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Die Chomsky-Hierarchie 159

Man unterscheidet vier Typen von Grammatiken G = (V,%,P,S) |

Definition
© G heiBt vom Typ 3 oder regular, falls fiir alle Regeln u — v gilt:
veVund verVuXu{e}
(d.h. alle Regeln haben die Form A — aB, A — a oder A — ¢)
@ G heiBt vom Typ 2 oder kontextfrei, falls fiir alle Regeln u — v gilt:
ueV (d.h. alle Regeln haben die Form A — v)
© G heiBt vom Typ 1 oder kontextsensitiv, falls fiir alle Regeln u — v gilt:
[v| > |u] (mit Ausnahme der e-Sonderregel, s. unten)
@ Jede Grammatik ist automatisch vom Typ 0

Die e-Sonderregel

In einer kontextsensitiven Grammatik ist auch die Regel S — ¢ zulassig,
falls das Startsymbol S nicht auf der rechten Seite einer Regel vorkommt

4
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Bemerkung

@ Es ist klar, dass jede regulare Grammatik auch kontextfrei ist

@ Zudem ist die Sprache L ={a"b" | n > 0} nicht regular

@ Es ist aber leicht, eine kontextfreie Grammatik fir L anzugeben:
G=({S},{a,b},P,S) mit P={S - aSh,e}

Also gilt REG ¢ CFL
Allerdings sind nicht alle kontextfreien Grammatiken kontextsensitiv

Z.B. ist obige Grammatik G nicht kontextsensitiv, da sie die Regel
S — € enthdlt und S auf der rechten Seite der Regel S — aSb vorkommt

Wir kénnen G jedoch wie folgt in eine Grammatik G’ umwandeln:
o ersetze die Regel S — ¢ durch die Regel S - ab und
o flige ein neues Startsymbol S’ sowie die Regeln S - S, ¢ hinzu

@ Tatsachlich lasst sich jede kontextfreie Grammatik G in eine aquivalente
kontextfreie Grammatik G’ umwandeln, die auch kontextsensitiv ist
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Definition
Eine Grammatik G = (V, X, P,S) ist in Chomsky-Normalform (CNF), falls
PcVx(V2uX)ist, d.h. alle Regeln haben die Form A - BC oder A - a

Zu jeder kontextfreien Grammatik G l3sst sich eine CNF-Grammatik G’
mit L(G") = L(G) \ {&} konstruieren




Anwendungen der Chomsky-Normalform _—

CFLc CSL l

Beweis

@ Sei Le CFL und sei G=(V,X,P,S) eine CNF-Grammatik mit
L(G)=L~A{e}

e Im Fall € ¢ L folgt sofort L = L(G) € CSL, da G kontextsensitiv ist

@ Ist ¢ € L, so erzeugt folgende kontextsensitive (und kontextfreie)
Grammatik G’ die Sprache L= L(G) u{e}:

G,:(VU{Sneu}vzuPU{Sneu9575};5neu) O




Weitere Anwendungen der Chomsky-Normalform 105

@ Der Beweis des Pumping-Lemmas fiir kontextfreie Sprachen basiert auf
CNF-Grammatiken

@ Zudem ermoglichen sie einen effizienten Algorithmus zur Lésung des
Wortproblems fiir kontextfreie Sprachen

| A

Das Pumping-Lemma fiir kontextfreie Sprachen

Zu jeder kontextfreien Sprache L € CFL gibt es eine Zahl /, so dass sich alle
Worter z € L mit |z| > | in z = uvwxy zerlegen lassen mit
0 vx+#e,

@ |vwx| </ und

o uviwx'y el fiiralle i >0

Das Wortproblem fiir kontextfreie Grammatiken

| A

Gegeben: Eine kontextfreie Grammatik G und ein Wort x
Gefragt: Ist x € L(G)?




