Vorlesungsskript

Einfihrung in die Theoretische
Informatik

Wintersemester 2020/21

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

28. Januar 2021

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung

2 Regulare Sprachen

2.1 Endliche Automaten
2.2 Nichtdeterministische endliche Automaten
2.3 Regulare Ausdriicke
2.4 Relationalstrukturen 000

2.4.1 Ordnungs- und Aquivalenzrelationen

2.4.2 Abbildungen oL

2.4.3 Homo- und Isomorphismen
2.5 Minimierung von DFAso oL
2.6 Das Pumping-Lemma
2.7 Grammatiken oo oL

3 Kontextfreie Sprachen
3.1 Chomsky-Normalform
3.2 Das Pumping-Lemma fiir kontextfreie Sprachen
3.3 Der CYK-Algorithmus.
3.4 Kellerautomaten
3.5 Deterministisch kontextfreie Sprachen

4 Kontextsensitive Sprachen
4.1 Kontextsensitive Grammatiken
4.2 Turingmaschinen,

28
30
33
34
36
42

Inhaltsverzeichnis

1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch l6sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

Schliefllich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollstandigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adaquat?
(Automatentheorie)

o« Welche Probleme sind losbar?

o Welcher Aufwand ist zur Losung eines algorithmischen Problems
notig? (Komplexitatstheorie)

(Berechenbarkeitstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik

o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)

Die wichtigsten Lernziele der Vorlesung sind:

« Uberblick iiber die wichtigsten Rechenmodelle (Automaten) wie
z.B.

— endliche Automaten
— Kellerautomaten

— Turingmaschinen

— Registermaschinen
— Schaltkreise

o Charakterisierung der Klassen aller mit diesen Rechenmodellen
losbaren Probleme durch

— unterschiedliche Typen von formalen Grammatiken

— Abschlusseigenschaften unter geeigneten Sprachoperatio-
nen

— Reduzierbarkeit auf typische Probleme (Vollstdandigkeit)
e Frkennen von Grenzen der Berechenbarkeit

o Klassifikation wichtiger algorithmischer Probleme nach ihrer
Komplexitét

Rechenmaschinen spielen in der Informatik eine zentrale Rolle Es gibt
viele unterschiedliche mathematische Modelle fiir Rechenmaschinen.
Diese konnen sich in ihrer Berechnungskraft unterscheiden. Die Tu-
ringmaschine (TM) ist ein universales Berechnungsmodell, da sie alle
anderen bekannten Rechenmodelle simulieren kann. Wir betrachten
zunachst Einschrankungen des TM-Modells, die vielféltige praktische
Anwendungen haben, wie z.B.

o endliche Automaten (DFA, NFA)

« Kellerautomaten (PDA, DPDA) etc.

Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale

1 Einleitung

Algorithmus ist der nach Fuklid benannte Algorithmus zur Berech-
nung des groften gemeinsamen Teilers zweier nattrlicher Zahlen (300
v. Chr.). Von einem Algorithmus wird erwartet, dass er fiir jede zulés-
sige Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert. Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Die
(maximale) Anzahl der Rechenschritte bei allen méglichen Eingaben
ist nicht beschrankt, d.h. mit wachsender Eingabeldnge kann auch die
Rechenzeit beliebig anwachsen. Die Beschreibung eines Algorithmus
muss jedoch endlich sein. Problemeingaben kénnen Zahlen, Formeln,
Graphen etc. sein. Diese werden tiber einem Fingabealphabet 3 kodiert.

Definition 1.
a) Ein Alphabet ist eine linear geordnete Menge 3 = {ay, ..., an}
von m > 1 Zeichen a, < -+ < a,.
b) Eine Folge x = xq...x, vonn >0 Zeichen x; € X2 heifit Wort
der Lange n tber 3.

¢) Die Linge von x wird mit |z| und die Menge aller Worter der
Linge n tiber 3 wird mit X" bezeichnet.

d) Die Menge aller Waorter uber ¥ ist

=rr=x"uxtux?u--

n>0

e) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen, d.h. ¥° = {e}.

f) Jede Teilmenge L ¢ ¥* heifit Sprache tber dem Alphabet 3.

Beispiel 2. Sei ¥ ein Alphabet. Dann sind @,%*, % und {e} Sprachen
tber Y. Die Sprache @ enthdlt keine Worter und heif$t leere Spra-
che. Die Sprache ¥* enthdlt dagegen alle Worter tiber 3, wahrend
die Sprache 3 alle Wérter tiber X der Lange 1 enthdlt. Die Sprache
{e} enthalt nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singletonsprachen bezeichnet.

Da Sprachen Mengen sind, konnen wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

gc{e}cyr.

Wir kénnen Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen tiber Y. Dann ist

e AnB={xe¥*|xeA xeB} der Schnitt von A und B,

e« AuB={zeX*|xeAvae B} die Vereinigung von A und
B, und

e« A={ze¥*|x¢ A} das Komplement von A.

Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.

e Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B st

AB={xy|xz e A ye B}.

Ist A ={z} eine Singletonsprache, so schreiben wir fir {z}B
auch einfach xB.

e Die n-fache Potenz A™ einer Sprache A ist induktiv definiert
durch

An o {e}, n=0,
ATA n>0.

e Die Sternhiille A* einer Sprache A ist A* = U,s0 A" und die
Plushiille A* von A ist A" =U,s; A" = AA*.

2 Regulédre Sprachen

2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
filtige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Eingabe- .

Ein endlicher Automat fiihrt band
bei einer Eingabe der Lénge n 2

nur n Rechenschritte aus. Um / Lesekopf
die gesamte Eingabe lesen zu

kénnen, muss der Automat also Steuer-
in jedem Schritt ein Zeichen der einheit
Eingabe verarbeiten.

Definition 4. Fin endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E') beschrie-
ben, wobei

o 7 + & eine endliche Menge von Zustanden,
e Y das Fingabealphabet,

e 0:ZxY — Z die Uberfiihrungsfunktion,
e qo € Z der Startzustand und

o ECZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {xl...xneE*

es gibt q1,...,qn1€ Z,q, € E mit
0(qiyiv1) = qiy1 firi=0,...,n-1]"

Fine Zustandsfolge qo,q1,- - -,qn heifst Rechnung von M(xy...x,),
falls 6(qi,wiv1) = qp1 fir i = 0,...,n =1 gilt. Sie heifst akzeptie-
rend, falls q, € E ist, und andernfalls verwerfend. Eine von einem
DFA akzeptierte Sprache wird als reguldr bezeichnet. Die zugehdrige
Sprachklasse ist

REG = {L(M) | M ist ein DFA}.

Beispiel 5. Betrachte den DFA M =
(Z,%,6,0,E) mit Z = {0,1,2}, & =
{a,b}, E = {1} und der Uberfiihrungs-
funktion

Graphische Darstellung:

5jo 1 2

all 20
b2 0 1

Der Startzustand wird meist durch einen Pfeil und Endzustdnde
werden durch einen doppelten Kreis gekennzeichnet.

Bei Eingabe w; = aba fithrt M die akzeptierende Rechnung 0,1,0,1

durch, d.h. w; € L(M). Dagegen verwirft M das Wort wy = abba
(verwerfende Rechnung: 0,1,0,2,0). <

Bezeichne 6 (q,x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion X
0:Zx¥X" > 7
induktiv wie folgt definieren. Fiir g€ Z, x € ¥* und a € X sei
0(q.€) = g,
(g, za) = 0(6(q,x),a).
Die von M erkannte Sprache lasst sich nun elegant durch
L(M) ={zeX* (g,) € E}

beschreiben.

2 Regulédre Sprachen

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache
L(M) ={xeX* | #4(x) — #p(x) =3 1},

wobei #4(x) die Anzahl der Vorkommen des Zeichens a in x bezeich-
net und i =, j (in Worten: i ist kongruent zu j modulo m) bedeutet,
dass i — j durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € ¥* |
0(0,2) = 1}, d.h. wir miissen folgende Aquivalenz zeigen:

S(O,x) =1 < #.(x) —#p(x) =3 1.

Hierzu reicht es, die Kongruenz

0(0,2) =5 #a(x) = #o(2).

zu beweisen, wofiir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n=0): klar, da 0(0,¢) = #4(¢) = #4(¢) = 0 ist.

Induktiqnsschritt (n~mn+1): Sei x =x1...2,,1 gegeben und sei
i=0(0,21...2,). Nach IV gilt dann

i =3 #al(xr. . xn) = Fp(21 ...).
Wegen 0(i,a) =3¢+ 1 und 0(7,0) =37 — 1 folgt daher

5(Z7 mn-%—l) =3 Z + #a(xrwl) - #b(xn+1)
=3 #a(xl o xn) - #b(xl cee xn) + #a(xrwl) - #b(xn+1)
= #ta(®) = #o(2).

und somit
5(0,2) = 0(5(0, 21 ... 2), Tns1) = 0(i, Tps1) =3 H#al(x) — #0(2).

2.1 Endliche Automaten

Beobachtung 7. Alle Singletonsprachen sind requldr.

Beweis. Fir jedes Wort = = z7...x, existiert ein DFA M, mit
L(M,) ={z}:

T L2 T3
e (@ @
a* T a * I3
a* I

aey

Formal ist M, also das Tupel (Z,%,6,q0, E) mit Z = {qo,...,qn, €},
E = {q,} und der Uberfiihrungsfunktion

¢i+1, q=¢; fireinimit 0<i<n-1und a; = x4
5((]7 aj) =
e, sonst.

Als néchstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. FEin k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen Ly, ..., Ly auf eine Sprache op(L1, ..., L) abbildet.

Beispiel 9. Der Schnittoperator n bildet zwei Sprachen Ly und Lo
auf die Sprache Ly n Ly ab. <

Definition 10. FEine Sprachklasse IC heifst unter op abgeschlossen,
wenn gilt:
Li,....,Lye K=o0p(Ly,..., L) e K.

Der Abschluss von KC unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K', die KC enthdlt und unter op abgeschlossen ist.

2 Regulédre Sprachen

Beispiel 11. Der Abschluss der Singletonsprachen unter n besteht
aus allen Singletonsprachen und der leeren Sprache.

Der Abschluss der Singletonsprachen unter U besteht aus allen nicht-
leeren endlichen Sprachen.

Der Abschluss der Singletonsprachen unter n, U und Komplement
besteht aus allen endlichen und co-endlichen Sprachen.* N

Definition 12. Fir eine Sprachklasse C bezeichne co-C die Klasse
{L|LeC} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit Ly, L, € REG sind auch die Sprachen L, =
Y*N Ly, Lyn Ly und Ly v Ly requldr.

Beweis. Sind]\4z = (Zi,Z,éi,qg,Ei), 1= 172, DFAs mit L(MZ) = Li;
so akzeptiert der DFA

M: (Zlaza(slaQOaZl N\ El)

das Komplement L, von L;. Der Schnitt L; n L, von Ly und Ly wird
dagegen von dem DFA

M = (Zl X 2272757 (QO7QO)7E1 X EQ)
mit
5((Qap)aa) = (51(Q7a)752(paa))

akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen

Liu Ly = (L1 n Ly) ist dann aber auch die Vereinigung von L; und
Lo regulédr. (Wie sieht der zugehorige DFA aus?) []

Eine Sprache L € ¥ ist co-endlich, wenn ihr Komplement L endlich ist.

2.2 Nichtdeterministische endliche Automaten

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulér sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regularen Sprachen erfasst.

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhiille abgeschlossen ist. Im
iiberndchsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt und
Sternhiille charakterisierbar (und somit auch unter diesen Operationen
abgeschlossen) ist.

Beim Versuch, einen endlichen Automaten fir das Produkt
L(My)L(Ms) zweier regulirer Sprachen zu konstruieren, stofit man
auf die Schwierigkeit, den richtigen Zeitpunkt fiir den Ubergang von
(der Simulation von) M; zu M, zu finden. Unter Verwendung eines
nichtdeterministischen endlichen Automaten lisst sich dieses Problem
jedoch leicht 16sen, da dieser den richtigen Zeitpunkt ,erraten” kann.

Im néchsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur regulére Sprachen erkennen
konnen.

2.2 Nichtdeterministische endliche Automaten

Definition 14. FEin nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,2,A,Q0, E) ist ahnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustinde (zusammengefasst in der Menge Qo € Z) haben
kann und seine Uberfiihrungsfunktion die Form

A:ZXE—>'P(Z)

2 Regulédre Sprachen

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2% bezeichnet. Die
von N akzeptierte Sprache ist

HQOEQ07q17"'7qn71EqunEE: }

L(N) = ce Ty €Y .
() {xl € qi+16A(Qi7xi+1) fdrl:oa"'an_l

FEine Zustandsfolge qo,q1, - .., q, heifst Rechnung von N(zy...x,),
falls g1 € A(qiyxi41) firi=0,...,n-1 gilt.

Ein NFA N kann bei einer Eingabe z also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren. Ein Wort x ge-
hort genau dann zu L(N), wenn N (x) mindestens eine akzeptierende
Rechnung hat.

Im Gegensatz zu einem DFA, dessen Uberfithrungsfunktion auf der
gesamten Menge Z x ¥ definiert ist, kann ein NFA | stecken bleiben®.
Das ist dann der Fall, wenn er in einen Zustand ¢ gelangt, in dem das
nichste Eingabezeichen x; wegen A(q,x;) = @ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,%,A,Qo, F) mit Zustands-
menge Z ={p,q,r,s}, Eingabealphabet 3 = {0,1,2}, Start- und End-
zustandsmenge Qo = {p} und E = {s} sowie der Uberfihrungsfunktion

Graphische Darstellung:

9@_0.@_1,@_%

A‘pqrs

0|{pq} @ o @
L) {p} {r} o o
@

2| {py @ {s}

Offensichtlich akzeptiert N die Sprache L(N) = {x012 |z € ¥*} aller
Wérter, die mit dem Suffiz 012 enden. <

Beobachtung 16. Sind N; = (Z;, 2, A;,Q:, E;) (i =1,2) NFAs, so
werden auch die Sprachen L(N1)L(Ny) und L(Ny)* von einem NFA
erkannt.

2.2 Nichtdeterministische endliche Automaten

Beweis. Sei L; = L(N;). Wir kénnen Z; n Z, = @ annehmen. Dann
akzeptiert der NFA

N = (Zl UZ2727A37Q17E)

mit
Aq(p,a), peZiN B,
Az(p,a) =1 As(p,a) UUgqg, A2(g,a), pe El,
As(p,a), sonst
und
E:{EQ, QN E; =0
EiuFE;, sonst

die Sprache L L.
LiLy € L(N): Seien x = z1---x € L1,y = y1--y; € Lo und seien qo, . . . , ¢k
und py, . .., p; akzeptierende Rechnungen von N;(z) und Ny(y). Dann
ist qo, ..., Qk, D1, - -, eine akz. Rechnung von N (xy), da g € 1 und
p € Es ist, und

o im Fall [> 1 wegen g € E1, po € Q2 und p1 € As(po,y1) zudem

p1 € A(gy, y1) und

o im Fall [=0 wegen ¢ € E; und p; € Q2 N E5 zudem gy € E ist.
L(N) ¢ L1Ly: Sei © = xy+x, € L(N) und sei qq,...,q, eine akz.
Rechnung von N(z). Dann gilt qo € Q1, ¢, € E, qo,--.,q; € Z; und
Gis1, - - Qn € 4o fur ein i <n. Wir zeigen, dass ein g € ()5 existiert, so
dass qo, - .., q; eine akz. Rechnung von Ny(z1---2;) und ¢, gis1,-- -, qn
eine akz. Rechnung von No(x1---2,,) ist.

o Im Fall i < n impliziert der Ubergang ¢;,; € A(qi, i41), dass

¢; € Ey (also qo, ..., q; eine akz. Rechnung von Nj(x;--x;)) und
Gir1 € Ao(q,x;41) flir ein g € Qy ist. Zudem ist q, € EN Zy = Ey
(also q,Gis1,- - -, qn eine akz. Rechnung von Ny(z;yq1--x,)).

o Im Fall i=nist ¢, € EnZ;, was ¢, € Fy und Q2 N Fy + @ impli-
ziert (also ist qo, ..., qn eine akz. Rechnung von Ni(zq---x,) und
es gibt ein ¢ € @2, so dass ¢ eine akz. Rechnung von Ny(e) ist).

2 Regulédre Sprachen

Ganz dhnlich lasst sich zeigen, dass der NFA

N* = (Zl U {qneu}a 27A47Q1 U {Qneu}a El U {Qneu})

mit
Ai(p,a), peZiN B,
Ay(p,a) ={A(p,a) U Ugeq, A1(q,a), peEy,
a, sonst
die Sprache L} akzeptiert. [

Satz 17 (Rabin und Scott).
REG = {L(N) | N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Fir die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,3,A,Qo, F) einen DFA M =
(P(2),%,0,Qo, E') mit L(M) = L(N). Wir definieren die Uberfiih-
rungsfunktion 0 : P(Z) x ¥ — P(Z) von M mittels

0(Q,a) = A(g, a).

qeQ

Die Menge §(Q, a) enthélt also alle Zustande, in die NV gelangen kann,
wenn N ausgehend von einem beliebigen Zustand q € () das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand () die Information speichert,
in welchen Zustdnden sich N momentan befinden konnte. Fiir die
Erweiterung 6 : P(Z) x £* - P(Z) von § (siehe Seite 3) kénnen wir
nun folgende Behauptung zeigen.

Behauptung. § (Qo, z) enthalt alle Zusténde, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.

Wir beweisen die Behauptung induktiv iiber die Lange n von x.
Induktionsanfang (n =0): Klar, da 6(Q,¢) = Qq ist.

2.2 Nichtdeterministische endliche Automaten

Induktionsschritt (n—1~»>n): Sei x = x; ...z, gegeben. Nach In-
duktionsvoraussetzung enthélt

Qn-1 = 5(@0, ry.. -xnfl)

alle Zusténde, die N(x) in genau n—1 Schritten erreichen kann.
Wegen

0(Qo,2) = 6(Quorvzn) = U Alg.)

q€Qn-1

enthélt dann aber & (Qo,x) alle Zusténde, die N(x) in genau n
Schritten erreichen kann.

Deklarieren wir nun diejenigen Teilmengen @) € Z, die mindestens
einen Endzustand von N enthalten, als Endzustéinde des Potenz-
mengenautomaten M, d.h.

E'=-{QcZ|QnE{a}
so folgt fur alle Worter x € 3*:

reL(N) < N(z)kann in genau |z| Schritten einen Endzustand
erreichen

5(Qo,2)NE # 2

6(Qo,z) € E

xeL(M).

