
Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik
Humboldt-Universität zu Berlin

WS 2020/21



Inhalt der Vorlesung 7

Themen dieser VL:
Welche Rechenmodelle eignen sich zur Lösung welcher
algorithmischen Problemstellungen? Automatentheorie
Welche algorithmischen Probleme sind überhaupt lösbar?

Berechenbarkeitstheorie
Welcher Aufwand ist zur Lösung eines geg. algorithmischen
Problems nötig? Komplexitätstheorie

Themen der VL Algorithmen und Datenstrukturen:
Wie lassen sich praktisch relevante Problemstellungen möglichst
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Mathem. Grundlagen der Informatik, Beweise führen, Modellierung

Aussagenlogik, Prädikatenlogik
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Überblick über die wichtigsten Rechenmodelle (Automaten) wie z.B.
endliche Automaten
Kellerautomaten
Turingmaschinen
Registermaschinen
Schaltkreise

Charakterisierung der Klassen aller mit diesen Rechenmodellen lösbaren
Probleme durch

unterschiedliche Typen von formalen Grammatiken
Abschlusseigenschaften unter geeigneten Sprachoperationen
Reduzierbarkeit auf typische Probleme (Vollständigkeit)

Erkennen von Grenzen der Berechenbarkeit
Klassifikation wichtiger algorithmischer Probleme nach ihrer
Komplexität
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Rechenmaschinen spielen in der Informatik eine zentrale Rolle
Es gibt viele unterschiedliche math. Modelle für Rechenmaschinen
Diese können sich in ihrer Berechnungskraft unterscheiden
Die Turingmaschine (TM) ist ein universales Berechnungsmodell, da sie
alle anderen bekannten Rechenmodelle simulieren kann
Wir betrachten zunächst Einschränkungen des TM-Modells, die
vielfältige praktische Anwendungen haben, wie z.B.

endliche Automaten (DFA, NFA)
Kellerautomaten (PDA, DPDA) etc.



Der Algorithmenbegriff 10

Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück
Ältester bekannter nicht-trivialer Algorithmus:
Euklidischer Algorithmus zur Berechnung des ggT (300 v. Chr.)
Von einem Algorithmus wird erwartet, dass er bei jeder zulässigen
Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert
Eine wichtige Rolle spielen Entscheidungsprobleme, bei denen jede
Eingabe nur mit ja oder nein beantwortet wird
Die (maximale) Anzahl der Rechenschritte bei allen möglichen
Eingaben ist nicht beschränkt, d.h. mit wachsender Eingabelänge kann
auch die Rechenzeit beliebig anwachsen
Die Beschreibung eines Algorithmus muss jedoch endlich sein
Problemeingaben können Zahlen, Formeln, Graphen etc. sein
Diese werden über einem Eingabealphabet Σ kodiert



Alphabet, Wort, Sprache 11

Definition
Ein Alphabet ist eine endliche linear geordnete Menge

Σ = {a1, . . . , am}

von m ≥ 1 Zeichen a1 < ⋯ < am

Eine Folge x = x1 . . . xn von n ≥ 0 Zeichen xi ∈ Σ heißt Wort der Länge n
über Σ
Die Länge von x wird mit ∣x ∣ und die Menge aller Wörter der Länge n
über Σ wird mit Σn bezeichnet
Die Menge aller Wörter über Σ ist

Σ∗ = ⋃
n≥0

Σn = Σ0 ∪Σ1 ∪Σ2 ∪⋯

Das (einzige) Wort der Länge n = 0 ist das leere Wort, welches wir mit
ε bezeichnen, d.h. Σ0 = {ε}
Jede Teilmenge L ⊆ Σ∗ heißt Sprache über dem Alphabet Σ



Beispiele für Sprachen 12

Beispiel
Sprachen über Σ sind beispielsweise ∅,Σ∗,Σ und {ε}
∅ enthält keine Wörter und heißt leere Sprache
Σ∗ enthält dagegen alle Wörter über Σ
Σ enthält alle Wörter über Σ der Länge 1
{ε} enthält nur das leere Wort, ist also einelementig
Sprachen, die genau ein Wort enthalten, werden auch als
Singletonsprachen bezeichnet
in der Informatik spielen Programmiersprachen eine wichtige Rolle



Operationen auf Sprachen 13

Da Sprachen Mengen sind, können wir sie bzgl. Inklusion vergleichen
Zum Beispiel gilt ∅ ⊆ {ε} ⊆ Σ∗

Wir können Sprachen auch vereinigen, schneiden und komplementieren
Seien A und B Sprachen über Σ. Dann ist

A ∩B = {x ∈ Σ∗ ∣ x ∈ A ∧ x ∈ B} der Schnitt von A und B
A ∪B = {x ∈ Σ∗ ∣ x ∈ A ∨ x ∈ B} die Vereinigung von A und B, und
A = {x ∈ Σ∗ ∣ x /∈ A} das Komplement von A



Konkatenation von Wörtern 14

Definition
Die Konkatenation von zwei Wörtern x = x1 . . . xn und y = y1 . . . ym ist das
Wort x ○ y = x1 . . . xny1 . . . ym, das wir auch einfach mit xy bezeichnen

Beispiel
Für x = aba und y = abab erhalten wir xy = abaabab und yx = abababa
Die Konkatenation ist also nicht kommutativ
Allerdings ist ○ assoziativ, d.h. es gilt x(yz) = (xy)z
Daher können wir hierfür auch einfach xyz schreiben
Es gibt auch ein neutrales Element, da xε = εx = x ist
Eine algebraische Struktur (M,◻, e) mit einer assoziativen Operation
◻ ∶ M ×M →M und einem neutralen Element e heißt Monoid
(Σ∗, ○, ε) ist also ein Monoid



Spezielle Sprachoperationen 15

Neben den Mengenoperationen Schnitt, Vereinigung und Komplement gibt
es auch spezielle Sprachoperationen

Definition
Das Produkt (Verkettung, Konkatenation) von zwei Sprachen A und B
ist

AB = {xy ∣ x ∈ A, y ∈ B}

Ist A = {x} eine Singletonsprache, so schreiben wir für {x}B auch
einfach xB
Die n-fache Potenz An einer Sprache A ist induktiv definiert durch

An =
⎧⎪⎪⎨⎪⎪⎩

{ε}, n = 0,
An−1A, n > 0

Die Sternhülle einer Sprache A ist A∗ = ⋃n≥0 An

Die Plushülle einer Sprache A ist A+ = ⋃n≥1 An = AA∗



Algorithmische Erkennung von Sprachen 16

Ein einfaches Rechenmodell zum Erkennen von Sprachen ist der
endliche Automat:

x1 ⋯ xi ⋯ xn

Eingabe-
band

Lesekopf

Steuer-
einheit

Ð→

Ein endlicher Automat
nimmt zu jedem Zeitpunkt genau einen von endlich vielen
Zuständen an
macht bei Eingaben der Länge n genau n Rechenschritte und
liest in jedem Schritt genau ein Eingabezeichen



Formale Definition eines endlichen Automaten 17

Definition
Ein endlicher Automat (kurz: DFA; Deterministic Finite Automaton)
wird durch ein 5-Tupel M = (Z ,Σ, δ,q0,E) beschrieben, wobei

Z ≠ ∅ eine endliche Menge von Zuständen
Σ das Eingabealphabet
δ ∶ Z ×Σ→ Z die Überführungsfunktion
q0 ∈ Z der Startzustand und
E ⊆ Z die Menge der Endzustände ist

Die von M akzeptierte (oder erkannte) Sprache ist

L(M) = {x1 . . . xn ∈ Σ∗ es gibt q1, . . . ,qn−1 ∈ Z ,qn ∈ E mit
δ(qi , xi+1) = qi+1 für i = 0, . . . ,n − 1

}

Eine Zustandsfolge q0,q1, . . . ,qn heißt Rechnung von M(x1 . . . xn), falls
δ(qi , xi+1) = qi+1 für i = 0, . . . ,n − 1 gilt
Sie heißt akzeptierend, falls qn ∈ E ist, und andernfalls verwerfend



Die Klasse der regulären Sprachen 18

Frage
Welche Sprachen lassen sich durch endliche Automaten erkennen und
welche nicht?

Definition
Eine von einem DFA akzeptierte Sprache wird als regulär bezeichnet. Die
zugehörige Sprachklasse ist

REG = {L(M) ∣ M ist ein DFA}



DFAs beherrschen Modulare Arithmetik 19

Beispiel
Sei M3 = (Z ,Σ, δ,0,E) ein DFA mit Z = {0,1,2}, Σ = {a,b}, E = {1} und
der Überführungsfunktion

δ 0 1 2

a 1 2 0
b 2 0 1

Graphische
Darstellung:

2

0

1

a
bb

a

a

b

Endzustände werden durch einen doppelten Kreis und der Startzustand
wird durch einen Pfeil gekennzeichnet ◁

Frage: Welche Wörter akzeptiert M3?
Ist w1 = aba ∈ L(M3)? Ja (akzeptierende Rechnung: 0,1,0,1)
Ist w2 = abba ∈ L(M3)? Nein (verwerfende Rechnung: 0,1,0,2,0)



DFAs beherrschen Modulare Arithmetik 20

Behauptung
Die von M3 erkannte Sprache ist

L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}, wobei

#a(x) die Anzahl der Vorkommen von a in x bezeichnet und
i ≡m j (in Worten: i ist kongruent zu j modulo m) bedeutet, dass i − j
durch m teilbar ist

Beweis der Behauptung durch Induktion über die Länge von x
Wir betrachten zunächst das Erreichbarkeitsproblem für DFAs



Das Erreichbarkeitsproblem für DFAs 21

Frage
Sei M = (Z ,Σ, δ,q0,E) ein DFA und sei x = x1 . . . xn ∈ Σ∗. Welchen
Zustand erreicht M nach Lesen der Eingabe x?

