschäftigen, wobei (symmetrische und asymmetrische)
Verschlüsselungsverfahren im Vordergrund standen
Im aktuellen Mastermodul Kryptologie werden wir dagegen
kryptografische Verfahren und Protokolle für andere Schutzziele
betrachten wie z.B. Hashverfahren und digitale Signaturen sowie
Pseudozufallsgeneratoren



Kryptosysteme 8

Kryptosysteme (Verschlüsselungsverfahren) dienen der Geheimhaltung
von Nachrichten bzw. Daten
Hierzu gibt es auch andere Methoden wie z.B.

Physikalische Maßnahmen: Tresor etc.
Organisatorische Maßnahmen: einsamer Waldspaziergang etc.
Steganografische Maßnahmen: unsichtbare Tinte etc.



Überblick weiterer Schutzziele 9

Andererseits können durch kryptografische Verfahren weitere Schutzziele
realisiert werden wie z.B.

Vertraulichkeit
Geheimhaltung
Anonymität (z.B. Mobiltelefon)
Unbeobachtbarkeit (von Transaktionen)

Integrität
von Nachrichten und Daten

Zurechenbarkeit
Authentikation
Unabstreitbarkeit
Identifizierung

Verfügbarkeit
von Daten
von Rechenressourcen
von Informationsdienstleistungen



Kryptologie 10

In das Umfeld der Kryptologie fallen die folgenden Begriffe
Kryptografie:
Lehre von der Geheimhaltung von Informationen durch Verschlüsselung
Im weiteren Sinne: Wissenschaft von der Übermittlung, Speicherung
und Verarbeitung von Daten in einer von potentiellen Gegnern
bedrohten Umgebung
Kryptoanalysis:
Erforschung der Methoden eines unbefugten Angriffs gegen ein
Kryptoverfahren
Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele
Kryptoanalyse:
Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner
kryptografischen Stärken und Schwächen
Kryptologie:
Wissenschaft vom Entwurf, der Anwendung und der Analyse von
kryptografischen Verfahren (umfasst Kryptografie und Kryptoanalyse)



Kryptografische Hashverfahren 11

sind ein wirksames Werkzeug zur Sicherstellung der Integrität von
Nachrichten oder generell von digitalisierten Daten
Sie nehmen somit beim Schutz der Datenintegrität eine ähnlich
herausragende Stellung ein wie sie Kryptosystemen bei der Wahrung
der Vertraulichkeit zukommt
Daneben finden kryptografische Hashfunktionen aber auch vielfach als
Bausteine von komplexeren Systemen Verwendung
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa
bei der Erstellung von digitalen Signaturen sehr nützlich
Auf weitere Anwendungsmöglichkeiten werden wir später eingehen



Kryptografische Hashverfahren 12

Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text x eine zwar
kompakte aber dennoch repräsentative Darstellung h(x) liefern, die
unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann
Die Berechnungsvorschrift für h muss somit „charakteristische
Merkmale“ von x in den Hashwert h(x) einfließen lassen
Da der Fingerabdruck eines Menschen ganz ähnliche Eigenschaften
besitzt (was ihn für Kriminalisten bekanntlich so wertvoll macht), wird
der Hashwert h(x) auch oft als ein digitaler Fingerabdruck von x
bezeichnet
Gebräuchlich sind auch die Bezeichnungen kryptografische Prüfsumme
oder message digest (englische Bezeichnung für „Nachrichtenextrakt“)
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Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen:

Nachrichtenauthentikation (message authentication)
Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei)
während einer (räumlichen oder auch zeitlichen) Übertragung nicht
verändert wurde?
Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei
feststellen?

Teilnehmerauthentikation (entity authentication, identification)
Wie kann sich eine Person (oder ein Gerät) anderen gegenüber
zweifelsfrei ausweisen?



Klassifikation von Hashverfahren 14

Kryptografische
Hashverfahren

schlüssellos symmetrisch

MDCs
(Integritätsschutz)

Sonstige
Hashverfahren

MACs
(Authentikation)

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob
der Hashwert lediglich in Abhängigkeit vom Eingabetext berechnet wird
oder zusätzlich von einem symmetrischen Schlüssel abhängt



Schlüssellose Hashfunktionen 15

Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel
benutzt werden, dienen vornehmlich der Erkennung von unbefugt
vorgenommenen Manipulationen an Dateien oder Nachrichten
Daher werden sie auch als MDC (Manipulation Detection Code)
bezeichnet
Zuweilen wird das Kürzel MDC auch als eine Abkürzung für
Modification Detection Code verwendet
Seltener ist dagegen die Bezeichnung MIC (message integrity codes)



Manipulation Detection Codes 16

x x ′

y y ?= h(x ′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Um die Integrität eines Datensatzes x sicherzustellen, der über einen
ungesicherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht
sicheren Webserver abgelegt) wird, kann man wie folgt verfahren

Der MDC-Hashwert y = h(x) von x wird auf einem authentisierten
Kanal übertragen
Nach der Übertragung wird geprüft, ob der Datensatz noch den
Hashwert y liefert



Hashverfahren mit symmetrischen Schlüsseln 17

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden
hauptsächlich bei der Authentifizierung von Nachrichten Verwendung
Diese werden daher auch als MAC (message authentication code)
oder als Authentikationscode bezeichnet
Daneben gibt es auch Hashverfahren mit asymmetrischen Schlüsseln
Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet, da
mit ihnen ausschließlich digitale Signaturen gebildet werden
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Die Abbildung auf der nächsten Folie zeigt, wie sich Nachrichten mit
einem MAC authentisieren lassen
Man beachte, dass nun auch der Hashwert über den unsicheren Kanal
gesendet wird
Möchte Alice eine Nachricht x an Bob übermitteln, so berechnet sie
den zugehörigen MAC-Wert y = hk(x) und fügt diesen der Nachricht x
hinzu
Bob überprüft die Echtheit der empfangenen Nachricht (x ′, y ′), indem
er seinerseits den zu x ′ gehörigen Hashwert hk(x ′) berechnet und das
Ergebnis mit y ′ vergleicht
Der geheime Authentikationsschlüssel k muss hierbei genau wie bei
einem symmetrischen Kryptosystem über einen gesicherten Kanal
vereinbart werden



Verwendung eines MAC zur Nachrichtenauthentikation 19

x x ′

y hk(x ′) ?= y ′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal
Alice Bobk

Hierbei ist k der symmetrische Authentikationsschlüssel und y = hk(x)
der MAC-Wert für x unter k
Indem Alice ihre Nachricht x um den Hashwert y = hk(x) ergänzt, hat
Bob nicht nur die Möglichkeit, anhand von y die empfangene Nachricht
x ′ auf Manipulationen, sondern auch ihre Herkunft zu überprüfen
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Wir betrachten nun verschiedene Sicherheitsanforderungen an MDCs h
Dabei nehmen wir an, dass h : X → Y öffentlich bekannt ist
Ein Paar (x , y) ∈ X × Y heißt gültig für h, falls h(x) = y ist
Ein Paar (x , x ′) mit x 6= x ′ und h(x) = h(x ′) heißt Kollisionspaar für h
Die Anzahl ‖Y ‖ der Hashwerte bezeichnen wir mit m
Ist auch der Textraum X endlich, ‖X‖ = n, so heißt h eine
(n,m)-Hashfunktion
In diesem Fall verlangen wir meist, dass n ≥ 2m ist, und wir nennen h
dann eine Kompressionsfunktion (compression function)
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Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen
Text x ein gültiges Paar (x , y) zu erzeugen
Für bestimmte kryptografische Anwendungen ist es wichtig, dass dies
bei vorgegebenem Hashwert y dagegen nicht möglich ist

Problem P1 (Bestimmung eines Urbilds)
Gegeben: Eine Hashfunktion h : X → Y und ein Hashwert y ∈ Y
Gesucht: Ein Text x ∈ X mit h(x) = y

Falls es einen immensen Aufwand erfordert, bei gegebenem Hashwert y
einen Text x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion
(one-way hash function bzw. preimage resistant hash function)
Diese Eigenschaft wird beispielsweise benötigt, wenn die Hashwerte der
Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist
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Für andere Anwendungen ist es dagegen wichtig, dass es für einen
gebenen Text x praktisch unmöglich ist, einen weiteren Text x ′ 6= x mit
dem gleichen Hashwert h(x ′) = h(x) zu finden

Problem P2 (Bestimmung eines zweiten Urbilds)
Gegeben: Eine Hashfunktion h : X → Y und ein Text x ∈ X
Gesucht: Ein Text x ′ ∈ X \ {x} mit h(x ′) = h(x)

Falls Problem P2 einen immensen Aufwand erfordert, heißt h schwach
kollisionsresistent (weakly collision resistant bzw. second preimage
resistant)
Diese Eigenschaft wird beim Integritätsschutz durch einen MDC
benötigt
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Für bestimmte Anwendungen ist es sogar nötig, dass sich überhaupt
kein Kollisionspaar finden lässt
Diese Eigenschaft ist bspw. beim Einsatz von MDCs bei der Erstellung
von digitalen Signaturen erforderlich

Problem P3 (Bestimmung einer Kollision)
Gegeben: Eine Hashfunktion h : X → Y
Gesucht: Zwei Texte x 6= x ′ ∈ X mit h(x ′) = h(x)

Falls Problem P3 einen immensen Aufwand erfordert, heißt h (stark)
kollisionsresistent (collision resistant)
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Falls Problem P3 einen immensen Aufwand erfordert, heißt h (stark)
kollisionsresistent (collision resistant)
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit
der Einweg-Eigenschaft aufweist, sind diese beiden Eigenschaften im
allgemeinen unvergleichbar:

Eine schwach kollisionsresistente Funktion muss nicht
notwendigerweise eine Einwegfunktion sein, da die Bestimmung
eines Urbildes gerade für diejenigen Funktionswerte einfach sein
kann, die nur ein einziges Urbild besitzen
Umgekehrt impliziert die Einweg-Eigenschaft auch nicht die
schwache Kollisionsresistenz, da die Kenntnis eines Urbildes das
Auffinden weiterer Urbilder sehr stark erleichtern kann
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Wir zeigen nun, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind
Hierzu reduzieren wir das Kollisionsroblem auf das Problem, ein zweites
Urbild zu bestimmen

Satz
Sei h : X → Y eine (n,m)-Hashfunktion
Dann ist das Problem P3, ein Kollisionspaar für h zu bestimmen, auf
das Problem P2, ein zweites Urbild zu bestimmen, reduzierbar
Folglich sind stark kollisionsresistente Hashfunktionen auch schwach
kollisionsresistent
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Satz
Sei h : X → Y eine (n,m)-Hashfunktion
Dann ist das Problem P3, ein Kollisionspaar für h zu bestimmen, auf
das Problem P2, ein zweites Urbild zu bestimmen, reduzierbar
Folglich sind stark kollisionsresistente Hashfunktionen auch schwach
kollisionsresistent

Beweis.
Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x
mit Erfolgswahrscheinlichkeit ε ein zweites Urbild x ′ für h liefert und
andernfalls ? ausgibt
Dann ist klar, dass folgender Las-Vegas Algorithmus mit
Wahrscheinlichkeit ε ein Kollisionspaar findet:

1 wähle zufällig x ∈ X
2 x ′ := A(x)
3 if x ′ 6= ? then return (x , x ′) else return ?