0

)

¢

Beispiel 18. Fir den NFA N = (Z,%,A,Qo, E) aus Beispiel 15

9@_0.@_1,@_%

ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach
Entfernen aller vom Startzustand Qo = {p} aus nicht erreichbaren
Zustinde):

2 Regulédre Sprachen

s | o0 1 2

Q={p} |{pgy {p} {p}
Qi1=1{p,q} | {p,a} {p.r} {p}
Qa={p,r} | {p,a} {p} A{p s}
Qs=1{p,s} |{p,a} {p} {p}

Im obigen Beispiel wurden fiir die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2/4] = 16 Zusténde benétigt, da die
tibrigen 12 Zusténde in P(Z) nicht vom Startzustand Qo = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 2121 Zusténde
in P(Z) fiir die Konstruktion des Potenzmengenautomaten benotigt
werden (siehe Ubungen).

Korollar 19. Die Klasse REG der reguldren Sprachen ist unter fol-
genden Operationen abgeschlossen:

e Komplement, e Produkt,
e Schnitt, e Sternhiille.
o Vereinigung,

2.3 Regulare Ausdriicke

Wir haben uns im letzten Abschnitt davon iiberzeugt, dass auch NFAs
nur reguldre Sprachen erkennen koénnen:

REG = {L(M) | M ist ein DFA} ={L(N) | N ist ein NFA}.

2.3 Reguléire Ausdriicke

In diesem Abschnitt werden wir eine weitere Charakterisierung der
reguldren Sprachen kennenlernen:
REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhtille aus der leeren Menge und den Singleton-
sprachen bilden lassen.

Tatséchlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der reguldren Ausdriicke v (iber ei-
nem Alphabet) und die durch v dargestellte Sprache L(7y) sind
induktiv wie folgt definiert. Die Symbole @, € und a (a € ¥) sind
requldre Ausdriicke, die

e die leere Sprache L(@) = @,

e die Sprache L(e) = {¢} und

e fiir jedes Zeichen a € ¥ die Sprache L(a) = {a}
beschreiben. Sind o und 3 requlire Ausdriicke, die die Sprachen L(«)
und L(B) beschreiben, so sind auch a3, («|B) und («)* regqulire Aus-
driicke, die die Sprachen

« L(ap) = L()L(B).

+ L(alf) = L(a) U L(B) und

e L((@)*) = L(e)*

beschreiben.

Bemerkung 21.

e Um Klammern zu sparen, definieren wir folgende Prizedenz-
ordnung: Der Sternoperator * bindet starker als der Produktope-
rator und dieser wiederum starker als der Vereinigungsoperator.
Fiir ((alb(c)*)|d) kénnen wir also kurz albc*|d schreiben.

e Da der regulire Ausdruck ~vv* die Sprache L(~y)* beschreibt,
verwenden wir v* als Abkiirzung fiir den Ausdruck ~~*.

2 Regulédre Sprachen

Beispiel 22. Die reguldren Ausdricke €, @*, (0/1)*00 und e0|z1*
beschreiben folgende Sprachen:

v | e o (0[1)*00 €0|z1*
L(y) [{e}*={e} @ ={e} {x00]|ze{0,1}} {0}

Beispiel 23. Betrachte nebenstehenden DFA M.
Um fiir die von M erkannte Sprache

L(M) ={xe{a, b} | #a(x) - #(x) =3 1}

einen requldren Ausdruck zu finden, betrachten
wir zundchst die Sprache Lo aller Worter x, die
den DFA M ausgehend vom Zustand 0 in den
Zustand 0 tberfihren. Weiter sei L3 die Sprache aller solchen Worter
w € Lo, die den Zustand 0 nur 2u Beginn und am Ende (aber nicht
zwischendurch) besuchen. Dann setzt sich jedes x € Loy aus beliebig
vielen Teilwortern wy, ..., wy € L zusammen, d.h. Log = (L{5)*

Jedes w # € in L3 beginnt entweder mit einem a (Ubergang von 0
nach 1) oder mit einem b (Ubergang von 0 nach 2). Im ersten Fall
folgt eine beliebige Anzahl von Teilwértern ab (Wechsel zwischen 1
und 2), an die sich entweder das Suffiz aa (Rickkehr von 1 nach 0
tiber 2) oder das Suffix b (direkte Riickkehr von 1 nach 0) anschliefit.
Analog folgt im zweiten Fall eine beliebige Anzahl von Teilwortern ba
(Wechsel zwischen 2 und 1), an die sich entweder das Suffiz a (direkte
Riickkehr von 2 nach 0) oder das Suffix bb (Rickkehr von 2 nach 0

iber 1) anschlieft. Daher lisst sich L3, durch den reguliren Ausdruck
Y00 = alab)* (aalb) [b(ba)* (albd) | €

beschreiben. Eine dhnliche Uberlegung zeigt, dass die Sprache Lg?l aller
Worter, die M ausgehend von 0 in den Zustand 1 tberfithren, ohne

2.3 Regulire Ausdriicke

dass zwischendurch der Zustand 0 nochmals besucht wird, durch den
reguléren Ausdruck 77 = (albb)(ab)* beschreibbar ist. Somit erhalten
wir fiir L(M) den reguldren Ausdruck

Yo,1 = (a(ab)*(aalb) | b(ba)*(albb))* (albb)(ab)*.

Satz 24. {L(v) | v ist ein regulirer Ausdruck} = REG.

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdriicke @, € und a, a € X*, nur regulidre Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist (sieche Beobachtungen 13 und 16).

Fiir die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
laren Ausdruck v mit L(v) = L(M). Sei also M = (Z,%,0,qo, F) ein
DFA, wobei wir annehmen konnen, dass Z = {1,...,m} und ¢qo = 1 ist.
Dann lésst sich L(M) als Vereinigung

L(M) = U Lig

qeE

von Sprachen der Form
Lpg={reX] S(pax) =q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen L, , durch
reguldre Ausdriicke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

L;,q:{xl--.$nez* 5(p>$1---$n)=qundfur }

i=1,...,n-1gilto(p,x1...2;) <7

Wegen L, , = L7 reicht es, regulire Ausdriicke 7} , fiir die Sprachen
L3, , anzugeben. Im Fall = 0 enthalt

L0 {{aezw(p,a):q}u{e}, p=a,

pa {aeX|d(p,a)=q}, sonst

2 Regulédre Sprachen

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen reguldren Ausdruck 9, beschreibbar. Wegen

r+1 _ r T r *TT
Lp,q - Lp,qULp,r+1(Lr+1,r+1) Lr+1,q

lassen sich aus den reguldren Ausdriicken ~; fiir die Sprachen Lj

leicht reguldre Ausdriicke fiir die Sprachen L;*' gewinnen:

r+l1 _ r
Tpa = Tpa

T T * T
’7p,r+1 (’Yr+1,r+1) 7r+17q'

Beispiel 25. Betrachte den DFA

L

Da M insgesamt m =2 Zustinde und nur den Endzustand 2 besitzt,
151
L(M)=J Lig=Liz=Li,=L(7i2)

qeFE

Um ~3, zu berechnen, benutzen wir die Rekursionsformel

r+l _ .7 r r * T
’Yp,q _’yp,q|,}/p,r+l(ly7"+l,r+l) ,7r+1,q

und erhalten

7%,2 = 7%,2|711,2(7%,2)*721,27
Y2 =21 (R 1) e

721,2 = 73,2|’Yg,1 (7(1),1)*7?,2-

10

2.3 Reguléire Ausdriicke

Um den reguldren Ausdruck 7%72 fir L(M) zu erhalten, genigt es also,
die reguldren Ausdriicke 77 1, V)5, 791, V3.0, V1o und v35 zu berechnen:

. p,q
1,1 1,2 2.1 2.2

0 elb a a €lb
al(e|b) (e[b)*a (e[b)]a(elb)a

1 _ - \ ~

b*a elblab*a

) b*alb*a(e|blab*a)* (e|blab*a)

b*a(blab*a)*

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

e L ist requldr (d.h. es gibt einen DFA M mit L = L(M)),
es gibt einen NFA N mit L = L(N),
es gibt einen requldren Ausdruck ~v mit L = L(7),

L ldsst sich mit den Operationen Vereinigung, Produkt und
Sternhiille aus endlichen Sprachen gewinnen,

L ldsst sich mit den Operationen N, U, Komplement, Produkt
und Sternhiille aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, namlich durch regulare Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Aquivalenzrelationen) eine wichtige Rolle.

2 Regulédre Sprachen

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, R; eine k;-stellige Relation auf A, d.h.
R; ¢ Ak far ¢ = 1,...,n. Dann heiit (A;Ry,...,R,) Relational-
struktur. Die Menge A heifit Grundmenge, Triagermenge oder
Individuenbereich der Relationalstruktur.

Wir werden hier hauptsichlich den Fall n =1, k; = 2, also (A, R) mit
R ¢ A x A betrachten. Man nennt dann R eine (binire) Relation
auf A. Oft wird fur (a,b) € R auch die Infix-Schreibweise aRb

benutzt.

Beispiel 27.
e (F,M) mit F={f|f ist Fluss in Europa} und

M={(f,g9) e Fx F| f mindet in g}.

(U,B) mit U ={z | x ist Berliner} und
B={(z,y) e UxU |z ist Bruder von y}.

(P(M),<), wobei P(M) die Potenzmenge einer belicbigen Men-
ge M und ¢ die Inklusionsbeziehung auf den Teilmengen von M
15t.

(A, Idy), wobei Ida ={(x,x) |z e A} die Identitidt auf A ist.
(R,<).

(Z,]), wobei | die "teilt”-Relation bezeichnet (d.h. a|b, falls ein
ceZ mit b= ac ezistiert). N

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt, Vereinigung, Komplement und Differenz
definiert. Seien R und S Relationen auf A, dann ist

RnS = {(x,y)e Ax A| xRy xSy},
RuS = {(x,y)e Ax A|zRyv xSy},
R-S = {(x,y)e Ax A| xRy -xSy},
R = (AxA)-R.

11

2.4 Relationalstrukturen

Sei allgemeiner M ¢ P(A x A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt iiber M und die Vereinigung iiber
M folgende Relationen:

MM
UM

(N R={(z,y) | YR e M: 2Ry},
ReM

U R={(z,y) | 3Re M :2Ry}.
ReM

Die transponierte (konverse) Relation zu R ist

R" = {(y,z) | zRy}.

RT wird oft auch mit R~! bezeichnet. Z.B. ist (R,<T) = (R, >).

Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

RoS={(x,2)e AxA|Jye A: xRy nySz}.

Beispiel 28. Ist B die Relation "ist Bruder von”, V' "ist Vater von”,
M 7ist Mutter von” und E =V u M 7ist Elternteil von”, so ist Bo E
die Onkel-Relation. <

Ubliche Bezeichnungen fiir das Relationenprodukt sind auch R ;S und
R - S oder einfach RS. Das n-fache Relationenprodukt Ro---o R von
R wird mit R"™ bezeichnet. Dabei ist R? = Id.

Vorsicht: Das n-fache Relationenprodukt R™ von R sollte nicht mit
dem n-fachen kartesischen Produkt R x---x R der Menge R verwech-
selt werden. Wir vereinbaren, dass R" das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

2 Regulédre Sprachen

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heifit R

reflexiv,
irreflexiv,
symmetrisch,

asymmetrisch,

konnex,
semikonnex,

transitiv,

gilt.

Die nachfolgende Tabelle gibt einen Uberblick iiber die wichtigsten

falls Vx € A: xRx

falls Vx e A: -z Rx
falls Vz,y e A:
falls Vo,ye A:
antisymmetrisch, falls Vr,ye A:

falls Vo,ye A:

falls Vo,ye A:

(also Ida € R)
(also Ids € R)
zRy = yRx (also Rc RT)
rRy = -yRx (also Rc RT)
rTRyAnyRx =>x =y
(also Rn RT c Id)
xRy v yRx
(also Ax Ac RuRT)
r+y=>xrRyvyRz
(also Id ¢ Ru RT)

falls Vo,y,z€e A: xRy nyRz = xRz

Relationalstrukturen.

(also R? ¢ R)

2.4 Relationalstrukturen

Die Relation 7ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.

Die Relation "ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Aquivalenzrelation.

(R, <) ist irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnung.

(R, <) und (P(M),<) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

(R, <) ist auch konnex und somit eine lineare Ordnung.
(P(M),<) ist zwar im Fall |M| < 1 konnex, aber im Fall

refl. sym. trans. antisym. asym. konnex semikon.

Aquivalenzrelation
(Halb-)Ordnung
Striktordnung
lineare Ordnung
lin. Striktord.
Quasiordnung

v v
v

v

SYRNENENENEN

In der Tabelle sind nur die definierenden Eigenschaften durch ein ”v*”
gekennzeichnet. Das schliefit nicht aus, dass gleichzeitig auch noch

weitere Eigenschaften vorliegen konnen.

Beispiel 29.

| M| > 2 weder semikonnex noch konnex. q

Graphische Darstellung von Relationen

Eine Relation R auf einer endlichen Menge A kann durch einen gerich-
teten Graphen (oder Digraphen) G = (V, F) mit Knotenmenge
V = A und Kantenmenge E = R veranschaulicht werden. Hierzu
stellen wir jedes Element x € A als einen Knoten dar und verbin-
den jedes Knotenpaar (x,y) € R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heiflen benachbart oder

adjazent.

Beispiel 30. Fir die Relation (A,R) mit A = {a,b,c,d} und
R={(b,c),(b,d),(c,a),(c,d),(d,d)} erhalten wir folgende graphische

Darstellung.

@ O

SR

2 Regulédre Sprachen

Der Ausgangsgrad eines Knotens x € V ist deg’(z) = | R[x]], wobei
R[z] ={y €V | zRy} die Menge der Nachfolger von z ist. Entspre-
chend ist deg™(z) = |[{y € V | yRz}| der Eingangsgrad von z und
R'[z] ={y € V | yRx} die Menge der Vorgidnger von x. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(z) = deg™ (z) = deg"(x) der Grad von x und R[z] = R~[x]
heiit die Nachbarschaft von z. Ist G zudem schleifenfrei (d.h. R
ist irreflexiv), erhalten wir einen (ungerichteten) Graphen. Eine
irreflexive und symmetrische Relation R wird meist als Menge der
ungeordneten Paare E = {{a,b} | aRb} notiert.

Darstellung durch Adjazenzmatrizen

Eine Relation R auf einer endlichen (geordneten) Menge A =

{ai,...,a,} lasst sich durch eine boolesche n x n-Matrix Mz = (m;;)
mit
1, CLiRa]’,
M 2=
* { 0, sonst

darstellen. Beispielsweise hat die Relation

R= {(b, C)7 (b> d)7 (C> Cl), (Ca d)a (da d)}
auf der Menge A = {a,b,c,d} die Matrixdarstellung

My =

o = O O
o O O O
o O = O
_ = = O

Darstellung durch Adjazenzlisten

Eine weitere Moglichkeit besteht darin, eine endliche Relation R in
Form einer Tabelle darzustellen, die jedem Element = € A seine Nach-
folger in Form einer Liste zuordnet. Fiir obige Relation R erhalten

2.4 Relationalstrukturen

wir folgende Listen:

r: R[x]
a: -
b: ¢ d
c. a,d
d: d

Sind Mp = (r;) und Mg = (s;;) boolesche n x n-Matrizen fiir R und
S, so erhalten wir fir T'= R o S die Matrix My = (¢;;) mit

tij= V (riwAsi)

Die Nachfolgermenge T'[x] von x bzgl. der Relation 7' = RoS berechnet
sich zu

Tlx] =Syl ly € R[z]} = %{]S[y]‘
Beispiel 31. Betrachte die Relationen R = {(a,a), (a,c), (¢, b), (¢, d)}
und S = {(a,b),(d,a),(d,c)} auf der Menge A ={a,b,c,d}.

Relation ‘ R S RoS SoR
Digraph ,,

¢ @ @& (5?@ OD

1010 0100 0100 0000
Adjazenz- | 0000 0000 0000 0000
matric 0101 0000 1010 0000

0000 1010 0000 1111

a: a,c a: b a: b a: -
Adjazenz- | b: - b - b: - b: -
liste c: b,d c: - c:oa,c c: -

d: - d: a,c d: - d: a,b,c,d

2 Regulédre Sprachen

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht Ro S =So R.

Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine moglichst kleine Modifikation in eine Relation R’ mit
vorgegebenen Eigenschaften zu iiberfithren. Will man dabei alle in R
enthaltenen Paare beibehalten, dann sollte R’ aus R durch Hinzufiigen
moglichst weniger Paare hervorgehen.

Es lasst sich leicht nachpriifen, dass der Schnitt iiber eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R’, die R enthélt.

Definition 32. Sei R eine Relation auf A.

e Die reflexive Hiille von R ist
hrea(R) = (S cAxA|S ist reflexiv und R c S}.

e Die symmetrische Hiille von R ist

hsym(R) =S € AxA|S ist symmetrisch und R < S}.
e Die transitive Hiille von R ist

R*=({ScAxA|S ist transitiv und R ¢ S}.

e Die reflexiv-transitive Hiille von R ist

R*=({S<c AxA|S ist reflexiv, transitiv und R < S}.

e Die Aquivalenzhiille von R ist

hag(R) = (S| S ist eine Aquivalenzrelation auf A und R < S}.

Satz 33. Sei R eine Relation auf A.

14

2.4 Relationalstrukturen

(i) hea(R) = RU Id,,
(it) hsym(R) = RU RT,
(77i) R* = Uns1 R,

(iv) R* =Unso R",

(v) hao(R) = (RU RT)*.

Beweis. Siehe Ubungen. []

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a,b) genau
dann in der reflexiv-transitiven Hiille R* von R ist, wenn es ein n >0
gibt mit aR"b, d.h. es gibt Elemente zg,...,x, € A mit zo=a, x, =0
und

roRx1Rxs ... 21 Ry,

In der Graphentheorie nennt man xo, ..., z, einen Weg der Lange
n von a nach b. Ein Digraph G heifit zusammenhéidngend, wenn es
fiir je zwei Knoten a und b einen Weg von a nach b oder einen Weg
von b nach a gibt. G heifit stark zusammenhingend, wenn es von
jedem Knoten a einen Weg zu jedem Knoten b in GG gibt.

2.4.1 Ordnungs- und Aquivalenzrelationen

Wir betrachten zunichst Aquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.

Ist E eine Aquivalenzrelation, so nennt man die Nachbarschaft E[x]
die von x reprisentierte Aquivalenzklasse und bezeichnet sie
mit [z]g oder einfach mit [z]. Eine Menge S ¢ A heifit Reprisen-
tantensystem, falls sie genau ein Element aus jeder Aquivalenzklasse
enthalt.

Beispiel 34.

e Auf der Menge aller Geraden im R? die Parallelitit. Offen-
bar bilden alle Geraden mit derselben Richtung (oder Steigung)

2 Regulédre Sprachen

jeweils eine Aquivalenzklasse. Daher wird ein Reprisentanten-
system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

e Auf der Menge aller Menschen “im gleichen Jahr geboren wie”.
Hier bildet jeder Jahrgang eine Aquivalenzklasse.

e AufZ die Relation "gleicher Rest bei Division durch m” Die
zugehorigen Aquivalenzklassen sind

[r]={aeZ|a=,r}, r=0,1,...,m-1.

