Kryptologie

Johannes Koébler

T-UN,
Vi) 13

2 <
031511&\

Institut fiir Informatik
Humboldt-Universitat zu Berlin

WS 2020/21

Organisatorisches

Aktuelle Infos auf der VL-Webseite unter
@ https://hu. berlin/vlkrypto

bzw.

e https://www.informatik.hu-berlin.de/de/forschung/
gebiete/algorithmenII/Lehre/ws20/krypto

https://hu.berlin/vlkrypto

Ablauf

Skript, Folien und Aufgabenblatter

@ Skript, Folien und Aufzeichnung werden jeweils nach der Vorlesung ins
Netz (Webseite bzw. Moodle) gestellt

e Ubungsblatter werden in der Regel dienstags verdffentlicht

@ Die Besprechung der miindlichen Aufgaben erfolgt am Freitag der
Folgewoche. Losungen dazu kénnen bis zum Tag davor in Moodle
hochgeladen werden, Details siehe dort

@ Die schriftlichen Aufgaben sind bis Dienstag zwei Wochen nach
Ausgabe um 23:59 Uhr abzugeben

e Fragen zu Ubung und Vorlesung kénnen im Moodle-Forum auch
asynchron gestellt und diskutiert werden

Ubungen

Anmeldung
@ (iber Agnes

@ und bei Moodle (wegen Punktevergabe und Bildung von
Abgabegruppen)

@ Mails von Agnes und von Moodle werden standardmaBig an den
HU-Account gesendet (bitte regelmaBig checken)

Ausgabe der Aufgabenblatter
@ lber Moodle und auf der VL-Webseite

Abgabe von Losungen

o digital iber Moodle

Bearbeitung der Ubungsaufgaben

@ in Gruppen von bis zu drei Teilnehmern

@ Losungen fiir die schriftlichen Aufgaben sollten als PDF abgegeben
werden

@ die Abgabe von Lésungsvorschlagen fiir die miindlichen Aufgaben ist
freiwillig und geht nicht in die Punktewertung ein

@ Losungsvorschlage fir die miindlichen Aufgaben kénnen auch per
Texteingabe gemacht werden

@ besonders gut gelungene Lésungen werden mit Zustimmung der/des
Abgebenden im Forum verdéffentlicht

Ubungsschein und Priifung

Scheinkriterien
@ Losen von mindestens 50% der schriftlichen Aufgaben

Priifungsform
@ voraussichtlich miindlich

@ Der Ubungsschein ist nicht Priifungsvoraussetzung

Gibt es zum organisatorischen Ablauf noch Fragen?

Lernziele

Kryptografische Verfahren schaffen Vertrauen in ungeschiitzten
Umgebungen

Sie erméglichen sichere Kommunikation tiber unsichere Kanale und
kénnen verhindern, dass sich ein Kommunikationspartner unfair verhalt

In unsicheren Umgebungen wie dem Internet kénnen sie die aus direkter
Interaktion gewohnte Sicherheit herstellen

Und auch die Interaktion in sicheren Umgebungen wird um
Moglichkeiten erweitert, die ohne Kryptografie nicht denkbar waren

Im Bachelormodul Einfiihrung in die Kryptologie haben wir uns mit
den mathematischen Grundlagen von kryptografischen Verfahren
beschaftigen, wobei (symmetrische und asymmetrische)
Verschliisselungsverfahren im Vordergrund standen

Im aktuellen Mastermodul Kryptologie werden wir dagegen
kryptografische Verfahren und Protokolle fiir andere Schutzziele
betrachten wie z.B. Hashverfahren und digitale Signaturen sowie
Pseudozufallsgeneratoren

Kryptosysteme

e Kryptosysteme (Verschlisselungsverfahren) dienen der Geheimhaltung
von Nachrichten bzw. Daten
@ Hierzu gibt es auch andere Methoden wie z.B.
o Physikalische MaBnahmen: Tresor etc.
o Organisatorische MaBnahmen: einsamer Waldspaziergang etc.
o Steganografische MaBnahmen: unsichtbare Tinte etc.

Uberblick weiterer Schutzziele

Andererseits konnen durch kryptografische Verfahren weitere Schutzziele
realisiert werden wie z.B.

@ Vertraulichkeit

o Geheimhaltung

o Anonymitat (z.B. Mobiltelefon)

o Unbeobachtbarkeit (von Transaktionen)
o Integritat

o von Nachrichten und Daten
@ Zurechenbarkeit

o Authentikation
o Unabstreitbarkeit
o ldentifizierung

o Verfligbarkeit

o von Daten
o von Rechenressourcen
o von Informationsdienstleistungen

Kryptologie 10

In das Umfeld der Kryptologie fallen die folgenden Begriffe

o Kryptografie:
Lehre von der Geheimhaltung von Informationen durch Verschlisselung
Im weiteren Sinne: Wissenschaft von der Ubermittlung, Speicherung
und Verarbeitung von Daten in einer von potentiellen Gegnern
bedrohten Umgebung

@ Kryptoanalysis:
Erforschung der Methoden eines unbefugten Angriffs gegen ein
Kryptoverfahren
Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele

o Kryptoanalyse:
Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner
kryptografischen Starken und Schwachen

o Kryptologie:
Wissenschaft vom Entwurf, der Anwendung und der Analyse von
kryptografischen Verfahren (umfasst Kryptografie und Kryptoanalyse)

Kryptografische Hashverfahren =

@ sind ein wirksames Werkzeug zur Sicherstellung der Integritat von
Nachrichten oder generell von digitalisierten Daten
@ Sie nehmen somit beim Schutz der Datenintegritdt eine dhnlich

herausragende Stellung ein wie sie Kryptosystemen bei der Wahrung
der Vertraulichkeit zukommt

Daneben finden kryptografische Hashfunktionen aber auch vielfach als
Bausteine von komplexeren Systemen Verwendung

@ Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa
bei der Erstellung von digitalen Signaturen sehr niitzlich

Auf weitere Anwendungsmoglichkeiten werden wir spater eingehen

Kryptografische Hashverfahren 2

@ Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text x eine zwar
kompakte aber dennoch reprasentative Darstellung h(x) liefern, die
unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann

@ Die Berechnungsvorschrift fir h muss somit ,,charakteristische
Merkmale" von x in den Hashwert h(x) einflieBen lassen

@ Da der Fingerabdruck eines Menschen ganz ahnliche Eigenschaften
besitzt (was ihn fiir Kriminalisten bekanntlich so wertvoll macht), wird
der Hashwert h(x) auch oft als ein digitaler Fingerabdruck von x
bezeichnet

@ Gebrauchlich sind auch die Bezeichnungen kryptografische Priifsumme
oder message digest (englische Bezeichnung fiir ,Nachrichtenextrakt")

Kryptografische Hashverfahren 1o

Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen: J

Nachrichtenauthentikation (message authentication)

@ Wie lasst sich sicherstellen, dass eine Nachricht (oder eine Datei)

wahrend einer (rdumlichen oder auch zeitlichen) Ubertragung nicht
verandert wurde?

@ Wie lasst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei
feststellen?

Teilnehmerauthentikation (entity authentication, identification)

@ Wie kann sich eine Person (oder ein Gerat) anderen gegeniiber
zweifelsfrei ausweisen?

Klassifikation von Hashverfahren 14

Kryptografische
Hashverfahren
Sonstige
Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob
der Hashwert lediglich in Abhangigkeit vom Eingabetext berechnet wird
oder zusatzlich von einem symmetrischen Schliissel abhangt

(Authentikation)

(Integritatsschutz)

Schliissellose Hashfunktionen 15

e Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel
benutzt werden, dienen vornehmlich der Erkennung von unbefugt
vorgenommenen Manipulationen an Dateien oder Nachrichten

@ Daher werden sie auch als MDC (Manipulation Detection Code)
bezeichnet

@ Zuweilen wird das Kiirzel MDC auch als eine Abklrzung fiir
Modification Detection Code verwendet

@ Seltener ist dagegen die Bezeichnung MIC (message integrity codes)

Manipulation Detection Codes 16

Ungesicherter Kanal

é) Authentisierter Kanal
> |y L hx)

falsch

Um die Integritat eines Datensatzes x sicherzustellen, der iiber einen
ungesicherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht
sicheren Webserver abgelegt) wird, kann man wie folgt verfahren

@ Der MDC-Hashwert y = h(x) von x wird auf einem authentisierten
Kanal (ibertragen

@ Nach der Ubertragung wird gepriift, ob der Datensatz noch den
Hashwert y liefert

Hashverfahren mit symmetrischen Schliisseln

o Kryptografische Hashverfahren mit symmetrischen Schliisseln finden
hauptsachlich bei der Authentifizierung von Nachrichten Verwendung

@ Diese werden daher auch als MAC (message authentication code)
oder als Authentikationscode bezeichnet

@ Daneben gibt es auch Hashverfahren mit asymmetrischen Schlisseln

@ Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet, da
mit ihnen ausschlieBlich digitale Signaturen gebildet werden

17

Hashverfahren mit symmetrischen Schliisseln 1

@ Die Abbildung auf der nachsten Folie zeigt, wie sich Nachrichten mit
einem MAC authentisieren lassen

@ Man beachte, dass nun auch der Hashwert iGber den unsicheren Kanal
gesendet wird

@ Mochte Alice eine Nachricht x an Bob tbermitteln, so berechnet sie
den zugehdrigen MAC-Wert y = hy(x) und figt diesen der Nachricht x
hinzu

@ Bob tiberpriift die Echtheit der empfangenen Nachricht (x’,y’), indem
er seinerseits den zu x’" gehorigen Hashwert hi(x’) berechnet und das
Ergebnis mit y’ vergleicht

@ Der geheime Authentikationsschliissel k muss hierbei genau wie bei
einem symmetrischen Kryptosystem (iber einen gesicherten Kanal
vereinbart werden

Verwendung eines MAC zur Nachrichtenauthentikation L

======================>
Ungesicherter

hy hy
é) Kanal y
::::::::::::::::::::::> hk(X/);y/

falsch

Gesicherter Kanal

@ Hierbei ist k der symmetrische Authentikationsschliissel und y = hy(x)
der MAC-Wert fiir x unter k

@ Indem Alice ihre Nachricht x um den Hashwert y = hy(x) erganzt, hat
Bob nicht nur die Moglichkeit, anhand von y die empfangene Nachricht
x" auf Manipulationen, sondern auch ihre Herkunft zu Gberpriifen

Schliissellose Hashfunktionen (MDCs) A

Wir betrachten nun verschiedene Sicherheitsanforderungen an MDCs h
Dabei nehmen wir an, dass h: X — Y offentlich bekannt ist

Ein Paar (x,y) € X x Y heiBt giiltig fir h, falls h(x) = y ist

Ein Paar (x, x") mit x # x’ und h(x) = h(x’) heiBt Kollisionspaar fir h
Die Anzahl ||Y|| der Hashwerte bezeichnen wir mit m

Ist auch der Textraum X endlich, || X|| = n, so heiBt h eine
(n, m)-Hashfunktion

In diesem Fall verlangen wir meist, dass n > 2m ist, und wir nennen h
dann eine Kompressionsfunktion (compression function)

Schliissellose Hashfunktionen (MDCs) 2.

@ Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen
Text x ein giltiges Paar (x,y) zu erzeugen

@ Fiir bestimmte kryptografische Anwendungen ist es wichtig, dass dies
bei vorgegebenem Hashwert y dagegen nicht moglich ist

Problem P1 (Bestimmung eines Urbilds)
Gegeben: Eine Hashfunktion h: X — Y und ein Hashwert y € Y
Gesucht: Ein Text x € X mit h(x) =y

@ Falls es einen immensen Aufwand erfordert, bei gegebenem Hashwert y
einen Text x mit h(x) = y zu finden, so heiBt h Einweg-Hashfunktion
(one-way hash function bzw. preimage resistant hash function)

@ Diese Eigenschaft wird beispielsweise benétigt, wenn die Hashwerte der
Benutzerpassworter in einer offentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist

v

Schliissellose Hashfunktionen (MDCs) e

e Fiir andere Anwendungen ist es dagegen wichtig, dass es fiir einen
gebenen Text x praktisch unméglich ist, einen weiteren Text x’ # x mit
dem gleichen Hashwert h(x’) = h(x) zu finden

4

Problem P2 (Bestimmung eines zweiten Urbilds)
Gegeben: Eine Hashfunktion h: X — Y und ein Text x € X
Gesucht: Ein Text x € X \ {x} mit h(x") = h(x)

@ Falls Problem P2 einen immensen Aufwand erfordert, heiBt h schwach
kollisionsresistent (weakly collision resistant bzw. second preimage
resistant)

@ Diese Eigenschaft wird beim Integritatsschutz durch einen MDC
bendtigt

Schliissellose Hashfunktionen (MDCs) =

@ Fiir bestimmte Anwendungen ist es sogar notig, dass sich Gberhaupt
kein Kollisionspaar finden lasst

@ Diese Eigenschaft ist bspw. beim Einsatz von MDCs bei der Erstellung
von digitalen Signaturen erforderlich

Problem P3 (Bestimmung einer Kollision)
Gegeben: Eine Hashfunktion h: X — Y
Gesucht: Zwei Texte x # x" € X mit h(x’) = h(x)

e Falls Problem P3 einen immensen Aufwand erfordert, heit h (stark)
kollisionsresistent (collision resistant)

Schliissellose Hashfunktionen (MDCs)

e Falls Problem P3 einen immensen Aufwand erfordert, heit h (stark)
kollisionsresistent (collision resistant)

e Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit
der Einweg-Eigenschaft aufweist, sind diese beiden Eigenschaften im
allgemeinen unvergleichbar:

o Eine schwach kollisionsresistente Funktion muss nicht
notwendigerweise eine Einwegfunktion sein, da die Bestimmung
eines Urbildes gerade fiir diejenigen Funktionswerte einfach sein
kann, die nur ein einziges Urbild besitzen

o Umgekehrt impliziert die Einweg-Eigenschaft auch nicht die
schwache Kollisionsresistenz, da die Kenntnis eines Urbildes das
Auffinden weiterer Urbilder sehr stark erleichtern kann

24

Vergleich von Sicherheitsanforderungen =

@ Wir zeigen nun, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind

@ Hierzu reduzieren wir das Kollisionsroblem auf das Problem, ein zweites
Urbild zu bestimmen

@ Sei h: X — Y eine (n, m)-Hashfunktion

@ Dann ist das Problem P3, ein Kollisionspaar fiir h zu bestimmen, auf
das Problem P2, ein zweites Urbild zu bestimmen, reduzierbar

@ Folglich sind stark kollisionsresistente Hashfunktionen auch schwach
kollisionsresistent

Vergleich von Sicherheitsanforderungen 2

@ Sei h: X — Y eine (n, m)-Hashfunktion
@ Dann ist das Problem P3, ein Kollisionspaar fiir h zu bestimmen, auf
das Problem P2, ein zweites Urbild zu bestimmen, reduzierbar

@ Folglich sind stark kollisionsresistente Hashfunktionen auch schwach
kollisionsresistent

Beweis.

@ Sei A ein Las-Vegas Algorithmus, der fiir ein zufallig aus X gewahltes x
mit Erfolgswahrscheinlichkeit ¢ ein zweites Urbild x’ fiir h liefert und
andernfalls 7 ausgibt

@ Dann ist klar, dass folgender Las-Vegas Algorithmus mit
Wabhrscheinlichkeit € ein Kollisionspaar findet:

1 wahle zufillig x € X
2 x' 1= A(x)
3 if x' # 7 then return (x, x’) else return ?

Vergleich von Sicherheitsanforderungen 2t

Als nichstes reduzieren wir das Kollisionsproblem auf das Urbildproblem

)

@ Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m

@ Dann ist das Problem P3, ein Kollisionspaar fiir h zu bestimmen, auf
das Problem P1, ein Urbild zu bestimmen, reduzierbar

Beweis.

@ Sei A ein Invertierungsalgorithmus fiir h, d.h. A berechnet fiir jeden
Hashwert y in W(h) = {h(x) | x € X} ein Urbild x mit h(x) =y
@ Betrachte folgenden Las-Vegas Algorithmus B:

1 wahle zufillig x € X

2 y = h(x)

3 x' = Ay)

4 if x # x' then return (x,x’) else return ?

Vergleich von Sicherheitsanforderungen

Beweis.

28

@ Sei A ein Invertierungsalgorithmus fiir h, d.h. A berechnet fiir jeden
Hashwert y in W(h) = {h(x) | x € X} ein Urbild x mit h(x) =

@ Betrachte folgenden Las-Vegas Algorithmus B:

1 wahle zufillig x € X

2 y = h(x)

3 x = Ay)

4 if x # x’ then return (x, x’) else return ?

o Sei C={h"'(y) |y € W(X)}
@ Dann hat B eine Erfolgswahrscheinlichkeit von

lcll el -1
= C —1
2 X M

ceC CEC

m)/n >

N =

Das Zufallsorakelmodell (ZOM) 29

@ Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine
Hashfunktion h: X — Y nach oben abzuschatzen

@ Sind X und Y vorgegeben, so kdnnen wir eine Hashfunktion h: X — Y
dadurch , konstruieren”, dass wir fiir jedes x € X zufilligein y € Y
wahlen und h(x) = y setzen

e Aquivalent hierzu ist, fiir h eine zufallige Funktion aus der Klasse
F(X,Y) aller m" Funktionen von X nach Y zu wahlen

@ Dieses Verfahren ist auf Grund des hohen Aufwands zwar nicht mehr
praktikabel, wenn n = || X|| eine bestimmte GroBe ibersteigt

@ Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion mit
»idealen* kryptografischen Eigenschaften

@ Offensichtlich kann ein Angreifer nur dadurch Informationen iber h
erhalten, dass er fiir eine Reihe von Texten x; die zugehdrigen
Hashwerte h(x;) berechnet (was der Befragung eines funktionalen
Zufallsorakels entspricht)

Das Zufallsorakelmodell (ZOM) 30

Eine Zufallsfunktion h eignet sich deshalb gut als kryptografische
Hashfunktion, weil der Hashwert h(x) fiir einen Text x auch dann noch
schwer vorhersagbar ist, wenn der Angreifer bereits die Hashwerte einer
beliebigen Zahl von anderen Texten x; # x kennt

Proposition

@ Sei Xop = {x1,...,xx} eine beliebige Menge von k verschiedenen Texten
x; € X und seien yq,..., vk € Y

e Dann gilt fir eine zuféllig aus F(X, Y) gewahlte Funktion h und fir
jedes Paar (x,y) € (X — Xp) x Y,

Pria(x) =y|h(x;)=yifuri=1,...,k|=1/m

Das Zufallsorakelmodell (ZOM) 31

@ Um eine obere Komplexitatsschranke fiir das Urbildproblem P1 im
ZOM zu erhalten, betrachten wir folgenden Algorithmus

@ Hierbei gibt der Parameter g die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an

@ Die Laufzeit des Algorithmus ist also proportional zu g

Prozedur FindPreimage(h,y,q)

1 wahle eine beliebige Menge Xp = {x1,...,x5} € X
2 for each x; € Xy do

3 if h(x;) =y then return(x;)

4 return ?

Das Zufallsorakelmodell (ZOM) 32

FINDPREIMAGE(h, y, q) gibt im ZOM mit Wahrscheinlichkeit
e =1—(1—1/m)9 ein Urbild von y aus (unabhangig von der Wahl der
Menge Xp)

Beweis.
@ Seiy € Y fest und sei Xo = {x1,...,Xq}

e Furi=1,...,q bezeichne E; das Ereignis "h(x;) =y’

@ Nach obiger Proposition sind diese Ereignisse stochastisch unabhangig
und ihre Wahrscheinlichkeit ist

PrlEil=1/mfuri=1,...,q
@ Also folgt
PrlE1U...UE]]=1—PrlE1N...NEg]=1—(1-1/m)9

Das Zufallsorakelmodell (ZOM) 33

Folgender Algorithmus liefert uns eine obere Schranke fiir die Komplexitat
des Problems P2, ein zweites Urbild fiir h(x) zu bestimmen

Prozedur FindSecondPreimage(h,x, q)
y = h(x)
wahle eine beliebige Menge Xo = {x1,...,xq-1} € X — {x}
for each x; € Xy do
if h(x;) =y then return(x;)
return 7

a A~ W N =

FINDSECONDPREIMAGE(h, x, q) gibt im ZOM mit Wahrscheinlichkeit
e=1—(1—1/m)971 ein zweites Urbild xp # x von y = h(x) aus.

Der Beweis ist analog zum Beweis des vorherigen Satzes |

Der Geburtstagsangriff S

Ist g vergleichsweise klein, so ist bei beiden bisher betrachteten
Angriffen ¢ ~ q/m

Um also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist
g ~ m/2 zu wahlen

e Geht es lediglich darum, irgendein Kollisionspaar (x, x") aufzuspiiren, so
bietet sich ein sogenannter Geburtstagsangriff an

Dieser lasst sich deutlich zeiteffizienter realisieren

@ Wie der Name schon andeutet, basiert dieser Angriff auf dem sog.
Geburtstagsparadoxon, welches in seiner einfachsten Form folgendes
besagt

Geburtstagsparadoxon

Bereits in einer Klasse mit 23 Kindern ist die Wahrscheinlichkeit groBer
1/2, dass mindestens zwei Kinder am gleichen Tag Geburtstag haben

Der Geburtstagsangriff 29

@ Der nichste Satz besagt, dass bei g-maligem Ziehen (mit Zuriicklegen)
aus einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1—-(m—1)(m—=2)---(m—q+1)/m!
mindestens eine Kugel mehrmals gezogen wird
@ Fiir m =365 und g = 23 ergibt dies einen Wert von ungefahr 0,507

@ Da die Haufigkeiten der Geburtstage in einer Klasse nicht gleichverteilt
sind, ist die Wahrscheinlichkeit, dass 2 Kinder am gleichen Tag
Geburtstag haben, sogar noch etwas hoher

@ Zur Kollisionsbestimmung verwenden wir folgenden Algorithmus

Prozedur Collision(h,q)

1 wahle eine beliebige Menge Xp = {x1,...,xg} C X
2 for each x; € Xp do y; := h(x;)
3 if Ji#j:y; = y; then return (x;, x;) else return ?

Der Geburtstagsangriff 50

Prozedur Collision(h,q)
1 wahle eine beliebige Menge Xp = {x1,...,x4} C X
2 for each x; € Xp do y; := h(x;)
3 if Ji#j:y; = y; then return (x;, x;) else return ?

@ Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die
Auswertung der if-Bedingung quadratisch von g abhangen

@ Tragt man aber jeden Text x unter dem Suchwort h(x) in eine Hash-

tabelle der GréBe g ein, so wird der Zeitaufwand fiir jeden einzelnen
Text x im wesentlichen durch die Berechnung von h(x) bestimmt

COLLISION(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit
(m=1)(m—=2)---(m—q+1)
e=1-
ma—1
ein Kollisionspaar (x, x) fir h aus

Der Geburtstagsangriff St

Beweis.

@ Sei Xo = {x1,...,%q} und fiir i =1,..., q bezeichne E; das Ereignis
h(Xi) ¢ {h(X1)7) h(Xi—l)}

@ Dannist £y N...N E, das Ereignis "COLLISION(h, q) gibt ? aus”

e Firi=1,...,q gilt nun
PHE|EN...NE)= T— T1

@ Dies fiihrt auf die Erfolgswahrscheinlichkeit
e = 1-PrlEENn...NE]

= 1—PrEPrE|E] - Pr[Eg|Ex N ... N Eq1]

- =" () ()

Der Geburtstagsangriff 58

@ Mit der Approximation 1 — x =~ e~ erhalten wir folgende Abschatzung
fir e:
q—1

e = 1—H(1—,;)

i=1

Q

q—1
—i 1 y9-L; a(g—1)
1_Heﬁ:1_efﬁ i1 =1—e " 2m
i=1

L
~ l—e2m~q°/2m

e Fiir g erhalten wir daraus die Abschatzung

g = cvm

mit einer von € abhangigen Konstante ¢, = v/2¢

@ Diese Abschatzung ist nur fiir e-Werte nahe Null hinreichend genau

Der Geburtstagsangriff =

2
@ Aus der Abschatzung e ~ 1 — e 2m fiir e (siehe vorige Folie) erhalten
wir insbesondere fiir groBere Werte von ¢ eine bessere Abschatzung fiir
q:
g ~ cv/m

mit der Konstanten ¢/ = ,/2In =

e Fir e = 1/2 ergibt sich somit ¢ = /(2In2)m ~ 1,17\/m

@ Besitzt also eine binare Hashfunktion h: {0,1}” — {0,1}™ die
Hashwertlange m = 128 Bit, so miissen im ZOM q ~ 1,17 - 254 Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision
zu finden

@ Um einem Geburtstagsangriff widerstehen zu kdnnen, sollte eine

Hashfunktion mindestens eine Hashwertlange von 128 oder besser 160
Bit haben

Iterierte Hashfunktionen 40

@ Im Folgenden beschéftigen wir uns mit der Frage, wie sich aus einer
kollisionsresistenten Kompressionsfunktion

h: {0,1}™Ft — {0,1}™
eine kollisionsresistente Hashfunktion
h: {0,1}* — {0,1}

konstruieren lasst

@ Hierzu betrachten wir folgende kanonische Konstruktionsmethode:

Iterierte Hashfunktionen 4l

Preprocessing: Transformiere x € {0, 1}* mittels einer Funktion
y:{0,1}* — U{O, 1}
r>1
zu einem String y(x) mit der Eigenschaft |y(x)| =: 0
Processing: Sei IV € {0,1}™ ein offentlich bekannter
Initialisierungsvektor und sei y(x) = yi---y, mit |y;| =t furi=1,...,r.
Berechne eine Folge z, ...,z von Strings z; € {0,1}™ wie folgt:

v, i=0,
Zi =
h(z,-_ly,-), = 1,...,/’

Optionale Ausgabetransformation: Berechne den Wert h(x) = g(z,),
wobei g: {0,1}™ — {0,1}/ eine &ffentlich bekannte Funktion ist
(meist wird fir g die Identitat verwendet)

v

Zur Berechnung von h(x) wird also die Funktion h genau r-mal aufgerufenJ

Iterierte Hashfunktionen 42

Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschaft

Definition

e Eine Funktion y: {0,1}* — {0,1}* heiBt suffixfrei, falls es keine
Strings x # X und z in {0,1}* mit y(X) = zy(x) gibt

e Mit anderen Worten: kein Funktionswert y(x) ist Suffix eines
Funktionswertes y(X) an einer Stelle X # x

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist]

[terierte Hashfunktionen 43

Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation
g injektiv ist, so ist mit h auch h kollisionsresistent

Beweis.

