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Inhalt der Vorlesung

Themen dieser VL:

@ Welche Rechenmodelle eignen sich zur Losung welcher
algorithmischen Problemstellungen? Automatentheorie

@ Welche algorithmischen Probleme sind iiberhaupt 16sbar?
Berechenbarkeitstheorie
@ Welcher Aufwand ist zur Losung eines geg. algorithmischen
Problems notig? Komplexitatstheorie

Themen der VL Algorithmen und Datenstrukturen:

@ Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient l6sen? Algorithmik

Themen der VL Logik in der Informatik:

@ Mathem. Grundlagen der Informatik, Beweise fiihren, Modellierung
Aussagenlogik, Pradikatenlogik




Lernziele

e Uberblick tiber die wichtigsten Rechenmodelle (Automaten) wie z.B.
o endliche Automaten
o Kellerautomaten
o Turingmaschinen
o Registermaschinen
o Schaltkreise
@ Charakterisierung der Klassen aller mit diesen Rechenmodellen lésbaren
Probleme durch
o unterschiedliche Typen von formalen Grammatiken
o Abschlusseigenschaften unter geeigneten Sprachoperationen
o Reduzierbarkeit auf typische Probleme (Vollstandigkeit)
@ Erkennen von Grenzen der Berechenbarkeit
e Klassifikation wichtiger algorithmischer Probleme nach ihrer

Komplexitat




Maschinenmodelle

Rechenmaschinen spielen in der Informatik eine zentrale Rolle
Es gibt viele unterschiedliche math. Modelle fiir Rechenmaschinen
Diese konnen sich in ihrer Berechnungskraft unterscheiden

Die Turingmaschine (TM) ist ein universales Berechnungsmodell, da sie
alle anderen bekannten Rechenmodelle simulieren kann

Wir betrachten zunachst Einschrankungen des TM-Modells, die
vielfaltige praktische Anwendungen haben, wie z.B.

o endliche Automaten (DFA, NFA)

o Kellerautomaten (PDA, DPDA) etc.




Der Algorithmenbegriff 10

@ Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick

@ Altester bekannter nicht-trivialer Algorithmus:
Euklidischer Algorithmus zur Berechnung des ggT (300 v. Chr.)

@ Von einem Algorithmus wird erwartet, dass er bei jeder zulassigen
Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert

@ Eine wichtige Rolle spielen Entscheidungsprobleme, bei denen jede
Eingabe nur mit ja oder nein beantwortet wird

@ Die (maximale) Anzahl der Rechenschritte bei allen moglichen
Eingaben ist nicht beschrankt, d.h. mit wachsender Eingabelange kann
auch die Rechenzeit beliebig anwachsen

@ Die Beschreibung eines Algorithmus muss jedoch endlich sein

@ Problemeingaben kénnen Zahlen, Formeln, Graphen etc. sein

@ Diese werden (iber einem Eingabealphabet ¥ kodiert




Alphabet, Wort, Sprache 11

Definition
@ Ein Alphabet ist eine endliche linear geordnete Menge
R {317"'7am}
von m>1 Zeichen a; <--- < ap,

@ Eine Folge x = x1...x, von n >0 Zeichen x; € X heiBt Wort der Lange n
iber

@ Die Lange von x wird mit |x| und die Menge aller Worter der Lange n
iiber ¥ wird mit X" bezeichnet

@ Die Menge aller Worter tiber X ist
Y =Ur"=xuzrtur?u-.

n>0

@ Das (einzige) Wort der Lange n =0 ist das leere Wort, welches wir mit
¢ bezeichnen, d.h. ¥° = {¢}

@ Jede Teilmenge L € ¥ heiBt Sprache (iber dem Alphabet




Beispiele fiir Sprachen 2

Sprachen iber ¥ sind beispielsweise @, ~*, ¥ und {e}
@ enthalt keine Worter und heiBt leere Sprache

Y * enthalt dagegen alle Worter liber X
2 enthalt alle Worter iiber > der Lange 1
{e} enthalt nur das leere Wort, ist also einelementig

@ Sprachen, die genau ein Wort enthalten, werden auch als
Singletonsprachen bezeichnet

@ in der Informatik spielen Programmiersprachen eine wichtige Rolle




Operationen auf Sprachen 13

@ Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen
@ Zum Beispiel gilt g c {e} c X*

@ Wir kdnnen Sprachen auch vereinigen, schneiden und komplementieren
@ Seien A und B Sprachen lber . Dann ist

o AnB={xeX*|xeAnxe B} der Schnitt von A und B
o AuB={xeX"|xeAvVxe B} die Vereinigung von A und B, und
o A={xeX*|x¢A} das Komplement von A




Konkatenation von Woértern 14

Definition
Die Konkatenation von zwei Woértern x = x3...x, und y = y1... Yy, ist das
Wort xoy =xy...Xpy1--.Ym, das wir auch einfach mit xy bezeichnen

Beispiel

@ Fiir x = aba und y = abab erhalten wir xy = abaabab und yx = abababa
@ Die Konkatenation ist also nicht kommutativ

@ Allerdings ist o assoziativ, d.h. es gilt x(yz) = (xy)z
Daher kénnen wir hierfiir auch einfach xyz schreiben

Es gibt auch ein neutrales Element, da xe = ex = x ist

Eine algebraische Struktur (M, O, e) mit einer assoziativen Operation
O: Mx M — M und einem neutralen Element e heit Monoid

(X*,0,¢) ist also ein Monoid




Spezielle Sprachoperationen 15

Neben den Mengenoperationen Schnitt, Vereinigung und Komplement gibt
es auch spezielle Sprachoperationen

Definition

@ Das Produkt (Verkettung, Konkatenation) von zwei Sprachen A und B
ist

AB={xy|xeA,yeB}

@ Ist A= {x} eine Singletonsprache, so schreiben wir fiir {x}B auch
einfach xB
@ Die n-fache Potenz A” einer Sprache A ist induktiv definiert durch

An:{{€}7 n=0,

ALA n>0

@ Die Sternhiille einer Sprache A ist A* = Ups0 A”
@ Die Plushiille einer Sprache A ist A" =UJ,»1 A” = AA*




Algorithmische Erkennung von Sprachen tie

@ Ein einfaches Rechenmodell zum Erkennen von Sprachen ist der
endliche Automat:

Eingabe-
band —_

/ Lesekopf

Steuer-
einheit

@ Ein endlicher Automat
o nimmt zu jedem Zeitpunkt genau einen von endlich vielen
Zustanden an
o macht bei Eingaben der Lange n genau n Rechenschritte und
o liest in jedem Schritt genau ein Eingabezeichen



Formale Definition eines endlichen Automaten 17

Definition
@ Ein endlicher Automat (kurz: DFA; Deterministic Finite Automaton)
wird durch ein 5-Tupel M = (Z,%,0, qo, E) beschrieben, wobei

o Z # @ eine endliche Menge von Zustanden
o 2 das Eingabealphabet

o §:Z x X — Z die Uberfiihrungsfunktion

o qo € Z der Startzustand und

o E ¢ Z die Menge der Endzustande ist

@ Die von M akzeptierte (oder erkannte) Sprache ist

L(M) = {xl...xnez*

es gibt g1,...,9n-1€Z,qn € E mit
3(qi, xix1) = giz1 fur i=0,...,n-1

e Eine Zustandsfolge qo, g1, ..., g, heiBt Rechnung von M(x; ...x,), falls
0(qi,xiv1) = qiw1 fur i=0,...,n—1 gilt

@ Sie heiBt akzeptierend, falls g, € E ist, und andernfalls verwerfend




Die Klasse der regularen Sprachen 18

Frage

Welche Sprachen lassen sich durch endliche Automaten erkennen und
welche nicht?

Definition
Eine von einem DFA akzeptierte Sprache wird als reguldr bezeichnet. Die
zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}




Bl behamsdhan Medulkre Al 19

Beispiel

Sei M3 =(Z,%,4,0,E) ein DFA mit Z ={0,1,2}, ¥ ={a, b}, E = {1} und
der Uberfiihrungsfunktion

5 ‘ 01 2 Graphische
- . Darstellung:
all 2 0
b2 0 1

Endzustande werden durch einen doppelten Kreis und der Startzustand
wird durch einen Pfeil gekennzeichnet d

4

Frage: Welche Worter akzeptiert M3?
@ Ist wy = abae L(Ms3)? Ja (akzeptierende Rechnung: 0,1,0,1)
@ Ist wy = abba € L(Ms3)? Nein (verwerfende Rechnung: 0,1,0,2,0)




DFAs beherrschen Modulare Arithmetik 20

Behauptung
Die von Mj3 erkannte Sprache ist

L(M3) ={xe{a,b}" | #a(x) — #b(x) =31}, wobei

@ #,(x) die Anzahl der Vorkommen von a in x bezeichnet und

@ /i =pj (in Worten: i ist kongruent zu j modulo m) bedeutet, dass / —j
durch m teilbar ist

Beweis der Behauptung durch Induktion iiber die Lange von x
Wir betrachten zunichst das Erreichbarkeitsproblem fiir DFAs




Das Erreichbarkeitsproblem fiir DFAs

21

Frage

Sei M =(Z,%,0,qo,E) ein DFA und sei x = x1...x, € £*. Welchen
Zustand erreicht M nach Lesen der Eingabe x?