Ein Reprdsentantensystem wird beispielsweise durch die Reste
0,1,...,m—1 gebildet. <

Die (bzgl. Inklusion) kleinste Aquivalenzrelation auf A ist die Identi-
tét Id,, die grofite die Allrelation A x A. Die Aquivalenzklassen der
Identitat enthalten jeweils nur ein Element, d.h. [2];4, = {z} fir alle
x € A, und die Allrelation erzeugt nur eine Aquivalenzklasse, nimlich
[%]axa = A fiir jedes x € A. Die Identitdt Id4 hat nur ein Repréasen-
tantensystem, ndmlich A. Dagegen kann jede Singletonmenge {x} mit
x € A als Représentantensystem fiir die Allrelation A x A fungieren.

Definition 35. Eine Familie {B; |i€ I} von nichtleeren Teilmengen
B; € A heifst Partition der Menge A, falls gilt:

a) die Mengen B; iiberdecken A, d.h. A = U B; und

b) die Mengen B; sind paarweise disjunkt, d.h. fir je zwei ver-
schiedene Mengen B; # B; gilt B;n B; = @.

Wie der nichste Satz zeigt, bilden die Aquivalenzklassen einer Aqui-
valenzrelation E eine Partition {[z] |z € A} von A. Diese Partition
wird auch Quotienten- oder Faktormenge genannt und mit A/E
bezeichnet. Die Anzahl der Aquivalenzklassen von E wird auch als
der Index von E bezeichnet.

Fiir zwei Aquivalenzrelationen E ¢ E’ sind auch die Aquivalenzklas-
sen [z]g von E in den Klassen [x]g von E’ enthalten. Folglich ist

15

2.4 Relationalstrukturen

jede Aquivalenzklasse von E’ die Vereinigung von (evtl. mehreren)
Aquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als E’. Demnach ist die Identitéit die feinste und die Allrelation die
grobste Aquivalenzrelation.

Satz 36. Sei E eine Relation auf A. Dann sind folgende Aussagen
dquivalent.
(i) E ist eine Aquivalenzrelation auf A.
(ii) Es gibt eine Partition {B;|i €1} von A mit
rEy < Jdiel:x,ye B,

Beweis.

(i) = (ii) Sei E eine Aquivalenzrelation auf A. Wir zeigen, dass
dann {E[z]|x € A} eine Partition von A mit der gewtinschten
Zusatzeigenschaft bildet:

Da FE reflexiv ist, gilt xFz und somit = € E[z], d.h. A =
UIEA E[CL’]
Ist E[z]n E[y] #+ @ und w € E[z] n E[y], so folgt E[z] = E[y]:

ze Blz] < zEz =S o ygnyz < z e E[y]

Zudem gilt

JzeA:x,ye E[z] & 3z:2¢€ E[z] n E[y]
eE
= Elz] = Bly) "= s By
(i1) = (1) Existiert umgekehrt eine Partition {B; | i€ I} von A mit
rEy < Jdiel:x,ye B;, soist F
o reflexiv, da zu jedem z € A eine Menge B; mit = € B;
existiert,
o symmetrisch, da aus x,y € B; auch y,x € B; folgt, und

« transitiv, da aus z,y € B, und y,z € B; wegen y € B;n B;
die Gleichheit B; = B; und somit z, z € B; folgt. -

2 Regulédre Sprachen

Als néchstes betrachten wir Ordnungsrelationen, die durch die drei
Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 37.

e (P(M),2), (Z,<), (R,<) und (N,|) sind Ordnungen. (Z,]) ist
keine Ordnung, aber eine Quasiordnung.

o Fir jede Menge M ist die relationale Struktur (P(M);<) eine
Ordnung. Diese ist nur im Fall |M| <1 linear.

e Ist R eine Relation auf A und B< A, so ist Rp=Rn (B x B)
die Finschrankung von R auf B.

e Einschrinkungen von (linearen) Ordnungen sind ebenfalls (li-
neare) Ordnungen.

e Beispielsweise ist (Q,<) die Finschrankung von (R,<) auf Q
und (N,|) die Einschrinkung von (Z,|) auf N. N

Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme dar-
stellen. Sei < eine Ordnung auf A und sei < die Relation < n Id4. Um
die Ordnung < in einem Hasse-Diagramm darzustellen, wird nur
der Graph der Relation

=< < dh <y © x<yAr-Izir<z<y

gezeichnet. Fir z <y sagt man auch, y ist oberer Nachbar von x.
Weiterhin wird im Fall x <y der Knoten y oberhalb vom Knoten z
gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 38. M
b {a: ¢ e (b
Das Hasse-Diagramm rechts zeigt {a,b} {b.c}
die Inklusionsrelation auf der Po- {a} (e}
tenzmenge P(M) von M = {a,b,c}. {b}
16}

16

2.4 Relationalstrukturen

{M}

Das Hasse-Diagramm
links zeigt die feiner-
Relation auf der Men-
ge aller Partitionen
von M ={a,b,c}.

@

Definition 39. Sei < eine Ordnung auf A und sei b ein Element in
einer Teilmenge B c A.

a,b},{c}} @{{a,c}, {b}}

{{a},{b,¢}}

Ha}, {0}, {c}}

Schrinken wir die “teilt”-Relation
auf die Menge {1,2,...,10} ein, so
erhalten wir nebenstehendes Hasse-
Diagramm.

<

e b heifit kleinstes Element oder Minimum von B (kurz
b=min B), falls gilt:

Ve B:b<U.

e b heifst groBtes Element oder Maximum von B (kurz
b=max B), falls gilt:

Vb'e B:b' <b.

e b heifst minimal in B, falls es in B kein kleineres Element
qibt:
Vb'e B:b' <b=1b=b.

e b heifst maximal in B, falls es in B kein gréfferes Element
qibt:
Ve B:b<l =b=10".

2 Regulédre Sprachen

Bemerkung 40. Da Ordnungen antisymmetrisch sind, kann es in
jeder Teilmenge B hochstens ein kleinstes und hochstens ein grofites
Element geben. Die Anzahl der minimalen und mazimalen Elemente
in B kann dagegen beliebig grofs sein.

Definition 41. Sei < eine Ordnung auf A und sei B ¢ A.

Jedes Element uwe A mit uw<b fiir alle b e B heif$t untere und
jedes o€ A mit b< o fiir alle be B heifst obere Schranke von
B.

B heifit nach oben beschrankt, wenn B eine obere Schran-
ke hat, und nach unten beschrankt, wenn B eine untere
Schranke hat.

B heifit beschrankt, wenn B nach oben und nach unten be-
schrankt ist.

Besitzt B eine grifste untere Schranke i, d.h. besitzt die Menge
U aller unteren Schranken von B ein grofites Element i, so
heifit ¢ das Infimum von B (kurz i = inf B):

(Vbe B:b>i)A[VueA: (Vbe B:b>u) = u<il.

Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge
O aller oberen Schranken von B ein kleinstes Element s, so
heifit s das Supremum von B (s =sup B):

(VbeB:b<s)A[Voe A: (Vbe B:b<0) = s<0]

Beispiel 42. Betrachte nebenstehende Ordnung. Die

folgende Tabelle zeigt fiir verschiedene Teilmengen
Bc{a,b,c,d, e} alle minimalen und mazimalen Ele-
mente, alle unteren und oberen Schranken sowie Mi-
nimum, Maximum, Infimum und Supremum von B

e

(falls existent).

2.4 Relationalstrukturen

untere obere

B minimal maximal min max inf sup
Schranken
{a,b} a,b a,b - - c¢dye - - -
{c,d} c,d c,d - - e a,b e -
{a,b,c} c a,b c - c,e - c -
{a,b,c,e} e a,b e - e - e -
{a,c,d, e} e a e a e a e a
<

Bemerkung 43.
e Es kann nicht mehr als ein Supremum und ein Infimum geben.

e Auch in linearen Ordnungen muss nicht jede beschrinkte Teil-
menge ein Supremum oder Infimum besitzen. So hat in der linear
geordneten Menge (Q,<) die Teilmenge

{reQ|2*<2} = {zeQ|2?<2}

weder ein Supremum noch ein Infimum.

e Dagegen hat in (R, <) jede beschrinkte Teilmenge ein Supremum
und ein Infimum (aber eventuell kein Mazimum oder Minimum,).

2.4.2 Abbildungen

Definition 44. Sei R eine bindre Relation auf einer Menge M.
e R heifit rechtseindeutig, falls fir alle x,y,z e M gilt:

TRyANxRz =y = 2.
e R heifit linkseindeutig, falls fiir alle x,y,z € M gilt:

TRz ANyRz =z =1y.

17

2 Regulédre Sprachen

e Der Nachbereich N(R) und der Vorbereich V(R) von R
sind

N(R) = |J R[z] und V(R)=|J R"[z].

xeM xeM

e Eine rechtseindeutige Relation R mit V(R)=A und N(R) < B
heifst Abbildung oder Funktion von A nach B (kurz
R:A- B).

Bemerkung 45.

e R ist also genau dann rechts- bzw. linkseindeutig, wenn jedes
Element x € M hdéchstens einen Nachfolger bzw. Vorgdinger hat.

o Wie ublich werden wir Abbildungen meist mit kleinen Buchsta-
ben f,g,h,... bezeichnen und fir (z,y) € f nicht xfy sondern
f(x) =y oder f:x~y schreiben.

e Ist f: A— B eine Abbildung, so wird der Vorbereich V(f)=A
der Definitionsbereich und die Menge B der Wertebereich
oder Wertevorrat von f genannt.

e Der Nachbereich N(f) wird als Bild von f bezeichnet.

Definition 46.
e Im Fall N(f) =B heifst f surjektiv.
o Ist f linkseindeutig, so heifst f injektiv. In diesem Fall impli-
ziert f(z) = f(y) die Gleichheit x =y.
e Eine injektive und surjektive Abbildung heifst bijektiv.
o Ist [injektiv, so ist auch f~': N(f) - A eine Abbildung, die
als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich V' (f~1) = N(f) von f~! nur
dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

Definition 47. Seien (Ay, R1) und (As, Ry) Relationalstrukturen.

18

2.4 Relationalstrukturen

e Fine Abbildung h : A1 - Ay heifft Homomorphismus, falls
fiir alle a,be Ay gilt:

aR1b = h(a)Rah(D).

e Sind (A1, Ry) und (As, Re) Ordnungen, so spricht man von
Ordnungshomomorphismen oder einfach von monotonen
Abbildungen.

e Injektive Ordnungshomomorphismen werden auch streng mo-
notone Abbildungen genannt.

Beispiel 48. Folgende Abbildung h: Ay — Ay ist ein bijektiver Ord-
nungshomomorphismus.

Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h=!
kein Homomorphismus, da h™' nicht monoton ist. Es gilt namlich

2c3, aber h'(2)=btc=h"1(3).
Dagegen ist fiir jede monotone Bijektion f zwischen linearen Ordnun-
gen auch thre Umkehrabbildung f~' monoton. <

Definition 49. Fin bijektiver Homomorphismus h : Ay — Ay, bei
dem auch h™" ein Homomorphismus ist, d.h. es gilt

Va,be Ay :aRib < h(a)Rah(D).

heifit Isomorphismus. In diesem Fall heiffen die Strukturen (A1, Ry)
und (Az, Ry) isomorph (kurz: (A1, Ry) = (Ag, Ry)).

2 Regulédre Sprachen

Beispiel 50.

e FirneN seiT, ={keN|k teilt n} die Menge aller Teiler von
n und P, ={peT, |p ist prim} die Menge aller Primteiler von
n. Dann ist die Abbildung

h!kl—)Pk

ein (surjektiver) Ordnungshomomorphismus von (T,,|) auf
(P(P,),<). h ist sogar ein Isomorphismus, falls n quadratfrei
ist (d.h. es gibt kein k > 2, so dass k* die Zahl n teilt).

e Die beiden folgenden Graphen G und G’ sind isomorph. Zwei
Isomorphismen sind beispielsweise hy und hs.

13524
14253

hl(l})
hQ(U)

e Wihrend auf der Knotenmenge V = [3] insgesamt 23 = 8 wver-
schiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

VANVAN

e Die Abbildung h : R - R* mit h(z) = e* ist ein Ordnungsiso-
morphismus zwischen (R, <) und (R*,<).

o [] o——©O

19

2.5 Minimierung von DFAs

e Fs existieren genau 5 nichtisomorphe Ordnungen mit 3 Elemen-
ten:

Anders ausgedrickt: Die Klasse aller dreielementigen Ordnungen
zerfdllt unter der Aquivalenzrelation = in finf Aquivalenzklassen,
die durch obige finf Hasse-Diagramme reprdsentiert werden.

<

2.5 Minimierung von DFAs

Wie kénnen wir feststellen, ob ein DFA M = (Z,%, 4, qo, ') unnétige
Zustande enthalt? Zunéchst einmal konnen alle Zustidnde entfernt
werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden
gehen wir daher davon aus, dass M keine unerreichbaren Zustande
enthélt.

Offensichtlich koénnen zwei Zustidnde ¢ und p zu einem Zustand ver-
schmolzen werden (kurz: ¢ ~y; p), wenn M von ¢ und von p ausge-
hend jeweils dieselben Worter akzeptiert. Bezeichnen wir den DFA
(Z,%,0,q, F) mit M,, so sind ¢ und p genau dann verschmelzbar, wenn
L(M,) = L(M,) ist. Offensichtlich ist ~; eine Aquivalenzrelation.

Fassen wir alle mit einem Zustand z verschmelzbaren Zustiande in
dem neuen Zustand

[Z]"‘]M = {Z, €Z | L(MZ’) = L(MZ)}

zusammen (wofiir wir auch kurz [2] oder Z schreiben) und ersetzen
wir Z und E durch Z ={Z |z € Z} und £ = {Z]|z € E}, so erhalten
wir den DFA M’ = (Z,%,d, o, E') mit

5'(q,a) = 5(q,).

2 Regulédre Sprachen

Hierbei bezeichnet @ fiir eine Teilmenge Q € Z die Menge {q | ¢ € Q}
aller Aquivalenzklassen ¢, die mindestens ein Element ¢ € enthalten.
Der néchste Satz zeigt, dass M’ tatséichlich der gesuchte Minimalau-
tomat ist.

Satz 51. Sei M = (Z,%,0,q0,F) ein DFA, der nur Zustinde ent-
hdlt, die vom Startzustand qo aus erreichbar sind. Dann ist M' =
(Z,Z,é’,cjo,E) mit

6'(g,a) = 6(q, a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustinden.

Beweis. Wir zeigen zuerst, dass ¢’ wohldefiniert ist, also der Wert
von ¢’(g,a) nicht von der Wahl des Reprasentanten ¢ abhéngt. Hierzu
zeigen wir, dass im Fall p ~y; ¢ auch §(q,a) und §(p,a) aquivalent
sind:

L(M,) = L(M,) VreS*:xe L(M,) < xeL(M,)
VreX*:axe L(M,) < ax e L(M),)
Vo eX :xe L(Msga)) < € L(Mspa))

L(Ms(g,a)) = L(Ms(p,a))-

Vel

Als néchstes zeigen wir, dass L(M') = L(M) ist. Sei « =y ...z, eine
Eingabe und seien

q; = 3(QO,ZE1...ZL’Z'), 1= 0,...772,
die von M bei Eingabe x durchlaufenen Zustande. Wegen
6"(Gi-1,) = 0(qi-1, 7)) = G

durchlauft M’ dann die Zustande

q~07q~17"'7Qn'

20

2.5 Minimierung von DFAs

Da aber ¢, genau dann zu E gehort, wenn §, € E ist, folgt
L(M'") = L(M) (man beachte, dass ¢, entweder nur Endzusténde
oder nur Nicht-Endzustiande enthélt, vgl. Beobachtung 53).

Es bleibt zu zeigen, dass M’ eine minimale Anzahl | Z| von Zustéanden
hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es
reicht also zu zeigen, dass die Anzahl k = | Z| = |[{L(M.) | z € Z}| der
Zustéande von M’ nicht von der Anzahl der Zustédnde von M, sondern
nur von der erkannten Sprache L = L(M) abhéngt. Fiir x € 3* sei

L,={yeX* |axyel}
die Restsprache von L fir das Wort . Dann gilt {L, |z € ¥*} ¢
{L(M.) |z € Z}, da Ly = L(Mj,,) ist. Die umgekehrte Inklusion gilt
ebenfalls, da nach Voraussetzung jeder Zustand g € Z iiber ein x € ¥*

erreichbar ist. Also héngt k = |[{L(M,) | z€ Z}| = |[{L, | z € ¥*}|| nur
von L ab. |

Beispiel 52. Die Sprache L = {xy...x,€{0,1}*|n>2 und x,1 =0}
hat die vier Restsprachen

L, x €{e, 1} oder x endet mit 11,

Lu{0,1}, x=0 oder z endet mit 10,
o {€,0,1}, =« endet mit 00,

Lu{e}, x endet mit 01.

Entsprechend gibt es fiir L einen DFA mit / Zustinden, aber keinen
mit 3 Zustinden.

Eine interessante Folgerung aus obigem Beweis ist, dass eine regulére
Sprache L ¢ ¥* nur endlich viele verschiedene Restsprachen L,, x € ¥*,
hat. Daraus folgt, dass die durch

xTr ~j, y@Lz:Ly

auf ¥* definierte Aquivalenzrelation ~;, fiir jede regulidre Sprache
L c ¥* einen endlichen Index hat. Die Relation ~; wird als Nerode-
Relation von L bezeichnet.

2 Regulédre Sprachen

Fiir die algorithmische Konstruktion von M’ aus M ist es notwendig
herauszufinden, ob zwei Zustinde p und ¢ von M &aquivalent sind
oder nicht. Hierzu gentigt es, die Menge D = {{p, qycZ |p o q} zu
berechnen.

Bezeichne A A B = (AN B)u (B~ A) die symmetrische Differenz
von zwei Mengen A und B. Dann ist die Indquivalenz p 4, ¢ zweier
Zustande p und ¢ gleichbedeutend mit L(M,) & L(M,) + @. Wir
nennen ein Wort = € L(M,) & L(M,) einen Unterscheider zwischen
p und q. Fir i > 0 sei D= die Menge aller Paare {p,q}, die einen
Unterscheider = der Lénge |z| = ¢ haben und D; sei die Menge aller

Paare {p,q} € D, die einen Unterscheider = der Léinge |z| < i haben.
Dann gilt D; = D=0u D=t u---u D= und D = U;50 D = U;50 D:.

Beobachtung 53.

e Das leere Wort € unterscheidet Endzustinde und Nichtendzu-
stande, d.h.

