Einfihrung in die Theoretische Informatik

Johannes Kébler

Institut fiir Informatik
Humboldt-Universitat zu Berlin

WS 2020/21



Inhalt der Vorlesung

Themen dieser VL:

@ Welche Rechenmodelle eignen sich zur Losung welcher
algorithmischen Problemstellungen? Automatentheorie

@ Welche algorithmischen Probleme sind iiberhaupt 16sbar?
Berechenbarkeitstheorie
@ Welcher Aufwand ist zur Losung eines geg. algorithmischen
Problems notig? Komplexitatstheorie

Themen der VL Algorithmen und Datenstrukturen:

@ Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient l6sen? Algorithmik

Themen der VL Logik in der Informatik:

@ Mathem. Grundlagen der Informatik, Beweise fiihren, Modellierung
Aussagenlogik, Pradikatenlogik




Lernziele

e Uberblick tiber die wichtigsten Rechenmodelle (Automaten) wie z.B.
o endliche Automaten
o Kellerautomaten
o Turingmaschinen
o Registermaschinen
o Schaltkreise
@ Charakterisierung der Klassen aller mit diesen Rechenmodellen lésbaren
Probleme durch
o unterschiedliche Typen von formalen Grammatiken
o Abschlusseigenschaften unter geeigneten Sprachoperationen
o Reduzierbarkeit auf typische Probleme (Vollstandigkeit)
@ Erkennen von Grenzen der Berechenbarkeit
e Klassifikation wichtiger algorithmischer Probleme nach ihrer

Komplexitat




Maschinenmodelle

Rechenmaschinen spielen in der Informatik eine zentrale Rolle
Es gibt viele unterschiedliche math. Modelle fiir Rechenmaschinen
Diese konnen sich in ihrer Berechnungskraft unterscheiden

Die Turingmaschine (TM) ist ein universales Berechnungsmodell, da sie
alle anderen bekannten Rechenmodelle simulieren kann

Wir betrachten zunachst Einschrankungen des TM-Modells, die
vielfaltige praktische Anwendungen haben, wie z.B.

o endliche Automaten (DFA, NFA)

o Kellerautomaten (PDA, DPDA) etc.




Der Algorithmenbegriff 10

@ Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick

@ Altester bekannter nicht-trivialer Algorithmus:
Euklidischer Algorithmus zur Berechnung des ggT (300 v. Chr.)

@ Von einem Algorithmus wird erwartet, dass er bei jeder zulassigen
Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert

@ Eine wichtige Rolle spielen Entscheidungsprobleme, bei denen jede
Eingabe nur mit ja oder nein beantwortet wird

@ Die (maximale) Anzahl der Rechenschritte bei allen moglichen
Eingaben ist nicht beschrankt, d.h. mit wachsender Eingabelange kann
auch die Rechenzeit beliebig anwachsen

@ Die Beschreibung eines Algorithmus muss jedoch endlich sein

@ Problemeingaben kénnen Zahlen, Formeln, Graphen etc. sein

@ Diese werden (iber einem Eingabealphabet ¥ kodiert




Alphabet, Wort, Sprache 11

Definition
@ Ein Alphabet ist eine endliche linear geordnete Menge
R {317"'7am}
von m>1 Zeichen a; <--- < ap,

@ Eine Folge x = x1...x, von n >0 Zeichen x; € X heiBt Wort der Lange n
iber

@ Die Lange von x wird mit |x| und die Menge aller Worter der Lange n
iiber ¥ wird mit X" bezeichnet

@ Die Menge aller Worter tiber X ist
Y =Ur"=xuzrtur?u-.

n>0

@ Das (einzige) Wort der Lange n =0 ist das leere Wort, welches wir mit
¢ bezeichnen, d.h. ¥° = {¢}

@ Jede Teilmenge L € ¥ heiBt Sprache (iber dem Alphabet




Beispiele fiir Sprachen 2

Sprachen iber ¥ sind beispielsweise @, ~*, ¥ und {e}
@ enthalt keine Worter und heiBt leere Sprache

Y * enthalt dagegen alle Worter liber X
2 enthalt alle Worter iiber > der Lange 1
{e} enthalt nur das leere Wort, ist also einelementig

