Vorlesungsskript

Einfihrung in die Theoretische
Informatik

Wintersemester 2020/21

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

19. November 2020

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung 1

2 Regulare Sprachen 3
2.1 Endliche Automaten 3
2.2 Nichtdeterministische endliche Automaten 5
2.3 Regulare Ausdriicke 8

2.4 Relationalstrukturen 11

1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch l6sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

Schliefllich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollstandigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adaquat?
(Automatentheorie)

o« Welche Probleme sind losbar?

o Welcher Aufwand ist zur Losung eines algorithmischen Problems
notig? (Komplexitatstheorie)

(Berechenbarkeitstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik

o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)

Die wichtigsten Lernziele der Vorlesung sind:

« Uberblick iiber die wichtigsten Rechenmodelle (Automaten) wie
z.B.

— endliche Automaten
— Kellerautomaten

— Turingmaschinen

— Registermaschinen
— Schaltkreise

o Charakterisierung der Klassen aller mit diesen Rechenmodellen
losbaren Probleme durch

— unterschiedliche Typen von formalen Grammatiken

— Abschlusseigenschaften unter geeigneten Sprachoperatio-
nen

— Reduzierbarkeit auf typische Probleme (Vollstdandigkeit)
e Frkennen von Grenzen der Berechenbarkeit

o Klassifikation wichtiger algorithmischer Probleme nach ihrer
Komplexitét

Rechenmaschinen spielen in der Informatik eine zentrale Rolle Es gibt
viele unterschiedliche mathematische Modelle fiir Rechenmaschinen.
Diese konnen sich in ihrer Berechnungskraft unterscheiden. Die Tu-
ringmaschine (TM) ist ein universales Berechnungsmodell, da sie alle
anderen bekannten Rechenmodelle simulieren kann. Wir betrachten
zunachst Einschrankungen des TM-Modells, die vielféltige praktische
Anwendungen haben, wie z.B.

o endliche Automaten (DFA, NFA)

« Kellerautomaten (PDA, DPDA) etc.

Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale

1 Einleitung

Algorithmus ist der nach Fuklid benannte Algorithmus zur Berech-
nung des groften gemeinsamen Teilers zweier nattrlicher Zahlen (300
v. Chr.). Von einem Algorithmus wird erwartet, dass er fiir jede zulés-
sige Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert. Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Die
(maximale) Anzahl der Rechenschritte bei allen méglichen Eingaben
ist nicht beschrankt, d.h. mit wachsender Eingabeldnge kann auch die
Rechenzeit beliebig anwachsen. Die Beschreibung eines Algorithmus
muss jedoch endlich sein. Problemeingaben kénnen Zahlen, Formeln,
Graphen etc. sein. Diese werden tiber einem Fingabealphabet 3 kodiert.

Definition 1.
a) Ein Alphabet ist eine linear geordnete Menge 3 = {ay, ..., an}
von m > 1 Zeichen a, < -+ < a,.
b) Eine Folge x = xq...x, vonn >0 Zeichen x; € X2 heifit Wort
der Lange n tber 3.

¢) Die Linge von x wird mit |z| und die Menge aller Worter der
Linge n tiber 3 wird mit X" bezeichnet.

d) Die Menge aller Waorter uber ¥ ist

=rr=x"uxtux?u--

n>0

e) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen, d.h. ¥° = {e}.

f) Jede Teilmenge L ¢ ¥* heifit Sprache tber dem Alphabet 3.

Beispiel 2. Sei ¥ ein Alphabet. Dann sind @,%*, % und {e} Sprachen
tber Y. Die Sprache @ enthdlt keine Worter und heif$t leere Spra-
che. Die Sprache ¥* enthdlt dagegen alle Worter tiber 3, wahrend
die Sprache 3 alle Wérter tiber X der Lange 1 enthdlt. Die Sprache
{e} enthalt nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singletonsprachen bezeichnet.

Da Sprachen Mengen sind, konnen wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

gc{e}cyr.

Wir kénnen Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen tiber Y. Dann ist

e AnB={xe¥*|xeA xeB} der Schnitt von A und B,

e« AuB={zeX*|xeAvae B} die Vereinigung von A und
B, und

e« A={ze¥*|x¢ A} das Komplement von A.

Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.

e Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B st

AB={xy|xz e A ye B}.

Ist A ={z} eine Singletonsprache, so schreiben wir fir {z}B
auch einfach xB.

e Die n-fache Potenz A™ einer Sprache A ist induktiv definiert
durch

An o {e}, n=0,
ATA n>0.

e Die Sternhiille A* einer Sprache A ist A* = U,s0 A" und die
Plushiille A* von A ist A" =U,s; A" = AA*.

2 Regulédre Sprachen

2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
filtige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Eingabe- .

Ein endlicher Automat fiihrt band
bei einer Eingabe der Lénge n 2

nur n Rechenschritte aus. Um / Lesekopf
die gesamte Eingabe lesen zu

kénnen, muss der Automat also Steuer-
in jedem Schritt ein Zeichen der einheit
Eingabe verarbeiten.

Definition 4. Fin endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E') beschrie-
ben, wobei

o 7 + & eine endliche Menge von Zustanden,
e Y das Fingabealphabet,

e 0:ZxY — Z die Uberfiihrungsfunktion,
e qo € Z der Startzustand und

o ECZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {xl...xneE*

es gibt q1,...,qn1€ Z,q, € E mit
0(qiyiv1) = qiy1 firi=0,...,n-1]"

Fine Zustandsfolge qo,q1,- - -,qn heifst Rechnung von M(xy...x,),
falls 6(qi,wiv1) = qp1 fir i = 0,...,n =1 gilt. Sie heifst akzeptie-
rend, falls q, € E ist, und andernfalls verwerfend. Eine von einem
DFA akzeptierte Sprache wird als reguldr bezeichnet. Die zugehdrige
Sprachklasse ist

REG = {L(M) | M ist ein DFA}.

Beispiel 5. Betrachte den DFA M =
(Z,%,6,0,E) mit Z = {0,1,2}, & =
{a,b}, E = {1} und der Uberfiihrungs-
funktion

Graphische Darstellung:

5jo 1 2

all 20
b2 0 1

Der Startzustand wird meist durch einen Pfeil und Endzustdnde
werden durch einen doppelten Kreis gekennzeichnet.

Bei Eingabe w; = aba fithrt M die akzeptierende Rechnung 0,1,0,1

durch, d.h. w; € L(M). Dagegen verwirft M das Wort wy = abba
(verwerfende Rechnung: 0,1,0,2,0). <

Bezeichne 6 (q,x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion X
0:Zx¥X" > 7
induktiv wie folgt definieren. Fiir g€ Z, x € ¥* und a € X sei
0(q.€) = g,
(g, za) = 0(6(q,x),a).
Die von M erkannte Sprache lasst sich nun elegant durch
L(M) ={zeX* (g,) € E}

beschreiben.

2 Regulédre Sprachen

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache
L(M) ={xeX* | #4(x) — #p(x) =3 1},

wobei #4(x) die Anzahl der Vorkommen des Zeichens a in x bezeich-
net und i =, j (in Worten: i ist kongruent zu j modulo m) bedeutet,
dass i — j durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € ¥* |
0(0,2) = 1}, d.h. wir miissen folgende Aquivalenz zeigen:

S(O,x) =1 < #.(x) —#p(x) =3 1.

Hierzu reicht es, die Kongruenz

0(0,2) =5 #a(x) = #o(2).

zu beweisen, wofiir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n=0): klar, da 0(0,¢) = #4(¢) = #4(¢) = 0 ist.

Induktiqnsschritt (n~mn+1): Sei x =x1...2,,1 gegeben und sei
i=0(0,21...2,). Nach IV gilt dann

i =3 #al(xr. . xn) = Fp(21 ...).
Wegen 0(i,a) =3¢+ 1 und 0(7,0) =37 — 1 folgt daher

5(Z7 mn-%—l) =3 Z + #a(xrwl) - #b(xn+1)
=3 #a(xl o xn) - #b(xl cee xn) + #a(xrwl) - #b(xn+1)
= #ta(®) = #o(2).

und somit
5(0,2) = 0(5(0, 21 ... 2), Tns1) = 0(i, Tps1) =3 H#al(x) — #0(2).

2.1 Endliche Automaten

Beobachtung 7. Alle Singletonsprachen sind requldr.