@ Wir nehmen an, dass es gelingt, ein Kollisionspaar (x, X) fur h zu finden
(d.h. h(x) = h(X) und x # X)

@ Seieny(x)=y1...y,und y(X) =91...ys mit r <s

e Da y suffixfrei ist, muss ein Index i € {1,...,r} mit y; # Vs_ryi
existieren

@ Weiter seien z; (i =0,...,r)und Z; (j =0,...,s) die in der
Processing-Phase berechneten Hashwerte

~

e Da g injektiv ist, muss mit g(z,) = h(x) = h(X) = g(2) auch z, = 2,
gelten

Iterierte Hashfunktionen 44

Beweis.

@ Wir nehmen an, dass es gelingt, ein Kollisionspaar (x, X) fiir h zu finden
(d.h. h(x) = h(X) und x # X)

@ Seieny(x)=y1...y,und y(X) =91...ys mit r <s

e Da y suffixfrei ist, muss ein Index i € {1,...,r} mit y; # Vs_ryi
existieren

o Weiter seien z; (i=0,...,r)und Z; (j =0,...,s) die in der
Processing-Phase berechneten Hashwerte

e Da g injektiv ist, muss mit g(z,) = h(x) = h(X) = g(2) auch z, = 2,
gelten

@ Sei imax der groBte Index i € {1,...,r} mit zi_1Yi # Zs—rti-1Ys—r+i
@ Dann bilden z; _ _1yi, . und Zs_,yi Vs ryj.. wegen
h(zimax_lyimax) = Zimax = Zs—r"l‘imax = h(ZS_r+imax_1yS—r+imax)

ein Kollisionspaar fiir h 0

Die Merkle-Damgaard-Konstruktion -

@ Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung
ihrer Konstruktion vor

@ Als Initialisierungsvektor wird der Nullvektor IV = 0™ benutzt, die
optionale Ausgabetransformation entfallt, und fiir y(x) wird im Fall
t > 2 die folgende Funktion verwendet
(den Fall t = 1 betrachten wir spater)

Die Merkle-Damgaard-Konstruktion 5

e Fir x =¢ sei y(x) =0¢

e Fiir x € {0,1}" mit n > 0 sei r = [;"7]| und x = x1x2... X, —1X, Mit
|x1| = |x2| = ... =|x—1| = t — 1 sowie |x,| =t — 1 — d, wobei
0<d<t-1

o Im Fall r = 1 ist dann y(x) = y1y» mit y; = 0x0% und y» = 1bin;_1(d)

@ Und fur r > list y(x) = y1- - ¥r+1, Wobei

0X17 i = 1,
1x;, 2<i<r,

yi={.", . (1)
1x,09, i=r,

1bing_1(d), i=r+1,

und bin;_1(d) die durch fithrende Nullen auf die Lange t — 1 aufgefiillte
Binardarstellung von d ist

v

Die Merkle-Damgaard-Konstruktion 50

Die durch (1) definierte Preprocessing-Funktion y ist suffixfrei

Beweis.

@ Seien x # X zwei Texte mit |x| < [X]
e Wir missen zeigen, dass y(x) = y1y2 ... yr+1 kein Suffix von
Y(R) =#52... o1 ist
@ Im Fall x = ¢ ist dies klar
@ Fiir x # € machen wir folgende Fallunterscheidung
1. Fall: |x| #;_1 |%|. Dann folgt d # d und somit y, ;1 # Vs11
2. Fall: |x| = |X|. In diesem Fall ist r = s. Wegen x # X existiert ein
Index i € {1,...,r} mit x; # X;. Dies impliziert y; # ¥;, also ist y(x)
kein Suffix von y(X)
3. Fall: |x| # |X| und |x| =¢_1 |X|. In diesem Fall ist r < s. Da y(x)
mit einer Null beginnt, aber das (s — r + 1)-te Bit von y(X) eine Eins
ist, kann y(x) kein Suffix von y(X) sein

Die Merkle-Damgaard-Konstruktion =

Nun betrachten wir den Fall t =1

@ Sei y die durch y(x) := 11f(x) definierte Funktion, wobei f wie folgt
definiert ist:

f(x1...xp) =f(x1)...f(x2) mit £(0) =0 und f(1) =01

@ Dann ist leicht zu sehen, dass y suffixfrei ist O

e Da die Kompressionsfunktion h bei der Berechnung von h(x) im Fall
t = 1 fir jedes Bit von y(x) einmal aufgerufen wird, wird h genau
ly(x)] < 2(n+ 1)-mal aufgerufen

o Im Fall t > 1 werden dagegen nur r +1 = [73] + 1 Aufrufe benétigt

4

Die MD4-Hashfunktion 49

@ Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest
vorgeschlagen

@ Die Bitlange von MD4 betragt / = 128 Bit
@ Bei einer Wortlange von 32 Bit entspricht dies 4 Wortern

@ MD4 und die im Folgenden vorgestellten Hashfunktionen benutzen u.a.
folgende Operationen auf Waértern X, Y € {0,1}32

Wort-Operationen
X AY | bitweises ,,Und" von X und Y
X V'Y | bitweises ,,Oder” von X und Y
X @Y | bitweises , exklusives Oder” von X und Y
=X | bitweises Komplement von X
X + Y | Ganzzahl-Addition modulo 232
X — s | Rechtsshift um s Stellen
X <= s | zirkularer Linksshift um s Stellen

Die MD4-Hashfunktion 50

@ Die Ganzzahl-Addition wird bei MD4 und MD5 in little endian
Architektur ausgefiihrt

@ D.h. dass ein aus 4 Bytes, zusammengesetztes Wort X = azaai ag,
dessen Bytes a; € 28 die Zahlenwerte (a;)> € [0,255] haben, die Zahl
(30)2224 + (31)2216 -+ (32)228 + (33)2 reprasentiert

@ Dagegen verwendet SHA-1 eine big endian Architektur

@ D.h. dass X = azarajag die Zahl (33)2224 + (32)2216 + (31)228 + (30)2
reprasentiert

@ Der MD4-Algorithmus benutzt die folgenden Funktionen f; fiir
j=0,...,47:
(XAY)V(=XAZ), j= 0,...,15
(X, Y, Z) = S(XAY)VXAZ)V(YAZ), j=16,...,31
XeYo.Z Jj=32,...,47

Die MD4-Hashfunktion

@ Zudem benutzt er die folgenden Konstanten y;, z;, s; fiir j = 0,...,47:
y; (in Hexadezimaldarstellung)
j=0,...,15 0
j=16,...,31 5a827999
j=32,...,47 6ed9ebal
&)
j=0,...,15 | 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
j=16,...,31| 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
j=32,...,47| 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
i
j=0,...,15 | 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19
j=16,...,31(3,5,9,13,3,5,9,13, 3,5,9,13, 3,5, 9, 13
j=32,...,47(3,9,11,15,3,9,11,15,3,9,11,15,3,9,11, 15

51

Die MD4-Hashfunktion

MD4(x)

52

[y

input x € {0,1}*,|x| =n
y := x10¥bing4(n), k € {0,1,...,511} mit
n+1+k+64=0 (mod 512)
3 (H1, Ho, Hs, Ha) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y=M;---M,, r=(n+1+k+ 64)/512
5 for i:=1tor do
sei M; = X[0]--- X[15]
(A, B, C,D) := (H1, Ha, H3, Ha)
for j:=0to 47 do
(A,B,C,D):=(D,(A+ (B, C,D) + X[z] + yj) < s, B, C)
10 (H1,H2,H3,H4) = (H1+A,H2—|—B,H3—|-C,H4+D)
11 output HyHyHsH,

N

© 0 ~N O

@ In Zeile 9 wird die Kompressionsfunktion von MD4 berechnet:
(A, B, C, D7X[Zj]) — (D, (A+ G(Bv C,D) +X[ZJ] +yj) < s, B,)

Die MD4-Hashfunktion

e Fiir MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen
aufgespiirt werden

@ Deshalb gilt MD4 heutzutage nicht mehr als kollisionsresistent

53

Die MD5-Hashfunktion

54

Der MD5 ist eine 1991 von Rivest prasentierte verbesserte Version von
MD4

Die Bitlange von MD5 betragt wie bei MD4 | = 128 Bit

Bei einer Wortlange von 32 Bit entspricht dies 4 Wortern

In MD5 werden teilweise andere Konstanten als in MD4 verwendet
Zudem besitzt MD5 eine zusatzliche 4. Runde (j = 48,...,63), in der
die Funktion f;(X,Y,Z) =Y & (X V =Z) verwendet wird

AuBerdem wurde die in Runde 2 von MD4 verwendete Funktion durch
(X, Y, Z)=(XNZ)V(Y AN-Z), j=16...31, ersetzt

Die y-Konstanten sind definiert als

yj = die ersten 32 Bit der Binardarstellung von abs(sin(j + 1)),
0<,j<63,

Die MD5-Hashfunktion

@ Zudem benutzt der MD5 die folgenden Konstanten z; und s;:

J Zj
0,...,15 | 47 J°
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
16 31 zj=(5+1) mod 16 :
1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12
30, .47 zj=(3j+5) mod 16 :
5,8,11,14,1,4,7,10,13,0,3,6,9, 12, 15,2
48,...,63| 4= 1Jmod16:
0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
J 5
0,...,15 | 7,12,17,22,7,12,17,22,7,12,17,22,7,12,17, 22
16,...,31 |5, 9,14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
32,...,47 | 4,11,16,23,4,11,16,23,4,11,16,23,4,11,16, 23
48,....63 | 6,10,15,21,6,10,15,21,6,10, 15,21, 6,10, 15, 21

55

Die MD5-Hashfunktion 56

MD5(x)

[y

input x € {0,1}*, x| =n
y := x10%bing4(n), k € {0,1,...,511} mit
n+1+k+64=0 (mod 512)
3 (H1, Ha, Hs, Ha) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y=M;---M,, r=(n+1+k+ 64)/512
5 for i:=1tor do
sei M; = X[0] - -- X[15]
(A, B, C,D) := (H1, Ha, H3, Hy)
for j := 0 to 63 do
(A,B,C,D):=(D,B+ (A+fi(B,C,D)+ X[z]] + yj) < s;, B, C)
10 (Hl,HQ,H3,H4) = (H1+A,H2+B,H3—|-C, H4—|—D)
11 output HyHyHsH,

N

© 0 ~N O

e Fir MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden

e Fiir die Kompressionsfunktion von MD5 gelang dies bereits 1996

Die SHA-1-Hashfunktion

57

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des
MD4 bzw. MD5 Algorithmus

Er gilt in den USA als Standard und ist Bestandteil des von der
US-Behorde NIST (National Institute of Standards and Technology) im
August 1991 veroffentlichten DSS (Digital Signature Standard)

Die Bitlange von SHA-1 betragt / = 160 Bit
Bei einer Wortlange von 32 Bit entspricht dies 5 Wortern

SHA-1 unterscheidet sich nur geringfligig von der SHA-0 Hashfunktion,
in der eine Schwachstelle dazu fiihrt, dass nach Berechnung von ca. 2%!
Hashwerten ein Kollisionspaar gefunden werden kann (obwohl bei einem
Geburtstagsangriff auf Grund der Hashwertlange von 160 Bit ca. 280
Berechnungen erforderlich sein missten)

Diese potentielle Schwache von SHA-0 wurde im SHA-1 dadurch
entfernt, dass SHA-1 in Zeile 8 einen zirkularen Shift um eine Bitstelle
ausfihrt

Die SHA-1-Hashfunktion

@ Der SHA-1-Algorithmus benutzt die folgenden Konstanten K; fiir
j=0,...,79:

Kj (in Hexadezimaldarstellung)
j=0,...,19 5a827999
j=20,...,39 6ed9ebal
j=40,...,59 8f1bbcdc
j=60,...,79 cab2cld6

und folgende Funktionen f; fiir j = 0,...,79:
(XAY)V(=XA2Z), j= 0,...
XeYal j=20,...
(XAY)V(XANZ)V(YANZ), j=40,...
XeYalZz j=260,...

f(X,Y,Z) =

Die SHA-1-Hashfunktion

SHA-1(x)

59

1input x € {0,1}*,|x| =n
2 y 1= x10%bings(n), k € {0,1,...,511} mit
n+1+k+64=0 (mod 512)

3 (Ho, ..., Hs) := (67452301, efcdab89, 98 badcfe, 10325476, c3d2elf0)
4 sei y=M;---M,, r=(n+1+k+ 64)/512
5 for i:=1tordo
6 sei M;= X|[0]---X][15]
for t : =16 to 79 do

X[t] :== (X[t = 3] & X[t — 8] & X[t — 14] & X[t — 16]) <= 1
(A, B, C,D, E) := (Ho, Hi, Ho, Hs, Ha)
10 for j:=0to 79 do
11 temp := (A < 5) + fj(B, C, D) + E + X[j] + K;
12 (A,B,C,D,E) := (temp, A, B + 30, C, D)
13 (Ho,...,H4)::(H0+A,...,H4+E)
14 output HoHiH>H3H,

© o =~

e §4A-5- e 60

@ Im Jahr 2001 veréffentlichte die US-Behorde NIST drei weitere
Hashfunktionen der SHA-Familie: SHA-256, SHA-384, and SHA-512

@ Diese Funktionen werden auch als SHA-2 Hashfunktionen bezeichnet
@ In 2004 kam noch SHA-224 als vierte Variante hinzu
@ SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich

aber in erster Linie in der benutzten Wortlange: 32 Bit bei SHA-256
und 64 Bit bei SHA-512

@ Zudem werden unterschiedliche Shift- und Summationskonstanten
verwendet und auch die Rundenzahlen differieren

@ SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und
SHA-512

Die SHA-2-Familie

@ Der SHA-256-Algorithmus benutzt die folgenden Konstanten K;,
Jj=0,...,63 (in Hexadezimaldarstellung):

4282298, 71374491, b5c0fbcf, e9b5dbab, 3956¢25b, 5911111, 9238224, ablc5ed5,
d807aa98, 12835601, 243185be, 550c7dc3, 72be5d74, 80deblfe, 9bdc06a7, c19bf174,
e49b69cl, efbed786, 0fc19dc6, 240calcc, 2de92c6f, 4a7484aa, 5¢cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2cbdfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8al, a8lab664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aada, 5b9ccalf, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, ad506ceb, bef9a3f7, c67178f2

@ Dies sind jeweils die ersten 32 Bit der bindren Nachkommastellen der
dritten Wurzeln der ersten 64 Primzahlen 2,...,311

61

Die SHA-256-Hashfunktion

62

1input x € {0,1}*,|x| =n

2 y 1= x10%bings(n), k € {0,...,511} mit n+1+k+64 =0 (mod 512)
3 (Ho, ..., Hr) := (6a09€667, . ..,5be0cd19)

4 sei y=M;---M,, r=(n+1+k+ 64)/512

5 for i:=1tor do

sei M; = X[0]--- X[15]

7 for t:=16 to 63 do

8 s0:= (X[t — 15] = 7) & (X[t — 15] < 18) & (X[t — 15] — 3)
9 sl:= (X[t —2] = 17) & (X[t — 2] — 19) @ (X[t — 2] — 10)
10 X[t] :== X[t — 16] + s0 + X[t — 7] + s1

11 (A, B,C,D,E,F,G,H):=(Ho, Hi, H2, H3, Ha, H5, He, H7)

12 for j:=0to 63 do «

13 (Ho,Hi,...,H7) :=(Ho+ A Hi+B,...,Hs + G, H; + H)

14 output HoHyH>HsHyHs Hg Hy

(=)}

Die Werte von Hp, ..., H7 in Zeile 3 sind die ersten 32 Bit der binaren
Nachkommastellen der Wurzeln der Primzahlen 2,3,5,7,11,13,17,19

Die SHA-256-Hashfunktion

~N o a A~ W N =

Programmestiick o

63

s0:=(A—=2)® (A= 13)® (A — 22)

maj .= (AANB)®(ANC)® (BAC)

t2 := s0 4+ maj

sl:=(E —=6)®(E—11)® (E — 25)
ch:=(EANF)®(—EAG)

tl:= H+sl+ ch+ K; + X[j]

(A,B,C,D,E,F,G,H) :=(t1+t2,A,B,C,D+tl,E,F,G)

Kryptoanalyse von Hashfunktionen (MD4 und MD5) be

@ Bereits 1991 wurden von den Boer und Bosselaers Schwachen im MD4
aufgedeckt

@ Im August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich
Kollisionen fiir MD4 mittels “hand calculation” finden lassen

@ In 1993, fanden den Boer und Bosselaers einen Weg, so genannte
“Pseudo-Kollisionen” fiir die MD5 Kompressionsfunktion zu generieren

@ In 1996, fand Dobbertin ein Kollisionspaar fiir die MD5
Kompressionsfunktion

@ Im August 2004 wurden schlieBlich Kollisionen fiir MD5 von Xiaoyun
Wang, Dengguo Feng, Xuejia Lai und Hongbo Yu berechnet

@ Der bendtigte Aufwand wurde mit ca. 1 Stunde auf einem IBM p690
Cluster abgeschatzt

Kryptoanalyse von Hashfunktionen (MD5) 9

@ Im Marz 2005 verdffentlichten Arjen Lenstra, Xiaoyun Wang und Benne
de Weger zwei X.509 Zertifikate mit unterschiedlichen Public-keys, die
auf denselben MD5-Hashwert fiihrten

@ Nur wenige Tage spater beschrieb Vlastimil Klima eine Moglichkeit,
Kollisionen fiir MD5 innerhalb weniger Stunden auf einem Notebook zu
berechnen

o Mittels der so genannten Tunneling-Methode wurde die Rechenzeit vom
gleichen Autor im Marz 2006 auf eine Minute verkiirzt

o Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf
SHA-0 vor, der ein Kollisionspaar mit nur 261 Hashwertberechnungen
(anstelle von 280 bei einem Geburtstagsangriff) aufspiirt

Kryptoanalyse von Hashfunktionen (SHA-0) o8

@ In 2004 fanden Biham und Chen Beinahe-Kollisionen fiir den SHA-O,
bei denen sich die Hashwerte nur an 18 von den 160 Bitpositionen
unterschieden

@ Zudem legten sie volle Kollisionen fiir den auf 62 Runden reduzierten
SHA-0 Algorithmus vor

@ SchlieBlich wurde im August 2004 die Berechnung einer Kollision fiir
den vollen 80-Runden SHA-0 Algorithmus von Joux, Carribault, Lemuet
und Jalby bekannt gegeben

@ Hierzu wurden lediglich 251 Hashwerte berechnet, die ca. 80000
Stunden CPU-Rechenzeit auf einem 2-Prozessor 256-Itanium
Supercomputer benétigten

Kryptoanalyse von Hashfunktionen (SHA-0) ot

@ Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der
CRYPTO 2004 eine Angriffsmethode fir MD5, SHA-0 und andere
Hashfunktionen vorgestellt, mit der sich die Anzahl der
Hashwertberechnungen auf 240 senken lasst

@ Dies wurde im Februar 2005 von Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu geringfiigig auf 239 Hashwertberechnungen verbessert

@ Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten
von einer weiteren Verwendung des SHA-1 ab. Daraufhin kiindigte die
amerikanische Behorde NIST an, SHA-1 in 2010 zugunsten der SHA-2
Varianten abzuldsen

Kryptoanalyse von Hashfunktionen (SHA-1 und SHA-2

)68

Im Jahr 2005 veroffentlichten Rijmen und Oswald einen Angriff, der mit
weniger als 280 Hashwertberechnungen ein Kollisionspaar fiir den auf 53
Runden reduzierten SHA-1 Algorithmus findet

Nur wenig spater kiindigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269
Hashwertberechnungen an

Im August 2005 erfuhr der bendtigte Aufwand von Xiaoyun Wang,
Andrew Yao und Frances Yao auf der CRYPTO 2005 eine weitere
Reduktion auf 263 Berechnungen

In 2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem
geschatzten Aufwand von 25! bis 257 Berechnungen veréffentlicht

Im Februar 2017 fanden Stevens, Bursztein, Karpman, Albertini und
Markov die erste Kollision fiir SHA-1

Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41
Runden reduzierte Variante von SHA-256 und die von 80 auf 46
Runden reduzierte Variante von SHA-512

Der SHA-3 Algorithmus 69

@ Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des
vom NIST ausgeschriebenen Wettbewerbs fiir den SHA-3-Algorithmus
ausgewahlt

@ Die Intention dabei war nicht, SHA-2 als Standard durch SHA-3
abzulésen, zumal bisher keine erfolgreichen Angriffe gegen SHA-2
bekannt sind

@ Vielmehr ging es bei diesem Wettbewerb darum, angesichts der
erfolgreichen Angriffe gegen MD5 und SHA-0, die einen dhnlichen
Aufbau wie SHA-1 und SHA-2 haben, eine auf einem vollkommen
anderen Entwurfsprinzip basierende Alternative zur Verfiigung zu stellen

Die Sponge-Konstruktion i

@ Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von
den Autoren als Sponge (Schwamm) bezeichnet

@ Auf der Basis dieser Entwurfsmethode lassen sich auBer Hashfunktionen
bspw. auch Pseudozufallsgeneratoren gewinnen

@ Der Aufbau eines Sponges dhnelt oberflachlich betrachtet der bereits
vorgestellten Konstruktion von iterierten Hashfunktionen, weist aber
einige Unterschiede auf

@ So basiert ein Sponge statt auf einer Kompressionsfunktion h auf einer
Permutation (oder allgemeiner Transformation) £ : {0,1}” — {0,1},
die wie h iteriert angewendet wird

@ Dabei wird der aktuelle b-Bitblock in zwei Teilblocke der Lange r und ¢
unterteilt, die als duBerer bzw. innerer Zustand bezeichnet werden

Die Sponge-Konstruktion vl

@ Wie der Name schon sagt, verbleiben die Bits des inneren Zustands im
Sponge, d.h. sie dienen nur zur Berechnung des nachsten Zustands und
werden im Gegensatz zu den Bits des duBeren Zustands nicht
unmittelbar fir die Gewinnung der Ausgabe genutzt

@ Die Anzahl ¢ der Bits des inneren Zustands wird als Kapazitat des
Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter

@ Die Anzahl r der Bits des duBeren Zustands heifit Bitrate, wobei
r 4+ ¢ = b gelten muss

Die Sponge-Konstruktion iz

@ Bevor die Funktion f im Kern des Algorithmus iteriert angewendet wird,
um eine Zustandsfolge zu generieren, wird ein Preprocessing ausgefiihrt

@ Die Anforderungen an diese Funktion beschreiben wir vorab

Definition
e Eine Funktion y: {0,1}* — Uy>1{0, 1}* der Form y(x) = xz heiBt
Paddingfunktion fir Bitrate r > 1
@ Eine solche Funktion heiBt sponge-konform fiir Bitrate r > 1, falls
gilt:
o Vn>03zVx € {0,1}" : y(x) = xz
o Yk >0Vx # X' y(x) # y(x")0k

Die Sponge-Konstruktion e

Beispiel

@ Es ist leicht zu sehen, dass die Funktion
pad10*1,(x) = x1091 mit d = min{i > 0| i+ 2 + |x| =, 0}
eine sponge-konforme Paddingfunktion fiir die Bitrate r ist

@ Tatsachlich ist pad10*1, sogar fiir jede Bitrate r’ > 1 sponge-konform
@ Ohne die 1 am Ende von pad10*1,(x) = x1091 ware dies nicht der Fall

Die Sponge-Konstruktion o
Definition

e Sei y eine Paddingfunktion fiir r > 1 und sei f : {0,1}" — {0,1}"
o Firxe {0,1} sei y(x)=y1...yk mit |y;|=rfuri=1,... k

@ Wir definieren die Zustande

0P i=0
si= 1 f(sic1® (¥i0°)) 1<i<k (Absorptionsphase)
f(si—1) i>k (Squeezing-Phase)

Weiter bezeichne z; fiir i > 1 die ersten r Bit von sg4;_1

Zudem sei m = | 1| und z},; sei das Prifix von zy41 der Lange / — mr
Dann ist die Funktion Sponge; , . : N x {0,1}" — {0,1}" wie folgt
definiert: Sponge; , (/,x) = z1... ZmZ} 11