�
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Als nächstes reduzieren wir das Kollisionsproblem auf das Urbildproblem

Satz
Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m
Dann ist das Problem P3, ein Kollisionspaar für h zu bestimmen, auf
das Problem P1, ein Urbild zu bestimmen, reduzierbar

Beweis.
Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden
Hashwert y in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y
Betrachte folgenden Las-Vegas Algorithmus B:

1 wähle zufällig x ∈ X
2 y := h(x)
3 x ′ := A(y)
4 if x 6= x ′ then return (x , x ′) else return ?
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Beweis.
Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden
Hashwert y in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y
Betrachte folgenden Las-Vegas Algorithmus B:

1 wähle zufällig x ∈ X
2 y := h(x)
3 x ′ := A(y)
4 if x 6= x ′ then return (x , x ′) else return ?

Sei C = {h−1(y) | y ∈W (X )}
Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖ ·

‖C‖ − 1
‖C‖ = 1

n
∑
C∈C

(‖C‖ − 1) = (n −m)/n ≥ 1
2

�
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Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine
Hashfunktion h : X → Y nach oben abzuschätzen
Sind X und Y vorgegeben, so können wir eine Hashfunktion h : X → Y
dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y
wählen und h(x) = y setzen
Äquivalent hierzu ist, für h eine zufällige Funktion aus der Klasse
F (X ,Y ) aller mn Funktionen von X nach Y zu wählen
Dieses Verfahren ist auf Grund des hohen Aufwands zwar nicht mehr
praktikabel, wenn n = ‖X‖ eine bestimmte Größe übersteigt
Es liefert uns aber ein theoretisches Modell für eine Hashfunktion mit
„idealen“ kryptografischen Eigenschaften
Offensichtlich kann ein Angreifer nur dadurch Informationen über h
erhalten, dass er für eine Reihe von Texten xi die zugehörigen
Hashwerte h(xi) berechnet (was der Befragung eines funktionalen
Zufallsorakels entspricht)
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Eine Zufallsfunktion h eignet sich deshalb gut als kryptografische
Hashfunktion, weil der Hashwert h(x) für einen Text x auch dann noch
schwer vorhersagbar ist, wenn der Angreifer bereits die Hashwerte einer
beliebigen Zahl von anderen Texten xi 6= x kennt

Proposition
Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
xi ∈ X und seien y1, . . . , yk ∈ Y
Dann gilt für eine zufällig aus F (X ,Y ) gewählte Funktion h und für
jedes Paar (x , y) ∈ (X − X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m



Das Zufallsorakelmodell (ZOM) 31

Um eine obere Komplexitätsschranke für das Urbildproblem P1 im
ZOM zu erhalten, betrachten wir folgenden Algorithmus
Hierbei gibt der Parameter q die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an
Die Laufzeit des Algorithmus ist also proportional zu q

Prozedur FindPreimage(h, y , q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi)
4 return ?



Das Zufallsorakelmodell (ZOM) 32

Satz
FindPreimage(h, y , q) gibt im ZOM mit Wahrscheinlichkeit
ε = 1− (1− 1/m)q ein Urbild von y aus (unabhängig von der Wahl der
Menge X0)

Beweis.
Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}
Für i = 1, . . . , q bezeichne Ei das Ereignis “h(xi) = y”
Nach obiger Proposition sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist

Pr[Ei ] = 1/m für i = 1, . . . , q

Also folgt
Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E 1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q

�
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Folgender Algorithmus liefert uns eine obere Schranke für die Komplexität
des Problems P2, ein zweites Urbild für h(x) zu bestimmen

Prozedur FindSecondPreimage(h, x , q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return ?

Satz
FindSecondPreimage(h, x , q) gibt im ZOM mit Wahrscheinlichkeit
ε = 1− (1− 1/m)q−1 ein zweites Urbild x0 6= x von y = h(x) aus.

Der Beweis ist analog zum Beweis des vorherigen Satzes
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Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten
Angriffen ε ≈ q/m
Um also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist
q ≈ m/2 zu wählen
Geht es lediglich darum, irgendein Kollisionspaar (x , x ′) aufzuspüren, so
bietet sich ein sogenannter Geburtstagsangriff an
Dieser lässt sich deutlich zeiteffizienter realisieren
Wie der Name schon andeutet, basiert dieser Angriff auf dem sog.
Geburtstagsparadoxon, welches in seiner einfachsten Form folgendes
besagt

Geburtstagsparadoxon
Bereits in einer Klasse mit 23 Kindern ist die Wahrscheinlichkeit größer
1/2, dass mindestens zwei Kinder am gleichen Tag Geburtstag haben
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Der nächste Satz besagt, dass bei q-maligem Ziehen (mit Zurücklegen)
aus einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m − 1)(m − 2) · · · (m − q + 1)/mq−1

mindestens eine Kugel mehrmals gezogen wird
Für m = 365 und q = 23 ergibt dies einen Wert von ungefähr 0,507
Da die Häufigkeiten der Geburtstage in einer Klasse nicht gleichverteilt
sind, ist die Wahrscheinlichkeit, dass 2 Kinder am gleichen Tag
Geburtstag haben, sogar noch etwas höher
Zur Kollisionsbestimmung verwenden wir folgenden Algorithmus

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return (xi , xj) else return ?
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Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return (xi , xj) else return ?

Bei einer naiven Implementierung würde zwar der Zeitaufwand für die
Auswertung der if-Bedingung quadratisch von q abhängen
Trägt man aber jeden Text x unter dem Suchwort h(x) in eine Hash-
tabelle der Größe q ein, so wird der Zeitaufwand für jeden einzelnen
Text x im wesentlichen durch die Berechnung von h(x) bestimmt

Satz
Collision(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

ε = 1− (m − 1)(m − 2) · · · (m − q + 1)
mq−1

ein Kollisionspaar (x , x ′) für h aus
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Beweis.
Sei X0 = {x1, . . . , xq} und für i = 1, . . . , q bezeichne Ei das Ereignis

h(xi) 6∈ {h(x1), . . . , h(xi−1)}

Dann ist E1 ∩ . . . ∩ Eq das Ereignis “Collision(h, q) gibt ? aus”
Für i = 1, . . . , q gilt nun

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m − i + 1
m

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]

= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(m − 1

m

)(m − 2
m

)
· · ·
(m − q + 1

m

)
�
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Mit der Approximation 1− x ≈ e−x erhalten wir folgende Abschätzung
für ε:

ε = 1−
q−1∏
i=1

(
1− i

m

)

≈ 1−
q−1∏
i=1

e
−i
m = 1− e−

1
m
∑q−1

i=1 i = 1− e−
q(q−1)

2m

≈ 1− e−
q2
2m ≈ q2/2m

Für q erhalten wir daraus die Abschätzung
q ≈ cε

√
m

mit einer von ε abhängigen Konstante cε =
√
2ε

Diese Abschätzung ist nur für ε-Werte nahe Null hinreichend genau
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Aus der Abschätzung ε ≈ 1− e−
q2
2m für ε (siehe vorige Folie) erhalten

wir insbesondere für größere Werte von ε eine bessere Abschätzung für
q:

q ≈ c ′ε
√
m

mit der Konstanten c ′ε =
√
2 ln 1

1−ε

Für ε = 1/2 ergibt sich somit q ≈
√

(2 ln 2)m ≈ 1,17
√
m

Besitzt also eine binäre Hashfunktion h : {0, 1}n → {0, 1}m die
Hashwertlänge m = 128 Bit, so müssen im ZOM q ≈ 1,17 · 264 Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision
zu finden
Um einem Geburtstagsangriff widerstehen zu können, sollte eine
Hashfunktion mindestens eine Hashwertlänge von 128 oder besser 160
Bit haben
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Im Folgenden beschäftigen wir uns mit der Frage, wie sich aus einer
kollisionsresistenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion
ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt
Hierzu betrachten wir folgende kanonische Konstruktionsmethode:
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Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion
y : {0, 1}∗ →

⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0

Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter
Initialisierungsvektor und sei y(x) = y1 · · · yr mit |yi | = t für i = 1, . . . , r .
Berechne eine Folge z0, . . . , zr von Strings zi ∈ {0, 1}m wie folgt:

zi =

IV , i = 0,
h(zi−1yi), i = 1, . . . , r

Optionale Ausgabetransformation: Berechne den Wert ĥ(x) = g(zr ),
wobei g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist
(meist wird für g die Identität verwendet)

Zur Berechnung von ĥ(x) wird also die Funktion h genau r -mal aufgerufen
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Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft

Definition
Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei , falls es keine
Strings x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt
Mit anderen Worten: kein Funktionswert y(x) ist Suffix eines
Funktionswertes y(x̃) an einer Stelle x̃ 6= x

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist
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Satz
Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation
g injektiv ist, so ist mit h auch ĥ kollisionsresistent

Beweis.
Wir nehmen an, dass es gelingt, ein Kollisionspaar (x , x̃) für ĥ zu finden
(d.h. ĥ(x) = ĥ(x̃) und x 6= x̃)
Seien y(x) = y1 . . . yr und y(x̃) = ỹ1 . . . ỹs mit r ≤ s
Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , r} mit yi 6= ỹs−r+i
existieren
Weiter seien zi (i = 0, . . . , r) und z̃j (j = 0, . . . , s) die in der
Processing-Phase berechneten Hashwerte
Da g injektiv ist, muss mit g(zr ) = ĥ(x) = ĥ(x̃) = g(z̃s) auch zr = z̃s
gelten
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Beweis.
Wir nehmen an, dass es gelingt, ein Kollisionspaar (x , x̃) für ĥ zu finden
(d.h. ĥ(x) = ĥ(x̃) und x 6= x̃)
Seien y(x) = y1 . . . yr und y(x̃) = ỹ1 . . . ỹs mit r ≤ s
Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , r} mit yi 6= ỹs−r+i
existieren
Weiter seien zi (i = 0, . . . , r) und z̃j (j = 0, . . . , s) die in der
Processing-Phase berechneten Hashwerte
Da g injektiv ist, muss mit g(zr ) = ĥ(x) = ĥ(x̃) = g(z̃s) auch zr = z̃s
gelten
Sei imax der größte Index i ∈ {1, . . . , r} mit zi−1yi 6= z̃s−r+i−1ỹs−r+i

Dann bilden zimax−1yimax und z̃s−r+imax−1ỹs−r+imax wegen
h(zimax−1yimax ) = zimax = z̃s−r+imax = h(z̃s−r+imax−1ỹs−r+imax )

ein Kollisionspaar für h �
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Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung
ihrer Konstruktion vor
Als Initialisierungsvektor wird der Nullvektor IV = 0m benutzt, die
optionale Ausgabetransformation entfällt, und für y(x) wird im Fall
t ≥ 2 die folgende Funktion verwendet
(den Fall t = 1 betrachten wir später)
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Für x = ε sei y(x) = 0t