Beweis. Fir jedes Wort = = z7...x, existiert ein DFA M, mit
L(M,) ={z}:

T L2 T3
e (@ @
a* T a * I3
a* I

aey

Formal ist M, also das Tupel (Z,%,6,q0, E) mit Z = {qo,...,qn, €},
E = {q,} und der Uberfiihrungsfunktion

¢i+1, q=¢; fireinimit 0<i<n-1und a; = x4
5((]7 aj) =
e, sonst.

Als néchstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. FEin k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen Ly, ..., Ly auf eine Sprache op(L1, ..., L) abbildet.

Beispiel 9. Der Schnittoperator n bildet zwei Sprachen Ly und Lo
auf die Sprache Ly n Ly ab. <

Definition 10. FEine Sprachklasse IC heifst unter op abgeschlossen,
wenn gilt:
Li,....,Lye K=o0p(Ly,..., L) e K.

Der Abschluss von KC unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K', die KC enthdlt und unter op abgeschlossen ist.

2 Regulédre Sprachen

Beispiel 11. Der Abschluss der Singletonsprachen unter n besteht
aus allen Singletonsprachen und der leeren Sprache.

Der Abschluss der Singletonsprachen unter U besteht aus allen nicht-
leeren endlichen Sprachen.

Der Abschluss der Singletonsprachen unter n, U und Komplement
besteht aus allen endlichen und co-endlichen Sprachen.* N

Definition 12. Fir eine Sprachklasse C bezeichne co-C die Klasse
{L|LeC} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit Ly, L, € REG sind auch die Sprachen L, =
Y*N Ly, Lyn Ly und Ly v Ly requldr.

Beweis. Sind]\4z = (Zi,Z,éi,qg,Ei), 1= 172, DFAs mit L(MZ) = Li;
so akzeptiert der DFA

M: (Zlaza(slaQOaZl N\ El)

das Komplement L, von L;. Der Schnitt L; n L, von Ly und Ly wird
dagegen von dem DFA

M = (Zl X 2272757 (QO7QO)7E1 X EQ)
mit
5((Qap)aa) = (51(Q7a)752(paa))

akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen

Liu Ly = (L1 n Ly) ist dann aber auch die Vereinigung von L; und
Lo regulédr. (Wie sieht der zugehorige DFA aus?) []

Eine Sprache L € ¥ ist co-endlich, wenn ihr Komplement L endlich ist.

2.2 Nichtdeterministische endliche Automaten

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulér sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regularen Sprachen erfasst.

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhiille abgeschlossen ist. Im
iiberndchsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt und
Sternhiille charakterisierbar (und somit auch unter diesen Operationen
abgeschlossen) ist.

Beim Versuch, einen endlichen Automaten fir das Produkt
L(My)L(Ms) zweier regulirer Sprachen zu konstruieren, stofit man
auf die Schwierigkeit, den richtigen Zeitpunkt fiir den Ubergang von
(der Simulation von) M; zu M, zu finden. Unter Verwendung eines
nichtdeterministischen endlichen Automaten lisst sich dieses Problem
jedoch leicht 16sen, da dieser den richtigen Zeitpunkt ,erraten” kann.

Im néchsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur regulére Sprachen erkennen
konnen.

2.2 Nichtdeterministische endliche Automaten

Definition 14. FEin nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,2,A,Q0, E) ist ahnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustinde (zusammengefasst in der Menge Qo € Z) haben
kann und seine Uberfiihrungsfunktion die Form

A:ZXE—>'P(Z)

2 Regulédre Sprachen

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2% bezeichnet. Die
von N akzeptierte Sprache ist

HQOEQ07q17"'7qn71EqunEE: }

L(N) = ce Ty €Y .
() {xl € qi+16A(Qi7xi+1) fdrl:oa"'an_l

FEine Zustandsfolge qo,q1, - .., q, heifst Rechnung von N(zy...x,),
falls g1 € A(qiyxi41) firi=0,...,n-1 gilt.

Ein NFA N kann bei einer Eingabe z also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren. Ein Wort x ge-
hort genau dann zu L(N), wenn N (x) mindestens eine akzeptierende
Rechnung hat.