Fir die Analyse definieren wir noch die Funktionen

Absorbf (y1 ... yk) = Sk und Squeezes (/,5k) = 21 ... ZmZp 11

Die Sponge-Konstruktion i

@ Den Aufwand, fiir festes / ein Kollisionspaar x, x’ mit x # x” und
Spongey , ,(/, x) = Spongey , ,(/,x") zu finden, kénnen wir nach oben
durch den Aufwand abschétzen, ein Paar x, x" € U;>110, 1}<r mit
x # x" und Absorbs .(y(x)) = Absorbs (y(x’)) zu finden

@ Hierbei reicht es, ein inneres Kollisionspaar, d.h. zwei Strings
W=y1....,yk #wW =y ...,y zu finden, so dass die inneren
Zustande von s; = Absorbs (w) und s, = Absorbs (w') gleich sind

@ Setzen wir ndmlich yxy1 und yys 41 auf die duBeren Zustande von sy
und s;,, so folgt fiir die Eingaben x = wyy 1 und x" = w'y;, ;:

Absorbf,,(x) = f(Sk D (yk+10C)) = f(OrS,i() = f(OrS,/(i/)
= f(sp D (Y410°)) = Absorbs .(x')
wobei 5} den inneren Zustand von s; bezeichnet

e Falls das Suffix z von y(x) = xz nur von |x| mod r abhangt, gilt wegen
|x| =, |x'| dann auch die Gleichheit Absorby ,(y(x))=Absorbs (y(x’))
und somit Spongey , .(/, x) = Sponge, ,, (/,x')

Die Sponge-Konstruktion e

@ Um eine solche innere Kollision zu finden, hilft es, sich die 2¢ inneren
Zustande u € {0,1}€ als Knoten eines gerichteten Multigraphen G
vorzustellen, der fiir jedes Paar (xu,x'u’) mit f(xu) = x'u’ eine Kante
(u, u")x x von u nach v’ mit dem Label x, x” enthalt

@ Ziel ist es dann, zwei verschiedene Pfade von 0 zu demselben Knoten
v zu finden, wobei zwei Pfade auch dann verschieden sind, wenn sich
die Kanten nur in den Labeln unterscheiden

e Wird f durch eine Zufallsfunktion modelliert (ZOM), so lassen bereits
berechnete Werte von f keine Riickschlisse auf die Werte fir andere
Argumente zu

@ Anders als beim ZOM fiir eine Hashfunktion kann es sich dennoch fur
den Angreifer lohnen, die Argumente von f adaptiv nach einer Strategie
S zu wahlen

@ Der Algorithmus InnerCollision fasst dieses Vorgehen zusammen

: . - 77
Bestimmung eines inneren Kollisionspaares

Prozedur InnerCollision(f,r,q,S)

1 c:=b—r, wobei f:{0,1}* = {0,1}°

2 initialisiere den Multi-Digraphen G = (V, A) := ({0,1}°,0)

3 for i:=1to gdo

4 wahle u € V und x € {0,1}" nach Strategie S

5 x'u' = f(xu)

6 A=AU{(u,t)xx}

7 if 3 zwei Pfade (0, 1)y, (U1, U2)x x5 - - - 5 (Uk—1, “k)kal,X,L,l und

8 (OC, Vl)yo,y(S? (Vl, V2)y1,y{7 060G (V/,17 VI)YIfl’y/,,l in G mit ux = v; then
9 return(xo(xg ® x1) ... (X4_o B Xxk—1), Yoo B y1)--- (Vo ® yi-1))

10 else

[y
[

return(?)

Die Sponge-Konstruktion 0

e Fir jede Strategie S gibt INNERCOLLISION(f, r, g,S) im ZOM mit
Erfolgswahrscheinlichkeit hochstens

1T 2)

i=1

ein inneres Kollisionspaar (x, x’) aus

@ Wahlt S nur von 0¢ aus erreichbare Knoten u und kein Argument xu
mehrmals, so ist die Erfolgswahrscheinlichkeit exakt

Die Sponge-Konstruktion i

Beweis.

@ Sei E; das Ereignis “G enthalt nach dem j-ten Durchlauf noch keine
zwei verschiedenen Pfade von 0¢ zu einem Knoten v”

@ Da nur durch eine Kante zwischen zwei von 0¢ aus erreichbaren Knoten
ein zweiter Pfad von 0¢ aus geschlossen werden kann und nach i —1
Durchlaufen héchstens i von 2¢ Knoten erreichbar sind, gilt

i
PI’[E,'|E1ﬂ...ﬂE,',1] > 1—;

@ Wahlt S nur erreichbare Knoten u und kein Argument xu mehrfach, so
sind unter Annahme von E; N ... N E;_1 auch i Knoten erreichbar
(sonst gabe es bereits zwei Pfade von 0° zu einem Knoten in G) und es
gilt sogar Gleichheit

@ Dies fiihrt auf eine Erfolgswahrscheinlichkeit von
1—Pr[E1 n...N Eq] = 1—Pr[E1]Pr[E2 | E1] ce. PI’[Eq ‘ Ein...N Eq_l]

(o) (- 2) (D)

IN

Die Sponge-Konstruktion a0

@ Mit der Approximation 1 — x &~ e~ erhalten wir die Abschatzung

q . q . 7
e = 1—H(1—2lc>m1—He25I:1—e_2lc iy
il i=1

_a(q+1) _
= l-—e 27 & 1—e 2% xg°/2-2°

@ Fiir g ergibt sich daraus die Abschatzung
q = Ce\/zic

mit einer von € abhangigen Konstanten c. = v/2¢

SHA-3

@ Der Standard SHA-3 definiert die oben beschriebene
Sponge-Konstruktion, 7 verschiedene bijektive Funktionen
fw,w =2 i €{0,...,6} als Kern von Spongey, saaior1 r SOWie
verschiedene Kombinationen von Bitraten r und Ausgabeldngen /
(c ist durch 25w — r bestimmt)

e Jede Funktion £, : {0,1}°>"°*" — {0,1}°*°>*" bildet ein
zweidimensionales Feld A aus w-Bit-Woértern auf ein ebensolches Feld
fw(A) ab

@ Dabei wird (12 + log, w)-mal eine Rundenfunktion
£l {0,112 % {0,1}* — {0,1}>">*" aufgerufen, die A und eine
Rundenkonstante RC; auf A’ abbildet

o Es gilt

fu(A, RC) = tre(x(m(p(0(A)))));

wobei 6, p, m, x und trc Bijektionen von {0, 1}
{0,1}°*°*% sind

5xbxw nach

81

SHA-3 82

@ Die Funktion 6 besteht aus @-Operationen und ist so gewahlt, dass sich
6~1(A) an moglichst vielen Bits dndert, falls eines in A geflippt wird

@ Danach permutieren die Funktionen p und 7 die Bits von A innerhalb
und zwischen den Woértern

@ Ahnlich einer S-Box im SPN ist x eine nichtlineare Funktion (die
einzige solche in der Definition von f,), die nur auf 5-Bit-Blécken
arbeitet (jedes Bit hangt sogar nur von 2 anderen ab)

@ Schlussendlich setzt trc das Wort Ag g auf Ago & RC
o Fiir die Werte | € {224,256, 384,512} definiert der Standard FIPS 202:

SHA3-/(x) = Spongey,, vaa10+1, (/,X01), wobei r = 1600 — 2/

@ Das zusatzliche Padding 01 soll dabei SHA-3 von anderen
Anwendungen von Keccak mit denselben Werten w, /, r unterscheiden

Nachrichten-Authentikationscodes (MACs) &

Definition

Eine Hashfamilie H = (X, Y, K, H) wird durch folgende Komponenten
beschrieben:

@ X, eine endliche oder unendliche Menge von Texten

@ Y, endliche Menge aller méglichen Hashwerte, || Y] < [|X]|

@ K, endlicher Schliisselraum (key space), wobei jeder Schliissel k € K
eine Hashfunktion hy: X — Y in H spezifiziert, d.h. H = {hx | k € K}

@ Im folgenden werden wir die GroBe || X|| des Textraumes mit n, die des
Hashwertbereiches Y mit m und die des Schliisselraumes K mit /
bezeichnen

e Wir nennen dann H auch eine (n, m,|)-Hashfamilie oder einen
(n,m,l)-MAC

Verwendung eines MAC zur Nachrichtenauthentikation &

======================>
Ungesicherter

hy hy
é) Kanal y
::::::::::::::::::::::> hk(X/);y/

falsch

Gesicherter Kanal

@ Hierbei ist k der symmetrische Authentikationsschliissel und y = hy(x)
der MAC-Wert fiir x unter k

@ Indem Alice ihre Nachricht x um den Hashwert y = hy(x) erganzt, hat
Bob nicht nur die Moglichkeit, anhand von y die empfangene Nachricht
x" auf Manipulationen, sondern auch ihre Herkunft zu Gberpriifen

Sicherheitseigenschaften von MACs 8

Damit ein geheimer Schliissel k fiir die Authentifizierung mehrerer
Nachrichten benutzt werden kann, ohne dass dies einem potentiellen
Angreifer zur nichtautorisierten Berechnung von giiltigen MAC-Werten

verhilft, sollte folgende Bedingung erfiillt sein

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schliissel
k generierten Text-Hashwert-Paaren (x1, hx(x1)), - - ., (Xn, hx(xn)) bekannt
ist, erfordert es einen immensen Aufwand, ohne Kenntnis von k ein

weiteres Paar (x, y) mit y = hi(x) zu finden

Sicherheitseigenschaften von MACs 80

@ Bei Verwendung eines berechnungsresistenten MACs ist es einem
Angreifer nicht moglich, an Bob eine Nachricht x zu schicken, die Bob
als von Alice stammend anerkennt

@ Zu beachten ist allerdings, dass die Berechnungsresistenz nichts fiir den
Fall aussagt, dass der Schliissel k bekannt ist

@ So kann nicht davon ausgegangen werden, dass die Funktion hy(x) bei
bekanntem k die Einweg-Eigenschaft besitzt oder schwach
(beziehungsweise stark) kollisionsresistent ist

@ Es ist jedoch leicht zu sehen, dass es die Berechnungsresistenz
erfordert, dass h(x) bei geheimgehaltenem k zumindest schwach
kollisionsresistent ist

@ Dies ist etwa der Fall, wenn k im Speicher eines ausforschungssicheren
Chips abgelegt wird

Verwendung eines MAC zur Versiegelung von Software St

@ Mithilfe eines berechnungsresistenten MACs kann der Integritatsschutz
fiir mehrere Datensatze auf die Geheimhaltung eines Schliissels k
zuriickgefiihrt werden

@ Um die Datensatze xi, ..., x, gegen unbefugt vorgenommene
Verdnderungen zu schiitzen, legt man sie zusammen mit ihren
MAC-Werten y; = hg(x1),- .., ¥n = hk(x,) auf einem unsicheren
Speichermedium ab und bewahrt den geheimen Schliissel k an einem
sicheren Ort auf

@ Bei einem spateren Zugriff auf einen Datensatz x; lasst sich dessen
Unversehrtheit durch einen Vergleich von y; mit dem Ergebnis hy(x;)
einer erneuten MAC-Berechnung tiberpriifen

@ Da auf diese Weise ein wirksamer Schutz der Datensatze gegen Viren
und andere Manipulationen erreicht wird, spricht man von einer
Versiegelung der gespeicherten Datensatze

Angriffe gegen symmetrische Hashfunktionen 88

@ Ein Angriff gegen einen MAC hat die unbefugte Berechnung von
MAC-Werten zum Ziel

@ Das heiBt, der Angreifer versucht, MAC-Werte hy(x) ohne Kenntnis des
geheimen Schliissels k zu berechnen

@ Entsprechend der Art des zur Verfliigung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren

Impersonation:
Der Angreifer kennt nur den benutzten MAC und versucht ein Paar (x, y)
mit hx(x) = y zu generieren, wobei k der (dem Angreifer unbekannte)
Schliissel ist

Substitution:
Der Angreifer versucht in Kenntnis eines Paares (x, hg(x)) ein Paar
(x',y") mit x’ # x und hg(x") =y’ zu generieren

Angriffe gegen symmetrische Hashfunktionen 89

Angriff bei bekanntem Text (known-text attack):

Der Angreifer kennt fiir eine Reihe von Texten xi, ..., x, (die er nicht
selbst wahlen konnte) die zugehorigen MAC-Werte hy(x1), . .., hx(xr) und
versucht, ein Paar (x’,y’) mit he(x’) =y’ und X’ & {x1,...,x} zu
generieren

Angriff bei frei wahlbarem Text (chosen-text attack):
Der Angreifer kann die Texte x; selbst wahlen

Angriff bei adaptiv wahlbarem Text (adaptive chosen-text attack):
Der Angreifer kann die Wahl des Textes x; von den zuvor erhaltenen
MAC-Werten hy(x;), j < i, abhangig machen