Antwort

nach 0 Schritten: den Startzustand gq
nach 1 Schritt:  den Zustand d(qo, x1)
nach 2 Schritten: den Zustand (d(qo,x1),x2)

nach n Schritten: den Zustand o(...3(0(qo,x1),%2). ... %)




Das Erreichbarkeitsproblem fiir DFAs 2

Definition

@ Bezeichne S(q,x) denjenigen Zustand, in dem sich M nach Lesen von x
befindet, wenn M im Zustand g gestartet wird

@ Dann koénnen wir die Funktion
§:Zx¥*>Z
induktiv liber die Lange von x wie folgt definieren:
Firge Z, xeX* und a€ X sei
0(q.e) = q,
0(g,xa) = 4(0(g,x),a)
@ Die von M erkannte Sprache lasst sich nun elegant durch
L(M) ={xeX*|5(qo,x) € E}

beschreiben




DFAs beherrschen Modulare Arithmetik

Beweis

23

Behauptung
Fir alle x € {a, b} gilt:

x € L(M3) & #a(x) - #b(x) =31

@ 1 ist der einzige Endzustand von M

Daher ist L(Ms) = {x € {a,b}* | §(0,x) =1}
Obige Behauptung ist also aquivalent zu

fiir alle x € {a, b}*gilt: §(0,x) =1 < #,(x) - #p(x) =31

Folglich reicht es, fir alle x € {a, b}* folgende Kongruenz zu zeigen:

5(0,x) =3 #a(x) — #p(x)




DFAs beherrschen Modulare Arithmetik 24

Induktionsbehauptung: Fiir alle x € {a, b}" gilt $(0, x) =3 #4(x) - #5(x)
Induktionsanfang (n = 0): klar, da §(0,e) = #.(e) = #5() = 0 ist
Induktionsschritt (n~ n+1): Sei x = x1...Xn41 € {a, b} gegeben

@ Nach Induktionsvoraussetzung (1V) gilt fir x" = xq ... x,:

0(0,x") =3 #a(x) - #p(x")
@ Zudem gilt fir alle € Z={0,1,2}:
0(i,Xns1) =3 {

i+1, xp1=a
i_17 Xn+1:b

= i+ #a(Xn+1) - #b(Xle) (*)
@ Somit folgt
S(O,X) = 5(8(07X,)7Xn+1)
=3 S(O,XI)+#3(Xn+1)—#b(xn+l) (*)

=3 #a(X,) —#b(X,)+#a(Xn+1)_#b(Xn+1) (/V)
=3 #a(x) — #p(x) o




Singletonsprachen sind regular 25

Vereinbarung

Fir das Folgende sei ¥ = {a1,...,am} ein fest gewahltes Alphabet

Beobachtung 1

Alle Sprachen, die nur ein Wort x = x1...x, € £* enthalten, sind regular

v

Beweis
Folgender DFA M erkennt die Sprache L(M) = {x}:

X1 X2 X3
e (@) O
a* Xxp a+ X3
a* Xy

aey




REG ist unter Komplement abgeschlossen 2

Beobachtung 2
Ist L € REG, so ist auch die Sprache L = ¥* \ L regular

Beweis
@ Sei M=(Z,%,0,q0,E) ein DFA mit L(M) =L

e Dann wird das Komplement L von L von dem DFA
M= (Z,%,0,qo,Z \ E) akzeptiert =

Definition

Fiir eine Sprachklasse C bezeichne co-C die Klasse {L | L eC} aller
Komplemente von Sprachen in C

4

co-REG = REG I




REG ist unter Schnitt abgeschlossen 21

Beobachtung 3
Sind L1, Ly € REG, so ist auch die Sprache L1 n L regular

Beweis
@ Seien M, = (Z,-,Z,(S,-,q,-, E,'), i=1,2, DFAs mit L(M,) =1;.
@ Dann wird der Schnitt L1 n L, von dem DFA
M= (21 x 25,%,6,(q1,92), E1 x E2)
mit
5((p7 q)7 a) = (51(p7 3)752(q7 a))

erkannt

@ M wird auch als Kreuzproduktautomat bezeichnet




REG ist unter Vereinigung abgeschlossen

Beobachtung 4

Die Vereinigung L; U Ly von reguldren Sprachen L; und Ly ist reguldr

28

Beweis

Esgilt LLul, = (L_lnL_g)

Frage

Wie sieht der zugehérige DFA aus?

Antwort

M' = (Zy x 25,%,6,(q1,q2), (E1 x Z2) U (Z1 x E2))




Abschlusseigenschaften von Sprachklassen 22

Definition
@ Ein (k-stelliger) Sprachoperator ist eine Abbildung op, die k Sprachen
Ly,..., Lx auf eine Sprache op(Ly,...,Lx) abbildet
@ Eine Sprachklasse /C heiBt unter op abgeschlossen, wenn gilt:
Ll,...,LkEIC:>Op(Ll,...,Lk)EIC

@ Der Abschluss von K unter op ist die (bzgl. Inklusion) kleinste
Sprachklasse K’, die K enthalt und unter op abgeschlossen ist

Beispiel

@ Der 2-stellige Schnittoperator n bildet L; und Ly auf Ly n Ly ab

@ Der Abschluss der Singletonsprachen unter n besteht aus allen
Singletonsprachen und der leeren Sprache

@ Der Abschluss der Singletonsprachen unter U besteht aus allen
nichtleeren endlichen Sprachen

@ Der Abschluss der Singletonsprachen unter N, u und Komplement
besteht aus allen endlichen und co-endlichen Sprachen <




REG ist unter Mengenoperationen abgeschlossen 50

Korollar

Die Klasse REG der regularen Sprachen ist unter folgenden Operationen
abgeschlossen:

o Komplement
@ Schnitt

e Vereinigung




Wie umfangreich ist REG? 51

Folgerung

@ Aus den Beobachtungen folgt, dass alle endlichen und alle co-endlichen
Sprachen regular sind

@ Da die regulédre Sprache
L(Ms) = {x e{a,b}" | #a(x) - #»(x) =3 1}

weder endlich noch co-endlich ist, haben wir damit allerdings noch
nicht alle regularen Sprachen erfasst




Wie umfangreich ist REG? 52

Nachstes Ziel
Zeige, dass REG unter Produktbildung und Sternhiille abgeschlossen ist

Problem

Bei der Konstruktion eines DFA M fiir das Produkt L(M;)L(M,) bereitet
es Schwierigkeiten, den richtigen Zeitpunkt fiir das Ende der Simulation
des DFA M; und den Start der Simulation des DFA M, zu finden

Losungsidee

Ein nichtdeterministischer endlicher Automat (NFA) kann den richtigen
Zeitpunkt ,raten”

Verbleibendes Problem
Zeige, dass auch NFAs nur reguldre Sprachen erkennen




Nichtdeterministische endliche Automaten 33

Definition
@ Ein nichtdet. endl. Automat (kurz: NFA; Nondet. Finite Automaton)
N=(Z,X,A, Q,E)

ist genau so aufgebaut wie ein DFA, nur dass er

o eine Menge @y € Z von Startzustanden hat und

o die Uberfiihrungsfunktion folgende Form hat

AN:Zx¥->P(Z)
Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge aller
Teilmengen) von Z; diese wird oft auch mit 2Z bezeichnet

@ Die von einem NFA N akzeptierte (oder erkannte) Sprache ist

L(N) = {Xl x| esgibt quQo,ql,--~,qn_1eZ,qneE}
S

mit g1 € A(qj, xi41) fir i=0,...,n-1

e Eine Zustandsfolge qo, ..., g, heiBt Rechnung von N(x;...x,), falls
go € Qo und gj+1 € A(gi, xj+1) fur i=0,...,n—1 gilt




Eigenschaften von NFAs .

@ Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiithren

e Ein Wort x gehort genau dann zu L(N), wenn N(x) mindestens eine
akzeptierende Rechnung hat

@ Im Gegensatz zu einem DFA, der jede Eingabe zu Ende liest, kann ein
NFA N |, stecken bleiben”

@ Dieser Fall tritt ein, wenn N in einen Zustand g gelangt, in dem er das
nachste Eingabezeichen x; wegen

A(q,x) =2

nicht verarbeiten kann




Eigenschaften von NFAs

Beispiel

35

@ Betrachte den NFA N = (Z, X, A, Qo, E) mit Z={p,q,r,s},
¥ ={0,1,2}, Qo ={p}, E = {s} und der Uberfiihrungsfunktion

Graphische Darstellung:
A ‘ p q r s
0 {pg} @ © o
1 {py {r} o @
2| {p} o {s} @

@ Ist wy =012 € L(N)? Ja (akzeptierende Rechnung: p,q,r,s)

Es gibt aber auch verwerfende Rechnungen bei Eingabe wy: p, p, p, p
@ Ist wp =021 € L(N)? Nein, da es keine akzeptierende Rechnung gibt
@ Esgilt L(N)={x012|xeX*}

*@—‘“@—1*@—2*

<




Ein NFA fir das Produkt von regularen Sprachen e

Beobachtung 5

Seien N; = (Z;, X, A;, Qi, Ei) NFAs mit L(N;) = L; fir i =1,2. Dann wird
auch das Produkt LiLy von einem NFA erkannt

Beweis
@ Wir kdnnen Z; n Z, = @ annehmen

e Dann gilt L(N) = L1L, fiir den NFA N = (Z, U Z5, 5, A, Qy, E) mit

Al(p-/a): pezl\Ela
A(p7 a) = Al(P a) U quQQ A2(qa a)a p € Ela
A2(p7 3)7 p€Z2

und

o B @nk-=g,
Ei U Ey, sonst




Ein NFA fir das Produkt von regularen Sprachen

e Dann gilt L(N) = L1L, fiir den NFA N = (Z, U 25,5, A, Qy, E) mit

Al(p7a)7 pezl\Ela
A(p7 3) = Al(p7 3) U Uq€Q2 AZ(qa a)7 pE Ela
AQ(p’ 3)7 P€Z2

und E = Ep, falls @ n E; =@, bzw. E = E; U E, sonst
Beweis von LiLy € L(N):

Seien x = xy---xx € L1,y = y1--y; € Lo und seien qo, ..., gx und pg,.

akzeptierende Rechnungen von Ny (x) und N(y)

Dann ist qo,---, gk, P1,-- -, p; €ine akz. Rechnung von N(xy), da
® go € Q1 und py € Ep ist, und

e im Fall / >1 wegen g € E1, po € Q und p; € Ax(po, y1) zudem
p1 € A(gk, y1) und

@ im Fall /=0 wegen g, € E; und p; € Qxn E; zudem gy € E ist

N

37




Ein NFA fir das Produkt von regularen Sprachen e

@ Dann gilt L(N) = L;L; fir den NFA N = (Z3 U Z5, X, A, @1, E) mit

Al(pva)v PEZI\Ela
A(p7 a) = Al(p7 a) U Uq€Q2 A2(q7 a)a pE€ E17
A2(p7 a): p622

und E = E;, falls @ n E; =g, bzw. E = E; U E> sonst
Beweis von L(N) < L Ly:

Sei x = x1---x, € L(N) und sei qo, ..., gn eine akz. Rechnung von N(x)
Dann gilt go € @1, gn € E, qo,-..,qi € Z1 und @gj41,...,qn € Zo flirein i < n

