
Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik
Humboldt-Universität zu Berlin

WS 2020/21



Die Chomsky-Hierarchie 159

Man unterscheidet vier Typen von Grammatiken G = (V ,Σ,P,S)

Definition
1 G heißt vom Typ 3 oder regulär, falls für alle Regeln u → v gilt:

u ∈ V und v ∈ ΣV ∪Σ ∪ {ε}

(d.h. alle Regeln haben die Form A→ aB, A→ a oder A→ ε)
2 G heißt vom Typ 2 oder kontextfrei, falls für alle Regeln u → v gilt:

u ∈ V (d.h. alle Regeln haben die Form A→ v)
3 G heißt vom Typ 1 oder kontextsensitiv, falls für alle Regeln u → v gilt:

∣v ∣ ≥ ∣u∣ (mit Ausnahme der ε-Sonderregel, s. unten)
4 Jede Grammatik ist automatisch vom Typ 0

Die ε-Sonderregel
In einer kontextsensitiven Grammatik ist auch die Regel S → ε zulässig,
falls das Startsymbol S nicht auf der rechten Seite einer Regel vorkommt



Kontextfreie Sprachen 160

Bemerkung
Es ist klar, dass jede reguläre Grammatik auch kontextfrei ist
Zudem ist die Sprache L = {anbn

∣ n ≥ 0} nicht regulär
Es ist aber leicht, eine kontextfreie Grammatik für L anzugeben:

G = ({S},{a,b},P,S) mit P = {S → aSb, ε}

Also gilt REG ⊊ CFL
Allerdings sind nicht alle kontextfreien Grammatiken kontextsensitiv
Z.B. ist obige Grammatik G nicht kontextsensitiv, da sie die Regel
S → ε enthält und S auf der rechten Seite der Regel S → aSb vorkommt
Wir können G jedoch wie folgt in eine Grammatik G ′ umwandeln:

ersetze die Regel S → ε durch die Regel S → ab und
füge ein neues Startsymbol S ′ sowie die Regeln S ′ → S, ε hinzu

Tatsächlich lässt sich jede kontextfreie Grammatik G in eine äquivalente
kontextfreie Grammatik G ′ umwandeln, die auch kontextsensitiv ist



Chomsky-Normalform 161

Definition
Eine Grammatik G = (V ,Σ,P,S) ist in Chomsky-Normalform (CNF), falls
P ⊆ V × (V 2

∪Σ) ist, d.h. alle Regeln haben die Form A→ BC oder A→ a

Satz
Zu jeder kontextfreien Grammatik G lässt sich eine CNF-Grammatik G ′

mit L(G ′
) = L(G) ∖ {ε} konstruieren



Anwendungen der Chomsky-Normalform 162

Korollar
CFL ⊆ CSL

Beweis
Sei L ∈ CFL und sei G = (V ,Σ,P,S) eine CNF-Grammatik mit
L(G) = L ∖ {ε}
Im Fall ε /∈ L folgt sofort L = L(G) ∈ CSL, da G kontextsensitiv ist
Ist ε ∈ L, so erzeugt folgende kontextsensitive (und kontextfreie)
Grammatik G ′ die Sprache L = L(G) ∪ {ε}:

G ′
= (V ∪ {Sneu},Σ,P ∪ {Sneu → S, ε},Sneu) ◻



Weitere Anwendungen der Chomsky-Normalform 163

Der Beweis des Pumping-Lemmas für kontextfreie Sprachen basiert auf
CNF-Grammatiken
Zudem ermöglichen sie einen effizienten Algorithmus zur Lösung des
Wortproblems für kontextfreie Sprachen

Das Pumping-Lemma für kontextfreie Sprachen
Zu jeder kontextfreien Sprache L ∈ CFL gibt es eine Zahl l , so dass sich alle
Wörter z ∈ L mit ∣z ∣ ≥ l in z = uvwxy zerlegen lassen mit
1 vx /= ε,
2 ∣vwx ∣ ≤ l und
3 uv iwx iy ∈ L für alle i ≥ 0

Das Wortproblem für kontextfreie Grammatiken
Gegeben: Eine kontextfreie Grammatik G und ein Wort x
Gefragt: Ist x ∈ L(G)?