Antwort
nach 0 Schritten: den Startzustand q0
nach 1 Schritt: den Zustand δ(q0, x1)
nach 2 Schritten: den Zustand δ(δ(q0, x1), x2)
⋮

nach n Schritten: den Zustand δ(. . . δ(δ(q0, x1), x2), . . . xn)



Das Erreichbarkeitsproblem für DFAs 22

Definition
Bezeichne δ̂(q, x) denjenigen Zustand, in dem sich M nach Lesen von x
befindet, wenn M im Zustand q gestartet wird
Dann können wir die Funktion

δ̂ ∶ Z ×Σ∗ → Z
induktiv über die Länge von x wie folgt definieren:
Für q ∈ Z , x ∈ Σ∗ und a ∈ Σ sei

δ̂(q, ε) = q,
δ̂(q, xa) = δ(δ̂(q, x), a)

Die von M erkannte Sprache lässt sich nun elegant durch
L(M) = {x ∈ Σ∗ ∣ δ̂(q0, x) ∈ E}

beschreiben



DFAs beherrschen Modulare Arithmetik 23

M3:

2

0

1

a
bb

a

a

b

Behauptung
Für alle x ∈ {a,b}∗ gilt:

x ∈ L(M3) ⇔#a(x) −#b(x) ≡3 1

Beweis
1 ist der einzige Endzustand von M
Daher ist L(M3) = {x ∈ {a,b}∗ ∣ δ̂(0, x) = 1}
Obige Behauptung ist also äquivalent zu

für alle x ∈ {a,b}∗gilt∶ δ̂(0, x) = 1⇔#a(x) −#b(x) ≡3 1
Folglich reicht es, für alle x ∈ {a,b}∗ folgende Kongruenz zu zeigen:

δ̂(0, x) ≡3 #a(x) −#b(x)



DFAs beherrschen Modulare Arithmetik 24

Induktionsbehauptung: Für alle x ∈ {a,b}n gilt δ̂(0, x) ≡3 #a(x)−#b(x)
Induktionsanfang (n = 0): klar, da δ̂(0, ε) = #a(ε) = #b(ε) = 0 ist
Induktionsschritt (n ↝ n + 1): Sei x = x1 . . . xn+1 ∈ {a,b}n+1 gegeben

Nach Induktionsvoraussetzung (IV) gilt für x ′ = x1 . . . xn:
δ̂(0, x ′) ≡3 #a(x ′) −#b(x ′)

Zudem gilt für alle i ∈ Z = {0,1,2}:

δ(i , xn+1) ≡3 { i + 1, xn+1 = a
i − 1, xn+1 = b

= i +#a(xn+1) −#b(xn+1) (∗)
Somit folgt

δ̂(0, x) = δ(δ̂(0, x ′), xn+1)
≡3 δ̂(0, x ′) +#a(xn+1) −#b(xn+1) (∗)
≡3 #a(x ′) −#b(x ′) +#a(xn+1) −#b(xn+1) (IV )
≡3 #a(x) −#b(x) ◻



Singletonsprachen sind regulär 25

Vereinbarung
Für das Folgende sei Σ = {a1, . . . , am} ein fest gewähltes Alphabet

Beobachtung 1
Alle Sprachen, die nur ein Wort x = x1 . . . xn ∈ Σ∗ enthalten, sind regulär

Beweis
Folgender DFA M erkennt die Sprache L(M) = {x}:

q0 q1 q2 ⋯ qn

e

x3 xnx1 x2

a ≠ x1
a ≠ x2 a ≠ x3

a ∈ Σ

a ∈ Σ
◻



REG ist unter Komplement abgeschlossen 26

Beobachtung 2
Ist L ∈ REG, so ist auch die Sprache L = Σ∗ ∖ L regulär

Beweis
Sei M = (Z ,Σ, δ,q0,E) ein DFA mit L(M) = L
Dann wird das Komplement L von L von dem DFA
M = (Z ,Σ, δ,q0,Z ∖ E) akzeptiert

◻

Definition
Für eine Sprachklasse C bezeichne co-C die Klasse {L̄ ∣ L ∈ C} aller
Komplemente von Sprachen in C

Korollar
co-REG = REG



REG ist unter Schnitt abgeschlossen 27

Beobachtung 3
Sind L1,L2 ∈ REG, so ist auch die Sprache L1 ∩ L2 regulär

Beweis
Seien Mi = (Zi ,Σ, δi ,qi ,Ei), i = 1,2, DFAs mit L(Mi) = Li .
Dann wird der Schnitt L1 ∩ L2 von dem DFA

M = (Z1 × Z2,Σ, δ, (q1,q2),E1 × E2)

mit
δ((p,q), a) = (δ1(p, a), δ2(q, a))

erkannt
M wird auch als Kreuzproduktautomat bezeichnet

◻



REG ist unter Vereinigung abgeschlossen 28

Beobachtung 4
Die Vereinigung L1 ∪ L2 von regulären Sprachen L1 und L2 ist regulär

Beweis

Es gilt L1 ∪ L2 = (L1 ∩ L2) ◻

Frage
Wie sieht der zugehörige DFA aus?

Antwort
M ′ = (Z1 × Z2,Σ, δ, (q1,q2), (E1 × Z2) ∪ (Z1 × E2))



Abschlusseigenschaften von Sprachklassen 29

Definition
Ein (k-stelliger) Sprachoperator ist eine Abbildung op, die k Sprachen
L1, . . . ,Lk auf eine Sprache op(L1, . . . ,Lk) abbildet
Eine Sprachklasse K heißt unter op abgeschlossen, wenn gilt:

L1, . . . ,Lk ∈ K ⇒ op(L1, . . . ,Lk) ∈ K
Der Abschluss von K unter op ist die (bzgl. Inklusion) kleinste
Sprachklasse K′, die K enthält und unter op abgeschlossen ist

Beispiel
Der 2-stellige Schnittoperator ∩ bildet L1 und L2 auf L1 ∩ L2 ab
Der Abschluss der Singletonsprachen unter ∩ besteht aus allen
Singletonsprachen und der leeren Sprache
Der Abschluss der Singletonsprachen unter ∪ besteht aus allen
nichtleeren endlichen Sprachen
Der Abschluss der Singletonsprachen unter ∩, ∪ und Komplement
besteht aus allen endlichen und co-endlichen Sprachen ◁



REG ist unter Mengenoperationen abgeschlossen 30

Korollar
Die Klasse REG der regulären Sprachen ist unter folgenden Operationen
abgeschlossen:

Komplement
Schnitt
Vereinigung



Wie umfangreich ist REG? 31

Folgerung
Aus den Beobachtungen folgt, dass alle endlichen und alle co-endlichen
Sprachen regulär sind
Da die reguläre Sprache

L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}
weder endlich noch co-endlich ist, haben wir damit allerdings noch
nicht alle regulären Sprachen erfasst



Wie umfangreich ist REG? 32

Nächstes Ziel
Zeige, dass REG unter Produktbildung und Sternhülle abgeschlossen ist

Problem
Bei der Konstruktion eines DFA M für das Produkt L(M1)L(M2) bereitet
es Schwierigkeiten, den richtigen Zeitpunkt für das Ende der Simulation
des DFA M1 und den Start der Simulation des DFA M2 zu finden

Lösungsidee
Ein nichtdeterministischer endlicher Automat (NFA) kann den richtigen
Zeitpunkt „raten“

Verbleibendes Problem
Zeige, dass auch NFAs nur reguläre Sprachen erkennen



Nichtdeterministische endliche Automaten 33

Definition
Ein nichtdet. endl. Automat (kurz: NFA; Nondet. Finite Automaton)

N = (Z ,Σ,∆,Q0,E)
ist genau so aufgebaut wie ein DFA, nur dass er

eine Menge Q0 ⊆ Z von Startzuständen hat und
die Überführungsfunktion folgende Form hat

∆ ∶ Z ×Σ→ P(Z)

Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge aller
Teilmengen) von Z ; diese wird oft auch mit 2Z bezeichnet
Die von einem NFA N akzeptierte (oder erkannte) Sprache ist

L(N) = {x1 . . . xn ∈ Σ∗ es gibt q0 ∈ Q0,q1, . . . ,qn−1 ∈ Z ,qn ∈ E
mit qi+1 ∈ ∆(qi , xi+1) für i = 0, . . . ,n − 1

}

Eine Zustandsfolge q0, . . . ,qn heißt Rechnung von N(x1 . . . xn), falls
q0 ∈ Q0 und qi+1 ∈ ∆(qi , xi+1) für i = 0, . . . ,n − 1 gilt



Eigenschaften von NFAs 34

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausführen
Ein Wort x gehört genau dann zu L(N), wenn N(x) mindestens eine
akzeptierende Rechnung hat
Im Gegensatz zu einem DFA, der jede Eingabe zu Ende liest, kann ein
NFA N „stecken bleiben“
Dieser Fall tritt ein, wenn N in einen Zustand q gelangt, in dem er das
nächste Eingabezeichen xi wegen

∆(q, xi) = ∅

nicht verarbeiten kann



Eigenschaften von NFAs 35

Beispiel
Betrachte den NFA N = (Z ,Σ,∆,Q0,E) mit Z = {p,q, r , s},
Σ = {0,1,2}, Q0 = {p}, E = {s} und der Überführungsfunktion

∆ p q r s

0 {p,q} ∅ ∅ ∅
1 {p} {r} ∅ ∅
2 {p} ∅ {s} ∅

Graphische Darstellung:

p q r s0 1 2

0,1,2

Ist w1 = 012 ∈ L(N)? Ja (akzeptierende Rechnung: p,q, r , s)
Es gibt aber auch verwerfende Rechnungen bei Eingabe w1: p,p,p,p
Ist w2 = 021 ∈ L(N)? Nein, da es keine akzeptierende Rechnung gibt
Es gilt L(N) = {x012 ∣ x ∈ Σ∗} ◁



Ein NFA für das Produkt von regulären Sprachen 36

Beobachtung 5
Seien Ni = (Zi ,Σ,∆i ,Qi ,Ei) NFAs mit L(Ni) = Li für i = 1,2. Dann wird
auch das Produkt L1L2 von einem NFA erkannt

Beweis
Wir können Z1 ∩ Z2 = ∅ annehmen
Dann gilt L(N) = L1L2 für den NFA N = (Z1 ∪ Z2,Σ,∆,Q1,E) mit