Wir zeigen, dass qo, - .., g; eine akz. Rechnung von Nj(x;---x;) und
q,Gi+1,---,qn flr ein g € Q, eine akz. Rechnung von Na(xj11-++Xp) ist:

@ Im Fall i < n impliziert der Ubergang gj,1 € A(qj, xij+1), dass g; € E;
und gj+1 € Az(q, xi+1) fir ein g€ Qy ist. Zudem ist g, € EN 2, = E

e ImFalli=nist g,€ EnZy, was g, € E; und Qxn E; # & impliziert




Ein NFA fiir die Sternhiille einer regularen Sprache

Beobachtung 6

Ist N=(Z,X,A, Qo, E) ein NFA, so wird auch die Sprache L(N)* von
einem NFA erkannt

Beweis
Die Sprache L(N)* wird von dem NFA

N = (Zu{qneu}a 2, A’a QOU{Qneu}> Eu{qneu})

mit
A(p,a), PEZN 15,
A/(pv a) = A(pv 3)UUq€Qo A(q’ a)’ p€ E’
@, P = Qneu

erkannt 5




Uberblick

Ziel
Zeige, dass REG unter Produktbildung und Sternhiille abgeschlossen ist

40

Problem
Bei der Konstruktion eines DFA firr das Produkt L;L> bereitet es

Schwierigkeiten, den richtigen Zeitpunkt fiir den Ubergang von (der
Simulation von) My zu M, zu finden

Losungsidee (bereits umgesetzt)

Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
fir den Ubergang ,raten”

Noch zu zeigen

NFAs erkennen genau die reguldren Sprachen




41

NFAs erkennen genau die regularen Sprachen

Satz (Rabin und Scott)
REG = {L(N) | N ist ein NFA}

Beweis von REG ¢ {L(N) | N ist ein NFA}
Diese Inklusion ist klar, da jeder DFA M = (Z,%,4, qo, E) in einen
aquivalenten NFA

N=(ZX A, Q,E)

transformiert werden kann, indem wir A(q,a) = {0(g,a)} und Qo ={qo}
setzen. o

4

Fur die umgekehrte Inklusion ist das Erreichbarkeitsproblem fiir NFAs von
zentraler Bedeutung




Das Erreichbarkeitsproblem fiir NFAs =

Frage

Sei N=(Z,%,A, Qp, E) ein NFA und sei x = x; ... x, eine Eingabe. Welche
Zustande sind in i Schritten erreichbar?

v

Antwort
@ in 0 Schritten: alle Zustiande in Qg
@ in einem Schritt: alle Zustande in
Q= U A(g,x1)
qeQo
@ in i Schritten: alle Zustande in

Q= U Ag,x)

qeQi-1




Simulenfen v NERs direh Bhe 43

Idee

@ Wir kénnen einen NFA N = (Z, X, A, Qo, E) durch einen DFA
M= (2',%,0,qp, E") simulieren, der in seinem Zustand die Information
speichert, in welchen Zustanden sich N momentan befinden kdnnte
e Die Zustinde von M sind also Teilmengen Q von Z (d.h. Z' =P (Z))
mit Qo als Startzustand (d.h. g{ = Qo) und der Endzustandsmenge
E'={QcZ|QnE+g)}

@ Die Uberfiihrungsfunktion § : P(Z) x ¥ - P(Z) von M berechnet dann
fiir einen Zustand Q € Z und ein Zeichen a € ¥ die Menge
0(Q,a) = A(qg,a)
qe@
aller Zustande, in die N gelangen kann, wenn N ausgehend von einem
beliebigen Zustand g € @ das Zeichen a liest

@ M wird auch als der zu N gehérige Potenzmengenautomat bezeichnet




Simulation von NFAs durch DFAs 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»




St v NERE ¢ e B 5 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:




St v NERE ¢ e B 5 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:




St v NERE ¢ e B 5 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

{r} | {p.q} @




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1
{p} | {p.a} {p} @




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1.2
{p} | {p,a} {p} {p} @




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1.2
{p} | {pa} {p} {p} @

{p.q}
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Beispiel
@ Betrachte den NFA N

0 1 2
9@—'@—@%
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1,2 0
e m®
—_
iy | {par Py {p}

{p,aq} | {p,q}
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Beispiel
@ Betrachte den NFA N

0 1 2
9@—'@—@%
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1,2 0
S oa®
—_
iy | par Py {p}

{p,q} | {p.q} {p,r} 1

e




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

e O
{p} | {p.qt {p} {p} @ 2

{p,a} | {p.a} {p,r} {p} 1




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

e O
{p} | {p.qt {p} {p} @ 2

{p,a} | {p,a} {p,r} {p} 1
{p,r}
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Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

s | o 1 2

{p} | {p.qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p;q}




Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

0 1 2
9@_,@_,@_,
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:
1,2 0

s | o 1 2 8f0N

—_
pr | {par Py {p} 2

{p,a} | {p,a} {p,r} {p}
{p,r} | {p,q} {p}
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Beispiel
@ Betrachte den NFA N

0 1 2
9@_,@_,@_,
0,1,2
@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:
1,2 0
s | o 1 2 PN
—_
pr | {par Py {p} 2

{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}




Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

0 1 2
9@_,@_,@_,
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:
1,2 0

s | o 1 2 PN

—_
pr | {par Py {p} 2

{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}

{p,s}
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Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

s | o 1 2

{p} | {p.qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}
{p;s} | {p.q}
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Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

5 | o 1 2
{p} | {p,qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qa}y {p} {p,s}

{p;s} | {p.q}

{pr}
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Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

s | o 1 2

{p} | {p.qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}
{p,st | {p.qt {p} {p}
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Bemerkung

@ Im obigen Beispiel werden fiir die Konstruktion des Potenzmengen-
automaten nur 4 der insgesamt

[P(2)] =214 =2* =16
Zustande benétigt, da die iibrigen 12 Zustande nicht erreichbar sind
(hierbei bezeichnet |A|| die Machtigkeit einer Menge A)

@ Es gibt jedoch Beispiele, bei denen alle 2121 Zustande benétigt werden
(siehe Ubungen)




NFAs erkennen genau die regularen Sprachen 5

Beweis von {L(N) | N ist ein NFA} ¢ REG
@ Sei N=(Z,L,A, Qp, E) ein NFA und sei M = (P(Z),X%,6, Qo, E") der
zugehorige Potenzmengenautomat mit §(Q, a) = Ugeq@ A(q, a) und
E'={QcZ|QnE+z}
@ Dann folgt die Korrektheit von M mittels folgender Behauptung, die wir
auf der nachsten Folie beweisen.

Behauptung

S(Qo,x) enthalt genau die von N nach Lesen von x erreichbaren
Zustande

o Fir alle Woérter x € X gilt

xeL(N) < N kann nach Lesen von x einen Endzustand erreichen

2 5(Qox)nE4o

= S(Qo,x) eE’
<~ XEL(/\/I) m]




Beweis der Behauptung Y

Behauptung

S(Qo,x) enthélt genau die von N nach Lesen von x erreichbaren Zustande

Beweis durch Induktion tiber die Lange n von x
n=0: klar, da S(Qo,e) = @ ist
n~n+1: Sei x =xy...Xxn:1 gegeben. Nach IV enthilt
Qn=0(Qo,x1 - Xn)
die Zustande, die N nach Lesen von x; ...x, erreichen kann.
Wegen
3(Qo,x) = 3(Qny Xns1) = L% A(q, Xns1)
qe@n

enthilt dann aber §(Qo, x) die Zustinde, die N nach Lesen
von x erreichen kann. m
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Abschlusseigenschaften der Klasse REG

Satz (Rabin und Scott)
REG = {L(N) | N ist ein NFA}

Korollar

Die Klasse REG der regularen Sprachen ist unter folgenden Operationen
abgeschlossen:

@ Komplement
@ Schnitt

o Vereinigung
@ Produkt
°

Sternhdlle

A\
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Nachstes Ziel
Zeige, dass REG als Abschluss der endlichen Sprachen unter Vereinigung,
Produkt und Sternhiille charakterisierbar ist

Bereits gezeigt:

Jede Sprache, die mittels der Operationen Vereinigung, Produkt und
Sternhiille (sowie Schnitt und Komplement) angewandt auf endliche
Sprachen darstellbar ist, ist regular

Noch zu zeigen:

Jede reguldre Sprache lasst sich aus endlichen Sprachen mittels
Vereinigung, Produkt und Sternhiille erzeugen




Konstruktive Charakterisierung von REG 20

Induktive Definition der Menge RAy aller regularen Ausdriicke iiber
Die Symbole @, € und a (a € X) sind regulare Ausdriicke tiber ¥, die
o die leere Sprache L(@) = @

e die Sprache L(¢) = {¢} und

o fiir jedes a € X die Sprache L(a) = {a} beschreiben

Sind « und 3 regulare Ausdriicke tiber ¥, die die Sprachen L(«) und L(/3)
beschreiben, so sind auch af3, («|8) und («)* regulére Ausdriicke iiber X,
die folgende Sprachen beschreiben:

o L(af) = L(a)L(B)
o L((alB)) = L(a)u L(B)
o L((a)*)=L(a)*

Bemerkung
RAs ist eine Sprache iiber dem Alphabet ' = > u {@,¢,|,*,(,)}
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Regulare Ausdriicke

Beispiel
Die regularen Ausdriicke (¢)*, (@), (0/1)*00 und (0|(e0|@(1)*)) be-
schreiben folgende Sprachen:

v (O (2) (0[1)*00 (0l(e0l2(1)"))
L(v) | {e} {e} {x00|xe{0,1}"} {0}

Vereinbarungen

@ Um Klammern zu sparen, definieren wir folgende Prazedenzordnung:
Der Sternoperator * bindet starker als der Produktoperator und dieser
wiederum starker als der Vereinigungsoperator

e Fir (0/(e0|@(1)*)) kénnen wir also kurz 0|e0|@1* schreiben

@ Da der reguldre Ausdruck vv* die Sprache L(~y)™ beschreibt, verwenden
wir v* als Abkiirzung fiir den Ausdruck y~*

v
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Charakterisierung von REG durch regulare Ausdriicke

REG = {L(7) | v ist ein regularer Ausdruck}

Beweis der Inklusion von rechts nach links.
Klar, da

o die Basisausdriicke @, € und a, a€ ¥, regulare Sprachen beschreiben
und

@ die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist o




Charakterisierung von REG durch regulare Ausdriicke >

Fur die umgekehrte Inklusion betrachten wir zunachst den DFA Ms.