Dy=D"={{p,q}cZ|peE,q¢ E}.

e Zudem haben zwei Zustinde p und q genau dann einen Unter-
scheider x = x1...x;41 der Lange i+ 1, wenn die beiden Zustinde
d(p,x1) und §(q, 1) einen Unterscheider x = x5 ...x;41 der Lin-
ge 1 haben. Daher gilt

{p.q} e D™ = 3ae¥:{(p,a),0(¢q,a)} e D7,
was wiederum

Dip= D; U {{p,q}EZ|3@621{5(19’@)75(%“)}6&}

—
D=0u-..uD=i D=1u...uD=i+1

impliziert.

2.5 Minimierung von DFAs

Da es nur endlich viele Zustandspaare gibt, gibt es ein ¢ > 0 mit
D = D,. Offensichtlich gilt

D= l)z <~ Di+1 = Dz
Der folgende Algorithmus berechnet fiir einen beliebigen DFA M den
zugehorigen Minimal-DFA M.
Algorithmus min-DFA(M)

I Input: DFA M = (Z,%,6,q, E)

> entferne alle unerreichbaren Zustande aus 2

5 D':=Dg:={{p,q}cZ|peE ,q¢ E}

. repeat

5 D:=D

6 D":=Dyu{{p,q}|Jae>X:{d(p,a),é(q,a)} e D}

7 until D'=D

< Output: M'=(Z,%,8, G, F), wobei §(§,a) = m ist
o und fir jeden Zustand g€ Z gilt: g={pe Z |{p,q} ¢ D}

Beispiel 54. Betrachte den DFA M :
a ia

b a
b a
(b(b
b a
> &_r
Dann enthdlt Dy die Paare b a

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.

Die Paare in Dy sind in der folgenden Matriz durch den Unterscheider
€ markiert.

S O = W N

MOl || ™

M| |M™

123 45

2 Regulédre Sprachen

Wegen

{p.a} {14} {15} {24} {2,5)
{0(q.a),0(p,a)} [{2,3} {2,6} {1,3} {16}
enthdlt Dy zusdtzlich die Paare {1,4}, {1,5}, {2,4}, {2,5} (in obiger

Matriz durch den Unterscheider a markiert). Da nun jedoch keines
der verbliebenen Paare {1,2}, {3,6}, {4,5} wegen

{p,q}

{6(p,a),0(q,a)}
{6(p,b),6(q,b)}

| {12} {3,6} {4,5}

{1,2} {4,5} {3,6}
{3,6} {1,2} {4,5}

zu Do hinzugefiigt werden kann, gilt Dy = Dy und somit D = D;.

Aus den unmarkierten Paaren {1,2}, {3,6} und {4,5} erhalten wir
die Aquivalenzklassen

1={1,2}, 3={3,6} und 4={4,5},

die auf folgenden Minimal-DFA M’ fiihren:
- b a
m : (D)
a b

Es ist auch moglich, einen Minimalautomaten M direkt aus einer
reguldren Sprache L zu gewinnen (also ohne einen DFA M fir L zu
kennen). Da wegen

<

S(q())'r) = S(Q(),y) ~ 8(Q0a$) ~M 8(6107?/)
had L(Ms(émﬁﬂ)) - L(MS(me)) < Ly :Ly

22

2.5 Minimierung von DFAs

zwei Eingaben x und y den DFA M’ genau dann in denselben Zustand
iberfithren, wenn L, = L, ist, kénnen wir den von M’ bei Eingabe x
erreichten Zustand auch mit der Sprache L, bezeichnen. Dies fiihrt
auf den zu M’ isomorphen (also bis auf die Benennung der Zustande
mit M’ identischen) DFA My = (Z,%, 0y, L., F) mit

Zy, = {L,|zeX*},
Ep = {L,|zeL}und
(SL(LQC,CL) = La:a-

M7, wird auch als Restsprachen-DFA fir L bezeichnet.

Beispiel 55. Fir die Sprache L = {zy...x, € {0,1}* | n >
2 und x,_1 =0} mit den vier Restsprachen

L, x €{e,1} oder x endet mit 11,
I - Lu{0,1}, x=0 oder z endet mit 10,

Lu{e, 0,1}, x endet mit 00,

Lu{e}, x endet mit 01.

erhalten wir den folgenden Minimalautomaten My, fiir L:

00
el

Man beachte, dass es fiir die Konstruktion von M| keine Rolle spielt,
wie die Restsprachen L, konkret aussehen, d.h. ihre Angabe ist nicht
erforderlich. <

Notwendig und hinreichend fiir die Existenz von M| ist, dass die
Nerode-Relation ~; von L endlichen Index hat bzw. L nur endlich

2 Regulédre Sprachen

viele verschiedene Restsprachen hat. Im Fall, dass M bereits ein Mi-
nimalautomat ist, sind alle Zustdnde von M’ von der Form ¢ = {q},
so dass M isomorph zu M’ und damit auch isomorph zu M/, ist. Dies
zeigt, dass alle Minimalautomaten fiir eine Sprache L isomorph sind.

Satz 56 (Myhill und Nerode).

1. Sei L regular und sei index(~r) der Index von ~p. Dann gibt
es fiir L bis auf Isomorphie genau einen Minimal-DFA. Dieser
hat index(~1) Zustinde.

2. REG = {L | die Nerode-Relation ~, hat endlichen Index}.

Sei R ein Reprisentantensystem fiir die Nerode-Relation ~; von L,
dh. {L, |z eX*}={L, |re R} und L, # L, fiir alle r,7’ € R mit
r #r’. Dann konnen wir die Zustdnde des Minimal-DFA anstelle von
L, auch mit den Reprasentanten r € R bezeichnen. Dies fithrt auf den
Minimal-DFA Mg = (R,3,0,¢, E), wobei wir ¢ € R annehmen und
§(r,a) € R der Reprisentant der Aquivalenzklasse 7a und E = RN L ist.
Wir bezeichnen My als den zu R gehorigen Reprasentanten-DFA
fir L.

Beispiel 57. Fir die Sprache L ={xy...x, €{0,1}* | z,,_1 =0} lisst
sich ein Reprdsentanten-DFA Mg wie folgt konstruieren:
1. Wir beginnen mit r1 = €.
2. Dari0=0¢y ¢ ist, erhalten wir ro =0 und setzen 6(g,0) = 0.
3. Daril=1~p ¢ ist, setzen wir §(e,1) =¢.
4. Dary0=00¢p r; firi=1,2 ist, erhalten wir r3 = 00 und setzen
4(0,0) = 00.
5. Da rol = 01 ¢p ry fiir i = 1,2,3 ist, erhalten wir ry = 01 und
setzen 6(0,1) = 01.
6. Da zudem r30 = 000 ~; 00, r31 = 001 ~; 01, 4,0 = 010 ~; O
und ryl = 011 ~p e gilt, setzen wir 6(00,0) = 00, §(00,1) = 01,
0(01,0) =0 und 6(01,1) = €.

23

2.5 Minimierung von DFAs

Wir erhalten also das Reprasentantensystem R = {e,0,00,01} fir ~p,
und folgenden Minimal-DFA Mg fiir L:

r e 0 00 01

5(r,0)|0 00 00 0
o(r,1) |e 01 01 =

Wir fassen nochmals die wichtigsten Ergebnisse zusammen.

Korollar 58. Fiir jede Sprache L sind folgende Aussagen dquivalent:
e L ist reqular (d.h. es gibt einen DFA M mit L = L(M)),

es gibt einen NFA N mit L = L(N),

es gibt einen requldren Ausdruck v mit L = L(7y),

e L hat endlich viele Restsprachen L, ={zeX*|xze L}, xeX*,

e die Nerode-Relation ~;, von L hat endlichen Index.

Wir kénnen also beweisen, dass eine Sprache L nicht regulér ist,
indem wir unendlich viele verschiedene Restsprachen (bzw. unendlich
viele paarweise bzgl. ~; indquivalente Worter) finden.

Satz 59. Die Sprache L = {a™b"™ | n >0} ist nicht requldr.

Beweis. Wegen
b€ Lyi A Ly (fiir 0<i < 5)

sind die Restsprachen L, ¢ > 0, paarweise verschieden und wegen

a' ~pa’ < Ly =Lg,;

folgt auch, dass a’ ¢ a’ fiir i < j gilt, weshalb index(~p) = co ist. m
Wir werden im néachsten Abschnitt noch eine weitere Methode kennen-

lernen, mit der man beweisen kann, dass eine Sprache nicht regulér
ist, namlich das Pumping-Lemma.

2 Regulédre Sprachen

2.6 Das Pumping-Lemma

Wie kann man von einer Sprache L noch nachweisen, dass sie nicht
regulér ist? Eine weitere Moglichkeit besteht darin, die Kontraposition
folgender Aussage anzuwenden.

Satz 60 (Pumping-Lemma fiir reguldre Sprachen).
Zu jeder reguldren Sprache L gibt es eine Zahl 1 >0, so dass sich alle
Worter x € L mit || > 1 in x = uvw zerlegen lassen mit

1. v#e,

2. Juwv| <1 und

3. wv'w € L fiir alle 1 > 0.

Falls eine Zahl 1 > 0 mit diesen FEigenschaften existiert, wird das
kleinste solche | die Pumpingzahl von L genannt.

Beweis. Sei M = (Z,%,0,qy,F) ein NFA fir L und sei | = ||Z]
die Anzahl der Zustédnde von M. Setzen wir M auf eine Eingabe
x=x1...¢, € L der Lange n > [an, so muss M nach spétestens [
Schritten einen Zustand ¢ € Z zum zweiten Mal besuchen:

Elj,k;:Ogj<k‘sl/\g(qo,:vl...xj):8(q0,azl...a:k):q.
Wahlen wir nun w = x1...2j, v = Zjy1 ... 25 und W = Tpiq ... Ty, SO
ist [v| = k-7 >1 und |uv| = k < 1. Ausserdem gilt uviw € L fiur alle

i >0, da M wegen 3(q,vi) = S(q,v) = ¢ nach Lesen von uviw einen
Endzustand erreicht:

5(qo, uv'w) = 5(6(8(qo, u), v'), w) = 6(8(5(qo,w),v), w) = (g0,) € E

N——— S———
q q
—_———— (S —
q q

24

2.6 Das Pumping-Lemma

Beispiel 61. Die Sprache

L={xe{a,b}* | #u(x)—#p(x) =3 1}
hat die Pumpingzahl 1 = 3. Sei namlich x € L beliebig mit |x| > 3. Dann
lasst sich innerhalb des Prifixes von x der Linge drei ein nichtleeres
Tetlwort v finden, das gepumpt werden kann:

1. Fall: x hat das Prifiz ab (oder ba).

Zerlege x = uvw mit u=¢e und v =ab (bzw. v =ba).
2. Fall: x hat das Prifix aab (oder bba).

Zerlege © = uvvw mit u=a (bzw. u=>b) und v =ab (bzw. v =ba).
3. Fall: x hat das Prifiz aaa (oder bbb).

Zerlege © = uvw mit u=¢ und v = aaa (bzw. v =bbb). <

Beispiel 62. Eine endliche Sprache L hat die Pumpingzahll = l,,,.+1,
wobei
L=,

I
" | max{|z| |z € L},

ist. Tatsdchlich ldsst sich jedes Wort x € L der Linge |x| > lpaz ,pum-
pen® (da solche Warter gar nicht existieren), weshalb die Pumpingzahl
hochstens lya, + 1 ist. Zudem gibt es im Fall l,,q, > 0 ein Wort x € L
der Linge |z| = lyae = 1 =1, das sich nicht ,pumpen lasst, weshalb die
Pumpingzahl nicht kleiner als | sein kann. <

sonst

Sei minpra(L) (minypa(L)) die minimale Anzahl von Zustédnden
eines DFA (bzw. NFA) einer reguldren Sprache L und sei l,.,(L) die
Pumping-Zahl fiir L. Da wir im Beweis des Pumping-Lemmas einen
NFA fir L mit | = minypa(L) Zustdnden wahlen kénnen, folgt

lreg(L) <minnpa(L) <minppa(L) = index(~L).
Tatséchlich gibt es fiir jedes i > 1 eine Sprache L mit
lreg(L) =index(~1) = i.
Andererseits gibt es fiir jedes ¢ > 1 auch eine Sprache L mit

lreg(L) =1 und index(~p) = i.

2 Regulédre Sprachen

Dagegen ist L = & die einzige Sprache mit der Pumping-Zahl 0. Fir
diese gilt index(~g) = 1.

Wollen wir mit Hilfe des Pumping-Lemmas von einer Sprache L zeigen,
dass sie nicht regulér ist, so geniigt es, fiir jede Zahl [ein Wort x € L
der Lénge |z| > I anzugeben, so dass fir jede Zerlegung von x in drei
Teilworter u, v, w mindestens eine der drei in Satz 60 aufgefiithrten
Eigenschaften verletzt ist.

Beispiel 63. Die Sprache
L={a?b?|j>0}

ist nicht requldr, da sich fir jede Zahll >0 das Wort x = a'b' der
Lange |x| = 21 > 1 in der Sprache L befindet, welches offensichtlich
nicht in Teilworter u,v,w mit v # € und wvw € L zerlegbar ist. <

Beispiel 64. Die Sprache
L={a"|n>0}

ist ebenfalls nicht requldr. Andernfalls miisste es ndmlich eine Zahl
[>0 geben, so dass jede Quadratzahl n? > 1 als Summe von natirlichen
Zahlen u + v +w darstellbar ist mit der Eigenschaft, dass v > 1 und
u+v <l ist, und fir jedes i > 0 auch u+1iv +w eine Quadratzahl ist.
Fiir n = 1 maisste also insbesondere u+2v+w = n?+v eine Quadratzahl
Sein, was wegen

n*<n®+v<n®+l<n?+2n+1=(n+1)>
ausgeschlossen ist. <
Beispiel 65. Auch die Sprache
L ={a”|p prim }

ist nicht requldr, da sich sonst jede Primzahl p einer bestimmten Min-
destgrife | als Summe von natiirlichen Zahlen u + v +w darstellen

25

2.7 Grammatiken

liefle, so dass v > 1 und fir alle i >0 auch u+iv+w =p+ (i —1)v
prim ist. Dies ist jedoch firi=p+1 wegen

p+(p+1-Dv=p(l+v)
nicht der Fall. <

Bemerkung 66. Mit Hilfe des Pumping-Lemmas kann nicht fiir jede
Sprache L ¢ REG gezeigt werden, dass L nicht requlir ist, da seine
Umkehrung falsch ist. So hat beispielsweise die Sprache

L={a'bic"|i=0 oder j =k}

die Pumpingzahl 1 (d.h. jedes Wort x € L mit Ausnahme von ¢ kann
»gepumpt“ werden). Dennoch ist L nicht requlir (siche Ubungen).

2.7 Grammatiken

Eine beliebte Methode, Sprachen zu beschreiben, sind Grammatiken.
Implizit haben wir diese Methode bei der Definition der reguldren
Ausdriicke bereits benutzt.

Beispiel 67. Die Sprache RA aller requldren Ausdricke tiber ei-
nem Alphabet ¥ = {aq,...,a;} ldsst sich aus dem Symbol R durch
wiederholte Anwendung folgender Ersetzungsregeln erzeugen:

R_)Q, R_)RR7
R — R — (R|R),
R > asi=1,.. .k R > (R)*.

<
Definition 68. Fine Grammatik ist ein 4-Tupel G = (V,X, P, S),
wobei

e V eine endliche Menge von Variablen (auch Nichtterminal-
symbole genannt),

e Y das Terminalalphabet,

2 Regulédre Sprachen

e Pc(VuX)*x(VuX)~ eine endliche Menge von Regeln (oder
Produktionen) und

e S eV die Startvariable ist.

Die Produktionenmenge P ist also eine binédre Relation auf (V uX)*.

Fir (u,v) € P schreiben wir auch kurz v - v bzw. v — v, wenn
die benutzte Grammatik aus dem Kontext ersichtlich ist. Regeln der
Form € — v sind nicht erlaubt.

Definition 69. Seien o, € (VuX)*.
a) Wir sagen, B ist aus a in einem Schritt ableitbar (kurz:
a =g), falls eine Regel u »¢ v und Warter I,r € (V uX)*
existieren mit
a = lur und B = lor.
Hierfiir schreiben wir auch lur =g lvr bzw. lur = lor.’

b) Die durch G erzeugte Sprache ist
L(G)={xeX*|S=>"x}.

c) Ein Wort a e (V uX)* mit S =* « heifft Satzform von G.

Beispiel 70. Wir betrachten nochmals die Grammatik G = ({R}, X u
{@,¢,(,),*,|}, P,R), die die Menge der requliren Ausdriicke tuber dem
Alphabet ¥ erzeugt, wobei P die oben angegebenen Regeln enthdlt. Ist
Y ={0,1}, so lasst sich der requlire Ausdruck (01)*(e|@) beispielsweise
wie folgt in 8 Schritten ableiten:

k= RR= (R)"R= (RR)'R= (ER)"(R|R)
= (0R)"(R|R) = (01)"(B|R) = (01)"(¢|R) = (01)"(e|@)

Man unterscheidet vier verschiedene Typen von Grammatiken.

2.7 Grammatiken

Definition 71. Sei G = (V, %, P,S) eine Grammatik.

1. G heifit vom Typ 3 oder regular, falls fir alle Regeln u — v
gilt: weV und ve XV uX u {e}.

2. G heifst vom Typ 2 oder kontextfrei, falls fir alle Regeln
u—>v gilt: ueV.

3. G heifit vom Typ 1 oder kontextsensitiv, falls fiir alle Regeln
u — v gilt: |v| > |u| (mit Ausnahme der e-Sonderregel, siehe
unten).

4. Jede Grammatik ist automatisch vom Typ O.

e-Sonderregel: In einer kontextsensitiven Grammatik (V,X, P,.S)
kann auch die verkiirzende Regel S — ¢ vorkommen. Aber nur, wenn
das Startsymbol S nicht auf der rechten Seite einer Regel steht.

Die Sprechweisen ,vom Typ i“ bzw. ,regular®, ,kontextfrei und
,kontextsensitiv® werden auch auf die durch solche Grammatiken er-
zeugten Sprachen angewandt. (Der folgende Satz rechtfertigt dies fir
die regulédren Sprachen, die wir bereits mit Hilfe von DFAs definiert
haben.) Die zugehorigen neuen Sprachklassen sind

CFL = {L(G) | G ist eine kontextfreie Grammatik},
(context free languages) und
CSL = {L(G) | G ist eine kontextsensitive Grammatik}

(context sensitive languages). Da die Klasse der Typ 0 Sprachen
mit der Klasse der rekursiv aufzédhlbaren (recursively enumerable)
Sprachen tibereinstimmt, bezeichnen wir diese Sprachklasse mit

RE = {L(G) | G ist eine Grammatik}.

