
Vorlesungsskript

Einführung in die Theoretische
Informatik

Wintersemester 2020/21

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

28. Januar 2021

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung 1

2 Reguläre Sprachen 3
2.1 Endliche Automaten . 3
2.2 Nichtdeterministische endliche Automaten 5
2.3 Reguläre Ausdrücke . 8
2.4 Relationalstrukturen . 11

2.4.1 Ordnungs- und Äquivalenzrelationen 14
2.4.2 Abbildungen . 17
2.4.3 Homo- und Isomorphismen 18

2.5 Minimierung von DFAs 19
2.6 Das Pumping-Lemma . 24
2.7 Grammatiken . 25

3 Kontextfreie Sprachen 28
3.1 Chomsky-Normalform . 30
3.2 Das Pumping-Lemma für kontextfreie Sprachen 33
3.3 Der CYK-Algorithmus . 34
3.4 Kellerautomaten . 36
3.5 Deterministisch kontextfreie Sprachen 42

4 Kontextsensitive Sprachen 46
4.1 Kontextsensitive Grammatiken 46
4.2 Turingmaschinen . 46

1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschäftigen wir uns mit mathematischen Modellen
für Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch lösbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.
Schließlich untersuchen wir die Komplexität von algorithmischen Pro-
blemen, indem wir den benötigten Rechenaufwand möglichst gut nach
oben und unten abschätzen. Eine besondere Rolle spielen hierbei die
NP-vollständigen Probleme, deren Komplexität bis heute offen ist.

Themen der Vorlesung
• Welche Rechenmodelle sind für bestimmte Aufgaben adäquat?

(Automatentheorie)
• Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
• Welcher Aufwand ist zur Lösung eines algorithmischen Problems

nötig? (Komplexitätstheorie)
In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
• Wie lassen sich praktisch relevante Problemstellungen möglichst

effizient lösen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik

• Mathematische Grundlagen der Informatik, Beweise führen,
Modellierung (Aussagenlogik, Prädikatenlogik)

Die wichtigsten Lernziele der Vorlesung sind:
• Überblick über die wichtigsten Rechenmodelle (Automaten) wie

z.B.
– endliche Automaten
– Kellerautomaten
– Turingmaschinen
– Registermaschinen
– Schaltkreise

• Charakterisierung der Klassen aller mit diesen Rechenmodellen
lösbaren Probleme durch
– unterschiedliche Typen von formalen Grammatiken
– Abschlusseigenschaften unter geeigneten Sprachoperatio-

nen
– Reduzierbarkeit auf typische Probleme (Vollständigkeit)

• Erkennen von Grenzen der Berechenbarkeit
• Klassifikation wichtiger algorithmischer Probleme nach ihrer

Komplexität
Rechenmaschinen spielen in der Informatik eine zentrale Rolle Es gibt
viele unterschiedliche mathematische Modelle für Rechenmaschinen.
Diese können sich in ihrer Berechnungskraft unterscheiden. Die Tu-
ringmaschine (TM) ist ein universales Berechnungsmodell, da sie alle
anderen bekannten Rechenmodelle simulieren kann. Wir betrachten
zunächst Einschränkungen des TM-Modells, die vielfältige praktische
Anwendungen haben, wie z.B.

• endliche Automaten (DFA, NFA)
• Kellerautomaten (PDA, DPDA) etc.

Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale

1

1 Einleitung

Algorithmus ist der nach Euklid benannte Algorithmus zur Berech-
nung des größten gemeinsamen Teilers zweier natürlicher Zahlen (300
v. Chr.). Von einem Algorithmus wird erwartet, dass er für jede zuläs-
sige Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert. Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Die
(maximale) Anzahl der Rechenschritte bei allen möglichen Eingaben
ist nicht beschränkt, d.h. mit wachsender Eingabelänge kann auch die
Rechenzeit beliebig anwachsen. Die Beschreibung eines Algorithmus
muss jedoch endlich sein. Problemeingaben können Zahlen, Formeln,
Graphen etc. sein. Diese werden über einem Eingabealphabet Σ kodiert.

Definition 1.
a) Ein Alphabet ist eine linear geordnete Menge Σ = {a1, . . . , am}

von m ≥ 1 Zeichen a1 < ⋯ < am.
b) Eine Folge x = x1 . . . xn von n ≥ 0 Zeichen xi ∈ Σ heißt Wort

der Länge n über Σ.
c) Die Länge von x wird mit ∣x∣ und die Menge aller Wörter der

Länge n über Σ wird mit Σn bezeichnet.
d) Die Menge aller Wörter über Σ ist

Σ∗ = ⋃
n≥0

Σn = Σ0 ∪Σ1 ∪Σ2 ∪⋯

e) Das (einzige) Wort der Länge n = 0 ist das leere Wort, welches
wir mit ε bezeichnen, d.h. Σ0 = {ε}.

f) Jede Teilmenge L ⊆ Σ∗ heißt Sprache über dem Alphabet Σ.

Beispiel 2. Sei Σ ein Alphabet. Dann sind ∅,Σ∗,Σ und {ε} Sprachen
über Σ. Die Sprache ∅ enthält keine Wörter und heißt leere Spra-
che. Die Sprache Σ∗ enthält dagegen alle Wörter über Σ, während
die Sprache Σ alle Wörter über Σ der Länge 1 enthält. Die Sprache
{ε} enthält nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singletonsprachen bezeichnet.

Da Sprachen Mengen sind, können wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

∅ ⊆ {ε} ⊆ Σ∗.

Wir können Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen über Σ. Dann ist

• A ∩B = {x ∈ Σ∗ ∣ x ∈ A,x ∈ B} der Schnitt von A und B,
• A ∪B = {x ∈ Σ∗ ∣ x ∈ A ∨ x ∈ B} die Vereinigung von A und
B, und

• A = {x ∈ Σ∗ ∣ x /∈ A} das Komplement von A.
Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.
• Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B ist

AB = {xy ∣ x ∈ A,y ∈ B}.

Ist A = {x} eine Singletonsprache, so schreiben wir für {x}B
auch einfach xB.

• Die n-fache Potenz An einer Sprache A ist induktiv definiert
durch

An =
⎧⎪⎪⎨⎪⎪⎩

{ε}, n = 0,
An−1A, n > 0.

• Die Sternhülle A∗ einer Sprache A ist A∗ = ⋃n≥0An und die
Plushülle A+ von A ist A+ = ⋃n≥1An = AA∗.

2

2 Reguläre Sprachen

2 Reguläre Sprachen

Wir betrachten zunächst Einschränkungen des TM-Modells, die viel-
fältige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Ein endlicher Automat führt
bei einer Eingabe der Länge n
nur n Rechenschritte aus. Um
die gesamte Eingabe lesen zu
können, muss der Automat also
in jedem Schritt ein Zeichen der
Eingabe verarbeiten.

x1 ⋯ xi ⋯ xn

Eingabe-
band

Lesekopf

Steuer-
einheit

Ð→

Definition 4. Ein endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,Σ, δ, q0,E) beschrie-
ben, wobei

• Z ≠ ∅ eine endliche Menge von Zuständen,
• Σ das Eingabealphabet,
• δ ∶ Z ×Σ→ Z die Überführungsfunktion,
• q0 ∈ Z der Startzustand und
• E ⊆ Z die Menge der Endzustände ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x1 . . . xn ∈ Σ∗ es gibt q1, . . . , qn−1 ∈ Z, qn ∈ E mit
δ(qi, xi+1) = qi+1 für i = 0, . . . , n − 1} .

Eine Zustandsfolge q0, q1, . . . , qn heißt Rechnung von M(x1 . . . xn),
falls δ(qi, xi+1) = qi+1 für i = 0, . . . , n − 1 gilt. Sie heißt akzeptie-
rend, falls qn ∈ E ist, und andernfalls verwerfend. Eine von einem
DFA akzeptierte Sprache wird als regulär bezeichnet. Die zugehörige
Sprachklasse ist

REG = {L(M) ∣M ist ein DFA}.

Beispiel 5. Betrachte den DFA M =
(Z,Σ, δ,0,E) mit Z = {0,1,2}, Σ =
{a, b}, E = {1} und der Überführungs-
funktion

δ 0 1 2

a 1 2 0
b 2 0 1

Graphische Darstellung:

2

0

1

a
bb

a

a

b

Der Startzustand wird meist durch einen Pfeil und Endzustände
werden durch einen doppelten Kreis gekennzeichnet.
Bei Eingabe w1 = aba führt M die akzeptierende Rechnung 0,1,0,1
durch, d.h. w1 ∈ L(M). Dagegen verwirft M das Wort w2 = abba
(verwerfende Rechnung: 0,1,0,2,0). ◁
Bezeichne δ̂(q, x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand q gestartet wird. Dann können wir
die Funktion

δ̂ ∶ Z ×Σ∗ → Z

induktiv wie folgt definieren. Für q ∈ Z, x ∈ Σ∗ und a ∈ Σ sei
δ̂(q, ε) = q,

δ̂(q, xa) = δ(δ̂(q, x), a).
Die von M erkannte Sprache lässt sich nun elegant durch

L(M) = {x ∈ Σ∗ ∣ δ̂(q0, x) ∈ E}
beschreiben.

3

2 Reguläre Sprachen 2.1 Endliche Automaten

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache

L(M) = {x ∈ Σ∗ ∣ #a(x) −#b(x) ≡3 1},

wobei #a(x) die Anzahl der Vorkommen des Zeichens a in x bezeich-
net und i ≡m j (in Worten: i ist kongruent zu j modulo m) bedeutet,
dass i − j durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {x ∈ Σ∗ ∣
δ̂(0, x) = 1}, d.h. wir müssen folgende Äquivalenz zeigen:

δ̂(0, x) = 1⇔#a(x) −#b(x) ≡3 1.

Hierzu reicht es, die Kongruenz

δ̂(0, x) ≡3 #a(x) −#b(x).

zu beweisen, wofür wir Induktion über die Länge n von x benutzen.
Induktionsanfang (n = 0): klar, da δ̂(0, ε) = #a(ε) = #b(ε) = 0 ist.
Induktionsschritt (n; n + 1): Sei x = x1 . . . xn+1 gegeben und sei

i = δ̂(0, x1 . . . xn). Nach IV gilt dann

i ≡3 #a(x1 . . . xn) −#b(x1 . . . xn).

Wegen δ(i, a) ≡3 i + 1 und δ(i, b) ≡3 i − 1 folgt daher

δ(i, xn+1) ≡3 i +#a(xn+1) −#b(xn+1)
≡3 #a(x1 . . . xn) −#b(x1 . . . xn) +#a(xn+1) −#b(xn+1)
= #a(x) −#b(x).

und somit

δ̂(0, x) = δ(δ̂(0, x1 . . . xn), xn+1) = δ(i, xn+1) ≡3 #a(x) −#b(x).

∎

Beobachtung 7. Alle Singletonsprachen sind regulär.

Beweis. Für jedes Wort x = x1 . . . xn existiert ein DFA Mx mit
L(Mx) = {x}:

q0 q1 q2
⋯ qn

e

x3 xnx1 x2

a ≠ x1
a ≠ x2 a ≠ x3

a ∈ Σ

a ∈ Σ

Formal ist Mx also das Tupel (Z,Σ, δ, q0,E) mit Z = {q0, . . . , qn, e},
E = {qn} und der Überführungsfunktion

δ(q, aj) =
⎧⎪⎪⎨⎪⎪⎩

qi+1, q = qi für ein i mit 0 ≤ i ≤ n − 1 und aj = xi+1

e, sonst.

∎

Als nächstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. Ein k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen L1, . . . , Lk auf eine Sprache op(L1, . . . , Lk) abbildet.

Beispiel 9. Der Schnittoperator ∩ bildet zwei Sprachen L1 und L2
auf die Sprache L1 ∩L2 ab. ◁

Definition 10. Eine Sprachklasse K heißt unter op abgeschlossen,
wenn gilt:

L1, . . . , Lk ∈ K ⇒ op(L1, . . . , Lk) ∈ K.

Der Abschluss von K unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K′, die K enthält und unter op abgeschlossen ist.

4

2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

Beispiel 11. Der Abschluss der Singletonsprachen unter ∩ besteht
aus allen Singletonsprachen und der leeren Sprache.
Der Abschluss der Singletonsprachen unter ∪ besteht aus allen nicht-
leeren endlichen Sprachen.
Der Abschluss der Singletonsprachen unter ∩, ∪ und Komplement
besteht aus allen endlichen und co-endlichen Sprachen.∗ ◁

Definition 12. Für eine Sprachklasse C bezeichne co-C die Klasse
{L̄ ∣ L ∈ C} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L1, L2 ∈ REG sind auch die Sprachen L1 =
Σ∗ ∖L1, L1 ∩L2 und L1 ∪L2 regulär.

Beweis. Sind Mi = (Zi,Σ, δi, q0,Ei), i = 1,2, DFAs mit L(Mi) = Li,
so akzeptiert der DFA

M1 = (Z1,Σ, δ1, q0, Z1 ∖E1)

das Komplement L1 von L1. Der Schnitt L1 ∩L2 von L1 und L2 wird
dagegen von dem DFA

M = (Z1 ×Z2,Σ, δ, (q0, q0),E1 ×E2)

mit
δ((q, p), a) = (δ1(q, a), δ2(p, a))

akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen
L1 ∪ L2 = (L1 ∩L2) ist dann aber auch die Vereinigung von L1 und
L2 regulär. (Wie sieht der zugehörige DFA aus?) ∎

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulär sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regulären Sprachen erfasst.
Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhülle abgeschlossen ist. Im
übernächsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt und
Sternhülle charakterisierbar (und somit auch unter diesen Operationen
abgeschlossen) ist.
Beim Versuch, einen endlichen Automaten für das Produkt
L(M1)L(M2) zweier regulärer Sprachen zu konstruieren, stößt man
auf die Schwierigkeit, den richtigen Zeitpunkt für den Übergang von
(der Simulation von) M1 zu M2 zu finden. Unter Verwendung eines
nichtdeterministischen endlichen Automaten lässt sich dieses Problem
jedoch leicht lösen, da dieser den richtigen Zeitpunkt „erraten“ kann.
Im nächsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur reguläre Sprachen erkennen
können.

2.2 Nichtdeterministische endliche Automaten

Definition 14. Ein nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,Σ,∆,Q0,E) ist ähnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustände (zusammengefasst in der Menge Q0 ⊆ Z) haben
kann und seine Überführungsfunktion die Form

∆ ∶ Z ×Σ→ P(Z)
∗Eine Sprache L ⊆ Σ∗ ist co-endlich, wenn ihr Komplement L̄ endlich ist.

5

2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2Z bezeichnet. Die
von N akzeptierte Sprache ist

L(N) = {x1 . . . xn ∈ Σ∗ ∃ q0 ∈ Q0, q1, . . . , qn−1 ∈ Z, qn ∈ E ∶
qi+1 ∈ ∆(qi, xi+1) für i = 0, . . . , n − 1 } .

Eine Zustandsfolge q0, q1, . . . , qn heißt Rechnung von N(x1 . . . xn),
falls qi+1 ∈ ∆(qi, xi+1) für i = 0, . . . , n − 1 gilt.

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausführen. Ein Wort x ge-
hört genau dann zu L(N), wenn N(x) mindestens eine akzeptierende
Rechnung hat.
Im Gegensatz zu einem DFA, dessen Überführungsfunktion auf der
gesamten Menge Z ×Σ definiert ist, kann ein NFA „stecken bleiben“.
Das ist dann der Fall, wenn er in einen Zustand q gelangt, in dem das
nächste Eingabezeichen xi wegen ∆(q, xi) = ∅ nicht gelesen werden
kann.
Beispiel 15. Betrachte den NFA N = (Z,Σ,∆,Q0,E) mit Zustands-
menge Z = {p, q, r, s}, Eingabealphabet Σ = {0,1,2}, Start- und End-
zustandsmenge Q0 = {p} und E = {s} sowie der Überführungsfunktion

∆ p q r s

0 {p, q} ∅ ∅ ∅
1 {p} {r} ∅ ∅
2 {p} ∅ {s} ∅

Graphische Darstellung:

p q r s0 1 2

0,1,2

Offensichtlich akzeptiert N die Sprache L(N) = {x012 ∣ x ∈ Σ∗} aller
Wörter, die mit dem Suffix 012 enden. ◁
Beobachtung 16. Sind Ni = (Zi,Σ,∆i,Qi,Ei) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(N2) und L(N1)∗ von einem NFA
erkannt.

Beweis. Sei Li = L(Ni). Wir können Z1 ∩ Z2 = ∅ annehmen. Dann
akzeptiert der NFA

N = (Z1 ∪Z2,Σ,∆3,Q1,E)

mit

∆3(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), sonst
und

E =
⎧⎪⎪⎨⎪⎪⎩

E2, Q2 ∩E2 = ∅
E1 ∪E2, sonst

die Sprache L1L2.
L1L2 ⊆ L(N): Seien x = x1⋯xk ∈ L1, y = y1⋯yl ∈ L2 und seien q0, . . . , qk
und p0, . . . , pl akzeptierende Rechnungen von N1(x) und N2(y). Dann
ist q0, . . . , qk, p1, . . . , pl eine akz. Rechnung von N(xy), da q0 ∈ Q1 und
pl ∈ E2 ist, und

• im Fall l ≥ 1 wegen qk ∈ E1, p0 ∈ Q2 und p1 ∈ ∆2(p0, y1) zudem
p1 ∈ ∆(qk, y1) und

• im Fall l = 0 wegen qk ∈ E1 und pl ∈ Q2 ∩E2 zudem qk ∈ E ist.
L(N) ⊆ L1L2: Sei x = x1⋯xn ∈ L(N) und sei q0, . . . , qn eine akz.
Rechnung von N(x). Dann gilt q0 ∈ Q1, qn ∈ E, q0, . . . , qi ∈ Z1 und
qi+1, . . . , qn ∈ Z2 für ein i ≤ n. Wir zeigen, dass ein q ∈ Q2 existiert, so
dass q0, . . . , qi eine akz. Rechnung von N1(x1⋯xi) und q, qi+1, . . . , qn
eine akz. Rechnung von N2(xi+1⋯xn) ist.

• Im Fall i < n impliziert der Übergang qi+1 ∈ ∆(qi, xi+1), dass
qi ∈ E1 (also q0, . . . , qi eine akz. Rechnung von N1(x1⋯xi)) und
qi+1 ∈ ∆2(q, xi+1) für ein q ∈ Q2 ist. Zudem ist qn ∈ E ∩Z2 = E2
(also q, qi+1, . . . , qn eine akz. Rechnung von N2(xi+1⋯xn)).

• Im Fall i = n ist qn ∈ E ∩Z1, was qn ∈ E1 und Q2 ∩E2 ≠ ∅ impli-
ziert (also ist q0, . . . , qn eine akz. Rechnung von N1(x1⋯xn) und
es gibt ein q ∈ Q2, so dass q eine akz. Rechnung von N2(ε) ist).

6

2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

Ganz ähnlich lässt sich zeigen, dass der NFA

N∗ = (Z1 ∪ {qneu},Σ,∆4,Q1 ∪ {qneu},E1 ∪ {qneu})

mit

∆4(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖E1,

∆1(p, a) ∪ ⋃q∈Q1 ∆1(q, a), p ∈ E1,

∅, sonst
die Sprache L∗1 akzeptiert. ∎

Satz 17 (Rabin und Scott).
REG = {L(N) ∣ N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Für die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,Σ,∆,Q0,E) einen DFA M =
(P(Z),Σ, δ,Q0,E′) mit L(M) = L(N). Wir definieren die Überfüh-
rungsfunktion δ ∶ P(Z) ×Σ→ P(Z) von M mittels

δ(Q,a) = ⋃
q∈Q

∆(q, a).

Die Menge δ(Q,a) enthält also alle Zustände, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand q ∈ Q das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand Q die Information speichert,
in welchen Zuständen sich N momentan befinden könnte. Für die
Erweiterung δ̂ ∶ P(Z) ×Σ∗ → P(Z) von δ (siehe Seite 3) können wir
nun folgende Behauptung zeigen.
Behauptung. δ̂(Q0, x) enthält alle Zustände, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.
Wir beweisen die Behauptung induktiv über die Länge n von x.
Induktionsanfang (n = 0): klar, da δ̂(Q0, ε) = Q0 ist.

Induktionsschritt (n − 1 ; n): Sei x = x1 . . . xn gegeben. Nach In-
duktionsvoraussetzung enthält

Qn−1 = δ̂(Q0, x1 . . . xn−1)

alle Zustände, die N(x) in genau n− 1 Schritten erreichen kann.
Wegen

δ̂(Q0, x) = δ(Qn−1, xn) = ⋃
q∈Qn−1

∆(q, xn)

enthält dann aber δ̂(Q0, x) alle Zustände, die N(x) in genau n
Schritten erreichen kann.