Frage
Wie l3sst sich die Sprache

L(Ms) = {x € {a,b}" [ #a(x) - #5(x) =3 1}

durch einen regularen Ausdruck beschreiben?

Antwort
@ Sei L, g die Sprache aller Worter x, die M3 vom AZustand p in den
Zustand q berfithren (d.h. Ly g ={x e {a,b}* | d(p,x) = q})
o Weiter sei L;fq die Sprache aller Wérter x = x1---x, € Lp g, die hierzu nur
Zustande ungleich r benutzen (d.h. d(p, x1---x;) #r firi=1,...,n—-1)

e Dann gilt L(M3) = Loy = Lo oLy’ wobei = (L3%)* ist




Charakterisierung von REG durch regulare Ausdriicke o

Antwort (Fortsetzung)

@ Dannist L(M3) = L 0L¢0 = (L;to )*Lio

° L’FO1 und Léoo lassen sich durch folgende
regulare Ausdriicke beschreiben:

'Yo 1 = (albb)(ab)*
750 = a(ab)* (aalb) | b(ba)*(a|bb) | €

@ Also ist L(Mj3) durch folgenden regularen Ausdruck beschreibbar:
70,1 = (a(ab)”(aalb) | b(ba)™(a|bb))™(a|bb)(ab)"




Charakterisierung von REG durch regulare Ausdriicke e

REG = {L(+y) | v ist ein regulérer Ausdruck} \

Beweis der Inklusion von links nach rechts.

@ Wir konstruieren zu einem DFA M = (Z,%,4, qo, E) einen regularen
Ausdruck v mit L(y) = L(M).

@ Wir nehmen an, dass Z={1,...,m} und gp =1 ist
@ Dann lasst sich L(M) als Vereinigung

L(M) = U Liq
qeE

von Sprachen der Form L, o = {x € * | §(p,x) = q} darstellen

@ Es reicht also, reguldre Ausdriicke fiir die Sprachen L, g mit
1< p,q < m anzugeben




Charakterisierung von REG durch regulare Ausdriicke 20

REG c {L(7) | v ist ein reguldrer Ausdruck}

Beweis (Fortsetzung)
@ Es reicht also, reguldre Ausdriicke fiir die Sprachen L, g mit
1< p,q < m anzugeben
@ Hierzu betrachten wir fiir r =0, ..., m die Sprachen

L,irq = {Xl---XnELp,q furi=1,...,n—-1ist S(p,xl...x,-)ér},

die wir auch einfach mit L}, . bezeichnen

e Wegen L, 4 =L, reicht es, regulare Ausdriicke fur die Sprachen L, .
mit 1 < p,g<mund 0 <r < m anzugeben

@ Wir zeigen induktiv iiber r, dass die Sprachen L/ . durch regulare
Ausdriicke beschreibbar sind




Charakterisierung von REG durch regulare Ausdriicke a0

REG c {L(7) | v ist ein reguldrer Ausdruck}

Beweis (Schluss)

r=0: In diesem Fall sind die Sprachen

LO _ {aez‘(s(pﬂa):q}a p#*q,

P9 |{aex|d(p,a)=q}u{e}, sonst
endlich, also durch reg. Ausdriicke 72,q beschreibbar

r~r+1: Nach IV existieren regulare Ausdriicke v, . fiir die
Sprachen Lj, .. Wegen

r+1 _ gr r r *r
Lp,q - Lp,q U Lp,r+1(Lr+1,r+1) Lr+1,q

R r+1 _ r r * A @
sind dann v, =75 o[V o1 (Vr1.r41) V41,4 reguldre

Ausdriicke fiir die Sprachen L,’,qu. o
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Beispiel
@ Betrachte den DFA M

.

b b

@ Da M nur einen Endzustand g = 2 und insgesamt m = 2 Zustande
besitzt, folgt

L(M) = U Li,g=Li2= LT,
qeE




Charakterisierung von REG durch regulare Ausdriicke 2

Beispiel (Fortsetzung)

e Um reguldre Ausdriicke v, , fiir die Sprachen L , zu bestimmen,
benutzen wir fiir r > 0 die Rekursionsformel

r+1 _ _r r r * _r
'Yp,q _/Vp,q|7p,r+1(’7r+1,r+1) ’7r+1,q

@ Damit erhalten wir

2 1 (1 (1 y*al
Y12 = 71,2|’71,2 (72,2) 72,2
1 0 [0 (~0 \+~0
Y12 = ’Y1,2|’Y1,1(’Y1,1) 71,2

721,2 = ’78,2|’78,1 (7(1),1)*7?,2

o Fiir die Berechnung von V%z werden also nur die regularen Ausdriicke
0 .0 .0 .0 .1 1 s
Y110 V120 Y210 Y220 V2 Und 77, bendtigt
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
- 2 o Ly p={cex|d(p,c)=p}uie}
?i:/g L9 ,={ceX|d(p,c)=q}firpzgqg
1 *
b b V;r)jq :7£,q|'7;r7,r+1(7;+1,r+1) 7:+1,q
. pP,q
1,1 1,2 2,1 2,2
0 ”7(1),1 Vo 1 '78,2
- 7%72 - 721,2

2 - ’Yf,z -
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
~ Q) L21={cex|d(1,c)=1}u{e} = {e, b}
. 0
: J |~ o=
, p,q
1,1 1,2 2,1 2,2
0 elb 7(1),2 ’Yg,l ’Yg,z
- 7%72 - 721,2

2 - ’Yf,z -
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Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
- L3,={cex|d(1,c)=2}={a}
0
b b v M274
, p,q
1,1 1,2 2,1 2,2
0 elb a 78,1 ’Yg,z
- 7%72 - 721,2
2 - ’Yf,z - -
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Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
- L3,={ceX[5(2,c)=1}={a}
~r 0 =a
b b 72,1
, p,q
1,1 1,2 2,1 2,2
0 elb a a ’Yg,z
- 7%72 - 721,2
2 - ’Yf,z - -
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Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
~ Q) L3,={ceX|8(2,¢)=2}u{e} = {¢,b}
a
b b % 78,2 = db
, p,q
1,1 1,2 2,1 2,2
0 elb a a e|b
- 7%2 - 721,2
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformel
- a @ ’Y%,z 27?,2|7(1),1(7(1),1)*’Y?,2
?/\3:8 =a|(e|b)(e|b)*a
¥ 7 =bH*a
. p,q
1,1 1,2 2,1 2,2
0 elb a a e|b
- b*a = 72172
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung

DFA M

N

)

Rekursionsformel
7%,2 = ’Yg,zhg,l (7(1),1)*7?,2
= (e|b)|a(e|b)*a

¥ 7 =¢|blab*a
r p;q
1,1 1,2 20 o
0 elb a a e|b
1 - b*a - €|blab*a
2 B ’Yf,z - -
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Beispiel (Fortsetzung)

DFA M Rekursionsformel
- 2 @ 7%,2 :’Yil,z|’7%,2(721,2)*7§,2
M =b*a|b*a(e|blab*a)* (¢|blab™ a)
7 2 =b*a(blab*a)*
. p,q
1,1 1,2 2,1 2,2
0 elb a a €|b
- b*a - €|blab*a
2 - b*a(blab*a)* - -
<




Charakterisierungen der Klasse REG ol

Korollar

Fiir jede Sprache L sind folgende Aussagen aquivalent:

o L ist regular (d.h. es gibt einen DFA M mit L= L(M))
@ es gibt einen NFA N mit L= L(N)

@ es gibt einen reguldren Ausdruck v mit L= L(7)

°

L lasst sich mit den Operationen Vereinigung, Produkt und Sternhiille
aus endlichen Sprachen gewinnen

@ L lasst sich mit den Operationen Vereinigung, Schnitt, Komplement,
Produkt und Sternhiille aus endlichen Sprachen gewinnen

Ausblick

@ Als nachstes wenden wir uns der Frage zu, wie sich die Anzahl der
Zustande eines DFA minimieren |3sst

@ Da hierbei Aquivalenzrelationen eine wichtige Rolle spielen, befassen
wir uns zunachst mit Relationalstrukturen




Relationalstrukturen 62

Definition
@ Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn
RcAK=Ax--xA={(a1,...,ax) |aj e Afiri=1,... k} ist
| —

k-mal
@ Firi=1,...,nsei R; eine k;-stellige Relation auf A. Dann heiBt
(A; Ry,. .., R,) Relationalstruktur

@ Die Menge A heiBt der Individuenbereich, die Tragermenge oder die
Grundmenge der Relationalstruktur

Bemerkung

e Wir werden hier hauptsachlich den Fall n=1, k; =2, also (A, R) mit
R c A x A betrachten

@ Man nennt dann R eine (bindre) Relation auf A
e Oft wird fiir (a,b) € R auch die Infix-Schreibweise aRb benutzt




Relationalstrukturen 63

Beispiel
e (F,M) mit F ={f|f ist Fluss in Europa} und
M={(f,g) e FxF|f mindetin g}

e (U,B) mit U= {x| x ist Berliner} und
B={(x,y) e UxU |x ist Bruder von y}

e (P(M),c), wobei M eine beliebige Menge und ¢ die Inklusionsrelation
auf den Teilmengen von M ist

@ (A, lda) mit lda = {(x,x) | x € A} (die Identitat auf A)

o (R,<)

@ (Z,|), wobei | die "teilt"-Relation bezeichnet (d.h. a|b, falls ein c € Z
mit b = ac existiert)




Mengentheoretische Operationen auf Relationen o

@ Da Relationen Mengen sind, kdnnen wir den Schnitt, die Vereinigung,
die Differenz und das Komplement von Relationen bilden:
RnS={(x,y) e AxA| xRy A xSy}
RuS={(x,y) e AxA| xRy v xSy}
R-S={(x,y) e AxA| xRy A -xSy}

R=(AxA)-R
@ Sei M c P(Ax A) eine beliebige Menge von Relationen auf A. Dann
sind der Schnitt iiber M und die Vereinigung ber M folgende
Relationen:

(M=) R={(x,y)| VRe M : xRy}
ReM

UM= U R={(x,y)|IRe M : xRy}
ReM




Weitere Operationen auf Relationen 65

Definition

@ Die transponierte (konverse) Relation zu R ist
RT = {(y,x) | xRy}

o RT wird oft auch mit R™! bezeichnet

@ Zum Beispiel ist (R,<7) = (R,>)

@ Das Produkt (oder die Komposition) zweier Relationen R und S ist
RoS={(x,z) e AxA|3Jy e A: xRy A ySz}

Beispiel
Ist B die Relation
und E = Vu M "ist Elternteil von”, so ist B o E die Onkel-Relation <

ist Bruder von”, V "ist Vater von", M "ist Mutter von"




Das Relationenprodukt

Notation
@ Fiir Ro S wird auch R;S, R-S oder einfach RS geschrieben.