∆(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖ E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), p ∈ Z2

und

E =
⎧⎪⎪⎨⎪⎪⎩

E2, Q2 ∩ E2 = ∅,
E1 ∪ E2, sonst



Ein NFA für das Produkt von regulären Sprachen 37

Dann gilt L(N) = L1L2 für den NFA N = (Z1 ∪ Z2,Σ,∆,Q1,E) mit

∆(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖ E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), p ∈ Z2

und E = E2, falls Q2 ∩ E2 = ∅, bzw. E = E1 ∪ E2 sonst

Beweis von L1L2 ⊆ L(N):
Seien x = x1⋯xk ∈ L1, y = y1⋯yl ∈ L2 und seien q0, . . . ,qk und p0, . . . ,pl

akzeptierende Rechnungen von N1(x) und N2(y)
Dann ist q0, . . . ,qk ,p1, . . . ,pl eine akz. Rechnung von N(xy), da

q0 ∈ Q1 und pl ∈ E2 ist, und
im Fall l ≥ 1 wegen qk ∈ E1, p0 ∈ Q2 und p1 ∈ ∆2(p0, y1) zudem
p1 ∈ ∆(qk , y1) und
im Fall l = 0 wegen qk ∈ E1 und pl ∈ Q2 ∩ E2 zudem qk ∈ E ist
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Dann gilt L(N) = L1L2 für den NFA N = (Z1 ∪ Z2,Σ,∆,Q1,E) mit

∆(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖ E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), p ∈ Z2

und E = E2, falls Q2 ∩ E2 = ∅, bzw. E = E1 ∪ E2 sonst

Beweis von L(N) ⊆ L1L2:
Sei x = x1⋯xn ∈ L(N) und sei q0, . . . ,qn eine akz. Rechnung von N(x)
Dann gilt q0 ∈ Q1, qn ∈ E , q0, . . . ,qi ∈ Z1 und qi+1, . . . ,qn ∈ Z2 für ein i ≤ n
Wir zeigen, dass q0, . . . ,qi eine akz. Rechnung von N1(x1⋯xi) und

q,qi+1, . . . ,qn für ein q ∈ Q2 eine akz. Rechnung von N2(xi+1⋯xn) ist:
Im Fall i < n impliziert der Übergang qi+1 ∈ ∆(qi , xi+1), dass qi ∈ E1
und qi+1 ∈ ∆2(q, xi+1) für ein q ∈ Q2 ist. Zudem ist qn ∈ E ∩ Z2 = E2

Im Fall i = n ist qn ∈ E ∩ Z1, was qn ∈ E1 und Q2 ∩ E2 ≠ ∅ impliziert
◻



Ein NFA für die Sternhülle einer regulären Sprache 39

Beobachtung 6
Ist N = (Z ,Σ,∆,Q0,E) ein NFA, so wird auch die Sprache L(N)∗ von
einem NFA erkannt

Beweis
Die Sprache L(N)∗ wird von dem NFA

N ′ = (Z∪{qneu},Σ,∆′,Q0∪{qneu},E∪{qneu})

mit

∆′(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆(p, a), p ∈ Z ∖ E ,
∆(p, a) ∪ ⋃q∈Q0 ∆(q, a), p ∈ E ,
∅, p = qneu

erkannt
◻



Überblick 40

Ziel
Zeige, dass REG unter Produktbildung und Sternhülle abgeschlossen ist

Problem
Bei der Konstruktion eines DFA für das Produkt L1L2 bereitet es
Schwierigkeiten, den richtigen Zeitpunkt für den Übergang von (der
Simulation von) M1 zu M2 zu finden

Lösungsidee (bereits umgesetzt)
Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
für den Übergang „raten“

Noch zu zeigen
NFAs erkennen genau die regulären Sprachen
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Satz (Rabin und Scott)
REG = {L(N) ∣ N ist ein NFA}

Beweis von REG ⊆ {L(N) ∣ N ist ein NFA}
Diese Inklusion ist klar, da jeder DFA M = (Z ,Σ, δ,q0,E) in einen
äquivalenten NFA

N = (Z ,Σ,∆,Q0,E)

transformiert werden kann, indem wir ∆(q, a) = {δ(q, a)} und Q0 = {q0}
setzen.

◻

Für die umgekehrte Inklusion ist das Erreichbarkeitsproblem für NFAs von
zentraler Bedeutung
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Frage
Sei N = (Z ,Σ,∆,Q0,E) ein NFA und sei x = x1 . . . xn eine Eingabe. Welche
Zustände sind in i Schritten erreichbar?

Antwort
in 0 Schritten: alle Zustände in Q0

in einem Schritt: alle Zustände in
Q1 = ⋃

q∈Q0

∆(q, x1)

in i Schritten: alle Zustände in
Qi = ⋃

q∈Qi−1

∆(q, xi)
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Idee
Wir können einen NFA N = (Z ,Σ,∆,Q0,E) durch einen DFA
M = (Z ′,Σ, δ,q′0,E ′) simulieren, der in seinem Zustand die Information
speichert, in welchen Zuständen sich N momentan befinden könnte
Die Zustände von M sind also Teilmengen Q von Z (d.h. Z ′ = P(Z))
mit Q0 als Startzustand (d.h. q′0 = Q0) und der Endzustandsmenge

E ′ = {Q ⊆ Z ∣ Q ∩ E /= ∅}

Die Überführungsfunktion δ ∶ P(Z) ×Σ→ P(Z) von M berechnet dann
für einen Zustand Q ⊆ Z und ein Zeichen a ∈ Σ die Menge

δ(Q, a) = ⋃
q∈Q

∆(q, a)

aller Zustände, in die N gelangen kann, wenn N ausgehend von einem
beliebigen Zustand q ∈ Q das Zeichen a liest
M wird auch als der zu N gehörige Potenzmengenautomat bezeichnet
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Beispiel
Betrachte den NFA N

p q r s0 1 2

0,1,2

Ausgehend von Q0 = {p} liefert δ dann die folgenden Werte:

δ

0 1 2

{p} {p,q} {p} {p}
{p,q} {p,q} {p, r} {p}
{p, r} {p,q} {p} {p, s}
{p, s} {p,q} {p} {p}

{p}{p}

1

{p}

1,2

{p}

1,2

{p,q}{p,q}

0

{p, r}{p, s}

0

10

2

1
011,2

2

◁
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Bemerkung
Im obigen Beispiel werden für die Konstruktion des Potenzmengen-
automaten nur 4 der insgesamt

∥P(Z)∥ = 2∥Z∥ = 24 = 16
Zustände benötigt, da die übrigen 12 Zustände nicht erreichbar sind
(hierbei bezeichnet ∥A∥ die Mächtigkeit einer Menge A)
Es gibt jedoch Beispiele, bei denen alle 2∥Z∥ Zustände benötigt werden
(siehe Übungen)
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Beweis von {L(N) ∣ N ist ein NFA} ⊆ REG
Sei N = (Z ,Σ,∆,Q0,E) ein NFA und sei M = (P(Z),Σ, δ,Q0,E ′) der
zugehörige Potenzmengenautomat mit δ(Q, a) = ⋃q∈Q ∆(q, a) und
E ′ = {Q ⊆ Z ∣ Q ∩ E /= ∅}
Dann folgt die Korrektheit von M mittels folgender Behauptung, die wir
auf der nächsten Folie beweisen.
Behauptung
δ̂(Q0, x) enthält genau die von N nach Lesen von x erreichbaren
Zustände

Für alle Wörter x ∈ Σ∗ gilt
x ∈ L(N) ⇔ N kann nach Lesen von x einen Endzustand erreichen

Beh.⇔ δ̂(Q0, x) ∩ E /= ∅
⇔ δ̂(Q0, x) ∈ E ′

⇔ x ∈ L(M) ◻
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Behauptung
δ̂(Q0, x) enthält genau die von N nach Lesen von x erreichbaren Zustände

Beweis durch Induktion über die Länge n von x
n = 0: klar, da δ̂(Q0, ε) = Q0 ist

n ↝ n + 1: Sei x = x1 . . . xn+1 gegeben. Nach IV enthält
Qn = δ̂(Q0, x1 . . . xn)

die Zustände, die N nach Lesen von x1 . . . xn erreichen kann.
Wegen

δ̂(Q0, x) = δ(Qn, xn+1) = ⋃
q∈Qn

∆(q, xn+1)

enthält dann aber δ̂(Q0, x) die Zustände, die N nach Lesen
von x erreichen kann. ◻
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Satz (Rabin und Scott)
REG = {L(N) ∣ N ist ein NFA}

Korollar
Die Klasse REG der regulären Sprachen ist unter folgenden Operationen
abgeschlossen:

Komplement
Schnitt
Vereinigung
Produkt
Sternhülle
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Nächstes Ziel
Zeige, dass REG als Abschluss der endlichen Sprachen unter Vereinigung,
Produkt und Sternhülle charakterisierbar ist

Bereits gezeigt:
Jede Sprache, die mittels der Operationen Vereinigung, Produkt und
Sternhülle (sowie Schnitt und Komplement) angewandt auf endliche
Sprachen darstellbar ist, ist regulär

Noch zu zeigen:
Jede reguläre Sprache lässt sich aus endlichen Sprachen mittels
Vereinigung, Produkt und Sternhülle erzeugen



Konstruktive Charakterisierung von REG 50

Induktive Definition der Menge RAΣ aller regulären Ausdrücke über Σ
Die Symbole ∅, ε und a (a ∈ Σ) sind reguläre Ausdrücke über Σ, die

die leere Sprache L(∅) = ∅
die Sprache L(ε) = {ε} und
für jedes a ∈ Σ die Sprache L(a) = {a} beschreiben

Sind α und β reguläre Ausdrücke über Σ, die die Sprachen L(α) und L(β)
beschreiben, so sind auch αβ, (α∣β) und (α)∗ reguläre Ausdrücke über Σ,
die folgende Sprachen beschreiben:

L(αβ) = L(α)L(β)
L((α∣β)) = L(α) ∪ L(β)
L((α)∗) = L(α)∗

Bemerkung
RAΣ ist eine Sprache über dem Alphabet Γ = Σ ∪ {∅, ε, ∣,∗ , (, )}
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Beispiel
Die regulären Ausdrücke (ε)∗, (∅)∗, (0∣1)∗00 und (0∣(ε0∣∅(1)∗)) be-
schreiben folgende Sprachen:

γ (ε)∗ (∅)∗ (0∣1)∗00 (0∣(ε0∣∅(1)∗))
L(γ) {ε} {ε} {x00 ∣ x ∈ {0,1}∗} {0}

◁

Vereinbarungen
Um Klammern zu sparen, definieren wir folgende Präzedenzordnung:
Der Sternoperator ∗ bindet stärker als der Produktoperator und dieser
wiederum stärker als der Vereinigungsoperator
Für (0∣(ε0∣∅(1)∗)) können wir also kurz 0∣ε0∣∅1∗ schreiben
Da der reguläre Ausdruck γγ∗ die Sprache L(γ)+ beschreibt, verwenden
wir γ+ als Abkürzung für den Ausdruck γγ∗
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Satz
REG = {L(γ) ∣ γ ist ein regulärer Ausdruck}

Beweis der Inklusion von rechts nach links.
Klar, da

die Basisausdrücke ∅, ε und a, a ∈ Σ∗, reguläre Sprachen beschreiben
und
die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle
abgeschlossen ist ◻
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Für die umgekehrte Inklusion betrachten wir zunächst den DFA M3.