Die Sprachklassen
REG c CFL c CSL c RE

"Man beachte, dass durch Unterstreichen von « in o sowohl die benutzte Regel als auch die Stelle in «, an der u durch v ersetzt wird, eindeutig erkennbar sind. Da = eine
binére Relation auf (V uX)* ist, bezeichnet =™ das m-fache Relationenprodukt und =* die reflexive, transitive Hiille von =.

26

2 Regulédre Sprachen

bilden eine Hierarchie (d.h. alle Inklusionen sind echt), die so genannte
Chomsky-Hierarchie.

Als néchstes zeigen wir, dass sich mit regularen Grammatiken gerade
die reguldren Sprachen erzeugen lassen.

Satz 72. REG = {L(G) | G ist eine requlire Grammatik}.
Beweis. Sei L € REG und sei M = (Z,%,4,q, E) ein DFA mit

L(M) = L. Wir konstruieren eine reguldre Grammatik G = (V, X, P, 5)
mit L(G) = L. Setzen wir

vV = Z
S = ¢o und
P = {q—ap|i(q,a)=pju{qg—c|qeE},

so gilt fir alle Worter x = x1...x, € X*:

relL(M) < 3dq,...
(5(Qi—1axi) =q; fir 7 = L...,n

7Qn71€ZE|Qn€E:

< dq1,...,q, €V :

(i1 > riq; furi=1,...,nund ¢, >g ¢
< dqi,...,q,€V:

%32‘1’1.--1’@‘% fire=1,...,nund ¢, »>¢g ¢
< zel(G)

Fir die entgegengesetzte Inklusion sei nun G = (V, %, P, S) eine re-
guldare Grammatik, die keine Produktionen der Form A — a enthélt.
Dann konnen wir die gerade beschriebene Konstruktion einer Gram-
matik aus einem DFA jumdrehen“, um ausgehend von G einen NFA
M =(Z,%,6,{S}, E) mit

zZ =V,
E = {A|A-ge} und
d(A,a) = {B|A—-gaB}
zu erhalten. Genau wie oben folgt nun L(M) = L(G). |

27

2.7 Grammatiken

Beispiel 73. Der DFA

fihrt auf die Grammatik ({qo, q1,q2, 43}, {0, 1}, P, qo) mit

P qo— 1qo,0q1,
q1 —~ 0gz, 1gs,
g2 > 02, 1q3, ¢,
g3 > 0g1, 1go, €.

Umgekehrt fihrt die Grammatik G = ({A, B,C},{a,b}, P, A) mit

P: A-aB,bC, e,
B - aC,bA,b,
C - aA,bB,a

iber die Grammatik G' = ({A, B,C,D},{a,b}, P', A) mit

P: A-aB,bC e,
B - aC,bA,bD,
C - aA,bB,aD,
D—¢

auf den NFA

3 Kontextfreie Sprachen

3 Kontextfreie Sprachen

Wie wir gesehen haben, ist die Sprache L = {a™b™ | n > 0} nicht regulér.
Es ist aber leicht, eine kontextfreie Grammatik fiir L zu finden:

G =({S},{a,b},{S = aSL,S - ¢},S).

Damit ist klar, dass die Klasse der reguldren Sprachen echt in der
Klasse der kontextfreien Sprachen enthalten ist. Als néchstes wollen
wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt
in der Klasse der kontextsensitiven Sprachen enthalten ist:

REG ¢ CFL ¢ CSL.

Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur
Regeln der Form A — o haben. Dies lasst die Verwendung von belie-
bigen e-Regeln der Form A — ¢ zu. Eine kontextsensitive Grammatik
darf dagegen hochstens die e-Regel S — ¢ haben. Voraussetzung
hierfiir ist, dass S das Startsymbol ist und dieses nicht auf der rech-
ten Seite einer Regel vorkommt. Daher sind nicht alle kontextfrei-
en Grammatiken kontextsensitiv. Beispielsweise ist die Grammatik
G = ({S},{a,b},{S - aSbh,S - ¢},5) nicht kontextsensitiv, da sie
die Regel S — ¢ enthélt, obwohl S auf der rechten Seite der Regel
S — aSbh vorkommt.

Es lasst sich jedoch zu jeder kontextfreien Grammatik eine aquivalen-
te kontextfreie Grammatik G’ konstruieren, die auch kontextsensitiv
ist. Hierzu zeigen wir zuerst, dass sich zu jeder kontextfreien Gram-
matik G, in der nicht das leere Wort ableitbar ist, eine aquivalente
kontextfreie Grammatik G’ ohne e-Regeln konstruieren lésst.

Satz 74. Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie
Grammatik G' ohne e-Produktionen mit L(G") = L(G) ~ {e}.

28

Beweis. Zuerst sammeln wir mit folgendem Algorithmus alle Varia-
blen A, aus denen das leere Wort ableitbar ist. Diese werden auch als
e-ableitbar bezeichnet.

I B ={AeV|A->¢}

2 repeat

3 E=F

I E'=Fu{AeV|3By,....,Bye E:A— B;...By}
5 until F=FE'

Nun konstruieren wir G’ = (V, X, P’ S) wie folgt:
Nehme zu P’ alle Regeln A - o/ mit o/ # € hinzu, fir

die P eine Regel A — « enthalt, so dass o/ aus a durch
Entfernen von beliebig vielen Variablen A € E hervorgeht.

Beispiel 75. Betrachte die Grammatik G = (V, %, P,S) mit V =
{8, T,U,X,Y, Z}, ¥ ={a,b,c} und den Regeln

P: S->aY bX,Z;, Y ->bS,aYY;, T->U,;
X —>aS,bXX;, Z—-¢e ST, cZ; U-abc.

Bei der Berechnung von E = {AeV | A=*¢} ergeben sich der Reihe
nach folgende Belequngen fiir die Mengenvariablen E und E’:

B {2y 14,5}
E | {Z S} {Z, 5}

Um nun die Regelmenge P’ zu bilden, entfernen wir aus P die einzige
e-Regel Z — ¢ und figen die Regeln X — a (wegen X - aS), Y - b
(wegen Y — bS) und Z — ¢ (wegen Z — cZ) hinzu:

P S-aY bX, Z, Y - b,05,aYY; T-U,;
X >a,a5,bXX; Z ¢ ST, cz; U — abe. 4

3 Kontextfreie Sprachen

Als direkte Anwendung des obigen Satzes kénnen wir die Inklusion
der Klasse der Typ 2 Sprachen in der Klasse der Typ 1 Sprachen
zeigen.

Korollar 76. REG ¢ CFL c CSL c RE.

Beweis. Die Inklusionen REG ¢ CFL und CSL ¢ RE sind klar. Wegen
{a™b"|n > 0} € CFL - REG ist die Inklusion REG < CFL auch echt. Also
ist nur noch die Inklusion CFL ¢ CSL zu zeigen. Nach obigem Satz
ex. zu L € CFL eine kontextfreie Grammatik G = (V. X, P, S) ohne
e-Produktionen mit L(G) = L ~ {¢}. Da G dann auch kontextsensitiv
ist, folgt hieraus im Fall € ¢ L unmittelbar L(G) = L € CSL. Im Fall
¢ € L erzeugt die kontextsensitive Grammatik
G'=(Vu{S}, 5, Pu{S - S,e},5)

die Sprache L(G") = L, d.h. L € CSL. [

Als néachstes zeigen wir folgende Abschlusseigenschaften der kontext-
freien Sprachen.
Satz 77. Die Klasse CFL ist abgeschlossen unter Vereinigung, Produkt
und Sternhiille.

Beweis. Seien G; = (V;, %, P;, S;), i = 1,2, kontextfreie Grammatiken
fiir die Sprachen L(G;) = L; mit V1 nV3 = @ und sei S eine neue
Variable. Dann erzeugt die kontextfreie Grammatik

Gy = (Viulau{S}, 5, PLuPU{S > 51,5}, 5)
die Vereinigung L(G3) = L1 U Ly. Die Grammatik
G4= (WU‘/QU{S},Z,PlUPQU{S—>5152},S)

erzeugt das Produkt L(G,) = Ly Ly und die Sternhiille (L;)* wird von
der Grammatik

G5 = (‘/1 U {S},E,Pl @) {S - 51575}75)

erzeugt. m

29

Man beachte, dass sich G5 nicht durch die Grammatik Gg = (V1, %, Pu
{S1—5151,¢e},51) ersetzen lasst, da L(Gg) im Fall P, = {S; —
aSib,e} z.B. das Wort aababb ¢ L(G1)* enthélt.

Offen bleibt zunéchst, ob die kontextfreien Sprachen auch unter
Schnitt und Komplement abgeschlossen sind. Um dies zu verneinen,
miissen wir fiir bestimmte Sprachen nachweisen, dass sie nicht kon-
textfrei sind. Dies gelingt mit einem Pumping-Lemma fiir kontextfreie
Sprachen.

Satz (Pumping-Lemma fiir kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl [, so dass sich alle
Worter z € L mit |z| > in z = wvwzxy zerlegen lassen mit

1. vx #e,
2. Jvwz| <1 und

3. wvtwaxty € L fir alle i > 0.

Fir den Beweis bendtigen wir Grammatiken in Chomsky-Normalform,
die wir im nichsten Abschnitt behandeln werden.

Beispiel 78. Betrachte die Sprache L = {a™b"|n > 0}. Dann lisst
sich jedes Wort z = a™b™ mit |z| > 2 pumpen: Zerlege z = uvwxy mit
u=a"l, v=a,w=e, x=0bundy=0""1. <

Beispiel 79. Die Sprache {a™b"c" | n >0} ist nicht kontextfrei. Fir
eine vorgegebene Zahl 1 >0 hat namlich z = alb!c! die Lange |z| = 31 > 1.
Dieses Wort ldsst sich aber nicht pumpen, da fir jede Zerlequng
z = wvwzy mit ve # € und [vwz| <1 das Wort 2" = uwv?wz?y nicht zu
L gehort:

o Wegen vx # ¢ ist |z| <|2/|.

o Wegen |vwz| <1 kann in vx nicht jedes der drei Zeichen a,b,c

vorkommen.

3 Kontextfreie Sprachen

o Kommt aber in vz beispielsweise kein a vor, so ist

#a(2') = #a(2) = 1= |2|/3 <|2'|/3,
also kann z' nicht zu L gehdren. g

Die Chomsky-Normalform ist auch Grundlage fiir einen effizienten
Algorithmus zur Losung des Wortproblems fiir kontextfreie Gramma-
tiken, das wie folgt definiert ist.

Wortproblem fiir kontextfreie Grammatiken:
Gegeben: Eine kontextfreie Grammatik G' und ein Wort x.
Gefragt: Ist v € L(G)?

Satz. Das Wortproblem fiir kontextfreie Grammatiken ist effizient
entscheidbar.

3.1 Chomsky-Normalform

Definition 80. Fine Grammatik (V,%,P,S) ist in Chomsky-
Normalform (CNF), falls P c 'V x (V2uX) ist, also alle Regeln
die Form A - BC oder A — a haben.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen,
miissen wir neben den e-Regeln A — ¢ auch sdmtliche Variablenumbe-
nennungen A — B loswerden.

Definition 81. Regeln der Form A — B heiffen Variablenumbe-
nennungen.

Satz 82. Zu jeder kontextfreien Grammatik G ex. eine kontextfreie
Grammatik G' ohne Variablenumbenennungen mit L(G") = L(G).

Beweis. Zuerst entfernen wir sukzessive alle Zyklen

A1_>A2_>"'_>Ak_’A1a

30

3.1 Chomsky-Normalform

indem wir diese Regeln aus P entfernen und alle iibrigen Vorkommen
der Variablen A,,..., A, durch A; ersetzen. Falls sich unter den ent-
fernten Variablen A,,..., Ay die Startvariable S befindet, sei A; die
neue Startvariable.

Nun entfernen wir sukzessive die restlichen Variablenumbenennungen,
indem wir

o eine Regel A -» B wihlen, so dass in P keine Variablenumbe-
nennung B — C mit B auf der rechten Seite existiert,

o diese Regel A - B aus P entfernen und
o fiir jede Regel B — « in P die Regel A - a zu P hinzunehmen.
[|

Beispiel 83. Ausgehend von den Produktionen

P:5S—-aY bX, Z, Y - b,b5,aYY; T-U,;
X > a,a5,bXX; Z ¢ ST, cz; U—abc

entfernen wir den Zyklus S - Z — S, indem wir die Regeln S - Z
und Z — S entfernen und dafir die Produktionen S — ¢, T,cS (wegen
Z - ¢, T, cZ) hinzunehmen:

S—-aY,0X,c, T,cS; Y - b,05,aYY; T - U,

X - a,aS,bXX; U — abe.
Nun entfernen wir die Regel T — U und fiigen die Regel T — abc
(wegen U — abc) hinzu:

S —aY,bX,c,T,cS; Y - b,b5,aYY; T — abc;

X > a,a5,bXX; U — abc.
Als ndchstes entfernen wir dann auch die Regel S — T und fiigen die
Regel S — abe (wegen T' — abe) hinzu:

S —abc,aY, X, c,cS; Y - b,0S,aYY; T— abe;
X > a,aS,bXX; U— abe.

3 Kontextfreie Sprachen

Da T und U nun nirgends mehr auf der rechten Seite vorkommen,
kénnen wir die Regeln T — abc und U — abc weglassen:

S —abc,aY,bX,c,cS; Y - b,05,aYY; X - a,aS,bXX.
<

Nach diesen Vorarbeiten ist es nun leicht, eine gegebene kontextfreie
Grammatik in Chomsky-Normalform umzuwandeln.

Satz 84. Jede kontextfreie Grammatik G ldisst sich in eine CNF-
Grammatik G' mit L(G") = L(G) \ {&} transformieren.

Beweis. Aufgrund der beiden vorigen Satze konnen wir G in eine
CNF-Grammatik G’ mit L(G’") = L(G) \ {e} transformieren, die kei-
ne e-Produktionen und keine Variablenumbenennungen hat. Diese
konnen wir wie folgt in eine dquivalente CNF-Grammatik umwandeln:

o Fiige fiir jedes Terminalsymbol a € 3 eine neue Variable X, zu
V und eine neue Regel X, - a zu P hinzu.

o Ersetze alle Vorkommen von a durch X,, aufler wenn a alleine
auf der rechten Seite einer Regel steht.

o Fihre fiur jede Regel A - B;...By, k > 3, neue Variablen
Aq, ..., Ap_s ein und ersetze sie durch die k — 1 Regeln

A—>Blz41, A1—>B2A2, Sy Ak—3_>Bk—2Ak—2; Ak—QﬁBk—lBk

Falls G Regeln mit vielen e-ableitbaren Variablen auf der rechten
Seite hat, empfiehlt es sich, die in obigem Beweis beschriebenen Um-
formungsschritte zuerst durchzufithren, und erst danach Regeln der
Form A — ¢ und A - B zu beseitigen (siche Ubungen).

Beispiel 85. In der Produktionenmenge

P: S—abc,aY,bX,c,cS; X—a,aS,bXX; Y—>0,b5,aYY

31

3.1 Chomsky-Normalform

ersetzen wir die Terminalsymbole a, b und ¢ durch die Variablen A,
B und C' (aufer wenn sie alleine auf der rechten Seite einer Regel
vorkommen) und figen die Regeln A—a, B—b, C'—c hinzu:

S—c,ABC,AY,BX,CS; X—a,AS,BXX;
Y -0, BS,AYY; A-a; B-b, C—c.

Ersetze nun die Regeln S— ABC, X - BXX und Y - AY'Y durch
die Regeln S - AS', S'-> BC, X - BX', X' > XX und Y - AY"’,
Y'->YY:

S—c, AS" AY,BX,CS; S"- BC,
X—-a,AS,BX"; X'->XX; Y—>bBS AY'", Y'->YY;
A—a; B-b; C'—c. 4

Eine interessante Frage ist, ob in einer kontextfreien Grammatik G
jedes Wort = € L(G) “eindeutig” ableitbar ist. Es ist klar, dass in
diesem Kontext Ableitungen, die sich nur in der Reihenfolge der
Regelanwendungen unterscheiden, nicht als verschieden betrachtet
werden sollten. Dies erreichen wir dadurch, dass wir die Reihenfolge
der Regelanwendungen festlegen.

Definition 86. Sei G = (V, X, P, S) eine konteztfreie Grammatik.

a) Eine Ableitung Ag = 11 A1r1 = - = Ly 1Ay 1Tm 1 = ayy, heifit
Linksableitung von a_(kurz ay =7 amlls in jedem Ab-
leitungsschritt die am weitesten links stehende Variable ersetzt
wird, d.h. es gilt [; € ¥X* firt=0,...,m-1.

b) Rechtsableitungen A, =} o, sind analog definiert.

c) G heiffit mehrdeutig, wenn es ein Wort x € L(G) gibt, das
mindestens zwei verschiedene Linksableitungen S =7 x hat.
Andernfalls heifst G eindeutig.

Offenbar gelten fiir alle Worter € £* folgende Aquivalenzen:

rel(G) & S="r & S=>j1 o S>>

3 Kontextfreie Sprachen

Beispiel 87. Wir betrachten die Grammatik G = ({S},{a,b},{S —
aShS,e},S). Offenbar hat das Wort aabb in G acht verschiedene
Ableitungen, die sich allerdings nur in der Reihenfolge der Regelan-
wendungen unterscheiden:

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb
S = aSbS = aaSbSbS = aaSbbS = aaSbb = aabb
S = aSbhS = aaSbSHS = aabSbS = aabbS = aabb
S = aSbS = aaSbSbS = aabSbS = aabSb = aabb
S = aSbhS = aaSbShS = aaSbSb = aabSb = aabb
S = aSbS = aaSbSbS = aaSbSb = aaSbb = aabb
S = aSbS = aSb = aaSbSb = aabSb = aabb

S = aSbsS = aSb = aaSbSb = aaSbb = aabb.

Darunter sind genau eine Links- und genau eine Rechtsableitung:

S =1 aSbS =1 aaSbSbS =1, aabSbS =1, aabbS =, aabb
und

S =r aSbS =, aSb=r aaSbSb=pr aaSbb =pr aabb.
Die Grammatik G ist eindeutig. Dies liegt daran, dass in jeder Satz-
form aSpP von G das Suffix 5 entweder leer ist oder mit einem b
beginnt. Daher muss jede Linksableitung eines Wortes z € L(G) die
am weitesten links stehende Variable der aktuellen Satzform xSp ge-
nau dann nach aSbS expandieren, wenn in z auf das Prifizx x ein a
folgt.
Dagegen ist die Grammatik G' = ({S},{a,b},{S — aSbS,ab,c},S)

mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

S = ab und S =1 aSbS = abS = ab. 4

Ableitungen in einer kontextfreien Grammatik lassen sich graphisch
sehr gut durch einen Syntaxbaum (auch Ableitungsbaum genannt,
engl. parse tree) veranschaulichen.