Wechseln die Anwender nach jeder MAC-Wertberechnung den Schliissel, so
genligt es, dass H einem Impersonationsangriff widersteht

v

Informationstheoretische Sicherheit von MACs 90

Modell: Schliissel k und Nachrichten x werden unabhingig gemaB einer
Wahrscheinlichkeitsverteilung p(k, x) = p(k)p(x) generiert, welche dem
Angreifer bekannt ist

@ Dabei nehmen wir an, dass p(x) > 0 und p(k) > 0 fiir alle x € X und
k € K gilt

@ Sei a die Wahrscheinlichkeit, mit der sich ein Angreifer bei optimaler
Strategie als Alice ausgeben kann, ohne dass Bob dies bemerkt

Informationstheoretische Sicherheit von MACs 91

Erfolgswahrscheinlichkeit fir Impersonation

e Fiir ein Paar (x, y) sei p(x — y) die Wahrscheinlichkeit, dass ein
zufallig gewahlter Schliissel den Text x auf den MAC-Wert y abbildet:

p(x = y)=plylx)= > p(k)
keK(x,y)

wobei K(x,y) = {k € K| he(x) = y} alle Schliissel enthalt, die x auf
y abbilden

@ Bei einem Impersonationsangriff ist p(x — y) also die Wahrscheinlich-
keit, dass der Angreifer bei Wahl des Paares (x, y) Erfolg hat

@ Deshalb bezeichnen wir diese Wahrscheinlichkeit auch mit a(x, y)

@ SchlieBlich ist a(x) = max{a(x,y) | y € Y} die Wahrscheinlichkeit,

mit der einem Angreifer bei optimaler Strategie eine Impersonation mit
dem Text x gelingt

@ Daher ist & = max{a(x) | x € X}

Informationstheoretische Sicherheit von MACs 92

e Sei K=1{1,2,3}, X={a,b,c,d} und Y ={0,1}
@ Wir beschreiben H durch die zugehoérige Authentikationsmatrix

@ Die Zeilen und Spalten dieser Matrix werden mit den Schliisseln k € K
und den Texten x € X indiziert und ihr Eintrag in Zeile k und Spalte x
ist der Wert hy(x):

\0,1\ \0,2 \0,3\ \0,4\
‘ a b c d
025| 1| 0 0 0 1
0,30 1 1 0 1
0,45 0 1 1 0

@ Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k)
an

Informationstheoretische Sicherheit von MACs 93

Beispiel (Fortsetzung)

@ Dann hat der Angreifer folgende Erfolgsaussichten «(x), falls er an Bob
den Text x senden mochte

X a b C d
p(x—0) |07 025 0,55 0,45
p(x—1) 03 0,75 0,45 0,55

a(x) 0,7 0,75 0,55 0,55

e Folglich ist @« = 0,75 <

Informationstheoretische Sicherheit von MACs 94

Fir alle x € X ist a(x) >

1 : 1
- und daher gilt a > -~

Beweis.
@ Fiir beliebiges x € X gilt

doplx=y)y=2 > plk)=> pk)=1

yeYy yeY keK(x,y) keK

@ Somit existiert fiir jedes x € X ein y € Y mit p(x — y) >
impliziert

1 0
- und dies

1
afx) =maxp(x = y) 2 =

Informationstheoretische Sicherheit von MACs 95

Bemerkung

@ Wie der Beweis zeigt, gilt a = % genau dann, wenn fiir alle Paare
(x,y) € X x Y folgende Gleichheit gilt:

> p(ﬂz%

keK(x,y)
@ D.h. bei Gleichverteilung der Schliissel muss in jeder Spalte der
Authentikationsmatrix jeder MAC-Wert gleich oft vorkommen

@ Dies lasst sich am einfachsten dadurch erreichen, dass man K =Y
setzt und fiir hy die konstante Funktion hy(x) = k wahlt

Der Entropiebegriff 96

Ein MaB fiir den Informationsgehalt

@ In der Informationstheorie wird die Unsicherheit (iber eine Nachrichten-
quelle X nach ihrer Entropie bemessen

@ Dabei entspricht die Unsicherheit iiber X genau dem Informations-
gewinn, der sich aus der Beobachtung der Quelle X ergibt

@ Intuitiv ist die in einer einzelnen Nachricht x steckende Information
umso groBer, desto unwahrscheinlicher sie ist

e Tritt eine Nachricht x mit der Wahrscheinlichkeit p(x) = Pr[X = x] > 0
auf, dann ist ihr Informationsgehalt definiert als

Infi(x) = loga(1/p(x)) = — log p(x)
e Im Fall p(x) =0 sei Infx(x) =0

Der Entropiebegriff 2

Ein MaB fir den Informationsgehalt

@ Diese Definition des Informationsgehalts ergibt sich zwangslaufig aus
den beiden folgenden Axiomen:
o Der (gemeinsame) Informationsgehalt Infx y(x,y) von zwei
Nachrichten x und y, die aus unabhangigen Quellen
X und Y stammen, ist Infx(x) + Infy(y)
o Eine Nachricht x, die mit Wahrscheinlichkeit Pr[X = x] = 1/
auftritt, hat den Informationsgehalt Infx(x) =1

@ Die Einheit des Informationsgehalts ist bit (basic indissoluble
information unit)

@ Die Entropie von X ist nun der erwartete Informationsgehalt einer von
X generierten Nachricht

Der Entropiebegriff 2

Definition
@ Sei X eine Zufallsvariable mit Wertebereich W(X) = {x1,...,xp} und
sei pi = Pr[X = xj]

@ Dann ist die Entropie von X definiert als

Z pi I”fX X/ Z pi |0g2 /P: Z Pi |0g2 Pl

| A

Beispiel
@ Sei X eine Zufallsvariable mit der Verteilung

X; | sonnig leicht bewdlkt bewdlkt stark bewolkt Regen Schnee Nebel
pi| Ya 1/ 1/g 1/g /g he 16

@ Dann ergibt sich die Entropie von X zu

H(X)=Ya- (2+2) + s (3+3+3) + Y15~ (4 +4) =2,625 |

Der Entropiebegriff 2

@ Die Entropie nimmt im Fall der Gleichverteilung py = -+- = p, = 1/
den Wert log,(n) an, wahrend sie fiir jede andere Verteilung auf einer
n-elementigen Menge einen Wert H(X) < log,(n) hat (siehe unten)

@ Die Unsicherheit iiber eine Zufallsvariable X ist um so groBer, je groBer
der Wertebereich und je gleichmaBiger die Verteilung von X ist

@ Bringt X zum Beispiel nur einen einzigen Wert mit positiver Wahr-
scheinlichkeit hervor, dann (und nur dann) hat #(X) den Wert 0

@ Fiir den Nachweis von oberen Schranken fiir die Entropie benutzen wir
folgende Hilfsmittel aus der Analysis

Definition
@ Sei | C R ein Intervall. Eine Funktion f : | — R heiBt konkav auf /,
falls fir alle x #y € lund 0 < t < 1 gilt:
fltx+ (L—t)y) > tf(x)+ (1 —t)f(y)
o Gilt sogar ,,>" anstelle von ,>", so heiBt f streng konkav auf |

e Im Falle von ,<" bzw. ,,<" heiBt f (streng) konvex auf |

Der Entropiebegriff 100

Beispiel

Die Funktion f(x) = log,(x) ist streng konkav auf (0, c0) <

Fiir den Beweis des nachsten Satzes bendtigen wir die Jensensche
Ungleichung, die wir ohne Beweis angeben ’

Jensensche Ungleichung

@ Sei f eine streng konkave Funktion auf / und seien 0 < a1,...,a, <1
reelle Zahlen mit Y7 ; a2, =1

e Dann gilt fir alle x1,...,x, € [,

f (Z a,-x,-) Z Z a,-f(x,-)
i=1 i=1

@ Im Falle einer streng konvexen Funktion f gilt < anstelle von >

@ Dabei gilt Gleichheit genau dann, wenn alle x; den gleichen Wert haben

Der Entropiebegriff 101

@ Sei X eine Zufallsvariable mit Wertebereich W(X) = {x1,...,xp} und
Verteilung p; = Pr[X=x;] firi=1,...,n

@ Dann gilt H(X) < log,(n), wobei Gleichheit genau im Fall p; = 1/n fir
i=1,...,n eintritt

Beweis.
@ Aufgrund der Jensenschen Ungleichung gilt

n

HX) = 3" pilogs(1/pi) < logs 3 o1/ i) = loga

i=1 i=1
wobei Gleichheit genau im Fall 1/p; = --- = 1/p, eintritt

@ Letzteres ist mit der Bedingung p; = 1/n fur i = 1,..., n gleich-
bedeutend O

Informationstheoretische Sicherheit von MACs 102

Das folgende Lemma benétigen wir fiir den Beweis des nachsten Satzes J

@ Sei X eine Zufallsvariable mit endlichem Wertebereich W(X) C R
e Dann gilt log E(X) > E(log X)

Beweis.

@ Sei W(X)={x1,...,xptund fur i=1,... nsei pj = Pr[X = x|

@ Da die Funktion x — log, x konkav ist, folgt mit der Jensenschen
Ungleichung

log E(X) =logy(>_ pixi) = Y _ pilogy xi = E(log X)

Die bedingte Entropie 103

Zudem bendtigen wir noch den Begriff der bedingten Entropie J

Definition. Seien X, Y Zufallsvariablen
Die bedingte Entropie von X unter Y ist definiert als

HXIY)= > ply)H(Xly) = Zp) > p(x]y) loga(Yp(xly)):

yeWw(Y)

wobei X|y die Zufallsvariable mit der Verteilung p,(x) = p(x|y) ist

Informationstheoretische Sicherheit von MACs 104

e Fir jeden MAC (X, VY, K, H) gilt:

1
@2 sH-AwEEy 2
@ Hierbei sind X',), KC Zufallsvariablen, die die Verteilungen der
Nachrichten, der MAC-Werte und der Schlissel beschreiben

Der Wert von « kann also um so kleiner werden, je gleichmaBiger die
Schliisselverteilung ist und je mehr Information die Beobachtung eines
glltigen Paares (x, y) tGber den Schlussel liefert

105

Informationstheoretische Sicherheit von MACs

Fiir jeden MAC (X, Y, K, H) gilt a > 1/2H(O)-HKIX.Y) > 1/

Beweis.
o Wegen o = maxy,y a(x,y) ist E(a(X,))) = 3, , p(x,y)a(x,y) < a
@ Dabei ist E(a(X,))) die Erfolgswahrscheinlichkeit eines

(probabilistischen) Angreifers, der das Paar (x, y) gemaB der Verteilung
(X,Y) wahlt

@ Somit folgt unter Anwendung von obigem Lemma
logae > log E(a(X,))) > E(loga(X,)))
= Z p(Xv.y) Ioga(x,y) = _H(y“)()
S—— —

X7.y

P(IP(y1x) log p(y|x) = — log 55155

Informationstheoretische Sicherheit von MACs 106

Beweis.
@ Somit folgt unter Anwendung von obigem Lemma

loga > —H(Y | X)

@ Zudem gilt
HK, Y, X)=H(X)+ HQ|X)+ HK|X,Y)
und
H(KC, Y, X) = H(K,X) +HIK,X)
—— —
= H(K)+H(X) =0

@ Daher folgt H(Y|X) = H(K) — H(K | X,)) und somit
loga > H(K | X,Y) — H(K)
o Dies ist aquivalent zu o > 1/2H(K)-H(KIX.Y) -

Informationstheoretische Sicherheit von MACs 107

e Sei K=1{1,2,3}, X={a,b,c,d} und Y ={0,1}
@ Wir beschreiben H durch die zugehoérige Authentikationsmatrix

@ Die Zeilen und Spalten dieser Matrix werden mit den Schliisseln k € K
und den Texten x € X indiziert und ihr Eintrag in Zeile k und Spalte x
ist der Wert hy(x):

\0,1\ \0,2 \0,3\ \0,4\
‘ a b c d
025| 1| 0 0 0 1
0,30 1 1 0 1
0,45 0 1 1 0

@ Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k)
an

Informationstheoretische Sicherheit von MACs

108

Beispiel (Fortsetzung)

o Es gilt

Zp

e Um H(IC|X,y) zu bestimmen, benétigen wir die gemeinsame Ver-
teilung von X',) sowie die bedingten Verteilungen K, , fiir alle Paare

Iog) = 0,45-1,152+0,3-1,737+0,25-2,0 = 1,54

(x,y) e XX Y:
(xy) |l (3,0) (a,1) (b,0) (b,1) (c,0) (c,1)(d,0) (d,1)
p(x,y) 0,07 003 0,05 0,15 0,165 0,135 0,18 0,22
p(1lx,y) % 0 1 (2) lz—l 0 0 1—21
p(3|x,y) 2 0 0 3 0 1 1 0
H(Klx,y) || ~094 0 0 ~097~099 0 0 ~0,99

o Hierbei gilt p(x,y) = p(x)p(y|x) = p(x)p(x — y)