Das Pumping-Lemma für kontextfreie Sprachen 164

Beispiel
Betrachte die Sprache L = {anbn

∣n ≥ 0}
Dann lässt sich jedes Wort z = anbn

= an−1abbn−1 in L mit ∣z ∣ ≥ l = 2
pumpen
Zerlegen wir nämlich z in

z =uvwxy mit u=an−1, v =a, w =ε, x =b und y =bn−1,

dann gilt
1 vx = ab /= ε
2 ∣vwx ∣ = ∣ab∣ ≤ 2 und
3 uv iwx iy = an−1aibibn−1

∈ L für alle i ≥ 0 ◁



Anwendung des Pumping-Lemmas 165

Beispiel
Die Sprache L = {anbncn

∣ n ≥ 0} ist nicht kontextfrei
Für eine vorgegebene Zahl l ≥ 0 hat nämlich das Wort z = alblc l

∈ L die
Länge ∣z ∣ = 3l ≥ l
Dieses Wort lässt sich aber nicht pumpen:
Für jede Zerlegung z = uvwxy mit vx /= ε und ∣vwx ∣ ≤ l gehört
z ′ = uv0wx0y nicht zu L:

Wegen vx /= ε ist ∣z ′∣ < ∣z ∣
Wegen ∣vwx ∣ ≤ l kommen in vx nicht alle drei Zeichen a,b, c vor
Kommt aber in vx beispielsweise kein a vor, so ist #a(z) = #a(z ′)
und somit gilt
∣z ′∣ < ∣z ∣ = 3#a(z) = 3#a(z ′)

Also gehört z ′ nicht zu L ◁



Abschlusseigenschaften von CFL 166

Satz
CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle

Beweis
Seien G1 = (V1,Σ,P1,S1) und G2 = (V2,Σ,P2,S2) kontextfreie
Grammatiken mit V1 ∩V2 = ∅ und sei S eine neue Variable
Dann gilt

L(G1) ∪ L(G2) = L(G3) für die kontextfreie Grammatik
G3 = (V1 ∪V2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1,S2},S)

L(G1)L(G2) = L(G4) für die kontextfreie Grammatik
G4 = (V1 ∪V2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1S2},S) und

L(G1)
∗
= L(G5) für die kontextfreie Grammatik

◻
G5 = (V1 ∪ {S},Σ,P1 ∪ {S → S1S, ε},S)

Für G6 = (V1,Σ,P1 ∪ {S1→S1S1, ε},S1) muss nicht L(G6) = L(G1)
∗ gelten,

da L(G6) z.B. für P1 = {S1 → aS1b, ε} das Wort aababb /∈ L(G1)
∗ enthält



Abschlusseigenschaften von CFL 167

Satz
CFL ist nicht abgeschlossen unter Schnitt und Komplement

Beweis von L1,L2 ∈ CFL /⇒ L1 ∩ L2 ∈ CFL
Folgende Sprachen sind kontextfrei (siehe Übungen):

L1 = {anbmcm
∣ n,m ≥ 0} und L2 = {anbncm

∣ n,m ≥ 0}

Nicht jedoch ihr Schnitt L1 ∩ L2 = {anbncn
∣ n ≥ 0} ◻

Beweis von L ∈ CFL /⇒ L̄ ∈ CFL
Wäre CFL unter Komplement abgeschlossen, so wäre CFL wegen
de Morgan auch unter Schnitt abgeschlossen
Mit A,B ∈ CFL wären dann nämlich auch A,B ∈ CFL, woraus wegen

A,B ∈ CFL⇒ A ∪B = A ∩B ∈ CFL
wiederum A ∩B ∈ CFL folgen würde ◻



Umwandlung in Chomsky-Normalform 168

Satz
Zu jeder kontextfreien Grammatik G lässt sich eine CNF-Grammatik G ′

mit L(G ′
) = L(G) ∖ {ε} konstruieren

Beweis
Wir wandeln G = (V ,Σ,P,S) wie folgt in eine CNF-Grammatik G ′ um:

Wir beseitigen zunächst alle Regeln der Form A→ ε und danach alle
Regeln der Form A→ B (siehe folgende Folien)
Dann fügen wir für jedes Terminal a ∈ Σ eine neue Variable Xa und eine
neue Regel Xa → a hinzu und ersetzen jedes Vorkommen von a, bei dem
a nicht alleine auf der rechten Seite einer Regel steht, durch Xa
Anschließend führen wir für jede Regel A→ B1 . . .Bk , k ≥ 3, neue
Variablen A1, . . . ,Ak−2 ein und ersetzen sie durch die k − 1 Regeln