Für x ∈ {0, 1}n mit n > 0 sei r = d n
t−1e und x = x1x2 . . . xr−1xr mit

|x1| = |x2| = . . . = |xr−1| = t − 1 sowie |xr | = t − 1− d , wobei
0 ≤ d < t − 1
Im Fall r = 1 ist dann y(x) = y1y2 mit y1 = 0x0d und y2 = 1bint−1(d)
Und für r > 1 ist y(x) = y1 · · · yr+1, wobei

yi =


0x1, i = 1,
1xi , 2 ≤ i < r ,
1xr0d , i = r ,
1bint−1(d), i = r + 1,

(1)

und bint−1(d) die durch führende Nullen auf die Länge t − 1 aufgefüllte
Binärdarstellung von d ist
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Satz
Die durch (1) definierte Preprocessing-Funktion y ist suffixfrei

Beweis.
Seien x 6= x̃ zwei Texte mit |x | ≤ |x̃ |
Wir müssen zeigen, dass y(x) = y1y2 . . . yr+1 kein Suffix von
y(x̃) = ỹ1ỹ2 . . . ỹs+1 ist
Im Fall x = ε ist dies klar
Für x 6= ε machen wir folgende Fallunterscheidung
1. Fall: |x | 6≡t−1 |x̃ |. Dann folgt d 6= d̃ und somit yr+1 6= ỹs+1
2. Fall: |x | = |x̃ |. In diesem Fall ist r = s. Wegen x 6= x̃ existiert ein
Index i ∈ {1, . . . , r} mit xi 6= x̃i . Dies impliziert yi 6= ỹi , also ist y(x)
kein Suffix von y(x̃)
3. Fall: |x | 6= |x̃ | und |x | ≡t−1 |x̃ |. In diesem Fall ist r < s. Da y(x)
mit einer Null beginnt, aber das (s − r + 1)-te Bit von y(x̃) eine Eins
ist, kann y(x) kein Suffix von y(x̃) sein
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Nun betrachten wir den Fall t = 1
Sei y die durch y(x) := 11f (x) definierte Funktion, wobei f wie folgt
definiert ist:

f (x1 . . . xn) = f (x1) . . . f (x2) mit f (0) = 0 und f (1) = 01

Dann ist leicht zu sehen, dass y suffixfrei ist �

Da die Kompressionsfunktion h bei der Berechnung von ĥ(x) im Fall
t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h genau
|y(x)| ≤ 2(n + 1)-mal aufgerufen
Im Fall t > 1 werden dagegen nur r + 1 = d n

t−1e+ 1 Aufrufe benötigt
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Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest
vorgeschlagen
Die Bitlänge von MD4 beträgt l = 128 Bit
Bei einer Wortlänge von 32 Bit entspricht dies 4 Wörtern
MD4 und die im Folgenden vorgestellten Hashfunktionen benutzen u.a.
folgende Operationen auf Wörtern X ,Y ∈ {0, 1}32

Wort-Operationen
X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen
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Die Ganzzahl-Addition wird bei MD4 und MD5 in little endian
Architektur ausgeführt
D.h. dass ein aus 4 Bytes, zusammengesetztes Wort X = a3a2a1a0,
dessen Bytes ai ∈ 28 die Zahlenwerte (ai)2 ∈ [0, 255] haben, die Zahl
(a0)2224 + (a1)2216 + (a2)228 + (a3)2 repräsentiert
Dagegen verwendet SHA-1 eine big endian Architektur
D.h. dass X = a3a2a1a0 die Zahl (a3)2224 + (a2)2216 + (a1)228 + (a0)2
repräsentiert
Der MD4-Algorithmus benutzt die folgenden Funktionen fj für
j = 0, . . . , 47:

fj(X ,Y ,Z ) :=


(X ∧ Y ) ∨ (¬X ∧ Z ), j = 0, . . . , 15
(X ∧ Y ) ∨ (X ∧ Z ) ∨ (Y ∧ Z ), j = 16, . . . , 31
X ⊕ Y ⊕ Z , j = 32, . . . , 47
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Zudem benutzt er die folgenden Konstanten yj , zj , sj für j = 0, . . . , 47:

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1

zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15
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MD4(x)
1 input x ∈ {0, 1}∗, |x | = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit

n + 1 + k + 64 ≡ 0 (mod 512)
3 (H1,H2,H3,H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr , r = (n + 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X [0] · · ·X [15]
7 (A,B,C ,D) := (H1,H2,H3,H4)
8 for j := 0 to 47 do
9 (A,B,C ,D) := (D, (A + fj(B,C ,D) + X [zj ] + yj)←↩ sj ,B,C)

10 (H1,H2,H3,H4) := (H1 + A,H2 + B,H3 + C ,H4 + D)
11 output H1H2H3H4

In Zeile 9 wird die Kompressionsfunktion von MD4 berechnet:
(A,B,C ,D,X [zj ]) 7→ (D, (A + fj(B,C ,D) + X [zj ] + yj)←↩ sj ,B,C)
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Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen
aufgespürt werden
Deshalb gilt MD4 heutzutage nicht mehr als kollisionsresistent
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Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von
MD4
Die Bitlänge von MD5 beträgt wie bei MD4 l = 128 Bit
Bei einer Wortlänge von 32 Bit entspricht dies 4 Wörtern
In MD5 werden teilweise andere Konstanten als in MD4 verwendet
Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der
die Funktion fj(X ,Y ,Z ) = Y ⊕ (X ∨ ¬Z ) verwendet wird
Außerdem wurde die in Runde 2 von MD4 verwendete Funktion durch
fj(X ,Y ,Z ) := (X ∧ Z ) ∨ (Y ∧ ¬Z ), j = 16 . . . 31, ersetzt
Die y -Konstanten sind definiert als

yj := die ersten 32 Bit der Binärdarstellung von abs(sin(j + 1)),
0 ≤ j ≤ 63,
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Zudem benutzt der MD5 die folgenden Konstanten zj und sj :

j zj

0, . . . , 15 zj = j :
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

16, . . . , 31 zj = (5j + 1) mod 16 :
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12

32, . . . , 47 zj = (3j + 5) mod 16 :
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2

48, . . . , 63 zj = 7j mod 16 :
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

j sj
0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
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MD5(x)
1 input x ∈ {0, 1}∗, |x | = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit

n + 1 + k + 64 ≡ 0 (mod 512)
3 (H1,H2,H3,H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr , r = (n + 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X [0] · · ·X [15]
7 (A,B,C ,D) := (H1,H2,H3,H4)
8 for j := 0 to 63 do
9 (A,B,C ,D) := (D,B + (A + fj(B,C ,D) + X [zj ] + yj)←↩ sj ,B,C)

10 (H1,H2,H3,H4) := (H1 + A,H2 + B,H3 + C ,H4 + D)
11 output H1H2H3H4

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden
Für die Kompressionsfunktion von MD5 gelang dies bereits 1996
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Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des
MD4 bzw. MD5 Algorithmus
Er gilt in den USA als Standard und ist Bestandteil des von der
US-Behörde NIST (National Institute of Standards and Technology) im
August 1991 veröffentlichten DSS (Digital Signature Standard)
Die Bitlänge von SHA-1 beträgt l = 160 Bit
Bei einer Wortlänge von 32 Bit entspricht dies 5 Wörtern
SHA-1 unterscheidet sich nur geringfügig von der SHA-0 Hashfunktion,
in der eine Schwachstelle dazu führt, dass nach Berechnung von ca. 261

Hashwerten ein Kollisionspaar gefunden werden kann (obwohl bei einem
Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280

Berechnungen erforderlich sein müssten)
Diese potentielle Schwäche von SHA-0 wurde im SHA-1 dadurch
entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle
ausführt
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Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj für
j = 0, . . . , 79:

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f 1bbcdc
j = 60, . . . , 79 ca62c1d6

und folgende Funktionen fj für j = 0, . . . , 79:

fj(X ,Y ,Z ) :=


(X ∧ Y ) ∨ (¬X ∧ Z ), j = 0, . . . , 19
X ⊕ Y ⊕ Z , j = 20, . . . , 39
(X ∧ Y ) ∨ (X ∧ Z ) ∨ (Y ∧ Z ), j = 40, . . . , 59
X ⊕ Y ⊕ Z , j = 60, . . . , 79
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SHA-1(x)
1 input x ∈ {0, 1}∗, |x | = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit

n + 1 + k + 64 ≡ 0 (mod 512)
3 (H0, . . . ,H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f 0)
4 sei y = M1 · · ·Mr , r = (n + 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X [0] · · ·X [15]
7 for t := 16 to 79 do
8 X [t] := (X [t − 3]⊕ X [t − 8]⊕ X [t − 14]⊕ X [t − 16])←↩ 1
9 (A,B,C ,D,E ) := (H0,H1,H2,H3,H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C ,D) + E + X [j] + Kj
12 (A,B,C ,D,E ) := (temp,A,B ←↩ 30,C ,D)
13 (H0, . . . ,H4) := (H0 + A, . . . ,H4 + E )
14 output H0H1H2H3H4
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Im Jahr 2001 veröffentlichte die US-Behörde NIST drei weitere
Hashfunktionen der SHA-Familie: SHA-256, SHA-384, and SHA-512
Diese Funktionen werden auch als SHA-2 Hashfunktionen bezeichnet
In 2004 kam noch SHA-224 als vierte Variante hinzu
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich
aber in erster Linie in der benutzten Wortlänge: 32 Bit bei SHA-256
und 64 Bit bei SHA-512
Zudem werden unterschiedliche Shift- und Summationskonstanten
verwendet und auch die Rundenzahlen differieren
SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und
SHA-512
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Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj ,
j = 0, . . . , 63 (in Hexadezimaldarstellung):

428a2f 98, 71374491, b5c0fbcf , e9b5dba5, 3956c25b, 59f 111f 1, 923f 82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf 174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f , 4a7484aa, 5cb0a9dc, 76f 988da,
983e5152, a831c66d , b00327c8, bf 597fc7, c6e00bf 3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f 40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f , 682e6ff 3,
748f 82ee, 78a5636f , 84c87814, 8cc70208, 90befffa, a4506ceb, bef 9a3f 7, c67178f 2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der
dritten Wurzeln der ersten 64 Primzahlen 2, . . . , 311
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1 input x ∈ {0, 1}∗, |x | = n
2 y := x10kbin64(n), k ∈ {0, . . . , 511} mit n+1+k+64 ≡ 0 (mod 512)
3 (H0, . . . ,H7) := (6a09e667, . . . , 5be0cd19)
4 sei y = M1 · · ·Mr , r = (n + 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X [0] · · ·X [15]
7 for t := 16 to 63 do
8 s0 := (X [t − 15] ↪→ 7)⊕ (X [t − 15] ↪→ 18)⊕ (X [t − 15]→ 3)
9 s1 := (X [t − 2] ↪→ 17)⊕ (X [t − 2] ↪→ 19)⊕ (X [t − 2]→ 10)

10 X [t] := X [t − 16] + s0 + X [t − 7] + s1
11 (A,B,C ,D,E ,F ,G ,H) := (H0,H1,H2,H3,H4,H5,H6,H7)
12 for j := 0 to 63 do α
13 (H0,H1, . . . ,H7) := (H0 + A,H1 + B, . . . ,H6 + G ,H7 + H)
14 output H0H1H2H3H4H5H6H7