@ Fiir Ro--- o R schreiben wir auch R". Dabei ist R° = Id
| —

n-mal

66

Vorsicht!
Das Relationenprodukt R” darf nicht mit dem kartesischen Produkt

Rx---x R

|
n-mal

verwechselt werden

Vereinbarung

Wir vereinbaren, dass R" das n-fache Relationenprodukt bezeichnen soll,
falls R eine Relation ist




Eigenschaften von Relationen

Definition

67

Sei R eine Relation auf A. Dann heiBt R

reflexiv,
irreflexiv,

symmetrisch,

asymmetrisch,

falls Vx € A: xRx (also Ida ¢
falls Vx € A: -=xRx (also Ida ¢
falls Vx,y € A: xRy = yRx (also R ¢
falls Vx,y € A: xRy = —yRx (

antisymmetrisch, falls Vx,y € A: xRy AyRx = x =y (also RN RT c Id

konnex,
semikonnex,

transitiv,
gilt

falls ¥x,y € A: xRy vV yRx (also AxAC RUuRT

R)
R)
RT)
also Rc RT)
)
)
falls Vx,y e A:x#y = xRy v yRx (also Idc RURT)

)

falls Vx,y,z€ A: xRy A yRz = xRz (also R2c R




Uberblick tiber Relationalstrukturen

Aquivalenz- und Ordnungsrelationen

68

refl. sym. trans. antisym. asym. konnex semikon.
Aquivalenzrelation | v vV
(Halb-)Ordnung v v v
Striktordnung v v
lineare Ordnung v v v
lin. Striktord. v v v
Quasiordnung v v
Bemerkung

In der Tabelle sind nur die definierenden Eigenschaften durch ein "v'"
gekennzeichnet. Das schlieBt nicht aus, dass noch weitere Eigenschaften
vorliegen
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@ Die Relation "ist Schwester von" ist zwar in einer reinen Damengesell-

schaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch
noch antisymmetrisch.

@ Die Relation "ist Geschwister von" ist zwar symmetrisch, aber weder
reflexiv noch transitiv und somit keine Aquivalenzrelation.

o (R, <) ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit
eine lineare Striktordnung.

@ (R,<) und (P(M),<) sind reflexiv, antisymmetrisch und transitiv und
somit Ordnungen.

e (R, <) ist auch konnex und somit eine lineare Ordnung.

e (P(M),c) ist zwar im Fall [M| <1 konnex, aber im Fall [M| >2
weder semikonnex noch konnex. <




Darstellung von endlichen Relationen o

Graphische Darstellung

@ /(?
A={a,b,c,d}
R={(b,c),(b,d),(c,a),(c,d),(d,d)} é—»%

@ Eine Relation R auf einer (endlichen) Menge A kann durch einen
gerichteten Graphen (kurz Digraphen) G = (A, R) mit Knotenmenge A
und Kantenmenge R veranschaulicht werden

@ Hierzu stellen wir jedes Element x € A als einen Knoten dar und
verbinden jedes Knotenpaar (x,y) € R durch eine gerichtete Kante
(Pfeil)

@ Zwei durch eine Kante verbundene Knoten heiBen adjazent oder
benachbart
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Definition

Sei R eine binare Relation auf A

Die Menge der Nachfolger bzw. Vorganger von x ist
R[x]={y € A| xRy} bzw. R}[x] = {y € A| yRx}
Der Ausgangsgrad eines Knotens x ist deg” (x) = | R[x]|
Der Eingangsgrad von x ist deg™(x) = |[R71[x]|
Ist R symmetrisch, so konnen wir die Pfeilspitzen auch weglassen

In diesem Fall heiBt deg(x) = deg™(x) = deg™(x) der Grad von x und
R[x] = R™![x] die Nachbarschaft von x in G

G ist schleifenfrei, falls R irreflexiv ist
Ist R irreflexiv und symmetrisch, so nennen wir G = (A, R) einen
(ungerichteten) Graphen

Eine irreflexive und symmetrische Relation R wird meist als Menge der
ungeordneten Paare E = {{a, b} | aRb} notiert
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Matrixdarstellung (Adjazenzmatrix)

Eine Relation R auf A={a,...,a,} lasst sich auch durch die boolesche
(nx n)-Matrix Mg = (m;;) darstellen mit
{ 1, a,-RaJ-
m,-j =
0, sonst
Beispiel

Die Relation R = {(b,¢),(b,d),(c,a),(c,d),(d,d)} auf A={a,b,c,d}
hat beispielsweise die Matrixdarstellung

0000
79
R=11 00 1

000 1 %




Darstellung von endlichen Relationen e

Listendarstellung (Adjazenzlisten)

R lasst sich auch durch eine Tabelle darstellen, die jedem Element x € A
seine Nachfolger in Form einer Liste zuordnet

Beispiel

Die Relation R ={(b,c),(b,d),(c,a),(c,d),(d,d)} auf A={a, b,c,d}
lasst sich beispielsweise durch folgende Adjazenzlisten darstellen:

S oy
o s
d: d




Berechnung des Relationenprodukts o

Berechnung von Ro S
@ Sind Mg = (r;j) und Ms = (sj;) boolesche (n x n)-Matrizen fir R und S,
so erhalten wir fiir T = Ro S die Matrix M7 = (t;) mit

ti= V  (riAsg)
k=1,...,n

e Die Nachfolgermenge T[x] von x bzgl. der Relation T=Ro S
berechnet sich zu

Tix]= U Syl

yeR[x]
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Das Relationenprodukt

Beispie
Betrachte die Relationen R = {(a, a), (a,¢), (¢, b), (c,d)} und
S={(a,b),(d,a),(d,c)} auf der Menge A={a,b,c,d}.

Relation RoS SoR

@@—*@@—*@@

@4@ 0 Co@ e

. 1010 0100 0100 0000
Adjazenz- 0000 0000 0000 0000
matrix 0101 0000 1010 0000

0000 1010 0000 1111

a. a,c a: b a: b a. -
Adjazenz- b: - b: - b: - b: -
listen c: b,d c: c. a,c c:

d: - d: a,c d: - d: a7b7c,d
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Frage

Welche Paare muss man zu einer Relation R mindestens hinzufiigen, damit
R transitiv wird?

Antwort

@ Es ist klar, dass der Schnitt von transitiven Relationen wieder transitiv
ist

@ Die transitive Hulle von R ist
R"=({ScAxA|S ist transitiv und R c S}
@ R* ist also eine transitive Relation, die R enthalt

e Da R* zudem in jeder Relation mit diesen Eigenschaften enthalten ist,
gibt es keine transitive Relation mit weniger Paaren, die R enthalt

@ Da auch die Reflexivitdt und die Symmetrie bei der Schnittbildung
erhalten bleiben, lassen sich nach demselben Muster weitere Hillen-
operatoren definieren




Weitere Hiillenoperatoren v

Definition
Sei R eine Relation auf A

@ Die reflexive Hille von R ist

het(R) =({S<SAxA]|S ist reflexivund R c S}

@ Die symmetrische Hiille von R ist

hsym(R) =[{ScAxA|S ist symmetrisch und R c S}

@ Die reflexiv-transitive Hille von R ist

R*=(V{S<cAxA|S ist reflexiv, transitiv und R ¢ S}

@ Die Aquivalenzhiille von R ist

hsq(R) =({E € Ax A| E ist eine Aquivalenzrelation mit R c E}




Transitive und reflexive Hiille 8

hrefi(R) = Rulda, heym(R)=RU RT, R*=Um1R", R*=UpsoR"

Beweis
Siehe Ubungen. D}
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Bemerkung. Sei G = (V, E) ein Digraph.

e Ein Paar (a, b) ist genau dann in der reflexiv-transitiven Hille E* von
E enthalten, wenn es ein n > 0 gibt mit aE"b

@ Dies bedeutet, dass es Elemente xp,...,x, € V gibt mit
Xo=a, Xxp=b und (x;_1,x;) € Efuri=1,....n
® Xo,...,Xn heiBt Weg der Lange n von a nach b in G

@ G heiBt zusammenhangend, wenn es in G fiir je zwei Knoten a und b
einen Weg von a nach b oder einen Weg von b nach a gibt

@ G heiBt stark zusammenhangend, wenn es in G von jedem Knoten a
einen Weg zu jedem Knoten b gibt
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Definition

(A, R) heiBt Aquivalenzrelation, wenn R eine reflexive, symmetrische und
transitive Relation auf A ist

Beispiel

| A

o Auf der Menge aller Geraden im R? die Parallelitat
@ Auf der Menge aller Menschen "im gleichen Jahr geboren wie”
@ Auf Z die Relation "gleicher Rest bei Division durch m”. d
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Definition

e Ist E eine Aquivalenzrelation, so nennt man die Nachbarschaft E[x] die
von x reprasentierte Aquivalenzklasse und bezeichnet sie auch mit [x]g
(oder einfach mit [x], falls E aus dem Kontext ersichtlich ist):

[x]e = [x] = E[x] = {y | xEy}

@ Eine Menge S € A heiBt Reprasentantensystem, falls sie genau ein
Element aus jeder Aquivalenzklasse enthilt

@ Die Menge aller Aquivalenzklassen von E wird Quotienten- oder
Faktormenge von A bzgl. E genannt und mit A/E bezeichnet:

AJE ={[x]e | x € A}

e Die Anzahl |A/E| der Aquivalenzklassen von E wird auch als der Index
von E (kurz: index(E)) bezeichnet
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Beispiel