Im Gegensatz zu einem DFA, dessen Uberfithrungsfunktion auf der
gesamten Menge Z x ¥ definiert ist, kann ein NFA | stecken bleiben®.
Das ist dann der Fall, wenn er in einen Zustand ¢ gelangt, in dem das
nichste Eingabezeichen x; wegen A(q,x;) = @ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,%,A,Qo, F) mit Zustands-
menge Z ={p,q,r,s}, Eingabealphabet 3 = {0,1,2}, Start- und End-
zustandsmenge Qo = {p} und E = {s} sowie der Uberfihrungsfunktion

Graphische Darstellung:

9@_0.@_1,@_%

A‘pqrs

0|{pq} @ o @
L) {p} {r} o o
@

2| {py @ {s}

Offensichtlich akzeptiert N die Sprache L(N) = {x012 |z € ¥*} aller
Wérter, die mit dem Suffiz 012 enden. <

Beobachtung 16. Sind N; = (Z;, 2, A;,Q:, E;) (i =1,2) NFAs, so
werden auch die Sprachen L(N1)L(Ny) und L(Ny)* von einem NFA
erkannt.

2.2 Nichtdeterministische endliche Automaten

Beweis. Sei L; = L(N;). Wir kénnen Z; n Z, = @ annehmen. Dann
akzeptiert der NFA

N = (Zl UZ2727A37Q17E)

mit
Aq(p,a), peZiN B,
Az(p,a) =1 As(p,a) UUgqg, A2(g,a), pe El,
As(p,a), sonst
und
E:{EQ, QN E; =0
EiuFE;, sonst

die Sprache L L.
LiLy € L(N): Seien x = z1---x € L1,y = y1--y; € Lo und seien qo, . . . , ¢k
und py, . .., p; akzeptierende Rechnungen von N;(z) und Ny(y). Dann
ist qo, ..., Qk, D1, - -, eine akz. Rechnung von N (xy), da g € 1 und
p € Es ist, und

o im Fall [> 1 wegen g € E1, po € Q2 und p1 € As(po,y1) zudem

p1 € A(gy, y1) und

o im Fall [=0 wegen ¢ € E; und p; € Q2 N E5 zudem gy € E ist.
L(N) ¢ L1Ly: Sei © = xy+x, € L(N) und sei qq,...,q, eine akz.
Rechnung von N(z). Dann gilt qo € Q1, ¢, € E, qo,--.,q; € Z; und
Gis1, - - Qn € 4o fur ein i <n. Wir zeigen, dass ein g € ()5 existiert, so
dass qo, - .., q; eine akz. Rechnung von Ny(z1---2;) und ¢, gis1,-- -, qn
eine akz. Rechnung von No(x1---2,,) ist.

o Im Fall i < n impliziert der Ubergang ¢;,; € A(qi, i41), dass

¢; € Ey (also qo, ..., q; eine akz. Rechnung von Nj(x;--x;)) und
Gir1 € Ao(q,x;41) flir ein g € Qy ist. Zudem ist q, € EN Zy = Ey
(also q,Gis1,- - -, qn eine akz. Rechnung von Ny(z;yq1--x,)).

o Im Fall i=nist ¢, € EnZ;, was ¢, € Fy und Q2 N Fy + @ impli-
ziert (also ist qo, ..., qn eine akz. Rechnung von Ni(zq---x,) und
es gibt ein ¢ € @2, so dass ¢ eine akz. Rechnung von Ny(e) ist).

2 Regulédre Sprachen

Ganz dhnlich lasst sich zeigen, dass der NFA

N* = (Zl U {qneu}a 27A47Q1 U {Qneu}a El U {Qneu})

mit
Ai(p,a), peZiN B,
Ay(p,a) ={A(p,a) U Ugeq, A1(q,a), peEy,
a, sonst
die Sprache L} akzeptiert. [

Satz 17 (Rabin und Scott).
REG = {L(N) | N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Fir die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,3,A,Qo, F) einen DFA M =
(P(2),%,0,Qo, E') mit L(M) = L(N). Wir definieren die Uberfiih-
rungsfunktion 0 : P(Z) x ¥ — P(Z) von M mittels

0(Q,a) = A(g, a).

qeQ

Die Menge §(Q, a) enthélt also alle Zustande, in die NV gelangen kann,
wenn N ausgehend von einem beliebigen Zustand q € () das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand () die Information speichert,
in welchen Zustdnden sich N momentan befinden konnte. Fiir die
Erweiterung 6 : P(Z) x £* - P(Z) von § (siehe Seite 3) kénnen wir
nun folgende Behauptung zeigen.