Deklarieren wir nun diejenigen Teilmengen Q ⊆ Z, die mindestens
einen Endzustand von N enthalten, als Endzustände des Potenz-
mengenautomaten M , d.h.

E′ = {Q ⊆ Z ∣ Q ∩E /= ∅},

so folgt für alle Wörter x ∈ Σ∗:

x ∈ L(N) ⇔ N(x) kann in genau ∣x∣ Schritten einen Endzustand
erreichen

⇔ δ̂(Q0, x) ∩E /= ∅
⇔ δ̂(Q0, x) ∈ E′

⇔ x ∈ L(M).

∎

Beispiel 18. Für den NFA N = (Z,Σ,∆,Q0,E) aus Beispiel 15

p q r s0 1 2

0,1,2

ergibt die Konstruktion des vorigen Satzes den folgenden DFAM (nach
Entfernen aller vom Startzustand Q0 = {p} aus nicht erreichbaren
Zustände):

7

2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

δ 0 1 2

Q0 = {p} {p, q} {p} {p}
Q1 = {p, q} {p, q} {p, r} {p}
Q2 = {p, r} {p, q} {p} {p, s}
Q3 = {p, s} {p, q} {p} {p}

{p}

1,2

{p, q}

0

{p, r} {p, s}

0 1
2

1 0

1,2

0
2

◁

Im obigen Beispiel wurden für die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2∥Z∥ = 16 Zustände benötigt, da die
übrigen 12 Zustände in P(Z) nicht vom Startzustand Q0 = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 2∥Z∥ Zustände
in P(Z) für die Konstruktion des Potenzmengenautomaten benötigt
werden (siehe Übungen).
Korollar 19. Die Klasse REG der regulären Sprachen ist unter fol-
genden Operationen abgeschlossen:

• Komplement,
• Schnitt,
• Vereinigung,

• Produkt,
• Sternhülle.

2.3 Reguläre Ausdrücke

Wir haben uns im letzten Abschnitt davon überzeugt, dass auch NFAs
nur reguläre Sprachen erkennen können:

REG = {L(M) ∣M ist ein DFA} = {L(N) ∣ N ist ein NFA}.

In diesem Abschnitt werden wir eine weitere Charakterisierung der
regulären Sprachen kennenlernen:

REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhülle aus der leeren Menge und den Singleton-
sprachen bilden lassen.

Tatsächlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der regulären Ausdrücke γ (über ei-
nem Alphabet Σ) und die durch γ dargestellte Sprache L(γ) sind
induktiv wie folgt definiert. Die Symbole ∅, ε und a (a ∈ Σ) sind
reguläre Ausdrücke, die

• die leere Sprache L(∅) = ∅,
• die Sprache L(ε) = {ε} und
• für jedes Zeichen a ∈ Σ die Sprache L(a) = {a}

beschreiben. Sind α und β reguläre Ausdrücke, die die Sprachen L(α)
und L(β) beschreiben, so sind auch αβ, (α∣β) und (α)∗ reguläre Aus-
drücke, die die Sprachen

• L(αβ) = L(α)L(β),
• L(α∣β) = L(α) ∪L(β) und
• L((α)∗) = L(α)∗

beschreiben.

Bemerkung 21.
• Um Klammern zu sparen, definieren wir folgende Präzedenz-
ordnung: Der Sternoperator ∗ bindet stärker als der Produktope-
rator und dieser wiederum stärker als der Vereinigungsoperator.
Für ((a∣b(c)∗)∣d) können wir also kurz a∣bc∗∣d schreiben.

• Da der reguläre Ausdruck γγ∗ die Sprache L(γ)+ beschreibt,
verwenden wir γ+ als Abkürzung für den Ausdruck γγ∗.

8

2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Beispiel 22. Die regulären Ausdrücke ε∗, ∅∗, (0∣1)∗00 und ε0∣∅1∗
beschreiben folgende Sprachen:

γ ε∗ ∅∗ (0∣1)∗00 ε0∣∅1∗

L(γ) {ε}∗ = {ε} ∅∗ = {ε} {x00 ∣ x ∈ {0,1}∗} {0}
◁

Beispiel 23. Betrachte nebenstehenden DFA M .
Um für die von M erkannte Sprache

L(M) = {x ∈ {a, b}∗ ∣ #a(x) −#b(x) ≡3 1}

einen regulären Ausdruck zu finden, betrachten
wir zunächst die Sprache L0,0 aller Wörter x, die
den DFA M ausgehend vom Zustand 0 in den

2

0

1

a
bb

a

a

b

Zustand 0 überführen. Weiter sei L≠0
0,0 die Sprache aller solchen Wörter

w ∈ L0,0, die den Zustand 0 nur zu Beginn und am Ende (aber nicht
zwischendurch) besuchen. Dann setzt sich jedes x ∈ L0,0 aus beliebig
vielen Teilwörtern w1, . . . ,wk ∈ L≠0

0,0 zusammen, d.h. L0,0 = (L≠0
0,0)∗.

Jedes w ≠ ε in L≠0
0,0 beginnt entweder mit einem a (Übergang von 0

nach 1) oder mit einem b (Übergang von 0 nach 2). Im ersten Fall
folgt eine beliebige Anzahl von Teilwörtern ab (Wechsel zwischen 1
und 2), an die sich entweder das Suffix aa (Rückkehr von 1 nach 0
über 2) oder das Suffix b (direkte Rückkehr von 1 nach 0) anschließt.
Analog folgt im zweiten Fall eine beliebige Anzahl von Teilwörtern ba
(Wechsel zwischen 2 und 1), an die sich entweder das Suffix a (direkte
Rückkehr von 2 nach 0) oder das Suffix bb (Rückkehr von 2 nach 0
über 1) anschließt. Daher lässt sich L≠0

0,0 durch den regulären Ausdruck

γ≠0
0,0 = a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb) ∣ ε

beschreiben. Eine ähnliche Überlegung zeigt, dass die Sprache L≠0
0,1 aller

Wörter, die M ausgehend von 0 in den Zustand 1 überführen, ohne

dass zwischendurch der Zustand 0 nochmals besucht wird, durch den
regulären Ausdruck γ≠0

0,1 = (a∣bb)(ab)∗ beschreibbar ist. Somit erhalten
wir für L(M) den regulären Ausdruck

γ0,1 = (a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb))∗(a∣bb)(ab)∗.
◁

Satz 24. {L(γ) ∣ γ ist ein regulärer Ausdruck} = REG.

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdrücke ∅, ε und a, a ∈ Σ∗, nur reguläre Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle
abgeschlossen ist (siehe Beobachtungen 13 und 16).
Für die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
lären Ausdruck γ mit L(γ) = L(M). Sei also M = (Z,Σ, δ, q0,E) ein
DFA, wobei wir annehmen können, dass Z = {1, . . . ,m} und q0 = 1 ist.
Dann lässt sich L(M) als Vereinigung

L(M) = ⋃
q∈E

L1,q

von Sprachen der Form

Lp,q = {x ∈ Σ∗ ∣ δ̂(p, x) = q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen Lp,q durch
reguläre Ausdrücke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

Lrp,q = {x1 . . . xn ∈ Σ∗ δ̂(p, x1 . . . xn) = q und für
i = 1, . . . , n − 1 gilt δ̂(p, x1 . . . xi) ≤ r

} .

Wegen Lp,q = Lmp,q reicht es, reguläre Ausdrücke γrp,q für die Sprachen
Lrp,q anzugeben. Im Fall r = 0 enthält

L0
p,q =

⎧⎪⎪⎨⎪⎪⎩

{a ∈ Σ ∣ δ(p, a) = q} ∪ {ε}, p = q,
{a ∈ Σ ∣ δ(p, a) = q}, sonst

9

2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen regulären Ausdruck γ0

p,q beschreibbar. Wegen

Lr+1
p,q = Lrp,q ∪Lrp,r+1(Lrr+1,r+1)∗Lrr+1,q

lassen sich aus den regulären Ausdrücken γrp,q für die Sprachen Lrp,q
leicht reguläre Ausdrücke für die Sprachen Lr+1

p,q gewinnen:

γr+1
p,q = γrp,q ∣γrp,r+1(γrr+1,r+1)∗γrr+1,q.

∎

Beispiel 25. Betrachte den DFA

1

b

2

b

a

a

Da M insgesamt m = 2 Zustände und nur den Endzustand 2 besitzt,
ist

L(M) = ⋃
q∈E

L1,q = L1,2 = L2
1,2 = L(γ2

1,2).

Um γ2
1,2 zu berechnen, benutzen wir die Rekursionsformel

γr+1
p,q = γrp,q ∣γrp,r+1(γrr+1,r+1)∗γrr+1,q

und erhalten

γ2
1,2 = γ1

1,2∣γ1
1,2(γ1

2,2)∗γ1
2,2,

γ1
1,2 = γ0

1,2∣γ0
1,1(γ0

1,1)∗γ0
1,2,

γ1
2,2 = γ0

2,2∣γ0
2,1(γ0

1,1)∗γ0
1,2.

Um den regulären Ausdruck γ2
1,2 für L(M) zu erhalten, genügt es also,

die regulären Ausdrücke γ0
1,1, γ0

1,2, γ0
2,1, γ0

2,2, γ1
1,2 und γ1

2,2 zu berechnen:

r
p, q

1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b

1 -
a∣(ε∣b)(ε∣b)∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b∗a
-

(ε∣b)∣a(ε∣b)∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ε∣b∣ab∗a

2 -
b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
´¹¹¹¸¹¹¹¶

b∗a(b∣ab∗a)∗
- -

◁

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen äqui-
valent:

• L ist regulär (d.h. es gibt einen DFA M mit L = L(M)),
• es gibt einen NFA N mit L = L(N),
• es gibt einen regulären Ausdruck γ mit L = L(γ),
• L lässt sich mit den Operationen Vereinigung, Produkt und

Sternhülle aus endlichen Sprachen gewinnen,
• L lässt sich mit den Operationen ∩, ∪, Komplement, Produkt

und Sternhülle aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, nämlich durch reguläre Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Äquivalenzrelationen) eine wichtige Rolle.

10

2 Reguläre Sprachen 2.4 Relationalstrukturen

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, Ri eine ki-stellige Relation auf A, d.h.
Ri ⊆ Aki für i = 1, . . . , n. Dann heißt (A;R1, . . . ,Rn) Relational-
struktur. Die Menge A heißt Grundmenge, Trägermenge oder
Individuenbereich der Relationalstruktur.
Wir werden hier hauptsächlich den Fall n = 1, k1 = 2, also (A,R) mit
R ⊆ A ×A betrachten. Man nennt dann R eine (binäre) Relation
auf A. Oft wird für (a, b) ∈ R auch die Infix-Schreibweise aRb
benutzt.
Beispiel 27.

• (F,M) mit F = {f ∣ f ist Fluss in Europa} und
M = {(f, g) ∈ F × F ∣ f mündet in g}.

• (U,B) mit U = {x ∣ x ist Berliner} und
B = {(x, y) ∈ U ×U ∣ x ist Bruder von y}.

• (P(M),⊆), wobei P(M) die Potenzmenge einer beliebigen Men-
ge M und ⊆ die Inklusionsbeziehung auf den Teilmengen von M
ist.

• (A, IdA), wobei IdA = {(x,x) ∣ x ∈ A} die Identität auf A ist.
• (R,≤).
• (Z, ∣), wobei ∣ die ”teilt”-Relation bezeichnet (d.h. a∣b, falls ein
c ∈ Z mit b = ac existiert). ◁

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt,Vereinigung,Komplement undDifferenz
definiert. Seien R und S Relationen auf A, dann ist

R ∩ S = {(x, y) ∈ A ×A ∣ xRy ∧ xSy},
R ∪ S = {(x, y) ∈ A ×A ∣ xRy ∨ xSy},
R − S = {(x, y) ∈ A ×A ∣ xRy ∧ ¬xSy},
R = (A ×A) −R.

Sei allgemeinerM⊆ P(A ×A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt überM und die Vereinigung über
M folgende Relationen:

⋂M = ⋂
R∈M

R = {(x, y) ∣ ∀R ∈ M ∶ xRy},

⋃M = ⋃
R∈M

R = {(x, y) ∣ ∃R ∈ M ∶ xRy}.

Die transponierte (konverse) Relation zu R ist

RT = {(y, x) ∣ xRy}.

RT wird oft auch mit R−1 bezeichnet. Z.B. ist (R,≤T) = (R,≥).
Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

R ○ S = {(x, z) ∈ A ×A ∣ ∃y ∈ A ∶ xRy ∧ ySz}.

Beispiel 28. Ist B die Relation ”ist Bruder von”, V ”ist Vater von”,
M ”ist Mutter von” und E = V ∪M ”ist Elternteil von”, so ist B ○E
die Onkel-Relation. ◁

Übliche Bezeichnungen für das Relationenprodukt sind auch R ;S und
R ⋅ S oder einfach RS. Das n-fache Relationenprodukt R ○ ⋯ ○R von
R wird mit Rn bezeichnet. Dabei ist R0 = Id.
Vorsicht: Das n-fache Relationenprodukt Rn von R sollte nicht mit
dem n-fachen kartesischen Produkt R ×⋯ ×R der Menge R verwech-
selt werden. Wir vereinbaren, dass Rn das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

11

2 Reguläre Sprachen 2.4 Relationalstrukturen

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heißt R
reflexiv, falls ∀x ∈ A ∶ xRx (also IdA ⊆ R)
irreflexiv, falls ∀x ∈ A ∶ ¬xRx (also IdA ⊆ R)
symmetrisch, falls ∀x, y ∈ A ∶ xRy⇒ yRx (also R ⊆ RT)
asymmetrisch, falls ∀x, y ∈ A ∶ xRy⇒ ¬yRx (also R ⊆ RT)
antisymmetrisch, falls ∀x, y ∈ A ∶ xRy ∧ yRx⇒ x = y

(also R ∩RT ⊆ Id)
konnex, falls ∀x, y ∈ A ∶ xRy ∨ yRx

(also A ×A ⊆ R ∪RT)
semikonnex, falls ∀x, y ∈ A ∶ x ≠ y⇒ xRy ∨ yRx

(also Id ⊆ R ∪RT)
transitiv, falls ∀x, y, z ∈ A ∶ xRy ∧ yRz ⇒ xRz

(also R2 ⊆ R)
gilt.
Die nachfolgende Tabelle gibt einen Überblick über die wichtigsten
Relationalstrukturen.

refl. sym. trans. antisym. asym. konnex semikon.

Äquivalenzrelation ✓ ✓ ✓

(Halb-)Ordnung ✓ ✓ ✓

Striktordnung ✓ ✓

lineare Ordnung ✓ ✓ ✓

lin. Striktord. ✓ ✓ ✓

Quasiordnung ✓ ✓

In der Tabelle sind nur die definierenden Eigenschaften durch ein ”✓”
gekennzeichnet. Das schließt nicht aus, dass gleichzeitig auch noch
weitere Eigenschaften vorliegen können.

Beispiel 29.

• Die Relation ”ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.

• Die Relation ”ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Äquivalenzrelation.

• (R,<) ist irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnung.

• (R,≤) und (P(M),⊆) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

• (R,≤) ist auch konnex und somit eine lineare Ordnung.
• (P(M),⊆) ist zwar im Fall ∥M∥ ≤ 1 konnex, aber im Fall

∥M∥ ≥ 2 weder semikonnex noch konnex. ◁

Graphische Darstellung von Relationen

Eine RelationR auf einer endlichen MengeA kann durch einen gerich-
teten Graphen (oderDigraphen) G = (V,E) mitKnotenmenge
V = A und Kantenmenge E = R veranschaulicht werden. Hierzu
stellen wir jedes Element x ∈ A als einen Knoten dar und verbin-
den jedes Knotenpaar (x, y) ∈ R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heißen benachbart oder
adjazent.

Beispiel 30. Für die Relation (A,R) mit A = {a, b, c, d} und
R = {(b, c), (b, d), (c, a), (c, d), (d, d)} erhalten wir folgende graphische
Darstellung.

a b

dc

◁

12

2 Reguläre Sprachen 2.4 Relationalstrukturen

Der Ausgangsgrad eines Knotens x ∈ V ist deg+(x) = ∥R[x]∥, wobei
R[x] = {y ∈ V ∣ xRy} die Menge der Nachfolger von x ist. Entspre-
chend ist deg−(x) = ∥{y ∈ V ∣ yRx}∥ der Eingangsgrad von x und
R−1[x] = {y ∈ V ∣ yRx} die Menge der Vorgänger von x. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(x) = deg−(x) = deg+(x) der Grad von x und R[x] = R−1[x]
heißt die Nachbarschaft von x. Ist G zudem schleifenfrei (d.h. R
ist irreflexiv), erhalten wir einen (ungerichteten) Graphen. Eine
irreflexive und symmetrische Relation R wird meist als Menge der
ungeordneten Paare E = {{a, b} ∣ aRb} notiert.

Darstellung durch Adjazenzmatrizen

Eine Relation R auf einer endlichen (geordneten) Menge A =
{a1, . . . , an} lässt sich durch eine boolesche n × n-Matrix MR = (mij)
mit

mij ∶= { 1, aiRaj,
0, sonst

darstellen. Beispielsweise hat die Relation

R = {(b, c), (b, d), (c, a), (c, d), (d, d)}

auf der Menge A = {a, b, c, d} die Matrixdarstellung

MR =

⎛
⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1 1
1 0 0 1
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

.

Darstellung durch Adjazenzlisten

Eine weitere Möglichkeit besteht darin, eine endliche Relation R in
Form einer Tabelle darzustellen, die jedem Element x ∈ A seine Nach-
folger in Form einer Liste zuordnet. Für obige Relation R erhalten

wir folgende Listen:
x: R[x]

a: -
b: c, d

c: a, d

d: d

Sind MR = (rij) und MS = (sij) boolesche n × n-Matrizen für R und
S, so erhalten wir für T = R ○ S die Matrix MT = (tij) mit

tij = ⋁
k=1,...,n

(rik ∧ skj)

Die Nachfolgermenge T [x] von x bzgl. der Relation T = R○S berechnet
sich zu

T [x] = ⋃{S[y] ∣ y ∈ R[x]} = ⋃
y∈R[x]

S[y].

Beispiel 31. Betrachte die Relationen R = {(a, a), (a, c), (c, b), (c, d)}
und S = {(a, b), (d, a), (d, c)} auf der Menge A = {a, b, c, d}.

Relation R S R ○ S S ○R

Digraph
a b

dc

a b

dc

a b

dc

a b

dc

Adjazenz-
matrix

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0

0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

Adjazenz-
liste

a: a, c
b: -
c: b, d
d: -

a: b
b: -
c: -
d: a, c

a: b
b: -
c: a, c
d: -

a: -
b: -
c: -
d: a, b, c, d

◁

13

2 Reguläre Sprachen 2.4 Relationalstrukturen

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht R ○ S = S ○R.
Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine möglichst kleine Modifikation in eine Relation R′ mit
vorgegebenen Eigenschaften zu überführen. Will man dabei alle in R
enthaltenen Paare beibehalten, dann sollte R′ aus R durch Hinzufügen
möglichst weniger Paare hervorgehen.
Es lässt sich leicht nachprüfen, dass der Schnitt über eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R′, die R enthält.

Definition 32. Sei R eine Relation auf A.
• Die reflexive Hülle von R ist

hrefl(R) = ⋂{S ⊆ A ×A ∣ S ist reflexiv und R ⊆ S}.

• Die symmetrische Hülle von R ist

hsym(R) = ⋂{S ⊆ A ×A ∣ S ist symmetrisch und R ⊆ S}.

• Die transitive Hülle von R ist

R+ = ⋂{S ⊆ A ×A ∣ S ist transitiv und R ⊆ S}.

• Die reflexiv-transitive Hülle von R ist

R∗ = ⋂{S ⊆ A ×A ∣ S ist reflexiv, transitiv und R ⊆ S}.

• Die Äquivalenzhülle von R ist

häq(R) = ⋂{S ∣ S ist eine Äquivalenzrelation auf A und R ⊆ S}.

Satz 33. Sei R eine Relation auf A.

(i) hrefl(R) = R ∪ IdA,
(ii) hsym(R) = R ∪RT ,
(iii) R+ = ⋃n≥1Rn,
(iv) R∗ = ⋃n≥0Rn,
(v) häq(R) = (R ∪RT)∗.

Beweis. Siehe Übungen. ∎

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a, b) genau
dann in der reflexiv-transitiven Hülle R∗ von R ist, wenn es ein n ≥ 0
gibt mit aRnb, d.h. es gibt Elemente x0, . . . , xn ∈ A mit x0 = a, xn = b
und

x0Rx1Rx2 . . . xn−1Rxn.