M3:

2

0

1

a
bb

a

a

b

Frage
Wie lässt sich die Sprache

L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}
durch einen regulären Ausdruck beschreiben?

Antwort
Sei Lp,q die Sprache aller Wörter x , die M3 vom Zustand p in den
Zustand q überführen (d.h. Lp,q = {x ∈ {a,b}∗ ∣ δ̂(p, x) = q})
Weiter sei L≠r

p,q die Sprache aller Wörter x = x1⋯xn ∈ Lp,q, die hierzu nur
Zustände ungleich r benutzen (d.h. δ̂(p, x1⋯xi) ≠ r für i = 1, . . . ,n − 1)
Dann gilt L(M3) = L0,1 = L0,0L≠00,1, wobei L0,0 = (L≠00,0)

∗ ist
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Antwort (Fortsetzung)

M3:

2

0

1

a
bb

a

a

b

Dann ist L(M3) = L0,0L≠00,1 = (L≠00,0)
∗L≠00,1

L≠00,1 und L≠00,0 lassen sich durch folgende
reguläre Ausdrücke beschreiben:

γ≠00,1 = (a∣bb)(ab)∗

γ≠00,0 = a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb) ∣ ε

Also ist L(M3) durch folgenden regulären Ausdruck beschreibbar:
γ0,1 = (a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb))∗(a∣bb)(ab)∗
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Satz
REG = {L(γ) ∣ γ ist ein regulärer Ausdruck}

Beweis der Inklusion von links nach rechts.
Wir konstruieren zu einem DFA M = (Z ,Σ, δ,q0,E) einen regulären
Ausdruck γ mit L(γ) = L(M).
Wir nehmen an, dass Z = {1, . . . ,m} und q0 = 1 ist
Dann lässt sich L(M) als Vereinigung

L(M) = ⋃
q∈E

L1,q

von Sprachen der Form Lp,q = {x ∈ Σ∗ ∣ δ̂(p, x) = q} darstellen
Es reicht also, reguläre Ausdrücke für die Sprachen Lp,q mit
1 ≤ p,q ≤ m anzugeben
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Satz
REG ⊆ {L(γ) ∣ γ ist ein regulärer Ausdruck}

Beweis (Fortsetzung)
Es reicht also, reguläre Ausdrücke für die Sprachen Lp,q mit
1 ≤ p,q ≤ m anzugeben
Hierzu betrachten wir für r = 0, . . . ,m die Sprachen

L≤r
p,q = {x1 . . . xn ∈ Lp,q für i = 1, . . . ,n − 1 ist δ̂(p, x1 . . . xi) ≤ r} ,

die wir auch einfach mit Lr
p,q bezeichnen

Wegen Lp,q = Lm
p,q reicht es, reguläre Ausdrücke für die Sprachen Lr

p,q
mit 1 ≤ p,q ≤ m und 0 ≤ r ≤ m anzugeben
Wir zeigen induktiv über r , dass die Sprachen Lr

p,q durch reguläre
Ausdrücke beschreibbar sind
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Satz
REG ⊆ {L(γ) ∣ γ ist ein regulärer Ausdruck}

Beweis (Schluss)
r = 0: In diesem Fall sind die Sprachen

L0p,q =
⎧⎪⎪⎨⎪⎪⎩

{a ∈ Σ ∣ δ(p, a) = q}, p ≠ q,
{a ∈ Σ ∣ δ(p, a) = q} ∪ {ε}, sonst

endlich, also durch reg. Ausdrücke γ0p,q beschreibbar
r ↝ r + 1: Nach IV existieren reguläre Ausdrücke γr

p,q für die
Sprachen Lr

p,q. Wegen

Lr+1
p,q = Lr

p,q ∪ Lr
p,r+1(Lr

r+1,r+1)∗Lr
r+1,q

sind dann γr+1
p,q = γr

p,q ∣γr
p,r+1(γr

r+1,r+1)∗γr
r+1,q reguläre

Ausdrücke für die Sprachen Lr+1
p,q . ◻
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Beispiel
Betrachte den DFA M

1

b

2

b

a

a

Da M nur einen Endzustand q = 2 und insgesamt m = 2 Zustände
besitzt, folgt

L(M) = ⋃
q∈E

L1,q = L1,2 = L21,2
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Beispiel (Fortsetzung)
Um reguläre Ausdrücke γr

p,q für die Sprachen Lr
p,q zu bestimmen,

benutzen wir für r ≥ 0 die Rekursionsformel
γr+1

p,q = γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

Damit erhalten wir

γ21,2 = γ11,2∣γ11,2(γ12,2)∗γ12,2
γ11,2 = γ01,2∣γ01,1(γ01,1)∗γ01,2
γ12,2 = γ02,2∣γ02,1(γ01,1)∗γ01,2

Für die Berechnung von γ21,2 werden also nur die regulären Ausdrücke
γ01,1, γ01,2, γ02,1, γ02,2, γ12,2 und γ11,2 benötigt



Charakterisierung von REG durch reguläre Ausdrücke 60

Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 γ01,1 γ01,2 γ02,1 γ02,2

1 - γ11,2 - γ12,2

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b γ01,2 γ02,1 γ02,2

1 - γ11,2 - γ12,2

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a γ02,1 γ02,2

1 - γ11,2 - γ12,2

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a γ02,2

1 - γ11,2 - γ12,2

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - γ11,2 - γ12,2

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - b∗a - γ12,2

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - b∗a - ε∣b∣ab∗a

2 - γ21,2 - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformel

n
L0p,p ={c ∈ Σ ∣ δ(p, c) = p} ∪ {ε}
L0p,q ={c ∈ Σ ∣ δ(p, c) = q} für p ≠ q
γr+1

p,q =γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q

L01,1 ={c ∈ Σ ∣ δ(1, c) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={c ∈ Σ ∣ δ(1, c) = 2} = {a}

↝ γ01,2 = a

L02,1 ={c ∈ Σ ∣ δ(2, c) = 1} = {a}

↝ γ02,1 = a

L02,2 ={c ∈ Σ ∣ δ(2, c) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - b∗a - ε∣b∣ab∗a

2 - b∗a(b∣ab∗a)∗ - -
◁
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Korollar
Für jede Sprache L sind folgende Aussagen äquivalent:

L ist regulär (d.h. es gibt einen DFA M mit L = L(M))
es gibt einen NFA N mit L = L(N)
es gibt einen regulären Ausdruck γ mit L = L(γ)
L lässt sich mit den Operationen Vereinigung, Produkt und Sternhülle
aus endlichen Sprachen gewinnen
L lässt sich mit den Operationen Vereinigung, Schnitt, Komplement,
Produkt und Sternhülle aus endlichen Sprachen gewinnen

Ausblick
Als nächstes wenden wir uns der Frage zu, wie sich die Anzahl der
Zustände eines DFA minimieren lässt
Da hierbei Äquivalenzrelationen eine wichtige Rolle spielen, befassen
wir uns zunächst mit Relationalstrukturen
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Definition
Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn
R ⊆ Ak = A ×⋯ ×A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k-mal

= {(a1, . . . , ak) ∣ ai ∈ A für i = 1, . . . , k} ist

Für i = 1, . . . ,n sei Ri eine ki -stellige Relation auf A. Dann heißt
(A; R1, . . . ,Rn) Relationalstruktur
Die Menge A heißt der Individuenbereich, die Trägermenge oder die
Grundmenge der Relationalstruktur

Bemerkung
Wir werden hier hauptsächlich den Fall n = 1, k1 = 2, also (A,R) mit
R ⊆ A ×A betrachten
Man nennt dann R eine (binäre) Relation auf A
Oft wird für (a,b) ∈ R auch die Infix-Schreibweise aRb benutzt
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Beispiel
(F ,M) mit F = {f ∣ f ist Fluss in Europa} und

M = {(f ,g) ∈ F × F ∣ f mündet in g}

(U,B) mit U = {x ∣ x ist Berliner} und
B = {(x , y) ∈ U ×U ∣ x ist Bruder von y}

(P(M),⊆), wobei M eine beliebige Menge und ⊆ die Inklusionsrelation
auf den Teilmengen von M ist
(A, IdA) mit IdA = {(x , x) ∣ x ∈ A} (die Identität auf A)
(R,≤)
(Z, ∣), wobei ∣ die ”teilt”-Relation bezeichnet (d.h. a∣b, falls ein c ∈ Z
mit b = ac existiert)

◁
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Da Relationen Mengen sind, können wir den Schnitt, die Vereinigung,
die Differenz und das Komplement von Relationen bilden:

R ∩ S = {(x , y) ∈ A ×A ∣ xRy ∧ xSy}
R ∪ S = {(x , y) ∈ A ×A ∣ xRy ∨ xSy}
R − S = {(x , y) ∈ A ×A ∣ xRy ∧ ¬xSy}

R = (A ×A) − R
SeiM⊆ P(A ×A) eine beliebige Menge von Relationen auf A. Dann
sind der Schnitt überM und die Vereinigung überM folgende
Relationen:

⋂M = ⋂
R∈M

R = {(x , y) ∣ ∀R ∈ M ∶ xRy}

⋃M = ⋃
R∈M

R = {(x , y) ∣ ∃R ∈ M ∶ xRy}
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Definition
Die transponierte (konverse) Relation zu R ist

RT = {(y , x) ∣ xRy}
RT wird oft auch mit R−1 bezeichnet
Zum Beispiel ist (R,≤T ) = (R,≥)
Das Produkt (oder die Komposition) zweier Relationen R und S ist

R ○ S = {(x , z) ∈ A ×A ∣ ∃y ∈ A ∶ xRy ∧ ySz}

Beispiel
Ist B die Relation ”ist Bruder von”, V ”ist Vater von”, M ”ist Mutter von”
und E = V ∪M ”ist Elternteil von”, so ist B ○ E die Onkel-Relation ◁
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Notation
Für R ○ S wird auch R ;S, R ⋅ S oder einfach RS geschrieben.
Für R ○ ⋯ ○ R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-mal

schreiben wir auch Rn. Dabei ist R0 = Id

Vorsicht!
Das Relationenprodukt Rn darf nicht mit dem kartesischen Produkt

R ×⋯ × R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-mal

verwechselt werden

Vereinbarung
Wir vereinbaren, dass Rn das n-fache Relationenprodukt bezeichnen soll,
falls R eine Relation ist
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Definition
Sei R eine Relation auf A. Dann heißt R
reflexiv, falls ∀x ∈ A ∶ xRx (also IdA ⊆ R)

irreflexiv, falls ∀x ∈ A ∶ ¬xRx (also IdA ⊆ R)

symmetrisch, falls ∀x , y ∈ A ∶ xRy ⇒ yRx (also R ⊆ RT )

asymmetrisch, falls ∀x , y ∈ A ∶ xRy ⇒ ¬yRx (also R ⊆ RT )

antisymmetrisch, falls ∀x , y ∈ A ∶ xRy ∧ yRx ⇒ x = y (also R ∩ RT ⊆ Id)

konnex, falls ∀x , y ∈ A ∶ xRy ∨ yRx (also A ×A ⊆ R ∪ RT )

semikonnex, falls ∀x , y ∈ A ∶ x ≠ y ⇒ xRy ∨ yRx (also Id ⊆ R ∪ RT )

transitiv, falls ∀x , y , z ∈ A ∶ xRy ∧ yRz ⇒ xRz (also R2 ⊆ R)
gilt
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Äquivalenz- und Ordnungsrelationen
refl. sym. trans. antisym. asym. konnex semikon.