32

3.1 Chomsky-Normalform

Definition 88. Sei G = (V, E) ein Digraph.
e Fin vo-vp-Weg in GG ist eine Folge von Knoten vy, ..
(vi,vis1) € E firi=0,...,k-1. Seine Lange ist k.
o Ein Weg heifit einfach oder Pfad, falls alle seine Knoten paar-
weise verschieden sind.
e Fin u-v-Weg der Linge > 1 mit uw =v heifit Zyklus.
e G heifit azyklisch, wenn es in G keinen Zyklus gibt.

e G heifit gerichteter Wald, wenn G azyklisch ist und jeder
Knoten v eV Eingangsgrad deg™(v) <1 hat.

o Ein Knoten u €V vom Ausgangsgrad deg” (u) =0 heifst Blatt.

e Ein Knoten w eV heifst Wurzel von G, falls alle Knoten v eV
von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).

., U mat

e FEin gerichteter Wald, der eine Wurzel hat, heifit gerichte-
ter Baum.

e Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig
bestimmt sind, kann auf ihre Angabe verzichtet werden. Man
spricht dann auch von einem Wurzelbaum.

Definition 89. Sei Ay = L1 Aim1 = = 1 Am1Tmo1 = qp, €ine
Ableitung in einer kontextfreien Grammatik G. Wir ordnen ihr den
Syntaxbaum T,, zu, wobei die Biume Ty,...,T,, induktiv wie folgt
definiert sind:

o Ty besteht aus einem einzigen Knoten, der mit Ay markiert ist.

o Wird im (i + 1)-ten Ableitungsschritt die Regel A; - vy ... v
mit v; € XUV fir j=1,...,k angewandt, so ensteht T;,1 aus
T;, indem wir das Blatt A; in T; durch folgenden Unterbaum
ersetzen:

k>0: Az k=0: A,L
/ N\ |

vy - Uk €

e Hierbei stellen wir uns die Kanten von oben nach unten gerichtet

3 Kontextfreie Sprachen

und die Kinder vy ...vg von links nach rechts geordnet vor.

Beispiel 90. Betrachte die Grammatik G = ({S},{a,b},{S -
aSbS,e},S) und die Ableitung

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb.

Die zugehéorigen Syntaxbiume sind dann

T().'S Tl.' S TQ.' S Tg.' S T4.' S T5.' S

AN AN N N /N

aSbsS aSbS aSbsS aSbsS aSbs
/IN /IN /IN AW
aSbs aSbs aSbs aSbs e

Die Satzform «; ergibt sich aus T;, indem wir die Bldtter von T; von
links nach rechts zu einem Wort zusammensetzen. <

Bemerkung 91.

o Aus einem Syntaxbaum ist die zugehorige Linksableitung eindeu-
tig rekonstruierbar. Daher fiihren unterschiedliche Linksableitun-
gen auch auf unterschiedliche Syntarbiume. Linksableitungen
und Syntaxbdume entsprechen sich also eineindeutig. Ebenso
Rechtsableitungen und Syntazbiume.

e Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten
in T héchstens zwei Kinder (d.h. T ist ein Bindrbaum,).

3.2 Das Pumping-Lemma fiir kontextfreie
Sprachen

In diesem Abschnitt beweisen wir das Pumping-Lemma fir kontext-
freie Sprachen. Dabei nutzen wir die Tatsache aus, dass die Syntax-
baume einer CNF-Grammatik Bindrbaume sind.

33

3.2 Das Pumping-Lemma fiir kontextfreie Sprachen

Definition 92. Die Tiefe eines Baumes mit Wurzel w ist die mazi-
male Pfadlinge von w zu einem Blatt.

Lemma 93. Fin Bindrbaum B der Tiefe k hat hochstens 2F Bldtter.

Beweis. Wir fihren den Beweis durch Induktion iber k.
k =0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

k~> k+1: Sei B ein Binarbaum der Tiefe £ + 1. Dann héngen an B’s

Wurzel maximal zwei Teilbdume. Da deren Tiefe < k ist, haben sie
nach IV hochstens 2% Blatter. Also hat B < 2k+! Blatter. []

Korollar 94. Ein Bindrbaum B mit mehr als 25-1 Blattern hat min-
destens Tiefe k.

Beweis. Wiirde B mehr als 25-! Blétter und eine Tiefe < k-1 besitzen,
so wiirde dies im Widerspruch zu Lemma 93 stehen. [|

Satz 95 (Pumping-Lemma fiir kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl L, so dass sich alle
Worter z € L mit |z| > | in z = uvowxy zerlegen lassen mit

1. vx #e,
2. lvwx| <1 und
3. wvtwaxty € L fir alle 1 > 0.

Beweis. Sei G = (V,%, P,S) eine CNF-Grammatik fir L ~ {¢}. Dann
gibt es in G fiir jedes Wort z = 21...2, € L mit n > 1, eine Ablei-
tung

Top1

S=ap=ap = a, =2
Da G in CNF ist, werden hierbei n — 1 Regeln
der Form A - BC und n Regeln der Form

A - a angewandt, d.h. m = 2n -1 und z hat
den Syntaxbaum 75,_1. Wir kénnen annehmen,

3 Kontextfreie Sprachen

dass zuerst alle Regeln der Form A - BC und
danach die Regeln der Form A - a zur An-
wendung kommen. Dann besteht die Satzform
a,_1 aus n Variablen und der Syntaxbaum 7, ;
hat ebenfalls n Blatter. Setzen wir [= 2%, wobei
k = ||V ist, so hat T,,_; im Fall n > [mindestens
[=2k > 2k-1 Blatter und daher mindestens die
Tiefe k. Sei 7 ein von der Wurzel ausgehender
Pfad maximaler Lange in 7}, ;. Dann hat 7 die
Lange > k und unter den letzten k + 1 Knoten
von 7 miissen zwei mit derselben Variablen A
markiert sein.
Seien U und (/" die von diesen Knoten ausge-
henden Unterbdume des vollstadndigen Syntax-
baums 75,,_;. Nun zerlegen wir z wie folgt. w’
ist das Teilwort von z = uw’y, das von U erzeugt
wird und w ist das Teilwort von w’ = vwz, das
von (/" erzeugt wird. Jetzt bleibt nur noch zu
zeigen, dass diese Zerlegung die geforderten 3
Eigenschaften erfillt.

« Da U mehr Blétter hat als U’, ist vz # ¢ (Bedingung 1).

e Da der Baum U* =U nT,_; die Tiefe < k hat (andernfalls wére
7 nicht maximal), hat U* hochstens 2% = [Blétter. Da U* genau
lvwz| Blatter hat, folgt [vwz| <1 (Bedingung 2).

ﬂz—l

o Fir den Nachweis von Bedingung 3 lassen sich schliefflich Syntax-
baume B? fiir die Worter uwviwaly, i > 0, wie folgt konstruieren:

34

3.3 Der CYK-Algorithmus

BO entsteht also aus B! = Ty,,_1, indem wir U durch U’ ersetzen,
und B! entsteht aus Bf, indem wir U’ durch U ersetzen. ™

Satz 96. Die Klasse CFL ist nicht abgeschlossen unter Schnitt und
Komplement.

Beweis. Die beiden Sprachen

Ly ={a™™c™ | n,m >0} und Lg = {a"b"c™ | n,m >0}
sind kontextfrei. Nicht jedoch L; n Ly = {a"b"c" | n > 0}. Also ist CFL
nicht unter Schnitt abgeschlossen.

Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlos-
sen ist, kann CFL wegen de Morgan nicht unter Komplementbildung
abgeschlossen sein. []

3.3 Der CYK-Algorithmus

In diesem Abschnitt stellen wir den bereits angekiindigten effizienten
Algorithmus zur Losung des Wortproblems fiir kontextfreie Gramma-
tiken vor.

Wortproblem fiir kontextfreie Grammatiken:
Gegeben: Eine kontextfreie Grammatik G' und ein Wort z.
Gefragt: Ist x € L(G)?

Wir l6sen das Wortproblem, indem wir G zunédchst in Chomsky-
Normalform bringen und dann den nach seinen Autoren Cocke,

ounger und [Kasami benannten -Algorithmus anwenden, welcher
auf dem Prinzip der Dynamischen Programmierung beruht.

Satz 97. Das Wortproblem fiir kontextfreie Grammatiken ist effizient
entscheidbar.

Beweis. Seien eine Grammatik G = (V, X, P,S) und ein Wort z =
x1...x, gegeben. Falls x = € ist, konnen wir effizient priifen, ob S =* ¢

3 Kontextfreie Sprachen

gilt. Andernfalls transformieren wir G in eine CNF-Grammatik G’ fiir
die Sprache L(G) \ {e}. Chomsky-Normalform. Es lésst sich leicht
verifizieren, dass die nétigen Umformungsschritte effizient ausfithrbar
sind. Nun setzen wir den CYK-Algorithmus auf das Paar (G’,z) an,
der die Zugehorigkeit von x zu L(G") wie folgt entscheidet.

Bestimme fir /=1,...,nund k=1,...,n -1+ 1 die Menge
‘/l,k(x) = {AEV|A:>* xk...xk”,l}

aller Variablen, aus denen das an Position k& beginnende Teilwort
Tk ... Tp-1 von x der Lange [ableitbar ist. Dann gilt offensichtlich

re L(G") < S eV,1(x).

Fir [=1 ist
‘/17k({L') = {A€V|A—>l‘k}

und fir [=2,...,n ist

%7k(x) = {A eV | JI'<13B ¢ V/,k(:c) 1C € ‘/l,l/’k”/(l’):A - BC}

Eine Variable A gehort also ge-
nau dann zu Vjx(x), [> 2, falls

/A\
eine Zahl I” € {1,...,1 -1} und b ¢

eine Regel A - BC(C' existieren, A A

so dass B € Vig(r) und C € o777 20 Teap o Treid
‘/l—l’,lwl’(x) sind.

Algorithmus CYK(G,x)

I Input: CNF-Grammatik G = (V. X, P,S) und ein Wort x =1 ... 2,
> for k:=1ton do

3 ‘/17k1={A€V|A—>ZEkEP}

| for [:=2 to n do

5 for k:=1ton-1+1do

6 Vik=02

35

3.3 Der CYK-Algorithmus

7 for ':=1tol-1do
8 for all A—- BC e P do

9 if BeVyyand CeVi_yyr then
10 Vik=V,ru{A}

11 if S eV, ; then accept else reject

Der CYK-Algorithmus lésst sich leicht dahingehend modifizieren, dass
er im Fall z € L(G) auch einen Syntaxbaum 7' von z ausgibt. Hierzu
gentigt es, zu jeder Variablen A in Vj; den Wert von I’ und die Regel
A - BC zu speichern, die zur Aufnahme von A in Vj, gefithrt haben.
Im Fall S eV, 1(x) lasst sich dann mithilfe dieser Information leicht
ein Syntaxbaum T von x konstruieren.

Beispiel 98. Betrachte die CNF-Grammatik mit den Produktionen

S—>AS"AY,BX,CS,c; S">BC; X—-AS,BX"ja; X'->XX;
Y—>BS AY'b; Y'->YY; A-a; B-b;, C—c.

Dann erhalten wir fir das Wort x = abb folgende Mengen Vy:

Tp: a b b
1] {X,A} [{Y,B} | {Y,B} |
2 {8} | {V)

3 {Y}

Wegen S ¢ V3 1(abb) ist x ¢ L(G).
Dagegen gehort das Wort y = aababb wegen S € Vi 1 (aababb) zu L(G):
a a b a b b

(X, A} [{X, A} [{v,B} | {X,A} | {V,B} [{V,B} |
(X7 | {sy | {5y | {5} | {¥}
(X3 | {xp | vy | {Y)
(x| sy | v
{(x}p | {Y}
{5} q

3 Kontextfreie Sprachen

3.4 Kellerautomaten

Wie miissen wir das Maschinenmodell des DFA erweitern, damit die
Sprache L = {a™" | n >0} und alle anderen kontextfreien Sprachen
erkannt werden kénnen? Dass ein DFA die Sprache L = {a"b" | n >0}
nicht erkennen kann, liegt an seinem beschrinkten Speichervermogen,
das zwar von L aber nicht von der Eingabe abhangen darf.

Um L erkennen zu konnen, reicht bereits ein so genannter Kellerspei-
cher (Stapel, engl. stack, pushdown memory) aus. Dieser erlaubt nur
den Zugriff auf die hochste belegte Speicheradresse. Ein Kellerautomat

o verfiigt iiber einen Kellerspeicher,
Eingabe-
band —

v/ Lesekopf
A
Steuer- / E

o kann e-Uberginge machen,

e hat Lesezugriff auf das aktuelle
Eingabezeichen und auf das obers-
te Kellersymbol,

e kann in jedem Schritt das oberste cinheit Keller-
Kellersymbol loéschen und durch speicher
beliebig viele Symbole ersetzen.

Fiir eine Menge M bezeichne P.(M) die Menge aller endlichen Teil-
mengen von M, d.h.

P.(M)={Ac M| A ist endlich}.

Definition 99. Fin Kellerautomat mit Endzustidnden (auch
FS-PDA fiir engl. final state pushdown automaton) ist ein 7-Tupel
M=(Z,%,T,0,q0,#, FE). Dabei ist

o 7/ #+@ eine endliche Menge von Zustianden,

e Y das Eingabealphabet,

e I' das Kelleralphabet,

e §:Zx(Su{e})xT —» P, (ZxI*) die Uberfiihrungsfunktion,

36

3.4 Kellerautomaten

e (o€ Z der Startzustand,
e # €1 das Kelleranfangszeichen und
o FCZ die Menge der Endzustande.

Wenn ¢ der momentane Zustand, A das oberste Kellerzeichen und
u € X das néchste Eingabezeichen (bzw. u = ¢) ist, so kann M im Fall
(p,Bi...By)€d(q,u, A)

e in den Zustand p wechseln,

o den Lesekopf auf dem Eingabeband um |u| Positionen vorriicken
und

o das Zeichen A im Keller durch die Zeichenfolge Bj ... By erset-
zen.

Hierfiir sagen wir auch, M fiithrt die Anweisung quA — pB; ... B
aus. Da im Fall u = € kein Eingabezeichen gelesen wird, spricht man
auch von einem spontanen Ubergang (oder 5—Ubergang). Zudem
spricht man im Fall £ = 0 von einer pop-Operation und im Fall
k=2 und By = A von einer push-Operation.

Eine Konfiguration wird durch ein Tripel
K=(qx;...xn,A1...A) e ZxX" xT™

beschrieben und besagt, dass

e ¢ der momentane Zustand,

e x;...x, der ungelesene Rest der Eingabe und

o Aj...A; der aktuelle Kellerinhalt ist (A; steht oben).
Eine Anweisung quA; — pB;... By (mit u € {¢,2;}) tberfihrt die
Konfiguration K in die Folgekonfiguration

K'=(p,xj...xp,By...BpAsy... A)) mit j =i+ |ul.

Hierfiir schreiben wir auch kurz K - K’. Eine Rechnung von M
bei Eingabe z ist eine Folge von Konfigurationen Ky, K1, K5 ... mit
Ko = (qo,x,#) und Ko+ K + Ky Ky heifit Startkonfiguration

3 Kontextfreie Sprachen

von M bei Eingabe z. Die reflexive, transitive Hiille von + bezeich-

nen wir wie iiblich mit ~*. Die von M akzeptierte oder erkannte

Sprache ist
L(M) = {zeX[IpeE,acl™: (q,z,#) " (p,g,a)}.

Ein Kellerautomat M mit Endzustanden akzeptiert also genau dann

ein Wort x, wenn es eine Rechnung gibt, bei der M das gesamte

Eingabewort bis zum Ende liest und einen Endzustand erreicht.

Beispiel 100. Sei M = (Z,%,1,0,p,#,E) mit Z={p,q,r}, ¥={a,b},
D={A,#}, E={r} und der Uberfiihrungsfunktion

d :paft — pA# (1)
paA —pAA (2) a#, A# (1)
pe# —a# (3) ad, AA (2) bA,e (5)
phA g (4) et # (3)
WA ~q () \& 22O ()00
ge# -1 (6)

Dann akzeptiert M die Fingabe x = aabb:

,aabb, + (p,abb, A + (p,bb, AA + (g,b, A F (q,¢,
(p #)(1)(19 #)(2)(19 #)(4)(q #)(5)(q #)

Es gibt noch ein weiteres Akzeptanzkriterium, das die Angabe von
Endzustédnden tiberfliissig macht. Sei M = (Z,%,T, 6, qo, #) ein Kel-
lerautomat ohne Endzustandsmenge. Die von M durch Leeren des
Kellers akzeptierte (oder erkannte) Sprache ist

{xeX*|3IpeZ:(q,x,#)+* (p,c,e)}.

Wir nennen M auch einen ES-PDA (fiir engl. empty stack pushdown
automaton) oder einfach PDA.. Ein Wort x wird also genau dann von
einem PDA M akzeptiert, wenn es eine Rechnung gibt, bei der M das

L(M)

37

3.4 Kellerautomaten

gesamte Eingabewort bis zum Ende liest und den Keller leert. Man
beachte, dass bei leerem Keller kein weiterer Ubergang mehr méglich
ist.

In den Ubungen wird gezeigt, dass FS-PDAs und ES-PDAs gleich-
maéchtig sind, d.h. es gilt

{L(M)| M ist ein FS-PDA} = {L(M) | M ist ein ES-PDA}.

Beispiel 101. Sei M = (Z,%,1,6,q,#) ein PDA mit Z = {q,p},

Y =A{a,b}, I' = {A,#} und den Anweisungen

e#,e (1)
0:qe#—~>q (1) qa#—qA (2) a#, A (2)
qaAd—>qAA (3) qpA->p (4) aA, AA(3) bAe(5)
pbA —p (5) bA, s (4)

Dann akzeptiert M die Fingabe aabb:
, aabb, F (q,abb, A) + (q,bb, AA) + (p,b,A) + (p,e,¢).
(q #) 5 (@) 5 (@) & 0 A) £ ()

Allgemeiner akzeptiert M das Wort x = a™b™ mit folgender Rechnung:
n=0: (q,&,%) 0 (p,€,€).

n>1: (q,a™b", - (g, a™ b, A) =" (g, b, An
(¢ #) b (¢) 5 (¢)
= (p, b AR = (pese),
o (p) 5 (p,€,€)

Dies zeigt {a™b™ | n >0} € L(M). Als ndchstes zeigen wir, dass jede
von M akzeptierte Eingabe x = xy...x, die Form x =a™b™ hat.
Ausgehend von der Startkonfiguration (q,x,#) sind nur die Anwei-
sungen (1) oder (2) ausfihrbar. Falls M Anweisung (1) wdhlt, wird
der Keller geleert. Daher kann M in diesem Fall nur das leere Wort
x=¢c=a%" akzeptieren.