In der Graphentheorie nennt man x0, . . . , xn einen Weg der Länge
n von a nach b. Ein Digraph G heißt zusammenhängend, wenn es
für je zwei Knoten a und b einen Weg von a nach b oder einen Weg
von b nach a gibt. G heißt stark zusammenhängend, wenn es von
jedem Knoten a einen Weg zu jedem Knoten b in G gibt.

2.4.1 Ordnungs- und Äquivalenzrelationen

Wir betrachten zunächst Äquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.
Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E[x]
die von x repräsentierte Äquivalenzklasse und bezeichnet sie
mit [x]E oder einfach mit [x]. Eine Menge S ⊆ A heißt Repräsen-
tantensystem, falls sie genau ein Element aus jeder Äquivalenzklasse
enthält.

Beispiel 34.
• Auf der Menge aller Geraden im R2 die Parallelität. Offen-

bar bilden alle Geraden mit derselben Richtung (oder Steigung)

14

2 Reguläre Sprachen 2.4 Relationalstrukturen

jeweils eine Äquivalenzklasse. Daher wird ein Repräsentanten-
system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

• Auf der Menge aller Menschen ”im gleichen Jahr geboren wie”.
Hier bildet jeder Jahrgang eine Äquivalenzklasse.

• Auf Z die Relation ”gleicher Rest bei Division durch m”. Die
zugehörigen Äquivalenzklassen sind

[r] = {a ∈ Z ∣ a ≡m r}, r = 0,1, . . . ,m − 1.

Ein Repräsentantensystem wird beispielsweise durch die Reste
0,1, . . . ,m − 1 gebildet. ◁

Die (bzgl. Inklusion) kleinste Äquivalenzrelation auf A ist die Identi-
tät IdA, die größte die Allrelation A×A. Die Äquivalenzklassen der
Identität enthalten jeweils nur ein Element, d.h. [x]IdA

= {x} für alle
x ∈ A, und die Allrelation erzeugt nur eine Äquivalenzklasse, nämlich
[x]A×A = A für jedes x ∈ A. Die Identität IdA hat nur ein Repräsen-
tantensystem, nämlich A. Dagegen kann jede Singletonmenge {x} mit
x ∈ A als Repräsentantensystem für die Allrelation A ×A fungieren.

Definition 35. Eine Familie {Bi ∣ i ∈ I} von nichtleeren Teilmengen
Bi ⊆ A heißt Partition der Menge A, falls gilt:

a) die Mengen Bi überdecken A, d.h. A = ⋃i∈I Bi und
b) die Mengen Bi sind paarweise disjunkt, d.h. für je zwei ver-

schiedene Mengen Bi /= Bj gilt Bi ∩Bj = ∅.

Wie der nächste Satz zeigt, bilden die Äquivalenzklassen einer Äqui-
valenzrelation E eine Partition {[x] ∣ x ∈ A} von A. Diese Partition
wird auch Quotienten- oder Faktormenge genannt und mit A/E
bezeichnet. Die Anzahl der Äquivalenzklassen von E wird auch als
der Index von E bezeichnet.
Für zwei Äquivalenzrelationen E ⊆ E′ sind auch die Äquivalenzklas-
sen [x]E von E in den Klassen [x]E′ von E′ enthalten. Folglich ist

jede Äquivalenzklasse von E′ die Vereinigung von (evtl. mehreren)
Äquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als E′. Demnach ist die Identität die feinste und die Allrelation die
gröbste Äquivalenzrelation.
Satz 36. Sei E eine Relation auf A. Dann sind folgende Aussagen
äquivalent.
(i) E ist eine Äquivalenzrelation auf A.
(ii) Es gibt eine Partition {Bi ∣ i ∈ I} von A mit

xEy⇔∃i ∈ I ∶ x, y ∈ Bi.

Beweis.
(i) ⇒ (ii) Sei E eine Äquivalenzrelation auf A. Wir zeigen, dass

dann {E[x] ∣ x ∈ A} eine Partition von A mit der gewünschten
Zusatzeigenschaft bildet:
Da E reflexiv ist, gilt xEx und somit x ∈ E[x], d.h. A =
⋃x∈AE[x].
Ist E[x] ∩E[y] ≠ ∅ und u ∈ E[x] ∩E[y], so folgt E[x] = E[y]:

z ∈ E[x] ⇔ xEz
xEu⇔uEz

yEu
⇔yEz⇔ z ∈ E[y]

Zudem gilt

∃z ∈ A ∶ x, y ∈ E[z] ⇔ ∃z ∶ z ∈ E[x] ∩E[y]

⇔ E[x] = E[y]
y∈E[y]
⇔ xEy

(ii) ⇒ (i) Existiert umgekehrt eine Partition {Bi ∣ i ∈ I} von A mit
xEy⇔∃i ∈ I ∶ x, y ∈ Bi, so ist E

• reflexiv, da zu jedem x ∈ A eine Menge Bi mit x ∈ Bi

existiert,
• symmetrisch, da aus x, y ∈ Bi auch y, x ∈ Bi folgt, und
• transitiv, da aus x, y ∈ Bi und y, z ∈ Bj wegen y ∈ Bi ∩Bj

die Gleichheit Bi = Bj und somit x, z ∈ Bi folgt. ∎

15

2 Reguläre Sprachen 2.4 Relationalstrukturen

Als nächstes betrachten wir Ordnungsrelationen, die durch die drei
Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 37.
• (P(M),⊆), (Z,≤), (R,≤) und (N, ∣) sind Ordnungen. (Z, ∣) ist

keine Ordnung, aber eine Quasiordnung.
• Für jede Menge M ist die relationale Struktur (P(M);⊆) eine

Ordnung. Diese ist nur im Fall ∥M∥ ≤ 1 linear.
• Ist R eine Relation auf A und B ⊆ A, so ist RB = R ∩ (B ×B)

die Einschränkung von R auf B.
• Einschränkungen von (linearen) Ordnungen sind ebenfalls (li-

neare) Ordnungen.
• Beispielsweise ist (Q,≤) die Einschränkung von (R,≤) auf Q

und (N, ∣) die Einschränkung von (Z, ∣) auf N. ◁

Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme dar-
stellen. Sei ≤ eine Ordnung auf A und sei < die Relation ≤ ∩ IdA. Um
die Ordnung ≤ in einem Hasse-Diagramm darzustellen, wird nur
der Graph der Relation

⋖= < ∖<2, d.h. x ⋖ y ⇔ x < y ∧ ¬∃z ∶ x < z < y

gezeichnet. Für x ⋖ y sagt man auch, y ist oberer Nachbar von x.
Weiterhin wird im Fall x ⋖ y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 38.

Das Hasse-Diagramm rechts zeigt
die Inklusionsrelation auf der Po-
tenzmenge P(M) von M = {a, b, c}.

∅

{b}

{a, b} {a, c}

{a}

{b, c}

{c}

M

{{a},{b},{c}}

{{a, b},{c}} {{a, c},{b}}
{{a},{b, c}}

{M}

Das Hasse-Diagramm
links zeigt die feiner-
Relation auf der Men-
ge aller Partitionen
von M = {a, b, c}.

Schränken wir die ”teilt”-Relation
auf die Menge {1, 2, . . . , 10} ein, so
erhalten wir nebenstehendes Hasse-
Diagramm.

1

2 3 5 7

4 6 9 10

8

◁

Definition 39. Sei ≤ eine Ordnung auf A und sei b ein Element in
einer Teilmenge B ⊆ A.

• b heißt kleinstes Element oder Minimum von B (kurz
b = minB), falls gilt:

∀b′ ∈ B ∶ b ≤ b′.

• b heißt größtes Element oder Maximum von B (kurz
b = maxB), falls gilt:

∀b′ ∈ B ∶ b′ ≤ b.

• b heißt minimal in B, falls es in B kein kleineres Element
gibt:

∀b′ ∈ B ∶ b′ ≤ b⇒ b′ = b.

• b heißt maximal in B, falls es in B kein größeres Element
gibt:

∀b′ ∈ B ∶ b ≤ b′⇒ b = b′.

16

2 Reguläre Sprachen 2.4 Relationalstrukturen

Bemerkung 40. Da Ordnungen antisymmetrisch sind, kann es in
jeder Teilmenge B höchstens ein kleinstes und höchstens ein größtes
Element geben. Die Anzahl der minimalen und maximalen Elemente
in B kann dagegen beliebig groß sein.

Definition 41. Sei ≤ eine Ordnung auf A und sei B ⊆ A.
• Jedes Element u ∈ A mit u ≤ b für alle b ∈ B heißt untere und

jedes o ∈ A mit b ≤ o für alle b ∈ B heißt obere Schranke von
B.

• B heißt nach oben beschränkt, wenn B eine obere Schran-
ke hat, und nach unten beschränkt, wenn B eine untere
Schranke hat.

• B heißt beschränkt, wenn B nach oben und nach unten be-
schränkt ist.

• Besitzt B eine größte untere Schranke i, d.h. besitzt die Menge
U aller unteren Schranken von B ein größtes Element i, so
heißt i das Infimum von B (kurz i = infB):

(∀b ∈ B ∶ b ≥ i) ∧ [∀u ∈ A ∶ (∀b ∈ B ∶ b ≥ u) ⇒ u ≤ i].

• Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge
O aller oberen Schranken von B ein kleinstes Element s, so
heißt s das Supremum von B (s = supB):

(∀b ∈ B ∶ b ≤ s) ∧ [∀o ∈ A ∶ (∀b ∈ B ∶ b ≤ o) ⇒ s ≤ o]

Beispiel 42. Betrachte nebenstehende Ordnung. Die
folgende Tabelle zeigt für verschiedene Teilmengen
B ⊆ {a, b, c, d, e} alle minimalen und maximalen Ele-
mente, alle unteren und oberen Schranken sowie Mi-
nimum, Maximum, Infimum und Supremum von B
(falls existent).

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken inf sup

{a, b} a, b a, b - - c, d, e - - -
{c, d} c, d c, d - - e a, b e -

{a, b, c} c a, b c - c, e - c -
{a, b, c, e} e a, b e - e - e -
{a, c, d, e} e a e a e a e a

◁

Bemerkung 43.
• Es kann nicht mehr als ein Supremum und ein Infimum geben.
• Auch in linearen Ordnungen muss nicht jede beschränkte Teil-

menge ein Supremum oder Infimum besitzen. So hat in der linear
geordneten Menge (Q,≤) die Teilmenge

{x ∈ Q ∣ x2 ≤ 2} = {x ∈ Q ∣ x2 < 2}

weder ein Supremum noch ein Infimum.
• Dagegen hat in (R,≤) jede beschränkte Teilmenge ein Supremum

und ein Infimum (aber eventuell kein Maximum oder Minimum).

2.4.2 Abbildungen

Definition 44. Sei R eine binäre Relation auf einer Menge M .
• R heißt rechtseindeutig, falls für alle x, y, z ∈M gilt:

xRy ∧ xRz ⇒ y = z.

• R heißt linkseindeutig, falls für alle x, y, z ∈M gilt:

xRz ∧ yRz ⇒ x = y.

17

2 Reguläre Sprachen 2.4 Relationalstrukturen

• Der Nachbereich N(R) und der Vorbereich V (R) von R
sind

N(R) = ⋃
x∈M

R[x] und V (R) = ⋃
x∈M

RT [x].

• Eine rechtseindeutige Relation R mit V (R) = A und N(R) ⊆ B
heißt Abbildung oder Funktion von A nach B (kurz
R ∶ A→ B).

Bemerkung 45.
• R ist also genau dann rechts- bzw. linkseindeutig, wenn jedes

Element x ∈M höchstens einen Nachfolger bzw. Vorgänger hat.
• Wie üblich werden wir Abbildungen meist mit kleinen Buchsta-

ben f, g, h, ... bezeichnen und für (x, y) ∈ f nicht xfy sondern
f(x) = y oder f ∶ x↦ y schreiben.

• Ist f ∶ A→ B eine Abbildung, so wird der Vorbereich V (f) = A
der Definitionsbereich und die Menge B der Wertebereich
oder Wertevorrat von f genannt.

• Der Nachbereich N(f) wird als Bild von f bezeichnet.

Definition 46.
• Im Fall N(f) = B heißt f surjektiv.
• Ist f linkseindeutig, so heißt f injektiv. In diesem Fall impli-

ziert f(x) = f(y) die Gleichheit x = y.
• Eine injektive und surjektive Abbildung heißt bijektiv.
• Ist f injektiv, so ist auch f−1 ∶ N(f) → A eine Abbildung, die

als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich V (f−1) = N(f) von f−1 nur
dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

Definition 47. Seien (A1,R1) und (A2,R2) Relationalstrukturen.

• Eine Abbildung h ∶ A1 → A2 heißt Homomorphismus, falls
für alle a, b ∈ A1 gilt:

aR1b⇒ h(a)R2h(b).

• Sind (A1,R1) und (A2,R2) Ordnungen, so spricht man von
Ordnungshomomorphismen oder einfach von monotonen
Abbildungen.

• Injektive Ordnungshomomorphismen werden auch streng mo-
notone Abbildungen genannt.

Beispiel 48. Folgende Abbildung h ∶ A1 → A2 ist ein bijektiver Ord-
nungshomomorphismus.

b

d

a

c

1

2

3

4

(A,≤) (B,⊑)

h

Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h−1

kein Homomorphismus, da h−1 nicht monoton ist. Es gilt nämlich
2 ⊑ 3, aber h−1(2) = b /≤ c = h−1(3).

Dagegen ist für jede monotone Bijektion f zwischen linearen Ordnun-
gen auch ihre Umkehrabbildung f−1 monoton. ◁
Definition 49. Ein bijektiver Homomorphismus h ∶ A1 → A2, bei
dem auch h−1 ein Homomorphismus ist, d.h. es gilt

∀a, b ∈ A1 ∶ aR1b⇔ h(a)R2h(b).
heißt Isomorphismus. In diesem Fall heißen die Strukturen (A1,R1)
und (A2,R2) isomorph (kurz: (A1,R1) ≅ (A2,R2)).

18

2 Reguläre Sprachen 2.5 Minimierung von DFAs

Beispiel 50.
• Für n ∈ N sei Tn = {k ∈ N ∣ k teilt n} die Menge aller Teiler von
n und Pn = {p ∈ Tn ∣ p ist prim} die Menge aller Primteiler von
n. Dann ist die Abbildung

h ∶ k ↦ Pk

ein (surjektiver) Ordnungshomomorphismus von (Tn, ∣) auf
(P(Pn),⊆). h ist sogar ein Isomorphismus, falls n quadratfrei
ist (d.h. es gibt kein k ≥ 2, so dass k2 die Zahl n teilt).

• Die beiden folgenden Graphen G und G′ sind isomorph. Zwei
Isomorphismen sind beispielsweise h1 und h2.

1

5 2

4 3

1

5 2

4 3

G = (V,E)
v 1 2 3 4 5

h1(v) 1 3 5 2 4
h2(v) 1 4 2 5 3

G′ = (V,E′)

• Während auf der Knotenmenge V = [3] insgesamt 23 = 8 ver-
schiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

• Die Abbildung h ∶ R → R+ mit h(x) = ex ist ein Ordnungsiso-
morphismus zwischen (R,≤) und (R+,≤).

• Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elemen-
ten:

Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen
zerfällt unter der Äquivalenzrelation ≅ in fünf Äquivalenzklassen,
die durch obige fünf Hasse-Diagramme repräsentiert werden.

◁

2.5 Minimierung von DFAs

Wie können wir feststellen, ob ein DFA M = (Z,Σ, δ, q0,E) unnötige
Zustände enthält? Zunächst einmal können alle Zustände entfernt
werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden
gehen wir daher davon aus, dass M keine unerreichbaren Zustände
enthält.
Offensichtlich können zwei Zustände q und p zu einem Zustand ver-
schmolzen werden (kurz: q ∼M p), wenn M von q und von p ausge-
hend jeweils dieselben Wörter akzeptiert. Bezeichnen wir den DFA
(Z,Σ, δ, q,E) mitMq, so sind q und p genau dann verschmelzbar, wenn
L(Mq) = L(Mp) ist. Offensichtlich ist ∼M eine Äquivalenzrelation.
Fassen wir alle mit einem Zustand z verschmelzbaren Zustände in
dem neuen Zustand

[z]∼M
= {z′ ∈ Z ∣ L(Mz′) = L(Mz)}

zusammen (wofür wir auch kurz [z] oder z̃ schreiben) und ersetzen
wir Z und E durch Z̃ = {z̃ ∣ z ∈ Z} und Ẽ = {z̃ ∣ z ∈ E}, so erhalten
wir den DFA M ′ = (Z̃,Σ, δ′, q̃0, Ẽ) mit

δ′(q̃, a) = δ̃(q, a).

19

2 Reguläre Sprachen 2.5 Minimierung von DFAs

Hierbei bezeichnet Q̃ für eine Teilmenge Q ⊆ Z die Menge {q̃ ∣ q ∈ Q}
aller Äquivalenzklassen q̃, die mindestens ein Element q ∈ Q enthalten.
Der nächste Satz zeigt, dass M ′ tatsächlich der gesuchte Minimalau-
tomat ist.

Satz 51. Sei M = (Z,Σ, δ, q0,E) ein DFA, der nur Zustände ent-
hält, die vom Startzustand q0 aus erreichbar sind. Dann ist M ′ =
(Z̃,Σ, δ′, q̃0, Ẽ) mit

δ′(q̃, a) = δ̃(q, a)

ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis. Wir zeigen zuerst, dass δ′ wohldefiniert ist, also der Wert
von δ′(q̃, a) nicht von der Wahl des Repräsentanten q abhängt. Hierzu
zeigen wir, dass im Fall p ∼M q auch δ(q, a) und δ(p, a) äquivalent
sind:

L(Mq) = L(Mp) ⇒ ∀x ∈ Σ∗ ∶ x ∈ L(Mq) ↔ x ∈ L(Mp)
⇒ ∀x ∈ Σ∗ ∶ ax ∈ L(Mq) ↔ ax ∈ L(Mp)
⇒ ∀x ∈ Σ∗ ∶ x ∈ L(Mδ(q,a)) ↔ x ∈ L(Mδ(p,a))
⇒ L(Mδ(q,a)) = L(Mδ(p,a)).

Als nächstes zeigen wir, dass L(M ′) = L(M) ist. Sei x = x1 . . . xn eine
Eingabe und seien

qi = δ̂(q0, x1 . . . xi), i = 0, . . . , n

die von M bei Eingabe x durchlaufenen Zustände. Wegen

δ′(q̃i−1, xi) = ̃δ(qi−1, xi) = q̃i

durchläuft M ′ dann die Zustände

q̃0, q̃1, . . . , q̃n.

Da aber qn genau dann zu E gehört, wenn q̃n ∈ Ẽ ist, folgt
L(M ′) = L(M) (man beachte, dass q̃n entweder nur Endzustände
oder nur Nicht-Endzustände enthält, vgl. Beobachtung 53).
Es bleibt zu zeigen, dassM ′ eine minimale Anzahl ∥Z̃∥ von Zuständen
hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es
reicht also zu zeigen, dass die Anzahl k = ∥Z̃∥ = ∥{L(Mz) ∣ z ∈ Z}∥ der
Zustände von M ′ nicht von der Anzahl der Zustände von M , sondern
nur von der erkannten Sprache L = L(M) abhängt. Für x ∈ Σ∗ sei

Lx = {y ∈ Σ∗ ∣ xy ∈ L}
die Restsprache von L für das Wort x. Dann gilt {Lx ∣ x ∈ Σ∗} ⊆
{L(Mz) ∣ z ∈ Z}, da Lx = L(Mδ̂(q0,x)) ist. Die umgekehrte Inklusion gilt
ebenfalls, da nach Voraussetzung jeder Zustand q ∈ Z über ein x ∈ Σ∗

erreichbar ist. Also hängt k = ∥{L(Mz) ∣ z ∈ Z}∥ = ∥{Lx ∣ x ∈ Σ∗}∥ nur
von L ab. ∎

Beispiel 52. Die Sprache L = {x1 . . . xn ∈ {0, 1}∗ ∣ n ≥ 2 und xn−1 = 0}
hat die vier Restsprachen

Lx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L, x ∈ {ε,1} oder x endet mit 11,
L ∪ {0,1}, x = 0 oder x endet mit 10,
L ∪ {ε,0,1}, x endet mit 00,
L ∪ {ε}, x endet mit 01.

Entsprechend gibt es für L einen DFA mit 4 Zuständen, aber keinen
mit 3 Zuständen.

Eine interessante Folgerung aus obigem Beweis ist, dass eine reguläre
Sprache L ⊆ Σ∗ nur endlich viele verschiedene Restsprachen Lx, x ∈ Σ∗,
hat. Daraus folgt, dass die durch

x ∼L y⇔ Lx = Ly
auf Σ∗ definierte Äquivalenzrelation ∼L für jede reguläre Sprache
L ⊆ Σ∗ einen endlichen Index hat. Die Relation ∼L wird als Nerode-
Relation von L bezeichnet.