Behauptung. § (Qo, z) enthalt alle Zusténde, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.

Wir beweisen die Behauptung induktiv iiber die Lange n von x.
Induktionsanfang (n =0): Klar, da 6(Q,¢) = Qq ist.

2.2 Nichtdeterministische endliche Automaten

Induktionsschritt (n—1~»>n): Sei x = x; ...z, gegeben. Nach In-
duktionsvoraussetzung enthélt

Qn-1 = 5(@0, ry.. -xnfl)

alle Zusténde, die N(x) in genau n—1 Schritten erreichen kann.
Wegen

0(Qo,2) = 6(Quorvzn) = U Alg.)

q€Qn-1

enthélt dann aber & (Qo,x) alle Zusténde, die N(x) in genau n
Schritten erreichen kann.

Deklarieren wir nun diejenigen Teilmengen @) € Z, die mindestens
einen Endzustand von N enthalten, als Endzustéinde des Potenz-
mengenautomaten M, d.h.

E'=-{QcZ|QnE{a}
so folgt fur alle Worter x € 3*:

reL(N) < N(z)kann in genau |z| Schritten einen Endzustand
erreichen

5(Qo,2)NE # 2

6(Qo,z) € E

xeL(M).

0

)

¢

Beispiel 18. Fir den NFA N = (Z,%,A,Qo, E) aus Beispiel 15

9@_0.@_1,@_%

ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach
Entfernen aller vom Startzustand Qo = {p} aus nicht erreichbaren
Zustinde):

2 Regulédre Sprachen

s | o0 1 2

Q={p} |{pgy {p} {p}
Qi1=1{p,q} | {p,a} {p.r} {p}
Qa={p,r} | {p,a} {p} A{p s}
Qs=1{p,s} |{p,a} {p} {p}

Im obigen Beispiel wurden fiir die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2/4] = 16 Zusténde benétigt, da die
tibrigen 12 Zusténde in P(Z) nicht vom Startzustand Qo = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 2121 Zusténde
in P(Z) fiir die Konstruktion des Potenzmengenautomaten benotigt
werden (siehe Ubungen).

Korollar 19. Die Klasse REG der reguldren Sprachen ist unter fol-
genden Operationen abgeschlossen:

e Komplement, e Produkt,
e Schnitt, e Sternhiille.
o Vereinigung,

2.3 Regulare Ausdriicke

Wir haben uns im letzten Abschnitt davon iiberzeugt, dass auch NFAs
nur reguldre Sprachen erkennen koénnen:

REG = {L(M) | M ist ein DFA} ={L(N) | N ist ein NFA}.

2.3 Reguléire Ausdriicke

In diesem Abschnitt werden wir eine weitere Charakterisierung der
reguldren Sprachen kennenlernen:
REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhtille aus der leeren Menge und den Singleton-
sprachen bilden lassen.

Tatséchlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der reguldren Ausdriicke v (iber ei-
nem Alphabet) und die durch v dargestellte Sprache L(7y) sind
induktiv wie folgt definiert. Die Symbole @, € und a (a € ¥) sind
requldre Ausdriicke, die

e die leere Sprache L(@) = @,

e die Sprache L(e) = {¢} und

e fiir jedes Zeichen a € ¥ die Sprache L(a) = {a}
beschreiben. Sind o und 3 requlire Ausdriicke, die die Sprachen L(«)
und L(B) beschreiben, so sind auch a3, («|B) und («)* regqulire Aus-
driicke, die die Sprachen

« L(ap) = L()L(B).

+ L(alf) = L(a) U L(B) und

e L((@)*) = L(e)*

beschreiben.

Bemerkung 21.

e Um Klammern zu sparen, definieren wir folgende Prizedenz-
ordnung: Der Sternoperator * bindet starker als der Produktope-
rator und dieser wiederum starker als der Vereinigungsoperator.
Fiir ((alb(c)*)|d) kénnen wir also kurz albc*|d schreiben.

e Da der regulire Ausdruck ~vv* die Sprache L(~y)* beschreibt,
verwenden wir v* als Abkiirzung fiir den Ausdruck ~~*.