Informationstheoretische Sicherheit von MACs 109

Beispiel (Schluss)

@ Somit ist

HUKIZ,Y) = 2 plxy)H(Che.y) = 052

und wir erhalten die untere Schranke

1 1 1
= SHK)—H(KIX,Y) ~~ 2154—052 — 1,02 0,493

Erfolgswahrscheinlichkeit fiir Substitution g

@ Bezeichne § die Wahrscheinlichkeit, mit der ein MAC-Angreifer bei
optimaler Strategie eine von Alice gesendete Nachricht x durch eine
andere Nachricht x’ ersetzen kann, ohne dass Bob dies bemerkt

@ Dabei gehen wir davon aus, dass der Angreifer keinen Einfluss auf die
Wabhl der von Alice gesendeten Nachricht x hat

e Falls der Angreifer ein von Alice gesendetes Paar (x, y) durch das Paar
(x',y’) ersetzt, ist seine Erfolgswahrscheinlichkeit gleich der bedingten
Wabhrscheinlichkeit

pix =y, X' —y) 2 keK(xyx'y') PLK)
p(x — y) DokeK(x,y) p(k)

p(x" =y |x—y)=

dass ein zufillig gewahlter Schliissel k den Text x” auf y’ abbildet, wenn
bereits bekannt ist, dass hg(x) = y ist

@ Hierbei ist K(x,y,x",y) ={k € K| he(x) =y N h(x') = y'}

Erfolgswahrscheinlichkeit fiir Substitution Lot

e Falls Alice also das Paar (x,y) sendet, so ist die maximale Erfolgswahr-
scheinlichkeit des Angreifers

Blx,y) = max p(x' = y'|x = y)
x'#x,y’

@ Man beachte, dass 3(x, y) nur im Fall p(x,y) > 0 definiert ist

@ Da der Angreifer keinen Einfluss auf die Wahl von (x,y) hat, ist 8
gleich dem Erwartungswert von (x,y) unter der Verteilung p(x,y),
mit der Alice diese Paare generiert

@ Somit erhalten wir

B=E@BX,)= > pxy)Bxy)

xeX,yeY
e Wegen p(x,y) = p(x)p(x — y) konnen wir 5 unter Verwendung von

B'(x,y) = B(x,y)p(x = y) = max p(x' =y x> y)
X 7%y

auch mittels der Formel 3 = 3, . x p(x) 3> cy B'(x,y) berechnen

Erfolgswahrscheinlichkeit fiir Substitution 12

e Sei K=1{1,2,3}, X={a,b,c,d} und Y ={0,1}
@ Wir beschreiben H durch die zugehoérige Authentikationsmatrix

@ Die Zeilen und Spalten dieser Matrix werden mit den Schliisseln k € K
und den Texten x € X indiziert und ihr Eintrag in Zeile k und Spalte x
ist der Wert hy(x):

\0,1\ \0,2 \0,3\ \0,4\
‘ a b c d
025| 1| 0 0 0 1
0,30 1 1 0 1
0,45 0 1 1 0

@ Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k)
an

Erfolgswahrscheinlichkeit fiir Substitution e

Beispiel (Fortsetzung)

p(x' =y’ x—>y) ,
O 00 e 60 6D | €0 (@)] @0 @y | Y|P | Pe
(20) 025 0,45|025 0,45]0,45 025 045 | 07 |0,643
(a.1) o 03/03 o |0 03|03 03] 1
500,25 0 025 0 | 0 025|025 | 025 | 1
1) 0,45 0,3 03 045|045 03 | 045 | 075 | 0,6
(c0)| 025 030,25 03 0 055|055 | 055 | 1
1|045 0 | 0 045 045 0 | 045 | 045 | 1
@0 |045 0 | 0 045 0 045 045 | 045 | 1
@1 025 03[025 03 [055 0 0,55 | 055 | 1

@ Die optimalen Wahlméglichkeiten des Angreifers, ein Paar (x,y) durch
ein anderes Paar (x',y’) zu ersetzen, sind in der Tabelle fett gedruckt

114

Erfolgswahrscheinlichkeit fiir Substitution

Beispiel (Schluss)
e Fiir B erhalten wir somit den Wert

B o= Y p(x)> B(xy)

xeX yey
= 0,1(0,45 4 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45)
+ 0,4(0,45 + 0,55)
= 0,915 <

Erfolgswahrscheinlichkeit fiir Substitution L

Als nachstes zeigen wir fiir 8 die gleiche untere Schranke wie fiir o J

Fiir alle (x,y) € X x Y mit p(x,y) > 0ist B(x,y) > L und somit 3 >

1
m

Beweis.
@ Sei (x,y) € X x Y ein Paar mit p(x,y) >0
e Dann gilt fur beliebige x’ € X — {x}

Zy'ey ZkeK(ny’;x,y) p(k)

p(x' =y [x = y) = =1
y;y > keK(xy) P(K)
@ Somit existiert ein y' € Y mit p(x’ — y'|x — y) > # und dies
impliziert
1
Blx,y) = max p(xX' =y |x=y) > =
X' #Exy’! m

e Also gllt 5 = ZXEX7}/€Y p(va)B(va) > %ZXEX,_}’EY P(X,)/) : O

T m

Erfolgswahrscheinlichkeit fiir Substitution e

@ Sei X =Y =1{0,1,2} =Z3 und sei K = Z3 X Z3
e Fir k=(a,b) € K und x € X sei
hi(x) = ax + b mod 3

@ Die zugehorige Authentikationsmatrix ist

01 2
(0,00[0 0
(0,1) |1 1 1
(0,2) |2 2 2
(1,0) |0 1 2
(1L1) |1 2 0
(1,2) |2 0 1
(2,0)|0 2 1
(2,1) |1 0 2
(2,2) |2 1 0

@ Wir nehmen an, dass der Schliissel unter Gleichverteilung gewahlt wird

y

Erfolgswahrscheinlichkeit fiir Substitution 1Ly

Beispiel (Fortsetzung)

o Ersetzt der Angreifer ein Paar (x,y) durch ein Paar (x,y’) mit x" # x,
so wird dieses Paar von genau einem der 3 infrage kommenden
Schlissel akzeptiert

@ Dies liegt daran, dass in je 2 Spalten der Authentikationsmatrix jedes
MAC-Wertepaar genau einmal vorkommt

e Folglich ist p(x’ — y’|x + y) = 1/3 und somit hat 3 den optimalen
Wert 5 =1/3 N

v

Erfolgswahrscheinlichkeit fiir Substitution 1

Lemma

In einem MAC (X, Y,K,H) mit g = % gilt fir alle Doppelpaare
(x,y,x';¥") mit x # x’ die Gleichheit

p(x' = y'|x = y)=1/m

Beweis.

e Wir setzen zunachst voraus, dass p(x — y) > 0 fiir alle Paare
(x,y) € X x Y gilt

e Wiirde nun fir ein Doppelpaar (x, y, x’,y’) mit x # x’
p(x" =y [x+y)>1/m
gelten, dann ware auch

Blxy)= max p(x' = y'[x—y)>1/m
Xy

Erfolgswahrscheinlichkeit fiir Substitution e

Beweis (Fortsetzung).

e Da fiir alle Paare (u, v) mit p(u +— v) > 0 nach obigem Satz die
Ungleichung S(u, v) > 1/m gilt und p(x,y) = p(x)p(x — y) > 0 ist,
wiirde hieraus

8=3" p(u,v)B(u,v) = p(x,¥)Bx,y) + 3 plu,v)B(u,v)> 1/m

ueX,veyY :7: (u,v)#(x,y) ;7:

folgen, was im Widerspruch zur Voraussetzung des Satzes steht

@ Ist andererseits

p(x" =y |x = y) <1/m,

muss wegen
Yo op(X =y | x i y) =1
y”EY

auch ein MAC-Wert y” mit p(x’ — y” |x — y) > 1/m existieren, was
wir bereits widerlegt haben

Erfolgswahrscheinlichkeit fiir Substitution izt

Beweis (Schluss).

@ Es bleibt zu zeigen, dass p(x — y) > 0 fiir alle Paare (x,y) € X x Y
gilt

e Ware p(x — y) =0, so wiirde fiir ein beliebiges Paar (u, v) mit
p(u— v) >0 auch p(x — y|ur v) =0 < 1/m sein, was wir bereits
widerlegt haben my

Erfolgswahrscheinlichkeit fiir Substitution 2l

Ein MAC (X, Y, K, H) erfillt g = % genau dann, wenn

plx =y, x = y) =1/m?

fur alle Doppelpaare (x, y,x’, y") mit x # x’ gilt

Beweis.
@ Sei (X,Y,K,H) ein MAC mit § = =
@ Nach obigem Lemma impliziert dies, dass fiir alle Doppelpaare
(x,y,x',y") mit x # x' gilt,
p(x' =y |x—=y)=1/m
@ Dies impliziert nun
p(x" =y pr»—>y (X' =y |x—y)=1/m
und daher
pix =y, x' = y') = p(x' =y)p(x = y| X = y') = 1/m?

Erfolgswahrscheinlichkeit fiir Substitution 2z

Ein MAC (X, Y, K, H) erfiillt 3 = L genau dann, wenn
p(x =y, X' = y') =1/m’

fur alle Doppelpaare (x,y,x’,y") mit x # x’ gilt

Beweis (Schluss).

@ Umgekehrt rechnet man leicht nach, dass die Bedingung 5 = % erfullt
ist, wenn fiir alle Doppelpaare (x,y, x’,y’) mit x # x die Gleichheit
p(x = y,x" = y') =1/m? gilt O

Erfolgswahrscheinlichkeit fiir Substitution 2

Bemerkung
@ Nach obigem Satz gilt § = # genau dann, wenn fir alle Doppelpaare
(x,y,x',y") mit x # x' gilt,
px =y X'y)= Y pk)=—
keK(X7y7xl7y/)

@ D.h. bei Gleichverteilung der Schlissel gilt 5 = % genau dann, wenn in
je zwei Spalten der Authentikationsmatrix jedes MAC-Wertepaar gleich
oft vorkommt

Konstruktion von 2-universalen MACs 124

Ab jetzt setzen wir voraus, dass der Schliissel unter Gleichverteilung

gewahlt wird, d.h. es gilt p(k) = m fir alle k € K

Definition

Ein MAC (X, Y, K, H) heiBt 2-universal, falls fir alle x,x" € X mit x # x’
und alle y,y’ € Y gilt:

IK]]

1Koy 'y =1

Ein MAC (X, Y, K, H) ist also genau dann 2-universal, wenn fir alle
Textpaare x,x’ € X mit x # x’ jedes MAC-Wertpaar y,y’ € Y mit Wk
1/m? auftritt

Konstruktion von 2-universalen MACs 125

Bemerkung

@ Bei der Konstruktion von 2-universalen MACs spielt der Parameter
A= HmLJ eine wichtige Rolle

@ Da)\ notwendigerweise positiv und ganzzahlig ist, muss insbesondere
|K|| > m? gelten

@ Im Folgenden nennen wir einen 2-universalen (n, m, /)-MAC mit
A = I/m? kurz einen (n, m, 1, \)-MAC

Konstruktion von 2-universalen MACs 126

e Wir betrachten den MAC (X, Y, K, H) mit X ={0,1,2,3},
Y ={0,1,2}, K ={0,1,...,8}, wobei H durch folgende
Authentikationsmatrix beschrieben wird:

01 2 3
0[{0 0 0 O
1711 1 10
212 2 2 0
3/0 1 2 1
411 2 0 1
512 0 1 1
60 2 1 2
711 0 2 2
812 1 0 2

@ Da in je zwei Spalten jedes MAC-Wertepaar genau einmal vorkommt,
ist (X,Y,K,H) ein (4,3,9,1)-MAC <

Konstruktion von 2-universalen MACs 127

@ Auf Grund obiger Bemerkung ist klar, dass ein MAC bei gleichverteilten
Schlisseln genau dann die Bedingung 5 = % erfillt, wenn er
2-universal ist

@ In diesem Fall nimmt auch o den optimalen Wert # an

@ Der nichste Satz zeigt eine einfache Konstruktionsméglichkeit von
2-universalen MACs mit dem Parameterwert A =1

@ Sei p prim und fiir a, b, x € Z/, sei

hap(x) = ax + b mod p

@ Dannist (X,Y,K,H) mit X =Y =Z, und K = Z, x Zp ein
(p, p, p*,1)-MAC

Konstruktion von 2-universalen MACs 128

Beweis.

e Wir missen zeigen, dass K(x,y,x’,y’) fir jedes Doppelpaar
(x,y,x",y") mit x # x’ genau einen Schlissel enthilt

@ Ein Schlissel (a, b) gehort genau dann zu dieser Menge, wenn er die
beiden Kongruenzen

ax+b =, vy,
ax'+b =, y
erfiillt
@ Da dies jedoch nur auf den Schliissel (a, b) mit
a = (y—y)x—=x)"'medp,
b = y—x(y—y)x=x)"modp
zutrifft, folgt [|K(x,y,x,y')|| =1 -

Konstruktion von 2-universalen MACs 129

@ Die Hashfunktionen des vorigen Satzes erfiillen wegen n = m = p nicht
die Kompressionseigenschaft

@ Zwar lasst sich n noch geringfiigig von p auf p+ 1 (und somit der
Quotient m/n von 1 auf _27) verkleinern, ohne K und Y zu verandern

(siehe Ubungen)
@ Wie der nichste Satz zeigt, lasst sich eine starkere Kompression mit
dem Parameterwert A = 1 jedoch nicht realisieren

Fir einen (n, m,/,1)-MAC gilt
n<m+1

und somit / = m* > (n — 1)? sowie m/n > 17 (~ 1)

Konstruktion von 2-universalen MACs 130

Fir einen (n,m, /,1)-MAC gilt

n<m+1
und somit / = m* > (n — 1)? sowie m/n > 4 (~ 1)
Beweis.