20

2 Reguläre Sprachen 2.5 Minimierung von DFAs

Für die algorithmische Konstruktion von M ′ aus M ist es notwendig
herauszufinden, ob zwei Zustände p und q von M äquivalent sind
oder nicht. Hierzu genügt es, die Menge D = {{p, q} ⊆ Z ∣ p /∼M q} zu
berechnen.
Bezeichne A△ B = (A ∖ B) ∪ (B ∖ A) die symmetrische Differenz
von zwei Mengen A und B. Dann ist die Inäquivalenz p /∼M q zweier
Zustände p und q gleichbedeutend mit L(Mp) △ L(Mq) ≠ ∅. Wir
nennen ein Wort x ∈ L(Mp) △L(Mq) einen Unterscheider zwischen
p und q. Für i ≥ 0 sei D=i die Menge aller Paare {p, q}, die einen
Unterscheider x der Länge ∣x∣ = i haben und Di sei die Menge aller
Paare {p, q} ∈ D, die einen Unterscheider x der Länge ∣x∣ ≤ i haben.
Dann gilt Di =D=0 ∪D=1 ∪⋯ ∪D=i und D = ⋃j≥0D=j = ⋃i≥0Di.

Beobachtung 53.
• Das leere Wort ε unterscheidet Endzustände und Nichtendzu-

stände, d.h.

D0 =D=0 = {{p, q} ⊆ Z ∣ p ∈ E, q /∈ E} .

• Zudem haben zwei Zustände p und q genau dann einen Unter-
scheider x = x1 . . . xi+1 der Länge i+1, wenn die beiden Zustände
δ(p, x1) und δ(q, x1) einen Unterscheider x = x2 . . . xi+1 der Län-
ge i haben. Daher gilt

{p, q} ∈D=i+1 ⇔∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈D=i,

was wiederum

Di+1 = Di

´¹¹¹¹¸¹¹¹¹¹¶
D=0∪⋯∪D=i

∪ {{p, q} ⊆ Z ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈Di}
´¹¹¹¸¹¹¹¶

D=1∪⋯∪D=i+1

impliziert.

Da es nur endlich viele Zustandspaare gibt, gibt es ein i ≥ 0 mit
D =Di. Offensichtlich gilt

D =Di⇔Di+1 =Di.

Der folgende Algorithmus berechnet für einen beliebigen DFA M den
zugehörigen Minimal-DFA M ′.
Algorithmus min-DFA(M)

1 Input: DFA M = (Z,Σ, δ, q0,E)
2 entferne alle unerreichbaren Zustände aus Z
3 D′ ∶=D0 ∶= {{p, q} ⊆ Z ∣ p ∈ E, q /∈ E}
4 repeat
5 D ∶=D′

6 D′ ∶=D0 ∪ {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈D}
7 until D′ =D
8 Output: M ′ = (Z̃,Σ, δ′, q̃0, Ẽ), wobei δ′(q̃, a) = δ̃(q, a) ist
9 und für jeden Zustand q ∈ Z gilt: q̃ = {p ∈ Z ∣ {p, q} /∈D}

Beispiel 54. Betrachte den DFA M : 2

1

3

6

4

5

b

b

b

b

a

a

a

a

aa bb

Dann enthält D0 die Paare
{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.

Die Paare in D0 sind in der folgenden Matrix durch den Unterscheider
ε markiert.

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

21

2 Reguläre Sprachen 2.5 Minimierung von DFAs

Wegen

{p, q} {1,4} {1,5} {2,4} {2,5}

{δ(q, a), δ(p, a)} {2,3} {2,6} {1,3} {1,6}

enthält D1 zusätzlich die Paare {1, 4}, {1, 5}, {2, 4}, {2, 5} (in obiger
Matrix durch den Unterscheider a markiert). Da nun jedoch keines
der verbliebenen Paare {1,2}, {3,6}, {4,5} wegen

{p, q} {1,2} {3,6} {4,5}

{δ(p, a), δ(q, a)} {1,2} {4,5} {3,6}
{δ(p, b), δ(q, b)} {3,6} {1,2} {4,5}

zu D2 hinzugefügt werden kann, gilt D2 =D1 und somit D =D1.
Aus den unmarkierten Paaren {1,2}, {3,6} und {4,5} erhalten wir
die Äquivalenzklassen

1̃ = {1,2}, 3̃ = {3,6} und 4̃ = {4,5},

die auf folgenden Minimal-DFA M ′ führen:

1̃ 3̃ 4̃
b

b

a

a
a b ◁

Es ist auch möglich, einen Minimalautomaten ML direkt aus einer
regulären Sprache L zu gewinnen (also ohne einen DFA M für L zu
kennen). Da wegen

ˆ̃δ(q0, x) = ˆ̃δ(q0, y) ⇔ δ̂(q0, x) ∼M δ̂(q0, y)
⇔ L(Mδ̂(q0,x)) = L(Mδ̂(q0,y)) ⇔ Lx = Ly

zwei Eingaben x und y den DFAM ′ genau dann in denselben Zustand
überführen, wenn Lx = Ly ist, können wir den von M ′ bei Eingabe x
erreichten Zustand auch mit der Sprache Lx bezeichnen. Dies führt
auf den zu M ′ isomorphen (also bis auf die Benennung der Zustände
mit M ′ identischen) DFA ML = (ZL,Σ, δL, Lε,EL) mit

ZL = {Lx ∣ x ∈ Σ∗},
EL = {Lx ∣ x ∈ L} und

δL(Lx, a) = Lxa.

ML wird auch als Restsprachen-DFA für L bezeichnet.

Beispiel 55. Für die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ n ≥
2 und xn−1 = 0} mit den vier Restsprachen

Lx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L, x ∈ {ε,1} oder x endet mit 11,
L ∪ {0,1}, x = 0 oder x endet mit 10,
L ∪ {ε,0,1}, x endet mit 00,
L ∪ {ε}, x endet mit 01.

erhalten wir den folgenden Minimalautomaten ML für L:

Lε

L0

L00

L01

0 0

11
10

1 0

Man beachte, dass es für die Konstruktion von ML keine Rolle spielt,
wie die Restsprachen Lx konkret aussehen, d.h. ihre Angabe ist nicht
erforderlich. ◁

Notwendig und hinreichend für die Existenz von ML ist, dass die
Nerode-Relation ∼L von L endlichen Index hat bzw. L nur endlich

22

2 Reguläre Sprachen 2.5 Minimierung von DFAs

viele verschiedene Restsprachen hat. Im Fall, dass M bereits ein Mi-
nimalautomat ist, sind alle Zustände von M ′ von der Form q̃ = {q},
so dass M isomorph zu M ′ und damit auch isomorph zu ML ist. Dies
zeigt, dass alle Minimalautomaten für eine Sprache L isomorph sind.

Satz 56 (Myhill und Nerode).
1. Sei L regulär und sei index(∼L) der Index von ∼L. Dann gibt

es für L bis auf Isomorphie genau einen Minimal-DFA. Dieser
hat index(∼L) Zustände.

2. REG = {L ∣ die Nerode-Relation ∼L hat endlichen Index}.

Sei R ein Repräsentantensystem für die Nerode-Relation ∼L von L,
d.h. {Lx ∣ x ∈ Σ∗} = {Lr ∣ r ∈ R} und Lr ≠ Lr′ für alle r, r′ ∈ R mit
r ≠ r′. Dann können wir die Zustände des Minimal-DFA anstelle von
Lx auch mit den Repräsentanten r ∈ R bezeichnen. Dies führt auf den
Minimal-DFA MR = (R,Σ, δ, ε,E), wobei wir ε ∈ R annehmen und
δ(r, a) ∈ R der Repräsentant der Äquivalenzklasse r̃a und E = R∩L ist.
Wir bezeichnen MR als den zu R gehörigen Repräsentanten-DFA
für L.

Beispiel 57. Für die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ xn−1 = 0} lässt
sich ein Repräsentanten-DFA MR wie folgt konstruieren:

1. Wir beginnen mit r1 = ε.
2. Da r10 = 0 /∼L ε ist, erhalten wir r2 = 0 und setzen δ(ε,0) = 0.
3. Da r11 = 1 ∼L ε ist, setzen wir δ(ε,1) = ε.
4. Da r20 = 00 /∼L ri für i = 1, 2 ist, erhalten wir r3 = 00 und setzen

δ(0,0) = 00.
5. Da r21 = 01 /∼L ri für i = 1,2,3 ist, erhalten wir r4 = 01 und

setzen δ(0,1) = 01.
6. Da zudem r30 = 000 ∼L 00, r31 = 001 ∼L 01, r40 = 010 ∼L 0

und r41 = 011 ∼L ε gilt, setzen wir δ(00,0) = 00, δ(00,1) = 01,
δ(01,0) = 0 und δ(01,1) = ε.

Wir erhalten also das Repräsentantensystem R = {ε,0,00,01} für ∼L
und folgenden Minimal-DFA MR für L:

r ε 0 00 01

δ(r,0) 0 00 00 0
δ(r,1) ε 01 01 ε

ε

00

1

00
0

01

1

0
1

0
1

◁

Wir fassen nochmals die wichtigsten Ergebnisse zusammen.

Korollar 58. Für jede Sprache L sind folgende Aussagen äquivalent:
• L ist regulär (d.h. es gibt einen DFA M mit L = L(M)),
• es gibt einen NFA N mit L = L(N),
• es gibt einen regulären Ausdruck γ mit L = L(γ),
• L hat endlich viele Restsprachen Lx = {z ∈ Σ∗ ∣ xz ∈ L}, x ∈ Σ∗,
• die Nerode-Relation ∼L von L hat endlichen Index.

Wir können also beweisen, dass eine Sprache L nicht regulär ist,
indem wir unendlich viele verschiedene Restsprachen (bzw. unendlich
viele paarweise bzgl. ∼L inäquivalente Wörter) finden.

Satz 59. Die Sprache L = {anbn ∣ n ≥ 0} ist nicht regulär.

Beweis. Wegen
bi ∈ Lai △La j (für 0 ≤ i < j)

sind die Restsprachen Lai , i ≥ 0, paarweise verschieden und wegen

ai ∼L a j ⇔ Lai = La j

folgt auch, dass ai /∼L a j für i < j gilt, weshalb index(∼L) = ∞ ist. ∎

Wir werden im nächsten Abschnitt noch eine weitere Methode kennen-
lernen, mit der man beweisen kann, dass eine Sprache nicht regulär
ist, nämlich das Pumping-Lemma.

23

2 Reguläre Sprachen 2.6 Das Pumping-Lemma

2.6 Das Pumping-Lemma

Wie kann man von einer Sprache L noch nachweisen, dass sie nicht
regulär ist? Eine weitere Möglichkeit besteht darin, die Kontraposition
folgender Aussage anzuwenden.

Satz 60 (Pumping-Lemma für reguläre Sprachen).
Zu jeder regulären Sprache L gibt es eine Zahl l ≥ 0, so dass sich alle
Wörter x ∈ L mit ∣x∣ ≥ l in x = uvw zerlegen lassen mit

1. v /= ε,
2. ∣uv∣ ≤ l und
3. uviw ∈ L für alle i ≥ 0.

Falls eine Zahl l ≥ 0 mit diesen Eigenschaften existiert, wird das
kleinste solche l die Pumpingzahl von L genannt.

Beweis. Sei M = (Z,Σ, δ, q0,E) ein NFA für L und sei l = ∥Z∥
die Anzahl der Zustände von M . Setzen wir M auf eine Eingabe
x = x1 . . . xn ∈ L der Länge n ≥ l an, so muss M nach spätestens l
Schritten einen Zustand q ∈ Z zum zweiten Mal besuchen:

∃j, k ∶ 0 ≤ j < k ≤ l ∧ δ̂(q0, x1 . . . xj) = δ̂(q0, x1 . . . xk) = q.

Wählen wir nun u = x1 . . . xj, v = xj+1 . . . xk und w = xk+1 . . . xn, so
ist ∣v∣ = k − j ≥ 1 und ∣uv∣ = k ≤ l. Ausserdem gilt uviw ∈ L für alle
i ≥ 0, da M wegen δ̂(q, vi) = δ̂(q, v) = q nach Lesen von uviw einen
Endzustand erreicht:

δ̂(q0, uv
iw) = δ̂(δ̂(δ̂(q0, u)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
q

, vi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q

,w) = δ̂(δ̂(δ̂(q0, u)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

q

, v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q

,w) = δ̂(q0, x) ∈ E

∎

Beispiel 61. Die Sprache
L = {x ∈ {a, b}∗ ∣ #a(x) −#b(x) ≡3 1}

hat die Pumpingzahl l = 3. Sei nämlich x ∈ L beliebig mit ∣x∣ ≥ 3. Dann
lässt sich innerhalb des Präfixes von x der Länge drei ein nichtleeres
Teilwort v finden, das gepumpt werden kann:
1. Fall: x hat das Präfix ab (oder ba).

Zerlege x = uvw mit u = ε und v = ab (bzw. v = ba).
2. Fall: x hat das Präfix aab (oder bba).

Zerlege x = uvw mit u = a (bzw. u = b) und v = ab (bzw. v = ba).
3. Fall: x hat das Präfix aaa (oder bbb).

Zerlege x = uvw mit u = ε und v = aaa (bzw. v = bbb). ◁
Beispiel 62. Eine endliche Sprache L hat die Pumpingzahl l = lmax+1,
wobei

lmax =
⎧⎪⎪⎨⎪⎪⎩

−1, L = ∅,
max{∣x∣ ∣ x ∈ L}, sonst

ist. Tatsächlich lässt sich jedes Wort x ∈ L der Länge ∣x∣ > lmax „pum-
pen“ (da solche Wörter gar nicht existieren), weshalb die Pumpingzahl
höchstens lmax + 1 ist. Zudem gibt es im Fall lmax ≥ 0 ein Wort x ∈ L
der Länge ∣x∣ = lmax = l − 1, das sich nicht „pumpen“ lässt, weshalb die
Pumpingzahl nicht kleiner als l sein kann. ◁

Sei minDFA(L) (minNFA(L)) die minimale Anzahl von Zuständen
eines DFA (bzw. NFA) einer regulären Sprache L und sei lreg(L) die
Pumping-Zahl für L. Da wir im Beweis des Pumping-Lemmas einen
NFA für L mit l =minNFA(L) Zuständen wählen können, folgt

lreg(L) ≤minNFA(L) ≤minDFA(L) = index(∼L).
Tatsächlich gibt es für jedes i ≥ 1 eine Sprache L mit

lreg(L) = index(∼L) = i.
Andererseits gibt es für jedes i ≥ 1 auch eine Sprache L mit

lreg(L) = 1 und index(∼L) = i.

24

2 Reguläre Sprachen 2.7 Grammatiken

Dagegen ist L = ∅ die einzige Sprache mit der Pumping-Zahl 0. Für
diese gilt index(∼∅) = 1.
Wollen wir mit Hilfe des Pumping-Lemmas von einer Sprache L zeigen,
dass sie nicht regulär ist, so genügt es, für jede Zahl l ein Wort x ∈ L
der Länge ∣x∣ ≥ l anzugeben, so dass für jede Zerlegung von x in drei
Teilwörter u, v,w mindestens eine der drei in Satz 60 aufgeführten
Eigenschaften verletzt ist.

Beispiel 63. Die Sprache

L = {a jb j ∣ j ≥ 0}

ist nicht regulär, da sich für jede Zahl l ≥ 0 das Wort x = albl der
Länge ∣x∣ = 2l ≥ l in der Sprache L befindet, welches offensichtlich
nicht in Teilwörter u, v,w mit v /= ε und uv2w ∈ L zerlegbar ist. ◁

Beispiel 64. Die Sprache

L = {an2 ∣ n ≥ 0}

ist ebenfalls nicht regulär. Andernfalls müsste es nämlich eine Zahl
l ≥ 0 geben, so dass jede Quadratzahl n2 ≥ l als Summe von natürlichen
Zahlen u + v +w darstellbar ist mit der Eigenschaft, dass v ≥ 1 und
u + v ≤ l ist, und für jedes i ≥ 0 auch u + iv +w eine Quadratzahl ist.
Für n = l müsste also insbesondere u+2v+w = n2+v eine Quadratzahl
sein, was wegen

n2 < n2 + v ≤ n2 + l < n2 + 2n + 1 = (n + 1)2

ausgeschlossen ist. ◁

Beispiel 65. Auch die Sprache

L = {ap ∣ p prim }

ist nicht regulär, da sich sonst jede Primzahl p einer bestimmten Min-
destgröße l als Summe von natürlichen Zahlen u + v + w darstellen

ließe, so dass v ≥ 1 und für alle i ≥ 0 auch u + iv + w = p + (i − 1)v
prim ist. Dies ist jedoch für i = p + 1 wegen

p + (p + 1 − 1)v = p(1 + v)

nicht der Fall. ◁

Bemerkung 66. Mit Hilfe des Pumping-Lemmas kann nicht für jede
Sprache L /∈ REG gezeigt werden, dass L nicht regulär ist, da seine
Umkehrung falsch ist. So hat beispielsweise die Sprache

L = {aib jck ∣ i = 0 oder j = k}

die Pumpingzahl 1 (d.h. jedes Wort x ∈ L mit Ausnahme von ε kann
„gepumpt“ werden). Dennoch ist L nicht regulär (siehe Übungen).

2.7 Grammatiken

Eine beliebte Methode, Sprachen zu beschreiben, sind Grammatiken.
Implizit haben wir diese Methode bei der Definition der regulären
Ausdrücke bereits benutzt.

Beispiel 67. Die Sprache RA aller regulären Ausdrücke über ei-
nem Alphabet Σ = {a1, . . . , ak} lässt sich aus dem Symbol R durch
wiederholte Anwendung folgender Ersetzungsregeln erzeugen:

R → ∅,
R → ε,

R → ai, i = 1, . . . , k,

R → RR,

R → (R∣R),
R → (R)∗. ◁

Definition 68. Eine Grammatik ist ein 4-Tupel G = (V,Σ, P, S),
wobei

• V eine endliche Menge von Variablen (auch Nichtterminal-
symbole genannt),

• Σ das Terminalalphabet,

25

2 Reguläre Sprachen 2.7 Grammatiken

• P ⊆ (V ∪Σ)+ ×(V ∪Σ)∗ eine endliche Menge von Regeln (oder
Produktionen) und

• S ∈ V die Startvariable ist.

Die Produktionenmenge P ist also eine binäre Relation auf (V ∪Σ)∗.
Für (u, v) ∈ P schreiben wir auch kurz u →G v bzw. u → v, wenn
die benutzte Grammatik aus dem Kontext ersichtlich ist. Regeln der
Form ε→ v sind nicht erlaubt.

Definition 69. Seien α,β ∈ (V ∪Σ)∗.
a) Wir sagen, β ist aus α in einem Schritt ableitbar (kurz:

α ⇒G β), falls eine Regel u →G v und Wörter l, r ∈ (V ∪ Σ)∗
existieren mit

α = lur und β = lvr.

Hierfür schreiben wir auch lur⇒G lvr bzw. lur⇒ lvr.†
b) Die durch G erzeugte Sprache ist

L(G) = {x ∈ Σ∗ ∣ S ⇒∗ x}.

c) Ein Wort α ∈ (V ∪Σ)∗ mit S ⇒∗ α heißt Satzform von G.

Beispiel 70. Wir betrachten nochmals die Grammatik G = ({R},Σ∪
{∅, ε, (,),∗ , ∣}, P,R), die die Menge der regulären Ausdrücke über dem
Alphabet Σ erzeugt, wobei P die oben angegebenen Regeln enthält. Ist
Σ = {0, 1}, so lässt sich der reguläre Ausdruck (01)∗(ε∣∅) beispielsweise
wie folgt in 8 Schritten ableiten:

R⇒ RR⇒ (R)∗R⇒ (RR)∗R⇒ (RR)∗(R∣R)
⇒ (0R)∗(R∣R) ⇒ (01)∗(R∣R) ⇒ (01)∗(ε∣R) ⇒ (01)∗(ε∣∅)

◁

Man unterscheidet vier verschiedene Typen von Grammatiken.

Definition 71. Sei G = (V,Σ, P, S) eine Grammatik.
1. G heißt vom Typ 3 oder regulär, falls für alle Regeln u → v

gilt: u ∈ V und v ∈ ΣV ∪Σ ∪ {ε}.
2. G heißt vom Typ 2 oder kontextfrei, falls für alle Regeln

u→ v gilt: u ∈ V .
3. G heißt vom Typ 1 oder kontextsensitiv, falls für alle Regeln

u → v gilt: ∣v∣ ≥ ∣u∣ (mit Ausnahme der ε-Sonderregel, siehe
unten).