Das Pumping-Lemma fiir kontextfreie Sprachen les

Beispiel
@ Betrachte die Sprache L ={a"b"|n >0}

@ Dann lasst sich jedes Wort z = a"b" = 3" 1abb™ ! in L mit |z| > /=2
pumpen

@ Zerlegen wir namlich z in
z=uvwxy mit u=a"t, v=a, , x=bund y=b""1,
dann gilt
© vwx=abte
@ |vwx|=|ab] <2 und
o uviwx'y=a"talbb" el firallei>0 <
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Beispiel
@ Die Sprache L ={a"b"c" | n >0} ist nicht kontextfrei

e Fiir eine vorgegebene Zahl / > 0 hat namlich das Wort z = a’b'c’ € L die
Lange |z| =3/ >
@ Dieses Wort lasst sich aber nicht pumpen:
Fiir jede Zerlegung z = uvwxy mit vx # € und |vwx| < | gehort
7' = uv®wx nicht zu L:
o Wegen vx # ¢ ist |2/| < |z
o Wegen |vwx| < [ kommen in vx nicht alle drei Zeichen a, b, ¢ vor
o Kommt aber in vx beispielsweise kein a vor, so ist #,(z) = #a4(2")
und somit gilt

|2 < |z] = 3#a(2) = 3#a(2)
o Also gehort 2z’ nicht zu L <
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CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhiille

Beweis

@ Seien Gj = (Vl, >, Py, 51) und Gp = (V2, >, Ps, 52) kontextfreie
Grammatiken mit V4 N V5 = @ und sei S eine neue Variable

@ Dann gilt

o L(G1) UL(Gy) = L(G3) fur die kontextfreie Grammatik
Gz=(ViuVou{S}H X, PLuPu{S—>5,5}9)

o L(G1)L(Gy) = L(Gy) fir die kontextfreie Grammatik
Gy=(ViuVou{S},Z,PLUuPyu{S— 55},5) und

o L(G1)* = L(Gs) fur die kontextfreie Grammatik
Gs=(Viu{S}, X, PLu{S— 55,¢},95)

O

Fir Ge = (V1, X, PLU{S1—5151,¢},51) muss nicht L(Gg) = L(Gy)™ gelten,
da L(Gg) z.B. fiir Py = {51 — aS1b,c} das Wort aababb ¢ L(G1)* enthalt
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CFL ist nicht abgeschlossen unter Schnitt und Komplement

Beweis von Ly, Ly € CFL % L3 n Ly e CFL
@ Folgende Sprachen sind kontextfrei (sieche Ubungen):

L ={a"b"c™ | n,m=>0} und Ly ={a"b"c"|n,m>0}

@ Nicht jedoch ihr Schnitt Ly n Ly = {a"b"c" | n> 0}

Beweis von L € CFL # L e CFL

@ Waire CFL unter Komplement abgeschlossen, so ware CFL wegen
de Morgan auch unter Schnitt abgeschlossen

@ Mit A, B e CFL wiren dann namlich auch A, B € CFL, woraus wegen
A BeCFL=AuB=AnBeCFL

wiederum An B e CFL folgen wiirde
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Zu jeder kontextfreien Grammatik G lasst sich eine CNF-Grammatik G’
mit L(G") = L(G) ~ {&} konstruieren

Beweis

Wir wandeln G = (V,X, P, S) wie folgt in eine CNF-Grammatik G’ um:
o Wir beseitigen zunachst alle Regeln der Form A — ¢ und danach alle
Regeln der Form A — B (siehe folgende Folien)
@ Dann fligen wir fiir jedes Terminal a € ¥ eine neue Variable X, und eine
neue Regel X, — a hinzu und ersetzen jedes Vorkommen von a, bei dem
a nicht alleine auf der rechten Seite einer Regel steht, durch X
@ AnschlieBend fithren wir fiir jede Regel , k>3, neue
Variablen A1,...,Ax_> ein und ersetzen sie durch die k — 1 Regeln

A1, A1—> BoAg, ... Akz— Ak-2, Ak-2—> O

Falls G Regeln mit vielen Variablen auf der rechten Seite hat, empfiehlt es
sich, Regeln der Form A —» ¢ und A — B zuletzt zu beseitigen (s. Ubungen)
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Zu jeder kontextfreien Grammatik G = (V, X, P, S) gibt es eine kontext-
freie Grammatik G’ = (V, X, P, S) ohne e-Regeln mit L(G") = L(G) ~ {&}

Beweis
@ Zuerst berechnen wir die Menge E = {Ae V| A="* ¢} aller Variablen,
die nach ¢ ableitbar sind:
1 E'={AecV|A->¢}
2 repeat
3 E:=F
4 EIZ=EU{A€V|381,...,Bk€E:A—>Bl...Bk}
5 until E = E’

@ Nun bilden wir P wie folgt:

{A—>v’

Entfernen von beliebig vielen Variablen A € E entsteht

es ex. eine Regel A —¢ v, so dass v’ # ¢ aus v durch }
O
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Beispiel
Betrachte die Grammatik G = ({S, T, U, X,Y,Z},{a, b,c},P,S) mit
P: S—aY,bX,Z Y - bS,aYY T U
X — aS, bXX , S, T, cZ U — abc