@ OBdA. sei K={1,...,/} und Y ={1,...,m}

@ Es ist leicht zu sehen, dass eine (bijektive) Umbenennung 7: Y — Y
der MAC-Werte in einer einzelnen Spalte der Authentikationsmatrix A
wieder auf einen 2-universalen MAC fiihrt

@ Also kdnnen wir annehmen, dass die erste Zeile der
Authentikationsmatrix A nur Einsen enthalt

Konstruktion von 2-universalen MACs 131

Beweis (Schluss)
@ Da A 2-universal ist, gilt:
o In jeder Zeile i = 2,..., m? kommt hochstens eine Eins vor
o Jede Spalte j enthalt eine Eins in Zeile 1 und m — 1 Einsen in den

tbrigen Zeilen

@ Dainden Zeilen i =2,...,m?

vorkommen, folgt

insgesamt genau n(m — 1) Einsen

Anzahl der Zeilen > Anzahl der Zeilen mit einer Eins,

m? 1+n(m—1)

was m?> —1> n(m —1) bzw. n < m + 1 impliziert O

Konstruktion von 2-universalen MACs 132

@ Der nichste Satz liefert 2-universale MACs mit beliebig kleinem
Kompressionsquotienten m/n

@ Fiir den Beweis bendtigen wir das folgende Lemma

@ Sei A eine (k x ¢)-Matrix iber einem endlichen Kérper T, deren k
Zeilen linear unabhangig sind

@ Dann besitzt das lineare Gleichungssystem
Ax =y
fiir jedes y € FX genau ||F||*~* Lésungen x € F*

Beweis.

Siehe Ubungen 0

Konstruktion von 2-universalen MACs 133

@ Sei p prim und fiir x = (xq, ..., x¢) € {0,1}9 und
k= (ku,..., kq) € Z3 sei
d
hi(x) = kx = Z kix; mod p
i=1
e Dann ist (X, Y,K, H) mit X ={0,1}¢ — {09}, Y =Z, und K = Z
ein (2d - 17 p, pda pd_2)_MAC

Beweis.

e Wir miissen zeigen, dass die GroBe von K(x,y,x’,y’) fir alle
Doppelpaare (x,y,x’,y") mit x # x’ konstant ist

Konstruktion von 2-universalen MACs 134

Beweis (Fortsetzung)
o Es gilt
ke Kx,y,x,y') & h(x)=y A h(X) =y
S k-x=y ANk-xX'=y

/

@ Fassen wir x = x1---xg und x’ = x{ - - - x; zu einer Matrix A
zusammen, so ist dies dquivalent zu

k1
) -0
/AR : - /
24,770 2% ky y
@ Da die beiden Zeilen von A verschieden und damit linear unabhangig

sind, folgt mit obigem Lemma, dass genau ||K(x,y,x’,y")| = p9=2
Schliissel k = (ki, ..., kq) mit dieser Eigenschaft existieren O

Konstruktion von 2-universalen MACs 135

Bemerkung
@ Obige Konstruktion liefert einen \-Wert von ||'nL2|| = =2
@ Durch Erweiterung von X auf eine geeignete Teilmenge X' C Zg lasst

p?—1

=

@ Dies fiihrt auf einen beliebig kleinen Kompressionsquotienten
m_plp—1) -4

—_—= T N

n p?—1

sich der Textraum von 29 — 1 auf

vergréBern (siehe Ubungen)

bei einem \-Wert von \ = p9—2

@ Wie der nachste Satz zeigt, lasst sich dies nicht mit einem kleineren
A-Wert (bzw. nicht mit einer kleineren Schliissellange) erreichen

Konstruktion von 2-universalen MACs 136

Fiir den Beweis des nachsten Satzes benétigen wir folgendes Lemma |

Lemma

Fiir beliebige reelle Zahlen by, ..., b, € R gilt (X7 b) <mX}T,b?

Beweis.

e Da die Funktion x — x? konvex ist, folgt mit der Jensenschen
Ungleichung (3 b; /m)2 <Y b?/m

e Folglich ist (3 b))% = m? Zb/m)" < mY b?
N—————
<> b /m O

Jensensche Ungleichung

Fir eine konkave Funktion f und aj,...,a, € (0,1) mit > /_; a; = 1 ist

f (Z a,-x,-) Z Za;f(x;)
i=1 i=1

Konstruktion von 2-universalen MACs 137

Fur jeden (n, m, 1, \)-MAC gilt

Am? > n(m—1)+1 und somit m/n> (m—1)/m(\ —1/m?)
=

~1/\

Beweis.

e O.B.d.A. kénnen wir wieder K = {ky,...,k} und Y ={1,...,m}
annehmen, und dass die erste Zeile der Authentikationsmatrix nur aus
Einsen besteht

o Fiir jede Zeile i =1,...,/ bezeichne ¢; die Anzahl der Einsen in dieser
Zeile (also e; = n)

@ Da in jeder Spalte jeder MAC-Wert genau Am-mal vorkommt, gilt

I /
Ze,-:)\nm und Ze,-:)\nm—n:n()\m—l)
i=1 i=2

Konstruktion von 2-universalen MACs 138

Beweis (Fortsetzung).

@ Sei z=Y"!_, z, wobei z; die Anzahl von Spaltenpaaren (j, ;') mit
i 75_/, und hk,-(Xj) = hk,-(Xj’) =1ist

e Dann folgt

@ Mit obigem Lemma ergibt sich

Loy (E0)"_ am -1
Iz:;ei = I —1 o /-1

@ Da andererseits in jedem Spaltenpaar das MAC-Wertepaar (1,1) in
genau A Zeilen vorkommt (genauer: einmal in Zeile 1 und (A — 1)-mal
in den Zeilen i =2,...,/), und da n(n — 1) solche Spaltenpaare
existieren, ergibt sich andererseits die Gleichung

z=(A-=1)n(n—-1)

Konstruktion von 2-universalen MACs 139

Beweis (Schluss).

@ Somit erhalten wir

/ 2
(A=n(n—1) =z =Y e —n(Am—1) W__ll))—n(m—l)
i=2

und daher folgt
(A= 1)n(n — 1) + n(Am — 1))(Am? — 1) > (n(Am — 1))?
= (An—n—=X+Ixm(Am?> —1) > n(Am — 1)
—2N2m? + X°m® > Anm® + An— XA+ Am — 2\nm
N(m® —m?) > Nn(m—1)>4+m—-1)
Am?>n(m—1)+1 0

R

CBC-MACs 140

@ Als Basis fiir die Konstruktion eines MAC kann auch ein symmetrisches
Kryptosystem dienen

Sei (M, C, K, E, D) ein symmetrisches Kryptosystem mit
M= C=1{0,1}*
Zudem sei IV := 0! und sei k € K ein geheimer Schliissel

Sei y eine Funktion fiir den Preprocessing-Schritt, die fiir jeden Text
x € {0,1}* einen nichtleeren Bitstring y(x) € U,>1{0,1}"" liefert

Berechnung von hy(x):

1y =y(X)=y1...ynn>1y {01}
2 zo =1V

3 for i=1to ndo

4

5

zi .= E(k,zi-1 ® yi)
output hy(x) = z,

Die MAC-Wertlange betragt also t Bit

CBC-MACs 141

@ Wird auf den Preprocessing-Schritt verzichtet, so lasst sich leicht ein
Angriff mit 2 adaptiven Fragen ausfiihren

e Kennt der Angreifer die MAC-Werte z = hi(x) und z' = hy(x') fir die
Texte x = x1 -+ xp und X" = (Xp41 B IV B 2)Xp42 -+ - Xpt-m, Wobei
|xi| =t fur i =1,...,n+ mist, so muss auch der Text
x" = x1 -+ Xptm den MAC-Wert hy(x") = z’ haben

@ Diesen Angriff kann man zwar ausschlieBen, indem man eine feste
Lange nt fiir die Texte vorschreibt, wodurch die Anwendbarkeit des
CBC-MACs allerdings einschrankt wird

@ Der folgende Geburtstagsangriff ist aber auch bei fester Textlange
moglich

Geburtstagsangriff auf einen CBC-MAC ez

@ Dieser Angriff erméoglicht es, mit ¢ + 1 MAC-Wert-Fragen (wobei
g~ 117 2%) den MAC-Wert hy(x) fiir einen zuvor nicht erfragten
Text x zu finden, wobei x = x; ... x, € {0,1}' abgesehen vom ersten
t-Bitblock x; € {0,1}" beliebig wahlbar ist

@ Hierzu wahlt der Angreifer zunéachst

o n— 2 beliebige Blécke x3, ..., x, € {0,1}* und
o g~ 1,17 23 paarweise verschiedene Blocke xi, ..., x{ € {0,1}*
@ AnschlieBend wahlt er zufallig
o q weitere Blécke x3,...,x5 € {0,1}t und
erfragt die MAC-Werte z; = hy(x') fiir die Texte x' = x{xix3 - - - xp,
i=1,...,q9

e Wegen x{ # x{ fiir i # j sind auch die Texte x1, ..., x9 paarweise

verschieden

Geburtstagsangriff auf einen CBC-MAC s

o Seien z{, ... ,zy die nach der ersten Iteration des CBC-MACs
berechneten Blécke zi = Ex(IV @ x})

e Da die Bldcke xj zufallig gewihlt werden, sind auch die Eingangsblécke
zi @ xj fiir die zweite Iteration zufillig

@ Es gilt also
, , ; : : ; 1
Pr[EIi;éj:z{Esz’:Z{@Xé]zpl’[ﬂi?ﬁjilezxé]xi

e Die Gleichheit der Eingangsblocke zi @ x4 und z{ ® xé fur die zweite
Iteration ist mit der Gleichheit der Ausgangsblocke z/ und Z) der n-ten
Iteration und damit mit der Gleichheit der zugehorigen MAC-Werte z/
und 2/ Aquivalent

o Daher kann der Angreifer das Indexpaar (i,) mit z} @ x5 =z} @® x}
auch leicht finden, sofern es existiert (was wir im Folgenden annehmen)

Geburtstagsangriff auf einen CBC-MAC e’

o Da x{ # x| gilt, sind auch die Blécke zi = Ex(IV @ x{) und
= Ek(/V @ xJ) verschieden

o Wegen zj ® xj = z @ xj sind dann auch die beiden Blocke x} und xJ
verschieden

e 0.B.d.A. gelte x5 # x» (sonst vertauschen wir die Indizes i und j)

@ Nun erfragt der Angreifer fiir u = xj @& x, € {0, 1} — {Ot} den
MAC-Wert Z; = hi (%) fiir den Text %/ = x{(x) ©) *Xn, Welcher
zugleich MAC-Wert des Textes X' = x{ (x4 ® u)x3 -+ X, = X{x0X3 -+ - Xp
ist, den er zuvor nicht erfragt hat

	Organisatorisches
	Kryptografische Hashverfahren
	Einführung
	Kryptografische Hashverfahren
	Klassifikation von Hashverfahren
	Schlüssellose Hashfunktionen (MDCs)
	Vergleich von Sicherheitsanforderungen
	Das Zufallsorakelmodell (ZOM)
	Iterierte Hashfunktionen
	Die Merkle-Damgaard-Konstruktion
	Die MD4-Hashfunktion
	Die MD5-Hashfunktion
	Die SHA-1-Hashfunktion
	Die SHA-2-Familie
	Kryptoanalyse von Hashfunktionen
	Die Sponge-Konstruktion
	SHA-3

	Nachrichten-Authentikationscodes (MACs)
	Sicherheitseigenschaften von MACs
	Verwendung eines MAC zur Versiegelung von Software
	Angriffe gegen symmetrische Hashfunktionen
	Informationstheoretische Sicherheit von MACs
	Erfolgswahrscheinlichkeit für Substitution
	Konstruktion von 2-universalen MACs
	CBC-MACs