4. Jede Grammatik ist automatisch vom Typ 0.

ε-Sonderregel: In einer kontextsensitiven Grammatik (V,Σ, P, S)
kann auch die verkürzende Regel S → ε vorkommen. Aber nur, wenn
das Startsymbol S nicht auf der rechten Seite einer Regel steht.
Die Sprechweisen „vom Typ i“ bzw. „regulär“, „kontextfrei“ und
„kontextsensitiv“ werden auch auf die durch solche Grammatiken er-
zeugten Sprachen angewandt. (Der folgende Satz rechtfertigt dies für
die regulären Sprachen, die wir bereits mit Hilfe von DFAs definiert
haben.) Die zugehörigen neuen Sprachklassen sind

CFL = {L(G) ∣ G ist eine kontextfreie Grammatik},

(context free languages) und

CSL = {L(G) ∣ G ist eine kontextsensitive Grammatik}

(context sensitive languages). Da die Klasse der Typ 0 Sprachen
mit der Klasse der rekursiv aufzählbaren (recursively enumerable)
Sprachen übereinstimmt, bezeichnen wir diese Sprachklasse mit

RE = {L(G) ∣ G ist eine Grammatik}.

Die Sprachklassen
REG ⊂ CFL ⊂ CSL ⊂ RE

†Man beachte, dass durch Unterstreichen von u in α sowohl die benutzte Regel als auch die Stelle in α, an der u durch v ersetzt wird, eindeutig erkennbar sind. Da ⇒ eine
binäre Relation auf (V ∪Σ)∗ ist, bezeichnet ⇒m das m-fache Relationenprodukt und ⇒∗ die reflexive, transitive Hülle von ⇒.

26

2 Reguläre Sprachen 2.7 Grammatiken

bilden eine Hierarchie (d.h. alle Inklusionen sind echt), die so genannte
Chomsky-Hierarchie.
Als nächstes zeigen wir, dass sich mit regulären Grammatiken gerade
die regulären Sprachen erzeugen lassen.
Satz 72. REG = {L(G) ∣ G ist eine reguläre Grammatik}.

Beweis. Sei L ∈ REG und sei M = (Z,Σ, δ, q0,E) ein DFA mit
L(M) = L. Wir konstruieren eine reguläre Grammatik G = (V,Σ, P, S)
mit L(G) = L. Setzen wir

V = Z,

S = q0 und
P = {q → ap ∣ δ(q, a) = p} ∪ {q → ε ∣ q ∈ E},

so gilt für alle Wörter x = x1 . . . xn ∈ Σ∗:

x ∈ L(M) ⇔ ∃ q1, . . . , qn−1 ∈ Z ∃ qn ∈ E ∶
δ(qi−1, xi) = qi für i = 1, . . . , n

⇔ ∃ q1, . . . , qn ∈ V ∶
qi−1 →G xiqi für i = 1, . . . , n und qn →G ε

⇔ ∃ q1, . . . , qn ∈ V ∶
q0 ⇒i

G x1 . . . xiqi für i = 1, . . . , n und qn →G ε

⇔ x ∈ L(G)

Für die entgegengesetzte Inklusion sei nun G = (V,Σ, P, S) eine re-
guläre Grammatik, die keine Produktionen der Form A→ a enthält.
Dann können wir die gerade beschriebene Konstruktion einer Gram-
matik aus einem DFA „umdrehen“, um ausgehend von G einen NFA
M = (Z,Σ, δ,{S},E) mit

Z = V,

E = {A ∣ A→G ε} und
δ(A,a) = {B ∣ A→G aB}

zu erhalten. Genau wie oben folgt nun L(M) = L(G). ∎

Beispiel 73. Der DFA

q0

q1

q2

q3

0 0

11
10

1 0

führt auf die Grammatik ({q0, q1, q2, q3},{0,1}, P, q0) mit

P ∶ q0 → 1q0,0q1,

q1 → 0q2,1q3,

q2 → 0q2,1q3, ε,

q3 → 0q1,1q0, ε.

Umgekehrt führt die Grammatik G = ({A,B,C},{a, b}, P,A) mit

P ∶ A→ aB, bC, ε,

B → aC, bA, b,

C → aA, bB, a

über die Grammatik G′ = ({A,B,C,D},{a, b}, P ′,A) mit

P ′ ∶ A→ aB, bC, ε,

B → aC, bA, bD,

C → aA, bB, aD,

D → ε

auf den NFA

A

B

D

C

a

b
b

a

b

a

ab

◁

27

3 Kontextfreie Sprachen

3 Kontextfreie Sprachen

Wie wir gesehen haben, ist die Sprache L = {anbn ∣ n ≥ 0} nicht regulär.
Es ist aber leicht, eine kontextfreie Grammatik für L zu finden:

G = ({S},{a, b},{S → aSb,S → ε}, S).

Damit ist klar, dass die Klasse der regulären Sprachen echt in der
Klasse der kontextfreien Sprachen enthalten ist. Als nächstes wollen
wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt
in der Klasse der kontextsensitiven Sprachen enthalten ist:

REG ⊊ CFL ⊊ CSL.

Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur
Regeln der Form A→ α haben. Dies lässt die Verwendung von belie-
bigen ε-Regeln der Form A→ ε zu. Eine kontextsensitive Grammatik
darf dagegen höchstens die ε-Regel S → ε haben. Voraussetzung
hierfür ist, dass S das Startsymbol ist und dieses nicht auf der rech-
ten Seite einer Regel vorkommt. Daher sind nicht alle kontextfrei-
en Grammatiken kontextsensitiv. Beispielsweise ist die Grammatik
G = ({S},{a, b},{S → aSb,S → ε}, S) nicht kontextsensitiv, da sie
die Regel S → ε enthält, obwohl S auf der rechten Seite der Regel
S → aSb vorkommt.
Es lässt sich jedoch zu jeder kontextfreien Grammatik eine äquivalen-
te kontextfreie Grammatik G′ konstruieren, die auch kontextsensitiv
ist. Hierzu zeigen wir zuerst, dass sich zu jeder kontextfreien Gram-
matik G, in der nicht das leere Wort ableitbar ist, eine äquivalente
kontextfreie Grammatik G′ ohne ε-Regeln konstruieren lässt.
Satz 74. Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie
Grammatik G′ ohne ε-Produktionen mit L(G′) = L(G) ∖ {ε}.

Beweis. Zuerst sammeln wir mit folgendem Algorithmus alle Varia-
blen A, aus denen das leere Wort ableitbar ist. Diese werden auch als
ε-ableitbar bezeichnet.

1 E′ ∶= {A ∈ V ∣ A→ ε}
2 repeat
3 E ∶= E′

4 E′ ∶= E ∪ {A ∈ V ∣ ∃B1, . . . ,Bk ∈ E ∶ A→ B1 . . .Bk}
5 until E = E′

Nun konstruieren wir G′ = (V,Σ, P ′, S) wie folgt:
Nehme zu P ′ alle Regeln A → α′ mit α′ ≠ ε hinzu, für
die P eine Regel A → α enthält, so dass α′ aus α durch
Entfernen von beliebig vielen Variablen A ∈ E hervorgeht.

∎

Beispiel 75. Betrachte die Grammatik G = (V,Σ, P, S) mit V =
{S,T,U,X,Y,Z}, Σ = {a, b, c} und den Regeln

P ∶ S → aY, bX,Z; Y → bS, aY Y ; T → U ;
X → aS, bXX; Z → ε,S, T, cZ; U → abc.

Bei der Berechnung von E = {A ∈ V ∣ A⇒∗ ε} ergeben sich der Reihe
nach folgende Belegungen für die Mengenvariablen E und E′:

E′ {Z} {Z,S}
E {Z,S} {Z,S}

Um nun die Regelmenge P ′ zu bilden, entfernen wir aus P die einzige
ε-Regel Z → ε und fügen die Regeln X → a (wegen X → aS), Y → b
(wegen Y → bS) und Z → c (wegen Z → cZ) hinzu:

P ′ ∶ S → aY, bX,Z; Y → b, bS, aY Y ; T → U ;
X → a, aS, bXX; Z → c, S, T, cZ; U → abc. ◁

28

3 Kontextfreie Sprachen

Als direkte Anwendung des obigen Satzes können wir die Inklusion
der Klasse der Typ 2 Sprachen in der Klasse der Typ 1 Sprachen
zeigen.
Korollar 76. REG ⊊ CFL ⊆ CSL ⊆ RE.

Beweis. Die Inklusionen REG ⊆ CFL und CSL ⊆ RE sind klar. Wegen
{anbn∣n ≥ 0} ∈ CFL−REG ist die Inklusion REG ⊆ CFL auch echt. Also
ist nur noch die Inklusion CFL ⊆ CSL zu zeigen. Nach obigem Satz
ex. zu L ∈ CFL eine kontextfreie Grammatik G = (V,Σ, P, S) ohne
ε-Produktionen mit L(G) = L ∖ {ε}. Da G dann auch kontextsensitiv
ist, folgt hieraus im Fall ε /∈ L unmittelbar L(G) = L ∈ CSL. Im Fall
ε ∈ L erzeugt die kontextsensitive Grammatik

G′ = (V ∪ {S′},Σ, P ∪ {S′ → S, ε}, S′)

die Sprache L(G′) = L, d.h. L ∈ CSL. ∎

Als nächstes zeigen wir folgende Abschlusseigenschaften der kontext-
freien Sprachen.
Satz 77. Die Klasse CFL ist abgeschlossen unter Vereinigung, Produkt
und Sternhülle.

Beweis. Seien Gi = (Vi,Σ, Pi, Si), i = 1,2, kontextfreie Grammatiken
für die Sprachen L(Gi) = Li mit V1 ∩ V2 = ∅ und sei S eine neue
Variable. Dann erzeugt die kontextfreie Grammatik

G3 = (V1 ∪ V2 ∪ {S},Σ, P1 ∪ P2 ∪ {S → S1, S2}, S)

die Vereinigung L(G3) = L1 ∪L2. Die Grammatik

G4 = (V1 ∪ V2 ∪ {S},Σ, P1 ∪ P2 ∪ {S → S1S2}, S)

erzeugt das Produkt L(G4) = L1L2 und die Sternhülle (L1)∗ wird von
der Grammatik

G5 = (V1 ∪ {S},Σ, P1 ∪ {S → S1S, ε}, S)

erzeugt. ∎

Man beachte, dass sichG5 nicht durch die GrammatikG6 = (V1,Σ, P1∪
{S1→S1S1, ε}, S1) ersetzen lässt, da L(G6) im Fall P1 = {S1 →
aS1b, ε} z.B. das Wort aababb /∈ L(G1)∗ enthält.
Offen bleibt zunächst, ob die kontextfreien Sprachen auch unter
Schnitt und Komplement abgeschlossen sind. Um dies zu verneinen,
müssen wir für bestimmte Sprachen nachweisen, dass sie nicht kon-
textfrei sind. Dies gelingt mit einem Pumping-Lemma für kontextfreie
Sprachen.

Satz (Pumping-Lemma für kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle
Wörter z ∈ L mit ∣z∣ ≥ l in z = uvwxy zerlegen lassen mit

1. vx /= ε,
2. ∣vwx∣ ≤ l und
3. uviwxiy ∈ L für alle i ≥ 0.

Für den Beweis benötigen wir Grammatiken in Chomsky-Normalform,
die wir im nächsten Abschnitt behandeln werden.

Beispiel 78. Betrachte die Sprache L = {anbn∣n ≥ 0}. Dann lässt
sich jedes Wort z = anbn mit ∣z∣ ≥ 2 pumpen: Zerlege z = uvwxy mit
u = an−1, v = a, w = ε, x = b und y = bn−1. ◁

Beispiel 79. Die Sprache {anbncn ∣ n ≥ 0} ist nicht kontextfrei. Für
eine vorgegebene Zahl l ≥ 0 hat nämlich z = alblcl die Länge ∣z∣ = 3l ≥ l.
Dieses Wort lässt sich aber nicht pumpen, da für jede Zerlegung
z = uvwxy mit vx /= ε und ∣vwx∣ ≤ l das Wort z′ = uv2wx2y nicht zu
L gehört:

• Wegen vx /= ε ist ∣z∣ < ∣z′∣.
• Wegen ∣vwx∣ ≤ l kann in vx nicht jedes der drei Zeichen a, b, c

vorkommen.

29

3 Kontextfreie Sprachen 3.1 Chomsky-Normalform

• Kommt aber in vx beispielsweise kein a vor, so ist

#a(z′) = #a(z) = l = ∣z∣/3 < ∣z′∣/3,

also kann z′ nicht zu L gehören. ◁

Die Chomsky-Normalform ist auch Grundlage für einen effizienten
Algorithmus zur Lösung des Wortproblems für kontextfreie Gramma-
tiken, das wie folgt definiert ist.

Wortproblem für kontextfreie Grammatiken:
Gegeben: Eine kontextfreie Grammatik G und ein Wort x.
Gefragt: Ist x ∈ L(G)?

Satz. Das Wortproblem für kontextfreie Grammatiken ist effizient
entscheidbar.

3.1 Chomsky-Normalform

Definition 80. Eine Grammatik (V,Σ, P, S) ist in Chomsky-
Normalform (CNF), falls P ⊆ V × (V 2 ∪ Σ) ist, also alle Regeln
die Form A→ BC oder A→ a haben.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen,
müssen wir neben den ε-Regeln A→ ε auch sämtliche Variablenumbe-
nennungen A→ B loswerden.

Definition 81. Regeln der Form A → B heißen Variablenumbe-
nennungen.

Satz 82. Zu jeder kontextfreien Grammatik G ex. eine kontextfreie
Grammatik G′ ohne Variablenumbenennungen mit L(G′) = L(G).

Beweis. Zuerst entfernen wir sukzessive alle Zyklen

A1 → A2 → ⋯→ Ak → A1,

indem wir diese Regeln aus P entfernen und alle übrigen Vorkommen
der Variablen A2, . . . ,Ak durch A1 ersetzen. Falls sich unter den ent-
fernten Variablen A2, . . . ,Ak die Startvariable S befindet, sei A1 die
neue Startvariable.
Nun entfernen wir sukzessive die restlichen Variablenumbenennungen,
indem wir

• eine Regel A → B wählen, so dass in P keine Variablenumbe-
nennung B → C mit B auf der rechten Seite existiert,

• diese Regel A→ B aus P entfernen und
• für jede Regel B → α in P die Regel A→ α zu P hinzunehmen.

∎

Beispiel 83. Ausgehend von den Produktionen

P ∶ S → aY, bX,Z; Y → b, bS, aY Y ; T → U ;
X → a, aS, bXX; Z → c, S, T, cZ; U → abc

entfernen wir den Zyklus S → Z → S, indem wir die Regeln S → Z
und Z → S entfernen und dafür die Produktionen S → c, T, cS (wegen
Z → c, T, cZ) hinzunehmen:

S → aY, bX, c, T, cS; Y → b, bS, aY Y ; T → U ;
X → a, aS, bXX; U → abc.

Nun entfernen wir die Regel T → U und fügen die Regel T → abc
(wegen U → abc) hinzu:

S → aY, bX, c, T, cS; Y → b, bS, aY Y ; T → abc;
X → a, aS, bXX; U → abc.

Als nächstes entfernen wir dann auch die Regel S → T und fügen die
Regel S → abc (wegen T → abc) hinzu:

S → abc, aY, bX, c, cS; Y → b, bS, aY Y ; T→ abc;
X → a, aS, bXX; U→ abc.

30

3 Kontextfreie Sprachen 3.1 Chomsky-Normalform

Da T und U nun nirgends mehr auf der rechten Seite vorkommen,
können wir die Regeln T → abc und U → abc weglassen:

S → abc, aY, bX, c, cS; Y → b, bS, aY Y ; X → a, aS, bXX.
◁

Nach diesen Vorarbeiten ist es nun leicht, eine gegebene kontextfreie
Grammatik in Chomsky-Normalform umzuwandeln.

Satz 84. Jede kontextfreie Grammatik G lässt sich in eine CNF-
Grammatik G′ mit L(G′) = L(G) ∖ {ε} transformieren.

Beweis. Aufgrund der beiden vorigen Sätze können wir G in eine
CNF-Grammatik G′ mit L(G′) = L(G) ∖ {ε} transformieren, die kei-
ne ε-Produktionen und keine Variablenumbenennungen hat. Diese
können wir wie folgt in eine äquivalente CNF-Grammatik umwandeln:

• Füge für jedes Terminalsymbol a ∈ Σ eine neue Variable Xa zu
V und eine neue Regel Xa → a zu P hinzu.

• Ersetze alle Vorkommen von a durch Xa, außer wenn a alleine
auf der rechten Seite einer Regel steht.

• Führe für jede Regel A → B1 . . .Bk, k ≥ 3, neue Variablen
A1, . . . ,Ak−2 ein und ersetze sie durch die k − 1 Regeln

A→B1A1, A1→B2A2, . . . , Ak−3→Bk−2Ak−2, Ak−2→Bk−1Bk

∎

Falls G Regeln mit vielen ε-ableitbaren Variablen auf der rechten
Seite hat, empfiehlt es sich, die in obigem Beweis beschriebenen Um-
formungsschritte zuerst durchzuführen, und erst danach Regeln der
Form A→ ε und A→ B zu beseitigen (siehe Übungen).

Beispiel 85. In der Produktionenmenge

P ∶ S→abc, aY, bX, c, cS; X→a, aS, bXX; Y →b, bS, aY Y

ersetzen wir die Terminalsymbole a, b und c durch die Variablen A,
B und C (außer wenn sie alleine auf der rechten Seite einer Regel
vorkommen) und fügen die Regeln A→a, B→b, C→c hinzu:

S→ c,ABC,AY,BX,CS; X→a,AS,BXX;
Y → b,BS,AY Y ; A→a; B→b; C→c.

Ersetze nun die Regeln S→ABC, X→BXX und Y →AY Y durch
die Regeln S → AS′, S′ → BC, X → BX ′, X ′ →XX und Y → AY ′,
Y ′→Y Y :

S→c,AS′,AY,BX,CS; S′→BC;
X→a,AS,BX ′; X ′→XX; Y → b,BS,AY ′; Y ′→Y Y ;
A→a; B→b; C→c. ◁

Eine interessante Frage ist, ob in einer kontextfreien Grammatik G
jedes Wort x ∈ L(G) “eindeutig” ableitbar ist. Es ist klar, dass in
diesem Kontext Ableitungen, die sich nur in der Reihenfolge der
Regelanwendungen unterscheiden, nicht als verschieden betrachtet
werden sollten. Dies erreichen wir dadurch, dass wir die Reihenfolge
der Regelanwendungen festlegen.

Definition 86. Sei G = (V,Σ, P, S) eine kontextfreie Grammatik.
a) Eine Ableitung A0 ⇒ l1A1r1 ⇒⋯⇒ lm−1Am−1rm−1 ⇒ αm heißt

Linksableitung von α (kurz α0 ⇒∗
L αm), falls in jedem Ab-

leitungsschritt die am weitesten links stehende Variable ersetzt
wird, d.h. es gilt li ∈ Σ∗ für i = 0, . . . ,m − 1.

b) Rechtsableitungen A0 ⇒∗
R αm sind analog definiert.

c) G heißt mehrdeutig, wenn es ein Wort x ∈ L(G) gibt, das
mindestens zwei verschiedene Linksableitungen S ⇒∗

L x hat.
Andernfalls heißt G eindeutig.

Offenbar gelten für alle Wörter x ∈ Σ∗ folgende Äquivalenzen:

x ∈ L(G) ⇔ S ⇒∗ x ⇔ S ⇒∗
L x ⇔ S ⇒∗

R x.

31

3 Kontextfreie Sprachen 3.1 Chomsky-Normalform

Beispiel 87. Wir betrachten die Grammatik G = ({S},{a, b},{S →
aSbS, ε}, S). Offenbar hat das Wort aabb in G acht verschiedene
Ableitungen, die sich allerdings nur in der Reihenfolge der Regelan-
wendungen unterscheiden:

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aabbS ⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aaSbb⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aabSbS ⇒ aabbS ⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aabSbS ⇒ aabSb⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbSb⇒ aabSb⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbSb⇒ aaSbb⇒ aabb

S ⇒ aSbS ⇒ aSb⇒ aaSbSb⇒ aabSb⇒ aabb

S ⇒ aSbS ⇒ aSb⇒ aaSbSb⇒ aaSbb⇒ aabb.

Darunter sind genau eine Links- und genau eine Rechtsableitung:
S ⇒L aSbS ⇒L aaSbSbS ⇒L aabSbS ⇒L aabbS ⇒L aabb

und
S ⇒R aSbS ⇒R aSb⇒R aaSbSb⇒R aaSbb⇒R aabb.