Fiir die weiter oben betrachteten Aquivalenzrelationen erhalten wir
folgende Klasseneinteilungen:

o Fiir die Parallelitit auf der Menge aller Geraden im R?:
alle Geraden mit derselben Richtung (oder Steigung) bilden jeweils eine
Aquivalenzklasse

@ Ein Repréasentantensystem wird beispielsweise durch die Menge aller
Ursprungsgeraden gebildet

o Fiir die Relation "im gleichen Jahr geboren wie" auf der Menge aller
Menschen: jeder Jahrgang bildet eine Aquivalenzklasse

o Fiir die Relation "gleicher Rest bei Division durch m" auf Z:
jede der m Restklassen [0],[1],...,[m—1] mit

[r]={acZ|amod m=r}

bildet eine Aquivalenzklasse

@ Reprasentantensystem: {0,1,..., m—1}. <
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Bemerkungen

@ Die kleinste Aquivalenzrelation auf A ist die Identitit /dy, die groBte ist
die Allrelation Ax A

e Die Aquivalenzklassen der Identitat enthalten jeweils nur ein Element,
d.h. [x]g, = {x} fir alle xe A

Die Allrelation erzeugt dagegen nur eine Aquivalenzklasse, namlich
[x]axa = A fir alle x € A

Die ldentitat Ida hat nur ein Reprasentantensystem, namlich A

Dagegen kann jede Singletonmenge {x} mit x € A als
Reprasentantensystem fiir die Allrelation A x A fungieren




Partition einer Menge &

Wie wir sehen werden, bilden die Aquivalenzklassen eine Zerlegung von A
Definition

Eine Familie {B; | i € I} von nichtleeren Teilmengen B; ¢ A heiit Partition
(oder Zerlegung) der Menge A, falls gilt:

@ die Mengen B; iiberdecken A, d.h. A= U;¢ B; und

@ die Mengen B; sind paarweise disjunkt, d.h. fiir je zwei verschiedene
Mengen B; # B; gilt BinBj =&




Verfeinerung und Vergroberung von Aquivalenzrelationen 8

Bemerkungen

@ Fiir zwei Aquivalenzrelationen E ¢ E’ sind auch die Aquivalenzklassen
[x]e von E in den Klassen [x]g von E" enthalten

e Folglich ist jede Aquivalenzklasse von E’ die Vereinigung von (evtl.
mehreren) Aquivalenzklassen von E

e Im Fall E ¢ E’ sagt man auch, E bewirkt eine feinere Zerlegung von A
als E’

@ Demnach ist die Identitat die feinste und die Allrelation die grobste
Aquivalenzrelation




Aquivalenzrelationen und Partitionen 86

Sei E eine Relation auf A. Dann sind folgende Aussagen aquivalent:

@ E ist eine Aquivalenzrelation auf A
@ es gibt eine Partition {B; | i€} von A mit xEy < Jiel:x,y e B;

Beweis.

@ impliziert @: Sei E eine Aquivalenzrelation auf A. Dann bildet
{E[x] | x € A} eine Partition von A mit der gewiinschten Eigenschaft:
e Da E reflexiv ist, gilt xEx und somit x € E[x], d.h. A=Uyea E[x]
@ Ist E[x]nE[y]#@ und ue E[x]n E[y], so folgt E[x] = E[y]:

E
z € E[x] @szg]uEzgyEzaze Ely]

@ Zudem gilt

3z € Asx,y ¢ E[z] < 3212 € EXINELy] = E[x] - E[y) =" xy
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Sei E eine Relation auf A. Dann sind folgende Aussagen aquivalent:
@ E ist eine Aquivalenzrelation auf A

@ es gibt eine Partition {B; | i€} von A mit xEy < Jiel:x,y e B;

Beweis.

@ impliziert @: Existiert umgekehrt eine Partition {B;| i€/} von A mit
xEy < diel:x,yeB;, soist E

o reflexiv, da zu jedem x € A eine Menge B; mit x € B; existiert,
@ symmetrisch, da aus x,y € B; auch y, x € B; folgt, und

e transitiv, da aus x,y € B; und y, z € B; wegen y € B; n B; die Gleichheit
B;i = Bj und somit x, z € B; folgt. o
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Definition
(A, R) heiBt Ordnung (auch Halbordnung oder partielle Ordnung), wenn R
eine reflexive, antisymmetrische und transitive Relation auf A ist

Beispiel
e (P(M),9), (Z,<), (R,<), (N,]), sind Ordnungen. (Z,]) ist keine
Ordnung, aber eine Quasiordnung.

@ Ist R eine Relation auf A und BC A, so ist Rg = Rn (B x B) die
Einschrankung von R auf B

| \

@ Einschrankungen von (linearen) Ordnungen sind ebenfalls (lineare)
Ordnungen

@ Beispielsweise ist (Q, <) die Einschrankung von (R, <) auf Q und (N,])
die Einschrankung von (Z,|) auf N. <

vy




Darstellung einer Ordnung durch ein Hasse-Diagramm 2

Sei < eine Ordnung auf A und sei < die Relation <\ Id4, d.h.
X<y <& XSYyAX#y
@ Ein Element x € A heiBt unterer Nachbar von y (kurz: x <y), falls x <y
gilt und kein z € A existiert mit x<z<y
@ < ist also die Relation <\ <2

@ Um die Ordnung (A, <) in einem Hasse-Diagramm darzustellen, wird
nur der Digraph der Relation (A, <) gezeichnet

Weiterhin wird im Fall x <y der Knoten y oberhalb des Knotens x
gezeichnet, so dass auf die Pfeilspitzen verzichtet werden kann




Das Hasse-Diagramm fiir (P(M); <) L

Beispiel

Die Inklusion ¢ auf P(M) mit M = {a, b, c} lasst sich durch folgendes
Hasse-Diagramm darstellen:

{a, b}




Das Hasse-Diagramm der Feiner-Relation o1

Beispiel

Die "feiner als" Relation auf der Menge aller Partitionen von M = {a, b, c}
ist durch folgendes Hasse-Diagramm darstellbar:

{M}

{{a, b}, {c}} {{a},{b,c}}

{{a}, {b},{c}}




Das Hasse-Diagramm der "teilt"-Relation 2

Beispiel

Die Einschrankung der "teilt"-Relation auf die Menge {1,2,...,10} ist
durch folgendes Hasse-Diagramm darstellbar:
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Definition
Sei < eine Ordnung auf A und sei b ein Element in einer Teilmenge B<c A
@ b heiBt kleinstes Element oder Minimum von B (b = min B), falls gilt:
Vb eB:b< b
@ b heiBt groBtes Element oder Maximum von B (b = max B), falls gilt:
Vb eB:b' <b
@ b heiBt minimal in B, falls es in B kein kleineres Element gibt:
Vb'eB:b'<b=b'=b
@ b heilt maximal in B, falls es in B kein groBeres Element gibt:

Vb'eB:b<b = b=b

Bemerkung
Wegen der Antisymmetrie kann es in B hochstens ein kleinstes und
hdchstens ein groBtes Element geben
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Beispiel
Betrachte folgende Ordnung
minimal maximal .
e @ B in B in B min B max B
e‘.‘@ {a, b} a, b a, b - -
{c,d} c,d c,d - -
e {a,b,c} c a, b c -
{a,b,c,e} e a, b e -
{a,c,d, e} e a e a




Obere und untere Schranken

Definition
Sei < eine Ordnung auf A und sei B < A. Dann heifit
ein Element u € A mit u < b fur alle b € B untere Schranke von B

ein Element o € A mit b < o fur alle b € B obere Schranke von B
B nach oben beschrankt, wenn B eine obere Schranke hat
B nach unten beschrankt, wenn B eine untere Schranke hat

B beschrankt, wenn B nach oben und nach unten beschrankt ist

95
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Beispiel (Fortsetzung)

untere obere

B minimal maximal min max Schranken
{a, b} a, b a, b - - c¢de -
{c,d} c,d c,d S e a, b
{a,b,c} c a, b c - c,e -
{a,b,c,e} e a, b e - -
{a,c,d, e} e a e a e a




Infima und Suprema it

Definition
Sei < eine Ordnung auf A und sei BS A
@ Besitzt B eine groBte untere Schranke i, d.h. besitzt die Menge U aller
unteren Schranken von B ein groBtes Element i, so heiBt i das Infimum

von B (i =inf B):
(VbeB:b>i)A[VueA: (VbeB:b>u) = u<i]

@ Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge O aller
oberen Schranken von B ein kleinstes Element s, so heiBt s das
Supremum von B (s = sup B):

(VbeB:b<s)A[VoeA:(VbeB:b<o)=s<o]

Bemerkung
B kann nicht mehr als ein Supremum und ein Infimum haben




Infima und Suprema

Beispiel (Schluss

98

)

untere obere

B minimal maximal min max Schranken inf sup

{a, b} a, b a,b - - c¢de - - -
{c,d} c,d c,d - = e ab e -
{a,b, c} c a,b c - ce - c -
{a,b,c,e} e a,b e - e - e -
{a,c,d, e} e a e a a e a




Existenz von Infima und Suprema in linearen Ordnungen

Bemerkung

@ In einer endlichen linearen Ordnung (A; <) besitzt jede nichtleere
Teilmenge B ¢ A ein Maximum und ein Minimum sowie ein Supremum
und ein Infimum, wobei sup B = max B und inf B = min B

@ Zudem ist sup@ =minA und inf @ = max A

@ Dagegen miissen in einer unendlichen linearen Ordnung nicht einmal
beschrankte Teilmengen ein Supremum oder Infimum besitzen

@ So hat in der linear geordneten Menge (Q, <) die Teilmenge
B={xeQ|x*<2} = {xeQ|x*<2}
weder ein Supremum noch ein Infimum

@ Dagegen hat in (R, <) jede beschrankte Teilmenge B ein Supremum
und ein Infimum (aber méglicherweise kein Maximum oder Minimum)
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Definition. Sei R eine binare Relation auf einer Menge M.

@ R heiBt rechtseindeutig, falls fiir alle x, y,z € M gilt:
XRy AxRz =y =2z

R heiBt linkseindeutig, falls fir alle x, y,z € M gilt:

xRzAnyRz=x=y

@ Der Nachbereich N(R) und der Vorbereich V(R) von R sind

N(R) = L_IJV,R[X] und V(R) = LIJWRT[X]

R ist also genau dann rechtseindeutig, wenn jedes Element x e M
hochstens einen Nachfolger hat, also R[x] hochstens einelementig ist,

und genau dann linkseindeutig, wenn jedes Element x € M hochstens
einen Vorganger hat, also R71[x] hochstens einelementig ist




Abbildungen .