A→B1A1, A1→B2A2, . . . Ak−3→Bk−2Ak−2, Ak−2→Bk−1Bk ◻

Falls G Regeln mit vielen Variablen auf der rechten Seite hat, empfiehlt es
sich, Regeln der Form A→ ε und A→ B zuletzt zu beseitigen (s. Übungen)



Beseitigung von ε-Regeln 169

Satz
Zu jeder kontextfreien Grammatik G = (V ,Σ,P,S) gibt es eine kontext-
freie Grammatik G ′

= (V ,Σ,P ′,S) ohne ε-Regeln mit L(G ′
) = L(G) ∖ {ε}

Beweis
Zuerst berechnen wir die Menge E = {A ∈ V ∣ A⇒∗ ε} aller Variablen,
die nach ε ableitbar sind:

1 E ′
∶= {A ∈ V ∣ A→ ε}

2 repeat
3 E ∶= E ′

4 E ′
∶= E ∪ {A ∈ V ∣ ∃B1, . . . ,Bk ∈ E ∶ A→ B1 . . .Bk}

5 until E = E ′

Nun bilden wir P ′ wie folgt:

{A→ v ′ es ex. eine Regel A→G v , so dass v ′ ≠ ε aus v durch
Entfernen von beliebig vielen Variablen A ∈ E entsteht

}

◻



Beseitigung von ε-Regeln 170

Beispiel
Betrachte die Grammatik G = ({S,T ,U,X ,Y ,Z},{a,b, c},P,S) mit

P ∶ S → aY ,bX ,Z Y → bS, aYY T → U
X → aS,bXX Z → ε,S,T , cZ U → abc

Berechnung von E :

E ′
{Z} {Z ,S}

E {Z ,S} {Z ,S}

Entferne Z → ε und füge die Regeln Y → b (wegen Y → bS),
X → a (wegen X → aS) und Z → c (wegen Z → cZ ) hinzu:

P ′
∶ S → aY ,bX ,Z Y → b,bS, aYY T → U

X → a, aS,bXX Z → c,S,T , cZ U → abc



Beseitigung von Variablenumbenennungen 171

Satz
Zu jeder kontextfreien Grammatik G = (V ,Σ,P,S) gibt es eine kontext-
freie Grammatik G ′

= (V ,Σ,P ′,S) ohne Regeln der Form A→ B mit
L(G ′

) = L(G)

Beweis
Zuerst entfernen wir sukzessive alle Zyklen A1 → A2 → ⋯→ Ak → A1
Hierzu entfernen wir diese Regeln aus P und ersetzen alle Vorkommen
der Variablen A2, . . . ,Ak in den übrigen Regeln durch A1
Befindet sich die Startvariable unter A1, . . . ,Ak , so sei dies o.B.d.A. A1
Nun eliminieren wir sukzessive die restlichen Variablenumbenennungen,
indem wir

eine Regel A→ B wählen, so dass in P keine Variablenumbenennung
B → C mit B auf der linken Seite existiert,
diese Regel A→ B aus P entfernen und
für jede Regel B → v in P die Regel A→ v zu P hinzunehmen ◻



Beseitigung von Variablenumbenennungen 172

Beispiel (Fortsetzung)

P ∶ S → aY ,bX ,Z Y → b,bS, aYY T → U
X → a, aS,bXX Z → c,S,T , cZ U → abc

Entferne den Zyklus S → Z → S und ersetze Z durch S:
S → aY ,bX , c,T , cS Y → b,bS, aYY T → U
X → a, aS,bXX U → abc

Ersetze die Regel T → U durch T → abc (wegen U → abc):
S → aY ,bX , c,T , cS Y → b,bS, aYY T → abc
X → a, aS,bXX U → abc

Ersetze dann auch die Regel S → T durch S → abc (wegen T → abc):
S → abc, aY ,bX , c, cS Y → b,bS, aYY T → abc
X → a, aS,bXX U → abc

Da T und U nirgends mehr auf der rechten Seite vorkommen, können
wir die Regeln T → abc und U → abc weglassen:

S → abc, aY ,bX , c, cS Y → b,bS, aYY X → a, aS,bXX



Bringe alle Regeln in die Form A→ a und A→ BC 173

Beispiel (Schluss)
Betrachte die Grammatik G = ({S,X ,Y ,Z},{a,b, c},P,S) mit

P ∶ S→abc, aY ,bX , c, cS Y →b,bS, aYY X→a, aS,bXX

Ersetze a, b und c durch A, B und C (außer wenn sie alleine auf der
rechten Seite einer Regel stehen) und füge die Regeln A→a, B→b,
C→c hinzu:

S→ ABC ,AY ,BX , c,CS Y → b,BS,AYY X→ a,AS,BXX
A→a B→b C→c

Ersetze die Regeln S→ABC , Y →AYY und X→BXX durch die Regeln
S→AS ′, S ′→BC , Y →AY ′, Y ′

→YY und X→BX ′, X ′
→XX :

S→AS ′,AY ,BX , c,CS S ′→BC Y → b,BS,AY ′ Y ′
→YY

X→ a,AS,BX ′ X ′
→XX A→a B→b C→c ◁



Links- und Rechtsableitungen 174

Definition
Sei G = (V ,Σ,P,S) eine kontextfreie Grammatik

Eine Ableitung
S ⇒ l1A1r1 ⇒⋯⇒ lm−1Am−1rm−1 ⇒ αm

heißt Linksableitung von αm (kurz S ⇒∗

L αm), falls in jedem
Ableitungsschritt die am weitesten links stehende Variable ersetzt wird,
d.h. es gilt li ∈ Σ∗ für i = 1, . . . ,m − 1

Rechtsableitungen S0 ⇒
∗

R αm sind analog definiert
G heißt mehrdeutig, wenn es ein Wort x ∈ L(G) gibt, das mindestens
zwei verschiedene Linksableitungen hat
Andernfalls heißt G eindeutig

Für alle x ∈ Σ∗ gilt: x ∈ L(G) ⇔ S ⇒∗ x ⇔ S ⇒∗

L x ⇔ S ⇒∗

R x



Ein- und mehrdeutige Grammatiken 175

Beispiel
In G = ({S},{a,b},{S → aSbS, ε},S) gibt es 8 Ableitungen für aabb:

S ⇒L aSbS ⇒L aaSbSbS ⇒L aabSbS ⇒L aabbS ⇒L aabb
S ⇒ aSbS ⇒ aaSbSbS ⇒ aabSbS ⇒ aabSb ⇒ aabb
S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aabbS ⇒ aabb
S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aaSbb ⇒ aabb
S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbSb ⇒ aabSb ⇒ aabb
S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbSb ⇒ aaSbb ⇒ aabb
S ⇒ aSbS ⇒ aSb ⇒ aaSbSb ⇒ aabSb ⇒ aabb
S ⇒R aSbS ⇒R aSb ⇒R aaSbSb ⇒R aaSbb ⇒R aabb

Darunter sind genau eine Links- und genau eine Rechtsableitung
In G ′

= ({S},{a,b},{S → aSbS, ab, ε},S) gibt es 3 Ableitungen für ab:

S ⇒ab S ⇒aSbS ⇒abS ⇒ab S ⇒aSbS ⇒aSb ⇒ ab

Darunter sind zwei Links- und zwei Rechtsableitungen ◁



Ein- und mehrdeutige Grammatiken 176

Beispiel
Die Grammatik G = ({S},{a,b},{S → aSbS, ε},S) ist eindeutig
Dies liegt daran, dass keine Satzform von G das Teilwort Sa enthält
Daher kann in einer Linksableitung

S ⇒
∗

L yS β ⇒
∗

L yz = x

auf die aktuelle Satzform yS β nicht die Regel S → ε angewandt
werden, wenn in x auf das Präfix y ein a folgt
Daher muss auf die aktuelle Satzform yS β genau dann die Regel
S → aSbS angewandt werden, wenn in x auf das Präfix y ein a folgt
Dagegen ist die Grammatik G ′

= ({S},{a,b},{S → aSbS, ab, ε},S)
mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