Falls die akzeptierende Rechnung mit Anweisung (2) beginnt, muss
x1 = a sein. Danach ist nur Anweisung (3) ausfihrbar, bis M das

3 Kontextfreie Sprachen

erste b liest:
(qrxl oo Ty, #) (lg) (QJ T2 ...Tnp, A) ('g)m_l (QJ Tm+1 - - xn7Am)

s - Ly, AM1
(Z) (pax +2 x)

mit 1 = Tg =+ = T, = @ UNA L1 = 0. Damit M den Keller leeren
kann, miissen jetzt noch genau m —1 b’s kommen, weshalb x auch in
diesem Fall die Form a™b™ hat. N

Als néchstes zeigen wir, dass PDAs genau die kontextfreien Sprachen
erkennen.

Satz 102. CFL c {L(M) | M ist ein PDA}.

Beweis. Idee: Konstruiere zu einer kontextfreien Grammatik G =
(V,%, P,S) einen PDA M = ({q},%,T,6,qp,S) mit T' =V UX, so dass
gilt:

S=7x...x, gdw. (q,x1...2,,5) " (q,¢,¢).

Hierzu fligen wir fiir jede Regel A -4 « in P die Anweisung ge A — qa
und fiir jedes a € ¥ die Anweisung gaa — ge zu ¢ hinzu.

M berechnet also nichtdeterministisch eine Linksableitung fiir die
Eingabe x. Da M hierbei den Syntaxbaum von oben nach unten
aufbaut, wird M als Top-Down Parser bezeichnet. Nun ist leicht zu
sehen, dass sogar folgende Aquivalenz gilt:

S=Txr.. .z, gdw. (q,21...2,,5) F™ " (g,¢,¢).
Daher folgt

re(G) & S=p1 < (q,1,5)r" (q,6,6) & weL(M).

38

3.4 Kellerautomaten

Beispiel 103. Sei G = ({S},{a,b}, P,S) mit
P:S—-aSbhs, (1) S—a.(2)
Der zugehérige PDA besitzt dann die Anweisungen

qbb - qe, (0')
qeS —qa. (2')

d: qaa — ge, (0)
qeS — qaSbs,; (17)

Der Linksableitung

S = aSbS = aabS = aaba
(1) (2) (2)

in G entspricht beispielsweise die akzeptierende Rechnung

(¢, aaba, S) (I;) (¢, aaba,aSbS) (}6) (g, aba, SbS)
- ,aba,abS) + (q,ba,bS
& (¢) o (¢)
F (q,a,5) + (q,a,a) + (q,&,¢
o (¢,a,5) & (¢,a,a) o (¢,€,¢)

von M und umgekehrt. <

Obige Konstruktion eines PDA M aus einer kontextfreien Grammatik
lasst sich leicht umdrehen, falls M nur einen Zustand hat. Zu einem
solchen PDA M = ({z},%,T,6, 2, #) lasst sich wie folgt eine kontext-
freie Grammatik G = (V, %, P, X) mit L(G) = L(M) konstruieren:
o Die Variablenmenge von G ist V = {XA | Ace F}
(im Fall ¥ nT' = @& kénnen wir auch einfach V' =T setzen)
o die Startvariable von G ist X4 und

o P enthilt fiir jede Anweisung zuA - zA; ... Ax von M die Regel
XA —>UXA1 XAk

Dann lasst sich jede akzeptierende Rechnung (z,z,#) v™ (z,¢,¢) von
M (z) der Lénge m direkt in eine Linksableitung Xy ="z in G der
Lange m transformieren und umgekehrt.

3 Kontextfreie Sprachen

Beispiel 104. Betrachte den PDA M = ({z},{a,b},{S,a,b},0,2,5)
mit den Anweisungen

zbb—>z (2) zeS—zaSb (3)

den wir aus der Grammatik G = ({S}, {a,b}, P,S) mit den beiden Re-
geln S — aSb, e konstruiert haben. Dann fihrt M auf die Grammatik
G’ = ({Xs, X4, Xp}, {a,b}, P', Xg) mit den Regeln

d: zaa—z (1) zeS -z (4)

P:X,-a (1) Xp-0(2) Xg-> X, XX, (3) Xg—>e (4)
Der Rechnung

z,ab,S)+ (z,ab,aSb) + (z,b,5b) + (z,b,b)+ (z,¢,¢

(2.0b.S)5 (suab,ash) & (5b.5D) = (2b.b)5 (22,9)

4)
von M entspricht dann folgende Linksableitung in G (und umgekehrt):
Xg = X, XsXp=> aXsXy = aX, = ab
— @) — a — @) T (@)
Man beachte, dass G' eine aufgeblihte Variante von G ist. <

Um also zu einem PDA M = (Z,%,T,6, qo, #) eine kontextfreie Gram-
matik G = (V, X, P,S) mit L(G) = L(M) zu konstruieren, gentigt es,
M wie folgt in einen dquivalenten PDA M’ = ({z},%,1,¢’, z,5) mit
nur einem Zustand z zu transformieren:
» Das Kelleralphabet von M’ ist [V = {S}U{XpAq ‘ Ael, p,qe Z}.
e Zudem fiigen wir die folgenden Anweisungen zu ¢’ hinzu:

— fiir jeden Zustand q € Z die Anweisung

zeS = 2 X uq

— fir jede Anweisung poudy - p1Ai... Ag, k>0, von M
und fiir jede Folge pa,...,prs1 € Z von k Zustdnden die
Anweisung

ZuXpvopml_) ZXplAlp2 .- 'kaAkpk+1

39

3.4 Kellerautomaten

Dabei ridt M’ durch die Wahl der Anweisung

o 2eS - 2Xy 4, den Zustand ¢, den M mit leerem Keller (also
im letzten Rechenschritt) erreicht, und

o 2UXpoAoprey = ZXpiAips - XppdApr,, im Fall k& > 2 fur ¢ =
1,...,k =1 die Zustiande p;,1, die M bei Freigabe der mit A;
belegten Speicherzelle erreicht. Man beachte, dass der Zustand
pr+1 durch das aktuelle oberste Kellersymbol X, 4.p,,, bereits
vorgegeben ist, da er mit dem Zustand identisch ist, den M bei
Freigabe der mit Ay belegten Speicherzelle erreicht und daher
schon geraten wurde als diese Speicherzelle belegt wurde.

Zudem verifiziert M’ bei jeder pop-Operation zuX,, 4.y, 2, dass M
den (zuvor geratenen) Zustand p; bei Freigabe der mit Ay belegten
Speicherzelle auch tatséchlich erreichen kann. Damit die Verifikation
moglich ist, muss M’ zu diesem Zeitpunkt nicht nur den aktuellen
Zustand pg und das oberste Kellersymbol Ay von M, sondern auch
den Folgezustand p; nach der pop-Operation kennen.

Wir werden gleich zeigen, dass jede Rechnung (p,z,A) v™ (q,¢,¢)
von M einer Rechnung (z,z, X,4,) ™ (2,€,¢) von M’ entspricht und
umgekehrt. Aus dieser Aquivalenz folgt nun sofort L(M) = L(M'):

M hat fiir ein ¢ € Z eine akzeptierende Rechnung
(qo0,z,#) +™ (q,¢,¢) der Liange m > 1

re (M) <

<> M’ hat fiir ein ¢ € Z eine akzeptierende Rechnung
(z,2,9) F (2,2, Xgpiq) " (2,6,6) mit m>1

o e (M)

Beispiel 105. Betrachte den PDA M = ({p,q},{a,b},{A,#},0,p, #)

mit den Anweisungen

0:pe#t—q (1)
pbA —q (4)

pa#t —pA (2)
gbA —-q ()

paA—pAA (3)

3 Kontextfreie Sprachen
Der zugehiorige PDA M' = ({z},{a,b},17,d", 2, S) mit nur einem Zu-
stand hat dann das Kelleralphabet

I'= {Sa Xpttp, Xprar Xattp, Xatta, Xpap, XpAanquanAq}

Zudem enthalt M' neben den beiden Anweisungen zeS—zX,4, (0)
und zeS— 22X, (0") die folgenden Anweisungen:

Anweisung von Mk po,...,prs1 Anweisungen von M’

peft > q (1) 0 - 2eXppq— 2 (1)

pa# — (2) 1 P zaXpu,—>2X, 1, (2)
q zaXpp,—2X, 1, (2

paA - pA 3) 2 P zaXpap—=2Xp0,X,1, (3)

,q zaXpaq—=>2Xpap, X, 0, (37)

,D zaXpa,—>2Xp0,X,1, (3™)
,q zaXpa,—=>2Xpa,X 04 (3")
pbA - q (4) 0 - 2bXpa,—> 2 (47)
qgbA - ¢ (5) 0 - 2bX a2 (5)

Der (akzeptierenden) Rechnung

p, aabb, — (p,abb, A) ~ (p,bb, AA) + (4,b, F (q,e,¢
(1 aabb. #) & (pabb, A) = (b, A1) 1= (1:6,1) 1= (0:2,9)

A
[# [4 |

a a b b
p p p q

von M entspricht dann folgende Rechnung von M':

(z,aabb, S) (I&) (z,aabb, X, 4,) (;") (2, abb, X}, a,)

A CLIE B NN ACUS N E-ACED)

40

3.4 Kellerautomaten

’ S IXP#(IIXPAG X q X q
€ a a b b

Es bleibt noch zu zeigen, dass fiir alle p,g e Z, Ae ', x € ¥* und
m > 0 gilt:

(p,z,A) =37 (g,€,€) gdw. (2,2, Xpaq) Fiipr (2,€,€) (*)

Induktionsanfang (m =0): Da weder M noch M’ in m = 0 Re-
chenschritten ein Symbol aus dem Keller entfernen kann, gilt
die Aquivalenz (*) fiir m = 0.

Induktionsschritt (m~ m+1): Sei eine Rechnung (p,z, A) +m*!
(q,e,e) der Linge m + 1 von M gegeben und sei puA —
A ... A die im ersten Rechenschritt ausgefithrte Anweisung;:

(p,ilf,A) F (p17$17A1 .. Ak) = (Qagag)

Im Fall k> 2 sei p; fiir i = 2,...,k der Zustand, in den M mit
dem Kellerinhalt A;... Ay gelangt. Dann hat M’ die Anwei-
sung ZUXpAq - ZXP1A1P2 - ‘ka—lAk—lkapkAkQ‘ Zudem sei u; fur
1=1,...,k das zwischen den Besuchen von p; und p;,; gelese-
ne Teilwort von x, wobei pp,1 = ¢ ist. Dann gilt x = vz’ und
T’ =uq...u sowie

(p1,$',A1 ... Ak) = (pi,ui .. .’uk,A,’ .. Ak) [(q,€,€)
Firi=1,...,k ex. daher Zahlen m; > 1 mit
(pi, ui, Ay) ™ (pis1,€,€) und my + -+ my =m

Daher hat M’ nach IV die Rechnungen (z,u;, Xy, a;p;,,) F™
(z,e,e). Zudem hat M’ wegen puA —p p1A; ... Ay die Anwei-
sung 2uXpaq = Z2Xp Aips - - - Xppy Ae1peSprArg, SO dass wir die

3 Kontextfreie Sprachen

gesuchte Rechnung der Lange m + 1 von M’ wie folgt erhalten:

(vavXpAq) =
F (27 Uy ... Uk, XP1A1P2 o 'ka—lAk—lkapkAkQ)
(i (Z, Ug ... Uk, Xp2A2p3 - ka—lAk—lkapkAkq)

(z,uuy ... ug, Xpaq)

T (27 Uk, kaAkq)
F (z,e,€)

Entsprechend léasst sich umgekehrt aus jeder solchen Rechnung
von M’ eine Rechnung (p,z, A) -™*! (q,e,¢) von M gewinnen.

Wir konnen die beiden Schritte
« PDA M — PDA M’ mit nur einem Zustand und
e PDA M’ mit nur einem Zustand — kontextfreie Grammatik G

zu einem Schritt zusammenfassen. Dazu konstruieren wir wie folgt
zu einem PDA M = (Z,%,1,0,qo,#) eine dquivalente kontextfreie
Grammatik G = (V, 3, P,S). Die Variablenmenge von G ist
V= {S}U{XpAq|A€F7p7q€ Z}
und P enthalt fir jeden Zustand g € Z die Regel
S = Xooq

und fir jede Anweisung puA — p1 Ay ... A, k>0, von M und jede
Zustandsfolge po, ..., prs1 die Regel

XPAPkH_) UXP1A1P2 x 'kaAkpk+1

Beispiel 106. Sei M der PDA ({p,q},{a,b},{A,#},d,p,#) mit

§:pe#t —>qe, (1) paA—pAA, (3) qbA—qe. (5)
pa# —pA, (2) pbA—qe, (4)

41

3.4 Kellerautomaten
Dann erhalten wir die Grammatik G = (V, %, P,.S) mit der Variablen-
menge
vV ={5, Xp#ps Xp#rar Xap, Xotar Xpap, Xpag, Xqu7Xqu}-
Die Regelmenge P enthdlt neben den beiden Startregeln
S Xpup, Xp#g (0,07)

die folgenden Produktionen:

Anweisung k Do pint zugehorige Regel
puA — p1As .. Ay ’ ’ Xpap ™ UXp Arps- - - Xpp Ay
pe# —> qe (1) 0 - Xppqg—€ (1)
pa#H — (2 1 P Xppp—>aX, 1y (27)

q Xpgg =X, 14 (2")
paA—-pAAL (3) 2 ,D Xpap—=>aXpa,X, 1 (3)
4 Xpag=aXpa, X, 04 (3")
P Xpap=>aXpa,Xoap (3")
,q Xpag—=>aXpa, X,y (3™)
pbA — qe (4) 0 - Xpaq—b (4")
gbA - qe (5) 0 - Xyaq—b (5)

Der akzeptierenden Rechnung
), aabb, F (p,abb, A) ~ (p,bb, AA) + (q,b, F (q,e,e
(raath) 1 (pabb.A) 1o (000, A1) o (1:01) 1 (0:5.2)

von M entspricht dann die Ableitung

S = Xpu, = aX,a

aaX,1,X,14 = aabX, ., = aabb
(0" (2")

q =
(3 (4") (5")

in G und umgekehrt. <

3 Kontextfreie Sprachen

3.5 Deterministisch kontextfreie Sprachen

Von besonderem Interesse sind kontextfreie Sprachen, die von einem
deterministischen Kellerautomaten erkannt werden konnen.

Definition 107. Sei M ein ES-PDA oder FS-PDA. M heifit deter-
ministisch, falls + eine rechtseindeutige Relation ist:

Kl—Kl/\KI—K2:>K1:K2.

Aquivalent hierzu ist, dass die Uberfithrungsfunktion § fiir alle
(q,a,A) € Z x ¥ x T folgende Bedingung erfiillt:

[0(g, a, A)| +[6(g, e, A)[< 1. (%)

Dies liegt daran, dass eine Konfiguration K = (¢, Zi1 ... 2n, A1 ... Ar),
0 <i<n, genau

07 k':O
l0(q,e, Av)], i=nund k >1
10(q, @1, A1) | +|0(q, e, A1), i<nund k>1

N(K) =

verschiedene Folgekonfigurationen hat.

Beispiel 108. Der ES-PDA M = ({QOa q1, q2}7 {CL, ba C}a {Av Ba #}a 57 qo, #)
mit der Uberfihrungsfunktion

O:qoadt = qA# qob# = qB# qaA—qpAA qbA—qBA
qoaB - qAB qbB—-qBB qcA-qA qcB-qB
qaA —q @1bB - q, QEFH —~ Q2

erkennt die Sprache L(M) = {xcx® | x € {a,b}*}. Um auf einen Blick
erkennen zu kénnen, ob M deterministisch ist, empfiehlt es sich, ¢ in
Form einer Tabelle darzustellen:

42

3.5 Deterministisch kontextfreie Sprachen

0 ‘ QO7# QO7A C]0>B ‘ qlv# Q1:A q1aB ‘ C]2># CI27A q27B

el - - - @ - - - - -
a | @A# @AA @AB | - ¢ - - - -
b | qB# qBA qBB - - q1 - - -
¢l - @A @B | - - - | - - -

Man beachte, dass jedes Tabellenfeld hichstens eine Anweisung enthdlt
und jede Spalte, die einen e-Eintrag in der ersten Zeile hat, sonst
keine weiteren Eintrage enthdlt. Daher ist fir alle (q,a,A) € Z x X xT'
die Bedingung

10(g, a, A)| +[6(g, e, A)f <1
erfillt. <

Von deterministischen ES-PDAs kénnen nicht alle reguléren Spra-
chen erkannt werden. Um beispielsweise die Sprache L = {a,aa} zu
erkennen, muss der Keller von M nach Lesen von a geleert werden.
Daher ist es M nicht mehr méglich, die Eingabe aa zu akzeptieren.
Deterministische ES-PDAs kénnen also nur préafixfreie Sprachen L
akzeptieren (d.h. kein Wort x € L ist Préfix eines anderen Wortes in L).
Aus diesem Grund verwenden wir zur Definition der deterministisch
kontextfreien Sprachen FS-DPDAs anstelle von ES-DPDAs.

Definition 109. Die Klasse der deterministisch kontextfreien Spra-
chen ist definiert durch

DCFL = {L(M)|M ist ein deterministischer F'S-PDA}.

(deterministic context free languages). Ein deterministischer FS-PDA
wird auch als FS-DPDA (fiir engl. Final State Deterministic Push
Down Automaton) oder einfach als DPDA bezeichnet.

Als néchstes zeigen wir, dass DCFL unter Komplementbildung abge-
schlossen ist. Versuchen wir, die End- und Nichtendzustéinde eines

DPDA M einfach zu vertauschen, um einen DPDA M fiir L(M) zu
erhalten, so ergeben sich folgende Schwierigkeiten:

3 Kontextfreie Sprachen

1. Falls M eine Eingabe z nicht zu Ende liest, wird x weder von
M noch von M akzeptiert.

2. Falls M nach dem Lesen von x noch e-Ubergénge ausfiihrt und
dabei End- und Nichtendzustande besucht, wird x von M und
von M akzeptiert.

Der nachste Satz zeigt, wie sich Problem 1 beheben lasst.

Satz 110. Jede Sprache L € DCFL wird von einem DPDA M' erkannt,
der alle Eingaben zu Ende liest.

Beweis. Sei M = (Z,3,T,0,qo,#, E) ein DPDA mit L(M) = L. Falls
M eine Eingabe x = x1...x, nicht zu Ende liest, muss einer der
folgenden drei Griinde vorliegen:

1. M gerét in eine Konfiguration (q,z; ... x,,€), i <n, mit leerem
Keller.

2. M gerat in eine Konfiguration (q,x;...x,, AY), i < n, in der
wegen 0(q,z;, A) = 6(q,e,A) = @ keine Anweisung ausfithrbar
ist.