Äquivalenzrelation ✓ ✓ ✓
(Halb-)Ordnung ✓ ✓ ✓
Striktordnung ✓ ✓
lineare Ordnung ✓ ✓ ✓
lin. Striktord. ✓ ✓ ✓
Quasiordnung ✓ ✓

Bemerkung
In der Tabelle sind nur die definierenden Eigenschaften durch ein ”✓”
gekennzeichnet. Das schließt nicht aus, dass noch weitere Eigenschaften
vorliegen
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Beispiel
Die Relation ”ist Schwester von” ist zwar in einer reinen Damengesell-
schaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch
noch antisymmetrisch.

Die Relation ”ist Geschwister von” ist zwar symmetrisch, aber weder
reflexiv noch transitiv und somit keine Äquivalenzrelation.

(R,<) ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit
eine lineare Striktordnung.

(R,≤) und (P(M),⊆) sind reflexiv, antisymmetrisch und transitiv und
somit Ordnungen.

(R,≤) ist auch konnex und somit eine lineare Ordnung.

(P(M),⊆) ist zwar im Fall ∥M∥ ≤ 1 konnex, aber im Fall ∥M∥ ≥ 2
weder semikonnex noch konnex. ◁



Darstellung von endlichen Relationen 70

Graphische Darstellung

a b

dc
A={a,b, c,d}
R ={(b, c), (b,d), (c, a), (c,d), (d ,d)}

Eine Relation R auf einer (endlichen) Menge A kann durch einen
gerichteten Graphen (kurz Digraphen) G = (A,R) mit Knotenmenge A
und Kantenmenge R veranschaulicht werden
Hierzu stellen wir jedes Element x ∈ A als einen Knoten dar und
verbinden jedes Knotenpaar (x , y) ∈ R durch eine gerichtete Kante
(Pfeil)
Zwei durch eine Kante verbundene Knoten heißen adjazent oder
benachbart
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Definition
Sei R eine binäre Relation auf A

Die Menge der Nachfolger bzw. Vorgänger von x ist
R[x] = {y ∈ A ∣ xRy} bzw. R−1[x] = {y ∈ A ∣ yRx}

Der Ausgangsgrad eines Knotens x ist deg+(x) = ∥R[x]∥
Der Eingangsgrad von x ist deg−(x) = ∥R−1[x]∥
Ist R symmetrisch, so können wir die Pfeilspitzen auch weglassen
In diesem Fall heißt deg(x) = deg−(x) = deg+(x) der Grad von x und
R[x] = R−1[x] die Nachbarschaft von x in G
G ist schleifenfrei, falls R irreflexiv ist
Ist R irreflexiv und symmetrisch, so nennen wir G = (A,R) einen
(ungerichteten) Graphen
Eine irreflexive und symmetrische Relation R wird meist als Menge der
ungeordneten Paare E = {{a,b} ∣ aRb} notiert
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Matrixdarstellung (Adjazenzmatrix)
Eine Relation R auf A = {a1, . . . , an} lässt sich auch durch die boolesche
(n × n)-Matrix MR = (mij) darstellen mit

mij = { 1, aiRaj
0, sonst

Beispiel

a b

dc

Die Relation R = {(b, c), (b,d), (c, a), (c,d), (d ,d)} auf A = {a,b, c,d}
hat beispielsweise die Matrixdarstellung

MR =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 1
1 0 0 1
0 0 0 1

⎞
⎟⎟⎟
⎠

◁
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Listendarstellung (Adjazenzlisten)
R lässt sich auch durch eine Tabelle darstellen, die jedem Element x ∈ A
seine Nachfolger in Form einer Liste zuordnet

Beispiel

a b

dc

Die Relation R = {(b, c), (b,d), (c, a), (c,d), (d ,d)} auf A = {a,b, c,d}
lässt sich beispielsweise durch folgende Adjazenzlisten darstellen:

x : R[x]

a: -
b: c,d
c: a,d
d : d

◁
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Berechnung von R ○ S
Sind MR = (rij) und MS = (sij) boolesche (n × n)-Matrizen für R und S,
so erhalten wir für T = R ○ S die Matrix MT = (tij) mit

tij = ⋁
k=1,...,n

(rik ∧ skj)

Die Nachfolgermenge T [x] von x bzgl. der Relation T = R ○ S
berechnet sich zu

T [x] = ⋃
y∈R[x]

S[y]
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Beispiel
Betrachte die Relationen R = {(a, a), (a, c), (c,b), (c,d)} und
S = {(a,b), (d , a), (d , c)} auf der Menge A = {a,b, c,d}.

Relation R S R ○ S S ○ R

Digraph
a b

dc

a b

dc

a b

dc

a b

dc

Adjazenz-
matrix

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0

0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

Adjazenz-
listen

a: a, c
b: -
c: b,d
d : -

a: b
b: -
c: -
d : a, c

a: b
b: -
c: a, c
d : -

a: -
b: -
c: -
d : a,b, c,d

◁
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Frage
Welche Paare muss man zu einer Relation R mindestens hinzufügen, damit
R transitiv wird?

Antwort
Es ist klar, dass der Schnitt von transitiven Relationen wieder transitiv
ist
Die transitive Hülle von R ist

R+ = ⋂{S ⊆ A ×A ∣ S ist transitiv und R ⊆ S}
R+ ist also eine transitive Relation, die R enthält
Da R+ zudem in jeder Relation mit diesen Eigenschaften enthalten ist,
gibt es keine transitive Relation mit weniger Paaren, die R enthält
Da auch die Reflexivität und die Symmetrie bei der Schnittbildung
erhalten bleiben, lassen sich nach demselben Muster weitere Hüllen-
operatoren definieren



Weitere Hüllenoperatoren 77

Definition
Sei R eine Relation auf A

Die reflexive Hülle von R ist
hrefl(R) = ⋂{S ⊆ A ×A ∣ S ist reflexiv und R ⊆ S}

Die symmetrische Hülle von R ist
hsym(R) = ⋂{S ⊆ A ×A ∣ S ist symmetrisch und R ⊆ S}

Die reflexiv-transitive Hülle von R ist
R∗ = ⋂{S ⊆ A ×A ∣ S ist reflexiv, transitiv und R ⊆ S}

Die Äquivalenzhülle von R ist
häq(R) = ⋂{E ⊆ A ×A ∣ E ist eine Äquivalenzrelation mit R ⊆ E}
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Satz
hrefl(R) = R ∪ IdA, hsym(R) = R ∪ RT , R+ = ⋃n≥1 Rn, R∗ = ⋃n≥0 Rn

Beweis
Siehe Übungen. ◻
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Bemerkung. Sei G = (V ,E) ein Digraph.
Ein Paar (a,b) ist genau dann in der reflexiv-transitiven Hülle E∗ von
E enthalten, wenn es ein n ≥ 0 gibt mit aEnb
Dies bedeutet, dass es Elemente x0, . . . , xn ∈ V gibt mit

x0 = a, xn = b und (xi−1, xi) ∈ E für i = 1, . . . ,n
x0, . . . , xn heißt Weg der Länge n von a nach b in G
G heißt zusammenhängend, wenn es in G für je zwei Knoten a und b
einen Weg von a nach b oder einen Weg von b nach a gibt
G heißt stark zusammenhängend, wenn es in G von jedem Knoten a
einen Weg zu jedem Knoten b gibt
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Definition
(A,R) heißt Äquivalenzrelation, wenn R eine reflexive, symmetrische und
transitive Relation auf A ist

Beispiel
Auf der Menge aller Geraden im R2 die Parallelität
Auf der Menge aller Menschen ”im gleichen Jahr geboren wie”
Auf Z die Relation ”gleicher Rest bei Division durch m”. ◁
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Definition
Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E [x] die
von x repräsentierte Äquivalenzklasse und bezeichnet sie auch mit [x]E
(oder einfach mit [x], falls E aus dem Kontext ersichtlich ist):

[x]E = [x] = E [x] = {y ∣ xEy}

Eine Menge S ⊆ A heißt Repräsentantensystem, falls sie genau ein
Element aus jeder Äquivalenzklasse enthält
Die Menge aller Äquivalenzklassen von E wird Quotienten- oder
Faktormenge von A bzgl. E genannt und mit A/E bezeichnet:

A/E = {[x]E ∣ x ∈ A}

Die Anzahl ∥A/E∥ der Äquivalenzklassen von E wird auch als der Index
von E (kurz: index(E)) bezeichnet
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Beispiel
Für die weiter oben betrachteten Äquivalenzrelationen erhalten wir
folgende Klasseneinteilungen:

Für die Parallelität auf der Menge aller Geraden im R2:
alle Geraden mit derselben Richtung (oder Steigung) bilden jeweils eine
Äquivalenzklasse
Ein Repräsentantensystem wird beispielsweise durch die Menge aller
Ursprungsgeraden gebildet
Für die Relation ”im gleichen Jahr geboren wie” auf der Menge aller
Menschen: jeder Jahrgang bildet eine Äquivalenzklasse
Für die Relation ”gleicher Rest bei Division durch m” auf Z:
jede der m Restklassen [0], [1], . . . , [m − 1] mit