S ⇒ ab und S ⇒ aSbS ⇒ abS ⇒ ab
◁



Gerichtete Bäume und Wälder 177

Sei G = (V ,E) ein Digraph.
Ein (gerichteter) v0-vk -Weg in G ist eine Folge von Knoten v0, . . . , vk
mit (vi , vi+1) ∈ E für i = 0, . . . , k − 1. Seine Länge ist k
Ein Weg heißt Pfad, falls alle Knoten paarweise verschieden sind
Ein u-v -Weg der Länge ≥ 1 mit u = v heißt Zyklus
G heißt azyklisch, wenn es in G keinen Zyklus gibt
Ein Zyklus heißt Kreis, falls alle Knoten paarweise verschieden sind
G heißt gerichteter Wald, wenn G azyklisch ist und jeder Knoten v ∈ V
Eingangsgrad deg−(v) ≤ 1 hat
Ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0 heißt Blatt
Ein Knoten w ∈ V heißt Wurzel, wenn deg−(w) = 0 ist
Ein gerichteter Wald mit genau einer Wurzel heißt gerichteter Baum
Da in einem gerichteten Baum alle Kanten von der Wurzel w
wegführen, ist die Angabe der Kantenrichtungen bei Kenntnis von w
überflüssig. Man spricht dann auch von einem Wurzelbaum



Syntaxbäume 178

Wir ordnen einer Ableitung
A0 ⇒ l1A1r1 ⇒⋯⇒ lm−1Am−1rm−1 ⇒ αm

den Syntaxbaum (oder Ableitungsbaum, engl. parse tree) Tm zu, wobei die
Bäume T0, . . . ,Tm induktiv wie folgt definiert sind:

T0 besteht aus einem einzigen Knoten, der mit A0 markiert ist
Wird im (i + 1)-ten Ableitungsschritt die Regel Ai → v1 . . . vk mit
v1, . . . , vk ∈ Σ ∪V angewandt, so ensteht Ti+1 aus Ti , indem wir das
Blatt Ai durch folgenden Unterbaum ersetzen:

k > 0 ∶ Ai

v1 ⋯ vk

k = 0 ∶ Ai

ε

Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und
die Kinder v1 . . . vk von links nach rechts geordnet vor
Syntaxbäume sind also geordnete Wurzelbäume



Syntaxbäume 179

Beispiel
Betrachte die Grammatik G = ({S},{a,b},{S → aSbS, ε},S) und die
Ableitung

S⇒ aSbS⇒ aaSbSbS⇒ aaSbbS⇒ aabbS⇒ aabb

Die zugehörigen Syntaxbäume sind dann

T0: S T1: S

a S b S

T2: S

a S b S

a S b S

T3: S

a S b S

a S b S

ε

T4: S

a S b S

a S b S

εε

T5: S

a S b S

a S b S ε

ε ε ◁



Syntaxbäume 180

Beispiel
In G = ({S},{a,b},{S → aSbS, ε},S) führen alle acht Ableitungen des
Wortes aabb auf denselben Syntaxbaum:

S

a S b S

a S b S ε

ε ε

Dagegen führen in G ′
= ({S},{a,b},{S → aSbS, ab, ε},S) die drei

Ableitungen des Wortes ab auf zwei unterschiedliche Syntaxbäume:
S

a b

S

a S b S

ε ε
◁



Syntaxbäume und Linksableitungen 181

Seien T0, . . . ,Tm die zu einer Ableitung S = α0 ⇒⋯⇒ αm gehörigen
Syntaxbäume
Dann haben alle Syntaxbäume T0, . . . ,Tm die Wurzel S
Die Satzform αi ergibt sich aus Ti , indem wir die Blätter von Ti von
links nach rechts zu einem Wort zusammensetzen
Auf den Syntaxbaum Tm führen neben α0 ⇒⋯⇒ αm alle Ableitungen,
die sich von dieser nur in der Reihenfolge der Regelanwendungen
unterscheiden
Dazu gehört genau eine Linksableitung
Linksableitungen und Syntaxbäume entsprechen sich also eineindeutig
Dasselbe gilt für Rechtsableitungen
Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T
höchstens zwei Kinder (d.h. T ist ein Binärbaum)



Abschätzung der Blätterzahl bei Binärbäumen 182

Definition
Die Tiefe eines Baumes mit Wurzel w ist die maximale Länge eines Weges
von w zu einem Blatt

Lemma
Ein Binärbaum B der Tiefe ≤ k hat ≤ 2k Blätter

Beweis durch Induktion über k:
k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben

k ↝ k + 1: Sei B ein Binärbaum der Tiefe ≤ k + 1
Dann hängen an B’s Wurzel maximal zwei Unterbäume
Da deren Tiefe ≤ k ist, haben sie nach IV ≤ 2k Blätter
Also hat B ≤ 2k+1 Blätter ◻