Die Grammatik G ist eindeutig. Dies liegt daran, dass in jeder Satz-
form αSβ von G das Suffix β entweder leer ist oder mit einem b
beginnt. Daher muss jede Linksableitung eines Wortes z ∈ L(G) die
am weitesten links stehende Variable der aktuellen Satzform xSβ ge-
nau dann nach aSbS expandieren, wenn in z auf das Präfix x ein a
folgt.
Dagegen ist die Grammatik G′ = ({S},{a, b},{S → aSbS, ab, ε}, S)
mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

S ⇒L ab und S ⇒L aSbS ⇒L abS ⇒L ab. ◁

Ableitungen in einer kontextfreien Grammatik lassen sich graphisch
sehr gut durch einen Syntaxbaum (auch Ableitungsbaum genannt,
engl. parse tree) veranschaulichen.

Definition 88. Sei G = (V,E) ein Digraph.
• Ein v0-vk-Weg in G ist eine Folge von Knoten v0, . . . , vk mit

(vi, vi+1) ∈ E für i = 0, . . . , k − 1. Seine Länge ist k.
• Ein Weg heißt einfach oder Pfad, falls alle seine Knoten paar-

weise verschieden sind.
• Ein u-v-Weg der Länge ≥ 1 mit u = v heißt Zyklus.
• G heißt azyklisch, wenn es in G keinen Zyklus gibt.
• G heißt gerichteter Wald, wenn G azyklisch ist und jeder

Knoten v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
• Ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0 heißt Blatt.
• Ein Knoten w ∈ V heißt Wurzel von G, falls alle Knoten v ∈ V

von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).
• Ein gerichteter Wald, der eine Wurzel hat, heißt gerichte-
ter Baum.

• Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig
bestimmt sind, kann auf ihre Angabe verzichtet werden. Man
spricht dann auch von einem Wurzelbaum.

Definition 89. Sei A0 ⇒ l1A1r1 ⇒⋯⇒ lm−1Am−1rm−1 ⇒ αm eine
Ableitung in einer kontextfreien Grammatik G. Wir ordnen ihr den
Syntaxbaum Tm zu, wobei die Bäume T0, . . . , Tm induktiv wie folgt
definiert sind:

• T0 besteht aus einem einzigen Knoten, der mit A0 markiert ist.
• Wird im (i + 1)-ten Ableitungsschritt die Regel Ai → v1 . . . vk

mit vj ∈ Σ ∪ V für j = 1, . . . , k angewandt, so ensteht Ti+1 aus
Ti, indem wir das Blatt Ai in Ti durch folgenden Unterbaum
ersetzen:

k > 0 ∶ k = 0 ∶Ai

v1 ⋯ vk

Ai

ε

• Hierbei stellen wir uns die Kanten von oben nach unten gerichtet

32

3 Kontextfreie Sprachen 3.2 Das Pumping-Lemma für kontextfreie Sprachen

und die Kinder v1 . . . vk von links nach rechts geordnet vor.

Beispiel 90. Betrachte die Grammatik G = ({S},{a, b},{S →
aSbS, ε}, S) und die Ableitung

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aabbS ⇒ aabb.

Die zugehörigen Syntaxbäume sind dann
T0: S T1: S

aS b S

T2: S

aS b S

aS b S

T3: S

aS b S

aS b S

ε

T4: S

aS b S

aS b S

ε ε

T5: S

aS b S

aS b S ε

ε ε

Die Satzform αi ergibt sich aus Ti, indem wir die Blätter von Ti von
links nach rechts zu einem Wort zusammensetzen. ◁

Bemerkung 91.
• Aus einem Syntaxbaum ist die zugehörige Linksableitung eindeu-

tig rekonstruierbar. Daher führen unterschiedliche Linksableitun-
gen auch auf unterschiedliche Syntaxbäume. Linksableitungen
und Syntaxbäume entsprechen sich also eineindeutig. Ebenso
Rechtsableitungen und Syntaxbäume.

• Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten
in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

3.2 Das Pumping-Lemma für kontextfreie
Sprachen

In diesem Abschnitt beweisen wir das Pumping-Lemma für kontext-
freie Sprachen. Dabei nutzen wir die Tatsache aus, dass die Syntax-
bäume einer CNF-Grammatik Binärbäume sind.

Definition 92. Die Tiefe eines Baumes mit Wurzel w ist die maxi-
male Pfadlänge von w zu einem Blatt.

Lemma 93. Ein Binärbaum B der Tiefe k hat höchstens 2k Blätter.

Beweis. Wir führen den Beweis durch Induktion über k.
k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.
k ; k + 1: Sei B ein Binärbaum der Tiefe k + 1. Dann hängen an B’s
Wurzel maximal zwei Teilbäume. Da deren Tiefe ≤ k ist, haben sie
nach IV höchstens 2k Blätter. Also hat B ≤ 2k+1 Blätter. ∎

Korollar 94. Ein Binärbaum B mit mehr als 2k−1 Blättern hat min-
destens Tiefe k.

Beweis. Würde B mehr als 2k−1 Blätter und eine Tiefe ≤ k−1 besitzen,
so würde dies im Widerspruch zu Lemma 93 stehen. ∎

Satz 95 (Pumping-Lemma für kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle
Wörter z ∈ L mit ∣z∣ ≥ l in z = uvwxy zerlegen lassen mit

1. vx /= ε,
2. ∣vwx∣ ≤ l und
3. uviwxiy ∈ L für alle i ≥ 0.

Beweis. Sei G = (V,Σ, P, S) eine CNF-Grammatik für L ∖ {ε}. Dann
gibt es in G für jedes Wort z = z1 . . . zn ∈ L mit n ≥ 1, eine Ablei-

T2n−1
S

tung
S = α0 ⇒ α1⋯⇒ αm = z.

Da G in CNF ist, werden hierbei n − 1 Regeln
der Form A → BC und n Regeln der Form
A → a angewandt, d.h. m = 2n − 1 und z hat
den Syntaxbaum T2n−1. Wir können annehmen,

33

3 Kontextfreie Sprachen 3.3 Der CYK-Algorithmus

dass zuerst alle Regeln der Form A→ BC und
danach die Regeln der Form A → a zur An-
wendung kommen. Dann besteht die Satzform
αn−1 aus n Variablen und der Syntaxbaum Tn−1
hat ebenfalls n Blätter. Setzen wir l = 2k, wobei
k = ∥V ∥ ist, so hat Tn−1 im Fall n ≥ l mindestens

Tn−1

π

A
A

l = 2k > 2k−1 Blätter und daher mindestens die
Tiefe k. Sei π ein von der Wurzel ausgehender
Pfad maximaler Länge in Tn−1. Dann hat π die
Länge ≥ k und unter den letzten k + 1 Knoten
von π müssen zwei mit derselben Variablen A
markiert sein.

Seien U und U ′ die von diesen Knoten ausge-
henden Unterbäume des vollständigen Syntax-
baums T2n−1. Nun zerlegen wir z wie folgt. w′

ist das Teilwort von z = uw′y, das von U erzeugt
wird und w ist das Teilwort von w′ = vwx, das
von U ′ erzeugt wird. Jetzt bleibt nur noch zu
zeigen, dass diese Zerlegung die geforderten 3
Eigenschaften erfüllt.

U
U ′u

v
w

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w′

x
y

• Da U mehr Blätter hat als U ′, ist vx ≠ ε (Bedingung 1).
• Da der Baum U∗ = U ∩ Tn−1 die Tiefe ≤ k hat (andernfalls wäre
π nicht maximal), hat U∗ höchstens 2k = l Blätter. Da U∗ genau
∣vwx∣ Blätter hat, folgt ∣vwx∣ ≤ l (Bedingung 2).

• Für den Nachweis von Bedingung 3 lassen sich schließlich Syntax-
bäume Bi für die Wörter uviwxiy, i ≥ 0, wie folgt konstruieren:

U

B1

u
v
w
U ′

x
y

B0

u w
U ′

y
U

B2

u
v

v
w
U ′

x

x

y

B0 entsteht also aus B1 = T2n−1, indem wir U durch U ′ ersetzen,
und Bi+1 entsteht aus Bi, indem wir U ′ durch U ersetzen. ∎

Satz 96. Die Klasse CFL ist nicht abgeschlossen unter Schnitt und
Komplement.

Beweis. Die beiden Sprachen
L1 = {anbmcm ∣ n,m ≥ 0} und L2 = {anbncm ∣ n,m ≥ 0}

sind kontextfrei. Nicht jedoch L1 ∩L2 = {anbncn ∣ n ≥ 0}. Also ist CFL
nicht unter Schnitt abgeschlossen.
Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlos-
sen ist, kann CFL wegen de Morgan nicht unter Komplementbildung
abgeschlossen sein. ∎

3.3 Der CYK-Algorithmus

In diesem Abschnitt stellen wir den bereits angekündigten effizienten
Algorithmus zur Lösung des Wortproblems für kontextfreie Gramma-
tiken vor.

Wortproblem für kontextfreie Grammatiken:
Gegeben: Eine kontextfreie Grammatik G und ein Wort x.
Gefragt: Ist x ∈ L(G)?

Wir lösen das Wortproblem, indem wir G zunächst in Chomsky-
Normalform bringen und dann den nach seinen Autoren Cocke,
Younger und Kasami benannten CYK-Algorithmus anwenden, welcher
auf dem Prinzip der Dynamischen Programmierung beruht.
Satz 97. Das Wortproblem für kontextfreie Grammatiken ist effizient
entscheidbar.

Beweis. Seien eine Grammatik G = (V,Σ, P, S) und ein Wort x =
x1 . . . xn gegeben. Falls x = ε ist, können wir effizient prüfen, ob S ⇒∗ ε

34

3 Kontextfreie Sprachen 3.3 Der CYK-Algorithmus

gilt. Andernfalls transformieren wir G in eine CNF-Grammatik G′ für
die Sprache L(G) ∖ {ε}. Chomsky-Normalform. Es lässt sich leicht
verifizieren, dass die nötigen Umformungsschritte effizient ausführbar
sind. Nun setzen wir den CYK-Algorithmus auf das Paar (G′, x) an,
der die Zugehörigkeit von x zu L(G′) wie folgt entscheidet.
Bestimme für l = 1, . . . , n und k = 1, . . . , n − l + 1 die Menge

Vl,k(x) = {A ∈ V ∣ A⇒∗ xk . . . xk+l−1}

aller Variablen, aus denen das an Position k beginnende Teilwort
xk . . . xk+l−1 von x der Länge l ableitbar ist. Dann gilt offensichtlich

x ∈ L(G′) ⇔ S ∈ Vn,1(x).

Für l = 1 ist
V1,k(x) = {A ∈ V ∣ A→ xk}

und für l = 2, . . . , n ist

Vl,k(x) = {A ∈ V ∣ ∃l′ < l ∃B ∈ Vl′,k(x) ∃C ∈ Vl−l′,k+l′(x):A→ BC}.

A

B

xk ⋯ xk+l′−1

C

xk+l′ ⋯ xk+l−1

Eine Variable A gehört also ge-
nau dann zu Vl,k(x), l ≥ 2, falls
eine Zahl l′ ∈ {1, . . . , l − 1} und
eine Regel A → BC existieren,
so dass B ∈ Vl′,k(x) und C ∈
Vl−l′,k+l′(x) sind. ∎

Algorithmus CYK(G,x)
1 Input: CNF−Grammatik G = (V,Σ, P, S) und ein Wort x = x1 . . . xn
2 for k ∶= 1 to n do
3 V1,k ∶= {A ∈ V ∣ A→ xk ∈ P}
4 for l ∶= 2 to n do
5 for k ∶= 1 to n − l + 1 do
6 Vl,k ∶= ∅

7 for l′ ∶= 1 to l − 1 do
8 for all A→ BC ∈ P do
9 if B ∈ Vl′,k and C ∈ Vl−l′,k+l′ then

10 Vl,k ∶= Vl,k ∪ {A}
11 if S ∈ Vn,1 then accept else reject

Der CYK-Algorithmus lässt sich leicht dahingehend modifizieren, dass
er im Fall x ∈ L(G) auch einen Syntaxbaum T von x ausgibt. Hierzu
genügt es, zu jeder Variablen A in Vl,k den Wert von l′ und die Regel
A→ BC zu speichern, die zur Aufnahme von A in Vl,k geführt haben.
Im Fall S ∈ Vn,1(x) lässt sich dann mithilfe dieser Information leicht
ein Syntaxbaum T von x konstruieren.

Beispiel 98. Betrachte die CNF-Grammatik mit den Produktionen

S→AS′,AY,BX,CS, c; S′→BC; X→AS,BX ′, a; X ′→XX;
Y →BS,AY ′, b; Y ′→Y Y ; A→a; B→b; C→c.

Dann erhalten wir für das Wort x = abb folgende Mengen Vl,k:

xk: a b b

l:1 {X,A} {Y,B} {Y,B}
2 {S} {Y ′}
3 {Y }

Wegen S /∈ V3,1(abb) ist x /∈ L(G).
Dagegen gehört das Wort y = aababb wegen S ∈ V6,1(aababb) zu L(G):

a a b a b b

{X,A} {X,A} {Y,B} {X,A} {Y,B} {Y,B}
{X ′} {S} {S} {S} {Y ′}
{X} {X} {Y } {Y }
{X ′} {S} {Y ′}
{X} {Y }
{S} ◁

35

3 Kontextfreie Sprachen 3.4 Kellerautomaten

3.4 Kellerautomaten

Wie müssen wir das Maschinenmodell des DFA erweitern, damit die
Sprache L = {anbn ∣ n ≥ 0} und alle anderen kontextfreien Sprachen
erkannt werden können? Dass ein DFA die Sprache L = {anbn ∣ n ≥ 0}
nicht erkennen kann, liegt an seinem beschränkten Speichervermögen,
das zwar von L aber nicht von der Eingabe abhängen darf.
Um L erkennen zu können, reicht bereits ein so genannter Kellerspei-
cher (Stapel, engl. stack, pushdown memory) aus. Dieser erlaubt nur
den Zugriff auf die höchste belegte Speicheradresse. Ein Kellerautomat

• verfügt über einen Kellerspeicher,

• kann ε-Übergänge machen,

• hat Lesezugriff auf das aktuelle
Eingabezeichen und auf das obers-
te Kellersymbol,

• kann in jedem Schritt das oberste
Kellersymbol löschen und durch
beliebig viele Symbole ersetzen.

x1 ⋯ xi ⋯ xn

A

B

C

#

Eingabe-
band

Lesekopf

Keller-
speicher

Steuer-
einheit

Ð→

Für eine Menge M bezeichne Pe(M) die Menge aller endlichen Teil-
mengen von M , d.h.

Pe(M) = {A ⊆M ∣ A ist endlich}.

Definition 99. Ein Kellerautomat mit Endzuständen (auch
FS-PDA für engl. final state pushdown automaton) ist ein 7-Tupel
M = (Z,Σ,Γ, δ, q0,#,E). Dabei ist

• Z ≠ ∅ eine endliche Menge von Zuständen,
• Σ das Eingabealphabet,
• Γ das Kelleralphabet,
• δ ∶ Z×(Σ∪{ε})×Γ→ Pe(Z×Γ∗) die Überführungsfunktion,

• q0 ∈ Z der Startzustand,
• # ∈ Γ das Kelleranfangszeichen und
• E ⊆ Z die Menge der Endzustände.

Wenn q der momentane Zustand, A das oberste Kellerzeichen und
u ∈ Σ das nächste Eingabezeichen (bzw. u = ε) ist, so kann M im Fall
(p,B1 . . .Bk) ∈ δ(q, u,A)

• in den Zustand p wechseln,
• den Lesekopf auf dem Eingabeband um ∣u∣ Positionen vorrücken

und
• das Zeichen A im Keller durch die Zeichenfolge B1 . . .Bk erset-

zen.
Hierfür sagen wir auch, M führt die Anweisung quA → pB1 . . .Bk

aus. Da im Fall u = ε kein Eingabezeichen gelesen wird, spricht man
auch von einem spontanen Übergang (oder ε-Übergang). Zudem
spricht man im Fall k = 0 von einer pop-Operation und im Fall
k = 2 und B2 = A von einer push-Operation.
Eine Konfiguration wird durch ein Tripel

K = (q, xi . . . xn,A1 . . .Al) ∈ Z ×Σ∗ × Γ∗

beschrieben und besagt, dass
• q der momentane Zustand,
• xi . . . xn der ungelesene Rest der Eingabe und
• A1 . . .Al der aktuelle Kellerinhalt ist (A1 steht oben).

Eine Anweisung quA1 → pB1 . . .Bk (mit u ∈ {ε, xi}) überführt die
Konfiguration K in die Folgekonfiguration

K ′ = (p, xj . . . xn,B1 . . .BkA2 . . .Al) mit j = i + ∣u∣.

Hierfür schreiben wir auch kurz K ⊢ K ′. Eine Rechnung von M
bei Eingabe x ist eine Folge von Konfigurationen K0,K1,K2 . . . mit
K0 = (q0, x,#) und K0 ⊢ K1 ⊢ K2⋯. K0 heißt Startkonfiguration

36

3 Kontextfreie Sprachen 3.4 Kellerautomaten

von M bei Eingabe x. Die reflexive, transitive Hülle von ⊢ bezeich-
nen wir wie üblich mit ⊢∗. Die von M akzeptierte oder erkannte
Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃p ∈ E,α ∈ Γ∗ ∶ (q0, x,#) ⊢∗ (p, ε,α)}.

Ein Kellerautomat M mit Endzuständen akzeptiert also genau dann
ein Wort x, wenn es eine Rechnung gibt, bei der M das gesamte
Eingabewort bis zum Ende liest und einen Endzustand erreicht.

Beispiel 100. Sei M = (Z,Σ,Γ, δ, p,#,E) mit Z ={p, q, r}, Σ={a, b},
Γ={A,#}, E={r} und der Überführungsfunktion

δ ∶ pa#→ pA# (1)
paA→ pAA (2)
pε#→ q# (3)
pbA → q (4)
qbA → q (5)
qε# → r (6)

p q r

a#,A# (1)
aA,AA (2)

ε#,# (3)
bA, ε (4)

bA, ε (5)

ε#, ε (6)

Dann akzeptiert M die Eingabe x = aabb:

(p, aabb,#) ⊢
(1)
(p, abb,A#) ⊢

(2)
(p, bb,AA#) ⊢

(4)
(q, b,A#) ⊢

(5)
(q, ε,#)

⊢
(6)
(r, ε, ε) ◁

Es gibt noch ein weiteres Akzeptanzkriterium, das die Angabe von
Endzuständen überflüssig macht. Sei M = (Z,Σ,Γ, δ, q0,#) ein Kel-
lerautomat ohne Endzustandsmenge. Die von M durch Leeren des
Kellers akzeptierte (oder erkannte) Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃p ∈ Z ∶ (q0, x,#) ⊢∗ (p, ε, ε)}.

Wir nennenM auch einen ES-PDA (für engl. empty stack pushdown
automaton) oder einfach PDA. Ein Wort x wird also genau dann von
einem PDA M akzeptiert, wenn es eine Rechnung gibt, bei der M das

gesamte Eingabewort bis zum Ende liest und den Keller leert. Man
beachte, dass bei leerem Keller kein weiterer Übergang mehr möglich
ist.
In den Übungen wird gezeigt, dass FS-PDAs und ES-PDAs gleich-
mächtig sind, d.h. es gilt

{L(M) ∣M ist ein FS-PDA} = {L(M) ∣M ist ein ES-PDA}.

Beispiel 101. Sei M = (Z,Σ,Γ, δ, q,#) ein PDA mit Z = {q, p},
Σ = {a, b}, Γ = {A,#} und den Anweisungen

δ ∶ qε#→ q (1) qa#→ qA (2)
qaA→ qAA (3) qbA → p (4)
pbA→ p (5)

q p

ε#, ε (1)
a#,A (2)
aA,AA (3)

bA, ε (4)

bA, ε (5)

Dann akzeptiert M die Eingabe aabb:

(q, aabb,#) ⊢
(2)

(q, abb,A) ⊢
(3)

(q, bb,AA) ⊢
(4)

(p, b,A) ⊢
(5)

(p, ε, ε).

Allgemeiner akzeptiert M das Wort x = anbn mit folgender Rechnung:
n = 0: (q, ε,#) ⊢

(1)
(p, ε, ε).

n ≥ 1: (q, anbn,#) ⊢
(2)

(q, an−1bn,A) ⊢
(3)
n−1 (q, bn,An)

⊢
(4)

(p, bn−1,An−1) ⊢
(5)
n−1 (p, ε, ε).