Die Werte von H0, . . . ,H7 in Zeile 3 sind die ersten 32 Bit der binären
Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19
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Programmstück α
1 s0 := (A ↪→ 2)⊕ (A ↪→ 13)⊕ (A ↪→ 22)
2 maj := (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)
3 t2 := s0 + maj
4 s1 := (E ↪→ 6)⊕ (E ↪→ 11)⊕ (E ↪→ 25)
5 ch := (E ∧ F )⊕ (¬E ∧ G)
6 t1 := H + s1 + ch + Kj + X [j]
7 (A,B,C ,D,E ,F ,G ,H) := (t1 + t2,A,B,C ,D + t1,E ,F ,G)
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Bereits 1991 wurden von den Boer und Bosselaers Schwächen im MD4
aufgedeckt
Im August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich
Kollisionen für MD4 mittels “hand calculation” finden lassen
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte
“Pseudo-Kollisionen” für die MD5 Kompressionsfunktion zu generieren
In 1996, fand Dobbertin ein Kollisionspaar für die MD5
Kompressionsfunktion
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun
Wang, Dengguo Feng, Xuejia Lai und Hongbo Yu berechnet
Der benötigte Aufwand wurde mit ca. 1 Stunde auf einem IBM p690
Cluster abgeschätzt
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Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang und Benne
de Weger zwei X.509 Zertifikate mit unterschiedlichen Public-keys, die
auf denselben MD5-Hashwert führten
Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit,
Kollisionen für MD5 innerhalb weniger Stunden auf einem Notebook zu
berechnen
Mittels der so genannten Tunneling-Methode wurde die Rechenzeit vom
gleichen Autor im März 2006 auf eine Minute verkürzt
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf
SHA-0 vor, der ein Kollisionspaar mit nur 261 Hashwertberechnungen
(anstelle von 280 bei einem Geburtstagsangriff) aufspürt
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In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0,
bei denen sich die Hashwerte nur an 18 von den 160 Bitpositionen
unterschieden
Zudem legten sie volle Kollisionen für den auf 62 Runden reduzierten
SHA-0 Algorithmus vor
Schließlich wurde im August 2004 die Berechnung einer Kollision für
den vollen 80-Runden SHA-0 Algorithmus von Joux, Carribault, Lemuet
und Jalby bekannt gegeben
Hierzu wurden lediglich 251 Hashwerte berechnet, die ca. 80 000
Stunden CPU-Rechenzeit auf einem 2-Prozessor 256-Itanium
Supercomputer benötigten
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Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der
CRYPTO 2004 eine Angriffsmethode für MD5, SHA-0 und andere
Hashfunktionen vorgestellt, mit der sich die Anzahl der
Hashwertberechnungen auf 240 senken lässt
Dies wurde im Februar 2005 von Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu geringfügig auf 239 Hashwertberechnungen verbessert
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten
von einer weiteren Verwendung des SHA-1 ab. Daraufhin kündigte die
amerikanische Behörde NIST an, SHA-1 in 2010 zugunsten der SHA-2
Varianten abzulösen
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Im Jahr 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit
weniger als 280 Hashwertberechnungen ein Kollisionspaar für den auf 53
Runden reduzierten SHA-1 Algorithmus findet
Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269

Hashwertberechnungen an
Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang,
Andrew Yao und Frances Yao auf der CRYPTO 2005 eine weitere
Reduktion auf 263 Berechnungen
In 2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem
geschätzten Aufwand von 251 bis 257 Berechnungen veröffentlicht
Im Februar 2017 fanden Stevens, Bursztein, Karpman, Albertini und
Markov die erste Kollision für SHA-1
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41
Runden reduzierte Variante von SHA-256 und die von 80 auf 46
Runden reduzierte Variante von SHA-512
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Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des
vom NIST ausgeschriebenen Wettbewerbs für den SHA-3-Algorithmus
ausgewählt
Die Intention dabei war nicht, SHA-2 als Standard durch SHA-3
abzulösen, zumal bisher keine erfolgreichen Angriffe gegen SHA-2
bekannt sind
Vielmehr ging es bei diesem Wettbewerb darum, angesichts der
erfolgreichen Angriffe gegen MD5 und SHA-0, die einen ähnlichen
Aufbau wie SHA-1 und SHA-2 haben, eine auf einem vollkommen
anderen Entwurfsprinzip basierende Alternative zur Verfügung zu stellen



Die Sponge-Konstruktion 70

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von
den Autoren als Sponge (Schwamm) bezeichnet
Auf der Basis dieser Entwurfsmethode lassen sich außer Hashfunktionen
bspw. auch Pseudozufallsgeneratoren gewinnen
Der Aufbau eines Sponges ähnelt oberflächlich betrachtet der bereits
vorgestellten Konstruktion von iterierten Hashfunktionen, weist aber
einige Unterschiede auf
So basiert ein Sponge statt auf einer Kompressionsfunktion h auf einer
Permutation (oder allgemeiner Transformation) f : {0, 1}b → {0, 1}b,
die wie h iteriert angewendet wird
Dabei wird der aktuelle b-Bitblock in zwei Teilblöcke der Länge r und c
unterteilt, die als äußerer bzw. innerer Zustand bezeichnet werden
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Wie der Name schon sagt, verbleiben die Bits des inneren Zustands im
Sponge, d.h. sie dienen nur zur Berechnung des nächsten Zustands und
werden im Gegensatz zu den Bits des äußeren Zustands nicht
unmittelbar für die Gewinnung der Ausgabe genutzt
Die Anzahl c der Bits des inneren Zustands wird als Kapazität des
Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter
Die Anzahl r der Bits des äußeren Zustands heißt Bitrate, wobei
r + c = b gelten muss



Die Sponge-Konstruktion 72

Bevor die Funktion f im Kern des Algorithmus iteriert angewendet wird,
um eine Zustandsfolge zu generieren, wird ein Preprocessing ausgeführt
Die Anforderungen an diese Funktion beschreiben wir vorab

Definition
Eine Funktion y : {0, 1}∗ →

⋃
k≥1{0, 1}kr der Form y(x) = xz heißt

Paddingfunktion für Bitrate r ≥ 1
Eine solche Funktion heißt sponge-konform für Bitrate r ≥ 1, falls
gilt:
∀n ≥ 0∃z∀x ∈ {0, 1}n : y(x) = xz
∀k ≥ 0 ∀x 6= x ′ : y(x) 6= y(x ′)0kr
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Beispiel
Es ist leicht zu sehen, dass die Funktion

pad10∗1r (x) = x10d1 mit d = min{i ≥ 0 | i + 2 + |x | ≡r 0}
eine sponge-konforme Paddingfunktion für die Bitrate r ist
Tatsächlich ist pad10∗1r sogar für jede Bitrate r ′ ≥ 1 sponge-konform
Ohne die 1 am Ende von pad10∗1r (x) = x10d1 wäre dies nicht der Fall
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Definition
Sei y eine Paddingfunktion für r ≥ 1 und sei f : {0, 1}b → {0, 1}b

Für x ∈ {0, 1}∗ sei y(x) = y1 . . . yk mit |yi | = r für i = 1, . . . , k
Wir definieren die Zustände

si =


0b i = 0
f (si−1 ⊕ (yi0c)) 1 ≤ i ≤ k (Absorptionsphase)
f (si−1) i > k (Squeezing-Phase)

Weiter bezeichne zi für i ≥ 1 die ersten r Bit von sk+i−1

Zudem sei m = b lr c und z ′m+1 sei das Präfix von zm+1 der Länge l −mr
Dann ist die Funktion Spongef ,y ,r : N× {0, 1}∗ → {0, 1}∗ wie folgt
definiert: Spongef ,y ,r (l , x) = z1 . . . zmz ′m+1
Für die Analyse definieren wir noch die Funktionen

Absorbf ,r (y1 . . . yk) = sk und Squeezef ,r (l , sk) = z1 . . . zmz ′m+1
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Den Aufwand, für festes l ein Kollisionspaar x , x ′ mit x 6= x ′ und
Spongef ,y ,r (l , x) = Spongef ,y ,r (l , x ′) zu finden, können wir nach oben
durch den Aufwand abschätzen, ein Paar x , x ′ ∈

⋃
k≥1{0, 1}kr mit

x 6= x ′ und Absorbf ,r (y(x)) = Absorbf ,r (y(x ′)) zu finden
Hierbei reicht es, ein inneres Kollisionspaar, d.h. zwei Strings
w = y1 . . . , yk 6= w ′ = y ′1 . . . , y ′k′ zu finden, so dass die inneren
Zustände von sk = Absorbf ,r (w) und s ′k′ = Absorbf ,r (w ′) gleich sind
Setzen wir nämlich yk+1 und yk′+1 auf die äußeren Zustände von sk
und s ′k′ , so folgt für die Eingaben x = wyk+1 und x ′ = w ′y ′k′+1:

Absorbf ,r (x) = f (sk ⊕ (yk+10c)) = f (0r s i
k) = f (0r s ′ik′)

= f (s ′k′ ⊕ (y ′k′+10c)) = Absorbf ,r (x ′)
wobei s i

j den inneren Zustand von sj bezeichnet
Falls das Suffix z von y(x) = xz nur von |x | mod r abhängt, gilt wegen
|x | ≡r |x ′| dann auch die Gleichheit Absorbf ,r (y(x))=Absorbf ,r (y(x ′))
und somit Spongef ,y ,r (l , x) = Spongef ,y ,r (l , x ′)
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Um eine solche innere Kollision zu finden, hilft es, sich die 2c inneren
Zustände u ∈ {0, 1}c als Knoten eines gerichteten Multigraphen G
vorzustellen, der für jedes Paar (xu, x ′u′) mit f (xu) = x ′u′ eine Kante
(u, u′)x ,x ′ von u nach u′ mit dem Label x , x ′ enthält
Ziel ist es dann, zwei verschiedene Pfade von 0c zu demselben Knoten
v zu finden, wobei zwei Pfade auch dann verschieden sind, wenn sich
die Kanten nur in den Labeln unterscheiden
Wird f durch eine Zufallsfunktion modelliert (ZOM), so lassen bereits
berechnete Werte von f keine Rückschlüsse auf die Werte für andere
Argumente zu
Anders als beim ZOM für eine Hashfunktion kann es sich dennoch für
den Angreifer lohnen, die Argumente von f adaptiv nach einer Strategie
S zu wählen
Der Algorithmus InnerCollision fasst dieses Vorgehen zusammen
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Prozedur InnerCollision(f , r , q,S)
1 c := b − r , wobei f : {0, 1}b → {0, 1}b
2 initialisiere den Multi-Digraphen G = (V ,A) := ({0, 1}c , ∅)
3 for i := 1 to q do
4 wähle u ∈ V und x ∈ {0, 1}r nach Strategie S
5 x ′u′ := f (xu)
6 A := A ∪

{
(u, u′)x ,x ′

}
7 if ∃ zwei Pfade (0c , u1)x0,x ′0 , (u1, u2)x1,x ′1 , . . . , (uk−1, uk)xk−1,x ′k−1

und
8 (0c , v1)y0,y ′0 , (v1, v2)y1,y ′1 , . . . , (vl−1, vl)yl−1,y ′l−1

in G mit uk = vl then
9 return(x0(x ′0 ⊕ x1) . . . (x ′k−2 ⊕ xk−1), y0(y ′0 ⊕ y1) . . . (y ′l−2 ⊕ yl−1))