Mindesttiefe von Binärbäumen 183

Lemma
Ein Binärbaum B der Tiefe ≤ k hat ≤ 2k Blätter

Korollar
Ein Binärbaum B mit > 2k−1 Blättern hat eine Tiefe ≥ k

Beweis
Wäre die Tiefe von B kleiner als k (also ≤ k − 1), so hätte B nach obigem
Lemma ≤ 2k−1 Blätter (Widerspruch) ◻



Beweis des Pumping-Lemmas für CFL 184

Satz (Pumping-Lemma für kontextfreie Sprachen)
Zu jeder kontextfreien Sprache L ∈ CFL gibt es eine Zahl l , so dass sich alle
Wörter z ∈ L mit ∣z ∣ ≥ l in z = uvwxy zerlegen lassen mit

1 vx /= ε,
2 ∣vwx ∣ ≤ l und
3 uv iwx iy ∈ L für alle i ≥ 0



Beweis des Pumping-Lemmas für CFL 185

Beweis
Sei G = (V ,Σ,P,S) eine CNF-Grammatik für L ∖ {ε}
Ist nun z = z1 . . . zn ∈ L mit n ≥ 1, so ex. in G eine Ableitung

S = α0 ⇒⋯⇒ αm = z mit zugehörigen Syntaxbäumen T0, . . . ,Tm

Da G in CNF ist, werden hierbei genau n − 1 Regeln der Form A→ BC
und genau n Regeln der Form A→ a angewandt
Folglich ist m = 2n − 1 und wir können annehmen, dass die Regeln der
Form A→ BC vor den Regeln der Form A→ a zur Anwendung kommen
Dann besteht αn−1 aus n Variablen und die Syntax-
bäume T2n−1 und Tn−1 haben genau n Blätter
Setzen wir l = 2k , wobei k = ∥V ∥ ist, so hat
Tn−1 im Fall n ≥ l mindestens die Tiefe k,
da Tn−1 mindestens l = 2k

> 2k−1 Blätter hat

T2n−1
S

Tn−1



Beweis des Pumping-Lemmas für CFL 186

Beweis (Fortsetzung)

T2n−1
S

Tn−1

π
A
A

Setzen wir l = 2k , wobei k = ∥V ∥ ist, so hat
Tn−1 im Fall n ≥ l mindestens die Tiefe k, da
Tn−1 mindestens l = 2k

> 2k−1 Blätter hat
Sei π ein von der Wurzel ausgehender Pfad
maximaler Länge in Tn−1

Dann hat π mindestens die Länge k und unter den letzten k + 1 > ∥V ∥
Knoten von π müssen zwei mit derselben Variablen A markiert sein
Seien U und U ′ die Unterbäume vonT2n−1 mit diesen Knoten als Wurzel
Dann hat U höchstens l = 2k Blätter und U ′ hat weniger Blätter als U
Nun zerlegen wir z wie folgt:

w ′ ist das Teilwort von z = uw ′y , das
von U erzeugt wird und
w ist das Teilwort von w ′

= vwx , das
von U ′ erzeugt wird

U
U ′u

v w
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w ′

x
y



Beweis des Pumping-Lemmas für CFL 187

Beweis (Schluss)

U
u

v w
U′ x

y

Dann ist vx ≠ ε (Bed. 1), da U mehr Blätter als U ′ hat
Zudem gilt ∣vwx ∣ ≤ l (Bed. 2), da U höchstens 2k

= l
Blätter hat (sonst hätte der Baum U∗

= U ∩Tn−1 eine
Tiefe größer k und π wäre nicht maximal)
Schließlich lassen sich Syntaxbäume Bi für die Wörter uv iwx iy , i ≥ 0,
wie folgt konstruieren (Bed. 3):

B0 entsteht aus B1 = T2n−1, indem wir U durch U ′ ersetzen
Bi+1 entsteht aus Bi , indem wir U ′ durch U ersetzen:

U

B1

u
v w

U′ x
y

B0

u w
U′

y U

B2

u
v
v w

U′
x

x

y

B3

u
v

v
v w

U

U′

x
x

x

y

◻



Das Wortproblem für CFL 188

Das Wortproblem für kontextfreie Grammatiken
Gegeben: Eine kontextfreie Grammatik G und ein Wort x
Gefragt: Ist x ∈ L(G)?

Frage
Wie lässt sich das Wortproblem für kontextfreie Grammatiken entscheiden?