[r] = {a ∈ Z ∣ a mod m = r}
bildet eine Äquivalenzklasse
Repräsentantensystem: {0,1, . . . ,m − 1}. ◁
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Bemerkungen
Die kleinste Äquivalenzrelation auf A ist die Identität IdA, die größte ist
die Allrelation A ×A
Die Äquivalenzklassen der Identität enthalten jeweils nur ein Element,
d.h. [x]IdA = {x} für alle x ∈ A
Die Allrelation erzeugt dagegen nur eine Äquivalenzklasse, nämlich
[x]A×A = A für alle x ∈ A
Die Identität IdA hat nur ein Repräsentantensystem, nämlich A
Dagegen kann jede Singletonmenge {x} mit x ∈ A als
Repräsentantensystem für die Allrelation A ×A fungieren
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Wie wir sehen werden, bilden die Äquivalenzklassen eine Zerlegung von A

Definition
Eine Familie {Bi ∣ i ∈ I} von nichtleeren Teilmengen Bi ⊆ A heißt Partition
(oder Zerlegung) der Menge A, falls gilt:

die Mengen Bi überdecken A, d.h. A = ⋃i∈I Bi und
die Mengen Bi sind paarweise disjunkt, d.h. für je zwei verschiedene
Mengen Bi /= Bj gilt Bi ∩Bj = ∅
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Bemerkungen
Für zwei Äquivalenzrelationen E ⊆ E ′ sind auch die Äquivalenzklassen
[x]E von E in den Klassen [x]E ′ von E ′ enthalten
Folglich ist jede Äquivalenzklasse von E ′ die Vereinigung von (evtl.
mehreren) Äquivalenzklassen von E
Im Fall E ⊆ E ′ sagt man auch, E bewirkt eine feinere Zerlegung von A
als E ′

Demnach ist die Identität die feinste und die Allrelation die gröbste
Äquivalenzrelation
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Satz
Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:
1 E ist eine Äquivalenzrelation auf A
2 es gibt eine Partition {Bi ∣ i ∈ I} von A mit xEy ⇔∃i ∈ I ∶ x , y ∈ Bi

Beweis.
1 impliziert 2 : Sei E eine Äquivalenzrelation auf A. Dann bildet
{E [x] ∣ x ∈ A} eine Partition von A mit der gewünschten Eigenschaft:

Da E reflexiv ist, gilt xEx und somit x ∈ E [x], d.h. A = ⋃x∈A E [x]
Ist E [x] ∩ E [y] ≠ ∅ und u ∈ E [x] ∩ E [y], so folgt E [x] = E [y]:

z ∈ E [x] ⇔ xEz xEu⇔ uEz
yEu
⇔ yEz ⇔ z ∈ E [y]

Zudem gilt
∃z ∈ A ∶ x , y ∈ E [z] ⇔ ∃z ∶ z ∈ E [x]∩E [y] ⇔ E [x] = E [y]

y∈E[y]
⇔ xEy
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Satz
Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:
1 E ist eine Äquivalenzrelation auf A
2 es gibt eine Partition {Bi ∣ i ∈ I} von A mit xEy ⇔∃i ∈ I ∶ x , y ∈ Bi

Beweis.
2 impliziert 1 : Existiert umgekehrt eine Partition {Bi ∣ i ∈ I} von A mit

xEy ⇔∃i ∈ I ∶ x , y ∈ Bi , so ist E
reflexiv, da zu jedem x ∈ A eine Menge Bi mit x ∈ Bi existiert,
symmetrisch, da aus x , y ∈ Bi auch y , x ∈ Bi folgt, und
transitiv, da aus x , y ∈ Bi und y , z ∈ Bj wegen y ∈ Bi ∩Bj die Gleichheit
Bi = Bj und somit x , z ∈ Bi folgt. ◻



Ordnungsrelationen 88

Definition
(A,R) heißt Ordnung (auch Halbordnung oder partielle Ordnung), wenn R
eine reflexive, antisymmetrische und transitive Relation auf A ist

Beispiel
(P(M),⊆), (Z,≤), (R,≤), (N, ∣), sind Ordnungen. (Z, ∣) ist keine
Ordnung, aber eine Quasiordnung.
Ist R eine Relation auf A und B ⊆ A, so ist RB = R ∩ (B ×B) die
Einschränkung von R auf B
Einschränkungen von (linearen) Ordnungen sind ebenfalls (lineare)
Ordnungen
Beispielsweise ist (Q,≤) die Einschränkung von (R,≤) auf Q und (N, ∣)
die Einschränkung von (Z, ∣) auf N. ◁
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Sei ≤ eine Ordnung auf A und sei < die Relation ≤ / IdA, d.h.
x < y ⇔ x ≤ y ∧ x ≠ y

Ein Element x ∈ A heißt unterer Nachbar von y (kurz: x ⋖ y), falls x < y
gilt und kein z ∈ A existiert mit x < z < y

⋖ ist also die Relation < / <2

Um die Ordnung (A,≤) in einem Hasse-Diagramm darzustellen, wird
nur der Digraph der Relation (A,⋖) gezeichnet

Weiterhin wird im Fall x ⋖ y der Knoten y oberhalb des Knotens x
gezeichnet, so dass auf die Pfeilspitzen verzichtet werden kann
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Beispiel
Die Inklusion ⊆ auf P(M) mit M = {a,b, c} lässt sich durch folgendes
Hasse-Diagramm darstellen:

∅

{b}

{a,b} {a, c}

{a}

{b, c}

{c}

M

◁
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Beispiel
Die ”feiner als” Relation auf der Menge aller Partitionen von M = {a,b, c}
ist durch folgendes Hasse-Diagramm darstellbar:

{{a},{b},{c}}

{{a,b},{c}} {{a, c},{b}} {{a},{b, c}}

{M}

◁
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Beispiel
Die Einschränkung der ”teilt”-Relation auf die Menge {1,2, . . . ,10} ist
durch folgendes Hasse-Diagramm darstellbar:

1

2 3 5 7

4 6 9 10

8

◁
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Definition
Sei ≤ eine Ordnung auf A und sei b ein Element in einer Teilmenge B ⊆ A

b heißt kleinstes Element oder Minimum von B (b = min B), falls gilt:
∀b′ ∈ B ∶ b ≤ b′

b heißt größtes Element oder Maximum von B (b = max B), falls gilt:
∀b′ ∈ B ∶ b′ ≤ b

b heißt minimal in B, falls es in B kein kleineres Element gibt:
∀b′ ∈ B ∶ b′ ≤ b ⇒ b′ = b

b heißt maximal in B, falls es in B kein größeres Element gibt:
∀b′ ∈ B ∶ b ≤ b′ ⇒ b = b′

Bemerkung
Wegen der Antisymmetrie kann es in B höchstens ein kleinstes und
höchstens ein größtes Element geben
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Beispiel
Betrachte folgende Ordnung

a b

c d

e

B minimal
in B

maximal
in B min B max B

{a,b} a,b a,b - -
{c,d} c,d c,d - -

{a,b, c} c a,b c -
{a,b, c, e} e a,b e -
{a, c,d , e} e a e a
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Definition
Sei ≤ eine Ordnung auf A und sei B ⊆ A. Dann heißt

ein Element u ∈ A mit u ≤ b für alle b ∈ B untere Schranke von B
ein Element o ∈ A mit b ≤ o für alle b ∈ B obere Schranke von B
B nach oben beschränkt, wenn B eine obere Schranke hat
B nach unten beschränkt, wenn B eine untere Schranke hat
B beschränkt, wenn B nach oben und nach unten beschränkt ist
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Beispiel (Fortsetzung)

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken

{a,b} a,b a,b - - c,d , e -
{c,d} c,d c,d - - e a,b

{a,b, c} c a,b c - c, e -
{a,b, c, e} e a,b e - e -
{a, c,d , e} e a e a e a
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Definition
Sei ≤ eine Ordnung auf A und sei B ⊆ A

Besitzt B eine größte untere Schranke i , d.h. besitzt die Menge U aller
unteren Schranken von B ein größtes Element i , so heißt i das Infimum
von B (i = inf B):

(∀b ∈ B ∶ b ≥ i) ∧ [∀u ∈ A ∶ (∀b ∈ B ∶ b ≥ u) ⇒ u ≤ i]
Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge O aller
oberen Schranken von B ein kleinstes Element s, so heißt s das
Supremum von B (s = sup B):

(∀b ∈ B ∶ b ≤ s) ∧ [∀o ∈ A ∶ (∀b ∈ B ∶ b ≤ o) ⇒ s ≤ o]

Bemerkung
B kann nicht mehr als ein Supremum und ein Infimum haben
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Beispiel (Schluss)

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken

inf sup

{a,b} a,b a,b - - c,d , e - - -
{c,d} c,d c,d - - e a,b e -

{a,b, c} c a,b c - c, e - c -
{a,b, c, e} e a,b e - e - e -
{a, c,d , e} e a e a e a e a

◁
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Bemerkung
In einer endlichen linearen Ordnung (A;≤) besitzt jede nichtleere
Teilmenge B ⊆ A ein Maximum und ein Minimum sowie ein Supremum
und ein Infimum, wobei sup B = max B und inf B = min B
Zudem ist sup∅ = min A und inf ∅ = max A
Dagegen müssen in einer unendlichen linearen Ordnung nicht einmal
beschränkte Teilmengen ein Supremum oder Infimum besitzen
So hat in der linear geordneten Menge (Q,≤) die Teilmenge

B = {x ∈ Q ∣ x2 ≤ 2} = {x ∈ Q ∣ x2 < 2}
weder ein Supremum noch ein Infimum
Dagegen hat in (R,≤) jede beschränkte Teilmenge B ein Supremum
und ein Infimum (aber möglicherweise kein Maximum oder Minimum)
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Definition. Sei R eine binäre Relation auf einer Menge M.
R heißt rechtseindeutig, falls für alle x , y , z ∈ M gilt:

xRy ∧ xRz ⇒ y = z

R heißt linkseindeutig, falls für alle x , y , z ∈ M gilt:
xRz ∧ yRz ⇒ x = y

Der Nachbereich N(R) und der Vorbereich V (R) von R sind
N(R) = ⋃

x∈M
R[x] und V (R) = ⋃

x∈M
RT [x]