10 else
11 return(?)
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Satz
Für jede Strategie S gibt InnerCollision(f , r , q,S) im ZOM mit
Erfolgswahrscheinlichkeit höchstens

ε = 1−
q∏

i=1

(
1− i

2c
)

ein inneres Kollisionspaar (x , x ′) aus
Wählt S nur von 0c aus erreichbare Knoten u und kein Argument xu
mehrmals, so ist die Erfolgswahrscheinlichkeit exakt ε
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Beweis.
Sei Ei das Ereignis “G enthält nach dem i-ten Durchlauf noch keine
zwei verschiedenen Pfade von 0c zu einem Knoten v”
Da nur durch eine Kante zwischen zwei von 0c aus erreichbaren Knoten
ein zweiter Pfad von 0c aus geschlossen werden kann und nach i − 1
Durchläufen höchstens i von 2c Knoten erreichbar sind, gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] ≥ 1− i
2c

Wählt S nur erreichbare Knoten u und kein Argument xu mehrfach, so
sind unter Annahme von E1 ∩ . . . ∩ Ei−1 auch i Knoten erreichbar
(sonst gäbe es bereits zwei Pfade von 0c zu einem Knoten in G) und es
gilt sogar Gleichheit
Dies führt auf eine Erfolgswahrscheinlichkeit von
1−Pr[E1 ∩ . . . ∩ Eq] = 1−Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1∩. . . ∩ Eq−1]

≤ 1−
(
1− 1

2c
)(

1− 2
2c
)
· · ·
(
1− q

2c
)

= ε
�
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Mit der Approximation 1− x ≈ e−x erhalten wir die Abschätzung

ε = 1−
q∏

i=1

(
1− i

2c
)
≈ 1−

q∏
i=1

e
−i
2c = 1− e−

1
2c
∑q

i=1 i

= 1− e−
q(q+1)

2·2c ≈ 1− e−
q2

2·2c ≈ q2/2 · 2c

Für q ergibt sich daraus die Abschätzung
q ≈ cε

√
2c

mit einer von ε abhängigen Konstanten cε =
√
2ε
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Der Standard SHA-3 definiert die oben beschriebene
Sponge-Konstruktion, 7 verschiedene bijektive Funktionen
fw ,w = 2i , i ∈ {0, . . . , 6} als Kern von Spongefw ,pad10∗1r ,r , sowie
verschiedene Kombinationen von Bitraten r und Ausgabelängen l
(c ist durch 25w − r bestimmt)
Jede Funktion fw : {0, 1}5×5×w → {0, 1}5×5×w bildet ein
zweidimensionales Feld A aus w -Bit-Wörtern auf ein ebensolches Feld
fw (A) ab
Dabei wird (12 + log2 w)-mal eine Rundenfunktion
f ′w : {0, 1}5×5×w × {0, 1}w → {0, 1}5×5×w aufgerufen, die A und eine
Rundenkonstante RCi auf A′ abbildet
Es gilt

f ′w (A,RC) = ιRC (χ(π(ρ(θ(A))))),
wobei θ, ρ, π, χ und ιRC Bijektionen von {0, 1}5×5×w nach
{0, 1}5×5×w sind
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Die Funktion θ besteht aus ⊕-Operationen und ist so gewählt, dass sich
θ−1(A) an möglichst vielen Bits ändert, falls eines in A geflippt wird
Danach permutieren die Funktionen ρ und π die Bits von A innerhalb
und zwischen den Wörtern
Ähnlich einer S-Box im SPN ist χ eine nichtlineare Funktion (die
einzige solche in der Definition von f ′w ), die nur auf 5-Bit-Blöcken
arbeitet (jedes Bit hängt sogar nur von 2 anderen ab)
Schlussendlich setzt ιRC das Wort A0,0 auf A0,0 ⊕ RC
Für die Werte l ∈ {224, 256, 384, 512} definiert der Standard FIPS 202:

SHA3-l(x) = Spongef64,pad10∗1r ,r (l , x01), wobei r = 1600− 2l

Das zusätzliche Padding 01 soll dabei SHA-3 von anderen
Anwendungen von Keccak mit denselben Werten w , l , r unterscheiden
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Definition
Eine Hashfamilie H = (X ,Y ,K ,H) wird durch folgende Komponenten
beschrieben:

X , eine endliche oder unendliche Menge von Texten
Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖
K , endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K
eine Hashfunktion hk : X → Y in H spezifiziert, d.h. H = {hk | k ∈ K}

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des
Hashwertbereiches Y mit m und die des Schlüsselraumes K mit l
bezeichnen
Wir nennen dann H auch eine (n,m, l)-Hashfamilie oder einen
(n,m, l)-MAC
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x x ′

y hk(x ′) ?= y ′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal
Alice Bobk

Hierbei ist k der symmetrische Authentikationsschlüssel und y = hk(x)
der MAC-Wert für x unter k
Indem Alice ihre Nachricht x um den Hashwert y = hk(x) ergänzt, hat
Bob nicht nur die Möglichkeit, anhand von y die empfangene Nachricht
x ′ auf Manipulationen, sondern auch ihre Herkunft zu überprüfen
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Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer
Nachrichten benutzt werden kann, ohne dass dies einem potentiellen
Angreifer zur nichtautorisierten Berechnung von gültigen MAC-Werten
verhilft, sollte folgende Bedingung erfüllt sein

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel
k generierten Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt
ist, erfordert es einen immensen Aufwand, ohne Kenntnis von k ein
weiteres Paar (x , y) mit y = hk(x) zu finden
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Bei Verwendung eines berechnungsresistenten MACs ist es einem
Angreifer nicht möglich, an Bob eine Nachricht x zu schicken, die Bob
als von Alice stammend anerkennt
Zu beachten ist allerdings, dass die Berechnungsresistenz nichts für den
Fall aussagt, dass der Schlüssel k bekannt ist
So kann nicht davon ausgegangen werden, dass die Funktion hk(x) bei
bekanntem k die Einweg-Eigenschaft besitzt oder schwach
(beziehungsweise stark) kollisionsresistent ist
Es ist jedoch leicht zu sehen, dass es die Berechnungsresistenz
erfordert, dass hk(x) bei geheimgehaltenem k zumindest schwach
kollisionsresistent ist
Dies ist etwa der Fall, wenn k im Speicher eines ausforschungssicheren
Chips abgelegt wird
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Mithilfe eines berechnungsresistenten MACs kann der Integritätsschutz
für mehrere Datensätze auf die Geheimhaltung eines Schlüssels k
zurückgeführt werden
Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene
Veränderungen zu schützen, legt man sie zusammen mit ihren
MAC-Werten y1 = hk(x1), . . . , yn = hk(xn) auf einem unsicheren
Speichermedium ab und bewahrt den geheimen Schlüssel k an einem
sicheren Ort auf
Bei einem späteren Zugriff auf einen Datensatz xi lässt sich dessen
Unversehrtheit durch einen Vergleich von yi mit dem Ergebnis hk(xi)
einer erneuten MAC-Berechnung überprüfen
Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren
und andere Manipulationen erreicht wird, spricht man von einer
Versiegelung der gespeicherten Datensätze
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Ein Angriff gegen einen MAC hat die unbefugte Berechnung von
MAC-Werten zum Ziel
Das heißt, der Angreifer versucht, MAC-Werte hk(x) ohne Kenntnis des
geheimen Schlüssels k zu berechnen
Entsprechend der Art des zur Verfügung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren

Impersonation:
Der Angreifer kennt nur den benutzten MAC und versucht ein Paar (x , y)
mit hk(x) = y zu generieren, wobei k der (dem Angreifer unbekannte)
Schlüssel ist
Substitution:
Der Angreifer versucht in Kenntnis eines Paares (x , hk(x)) ein Paar
(x ′, y ′) mit x ′ 6= x und hk(x ′) = y ′ zu generieren
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Angriff bei bekanntem Text (known-text attack):
Der Angreifer kennt für eine Reihe von Texten x1, . . . , xr (die er nicht
selbst wählen konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr ) und
versucht, ein Paar (x ′, y ′) mit hk(x ′) = y ′ und x ′ 6∈ {x1, . . . , xr} zu
generieren
Angriff bei frei wählbarem Text (chosen-text attack):
Der Angreifer kann die Texte xi selbst wählen
Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack):
Der Angreifer kann die Wahl des Textes xi von den zuvor erhaltenen
MAC-Werten hk(xj), j < i , abhängig machen

Wechseln die Anwender nach jeder MAC-Wertberechnung den Schlüssel, so
genügt es, dass H einem Impersonationsangriff widersteht
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Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer
Wahrscheinlichkeitsverteilung p(k, x) = p(k)p(x) generiert, welche dem
Angreifer bekannt ist

Dabei nehmen wir an, dass p(x) > 0 und p(k) > 0 für alle x ∈ X und
k ∈ K gilt
Sei α die Wahrscheinlichkeit, mit der sich ein Angreifer bei optimaler
Strategie als Alice ausgeben kann, ohne dass Bob dies bemerkt
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Erfolgswahrscheinlichkeit für Impersonation
Für ein Paar (x , y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein
zufällig gewählter Schlüssel den Text x auf den MAC-Wert y abbildet:

p(x 7→ y) = p(y |x) =
∑

k∈K(x ,y)
p(k)

wobei K (x , y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf
y abbilden
Bei einem Impersonationsangriff ist p(x 7→ y) also die Wahrscheinlich-
keit, dass der Angreifer bei Wahl des Paares (x , y) Erfolg hat
Deshalb bezeichnen wir diese Wahrscheinlichkeit auch mit α(x , y)
Schließlich ist α(x) = max{α(x , y) | y ∈ Y } die Wahrscheinlichkeit,
mit der einem Angreifer bei optimaler Strategie eine Impersonation mit
dem Text x gelingt
Daher ist α = max{α(x) | x ∈ X}
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Beispiel
Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}
Wir beschreiben H durch die zugehörige Authentikationsmatrix
Die Zeilen und Spalten dieser Matrix werden mit den Schlüsseln k ∈ K
und den Texten x ∈ X indiziert und ihr Eintrag in Zeile k und Spalte x
ist der Wert hk(x):

0,1 0,2 0,3 0,4

a b c d
0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k)
an
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Beispiel (Fortsetzung)
Dann hat der Angreifer folgende Erfolgsaussichten α(x), falls er an Bob
den Text x senden möchte

x a b c d
p(x 7→ 0) 0,7 0,25 0,55 0,45
p(x 7→ 1) 0,3 0,75 0,45 0,55
α(x) 0,7 0,75 0,55 0,55

Folglich ist α = 0,75 /
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Satz
Für alle x ∈ X ist α(x) ≥ 1

m und daher gilt α ≥ 1
m

Beweis.
Für beliebiges x ∈ X gilt∑

y∈Y
p(x 7→ y) =

∑
y∈Y

∑
k∈K(x ,y)

p(k) =
∑
k∈K

p(k) = 1

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m und dies

impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m �
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Bemerkung
Wie der Beweis zeigt, gilt α = 1

m genau dann, wenn für alle Paare
(x , y) ∈ X × Y folgende Gleichheit gilt:

∑
k∈K(x ,y)

p(k) = 1
m

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der
Authentikationsmatrix jeder MAC-Wert gleich oft vorkommen
Dies lässt sich am einfachsten dadurch erreichen, dass man K = Y
setzt und für hk die konstante Funktion hk(x) = k wählt
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Ein Maß für den Informationsgehalt
In der Informationstheorie wird die Unsicherheit über eine Nachrichten-
quelle X nach ihrer Entropie bemessen
Dabei entspricht die Unsicherheit über X genau dem Informations-
gewinn, der sich aus der Beobachtung der Quelle X ergibt
Intuitiv ist die in einer einzelnen Nachricht x steckende Information
umso größer, desto unwahrscheinlicher sie ist
Tritt eine Nachricht x mit der Wahrscheinlichkeit p(x) = Pr[X = x ] > 0
auf, dann ist ihr Informationsgehalt definiert als

InfX (x) = log2(1/p(x)) = − log2 p(x)

Im Fall p(x) = 0 sei InfX (x) = 0
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Ein Maß für den Informationsgehalt
Diese Definition des Informationsgehalts ergibt sich zwangsläufig aus
den beiden folgenden Axiomen:

Der (gemeinsame) Informationsgehalt InfX ,Y (x , y) von zwei
Nachrichten x und y , die aus unabhängigen Quellen
X und Y stammen, ist InfX (x) + InfY (y)
Eine Nachricht x , die mit Wahrscheinlichkeit Pr[X = x ] = 1/2
auftritt, hat den Informationsgehalt InfX (x) = 1

Die Einheit des Informationsgehalts ist bit (basic indissoluble
information unit)
Die Entropie von X ist nun der erwartete Informationsgehalt einer von
X generierten Nachricht
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Definition
Sei X eine Zufallsvariable mit Wertebereich W (X ) = {x1, . . . , xn} und
sei pi = Pr[X = xi ]
Dann ist die Entropie von X definiert als

H(X ) =
n∑

i=1
pi InfX (xi) =

n∑
i=1

pi log2(1/pi) = −
n∑

i=1
pi log2(pi)

Beispiel
Sei X eine Zufallsvariable mit der Verteilung

xi sonnig leicht bewölkt bewölkt stark bewölkt Regen Schnee Nebel
pi 1/4 1/4 1/8 1/8 1/8 1/16 1/16

Dann ergibt sich die Entropie von X zu
H(X ) = 1/4 · (2 + 2) + 1/8 · (3 + 3 + 3) + 1/16 · (4 + 4) = 2,625 /
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Die Entropie nimmt im Fall der Gleichverteilung p1 = · · · = pn = 1/n
den Wert log2(n) an, während sie für jede andere Verteilung auf einer
n-elementigen Menge einen Wert H(X ) < log2(n) hat (siehe unten)
Die Unsicherheit über eine Zufallsvariable X ist um so größer, je größer
der Wertebereich und je gleichmäßiger die Verteilung von X ist
Bringt X zum Beispiel nur einen einzigen Wert mit positiver Wahr-
scheinlichkeit hervor, dann (und nur dann) hat H(X ) den Wert 0
Für den Nachweis von oberen Schranken für die Entropie benutzen wir
folgende Hilfsmittel aus der Analysis

Definition
Sei I ⊆ R ein Intervall. Eine Funktion f : I → R heißt konkav auf I,
falls für alle x 6= y ∈ I und 0 ≤ t ≤ 1 gilt:

f (tx + (1− t)y) ≥ tf (x) + (1− t)f (y)
Gilt sogar „>“ anstelle von „≥“, so heißt f streng konkav auf I
Im Falle von „<“ bzw. „≤“ heißt f (streng) konvex auf I
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Beispiel
Die Funktion f (x) = log2(x) ist streng konkav auf (0,∞) /

Für den Beweis des nächsten Satzes benötigen wir die Jensensche
Ungleichung, die wir ohne Beweis angeben

Jensensche Ungleichung
Sei f eine streng konkave Funktion auf I und seien 0 < a1, . . . , an < 1
reelle Zahlen mit

∑n
i=1 ai = 1

Dann gilt für alle x1, . . . , xn ∈ I,

f
( n∑
i=1

aixi
)
≥

n∑
i=1

ai f (xi)

Im Falle einer streng konvexen Funktion f gilt ≤ anstelle von ≥
Dabei gilt Gleichheit genau dann, wenn alle xi den gleichen Wert haben
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Satz
Sei X eine Zufallsvariable mit Wertebereich W (X ) = {x1, . . . , xn} und
Verteilung pi = Pr[X =xi ] für i = 1, . . . , n
Dann gilt H(X ) ≤ log2(n), wobei Gleichheit genau im Fall pi = 1/n für
i = 1, . . . , n eintritt

Beweis.
Aufgrund der Jensenschen Ungleichung gilt

H(X ) =
n∑

i=1
pi log2(1/pi) ≤ log2

n∑
i=1

(pi/pi) = log2 n,

wobei Gleichheit genau im Fall 1/p1 = · · · = 1/pn eintritt
Letzteres ist mit der Bedingung pi = 1/n für i = 1, . . . , n gleich-
bedeutend �
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Das folgende Lemma benötigen wir für den Beweis des nächsten Satzes

Lemma
Sei X eine Zufallsvariable mit endlichem Wertebereich W (X ) ⊆ R+

Dann gilt log E (X ) ≥ E (logX )

Beweis.
Sei W (X ) = {x1, . . . , xn} und für i = 1, . . . , n sei pi = Pr[X = xi ]
Da die Funktion x 7→ log2 x konkav ist, folgt mit der Jensenschen
Ungleichung

log E (X ) = log2(
∑

pixi) ≥
∑

pi log2 xi = E (logX )
�
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Zudem benötigen wir noch den Begriff der bedingten Entropie

Definition. Seien X ,Y Zufallsvariablen
Die bedingte Entropie von X unter Y ist definiert als

H(X |Y ) =
∑

y∈W (Y )
p(y)H(X |y) =

∑
y

p(y)
∑
x

p(x |y) log2(1/p(x |y)),

wobei X |y die Zufallsvariable mit der Verteilung py (x) = p(x |y) ist
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Satz
Für jeden MAC (X ,Y ,K ,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) ≥ 1/l

Hierbei sind X ,Y,K Zufallsvariablen, die die Verteilungen der
Nachrichten, der MAC-Werte und der Schlüssel beschreiben

Der Wert von α kann also um so kleiner werden, je gleichmäßiger die
Schlüsselverteilung ist und je mehr Information die Beobachtung eines
gültigen Paares (x , y) über den Schlüssel liefert
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Satz
Für jeden MAC (X ,Y ,K ,H) gilt α ≥ 1/2H(K)−H(K|X ,Y) ≥ 1/l

Beweis.
Wegen α = maxx ,y α(x , y) ist E (α(X ,Y)) =

∑
x ,y p(x , y)α(x , y) ≤ α

Dabei ist E (α(X ,Y)) die Erfolgswahrscheinlichkeit eines
(probabilistischen) Angreifers, der das Paar (x , y) gemäß der Verteilung
(X ,Y) wählt
Somit folgt unter Anwendung von obigem Lemma

logα ≥ log E (α(X ,Y)) ≥ E (logα(X ,Y))
=

∑
x ,y

p(x , y)︸ ︷︷ ︸
p(x)p(y |x)

logα(x , y)︸ ︷︷ ︸
log p(y |x) = − log 1

p(y|x)

= −H(Y |X )
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Beweis.
Somit folgt unter Anwendung von obigem Lemma

logα ≥ −H(Y |X )
Zudem gilt

H(K,Y,X ) = H(X ) + H(Y |X ) + H(K|X ,Y)
und

H(K,Y,X ) = H(K,X )︸ ︷︷ ︸
= H(K)+H(X )

+H(Y |K,X )︸ ︷︷ ︸
= 0

Daher folgt H(Y |X ) = H(K)− H(K | X ,Y) und somit
logα ≥ H(K | X ,Y)− H(K)
Dies ist äquivalent zu α ≥ 1/2H(K)−H(K|X ,Y)

�
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Beispiel
Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}
Wir beschreiben H durch die zugehörige Authentikationsmatrix
Die Zeilen und Spalten dieser Matrix werden mit den Schlüsseln k ∈ K
und den Texten x ∈ X indiziert und ihr Eintrag in Zeile k und Spalte x
ist der Wert hk(x):

0,1 0,2 0,3 0,4

a b c d
0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k)
an
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Beispiel (Fortsetzung)
Es gilt

H(K) =
∑
k

p(k) log 1
p(k) = 0,45·1,152+0,3·1,737+0,25·2,0 = 1,54

Um H(K|X ,Y) zu bestimmen, benötigen wir die gemeinsame Ver-
teilung von X ,Y sowie die bedingten Verteilungen Kx ,y für alle Paare
(x , y) ∈ X × Y :

(x , y) (a, 0) (a, 1) (b, 0) (b, 1) (c, 0) (c, 1) (d , 0) (d , 1)
p(x , y) 0,07 0,03 0,05 0,15 0,165 0,135 0,18 0,22
p(1|x , y) 5

14 0 1 0 5
11 0 0 5

11
p(2|x , y) 0 1 0 2

5
6
11 0 0 6

11
p(3|x , y) 9

14 0 0 3
5 0 1 1 0

H(K|x , y) ≈ 0,94 0 0 ≈ 0,97 ≈ 0,99 0 0 ≈ 0,99

Hierbei gilt p(x , y) = p(x)p(y |x) = p(x)p(x 7→ y)
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Beispiel (Schluss)
Somit ist

H(K|X ,Y) =
∑
x ,y

p(x , y)H(K|x , y) ≈ 0,52

und wir erhalten die untere Schranke

α ≥ 1
2H(K)−H(K|X ,Y) ≈

1
21,54−0,52 = 1

21,02 ≈ 0,493
/
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Bezeichne β die Wahrscheinlichkeit, mit der ein MAC-Angreifer bei
optimaler Strategie eine von Alice gesendete Nachricht x durch eine
andere Nachricht x ′ ersetzen kann, ohne dass Bob dies bemerkt
Dabei gehen wir davon aus, dass der Angreifer keinen Einfluss auf die
Wahl der von Alice gesendeten Nachricht x hat
Falls der Angreifer ein von Alice gesendetes Paar (x , y) durch das Paar
(x ′, y ′) ersetzt, ist seine Erfolgswahrscheinlichkeit gleich der bedingten
Wahrscheinlichkeit

p(x ′ 7→ y ′ |x 7→ y) = p(x 7→ y , x ′ 7→ y ′)
p(x 7→ y) =

∑
k∈K(x ,y ,x ′,y ′) p(k)∑

k∈K(x ,y) p(k) ,

dass ein zufällig gewählter Schlüssel k den Text x ′ auf y ′ abbildet, wenn
bereits bekannt ist, dass hk(x) = y ist
Hierbei ist K (x , y , x ′, y ′) = {k ∈ K | hk(x) = y ∧ hk(x ′) = y ′}
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Falls Alice also das Paar (x , y) sendet, so ist die maximale Erfolgswahr-
scheinlichkeit des Angreifers