@ Berechnung von E:

E'l {z} {z,5}
E|{z,5} {Z,5}
o Entferne und flige die Regeln Y — b (wegen Y — b5),

X — a (wegen X — a5) und Z — ¢ (wegen Z — ¢/) hinzu:

P': S—aY,bX,Z Y —bbS,aYY T-oU
X > a,25,bXX Z-cS,T, U — abc




Beseitigung von Variablenumbenennungen Ll

Zu jeder kontextfreien Grammatik G = (V, %, P, S) gibt es eine kontext-
freie Grammatik G’ = (V, X, P, S) ohne Regeln der Form A — B mit
L(G") =L(G)

Beweis
@ Zuerst entfernen wir sukzessive alle Zyklen A; - Ay - - > A = A;
@ Hierzu entfernen wir diese Regeln aus P und ersetzen alle Vorkommen
der Variablen A;, ..., Ak in den lbrigen Regeln durch A;
@ Befindet sich die Startvariable unter Ay,..., Ak, so sei dies 0.B.d.A. A;
@ Nun eliminieren wir sukzessive die restlichen Variablenumbenennungen,
indem wir
o eine Regel A — B wéhlen, so dass in P keine Variablenumbenennung
B — C mit B auf der linken Seite existiert,
o diese Regel A — B aus P entfernen und
o fiir jede Regel B — v in P die Regel A — v zu P hinzunehmen |




Beseitigung von Variablenumbenennungen =

Beispiel (Fortsetzung)

P: S—aY,bX,Z Y - b,bS,aYY T->U
X — a,aS, bXX Z—c¢, S, T,cZ U — abc

e Entferne den Zyklus S — Z — S und ersetze Z durch S:
ay,bX,c, T, Y - b,bS,aYY T->U
X — a,aS, bXX U — abc

@ Ersetze die Regel T — U durch T — abc (wegen U — abc):
S—aY,bX,c, T,cS Y - b,bS,aYY T — abc
X — a,aS, bXX U — abc

@ Ersetze dann auch die Regel S — T durch S — abc (wegen T — abc):
S - abc,aY,bX,c,cS Y > b,bS,aYY T — abc

X — a,aS, bXX
@ Da T und U nirgends mehr auf der rechten Seite vorkommen, kénnen
wir die Regeln T — abc und weglassen:

S - abc,aY,bX,c,cS Y - b,bS,aYY X — a,aS, bXX




Bringe alle Regeln in die Form A - a und A - BC L

Beispiel (Schluss)

Betrachte die Grammatik G = ({5, X, Y, Z},{a, b,c},P,S) mit
P:S—abc,aY,bX,c,cS Y —-=b,bS,aYY X-—a, aS,bXX

@ Ersetze a, b und ¢ durch A, B und C (auBer wenn sie alleine auf der
rechten Seite einer Regel stehen) und fiige die Regeln A—a, B— b,
C — ¢ hinzu:
,AY.BX,c,CS Y — b,BS,AYY X-— a,AS,BXX
A-a B-b C-c
@ Ersetze die Regeln , Y= AYY und X— BXX durch die Regeln
Y =AY, Y 'S YY und X—=BX’, X' - XX:
LAY, BX,c, CS Y- b,BS,AY' Y'>YY
X— a,AS,BX’ X' =-XX A-a B-b C-c <

4




Links- und Rechtsableitungen Ly

Definition
Sei G=(V,X,P,S) eine kontextfreie Grammatik
@ Eine Ableitung

§ = /1&[‘1 = = /m,lAm,lrm,l = Om

heiBt Linksableitung von an, (kurz S =] ap), falls in jedem
Ableitungsschritt die am weitesten links stehende Variable ersetzt wird,
dh.esgilt feX* firi=1,..., m-1

@ Rechtsableitungen So =1 o sind analog definiert

@ G heiBt mehrdeutig, wenn es ein Wort x € L(G) gibt, das mindestens
zwei verschiedene Linksableitungen hat

@ Andernfalls heit G eindeutig

Fir alle x e £* gilt: x€L(G) < S="x < S=/x < S=%x J




Ein- und mehrdeutige Grammatiken L

e In G=({S},{a,b},{S » aSbhS,¢},S) gibt es 8 Ableitungen fir aabb:

S =1 a5bS = 225h5bS = aabShS =, aabbS = aabb
S= a5bS5= aa5b5bS = aabSbhS = aabSbh = aabb
S= a5b5= aaSbSbS = aaSbbS = aabbS = aabb
S= a5bS5= aa5b5bS = aaSbbS = aaSbb = aabb
S= aSbS= a bS = aaSbSb = aabSb = aabb
S= aSbS= a bS = aaSbSb = aaSbb = aabb
S= = aSb= aaS5bS5b= aabSbhb = aabb

‘§=>R S =>raSb=raa5b5b=praaSbb :Raabb‘

@ Darunter sind genau eine Links- und genau eine Rechtsableitung
e In G'=({S},{a,b},{S —» aSbS,ab,c},S) gibt es 3 Ableitungen fiir ab:

’§=> ‘ ’§=>_ =>ab§:>ab‘ ‘§=> _=>a§b=>ab‘

@ Darunter sind zwei Links- und zwei Rechtsableitungen <




Ein- und mehrdeutige Grammatiken =

e Die Grammatik G = ({S},{a, b},{S — aSbS,¢c},S) ist eindeutig
@ Dies liegt daran, dass keine Satzform von G das Teilwort Sa enthalt

@ Daher kann in einer Linksableitung
S =] ySB =[ yz=x
auf die aktuelle Satzform yS § nicht die Regel S — £ angewandt
werden, wenn in x auf das Prafix y ein a folgt

@ Daher muss auf die aktuelle Satzform yS 3 genau dann die Regel
S — aSbS angewandt werden, wenn in x auf das Prafix y ein a folgt
e Dagegen ist die Grammatik G' = ({S},{a, b},{S — aSbS, ab,¢},S)
mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

S=abund S = a5h5 = abS = ab




Gerichtete Baume und Walder
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Sei G = (V, E) ein Digraph.

Ein (gerichteter) vp-vk-Weg in G ist eine Folge von Knoten v, ..., vk
mit (v;,vi41) € E fir i =0,...,k—1. Seine Lange ist k

Ein Weg heiBt Pfad, falls alle Knoten paarweise verschieden sind

Ein u-v-Weg der Lange > 1 mit u = v heit Zyklus

G heiBt azyklisch, wenn es in G keinen Zyklus gibt

Ein Zyklus heiBt Kreis, falls alle Knoten paarweise verschieden sind

G heiBt gerichteter Wald, wenn G azyklisch ist und jeder Knoten v € V
Eingangsgrad deg™(v) <1 hat

Ein Knoten u € V vom Ausgangsgrad deg”(u) = 0 heiBt Blatt

Ein Knoten w € V heiBt Wurzel, wenn deg™(w) =0 ist

Ein gerichteter Wald mit genau einer Wurzel heiBt gerichteter Baum

Da in einem gerichteten Baum alle Kanten von der Wurzel w
wegflihren, ist die Angabe der Kantenrichtungen bei Kenntnis von w
iberfliissig. Man spricht dann auch von einem Wurzelbaum




Syntaxbaume L

Wir ordnen einer Ableitung
Ao = hAin = = In 1Am-1fm-1 = am
den Syntaxbaum (oder Ableitungsbaum, engl. parse tree) T,, zu, wobei die
Baume Ty,..., T, induktiv wie folgt definiert sind:
@ Ty besteht aus einem einzigen Knoten, der mit Ap markiert ist
@ Wird im (i + 1)-ten Ableitungsschritt die Regel A; - vy ... v, mit
Vi,...,Vx € XUV angewandt, so ensteht T;.1 aus T;, indem wir das
Blatt A; durch folgenden Unterbaum ersetzen:
k > 0 5 AI k = 0 S AI

/N |

Vi Vk 5

@ Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und
die Kinder vy ... v, von links nach rechts geordnet vor

@ Syntaxbaume sind also geordnete Wurzelbdume




Syntaxbaume L

Beispiel
@ Betrachte die Grammatik G = ({S},{a, b},{S — aSbS,c},S) und die
Ableitung
S = aSbhS = aaSbS5bS = aaSbbS = aabbS = aabb

@ Die zugehorigen Syntaxbaume sind dann

To: S T1: S T2: S T32 S T4Z S T51 S

AN AN /N /N

aShS aSbS aSbhbS aSbSs as

AN AN N N

aShS aShbs aShsS aShbs ¢
|
€ €

€ e €
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Beispiel
o In G=({S},{a,b},{S » aSbS,c},S) fihren alle acht Ableitungen des
Wortes aabb auf denselben Syntaxbaum:

S
VZANN
aShs
/NN
aSbs ¢

I
g &

@ Dagegen fiihren in G’ = ({S},{a, b},{S — aSbhS, ab,c},S) die drei
Ableitungen des Wortes ab auf zwei unterschiedliche Syntaxbdume:

S S
/\ /1\\
ab asShbs
[\
€ €




Syntaxbaume und Linksableitungen
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Seien Ty,..., T, die zu einer Ableitung S = ag = -+ = o,y gehdrigen
Syntaxbaume
Dann haben alle Syntaxbdume To,..., T, die Wurzel S

Die Satzform «; ergibt sich aus T;, indem wir die Blatter von T; von
links nach rechts zu einem Wort zusammensetzen

Auf den Syntaxbaum T,, fihren neben ag = --- = a,, alle Ableitungen,
die sich von dieser nur in der Reihenfolge der Regelanwendungen
unterscheiden

Dazu gehort genau eine Linksableitung
Linksableitungen und Syntaxbdume entsprechen sich also eineindeutig
Dasselbe gilt fiir Rechtsableitungen

Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T
hochstens zwei Kinder (d.h. T ist ein Binarbaum)




Abschatzung der Blatterzahl bei Binarbaumen llez

Definition

Die Tiefe eines Baumes mit Wurzel w ist die maximale Lange eines Weges
von w zu einem Blatt

Ein Binarbaum B der Tiefe < k hat < 2% Blatter

Beweis durch Induktion tiber k:

k =0: Ein Baum der Tiefe 0 kann nur einen Knoten haben
k ~ k+1: Sei B ein Binarbaum der Tiefe < k+1
Dann hangen an B's Wurzel maximal zwei Unterbaume

Da deren Tiefe < k ist, haben sie nach IV < 2 Blatter
Also hat B < 2k*1 Blatter O
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Ein Binarbaum B der Tiefe < k hat < 2% Blatter \
Ein Binarbaum B mit > 2k~1 Blattern hat eine Tiefe > k \

Beweis

Ware die Tiefe von B kleiner als k (also < k —1), so hatte B nach obigem
Lemma < 2k-1 Blatter (Widerspruch) o
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Satz (Pumping-Lemma fiir kontextfreie Sprachen)

Zu jeder kontextfreien Sprache L € CFL gibt es eine Zahl /, so dass sich alle
Worter z € L mit |z| > | in z = uvwxy zerlegen lassen mit

Q@ w+e,
@ |vwx| </ und

© uw'wx'yel firallei>0




Beweis des Pumping-Lemmas fiir CFL
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Beweis
@ Sei G=(V,%,P,S) eine CNF-Grammatik fir L~ {e}

Istnun z=2z;...z,€ L mit n>1, so ex. in G eine Ableitung

S=a9= = am, =z mit zugehdrigen Syntaxbaumen Ty,..., T,
Da G in CNF ist, werden hierbei genau n—1 Regeln der Form A — BC
und genau n Regeln der Form A — a angewandt

Folglich ist m=2n—1 und wir kdnnen annehmen, dass die Regeln der
Form A — BC vor den Regeln der Form A — a zur Anwendung kommen

Dann besteht «v;,_1 aus n Variablen und die Syntax- S
baume T5,-1 und T,_1 haben genau n Blatter Ton-1
Setzen wir | = 2%, wobei k = | V| ist, so hat

T,-1 im Fall n >/ mindestens die Tiefe k, Th-1

da T, 1 mindestens | = 2k > 2k-1 Blatter hat
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Beweis (Fortsetzung)

o Setzen wir [ = 2%, wobei k = || V| ist, so hat Tl WS
T,-1 im Fall n > | mindestens die Tiefe k, da A
T,-1 mindestens [ = 2k > 2k=1 Blatter hat A

@ Sei 7 ein von der Wurzel ausgehender Pfad
maximaler Lange in T,_1

@ Dann hat 7 mindestens die Lange k und unter den letzten k+1> | V||
Knoten von 7 miissen zwei mit derselben Variablen A markiert sein

@ Seien U und die Unterbaume von T5,_1 mit diesen Knoten als Wurzel
@ Dann hat U héchstens / = 2% Blatter und U’ hat weniger Blatter als U
@ Nun zerlegen wir z wie folgt:
o w' ist das Teilwort von z = uw'y, das U
von U erzeugt wird und
o w ist das Teilwort von w’ = vvx, das v v X Y
von erzeugt wird N
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Beweis (Schluss)