Dies zeigt {anbn ∣ n ≥ 0} ⊆ L(M). Als nächstes zeigen wir, dass jede
von M akzeptierte Eingabe x = x1 . . . xn die Form x = ambm hat.
Ausgehend von der Startkonfiguration (q, x,#) sind nur die Anwei-
sungen (1) oder (2) ausführbar. Falls M Anweisung (1) wählt, wird
der Keller geleert. Daher kann M in diesem Fall nur das leere Wort
x = ε = a0b0 akzeptieren.
Falls die akzeptierende Rechnung mit Anweisung (2) beginnt, muss
x1 = a sein. Danach ist nur Anweisung (3) ausführbar, bis M das

37

3 Kontextfreie Sprachen 3.4 Kellerautomaten

erste b liest:

(q, x1 . . . xn,#) ⊢
(2)

(q, x2 . . . xn,A) ⊢
(3)

m−1 (q, xm+1 . . . xn,Am)

⊢
(4)

(p, xm+2 . . . xn,Am−1)

mit x1 = x2 = ⋯ = xm = a und xm+1 = b. Damit M den Keller leeren
kann, müssen jetzt noch genau m − 1 b’s kommen, weshalb x auch in
diesem Fall die Form ambm hat. ◁

Als nächstes zeigen wir, dass PDAs genau die kontextfreien Sprachen
erkennen.

Satz 102. CFL ⊆ {L(M) ∣M ist ein PDA}.

Beweis. Idee: Konstruiere zu einer kontextfreien Grammatik G =
(V,Σ, P, S) einen PDA M = ({q},Σ,Γ, δ, q0, S) mit Γ = V ∪Σ, so dass
gilt:

S ⇒∗
L x1 . . . xn gdw. (q, x1 . . . xn, S) ⊢∗ (q, ε, ε).

Hierzu fügen wir für jede Regel A→G α in P die Anweisung qεA→ qα
und für jedes a ∈ Σ die Anweisung qaa→ qε zu δ hinzu.
M berechnet also nichtdeterministisch eine Linksableitung für die
Eingabe x. Da M hierbei den Syntaxbaum von oben nach unten
aufbaut, wird M als Top-Down Parser bezeichnet. Nun ist leicht zu
sehen, dass sogar folgende Äquivalenz gilt:

S ⇒m
L x1 . . . xn gdw. (q, x1 . . . xn, S) ⊢m+n (q, ε, ε).

Daher folgt

x ∈ L(G) ⇔ S ⇒∗
L x ⇔ (q, x, S) ⊢∗ (q, ε, ε) ⇔ x ∈ L(M).

∎

Beispiel 103. Sei G = ({S},{a, b}, P, S) mit

P ∶ S → aSbS, (1) S → a. (2)

Der zugehörige PDA besitzt dann die Anweisungen

δ: qaa→ qε, (0) qbb → qε, (0′)
qεS → qaSbS, (1′) qεS → qa. (2′)

Der Linksableitung

S ⇒
(1)
aSbS ⇒

(2)
aabS ⇒

(2)
aaba

in G entspricht beispielsweise die akzeptierende Rechnung

(q, aaba,S) ⊢
(1′)

(q, aaba, aSbS) ⊢
(0)

(q, aba,SbS)

⊢
(2′)

(q, aba, abS) ⊢
(0)

(q, ba, bS)

⊢
(0′)

(q, a, S) ⊢
(2′)

(q, a, a) ⊢
(0)

(q, ε, ε)

von M und umgekehrt. ◁

Obige Konstruktion eines PDA M aus einer kontextfreien Grammatik
lässt sich leicht umdrehen, falls M nur einen Zustand hat. Zu einem
solchen PDA M = ({z} ,Σ,Γ, δ, z,#) lässt sich wie folgt eine kontext-
freie Grammatik G = (V,Σ, P,X#) mit L(G) = L(M) konstruieren:

• Die Variablenmenge von G ist V = {XA ∣A ∈ Γ}
(im Fall Σ ∩ Γ = ∅ können wir auch einfach V = Γ setzen)

• die Startvariable von G ist X# und
• P enthält für jede Anweisung zuA→ zA1 . . .Ak vonM die Regel

XA → uXA1 . . .XAk

Dann lässt sich jede akzeptierende Rechnung (z, x,#) ⊢m (z, ε, ε) von
M(x) der Länge m direkt in eine Linksableitung X# ⇒m

L x in G der
Länge m transformieren und umgekehrt.

38

3 Kontextfreie Sprachen 3.4 Kellerautomaten

Beispiel 104. Betrachte den PDA M = ({z} ,{a, b},{S, a, b}, δ, z, S)
mit den Anweisungen

δ ∶ zaa→ z (1) zbb→ z (2) zεS → zaSb (3) zεS → z (4)

den wir aus der Grammatik G = ({S},{a, b}, P, S) mit den beiden Re-
geln S → aSb, ε konstruiert haben. Dann führt M auf die Grammatik
G′ = ({XS,Xa,Xb},{a, b}, P ′,XS) mit den Regeln

P ′:Xa → a (1′) Xb → b (2′) XS →XaXSXb (3′) XS → ε (4′)

Der Rechnung

(z, ab, S) ⊢
(3)

(z, ab, aSb) ⊢
(1)

(z, b, Sb) ⊢
(4)

(z, b, b) ⊢
(2)

(z, ε, ε)

von M entspricht dann folgende Linksableitung in G (und umgekehrt):

XS ⇒
(3′)

XaXSXb⇒
(1′)

aXSXb ⇒
(4′)

aXb ⇒
(2′)

ab

Man beachte, dass G′ eine aufgeblähte Variante von G ist. ◁

Um also zu einem PDA M = (Z,Σ,Γ, δ, q0,#) eine kontextfreie Gram-
matik G = (V,Σ, P, S) mit L(G) = L(M) zu konstruieren, genügt es,
M wie folgt in einen äquivalenten PDA M ′ = ({z} ,Σ,Γ′, δ′, z, S) mit
nur einem Zustand z zu transformieren:

• Das Kelleralphabet vonM ′ ist Γ′ = {S}∪{XpAq ∣A ∈ Γ, p, q ∈ Z}.
• Zudem fügen wir die folgenden Anweisungen zu δ′ hinzu:

– für jeden Zustand q ∈ Z die Anweisung

zεS → zXq0#q

– für jede Anweisung p0uA0 → p1A1 . . .Ak, k ≥ 0, von M
und für jede Folge p2, . . . , pk+1 ∈ Z von k Zuständen die
Anweisung

zuXp0A0pk+1→ zXp1A1p2 . . .XpkAkpk+1

Dabei rät M ′ durch die Wahl der Anweisung
• zεS → zXq0#q den Zustand q, den M mit leerem Keller (also

im letzten Rechenschritt) erreicht, und
• zuXp0A0pk+1 → zXp1A1p2 . . .XpkAkpk+1 im Fall k ≥ 2 für i =

1, . . . , k − 1 die Zustände pi+1, die M bei Freigabe der mit Ai
belegten Speicherzelle erreicht. Man beachte, dass der Zustand
pk+1 durch das aktuelle oberste Kellersymbol Xp0A0pk+1 bereits
vorgegeben ist, da er mit dem Zustand identisch ist, den M bei
Freigabe der mit A0 belegten Speicherzelle erreicht und daher
schon geraten wurde als diese Speicherzelle belegt wurde.

Zudem verifiziert M ′ bei jeder pop-Operation zuXp0A0p1→ z, dass M
den (zuvor geratenen) Zustand p1 bei Freigabe der mit A0 belegten
Speicherzelle auch tatsächlich erreichen kann. Damit die Verifikation
möglich ist, muss M ′ zu diesem Zeitpunkt nicht nur den aktuellen
Zustand p0 und das oberste Kellersymbol A0 von M , sondern auch
den Folgezustand p1 nach der pop-Operation kennen.
Wir werden gleich zeigen, dass jede Rechnung (p, x,A) ⊢m (q, ε, ε)
von M einer Rechnung (z, x,XpAq) ⊢m (z, ε, ε) von M ′ entspricht und
umgekehrt. Aus dieser Äquivalenz folgt nun sofort L(M) = L(M ′):

x ∈ L(M) ⇔ M hat für ein q ∈ Z eine akzeptierende Rechnung
(q0, x,#) ⊢m (q, ε, ε) der Länge m ≥ 1

⇔ M ′ hat für ein q ∈ Z eine akzeptierende Rechnung
(z, x,S) ⊢ (z, x,Xq0#q) ⊢m (z, ε, ε) mit m ≥ 1

⇔ x ∈ L(M ′)

Beispiel 105. Betrachte den PDA M = ({p, q},{a, b},{A,#}, δ, p,#)
mit den Anweisungen

δ ∶pε#→ q (1) pa#→pA (2) paA→pAA (3)
pbA→ q (4) qbA → q (5)

39

3 Kontextfreie Sprachen 3.4 Kellerautomaten

Der zugehörige PDA M ′ = ({z},{a, b},Γ′, δ′, z, S) mit nur einem Zu-
stand hat dann das Kelleralphabet

Γ′ = {S,Xp#p,Xp#q,Xq#p,Xq#q,XpAp,XpAq,XqAp,XqAq}

Zudem enthält M ′ neben den beiden Anweisungen zεS→zXp#p (0)
und zεS→zXp#q (0′) die folgenden Anweisungen:

Anweisung von M k p2, . . . , pk+1 Anweisungen von M ′

pε#→ q (1) 0 - zεXp#q→z (1′)

pa#→ pA (2) 1 p zaXp#p→zXpAp (2′)
q zaXp#q→zXpAq (2′′)

paA→ pAA (3) 2 p, p zaXpAp→zXpApXpAp (3′)
p, q zaXpAq→zXpApXpAq (3′′)
q, p zaXpAp→zXpAqXqAp (3′′′)
q, q zaXpAq→zXpAqXqAq (3′′′′)

pbA→ q (4) 0 - zbXpAq→z (4′)

qbA→ q (5) 0 - zbXqAq→z (5′)

Der (akzeptierenden) Rechnung

(p, aabb,#) ⊢
(2)

(p, abb,A) ⊢
(3)

(p, bb,AA) ⊢
(4)

(q, b,A) ⊢
(5)

(q, ε, ε)

#
a

p

A

a
p

A

A

b
p

A

b
q q

von M entspricht dann folgende Rechnung von M ′:

(z, aabb, S) ⊢
(0′)

(z, aabb,Xp#q) ⊢
(2′′)

(z, abb,XpAq)

⊢
(3′′′′)

(z, bb,XpAqXqAq) ⊢
(4′)

(z, b,XqAq) ⊢
(5′)

(z, ε, ε)

S

ε

Xp#q

a

XpAq

a

XpAq

XqAq

b

XqAq

b

Es bleibt noch zu zeigen, dass für alle p, q ∈ Z, A ∈ Γ, x ∈ Σ∗ und
m ≥ 0 gilt:

(p, x,A) ⊢mM (q, ε, ε) gdw. (z, x,XpAq) ⊢mM ′ (z, ε, ε) (∗)

Induktionsanfang (m = 0): Da weder M noch M ′ in m = 0 Re-
chenschritten ein Symbol aus dem Keller entfernen kann, gilt
die Äquivalenz (∗) für m = 0.

Induktionsschritt (m;m + 1): Sei eine Rechnung (p, x,A) ⊢m+1

(q, ε, ε) der Länge m + 1 von M gegeben und sei puA →
p1A1 . . .Ak die im ersten Rechenschritt ausgeführte Anweisung:

(p, x,A) ⊢ (p1, x
′,A1 . . .Ak) ⊢m (q, ε, ε)

Im Fall k ≥ 2 sei pi für i = 2, . . . , k der Zustand, in den M mit
dem Kellerinhalt Ai . . .Ak gelangt. Dann hat M ′ die Anwei-
sung zuXpAq → zXp1A1p2 . . .Xpk−1Ak−1pk

XpkAkq. Zudem sei ui für
i = 1, . . . , k das zwischen den Besuchen von pi und pi+1 gelese-
ne Teilwort von x, wobei pk+1 = q ist. Dann gilt x = ux′ und
x′ = u1 . . . uk sowie

(p1, x
′,A1 . . .Ak) ⊢∗ (pi, ui . . . uk,Ai . . .Ak) ⊢∗ (q, ε, ε)

Für i = 1, . . . , k ex. daher Zahlen mi ≥ 1 mit

(pi, ui,Ai) ⊢mi (pi+1, ε, ε) und m1 +⋯ +mk =m

Daher hat M ′ nach IV die Rechnungen (z, ui,XpiAipi+1) ⊢mi

(z, ε, ε). Zudem hat M ′ wegen puA →M p1A1 . . .Ak die Anwei-
sung zuXpAq → zXp1A1p2 . . .Xpk−1Ak−1pk

XpkAkq, so dass wir die

40

3 Kontextfreie Sprachen 3.4 Kellerautomaten

gesuchte Rechnung der Länge m + 1 von M ′ wie folgt erhalten:

(z, x,XpAq) = (z, uu1 . . . uk,XpAq)
⊢ (z, u1 . . . uk,Xp1A1p2 . . .Xpk−1Ak−1pk

XpkAkq)
⊢m1 (z, u2 . . . uk,Xp2A2p3 . . .Xpk−1Ak−1pk

XpkAkq)
⋮
⊢mk−1 (z, uk,XpkAkq)
⊢mk (z, ε, ε)

Entsprechend lässt sich umgekehrt aus jeder solchen Rechnung
von M ′ eine Rechnung (p, x,A) ⊢m+1 (q, ε, ε) von M gewinnen.

Wir können die beiden Schritte
• PDA M → PDA M ′ mit nur einem Zustand und
• PDA M ′ mit nur einem Zustand → kontextfreie Grammatik G

zu einem Schritt zusammenfassen. Dazu konstruieren wir wie folgt
zu einem PDA M = (Z,Σ,Γ, δ, q0,#) eine äquivalente kontextfreie
Grammatik G = (V,Σ, P, S). Die Variablenmenge von G ist

V = {S} ∪ {XpAq ∣A ∈ Γ, p, q ∈ Z}

und P enthält für jeden Zustand q ∈ Z die Regel

S →Xq0#q

und für jede Anweisung puA → p1A1 . . .Ak, k ≥ 0, von M und jede
Zustandsfolge p2, . . . , pk+1 die Regel

XpApk+1→ uXp1A1p2 . . .XpkAkpk+1

Beispiel 106. Sei M der PDA ({p, q},{a, b},{A,#}, δ, p,#) mit

δ ∶ pε#→ qε, (1) paA→pAA, (3) qbA→ qε. (5)
pa#→pA, (2) pbA→ qε, (4)

Dann erhalten wir die Grammatik G = (V,Σ, P, S) mit der Variablen-
menge

V = {S,Xp#p,Xp#q,Xq#p,Xq#q,XpAp,XpAq,XqAp,XqAq}.

Die Regelmenge P enthält neben den beiden Startregeln

S→Xp#p,Xp#q (0,0′)

die folgenden Produktionen:

Anweisung
puA→ p1A1 . . .Ak

k p2, . . . , pk+1
zugehörige Regel

XpApk+1→ uXp1A1p2 . . .XpkAkpk+1

pε#→ qε (1) 0 - Xp#q→ε (1′)
pa#→ pA (2) 1 p Xp#p→aXpAp (2′)

q Xp#q→aXpAq (2′′)
paA→ pAA (3) 2 p, p XpAp→aXpApXpAp (3′)

p, q XpAq→aXpApXpAq (3′′)
q, p XpAp→aXpAqXqAp (3′′′)
q, q XpAq→aXpAqXqAq (3′′′′)

pbA→ qε (4) 0 - XpAq→b (4′)
qbA→ qε (5) 0 - XqAq→b (5′)

Der akzeptierenden Rechnung

(p, aabb,#) ⊢
(2)

(p, abb,A) ⊢
(3)

(p, bb,AA) ⊢
(4)

(q, b,A) ⊢
(5)

(q, ε, ε)

von M entspricht dann die Ableitung

S ⇒
(0′)

Xp#q ⇒
(2′′)

aXpAq ⇒
(3′′′′)

aaXpAqXqAq ⇒
(4′)

aabXqAq ⇒
(5′)

aabb

in G und umgekehrt. ◁

41

3 Kontextfreie Sprachen 3.5 Deterministisch kontextfreie Sprachen

3.5 Deterministisch kontextfreie Sprachen

Von besonderem Interesse sind kontextfreie Sprachen, die von einem
deterministischen Kellerautomaten erkannt werden können.

Definition 107. Sei M ein ES-PDA oder FS-PDA. M heißt deter-
ministisch, falls ⊢ eine rechtseindeutige Relation ist:

K ⊢K1 ∧K ⊢K2 ⇒K1 =K2.

Äquivalent hierzu ist, dass die Überführungsfunktion δ für alle
(q, a,A) ∈ Z ×Σ × Γ folgende Bedingung erfüllt:

∥δ(q, a,A)∥ + ∥δ(q, ε,A)∥ ≤ 1. (∗)

Dies liegt daran, dass eine Konfiguration K = (q, xi+1 . . . xn,A1 . . .Ak),
0 ≤ i ≤ n, genau

N(K) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, k = 0
∥δ(q, ε,A1)∥, i = n und k ≥ 1
∥δ(q, xi+1,A1)∥ + ∥δ(q, ε,A1)∥, i < n und k ≥ 1

verschiedene Folgekonfigurationen hat.

Beispiel 108. Der ES-PDAM = ({q0, q1, q2},{a, b, c},{A,B,#}, δ, q0,#)
mit der Überführungsfunktion

δ∶ q0a#→ q0A# q0b#→ q0B# q0aA→ q0AA q0bA→ q0BA

q0aB→ q0AB q0bB→ q0BB q0cA→ q1A q0cB→ q1B

q1aA→ q1 q1bB→ q1 q1ε#→ q2

erkennt die Sprache L(M) = {xcxR ∣ x ∈ {a, b}+}. Um auf einen Blick
erkennen zu können, ob M deterministisch ist, empfiehlt es sich, δ in
Form einer Tabelle darzustellen:

δ q0,# q0,A q0,B q1,# q1,A q1,B q2,# q2,A q2,B

ε − − − q2 − − − − −
a q0A# q0AA q0AB − q1 − − − −
b q0B# q0BA q0BB − − q1 − − −
c − q1A q1B − − − − − −

Man beachte, dass jedes Tabellenfeld höchstens eine Anweisung enthält
und jede Spalte, die einen ε-Eintrag in der ersten Zeile hat, sonst
keine weiteren Einträge enthält. Daher ist für alle (q, a,A) ∈ Z ×Σ×Γ
die Bedingung

∥δ(q, a,A)∥ + ∥δ(q, ε,A)∥ ≤ 1
erfüllt. ◁

Von deterministischen ES-PDAs können nicht alle regulären Spra-
chen erkannt werden. Um beispielsweise die Sprache L = {a, aa} zu
erkennen, muss der Keller von M nach Lesen von a geleert werden.
Daher ist es M nicht mehr möglich, die Eingabe aa zu akzeptieren.
Deterministische ES-PDAs können also nur präfixfreie Sprachen L
akzeptieren (d.h. kein Wort x ∈ L ist Präfix eines anderen Wortes in L).
Aus diesem Grund verwenden wir zur Definition der deterministisch
kontextfreien Sprachen FS-DPDAs anstelle von ES-DPDAs.
Definition 109. Die Klasse der deterministisch kontextfreien Spra-
chen ist definiert durch

DCFL = {L(M)∣M ist ein deterministischer FS-PDA}.
(deterministic context free languages). Ein deterministischer FS-PDA
wird auch als FS-DPDA (für engl. Final State Deterministic Push
Down Automaton) oder einfach als DPDA bezeichnet.

Als nächstes zeigen wir, dass DCFL unter Komplementbildung abge-
schlossen ist. Versuchen wir, die End- und Nichtendzustände eines
DPDA M einfach zu vertauschen, um einen DPDA M für L(M) zu
erhalten, so ergeben sich folgende Schwierigkeiten:

42

3 Kontextfreie Sprachen 3.5 Deterministisch kontextfreie Sprachen

1. Falls M eine Eingabe x nicht zu Ende liest, wird x weder von
M noch von M akzeptiert.

2. Falls M nach dem Lesen von x noch ε-Übergänge ausführt und
dabei End- und Nichtendzustände besucht, wird x von M und
von M akzeptiert.

Der nächste Satz zeigt, wie sich Problem 1 beheben lässt.

Satz 110. Jede Sprache L ∈ DCFL wird von einem DPDAM ′ erkannt,
der alle Eingaben zu Ende liest.

Beweis. Sei M = (Z,Σ,Γ, δ, q0,#,E) ein DPDA mit L(M) = L. Falls
M eine Eingabe x = x1 . . . xn nicht zu Ende liest, muss einer der
folgenden drei Gründe vorliegen:

1. M gerät in eine Konfiguration (q, xi . . . xn, ε), i ≤ n, mit leerem
Keller.

2. M gerät in eine Konfiguration (q, xi . . . xn,Aγ), i ≤ n, in der
wegen δ(q, xi,A) = δ(q, ε,A) = ∅ keine Anweisung ausführbar
ist.