Abbildungen ordnen jedem Element ihres Definitionsbereichs genau ein
Element zu

Definition
Eine rechtseindeutige Relation R mit V(R) = A und N(R) c B heiBt
Abbildung oder Funktion von A nach B (kurz R: A— B)

Bemerkung

@ Wie iiblich werden wir Abbildungen meist mit kleinen Buchstaben
f,g,h,... bezeichnen und fiir (x,y) € f nicht xfy sondern f(x) = y oder
f : x + y schreiben

@ Ist f : A— B eine Abbildung, so wird der Vorbereich V(f) = A der
Definitionsbereich und die Menge B der Wertebereich oder Wertevorrat
von f genannt

@ Der Nachbereich N(f) wird als Bild von f bezeichnet




Abbildungen —

Definition
Sei f: A — B eine Abbildung

e Im Fall N(f) = B heiit f surjektiv

@ Ist f linkseindeutig, so heiBt f injektiv

@ In diesem Fall impliziert f(x) = f(y) die Gleichheit x =y

@ Eine injektive und surjektive Abbildung heiBt bijektiv

e Ist f injektiv, so ist auch f~1: N(f) — A eine Abbildung, die als die zu

f inverse Abbildung bezeichnet wird

Bemerkung

Man beachte, dass der Definitionsbereich V(1) = N(f) von £~ nur dann
gleich B ist, wenn f auch surjektiv, also eine Bijektion ist

v
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Definition

Seien (A1, R1) und (A2, R2) Relationalstrukturen

@ Eine Abbildung h: A; - Ay heiBt Homomorphismus, falls fiir alle
a,be A gilt:

aR1b = h(a)Rah(b)

@ Sind (A1, R1) und (A2, R»2) Ordnungen, so spricht man auch von
Ordnungshomomorphismen oder einfach von monotonen Abbildungen

@ Injektive Ordnungshomomorphismen werden auch streng monotone
Abbildungen genannt
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Homomorphismen

Beispiel

@ Die Abbildung h: A — B ist ein bijektiver Ordnungshomomorphismus
(also eine monotone Bijektion) zwischen (A, <) und (B,c)

@ Die Umkehrabbildung h™! ist jedoch nicht monoton, da zwar 2 € 3,
aber h1(2) = b ¢ c = h71(3) gilt

@ Dagegen ist fiir jede monotone Bijektion f zwischen linearen
Ordnungen auch ihre Umkehrabbildung f~! monoton. d
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Isomorphismen

Definition
@ Seien (A1, R1) und (A2, R») Relationalstrukturen

e Ein bijektiver Homomorphismus h: A; — Ay, bei dem auch h™! ein
Homomorphismus ist, d.h. es gilt fiir alle a,b € Aq,

aRlb <~ h(a)Rgh(b)
heiBt Isomorphismus

@ In diesem Fall heiBen die Strukturen (A1, R1) und (Az, R») isomorph
(kurz: (Al, Rl) = (Az, Rz))

Sind (A1, R1) und (A2, Rz) isomorph, so bedeutet dies, dass sich die
beiden Strukturen nur in der Benennung ihrer Elemente unterscheiden
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Isomorphismen

@ Die Abbildung h: x — e~ ist ein Isomorphismus zwischen den linearen
Ordnungen (R, <) und (R*, <)

@ Fiir neN sei 10 {2,5}
Tn = {keN|k teilt n} 9 5 {2}/ \{5}
und 1 \@/
Pn = {peTa|pist prim} (T1o,1) (P(P1o),<)
@ Dann ist die Abbildung
h:kw— Py

ein (surjektiver) Ordnungshomomorphismus von (T,,|) auf (P(P,),<)

@ h ist sogar ein Isomorphismus, falls n quadratfrei ist (d.h. es gibt keine
Primzahl p, so dass p? die Zahl n teilt) <

4
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Isomorphismen

G=(V,E) v |12345  G'=(V,E)
h(v)|13524
ha(v)|14253

@ Die beiden Graphen G und G’ sind isomorph
@ Zwei Isomorphismen sind beispielsweise h; und hy. d




Isomorphismen

108

Beispiel

@ Wahrend auf der Knotenmenge V = {1,2,3} insgesamt 20) =23-3
verschiedene Graphen existieren, gibt es auf dieser Menge nur 4

verschiedene nichtisomorphe Graphen:

[ ] [ ] *—O

VANVAN
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Isomorphismen

Beispiel

@ Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elementen:

eee o AL N/

@ Anders ausgedriickt: Die Klasse aller dreielementigen Ordnungen
zerfallt unter der Isomorphierelation = in fiinf Aquivalenzklassen, die
durch obige fiinf Hasse-Diagramme reprasentiert werden. d
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Frage

Wie kénnen wir feststellen, ob ein DFA M = (Z, X, 6, qo, E) eine minimale
Anzahl von Zustanden besitzt (und Z evtl. verkleinern)?

Beispiel

@ Betrachte den DFA M

b a a

— v\_/./_\)
(O
al |a b| |b b| |b
®

b a a

@ Zunachst kénnen alle Zustande entfernt werden, die vom Startzustand
aus unerreichbar sind. <
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Frage

Wie kénnen wir feststellen, ob ein DFA M = (Z, X, 6, qo, E) eine minimale
Anzahl von Zustanden besitzt (und Z evtl. verkleinern)?

Antwort
@ Zunachst kénnen alle unerreichbaren Zustande entfernt werden

@ Zudem lassen sich zwei Zustinde p und g verschmelzen, wenn
M von p und g aus jeweils dieselben Worter akzeptiert

o Fiir ze Z sei
M, = (27275727 E)
e Dann kénnen wir p und g verschmelzen (in Zeichen: p ~p g), wenn
L(Mp) = L(Mg) ist

Offensichtlich ist ~y; eine Aquivalenzrelation auf Z




Minimierung von DFAs

Idee

Verschmelze jeden Zustand g mit allen dquivalenten Zustanden p ~y g
einem neuen Zustand

112

ZUu

Notation
e Fiir die durch q reprasentierte Aquivalenzklasse
[q)ew = {P € Z | p~m q} = {p € Z| L(Mp) = L(M,)}
schreiben wir auch einfach [g] oder §
@ Fiir eine Teilmenge Q € Z bezeichne
QR={glqe @}
die Menge aller Aquivalenzklassen, die einen Zustand in @ enthalten
@ Dann fiihrt obige Idee auf den DFA
M' = (2,5, 40,E) mit §'(g,2)=0(q,a),
wobei zu zeigen ist, dass 4’(g, a) nicht von der Wahl des
Reprasentanten g fiir die Aquivalenzklasse § abhangt
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e Es geniigt, die Aquivalenzrelation ~; auf der Zustandsmenge Z zu
berechnen

@ Hierzu geniigt es, die Menge D = {{p, q}cZ ‘ ptm q} zu berechnen

@ Sei AA B=(ANB)u(B\ A) die symmetrische Differenz zweier
Mengen A und B. Dann gilt

pitmq <= L(Mp)#L(Mg) < L(Mp) A L(Mg)+2

e Worter x € L(M,) & L(Mg) heiBen Unterscheider zwischen p und g

@ Fiir i >0 sei D™/ die Menge aller Paare {p, g} € D, die einen
Unterscheider x der Lange |x| = i haben, und D; sei die Menge aller
Paare {p, q} € D, die einen Unterscheider x der Lange |x| < i haben

e Dann gilt

o D;=DuDlu---uD" und
o D =Ujs0 DY = Ujx0 D




Algorithmische Konstruktion von M’ s

@ Offenbar unterscheidet ¢ Endzustande und Nichtendzustande, d.h.
Do=D=°={{p,q}SZ|peE,q¢E}

@ Zudem gilt
{p,q} e D" = 3aex:{6(p,a),6(q,a)} e D7,

da 2 Zustande p und g genau dann einen Unterscheider x = x3 ... Xj41
der Lange i + 1 haben, wenn die beiden Zustande 6(p,x1) und 6(q,x1)
einen Unterscheider x = xo ... x;+1 der Lange i haben

@ Folglich ist
Dii1= D u {{p,q}EZ‘EIan:{5(p,a),6(q,a)}eD,-}
—
D=0y...uD=i D=1y...uD=i+1

@ Da es nur endlich viele Zustandspaare gibt, gibt es ein i >0 mit D = D;
e Offensichtlich gilt: D = D; < D;1 = D;




Algorithmus zur Minimierung eines DFA 1

Algorithmus min-DFA(M)
Input: DFA M =(Z,%,6,qo, E)
entferne alle unerreichbaren Zustande aus Z

1

2

3 D":={{p,q}cZ|peE,q¢E}
4 repeat
5

6

7

D:=D'
D= DU {{p.q} | 32T {6(p,3),6(q, )} € D}
until D' =D
Output: M’ = (Z,%,68', 5o, E), wobei 6'(g,a) = 6(q, a) ist
und fir jeden Zustand g€ Z gilt: §={pecZ|{p,q} ¢ D}

© o
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Beispiel
Betrachte den DFA M o]
b a
uh 3le|e
—(—= .
a a b b 5 e
b a
6|c|¢ ele
\‘éDf\é@
b 1 2 3 4 5

Dann enthalt Dy die Paare

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.




Algorithmus zur Minimierung eines DFA L

Beispiel
Betrachte den DFA M -

2
3le|e
b a 4| ala
asa bsb 5|ala
b a
6|c|¢ €
\)
b 1 2 3 4 5

{p,q}
{6(q,2),d(p,a)}

(1,4} {15} {24} {2,5}
{2,3} {2,6} {1,3} {1,6}

enthalt D; zusatzlich die Paare {1,4}, {1,5}, {2,4}, {2,5}.