R ist also genau dann rechtseindeutig, wenn jedes Element x ∈ M
höchstens einen Nachfolger hat, also R[x] höchstens einelementig ist,
und genau dann linkseindeutig, wenn jedes Element x ∈ M höchstens
einen Vorgänger hat, also R−1[x] höchstens einelementig ist
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Abbildungen ordnen jedem Element ihres Definitionsbereichs genau ein
Element zu

Definition
Eine rechtseindeutige Relation R mit V (R) = A und N(R) ⊆ B heißt
Abbildung oder Funktion von A nach B (kurz R ∶ A→ B)

Bemerkung
Wie üblich werden wir Abbildungen meist mit kleinen Buchstaben
f ,g ,h, ... bezeichnen und für (x , y) ∈ f nicht xfy sondern f (x) = y oder
f ∶ x ↦ y schreiben
Ist f ∶ A→ B eine Abbildung, so wird der Vorbereich V (f ) = A der
Definitionsbereich und die Menge B der Wertebereich oder Wertevorrat
von f genannt
Der Nachbereich N(f ) wird als Bild von f bezeichnet
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Definition
Sei f ∶ A→ B eine Abbildung

Im Fall N(f ) = B heißt f surjektiv
Ist f linkseindeutig, so heißt f injektiv
In diesem Fall impliziert f (x) = f (y) die Gleichheit x = y
Eine injektive und surjektive Abbildung heißt bijektiv
Ist f injektiv, so ist auch f −1 ∶ N(f ) → A eine Abbildung, die als die zu
f inverse Abbildung bezeichnet wird

Bemerkung
Man beachte, dass der Definitionsbereich V (f −1) = N(f ) von f −1 nur dann
gleich B ist, wenn f auch surjektiv, also eine Bijektion ist
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Definition
Seien (A1,R1) und (A2,R2) Relationalstrukturen

Eine Abbildung h ∶ A1 → A2 heißt Homomorphismus, falls für alle
a,b ∈ A1 gilt:

aR1b ⇒ h(a)R2h(b)

Sind (A1,R1) und (A2,R2) Ordnungen, so spricht man auch von
Ordnungshomomorphismen oder einfach von monotonen Abbildungen
Injektive Ordnungshomomorphismen werden auch streng monotone
Abbildungen genannt
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Beispiel

b

d

a

c

1

2

3

4

(A,≤) (B,⊑)
h

Die Abbildung h ∶ A→ B ist ein bijektiver Ordnungshomomorphismus
(also eine monotone Bijektion) zwischen (A,≤) und (B,⊑)
Die Umkehrabbildung h−1 ist jedoch nicht monoton, da zwar 2 ⊑ 3,
aber h−1(2) = b /≤ c = h−1(3) gilt
Dagegen ist für jede monotone Bijektion f zwischen linearen
Ordnungen auch ihre Umkehrabbildung f −1 monoton. ◁
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Definition
Seien (A1,R1) und (A2,R2) Relationalstrukturen
Ein bijektiver Homomorphismus h ∶ A1 → A2, bei dem auch h−1 ein
Homomorphismus ist, d.h. es gilt für alle a,b ∈ A1,

aR1b ⇔ h(a)R2h(b)
heißt Isomorphismus
In diesem Fall heißen die Strukturen (A1,R1) und (A2,R2) isomorph
(kurz: (A1,R1) ≅ (A2,R2))

Sind (A1,R1) und (A2,R2) isomorph, so bedeutet dies, dass sich die
beiden Strukturen nur in der Benennung ihrer Elemente unterscheiden
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Beispiel

Die Abbildung h ∶ x ↦ ex ist ein Isomorphismus zwischen den linearen
Ordnungen (R,≤) und (R+,≤)
Für n ∈ N sei

Tn = {k ∈ N ∣ k teilt n}
und

Pn = {p ∈ Tn ∣ p ist prim}

2

10

1

5 {2}

{2,5}

∅

{5}

(T10, ∣) (P(P10),⊆)
Dann ist die Abbildung

h ∶ k ↦ Pk

ein (surjektiver) Ordnungshomomorphismus von (Tn, ∣) auf (P(Pn),⊆)
h ist sogar ein Isomorphismus, falls n quadratfrei ist (d.h. es gibt keine
Primzahl p, so dass p2 die Zahl n teilt) ◁
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Beispiel

1

5 2

4 3

1

5 2

4 3

G = (V ,E) v 1 2 3 4 5
h1(v) 1 3 5 2 4
h2(v) 1 4 2 5 3

G ′ = (V ,E ′)

Die beiden Graphen G und G ′ sind isomorph
Zwei Isomorphismen sind beispielsweise h1 und h2. ◁
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Beispiel

Während auf der Knotenmenge V = {1,2,3} insgesamt 2(
3
2) = 23 = 8

verschiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

◁
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Beispiel

Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elementen:

Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen
zerfällt unter der Isomorphierelation ≅ in fünf Äquivalenzklassen, die
durch obige fünf Hasse-Diagramme repräsentiert werden. ◁
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Frage
Wie können wir feststellen, ob ein DFA M = (Z ,Σ, δ,q0,E) eine minimale
Anzahl von Zuständen besitzt (und Z evtl. verkleinern)?

Beispiel
Betrachte den DFA M

1

5

2

6

3

7

4

8

b

b

b

b

a

a

a

a

aa bb

4

8

b

a

a

b

Zunächst können alle Zustände entfernt werden, die vom Startzustand
aus unerreichbar sind. ◁
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Frage
Wie können wir feststellen, ob ein DFA M = (Z ,Σ, δ,q0,E) eine minimale
Anzahl von Zuständen besitzt (und Z evtl. verkleinern)?

Antwort
Zunächst können alle unerreichbaren Zustände entfernt werden
Zudem lassen sich zwei Zustände p und q verschmelzen, wenn
M von p und q aus jeweils dieselben Wörter akzeptiert
Für z ∈ Z sei

Mz = (Z ,Σ, δ, z ,E).
Dann können wir p und q verschmelzen (in Zeichen: p ∼M q), wenn
L(Mp) = L(Mq) ist
Offensichtlich ist ∼M eine Äquivalenzrelation auf Z
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Idee
Verschmelze jeden Zustand q mit allen äquivalenten Zuständen p ∼M q zu
einem neuen Zustand

Notation
Für die durch q repräsentierte Äquivalenzklasse

[q]∼M = {p ∈ Z ∣ p ∼M q} = {p ∈ Z ∣ L(Mp) = L(Mq)}
schreiben wir auch einfach [q] oder q̃
Für eine Teilmenge Q ⊆ Z bezeichne

Q̃ = {q̃ ∣ q ∈ Q}
die Menge aller Äquivalenzklassen, die einen Zustand in Q enthalten
Dann führt obige Idee auf den DFA

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a),
wobei zu zeigen ist, dass δ′(q̃, a) nicht von der Wahl des
Repräsentanten q für die Äquivalenzklasse q̃ abhängt
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Es genügt, die Äquivalenzrelation ∼M auf der Zustandsmenge Z zu
berechnen
Hierzu genügt es, die Menge D = {{p,q} ⊆ Z ∣ p /∼M q} zu berechnen

Sei A△B = (A ∖B) ∪ (B ∖A) die symmetrische Differenz zweier
Mengen A und B. Dann gilt

p /∼M q ⇔ L(Mp) ≠ L(Mq) ⇔ L(Mp) △ L(Mq) ≠ ∅

Wörter x ∈ L(Mp) △ L(Mq) heißen Unterscheider zwischen p und q
Für i ≥ 0 sei D=i die Menge aller Paare {p,q} ∈ D, die einen
Unterscheider x der Länge ∣x ∣ = i haben, und Di sei die Menge aller
Paare {p,q} ∈ D, die einen Unterscheider x der Länge ∣x ∣ ≤ i haben
Dann gilt

Di = D=0 ∪D=1 ∪⋯ ∪D=i und
D = ⋃j≥0 D=j = ⋃i≥0 Di
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Offenbar unterscheidet ε Endzustände und Nichtendzustände, d.h.

D0 = D=0 = {{p,q} ⊆ Z ∣ p ∈ E ,q /∈ E}

Zudem gilt
{p,q} ∈ D=i+1⇔∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈ D=i ,

da 2 Zustände p und q genau dann einen Unterscheider x = x1 . . . xi+1
der Länge i + 1 haben, wenn die beiden Zustände δ(p, x1) und δ(q, x1)
einen Unterscheider x = x2 . . . xi+1 der Länge i haben
Folglich ist

Di+1 = Di
²

D=0∪⋯∪D=i

∪ {{p,q} ⊆ Z ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈ Di}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D=1∪⋯∪D=i+1

Da es nur endlich viele Zustandspaare gibt, gibt es ein i ≥ 0 mit D = Di

Offensichtlich gilt: D = Di ⇔ Di+1 = Di
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Algorithmus min-DFA(M)
1 Input: DFA M = (Z ,Σ, δ,q0,E)
2 entferne alle unerreichbaren Zustände aus Z
3 D′ ∶= {{p,q} ⊆ Z ∣ p ∈ E ,q /∈ E}
4 repeat
5 D ∶= D′

6 D′ ∶= D ∪ {{p,q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈ D}
7 until D′ = D
8 Output: M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ), wobei δ′(q̃, a) = δ̃(q, a) ist
9 und für jeden Zustand q ∈ Z gilt: q̃ = {p ∈ Z ∣ {p,q} /∈ D}
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 ε

5 ε

6 ε ε ε ε

1 2 3 4 5

Dann enthält D0 die Paare
{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

Wegen

{p,q} {1,4} {1,5} {2,4} {2,5}
{δ(q, a), δ(p, a)} {2,3} {2,6} {1,3} {1,6}

enthält D1 zusätzlich die Paare {1,4}, {1,5}, {2,4}, {2,5}.
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

Da nun jedoch keines der verbliebenen Paare {1,2}, {3,6}, {4,5} wegen

{p,q} {1,2} {3,6} {4,5}
{δ(p, a), δ(q, a)} {1,2} {4,5} {3,6}
{δ(p,b), δ(q,b)} {3,6} {1,2} {4,5}

zu D2 gehört, ist D2 = D1 und somit D = D1.
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

Da die Paare {1,2}, {3,6} und {4,5} nicht in D enthalten sind, können
die Zustände 1 und 2, 3 und 6, sowie 4 und 5 verschmolzen werden.
Demnach hat M ′ die Zustände 1̃ = {1,2}, 3̃ = {3,6} und 4̃ = {4,5}:

1̃ 3̃ 4̃
b

b

a

a
a b ◁
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Satz
Sei M = (Z ,Σ, δ,q0,E) ein DFA ohne unerreichbare Zustände. Dann ist

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen

Beweis
Wir beweisen den Satz durch folgende 3 Behauptungen:
Beh. 1: δ′ ist wohldefiniert, da δ′(q̃, a) = δ̃(q, a) nicht von der Wahl des

Repräsentanten q für die Äquivalenzklasse q̃ abhängt.
Beh. 2: L(M ′) = L(M)
Beh. 3: M ′ hat eine minimale Anzahl von Zuständen
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Behauptung 1

δ′ ist wohldefiniert, da δ′(q̃, a) = δ̃(q, a) nicht von der Wahl des
Repräsentanten q für die Äquivalenzklasse q̃ abhängt

Beweis von Behauptung 1
Hierzu ist die Implikation p ∼M q ⇒ δ(p, a) ∼M δ(q, a) zu zeigen
Diese ist äquivalent zur Kontraposition δ(p, a) /∼M δ(q, a) ⇒ p /∼M q,
die wir bereits gezeigt haben:

δ(p, a) /∼M δ(q, a) ⇒ es gibt einen Unterscheider x
zwischen δ(p, a) und δ(q, a)

⇒ es gibt einen Unterscheider ax
zwischen p und q

⇒ p /∼M q ◻
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Behauptung 2
L(M ′) = L(M)

Beweis von Behauptung 2
Sei x = x1 . . . xn ∈ Σ∗ eine Eingabe und seien q0,q1, . . . ,qn die von
M(x) besuchten Zustände, d.h. es gilt δ(qi−1, xi) = qi für i = 1, . . . ,n
Nach Definition von δ′ folgt daher δ′(q̃i−1, xi) = q̃i für i = 1, . . . ,n,
d.h. M ′ besucht bei Eingabe x die Zustände q̃0, q̃1, . . . , q̃n

Da aber q̃n entweder nur End- oder nur Nicht-Endzustände enthält,
gehört qn genau dann zu E , wenn q̃n zu Ẽ gehört, d.h. es gilt

x ∈ L(M) ⇔ x ∈ L(M ′).
◻
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Behauptung 3
M ′ hat eine minimale Anzahl von Zuständen

Beweis von Behauptung 3
Wegen ∥Z̃∥ ≤ ∥Z∥ ist M ′ sicher dann minimal, wenn M minimal ist
Es reicht also zu zeigen, dass die Anzahl ∥Z̃∥ = index(∼M) der Zustände
von M ′ nur von der erkannten Sprache L = L(M) abhängt
Wegen p ∼M q ⇔ L(Mp) = L(Mq) gilt index(∼M) = ∥{L(Mz) ∣ z ∈ Z}∥
Für jedes Wort x ∈ Σ∗ sei

Lx = {y ∈ Σ∗ ∣ xy ∈ L} die Restsprache von L für das Präfix x .

Dann gilt {Lx ∣ x ∈ Σ∗} = {L(Mz) ∣ z ∈ Z}:
⊆: Klar, da Lx = L(Mz) für z = δ̂(q0, x) ist
⊇: Auch klar, da jedes z ∈ Z über ein x ∈ Σ∗ erreichbar ist

Also hängt index(∼M) = ∥{Lx ∣ x ∈ Σ∗}∥ nur von L ab
◻
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Beispiel
Die Sprache

L = {x1 . . . xn ∈ {0,1}∗ ∣ n ≥ 2 und xn−1 = 0}
hat die vier Restsprachen

Lx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L, x ∈ {ε,1} oder x endet mit 11,
L ∪ {0,1}, x = 0 oder x endet mit 10,
L ∪ {ε,0,1}, x endet mit 00,
L ∪ {ε}, x endet mit 01

Entsprechend gibt es für L einen DFA mit 4 Zuständen, aber keinen mit
3 Zuständen. ◁
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Eine interessante Folgerung aus obigem Beweis ist, dass eine reguläre
Sprache L ⊆ Σ∗ nur endlich viele Restsprachen hat
Daraus folgt, dass die durch

x ∼L y ∶⇔ Lx = Ly

auf Σ∗ definierte Äquivalenzrelation ∼L für jede reguläre Sprache L ⊆ Σ∗

einen endlichen Index hat
Die Relation ∼L wird als Nerode-Relation von L bezeichnet



Direkte Konstruktion eines Minimal-DFA ML aus L 126

Sei L = L(M) für einen DFA M = (Z ,Σ, δ,q0,E) und für x ∈ Σ∗ sei
Lx = {z ∈ Σ∗ ∣ xz ∈ L} die Restsprache von L für x .

Zudem sei M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) der zu M gehörige Minimal-DFA

Dieser erreicht nach Lesen eines Wortes x den Zustand ˆ̃δ(q0, x)
Wegen

ˆ̃δ(q0, x) = ˆ̃δ(q0, y) ⇔ δ̂(q0, x) ∼M δ̂(q0, y)
⇔ L(Mδ̂(q0,x)) = L(Mδ̂(q0,y)) ⇔ Lx = Ly

können wir den Zustand ˆ̃δ(q0, x) von M ′ auch mit Lx bezeichnen
Dies führt auf den zu M ′ isomorphen DFA ML = (ZL,Σ, δL,Lε,EL) mit

ZL = {Lx ∣ x ∈ Σ∗}, EL = {Lx ∣ x ∈ L} und δL(Lx , a) = Lxa,

der sich direkt aus der Sprache L gewinnen lässt
ML wird auch als Restsprachen-DFA für L bezeichnet
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Beispiel
Die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ n ≥ 2 und xn−1 = 0} hat die Rest-
sprachen

Lx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L, x ∈ {ε,1} oder x endet mit 11,
L ∪ {0,1}, x = 0 oder x endet mit 10,
L ∪ {ε,0,1}, x endet mit 00,
L ∪ {ε}, x endet mit 01

Konstruktion von ML:

Lx Lε L0 L00 L01
Lx0 L0 L00 L00 L0
Lx1 Lε L01 L01 Lε

Lε

L0

L00

L01

00 00

00

00

11

11

1111

Für die Konstruktion von ML spielt es keine Rolle, wie die Restsprachen
Lx konkret aussehen, d.h. ihre Bestimmung ist nicht erforderlich. ◁
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Notwendig und hinreichend für die Existenz von ML ist, dass die Menge
ZL = {Lx ∣ x ∈ Σ∗} aller Restsprachen von L endlich ist
Dies ist genau dann der Fall, wenn die durch L auf Σ∗ definierte
Nerode-Relation ∼L mit

x ∼L y ∶⇔ Lx = Ly

einen endlichen Index hat
Ist M bereits minimal, so haben die Zustände des zugehörigen
Minimal-DFA M ′ die Form q̃ = {q}, d.h. M ′ und M sind isomorph
Da M ′ wiederum isomorph zu ML ist, ist jeder minimale DFA M mit
L(M) = L isomorph zu ML

Folglich gibt es für jede reguläre Sprache L bis auf Isomorphie nur einen
Minimal-DFA
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Satz (Myhill und Nerode)
1 Für jede reguläre Sprache L gibt es bis auf Isomorphie nur einen

Minimal-DFA. Dieser hat index(∼L) Zustände
2 REG = {L ∣ index(∼L) < ∞}

Bemerkung
Sei R ein Repräsentantensystem für die Nerode-Relation ∼L von L, d.h.
{Lx ∣ x ∈ Σ∗} = {Lr ∣ r ∈ R} und Lr ≠ Lr ′ für alle r , r ′ ∈ R mit r ≠ r ′

Dann können wir die Zustände des Minimal-DFA anstelle von Lx auch
mit den Repräsentanten r ∈ R bezeichnen
Dies führt auf den Minimal-DFA MR = (R,Σ, δ, ε,E), wobei wir ε ∈ R
annehmen und δ(r , a) ∈ R der Repräsentant der Äquivalenzklasse
r̃a = {x ∈ Σ∗ ∣ x ∼L ra} sowie E = R ∩ L ist
Wir bezeichnen MR als den zu R gehörigen Repräsentanten-DFA für L
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Beispiel
Für die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ n ≥ 2 und xn−1 = 0} lässt sich ein
Repräsentanten-DFA MR wie folgt konstruieren:
1 Sei r1 = ε. Wegen r10 = 0 /∼L r1 ist r2 = 0 und δ(ε,0) = 0.
2 Wegen r11 = 1∼L ε ist δ(ε,1) = ε.
3 Wegen r20 = 00 /∼L ri für i = 1,2 ist r3 = 00 und δ(0,0) = 00.
4 Wegen r21 = 01 /∼L ri für i = 1,2,3 ist r4 = 01 und δ(0,1) = 01.
5 Wegen r30 = 000∼L 00 ist δ(00,0) = 00.
6 Wegen r31 = 001∼L 01 ist δ(00,1) = 01.
7 Wegen r40 = 010∼L 0 ist δ(01,0) = 0.
8 Wegen r41 = 011∼L ε ist δ(01,1) = ε.

r ε 0 00 01

δ(r ,0) 0 00 00 0
δ(r ,1) ε 01 01 ε

εε

00
00

11

0000

00

0101

11

00
11

00

11
◁
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Korollar
Sei L ⊆ Σ∗ eine Sprache. Dann sind folgende Aussagen äquivalent:

L ist regulär (d.h. es gibt einen DFA M mit L = L(M)),
es gibt einen NFA N mit L = L(N),
es gibt einen regulären Ausdruck γ mit L = L(γ),
die Nerode-Relation ∼L von L auf Σ∗ hat endlichen Index

Wir können also beweisen, dass eine Sprache L nicht regulär ist, indem wir
unendlich viele verschiedene Restsprachen finden, bzw.
unendlich viele Wörter finden, die paarweise inäquivalent bzgl. ∼L sind
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Satz
Die Sprache L = {anbn ∣ n ≥ 0} ist nicht regulär

Beweis
Wegen

bi ∈ Lai △ La j (für 0 ≤ i < j)
sind die Restsprachen Lai , i ≥ 0, paarweise verschieden.
Wegen

ai ∼L a j ⇔ Lai = La j

folgt auch, dass ai /∼L a j für i < j gilt und somit index(∼L) = ∞ ist. ◻
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