@ Dann ist vx # ¢ (Bed. 1), da U mehr Blatter als U’ hat
o Zudem gilt |vwx| < | (Bed. 2), da U héchstens 2% =/ .
Blatter hat (sonst hatte der Baum U* =Un T,_1 eine @ g S
Tiefe groBer k und 7 wiére nicht maximal) i
@ SchlieBlich lassen sich Syntaxbaume B; fiir die Worter uviwx'y, i >0,
wie folgt konstruieren (Bed. 3):
o By entsteht aus By = To,_1, indem wir U durch U’ ersetzen
o Bj.1 entsteht aus B;, indem wir U’ durch U ersetzen:

By B B, Bs
& ¢ _;; N
u w y u - ~ y u 7 y ] v
w
v X U
w
v X
w =)
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Das Wortproblem fiir kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x
Gefragt: Ist x € L(G)?

Frage

Wie lasst sich das Wortproblem fiir kontextfreie Grammatiken entscheiden?
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@ Sei eine Grammatik G = (V,X,P,S) und ein Wort x = x1 ... x, gegeben
@ Falls x = ¢ ist, kdnnen wir effizient priifen, ob S =% ¢ gilt

@ Hierzu geniigt es, die Menge E = {A€ V| A=" ¢} aller e-ableitbaren
Variablen zu berechnen und zu priifen, ob S € E ist

@ Andernfalls bringen wir G in CNF und starten den nach seinen Autoren

ocke, Younger und Kasami benannten -Algorithmus
@ Dieser bestimmt mittels dynamischer Programmierung fiir /=1,...,n
und k=1,...,n-/+1 die Menge V| aller Variablen, aus denen das

Teilwort xk ... Xx4+/—1 ableitbar ist
e Danngilt xe L(G) & Se V1
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@ Sei G=(V,X,P,S) eine CNF-Grammatik und sei x € X*

@ Dann lassen sich die Mengen V), ={Ae V| A=" X ... Xyyi-1} wie
folgt bestimmen

e Fiir / =1 gehért A zu Vy 4, falls die Regel A — x existiert:

V17k={AEV|A—>Xk}

A
@ Fiir /> 1 gehort Azu V), falls B T~ C
eine Regel A - BC und eine it it
Zahl I"e {1,...,1-1} ex. mit
B e Vl’,k und C € VI—/’,k+/’: Xk ot Xk+1'-1 Xi+1" X+ 1-1

V/’k = {AE 74 ’ E|/’</7 Be \//',kv Ce V/f//,kJr//ZA—’ BCe P}
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Algorithmus CYK(G, x)

1 Input: CNF-Grammatik G = (V,X,P,S) und Wort x = x7 ... X,
2 for k:=1to ndo

3 Vl’kZ:{A€V|A—>XkEP}
4 for /:=2 to ndo

5 for k:=1ton-/+1do
6 V/J( =g

7 for ':=1to/-1do

8 for all A- BCeP do

9 if Be V/Qk and C ¢ V/_/r7k+/r then
10 V/’k = Vl,k U {A}

11 if Se V1 then accept else reject

Der CYK-Algorithmus lasst sich dahingehend erweitern, dass er im Fall
x € L(G) auch einen Syntaxbaum T von x bestimmt
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@ Betrachte die CNF-Grammatik mit den Regeln
P: AS" AV . BX,CS,c, S'-BC, AS,BX' a2, X'— XX,
BSa s My y 5 s C-c
@ Dann erhalten wir fiir das Wort x = abb folgende Mengen V/ j:
k: 1 2 3
L a | b | b |
EL{{X,A} [ {Y,B} |{,B}]
2| {5} | {Y}
3 {v}
@ Wegen S¢ Va1 ist x ¢ L(G)
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Der CYK-Algorithmus

Beispiel (Fortsetzung)

@ Betrachte die CNF-Grammatik mit den Regeln
P: AS" AY BX CS,c, S'->BC, ,BX', 2, ,

C-c

Y Y Y ) ) )

@ Dagegen gehort das Wort y = aababb zu L(G):
a a b a b b

{X, A} | {X,A} [{V,B} | {X,A} [{V,B} | {V,B}]
{ {v}
{

}
}

{5}
{v}
{73

{5}
{x}
{5}
{v}

ey PN et e ()
el S (v ) N
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