3. M gerät in eine Konfiguration (q, xi . . . xn,Aγ), i ≤ n, so dass
M ausgehend von der Konfiguration (q, ε,A) eine unendliche
Folge von ε-Anweisungen ausführt.

Die erste Ursache schließen wir aus, indem wir ein neues Zeichen ◻
auf dem Kellerboden platzieren:

(a) sε#→ q0#◻ (dabei sei s der neue Startzustand).

Die zweite Ursache schließen wir durch Hinzunahme eines Fehlerzu-
stands r sowie folgender Anweisungen aus (hierbei ist Γ′ = Γ ∪ {◻}):

(b) qaA→ rA, für alle (q, a,A) ∈ Z ×Σ × Γ′ mit A = ◻ oder
δ(q, a,A) = δ(q, ε,A) = ∅,

(c) raA→ rA, für alle a ∈ Σ und A ∈ Γ′.

Als nächstes verhindern wir die Ausführung einer unendlichen Folge
von ε-Übergängen. Dabei unterscheiden wir die beiden Fälle, ob M
hierbei auch Endzustände besucht oder nicht. Falls ja, sehen wir einen
Umweg über den neuen Endzustand t vor.

(d) qεA→ rA, für alle q ∈ Z und A ∈ Γ, so dass M ausge-
hend von der Konfiguration (q, ε,A) unend-
lich viele ε-Übergänge ausführt ohne dabei
einen Endzustand zu besuchen.

(e) qεA→ tA
tεA→ rA,

für alle q ∈ Z und A ∈ Γ, so dass M ausge-
hend von der Konfiguration (q, ε,A) unend-
lich viele ε-Übergänge ausführt und dabei
auch Endzustände besucht.

Schließlich übernehmen wir von M die folgenden Anweisungen:

(f) alle Anweisungen aus δ, soweit sie nicht durch Anweisungen
vom Typ (d) oder (e) überschrieben wurden.

Zusammenfassend transformieren wir M in den DPDA
M ′ = (Z ∪ {r, s, t},Σ,Γ′, δ′, s,#,E ∪ {t})

mit Γ′ = Γ∪{◻}, wobei δ′ die unter (a) bis (f) genannten Anweisungen
enthält. ∎

Beispiel 111. Wenden wir diese Konstruktion auf den DPDA
M = ({q0, q1, q2},{a, b, c},{A,B,#}, δ, q0,#,{q2})

mit der Überführungsfunktion

δ q0,# q0,A q0,B q1,# q1,A q1,B q2,# q2,A q2,B

ε − − − q2 − − q2# − −
a q0A# q0AA q0AB − q1 − − − −
b q0B# q0BA q0BB − − q1 − − −
c − q1A q1B − − − − − −

43

3 Kontextfreie Sprachen 3.5 Deterministisch kontextfreie Sprachen

an, so erhalten wir den DPDA

M ′ = ({q0, q1, q2, r, s, t},{a, b, c},{A,B,#,◻}, δ′, s,#,{q2, t})

mit folgender Überführungsfunktion δ′:

δ′ q0,# q0,A q0,B q0,◻ q1,# q1,A q1,B q1,◻ q2,# q2,A q2,B q2,◻

ε − − − − q2 − − − t# − − −
a q0A# q0AA q0AB r◻ − q1 rB r◻ − rA rB r◻
b q0B# q0BA q0BB r◻ − rA q1 r◻ − rA rB r◻
c r# q1A q1B r◻ − rA rB r◻ − rA rB r◻

Typ (f, b) (f) (f) (b) (f) (f, b)(f, b) (b) (e) (b) (b) (b)

s,# s,A s,B s,◻ r,# r,A r,B r,◻ t,# t,A t,B t,◻

ε q0#◻ − − − − − − − r# − − −
a − − − − r# rA rB r◻ − − − −
b − − − − r# rA rB r◻ − − − −
c − − − − r# rA rB r◻ − − − −

Typ (a) (c) (c) (c) (c) (e)
◁

Satz 112. Die Klasse DCFL ist unter Komplement abgeschlossen, d.h.
es gilt DCFL = co-DCFL.

Beweis. Sei M = (Z,Σ,Γ, δ, q0,#,E) ein DPDA, der alle Eingaben
zu Ende liest, und sei L(M) = L. Wir konstruieren einen DPDA M
für L.
Die Idee dabei ist, dass sich M in seinem Zustand (q, i) neben dem
aktuellen Zustand q von M in der Komponente i merkt, ob M nach
Lesen des letzten Zeichens (bzw. seit Rechnungsbeginn) einen Endzu-
stand besucht hat (i = 1) oder nicht (i = 2). Möchte M das nächste
Zeichen lesen und befindet sich M im Zustand (q,2), so macht M
noch einen Umweg über den Endzustand (q,3).

Konkret erhalten wir M = (Z×{1,2,3},Σ,Γ, δ′, s,#, Z×{3}) mit

s =
⎧⎪⎪⎨⎪⎪⎩

(q0,1), q0 /∈ E,
(q0,2), sonst,

indem wir zu δ′ für jede Anweisung qεA→M pγ die beiden Anweisun-
gen

(q,1)εA→ (p, i)γ
(q,2)εA→ (p,2)γ

mit i =
⎧⎪⎪⎨⎪⎪⎩

1, p ∈ E,
2, p /∈ E,

sowie für jede Anweisung qaA→M pγ die drei Anweisungen

(q,1)aA→ (p, i)γ
(q,2)εA→ (q,3)A
(q,3)aA→ (p, i)γ

mit i =
⎧⎪⎪⎨⎪⎪⎩

1, p ∈ E,
2, p /∈ E

hinzufügen. ∎

Eine nützliche Eigenschaft von M ist, dass M in einem Endzustand
keine ε-Übergänge macht.

Beispiel 113. Angenommen, ein DPDA M = (Z,Σ,Γ, δ, q0,#,E)
führt bei der Eingabe x = a folgende Rechnung aus:

(q0, a,#) ⊢ (q1, ε,#) ⊢ (q2, ε,#).

Dann würde M im Fall E = {q0, q2} (d.h. x ∈ L(M)) die Rechnung

((q0,2), a,#) ⊢ ((q0,3), a,#) ⊢ ((q1,2), ε,#) ⊢ ((q2,1), ε,#)

ausführen. Da (q1, 2), (q2, 1) /∈ Z×{3} sind, verwirft also M das Wort
a. Dagegen würde M im Fall E = {q0} (d.h. x /∈ L(M)) die Rechnung

((q0,1), a,#) ⊢ ((q1,2), ε,#) ⊢ ((q2,2), ε,#) ⊢ ((q2,3), ε,#)

ausführen. Da (q2,3) ∈ Z×{3} ein Endzustand von M ist, würde M
nun also das Wort a akzeptieren. ◁

44

3 Kontextfreie Sprachen 3.5 Deterministisch kontextfreie Sprachen

Satz 114. Die Klasse DCFL ist nicht abgeschlossen unter Schnitt,
Vereinigung, Produkt und Sternhülle.

Beweis. Die beiden Sprachen

L1 = {anbmcm ∣ n,m ≥ 0} und L2 = {anbncm ∣ n,m ≥ 0}

sind deterministisch kontextfrei (siehe Übungen). Da der Schnitt
L1 ∩L2 = {anbncn ∣ n ≥ 0} nicht kontextfrei ist, liegt er auch nicht in
DCFL, also ist DCFL nicht unter Schnitt abgeschlossen.
Da DCFL unter Komplementbildung abgeschlossen ist, kann DCFL
wegen de Morgan dann auch nicht unter Vereinigung abgeschlossen
sein. Beispielsweise sind folgende Sprachen deterministisch kontextfrei:

L3 = {aib jck ∣ i /= j ∧ i, j, k ≥ 1} und L4 = {aib jck ∣ j /= k ∧ i, j, k ≥ 1}.

Ihre Vereinigung L3 ∪L4 = {aib jck ∣ (i /= j ∨ j /= k) ∧ i, j, k ≥ 1} gehört
aber nicht zu DCFL, d.h. L3 ∪L4 ∈ CFL ∖ DCFL. DCFL ist nämlich
unter Schnitt mit regulären Sprachen abgeschlossen (siehe Übungen).
Daher wäre mit L3 ∪L4 auch die Sprache

(L3 ∪L4) ∩L(a+b+c+) = {anbncn ∣ n ≥ 1}

(deterministisch) kontextfrei.
Als nächstes zeigen wir, dass DCFL nicht unter Produktbildung abge-
schlossen ist. Wir wissen bereits, dass L = L3 ∪L4 /∈ DCFL ist. Dann
ist auch die Sprache

0L = 0L3 ∪ 0L4 /∈ DCFL,

da sich ein DPDA M = (Z,Σ,Γ, δ, q0,#,E) für 0L leicht zu einem
DPDA für L umbauen ließe. Sei nämlich (p, ε, γ) die Konfiguration,
die M nach Lesen der Eingabe 0 erreicht. Dann erkennt der DP-
DA M ′ = (Z ∪ {s},Σ,Γ, δ′, s,#,E) die Sprache L, wobei δ′ wie folgt
definiert ist:

δ′(q, u,A) =
⎧⎪⎪⎨⎪⎪⎩

(p, γ), (q, u,A) = (s, ε,#),
δ(q, u,A), (q, u,A) ∈ Z × (Σ ∪ {ε}) × Γ.

Es ist leicht zu sehen, dass die beiden Sprachen {ε,0} und L5 = L3∪0L4
in DCFL sind (siehe Übungen). Ihr Produkt {ε,0}L5 = L5 ∪ 0L5 =
L3 ∪ 0L4 ∪ 0L3 ∪ 00L4 gehört aber nicht zu DCFL. Da DCFL unter
Schnitt mit regulären Sprachen abgeschlossen ist (siehe Übungen),
wäre andernfalls auch

{ε,0}L5 ∩L(0a∗b∗c∗) = 0L3 ∪ 0L4

in DCFL, was wir bereits ausgeschlossen haben. ∎

Dass DCFL auch nicht unter Sternhüllenbildung abgeschlossen ist,
lässt sich ganz ähnlich zeigen (siehe Übungen). Wir fassen die be-
wiesenen Abschlusseigenschaften der Klassen REG, DCFL und CFL in
folgender Tabelle zusammen:

Vereinigung Schnitt Komplement Produkt Sternhülle

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja

Die Klasse der deterministisch kontextfreien Sprachen lässt sich auch
mit Hilfe von speziellen kontextfreien Grammatiken charakterisieren,
den so genannten LR(k)-Grammatiken. Der erste Buchstabe L steht
hierbei für die Leserichtung bei der Syntaxanalyse, d.h. das Eingabe-
wort x wird von links (nach rechts) gelesen. Der zweite Buchstabe R
bedeutet, dass bei der Syntaxanalyse eine Rechtsableitung entsteht.
Schließlich gibt der Parameter k an, wieviele Zeichen man über das
aktuelle Eingabezeichen hinauslesen muss, damit der nächste Schritt
eindeutig feststeht (k wird auch als Lookahead bezeichnet).
Durch LR(0)-Grammatiken lassen sich nur die präfixfreien Sprachen
in DCFL erzeugen. Dagegen erzeugen die LR(k)-Grammatiken für
jedes k ≥ 1 genau die Sprachen in DCFL.
Daneben gibt es noch LL(k)-Grammatiken, die für wachsendes k
immer mehr deterministisch kontextfreie Sprachen erzeugen.

45

4 Kontextsensitive Sprachen

4 Kontextsensitive Sprachen

In diesem Kapitel führen wir das Maschinenmodell des linear be-
schränkten Automaten (LBA) ein und zeigen, dass LBAs genau die
kontextsensitiven Sprachen erkennen. Die Klasse CSL ist unter Kom-
plementbildung abgeschlossen. Es ist jedoch offen, ob die Klasse DCSL
der von einem deterministischen LBA erkannten Sprachen eine echte
Teilklasse von CSL ist (diese Frage ist als LBA-Problem bekannt).

4.1 Kontextsensitive Grammatiken

Zur Erinnerung: Eine Grammatik G = (V,Σ, P, S) heißt kontextsen-
sitiv, falls für alle Regeln α → β gilt: ∣β∣ ≥ ∣α∣. Als einzige Ausnahme
hiervon ist die Regel S → ε erlaubt. Allerdings nur dann, wenn das
Startsymbol S nicht auf der rechten Seite einer Regel vorkommt.
Das nächste Beispiel zeigt, dass die Sprache L = {anbncn ∣ n ≥ 0} von ei-
ner kontextsensitiven Grammatik erzeugt wird. Da L nicht kontextfrei
ist, ist also die Klasse CFL echt in der Klasse CSL enthalten.
Beispiel 115. Betrachte die kontextsensitive Grammatik G =
(V,Σ, P, S) mit V = {S,B}, Σ = {a, b, c} und den Regeln

P :S→aSBc, abc (1,2) cB→Bc (3) bB→ bb (4)

In G läßt sich beispielsweise das Wort w = aabbcc ableiten:

S ⇒
(1)

aSBc ⇒
(2)

aabcBc ⇒
(3)

aabBcc ⇒
(4)

aabbcc

Allgemein gilt für alle n ≥ 1:

S ⇒
(1)
n−1 an−1S(Bc)n−1 ⇒

(2)
anbc(Bc)n−1 ⇒

(3)
(n2) anbBn−1cn ⇒

(4)
n−1 anbncn

Also gilt anbncn ∈ L(G) für alle n ≥ 1. Umgekehrt folgt durch Induktion
über die Ableitungslänge m, dass jede Satzform u mit S ⇒m α die
folgenden Bedingungen erfüllt:

• #a(α) = #b(α) +#B(α) = #c(α),
• links von S und links von einem a kommen nur a’s vor,
• links von einem b kommen nur a’s oder b’s vor.

Daraus ergibt sich, dass in G nur Wörter der Form w = anbncn ableit-
bar sind. ◁

4.2 Turingmaschinen

Um ein geeignetes Maschinenmodell für die kontextsensitiven Sprachen
zu finden, führen wir zunächst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein. Eine NTM erhält ihre Eingabe
auf einem nach links und rechts
unbegrenzten Band. Während
ihrer Rechnung kann sie den
Schreib-Lese-Kopf auf dem
Band in beide Richtungen be-
wegen und dabei die besuch-
ten Bandfelder lesen sowie ge-
lesenen Zeichen gegebenenfalls
überschreiben.

⋯ ⊔ x1 ⋯ xi ⋯ xn ⊔ ⋯

Arbeitsband
mit Eingabe

Schreib-
Lese-Kopf

Steuer-
einheit

←→

Es gibt mehrere Arten von Turingmaschinen (u.a. mit einseitig unend-
lichem Band oder mit mehreren Schreib-Lese-Köpfen auf dem Band).
Wir verwenden folgende Variante der Mehrband-Turingmaschine.

Definition 116. Sei k ≥ 1.
a) Eine nichtdeterministische k-Band-Turingmaschine

(kurz k-NTM oder einfach NTM) wird durch ein 6-Tupel
M = (Z,Σ,Γ, δ, q0,E) beschrieben, wobei

46

4 Kontextsensitive Sprachen 4.2 Turingmaschinen

• Z eine endliche Menge von Zuständen,
• Σ das Eingabealphabet (wobei ⊔ ∉ Σ),
• Γ das Arbeitsalphabet (wobei Σ ∪ {⊔} ⊆ Γ),
• δ: Z × Γk → P(Z × Γk × {L,R,N}k) die Überführungsfunk-

tion,
• q0 der Startzustand und
• E ⊆ Z die Menge der Endzustände ist.

b) Eine k-NTM M heißt deterministisch (kurz: M ist eine k-
DTM oder einfach DTM), falls für alle (q, a1, . . . ak) ∈ Z × Γk
die Ungleichung ∥δ(q, a1, . . . ak)∥ ≤ 1 gilt.

Für (q′, a′1, . . . , a′k,D1, . . . ,Dk) ∈ δ(q, a1, . . . ak) schreiben wir auch

(q, a1, . . . , ak) → (q′, a′1, . . . , a′k,D1, . . . ,Dk).

Eine solche Anweisung ist ausführbar, falls
• q der aktuelle Zustand von M ist und
• sich für i = 1, . . . , k der Lesekopf des i-ten Bandes auf einem mit
ai beschrifteten Feld befindet.

Ihre Ausführung bewirkt, dass M
• vom Zustand q in den Zustand q′ übergeht,
• auf Band i das Symbol ai durch a′i ersetzt und
• den Kopf gemäß Di bewegt (L: ein Feld nach links, R: ein Feld

nach rechts, N: keine Bewegung).

Definition 117. Sei M = (Z,Σ,Γ, δ, q0,E) eine k-NTM.
a) Eine Konfiguration von M ist ein (3k + 1)-Tupel

K = (q, u1, a1, v1, . . . , uk, ak, vk) ∈ Z × (Γ∗ × Γ × Γ∗)k

und besagt, dass
• q der momentane Zustand ist und

• das i-te Band mit . . .⊔uiaivi⊔ . . . beschriftet ist, wobei sich
der Kopf auf dem Zeichen ai befindet.

Im Fall k = 1 schreiben wir für eine Konfiguration (q, u, a, v)
auch kurz uqav.

b) Die Startkonfiguration von M bei Eingabe x = x1 . . . xn ∈ Σ∗

ist

Kx =
⎧⎪⎪⎨⎪⎪⎩

(q0, ε, x1, x2 . . . xn, ε,⊔, ε, . . . , ε,⊔, ε), x /= ε,
(q0, ε,⊔, ε, . . . , ε,⊔, ε), x = ε.

c) Eine Konfiguration K ′ = (q, u′1, a′1, v′1, . . . , u′k, a′k, v′k) heißt Fol-
gekonfiguration von K = (p, u1, a1, v1, . . . , uk, ak, vk) (kurz
K ⊢K ′), falls eine Anweisung

(q, a1, . . . , ak) → (q′, b1, . . . , bk,D1, . . . ,Dk)

existiert, so dass für i = 1, . . . , k gilt:

im Fall Di = N: Di = R: Di = L:

K∶ ui ai vi

K ′∶ ui bi vi

K∶ ui ai vi

K ′∶ ui bi a′i v
′
i

K∶ ui ai vi

K ′∶ u′i a
′
i bi vi

u′i = ui,
a′i = bi und
v′i = vi.

u′i = uibi und

a′iv
′
i =

⎧⎪⎪⎨⎪⎪⎩

vi, vi /= ε,
⊔, sonst.

u′ia
′
i =

⎧⎪⎪⎨⎪⎪⎩

ui, ui /= ε,
⊔, sonst

und v′i = bivi.

Man beachte, dass sich die Länge der Bandinschrift uiaivi beim
Übergang von K zu K ′ genau dann um 1 erhöht, wenn in K ′

zum ersten Mal ein neues Feld auf dem i-ten Band besucht wird.
Andernfalls bleibt die Länge von uiaivi unverändert. Die Länge
von uiaivi entspricht also genau der Anzahl der auf dem i-ten
Band besuchten Felder (inkl. Eingabezeichen im Fall i = 1).

47

4 Kontextsensitive Sprachen 4.2 Turingmaschinen

d) Eine Rechnung von M bei Eingabe x ist eine Folge von Kon-
figurationen K0,K1,K2 . . . mit K0 =Kx und K0 ⊢K1 ⊢K2⋯.

e) Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃K ∈ E × (Γ∗ × Γ × Γ∗)k ∶Kx ⊢∗ K}.

M akzeptiert also eine Eingabe x (hierfür sagen wir kurz M(x) ak-
zeptiert), falls es eine Rechnung Kx =K0 ⊢K1 ⊢K2⋯ ⊢Kl von M(x)
gibt, bei der ein Endzustand erreicht wird.

48

	1 Einleitung
	2 Reguläre Sprachen
	2.1 Endliche Automaten
	2.2 Nichtdeterministische endliche Automaten
	2.3 Reguläre Ausdrücke
	2.4 Relationalstrukturen
	2.4.1 Ordnungs- und Äquivalenzrelationen
	2.4.2 Abbildungen
	2.4.3 Homo- und Isomorphismen

	2.5 Minimierung von DFAs
	2.6 Das Pumping-Lemma
	2.7 Grammatiken

	3 Kontextfreie Sprachen
	3.1 Chomsky-Normalform
	3.2 Das Pumping-Lemma für kontextfreie Sprachen
	3.3 Der CYK-Algorithmus
	3.4 Kellerautomaten
	3.5 Deterministisch kontextfreie Sprachen

	4 Kontextsensitive Sprachen
	4.1 Kontextsensitive Grammatiken
	4.2 Turingmaschinen