Algorithmus zur Minimierung eines DFA —

Beispiel
Betrachte den DFA M o]
3lel|e
b a 4| a|a
a\ |4 b{ |b 5lala
Q\: b a E
6|ec|¢ €
— ‘
b 1 2 3 4 5

Da nun jedoch keines der verbliebenen Paare {1,2}, {3,6}, {4,5} wegen

{p,q} {1,2} {3,6} {45}
{0(p,a),6(q,a)} | {1,2} {45} {3,6}
{6(p, b),8(q,b)} | {3,6} {1,2} {4,5}

zu Dy gehort, ist Dy = Dy und somit D = D;.
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Beispiel
Betrachte den DFA M -

2
3lel|e
b a 4| a|a
asa bsb 5|ala
b a
6|ec|¢ ele
\)
b 1 2 3 4 5

Da die Paare {1,2}, {3,6} und {4,5} nicht in D enthalten sind, kénnen
die Zustande 1 und 2, 3 und 6, sowie 4 und 5 verschmolzen werden.
Demnach hat M’ die Zustande 1= {1,2}, 3={3,6} und 4={4,5}:

b a
~ ==
a

b <




Korrektheit des Minimierungsalgorithmus L2

Sei M = (Z,%,9,qo, E) ein DFA ohne unerreichbare Zustdnde. Dann ist

M =(Z,%,8" G, E) mit §'(g,a) =0(q,a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustanden

Beweis

Wir beweisen den Satz durch folgende 3 Behauptungen:

Beh. 1: §’ ist wohldefiniert, da §'(§, a) = d(q, a) nicht von der Wahl des
Reprasentanten q fiir die Aquivalenzklasse § abhangt.

Beh. 2: L(M") = L(M)

Beh. 3: M’ hat eine minimale Anzahl von Zustinden




Korrektheit des Minimierungsalgorithmus 21

Behauptung 1

' ist wohldefiniert, da §’(§, a) = 6(q, a) nicht von der Wahl des
Reprisentanten g fiir die Aquivalenzklasse § abhingt

Beweis von Behauptung 1
@ Hierzu ist die Implikation p ~p g = d(p, a) ~nm 0(q, a) zu zeigen
@ Diese ist aquivalent zur Kontraposition d(p, a) #p d(q,a) = p tm q,
die wir bereits gezeigt haben:
d(p,a) tmo(g,a) = es gibt einen Unterscheider x
zwischen d(p, a) und §(q, a)

= es gibt einen Unterscheider ax
zwischen p und q

= ptmq 0




Korrektheit des Minimierungsalgorithmus —

Behauptung 2
L(M")=L(M)

Beweis von Behauptung 2

@ Sei x=x1...x, € X" eine Eingabe und seien qo, q1,..., g, die von
M(x) besuchten Zusténde, d.h. es gilt §(qg;-1,x;) =¢q; furi=1,...,n

@ Nach Definition von ¢’ folgt daher 6’(g;-1,x;) = @; fur i=1,...,n,
d.h. M’ besucht bei Eingabe x die Zustande o, g1, .-, dn

@ Da aber G, entweder nur End- oder nur Nicht-Endzustdnde enthilt,
gehort g, genau dann zu E, wenn g, zu E gehort, d.h. es gilt

xelL(M) < xelL(M).
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Behauptung 3
M’ hat eine minimale Anzahl von Zustinden

Beweis von Behauptung 3

Wegen | Z|| < | Z| ist M’ sicher dann minimal, wenn M minimal ist

Es reicht also zu zeigen, dass die Anzahl |Z| = index(~p) der Zustande
von M’ nur von der erkannten Sprache L = L(M) abhangt

Wegen p ~ g < L(M,) = L(My) gilt index(~n1) = [{L(M;) | z ¢ Z}|
Fiir jedes Wort x € X sei

L, ={y eX"|xy e L} die Restsprache von L fiir das Prafix x.
Dann gilt {Ly |xeX*} ={L(M,) |z Z}:

c: Klar, da L = L(M,) fiir z = §(qo, x) ist

2: Auch klar, da jedes z € Z iiber ein x € ¥* erreichbar ist
Also hangt index(~p) = ||[{Lx | x € *}| nur von L ab




Ermittlung der Restsprachen von L —

@ Die Sprache
L={xy...x,€{0,1}" | n>2 und x,-1 =0}
hat die vier Restsprachen
L, x € {e,1} oder x endet mit 11,
Lu{0,1},  x =0 oder x endet mit 10,
Lu{e, 0,1}, x endet mit 00,
Lu{e}, x endet mit 01

Ly =

@ Entsprechend gibt es fiir L einen DFA mit 4 Zustanden, aber keinen mit
3 Zustanden. <

vy




Die Nerode-Relation einer Sprache L 129

@ Eine interessante Folgerung aus obigem Beweis ist, dass eine regulare
Sprache L € X* nur endlich viele Restsprachen hat

@ Daraus folgt, dass die durch
x~y o= Le=1L,
auf ©* definierte Aquivalenzrelation ~; fiir jede regulire Sprache L c ¥*
einen endlichen Index hat

@ Die Relation ~; wird als Nerode-Relation von L bezeichnet




Direkte Konstruktion eines Minimal-DFA M, aus L 126

@ Sei L=L(M) fiir einen DFA M = (Z,%,0,qo, E) und fir x € L* sei

L, ={zeX" | xz e L} die Restsprache von L fir x.

o Zudem sei M’ = (Z,%,8',Go, E) der zu M gehérige Minimal-DFA
@ Dieser erreicht nach Lesen eines Wortes x den Zustand S(qo,x)
o Wegen

g(quX) = 3(q07y) ~ S(QO,X) ~M S(QO,_}/)

& L(Msg ) = LMsq ) < La=Ly

(q0,y)

kénnen wir den Zustand (qo,x) von M’ auch mit L, bezeichnen
@ Dies fuhrt auf den zu M’ isomorphen DFA M, = (Z;,%,6;, L., E;) mit

Zp={Li|xeX"}, Ef ={Lx|xel}und 6,(Lx,a) = Lxa,

der sich direkt aus der Sprache L gewinnen lasst

M, wird auch als Restsprachen-DFA fiir L bezeichnet




Direkte Konstruktion des Restsprachen-DFA M, fir L —

Beispiel
@ Die Sprache L={x1...x,€{0,1}* | n>2 und x,_1 = 0} hat die Rest-

sprachen
L, x € {e,1} oder x endet mit 11,

Lu{0,1}, x =0 oder x endet mit 10,
Lu{e, 0,1}, x endet mit 00,
Lu{e}, x endet mit 01

@ Konstruktion von M;:

Ly ‘ Le Lo Loo Lox

Lo | Lo Loo Loo Lo
Lyi | Le Lor Lo1 Le

o Fiir die Konstruktion von M, spielt es keine Rolle, wie die Restsprachen
L, konkret aussehen, d.h. ihre Bestimmung ist nicht erforderlich. <




Der Satz von Myhill und Nerode 128

@ Notwendig und hinreichend fiir die Existenz von M, ist, dass die Menge
Z; ={Ls|xeX*} aller Restsprachen von L endlich ist

@ Dies ist genau dann der Fall, wenn die durch L auf ¥* definierte
Nerode-Relation ~; mit

x~py e Le=1L,
einen endlichen Index hat

@ Ist M bereits minimal, so haben die Zustande des zugehorigen
Minimal-DFA M’ die Form g ={q}, d.h. M" und M sind isomorph

e Da M’ wiederum isomorph zu M, ist, ist jeder minimale DFA M mit
L(M) = L isomorph zu M,

@ Folglich gibt es fiir jede regulédre Sprache L bis auf Isomorphie nur einen
Minimal-DFA




Der Satz von Myhill und Nerode 129

Satz (Myhill und Nerode)

© Fiir jede regulare Sprache L gibt es bis auf Isomorphie nur einen
Minimal-DFA. Dieser hat index(~;) Zusténde

@ REG={L|index(~.) < oo}

Bemerkung

@ Sei R ein Reprasentantensystem fiir die Nerode-Relation ~; von L, d.h.
{Ly|xeX*}={L,|reR}und L, # L, fir alle r,r" e R mit r = r’

@ Dann konnen wir die Zustande des Minimal-DFA anstelle von L, auch
mit den Reprasentanten r € R bezeichnen

@ Dies fiihrt auf den Minimal-DFA Mg = (R, X, 0,¢, E), wobei wir € € R
annehmen und 6(r,a) € R der Reprasentant der Aquivalenzklasse
ra={xeX*|x~p ra} sowie E=RnList

@ Wir bezeichnen Mg als den zu R gehorigen Reprasentanten-DFA fiir L




Direkte Konstruktion von Mgr aus L 130

Beispiel
Fir die Sprache L= {x1...x,€{0,1}* | n>2 und x,_1 = 0} l&sst sich ein
Reprasentanten-DFA Mg wie folgt konstruieren:

@ Seirp=c. Wegen n0=0¢4, rj ist r, =0 und §(&,0) = 0.

@ Wegen il =1~ cist d(e,1) = €.

© Wegen rn0=004, r; fir i =1,2 ist r3 = 00 und §(0,0) = 00.

© Wegen rnl =014, r; fiur i=1,2,3 ist rs =01 und §(0,1) = 01.

©@ Wegen r30 =000~ 00 ist §(00,0) = 00.

@ Wegen r31 =001~; 01 ist 6(00,1) =01.

@ Wegen r;0=010~, 0 ist 6(01,0) = 0.

© Wegen r31 =011~ ¢ ist §(01,1) = e. ) Q )
r |e 0 00 o1 ‘@/0 ’
5(r,0)| 0 00 00 0 1 1
f : 3

o(r,1) | e 01 01 ¢
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Korollar

Sei L € X" eine Sprache. Dann sind folgende Aussagen aquivalent:
L ist regulér (d.h. es gibt einen DFA M mit L = L(M)),

@ es gibt einen NFA N mit L= L(N),

@ es gibt einen regularen Ausdruck v mit L= L(7),

°

die Nerode-Relation ~; von L auf X* hat endlichen Index

Wir kénnen also beweisen, dass eine Sprache L nicht regular ist, indem wir

@ unendlich viele verschiedene Restsprachen finden, bzw.

@ unendlich viele Worter finden, die paarweise indquivalent bzgl. ~; sind

4




Nachweis von L ¢ REG mittels Myhill und Nerode e

Die Sprache L ={a"b" | n> 0} ist nicht regular \

Beweis

o Wegen
b'elyal, (fir0<i<j)
sind die Restsprachen L_;, i > 0, paarweise verschieden.

o Wegen

a' 2 EUR=S Lai = Laj

folgt auch, dass a’ £, a/ fiir i < j gilt und somit index(~;) = c0 ist. O
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