2 Regulédre Sprachen

Beispiel 22. Die reguldren Ausdricke €, @*, (0/1)*00 und e0|z1*
beschreiben folgende Sprachen:

v | e o (0[1)*00 €0|z1*
L(y) [{e}*={e} @ ={e} {x00]|ze{0,1}} {0}

Beispiel 23. Betrachte nebenstehenden DFA M.
Um fiir die von M erkannte Sprache

L(M) ={xe{a, b} | #a(x) - #(x) =3 1}

einen requldren Ausdruck zu finden, betrachten
wir zundchst die Sprache Lo aller Worter x, die
den DFA M ausgehend vom Zustand 0 in den
Zustand 0 tberfihren. Weiter sei L3 die Sprache aller solchen Worter
w € Lo, die den Zustand 0 nur 2u Beginn und am Ende (aber nicht
zwischendurch) besuchen. Dann setzt sich jedes x € Loy aus beliebig
vielen Teilwortern wy, ..., wy € L zusammen, d.h. Log = (L{5)*

Jedes w # € in L3 beginnt entweder mit einem a (Ubergang von 0
nach 1) oder mit einem b (Ubergang von 0 nach 2). Im ersten Fall
folgt eine beliebige Anzahl von Teilwértern ab (Wechsel zwischen 1
und 2), an die sich entweder das Suffiz aa (Rickkehr von 1 nach 0
tiber 2) oder das Suffix b (direkte Riickkehr von 1 nach 0) anschliefit.
Analog folgt im zweiten Fall eine beliebige Anzahl von Teilwortern ba
(Wechsel zwischen 2 und 1), an die sich entweder das Suffiz a (direkte
Riickkehr von 2 nach 0) oder das Suffix bb (Rickkehr von 2 nach 0

iber 1) anschlieft. Daher lisst sich L3, durch den reguliren Ausdruck
Y00 = alab)* (aalb) [b(ba)* (albd) | €

beschreiben. Eine dhnliche Uberlegung zeigt, dass die Sprache Lg?l aller
Worter, die M ausgehend von 0 in den Zustand 1 tberfithren, ohne

2.3 Regulire Ausdriicke

dass zwischendurch der Zustand 0 nochmals besucht wird, durch den
reguléren Ausdruck 77 = (albb)(ab)* beschreibbar ist. Somit erhalten
wir fiir L(M) den reguldren Ausdruck

Yo,1 = (a(ab)*(aalb) | b(ba)*(albb))* (albb)(ab)*.

Satz 24. {L(v) | v ist ein regulirer Ausdruck} = REG.

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdriicke @, € und a, a € X*, nur regulidre Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist (sieche Beobachtungen 13 und 16).

Fiir die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
laren Ausdruck v mit L(v) = L(M). Sei also M = (Z,%,0,qo, F) ein
DFA, wobei wir annehmen konnen, dass Z = {1,...,m} und ¢qo = 1 ist.
Dann lésst sich L(M) als Vereinigung

L(M) = U Lig

qeE

von Sprachen der Form
Lpg={reX] S(pax) =q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen L, , durch
reguldre Ausdriicke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

L;,q:{xl--.$nez* 5(p>$1---$n)=qundfur }

i=1,...,n-1gilto(p,x1...2;) <7

Wegen L, , = L7 reicht es, regulire Ausdriicke 7} , fiir die Sprachen
L3, , anzugeben. Im Fall = 0 enthalt

L0 {{aezw(p,a):q}u{e}, p=a,

pa {aeX|d(p,a)=q}, sonst

2 Regulédre Sprachen

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen reguldren Ausdruck 9, beschreibbar. Wegen

r+1 _ r T r *TT
Lp,q - Lp,qULp,r+1(Lr+1,r+1) Lr+1,q

lassen sich aus den reguldren Ausdriicken ~; fiir die Sprachen Lj

leicht reguldre Ausdriicke fiir die Sprachen L;*' gewinnen:

r+l1 _ r
Tpa = Tpa

T T * T
’7p,r+1 (’Yr+1,r+1) 7r+17q'