Der CYK-Algorithmus 189

Sei eine Grammatik G = (V ,Σ,P,S) und ein Wort x = x1 . . . xn gegeben
Falls x = ε ist, können wir effizient prüfen, ob S ⇒∗ ε gilt
Hierzu genügt es, die Menge E = {A ∈ V ∣ A⇒∗ ε} aller ε-ableitbaren
Variablen zu berechnen und zu prüfen, ob S ∈ E ist
Andernfalls bringen wir G in CNF und starten den nach seinen Autoren
Cocke, Younger und Kasami benannten CYK-Algorithmus
Dieser bestimmt mittels dynamischer Programmierung für l = 1, . . . ,n
und k = 1, . . . ,n − l + 1 die Menge Vl ,k aller Variablen, aus denen das
Teilwort xk . . . xk+l−1 ableitbar ist
Dann gilt x ∈ L(G) ⇔ S ∈ Vn,1



Berechnung der Mengen Vl ,k
190

Sei G = (V ,Σ,P,S) eine CNF-Grammatik und sei x ∈ Σ+

Dann lassen sich die Mengen Vl ,k = {A ∈ V ∣ A⇒∗ xk . . . xk+l−1} wie
folgt bestimmen
Für l = 1 gehört A zu V1,k , falls die Regel A→ xk existiert:

V1,k = {A ∈ V ∣ A→ xk} A

B

xk ⋯ xk+l ′−1

C

xk+l ′ ⋯xk+l−1

Für l > 1 gehört A zu Vl ,k , falls
eine Regel A → BC und eine
Zahl l ′ ∈ {1, . . . , l − 1} ex. mit
B ∈ Vl ′,k und C ∈ Vl−l ′,k+l ′ :

Vl ,k = {A ∈ V ∣ ∃ l ′< l , B ∈Vl ′,k , C ∈Vl−l ′,k+l ′ :A→ BC ∈ P}



Der CYK-Algorithmus 191

Algorithmus CYK(G , x)
1 Input: CNF−Grammatik G = (V ,Σ,P,S) und Wort x = x1 . . . xn
2 for k ∶= 1 to n do
3 V1,k ∶= {A ∈ V ∣ A→ xk ∈ P}
4 for l ∶= 2 to n do
5 for k ∶= 1 to n − l + 1 do
6 Vl ,k ∶= ∅
7 for l ′ ∶= 1 to l − 1 do
8 for all A→ BC ∈ P do
9 if B ∈ Vl ′,k and C ∈ Vl−l ′,k+l ′ then

10 Vl ,k ∶= Vl ,k ∪ {A}
11 if S ∈ Vn,1 then accept else reject

Der CYK-Algorithmus lässt sich dahingehend erweitern, dass er im Fall
x ∈ L(G) auch einen Syntaxbaum T von x bestimmt



Der CYK-Algorithmus 192

Beispiel
Betrachte die CNF-Grammatik mit den Regeln

P: S→AS ′,AY ,BX ,CS, c, S ′→BC , X→AS,BX ′, a, X ′
→XX ,

Y →BS,AY ′,b, Y ′
→YY , A→a, B→b, C→c

Dann erhalten wir für das Wort x = abb folgende Mengen Vl ,k :

k∶ 1 2 3
a b b

l∶ 1 {X ,A} {Y ,B} {Y ,B}
2 {S} {Y ′

}

3 {Y }

Wegen S /∈ V3,1 ist x /∈ L(G)



Der CYK-Algorithmus 193

Beispiel (Fortsetzung)
Betrachte die CNF-Grammatik mit den Regeln

P: S →AS ′,AY ,BX ,CS, c, S ′→BC , X →AS,BX ′, a, X ′
→XX ,

Y →BS,AY ′,b, Y ′
→YY , A→ a, B→b, C → c

Dagegen gehört das Wort y = aababb zu L(G):

a a b a b b
{X ,A} {X ,A} {Y ,B} {X ,A} {Y ,B} {Y ,B}
{X ′
} {S} {S} {S} {Y ′

}

{X} {X} {Y } {Y }
{X ′
} {S} {Y ′

}

{X} {Y }
{S}

◁


	Kontextfreie Sprachen
	Chomsky-Normalform
	Linksableitungen und Syntaxbäume
	Beweis des Pumping-Lemmas für CFL
	Der CYK-Algorithmus