3. M gerat in eine Konfiguration (¢, z;...x,, Ay), i <n, so dass
M ausgehend von der Konfiguration (gq,e, A) eine unendliche
Folge von e-Anweisungen ausfiihrt.

Die erste Ursache schlielen wir aus, indem wir ein neues Zeichen O
auf dem Kellerboden platzieren:
(a) se# = q#DO

(dabei sei s der neue Startzustand).

Die zweite Ursache schlieSen wir durch Hinzunahme eines Fehlerzu-
stands r sowie folgender Anweisungen aus (hierbei ist IV = T'u {Q}):

(b) qaA—rA, firalle (¢,a,A) € Z x ¥ xT" mit A =0 oder

5(q7 a, A) = 5(Qa g, A) =,

fir alle a € ¥ und AeI”.

43

3.5 Deterministisch kontextfreie Sprachen

Als néchstes verhindern wir die Ausfithrung einer unendlichen Folge
von e-Ubergiangen. Dabei unterscheiden wir die beiden Fille, ob M
hierbei auch Endzusténde besucht oder nicht. Falls ja, sehen wir einen
Umweg iiber den neuen Endzustand ¢ vor.

(d) gsA—>rA, firallegeZ und A €T, so dass M ausge-
hend von der Konfiguration (g¢,e, A) unend-
lich viele e-Uberginge ausfiihrt ohne dabei

einen Endzustand zu besuchen.

(e) qeA—tA
teA > rA,

fiir alle g € Z und A € I', so dass M ausge-
hend von der Konfiguration (¢,e, A) unend-
lich viele e-Uberginge ausfiihrt und dabei
auch Endzustdnde besucht.

Schliefflich ibernehmen wir von M die folgenden Anweisungen:

(f) alle Anweisungen aus d, soweit sie nicht durch Anweisungen
vom Typ (d) oder (e) iiberschrieben wurden.

Zusammenfassend transformieren wir M in den DPDA
M =(Zu{rs,t}, 51,0 s, #, Eu{t})
mit I = Tu{O}, wobei ¢’ die unter (a) bis (f) genannten Anweisungen

enthalt.]

Beispiel 111. Wenden wir diese Konstruktion auf den DPDA

M = ({Q(h q1, QZ}a {&7 ba C}? {Aa B7 #}7 57 o, #7 {qZ})
mit der Uberfiihrungsfunktion

d ‘ qu# QU7A quB ‘ qla# qu Q1:B ‘ q%# q27A q27B

- - - 42 - - QF - -
QAH# @AA @AB| - ¢ - - - -
qoB# qBA qBB - - qQ1 - - -

- @A @B | - - - | - - -

QO Qe M

3 Kontextfreie Sprachen

an, so erhalten wir den DPDA

M, = ({QO7QI7q27T787t}7 {a7b7 C}u {A7B7#7D}75,787#7 {Q27t})

mit folgender Uberfiihrungsfunktion &':

o ‘QU)# Q(),A QOrB qo,0

QIu# (]1;/4 q17B q1,0 q27# Q27AQ2aBQ2aD

el - - - e - - -|# - - -
a |QA# @AA AB ro| - ¢ rB ro| - rA rB ro
b |qoB# qBA BB ro| - rA ¢ ro| - rA rB ro
c | r# @A @B ra| - rA rB ro| - rA rB ro

Typ| (£.0) (f) (f))| (f) (£,0)(£.0) (b) | (e) (b) (b) (b)
‘s,# s,A s,B s,O0

r,# r,A r,B r,O0

t,# t,A t,B t,0

clato - - |- - - | - - -
A T T
p | - _ _ - -
A o
Typ| (a) | (e)

d

Satz 112. Die Klasse DCFL ist unter Komplement abgeschlossen, d.h.
es gilt DCFL = co-DCFL.

Beweis. Sei M = (Z,%,1,0,q0,#,E) ein DPDA, der alle Eingaben
zu Ende liest, und sei L(M) = L. Wir konstruieren einen DPDA M
fiir L.

Die Idee dabei ist, dass sich M in seinem Zustand (g,7) neben dem
aktuellen Zustand ¢ von M in der Komponente ¢ merkt, ob M nach
Lesen des letzten Zeichens (bzw. seit Rechnungsbeginn) einen Endzu-
stand besucht hat (i = 1) oder nicht (i = 2). Mochte M das néchste
Zeichen lesen und befindet sich M im Zustand (gq,2), so macht M
noch einen Umweg iiber den Endzustand (g, 3).

44

3.5 Deterministisch kontextfreie Sprachen
Konkret erhalten wir M = (Zx{1,2,3},%,I,8', s, #, Zx{3}) mit
1
g = {(QO7)7
(q07 2)7

indem wir zu ¢’ fiir jede Anweisung ge A —j; py die beiden Anweisun-
gen

QO¢E7

sonst,

1, pekFE,

(¢ D)eA—(pi)y . .
mit =
2, ptE,

(¢,2)eA —~ (p,2)y

sowie fiir jede Anweisung gaA —); py die drei Anweisungen

(¢, 1)ad = (p,i)y
.. |1, pekL]

(¢,2)eA—(¢,3)A mit =

: 2, p¢kl

(¢,3)ad — (p, i)y

hinzufiigen. []

Eine niitzliche Eigenschaft von M ist, dass M in einem Endzustand
keine e-Uberginge macht.

Beispiel 113. Angenommen, ein DPDA M = (Z,%,T,6,qo, #, E)
fiihrt bei der Eingabe x = a folgende Rechnung aus:

(QO7aa#) = (q1757#) = (q2757#)‘
Dann wiirde M im Fall E = {qo, g2} (d.h. v € L(M)) die Rechnung

((qmz)aaa#) = ((QO73)7G7#) = ((Q172)767#) = ((Q27 1)767#)

ausfiihren. Da (q1,2),(qe,1) ¢ Zx{3} sind, verwirft also M das Wort
a. Dagegen wiirde M im Fall E = {qo} (d.h. x ¢ L(M)) die Rechnung

((qu 1),@,#) = ((Q1,2),5,#) = ((q2a2)757#) F ((q2a3)757#)

ausfiihren. Da (q2,3) € Zx{3} ein Endzustand von M ist, wirde M
nun also das Wort a akzeptieren. <

3 Kontextfreie Sprachen

Satz 114. Die Klasse DCFL ist nicht abgeschlossen unter Schnitt,
Vereinigung, Produkt und Sternhiille.

Beweis. Die beiden Sprachen
Ly ={a"b"c™ |n,m >0} und Lg = {a"b"c™ |n,m >0}
sind deterministisch kontextfrei (siche Ubungen). Da der Schnitt

Lyn Ly = {a™b"c™ | n > 0} nicht kontextfrei ist, liegt er auch nicht in
DCFL, also ist DCFL nicht unter Schnitt abgeschlossen.

Da DCFL unter Komplementbildung abgeschlossen ist, kann DCFL
wegen de Morgan dann auch nicht unter Vereinigung abgeschlossen
sein. Beispielsweise sind folgende Sprachen deterministisch kontextfrei:

Ly={a'bic* |i# jni,jk>1}und Ly ={a'bic |j#kni,jk>1}.

Thre Vereinigung Lz U Ly = {a’bick | (i# jvj#k)ni,j,k>1} gehort
aber nicht zu DCFL, d.h. Lsu L, € CFL ~ DCFL. DCFL ist namlich
unter Schnitt mit regulidren Sprachen abgeschlossen (siche Ubungen).
Daher wéare mit L3 U L, auch die Sprache

(Lsu Ly)nL(a*b*ct) = {a"b"c" | n > 1}
(deterministisch) kontextfrei.

Als néchstes zeigen wir, dass DCFL nicht unter Produktbildung abge-
schlossen ist. Wir wissen bereits, dass L = L3 U L, ¢ DCFL ist. Dann
ist auch die Sprache

0L =0Lsu0L, ¢ DCFL,

da sich ein DPDA M = (Z,%,T,6,qo,#, E) fur 0L leicht zu einem
DPDA fiir L umbauen liefle. Sei namlich (p,¢e,7) die Konfiguration,
die M nach Lesen der Eingabe 0 erreicht. Dann erkennt der DP-
DA M’ =(Zu{s}, 3, T, s,#,E) die Sprache L, wobei ¢’ wie folgt
definiert ist:

Powd) = {c(sfji’A)

(¢, u, A) = (s,6,#),
(q,u,A) e Zx (X u{e}) xT.

45

3.5 Deterministisch kontextfreie Sprachen

Es ist leicht zu sehen, dass die beiden Sprachen {&,0} und L5 = L3u0L,
in DCFL sind (siehe Ubungen). Thr Produkt {¢,0}Ls = L5 u 0L5 =
L3 u0Lsu0L3U00Ly gehort aber nicht zu DCFL. Da DCFL unter
Schnitt mit reguliren Sprachen abgeschlossen ist (siehe Ubungen),
wére andernfalls auch

{€,0}Lsn L(0a*b*c*) = 0L3 U 0Ly
in DCFL, was wir bereits ausgeschlossen haben. []

Dass DCFL auch nicht unter Sternhiillenbildung abgeschlossen ist,
lisst sich ganz dhnlich zeigen (siehe Ubungen). Wir fassen die be-
wiesenen Abschlusseigenschaften der Klassen REG, DCFL und CFL in
folgender Tabelle zusammen:

Vereinigung Schnitt Komplement Produkt Sternhiille

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja

Die Klasse der deterministisch kontextfreien Sprachen ldsst sich auch
mit Hilfe von speziellen kontextfreien Grammatiken charakterisieren,
den so genannten LR(k)-Grammatiken. Der erste Buchstabe L steht
hierbei fiir die Leserichtung bei der Syntaxanalyse, d.h. das Eingabe-
wort x wird von links (nach rechts) gelesen. Der zweite Buchstabe R
bedeutet, dass bei der Syntaxanalyse eine Rechtsableitung entsteht.
SchliefSlich gibt der Parameter k an, wieviele Zeichen man iiber das
aktuelle Eingabezeichen hinauslesen muss, damit der nichste Schritt
eindeutig feststeht (k wird auch als Lookahead bezeichnet).

Durch LR(0)-Grammatiken lassen sich nur die préfixfreien Sprachen
in DCFL erzeugen. Dagegen erzeugen die LR(k)-Grammatiken fiir
jedes k > 1 genau die Sprachen in DCFL.

Daneben gibt es noch LL(k)-Grammatiken, die fiir wachsendes k
immer mehr deterministisch kontextfreie Sprachen erzeugen.

4 Kontextsensitive Sprachen

4 Kontextsensitive Sprachen

In diesem Kapitel fithren wir das Maschinenmodell des linear be-
schréankten Automaten (LBA) ein und zeigen, dass LBAs genau die
kontextsensitiven Sprachen erkennen. Die Klasse CSL ist unter Kom-
plementbildung abgeschlossen. Es ist jedoch offen, ob die Klasse DCSL
der von einem deterministischen LBA erkannten Sprachen eine echte
Teilklasse von CSL ist (diese Frage ist als LBA-Problem bekannt).

4.1 Kontextsensitive Grammatiken

Zur Erinnerung: Eine Grammatik G = (V) 3, P, S) heifit kontextsen-
sitiv, falls fir alle Regeln a — 3 gilt: |5] > |a]. Als einzige Ausnahme
hiervon ist die Regel S — ¢ erlaubt. Allerdings nur dann, wenn das
Startsymbol S nicht auf der rechten Seite einer Regel vorkommt.
Das néchste Beispiel zeigt, dass die Sprache L = {a™b"c¢™ | n > 0} von ei-
ner kontextsensitiven Grammatik erzeugt wird. Da L nicht kontextfrei
ist, ist also die Klasse CFL echt in der Klasse CSL enthalten.

Beispiel 115. Betrachte die kontextsensitive Grammatik G =
(V,X,P,S) mit V={S,B}, ¥={a,b,c} und den Regeln

P:S—aSBc,abc (1,2) ¢B—Bc(3) bB-bb(4)

In G ldf$t sich beispielsweise das Wort w = aabbce ableiten:

S = aSBc = aabcBc = aabBcc = aabbee
(1) 2 (3) (4)

Allgemein gilt fir alle n > 1:

S —n-1 anfls(Bc)n—l - anbc(Bc)n—l :>(72L) abBn-1cn —n-1 anbren
1) (2) (3) (4)

46

Also gilt a™bnc™ € L(Q) fiir alle n > 1. Umgekehrt folgt durch Induktion
tber die Ableitungslinge m, dass jede Satzform u mit S =™ « die
folgenden Bedingungen erfillt:

o #u(a) =#p(a) +#p(a) = #.(a),
e links von S und links von einem a kommen nur a’s vor,
o links von einem b kommen nur a’s oder b’s vor.

Daraus ergibt sich, dass in G nur Wérter der Form w = a™b™c" ableit-
bar sind. <

4.2 Turingmaschinen

Um ein geeignetes Maschinenmodell fiir die kontextsensitiven Sprachen
zu finden, fithren wir zunéchst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein. Eine NTM erhalt ihre Eingabe

auf einem nach links und rechts

; Schreib-
unbegrenzten Band. Wahrend Lese-Kopf Arbeitsband
ihrer Rechnung kann sie den «— mit Eingabe
Schreib-Lese-Kopf auf dem o Tufd e T] e JeaJu]

Band in beide Richtungen be-
wegen und dabei die besuch-
ten Bandfelder lesen sowie ge-
lesenen Zeichen gegebenenfalls
iiberschreiben.

—

Steuer-
einheit

Es gibt mehrere Arten von Turingmaschinen (u.a. mit einseitig unend-
lichem Band oder mit mehreren Schreib-Lese-Képfen auf dem Band).
Wir verwenden folgende Variante der Mehrband-Turingmaschine.

Definition 116. Sei k> 1.

a) Eine nichtdeterministische k-Band-Turingmaschine
(kurz k-NTM oder einfach NTM) wird durch ein 6-Tupel
M =(Z,%,T,0,q0, E) beschrieben, wobei

4 Kontextsensitive Sprachen

Z eine endliche Menge von Zustinden,

Y. das Eingabealphabet (wobei U ¢ Y.),

[' das Arbeitsalphabet (wobei Y u{u} cT'),

§: ZxTk - P(ZxTkx{L,R,N}*) die Uberfihrungsfunk-
tion,

qo der Startzustand und
o FcZ die Menge der Endzustinde ist.

b) Eine k-NTM M heifst deterministisch (kurz: M ist eine k-
DTM oder einfach DTM), falls fir alle (q,aq,...a) € Z x Tk
die Ungleichung ||0(q, a1, ... a)| <1 gilt.

Fir (¢',ay,...,a},D1,...,Dy) €(q,a1,...a;) schreiben wir auch

(¢,a1,...,ax) > (¢',al,...,ay, Dy,...,Dy).

Eine solche Anweisung ist ausfithrbar, falls
e ¢ der aktuelle Zustand von M ist und

e sich fir e =1,...,k der Lesekopf des i-ten Bandes auf einem mit
a; beschrifteten Feld befindet.

Ihre Ausfithrung bewirkt, dass M
o vom Zustand ¢ in den Zustand ¢’ iibergeht,

« auf Band i das Symbol a; durch a; ersetzt und

o den Kopf gemafl D; bewegt (L: ein Feld nach links, R: ein Feld
nach rechts, N: keine Bewegung).

Definition 117. Sei M = (Z,%,1,0,qo, E) eine k-NTM.
a) Fine Konfiguration von M ist ein (3k + 1)-Tupel

K = (q»ulaalvvla---auk’aakyvk) € Z x (FX_ XFXF*)k

und besagt, dass

e ¢ der momentane Zustand ist und

47

b)

4.2 Turingmaschinen

e dasi-te Band mit ...uu;a;v;U. .. beschriftet ist, wobei sich
der Kopf auf dem Zeichen a; befindet.
Im Fall k = 1 schreiben wir fir eine Konfiguration (q,u,a,v)
auch kurz uqav.

Die Startkonfiguration von M bei Fingabe v =xy...x, € X%
ist

P (qo0,8,21,@o ... Ty, e,U,€, ... €, L,E),
X
(QO757|—|7€7"')57|—|78)7
Y ; I _ !/ ! !/ ! / ! ;
Eine Konfiguration K' = (q,u},a},vy,...,u},a,v;) heifst Fol-

gekonfiguration von K = (p,ui,aq,vy,...,ug, a,vg) (kurz
K+ K'), falls eine Anweisung

A
(Q)alw"vak) - (Q7b17"'7bk7D17"'7Dk)
existiert, so dass firt=1,...,k gilt:
im Fall D; = N: | D; = R: D=L
K: AR K: ;| | Uy K: Ui | Qi | Uy
K" | b;|v; K" u; by |al|v] K" ullal| b; v;
I _
u; = U, u; = w;b; und L, Uiy Uy % £,
ulal =
- .
a; =b; und VAV L e, U, sonst
. iVi = .
v; = ;. U, sonst. | ynd V) = b;v;.

Man beachte, dass sich die Linge der Bandinschrift u;a;v; beim
Ubergang von K zu K' genau dann um 1 erhéht, wenn in K’
zum, ersten Mal ein neues Feld auf dem i-ten Band besucht wird.
Andernfalls bleibt die Ldange von u;a;v; unverdndert. Die Linge
von u;a;v; entspricht also genau der Anzahl der auf dem i-ten
Band besuchten Felder (inkl. Eingabezeichen im Fall i=1).

4 Kontextsensitive Sprachen

d) Fine Rechnung von M bei Fingabe x ist eine Folge von Kon-
figurationen Ko, K1, Ky... mit Kog= K, und Ko+ K1+ Ky--.

e) Die von M akzeptierte oder erkannte Sprache ist
L(M)={zeX" |3K e Ex (I" xT x*)*: K, " K}.

M akzeptiert also eine Eingabe x (hierfiir sagen wir kurz M (z) ak-
zeptiert), falls es eine Rechnung K, = Ko+ K; + Ko+ + K; von M (z)
gibt, bei der ein Endzustand erreicht wird.

48

4.2 Turingmaschinen

	1 Einleitung
	2 Reguläre Sprachen
	2.1 Endliche Automaten
	2.2 Nichtdeterministische endliche Automaten
	2.3 Reguläre Ausdrücke
	2.4 Relationalstrukturen
	2.4.1 Ordnungs- und Äquivalenzrelationen
	2.4.2 Abbildungen
	2.4.3 Homo- und Isomorphismen

	2.5 Minimierung von DFAs
	2.6 Das Pumping-Lemma
	2.7 Grammatiken

	3 Kontextfreie Sprachen
	3.1 Chomsky-Normalform
	3.2 Das Pumping-Lemma für kontextfreie Sprachen
	3.3 Der CYK-Algorithmus
	3.4 Kellerautomaten
	3.5 Deterministisch kontextfreie Sprachen

	4 Kontextsensitive Sprachen
	4.1 Kontextsensitive Grammatiken
	4.2 Turingmaschinen