β(x , y) := max
x ′ 6=x ,y ′

p(x ′ 7→ y ′ |x 7→ y)

Man beachte, dass β(x , y) nur im Fall p(x , y) > 0 definiert ist
Da der Angreifer keinen Einfluss auf die Wahl von (x , y) hat, ist β
gleich dem Erwartungswert von β(x , y) unter der Verteilung p(x , y),
mit der Alice diese Paare generiert
Somit erhalten wir

β = E (β(X ,Y)) =
∑

x∈X ,y∈Y
p(x , y)β(x , y)

Wegen p(x , y) = p(x)p(x 7→ y) können wir β unter Verwendung von
β′(x , y) = β(x , y)p(x 7→ y) = max

x ′ 6=x ,y ′
p(x ′ 7→ y ′, x 7→ y)

auch mittels der Formel β =
∑

x∈X p(x)
∑

y∈Y β
′(x , y) berechnen
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Beispiel
Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}
Wir beschreiben H durch die zugehörige Authentikationsmatrix
Die Zeilen und Spalten dieser Matrix werden mit den Schlüsseln k ∈ K
und den Texten x ∈ X indiziert und ihr Eintrag in Zeile k und Spalte x
ist der Wert hk(x):

0,1 0,2 0,3 0,4

a b c d
0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k)
an
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Beispiel (Fortsetzung)

p(x ′ 7→y ′, x 7→y)
(x ,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x ,y) p(x 7→y) β(x ,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,7 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,75 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 0,55 1

Die optimalen Wahlmöglichkeiten des Angreifers, ein Paar (x , y) durch
ein anderes Paar (x ′, y ′) zu ersetzen, sind in der Tabelle fett gedruckt
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Beispiel (Schluss)
Für β erhalten wir somit den Wert

β =
∑
x∈X

p(x)
∑
y∈Y

β′(x , y)

= 0,1(0,45 + 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45)
+ 0,4(0,45 + 0,55)

= 0,915 /
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Als nächstes zeigen wir für β die gleiche untere Schranke wie für α

Satz
Für alle (x , y) ∈ X × Y mit p(x , y) > 0 ist β(x , y) ≥ 1

m und somit β ≥ 1
m

Beweis.
Sei (x , y) ∈ X × Y ein Paar mit p(x , y) > 0
Dann gilt für beliebige x ′ ∈ X − {x}∑

y ′∈Y
p(x ′ 7→ y ′ |x 7→ y) =

∑
y ′∈Y

∑
k∈K(x ′,y ′;x ,y) p(k)∑

k∈K(x ,y) p(k) = 1

Somit existiert ein y ′ ∈ Y mit p(x ′ 7→ y ′ |x 7→ y) ≥ 1
m und dies

impliziert
β(x , y) = max

x ′ 6=x ,y ′
p(x ′ 7→ y ′ |x 7→ y) ≥ 1

m
Also gilt β =

∑
x∈X ,y∈Y p(x , y)β(x , y) ≥ 1

m
∑

x∈X ,y∈Y p(x , y) = 1
m �
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Beispiel
Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3

Für k = (a, b) ∈ K und x ∈ X sei
hk(x) = ax + b mod 3

Die zugehörige Authentikationsmatrix ist
0 1 2

(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Wir nehmen an, dass der Schlüssel unter Gleichverteilung gewählt wird
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Beispiel (Fortsetzung)
Ersetzt der Angreifer ein Paar (x , y) durch ein Paar (x ′, y ′) mit x ′ 6= x ,
so wird dieses Paar von genau einem der 3 infrage kommenden
Schlüssel akzeptiert
Dies liegt daran, dass in je 2 Spalten der Authentikationsmatrix jedes
MAC-Wertepaar genau einmal vorkommt
Folglich ist p(x ′ 7→ y ′ |x 7→ y) = 1/3 und somit hat β den optimalen
Wert β = 1/3 /
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Lemma
In einem MAC (X ,Y ,K ,H) mit β = 1

m gilt für alle Doppelpaare
(x , y , x ′, y ′) mit x 6= x ′ die Gleichheit

p(x ′ 7→ y ′ |x 7→ y) = 1/m

Beweis.
Wir setzen zunächst voraus, dass p(x 7→ y) > 0 für alle Paare
(x , y) ∈ X × Y gilt
Würde nun für ein Doppelpaar (x , y , x ′, y ′) mit x 6= x ′

p(x ′ 7→ y ′ |x 7→ y) > 1/m
gelten, dann wäre auch

β(x , y) = max
x ′ 6=x ,y ′

p(x ′ 7→ y ′ |x 7→ y) > 1/m
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Beweis (Fortsetzung).
Da für alle Paare (u, v) mit p(u 7→ v) > 0 nach obigem Satz die
Ungleichung β(u, v) ≥ 1/m gilt und p(x , y) = p(x)p(x 7→ y) > 0 ist,
würde hieraus
β =

∑
u∈X ,v∈Y

p(u, v)β(u, v) = p(x , y)β(x , y)︸ ︷︷ ︸
>1/m

+
∑

(u,v) 6=(x ,y)
p(u, v)β(u, v)︸ ︷︷ ︸

≥1/m

> 1/m

folgen, was im Widerspruch zur Voraussetzung des Satzes steht
Ist andererseits

p(x ′ 7→ y ′ |x 7→ y) < 1/m,
muss wegen∑

y ′′∈Y
p(x ′ 7→ y ′′ |x 7→ y) = 1

auch ein MAC-Wert y ′′ mit p(x ′ 7→ y ′′ |x 7→ y) > 1/m existieren, was
wir bereits widerlegt haben



Erfolgswahrscheinlichkeit für Substitution 120

Beweis (Schluss).
Es bleibt zu zeigen, dass p(x 7→ y) > 0 für alle Paare (x , y) ∈ X × Y
gilt
Wäre p(x 7→ y) = 0, so würde für ein beliebiges Paar (u, v) mit
p(u 7→ v) > 0 auch p(x 7→ y |u 7→ v) = 0 < 1/m sein, was wir bereits
widerlegt haben �
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Satz
Ein MAC (X ,Y ,K ,H) erfüllt β = 1

m genau dann, wenn
p(x 7→ y , x ′ 7→ y ′) = 1/m2

für alle Doppelpaare (x , y , x ′, y ′) mit x 6= x ′ gilt

Beweis.
Sei (X ,Y ,K ,H) ein MAC mit β = 1

m
Nach obigem Lemma impliziert dies, dass für alle Doppelpaare
(x , y , x ′, y ′) mit x 6= x ′ gilt,

p(x ′ 7→ y ′ |x 7→ y) = 1/m
Dies impliziert nun

p(x ′ 7→ y ′) =
∑
y

p(x 7→ y)p(x ′ 7→ y ′ |x 7→ y) = 1/m

und daher
p(x 7→ y , x ′ 7→ y ′) = p(x ′ 7→ y ′)p(x 7→ y |x ′ 7→ y ′) = 1/m2
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Satz
Ein MAC (X ,Y ,K ,H) erfüllt β = 1

m genau dann, wenn
p(x 7→ y , x ′ 7→ y ′) = 1/m2

für alle Doppelpaare (x , y , x ′, y ′) mit x 6= x ′ gilt

Beweis (Schluss).
Umgekehrt rechnet man leicht nach, dass die Bedingung β = 1

m erfüllt
ist, wenn für alle Doppelpaare (x , y , x ′, y ′) mit x 6= x ′ die Gleichheit
p(x 7→ y , x ′ 7→ y ′) = 1/m2 gilt �
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Bemerkung
Nach obigem Satz gilt β = 1

m genau dann, wenn für alle Doppelpaare
(x , y , x ′, y ′) mit x 6= x ′ gilt,

p(x 7→ y , x ′ 7→ y ′) =
∑

k∈K(x ,y ,x ′,y ′)
p(k) = 1

m2

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m genau dann, wenn in

je zwei Spalten der Authentikationsmatrix jedes MAC-Wertepaar gleich
oft vorkommt
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Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung
gewählt wird, d.h. es gilt p(k) = 1

‖K‖ für alle k ∈ K

Definition
Ein MAC (X ,Y ,K ,H) heißt 2-universal , falls für alle x , x ′ ∈ X mit x 6= x ′
und alle y , y ′ ∈ Y gilt:

‖K (x , y , x ′, y ′)‖ = ‖K‖m2

Ein MAC (X ,Y ,K ,H) ist also genau dann 2-universal, wenn für alle
Textpaare x , x ′ ∈ X mit x 6= x ′ jedes MAC-Wertpaar y , y ′ ∈ Y mit Wk
1/m2 auftritt
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Bemerkung
Bei der Konstruktion von 2-universalen MACs spielt der Parameter
λ = ‖K‖

m2 eine wichtige Rolle
Da λ notwendigerweise positiv und ganzzahlig ist, muss insbesondere
‖K‖ ≥ m2 gelten
Im Folgenden nennen wir einen 2-universalen (n,m, l)-MAC mit
λ = l/m2 kurz einen (n,m, l , λ)-MAC
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Beispiel
Wir betrachten den MAC (X ,Y ,K ,H) mit X = {0, 1, 2, 3},
Y = {0, 1, 2}, K = {0, 1, . . . , 8}, wobei H durch folgende
Authentikationsmatrix beschrieben wird:

0 1 2 3
0 0 0 0 0
1 1 1 1 0
2 2 2 2 0
3 0 1 2 1
4 1 2 0 1
5 2 0 1 1
6 0 2 1 2
7 1 0 2 2
8 2 1 0 2

Da in je zwei Spalten jedes MAC-Wertepaar genau einmal vorkommt,
ist (X ,Y ,K ,H) ein (4, 3, 9, 1)-MAC /
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Auf Grund obiger Bemerkung ist klar, dass ein MAC bei gleichverteilten
Schlüsseln genau dann die Bedingung β = 1

m erfüllt, wenn er
2-universal ist
In diesem Fall nimmt auch α den optimalen Wert 1

m an
Der nächste Satz zeigt eine einfache Konstruktionsmöglichkeit von
2-universalen MACs mit dem Parameterwert λ = 1

Satz
Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax + b mod p

Dann ist (X ,Y ,K ,H) mit X = Y = Zp und K = Zp × Zp ein
(p, p, p2, 1)-MAC
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Beweis.
Wir müssen zeigen, dass K (x , y , x ′, y ′) für jedes Doppelpaar
(x , y , x ′, y ′) mit x 6= x ′ genau einen Schlüssel enthält
Ein Schlüssel (a, b) gehört genau dann zu dieser Menge, wenn er die
beiden Kongruenzen

ax + b ≡p y ,
ax ′ + b ≡p y ′

erfüllt
Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y − y ′)(x − x ′)−1 mod p,
b = y − x(y − y ′)(x − x ′)−1 mod p

zutrifft, folgt ‖K (x , y , x ′, y ′)‖ = 1
�
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Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht
die Kompressionseigenschaft
Zwar lässt sich n noch geringfügig von p auf p + 1 (und somit der
Quotient m/n von 1 auf p

p+1) verkleinern, ohne K und Y zu verändern
(siehe Übungen)
Wie der nächste Satz zeigt, lässt sich eine stärkere Kompression mit
dem Parameterwert λ = 1 jedoch nicht realisieren