Beispiel 25. Betrachte den DFA

L

Da M insgesamt m =2 Zustinde und nur den Endzustand 2 besitzt,
151
L(M)=J Lig=Liz=Li,=L(7i2)

qeFE

Um ~3, zu berechnen, benutzen wir die Rekursionsformel

r+l _ .7 r r * T
’Yp,q _’yp,q|,}/p,r+l(ly7"+l,r+l) ,7r+1,q

und erhalten

7%,2 = 7%,2|711,2(7%,2)*721,27
Y2 =21 (R 1) e

721,2 = 73,2|’Yg,1 (7(1),1)*7?,2-

10

2.3 Reguléire Ausdriicke

Um den reguldren Ausdruck 7%72 fir L(M) zu erhalten, genigt es also,
die reguldren Ausdriicke 77 1, V)5, 791, V3.0, V1o und v35 zu berechnen:

. p,q
1,1 1,2 2.1 2.2

0 elb a a €lb
al(e|b) (e[b)*a (e[b)]a(elb)a

1 _ - \ ~

b*a elblab*a

) b*alb*a(e|blab*a)* (e|blab*a)

b*a(blab*a)*

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

e L ist requldr (d.h. es gibt einen DFA M mit L = L(M)),
es gibt einen NFA N mit L = L(N),
es gibt einen requldren Ausdruck ~v mit L = L(7),

L ldsst sich mit den Operationen Vereinigung, Produkt und
Sternhiille aus endlichen Sprachen gewinnen,

L ldsst sich mit den Operationen N, U, Komplement, Produkt
und Sternhiille aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, namlich durch regulare Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Aquivalenzrelationen) eine wichtige Rolle.

2 Regulédre Sprachen

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, R; eine k;-stellige Relation auf A, d.h.
R; ¢ Ak far ¢ = 1,...,n. Dann heiit (A;Ry,...,R,) Relational-
struktur. Die Menge A heifit Grundmenge, Triagermenge oder
Individuenbereich der Relationalstruktur.

Wir werden hier hauptsichlich den Fall n =1, k; = 2, also (A, R) mit
R ¢ A x A betrachten. Man nennt dann R eine (binire) Relation
auf A. Oft wird fur (a,b) € R auch die Infix-Schreibweise aRb

benutzt.

Beispiel 27.
e (F,M) mit F={f|f ist Fluss in Europa} und

M={(f,g9) e Fx F| f mindet in g}.
(U,B) mit U ={z | x ist Berliner} und
B={(x,y) eUxU | x ist Bruder von y}.

(P(M),<), wobei P(M) die Potenzmenge einer belicbigen Men-
ge M und ¢ die Inklusionsbeziehung auf den Teilmengen von M
15t.

(A, Idy), wobei Ida ={(x,x) |z e A} die Identitidt auf A ist.
(R,<).

(Z,]), wobei | die "teilt”-Relation bezeichnet (d.h. a|b, falls ein
ceZ mit b= ac ezistiert). N

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt, Vereinigung, Komplement und Differenz
definiert. Seien R und S Relationen auf A, dann ist

RnS = {(x,y)e Ax A| xRy xSy},
RuS = {(x,y)e Ax A|zRyv xSy},
R-S = {(x,y)e Ax A| xRy -xSy},
R = (AxA)-R.

11

2.4 Relationalstrukturen

Sei allgemeiner M ¢ P(A x A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt iiber M und die Vereinigung iiber
M folgende Relationen:

(M
UM

() R={(z,y) | VR e M: xRy},
ReM

U R={(z,y)| IR e M : zRy}.
ReM

Die transponierte (konverse) Relation zu R ist
R = {(y,x)| xRy}

RT wird oft auch mit R~! bezeichnet. Z.B. ist (R, <) = (R, >).
Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

RoS={(x,2)e AxA|Jye A: xRy nySz}.

Beispiel 28. Ist B die Relation "ist Bruder von”, V' "ist Vater von”,
M 7ist Mutter von” und E =V u M 7ist Elternteil von”, so ist Bo E
die Onkel-Relation. <

	1 Einleitung
	2 Reguläre Sprachen
	2.1 Endliche Automaten
	2.2 Nichtdeterministische endliche Automaten
	2.3 Reguläre Ausdrücke
	2.4 Relationalstrukturen