Satz
Für einen (n,m, l , 1)-MAC gilt

n ≤ m + 1
und somit l = m2 ≥ (n − 1)2 sowie m/n ≥ m

m+1(≈ 1)
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Satz
Für einen (n,m, l , 1)-MAC gilt

n ≤ m + 1
und somit l = m2 ≥ (n − 1)2 sowie m/n ≥ m

m+1(≈ 1)

Beweis.
O.B.d.A. sei K = {1, . . . , l} und Y = {1, . . . ,m}
Es ist leicht zu sehen, dass eine (bijektive) Umbenennung π : Y → Y
der MAC-Werte in einer einzelnen Spalte der Authentikationsmatrix A
wieder auf einen 2-universalen MAC führt
Also können wir annehmen, dass die erste Zeile der
Authentikationsmatrix A nur Einsen enthält
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Beweis (Schluss)
Da A 2-universal ist, gilt:

In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor
Jede Spalte j enthält eine Eins in Zeile 1 und m − 1 Einsen in den
übrigen Zeilen

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m − 1) Einsen
vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m − 1) bzw. n ≤ m + 1 impliziert �
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Der nächste Satz liefert 2-universale MACs mit beliebig kleinem
Kompressionsquotienten m/n
Für den Beweis benötigen wir das folgende Lemma

Lemma
Sei A eine (k × `)-Matrix über einem endlichen Körper F, deren k
Zeilen linear unabhängig sind
Dann besitzt das lineare Gleichungssystem

Ax = y
für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`

Beweis.
Siehe Übungen �
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Satz
Sei p prim und für x = (x1, . . . , xd) ∈ {0, 1}d und
k = (k1, . . . , kd) ∈ Zd

p sei

hk(x) = kx =
d∑

i=1
kixi mod p

Dann ist (X ,Y ,K ,H) mit X = {0, 1}d − {0d}, Y = Zp und K = Zd
p

ein (2d − 1, p, pd , pd−2)-MAC

Beweis.
Wir müssen zeigen, dass die Größe von K (x , y , x ′, y ′) für alle
Doppelpaare (x , y , x ′, y ′) mit x 6= x ′ konstant ist
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Beweis (Fortsetzung)
Es gilt

k ∈ K (x , y , x ′, y ′) ⇔ hk(x) = y ∧ hk(x ′) = y ′

⇔ k · x = y ∧ k · x ′ = y ′

Fassen wir x = x1 · · · xd und x ′ = x ′1 · · · x ′d zu einer Matrix A
zusammen, so ist dies äquivalent zu(

x1 · · · xd
x ′1 · · · x ′d

)k1...
kd

 =
(
y
y ′

)

Da die beiden Zeilen von A verschieden und damit linear unabhängig
sind, folgt mit obigem Lemma, dass genau ‖K (x , y , x ′, y ′)‖ = pd−2

Schlüssel k = (k1, . . . , kd) mit dieser Eigenschaft existieren �
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Bemerkung

Obige Konstruktion liefert einen λ-Wert von ‖K‖m2 = pd−2

Durch Erweiterung von X auf eine geeignete Teilmenge X ′ ⊆ Zd
p lässt

sich der Textraum von 2d − 1 auf pd−1
p−1 vergrößern (siehe Übungen)

Dies führt auf einen beliebig kleinen Kompressionsquotienten
m
n = p(p − 1)

pd − 1 ≈ p2−d

bei einem λ-Wert von λ = pd−2

Wie der nächste Satz zeigt, lässt sich dies nicht mit einem kleineren
λ-Wert (bzw. nicht mit einer kleineren Schlüssellänge) erreichen
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Für den Beweis des nächsten Satzes benötigen wir folgendes Lemma

Lemma

Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2 ≤ m

∑m
i=1 b2

i

Beweis.
Da die Funktion x 7→ x2 konvex ist, folgt mit der Jensenschen
Ungleichung (

∑
bi/m)2 ≤

∑
b2
i /m

Folglich ist
(∑

bi
)2 = m2 (∑ bi/m

)2︸ ︷︷ ︸
≤
∑

b2
i /m

≤ m
∑

b2
i

�

Jensensche Ungleichung
Für eine konkave Funktion f und a1, . . . , an ∈ (0, 1) mit

∑n
i=1 ai = 1 ist

f
( n∑
i=1

aixi
)
≥

n∑
i=1

ai f (xi)
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Satz
Für jeden (n,m, l , λ)-MAC gilt

λm2︸︷︷︸
= l

≥ n(m − 1) + 1 und somit m/n ≥ (m − 1)/m(λ− 1/m2)︸ ︷︷ ︸
≈ 1/λ

Beweis.
O.B.d.A. können wir wieder K = {k1, . . . , kl} und Y = {1, . . . ,m}
annehmen, und dass die erste Zeile der Authentikationsmatrix nur aus
Einsen besteht
Für jede Zeile i = 1, . . . , l bezeichne ei die Anzahl der Einsen in dieser
Zeile (also e1 = n)
Da in jeder Spalte jeder MAC-Wert genau λm-mal vorkommt, gilt

l∑
i=1

ei = λnm und
l∑

i=2
ei = λnm − n = n(λm − 1)
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Beweis (Fortsetzung).

Sei z =
∑l

i=2 zi , wobei zi die Anzahl von Spaltenpaaren (j , j ′) mit
j 6= j ′ und hki (xj) = hki (xj′) = 1 ist
Dann folgt

z =
l∑

i=2
zi =

l∑
i=2

ei(ei − 1) =
l∑

i=2
e2
i −

l∑
i=2

ei =
l∑

i=2
e2
i − n(λm − 1)

Mit obigem Lemma ergibt sich
l∑

i=2
e2
i ≥

(∑l
i=2 ei

)2

l − 1 = (n(λm − 1))2

l − 1
Da andererseits in jedem Spaltenpaar das MAC-Wertepaar (1, 1) in
genau λ Zeilen vorkommt (genauer: einmal in Zeile 1 und (λ− 1)-mal
in den Zeilen i = 2, . . . , l), und da n(n − 1) solche Spaltenpaare
existieren, ergibt sich andererseits die Gleichung

z = (λ− 1)n(n − 1)
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Beweis (Schluss).
Somit erhalten wir

(λ−1)n(n−1) = z =
l∑

i=2
e2
i −n(λm−1) ≥ (n(λm − 1))2

l − 1 −n(λm−1)

und daher folgt

((λ− 1)n(n − 1) + n(λm − 1))(λm2 − 1) ≥ (n(λm − 1))2

⇒ (λn − n − λ+ λm)(λm2 − 1) ≥ n(λm − 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn − λ+ λm − 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m − 1)2 + m − 1)

⇒ λm2 ≥ n(m − 1) + 1 �
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Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches
Kryptosystem dienen
Sei (M,C ,K ,E ,D) ein symmetrisches Kryptosystem mit
M = C = {0, 1}t

Zudem sei IV := 0t und sei k ∈ K ein geheimer Schlüssel
Sei y eine Funktion für den Preprocessing-Schritt, die für jeden Text
x ∈ {0, 1}∗ einen nichtleeren Bitstring y(x) ∈

⋃
n≥1{0, 1}tn liefert

Berechnung von hk(x):
1 y := y(x) = y1 . . . yn, n ≥ 1, yi ∈ {0, 1}t
2 z0 := IV
3 for i = 1 to n do
4 zi := E (k, zi−1 ⊕ yi)
5 output hk(x) = zn

Die MAC-Wertlänge beträgt also t Bit
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Wird auf den Preprocessing-Schritt verzichtet, so lässt sich leicht ein
Angriff mit 2 adaptiven Fragen ausführen
Kennt der Angreifer die MAC-Werte z = hk(x) und z ′ = hk(x ′) für die
Texte x = x1 · · · xn und x ′ = (xn+1 ⊕ IV ⊕ z)xn+2 · · · xn+m, wobei
|xi | = t für i = 1, . . . , n + m ist, so muss auch der Text
x ′′ = x1 · · · xn+m den MAC-Wert hk(x ′′) = z ′ haben
Diesen Angriff kann man zwar ausschließen, indem man eine feste
Länge nt für die Texte vorschreibt, wodurch die Anwendbarkeit des
CBC-MACs allerdings einschränkt wird
Der folgende Geburtstagsangriff ist aber auch bei fester Textlänge
möglich
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Dieser Angriff ermöglicht es, mit q + 1 MAC-Wert-Fragen (wobei
q ≈ 1,17 · 2 t

2 ) den MAC-Wert hk(x) für einen zuvor nicht erfragten
Text x zu finden, wobei x = x1 . . . xn ∈ {0, 1}tn abgesehen vom ersten
t-Bitblock x1 ∈ {0, 1}t beliebig wählbar ist
Hierzu wählt der Angreifer zunächst

n − 2 beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und
q ≈ 1,17 · 2 t

2 paarweise verschiedene Blöcke x1
1 , . . . , x

q
1 ∈ {0, 1}t

Anschließend wählt er zufällig
q weitere Blöcke x1

2 , . . . , x
q
2 ∈ {0, 1}t und

erfragt die MAC-Werte zi = hk(x i) für die Texte x i = x i1x i2x3 · · · xn,
i = 1, . . . , q
Wegen x i1 6= x j1 für i 6= j sind auch die Texte x1, . . . , xq paarweise
verschieden
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Seien z1
1 , . . . , z

q
1 die nach der ersten Iteration des CBC-MACs

berechneten Blöcke z i1 = Ek(IV ⊕ x i1)
Da die Blöcke x i2 zufällig gewählt werden, sind auch die Eingangsblöcke
z i1 ⊕ x i2 für die zweite Iteration zufällig
Es gilt also

Pr[∃i 6= j : z i1 ⊕ x i2 = z j1 ⊕ x j2] = Pr[∃i 6= j : x i2 = x j2] ≈ 1
2

Die Gleichheit der Eingangsblöcke z i1 ⊕ x i2 und z j1 ⊕ x j2 für die zweite
Iteration ist mit der Gleichheit der Ausgangsblöcke z in und z jn der n-ten
Iteration und damit mit der Gleichheit der zugehörigen MAC-Werte z i
und z j äquivalent
Daher kann der Angreifer das Indexpaar (i , j) mit z i1 ⊕ x i2 = z j1 ⊕ x j2
auch leicht finden, sofern es existiert (was wir im Folgenden annehmen)
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Da x i1 6= x j1 gilt, sind auch die Blöcke z i1 = Ek(IV ⊕ x i1) und
z j1 = Ek(IV ⊕ x j1) verschieden
Wegen z i1 ⊕ x i2 = z j1 ⊕ x j2 sind dann auch die beiden Blöcke x i2 und x j2
verschieden
O.B.d.A. gelte x i2 6= x2 (sonst vertauschen wir die Indizes i und j)
Nun erfragt der Angreifer für u = x i2 ⊕ x2 ∈ {0, 1}t − {0t} den
MAC-Wert z̃j = hk(x̃ j) für den Text x̃ j = x j1(x j2 ⊕ u)x3 · · · xn, welcher
zugleich MAC-Wert des Textes x̃ i = x i1(x i2 ⊕ u)x3 · · · xn = x i1x2x3 · · · xn
ist, den er zuvor nicht erfragt hat
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