@ Sprachen, die genau ein Wort enthalten, werden auch als
Singletonsprachen bezeichnet

@ in der Informatik spielen Programmiersprachen eine wichtige Rolle




Operationen auf Sprachen 13

@ Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen
@ Zum Beispiel gilt g c {e} c X*

@ Wir kdnnen Sprachen auch vereinigen, schneiden und komplementieren
@ Seien A und B Sprachen lber . Dann ist

o AnB={xeX*|xeAnxe B} der Schnitt von A und B
o AuB={xeX"|xeAvVxe B} die Vereinigung von A und B, und
o A={xeX*|x¢A} das Komplement von A




Konkatenation von Woértern 14

Definition
Die Konkatenation von zwei Woértern x = x3...x, und y = y1... Yy, ist das
Wort xoy =xy...Xpy1--.Ym, das wir auch einfach mit xy bezeichnen

Beispiel

@ Fiir x = aba und y = abab erhalten wir xy = abaabab und yx = abababa
@ Die Konkatenation ist also nicht kommutativ

@ Allerdings ist o assoziativ, d.h. es gilt x(yz) = (xy)z
Daher kénnen wir hierfiir auch einfach xyz schreiben

Es gibt auch ein neutrales Element, da xe = ex = x ist

Eine algebraische Struktur (M, O, e) mit einer assoziativen Operation
O: Mx M — M und einem neutralen Element e heit Monoid

(X*,0,¢) ist also ein Monoid




Spezielle Sprachoperationen 15

Neben den Mengenoperationen Schnitt, Vereinigung und Komplement gibt
es auch spezielle Sprachoperationen

Definition

@ Das Produkt (Verkettung, Konkatenation) von zwei Sprachen A und B
ist

AB={xy|xeA,yeB}

@ Ist A= {x} eine Singletonsprache, so schreiben wir fiir {x}B auch
einfach xB
@ Die n-fache Potenz A” einer Sprache A ist induktiv definiert durch

An:{{€}7 n=0,

ALA n>0

@ Die Sternhiille einer Sprache A ist A* = Ups0 A”
@ Die Plushiille einer Sprache A ist A" =UJ,»1 A” = AA*




Algorithmische Erkennung von Sprachen tie

@ Ein einfaches Rechenmodell zum Erkennen von Sprachen ist der
endliche Automat:

Eingabe-
band —_

/ Lesekopf

Steuer-
einheit

@ Ein endlicher Automat
o nimmt zu jedem Zeitpunkt genau einen von endlich vielen
Zustanden an
o macht bei Eingaben der Lange n genau n Rechenschritte und
o liest in jedem Schritt genau ein Eingabezeichen



Formale Definition eines endlichen Automaten 17

Definition
@ Ein endlicher Automat (kurz: DFA; Deterministic Finite Automaton)
wird durch ein 5-Tupel M = (Z,%,0, qo, E) beschrieben, wobei

o Z # @ eine endliche Menge von Zustanden
o 2 das Eingabealphabet

o §:Z x X — Z die Uberfiihrungsfunktion

o qo € Z der Startzustand und

o E ¢ Z die Menge der Endzustande ist

@ Die von M akzeptierte (oder erkannte) Sprache ist

L(M) = {xl...xnez*

es gibt g1,...,9n-1€Z,qn € E mit
3(qi, xix1) = giz1 fur i=0,...,n-1

e Eine Zustandsfolge qo, g1, ..., g, heiBt Rechnung von M(x; ...x,), falls
0(qi,xiv1) = qiw1 fur i=0,...,n—1 gilt

@ Sie heiBt akzeptierend, falls g, € E ist, und andernfalls verwerfend




Die Klasse der regularen Sprachen 18

Frage

Welche Sprachen lassen sich durch endliche Automaten erkennen und
welche nicht?

Definition
Eine von einem DFA akzeptierte Sprache wird als reguldr bezeichnet. Die
zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}




Bl behamsdhan Medulkre Al 19

Beispiel

Sei M3 =(Z,%,4,0,E) ein DFA mit Z ={0,1,2}, ¥ ={a, b}, E = {1} und
der Uberfiihrungsfunktion

5 ‘ 01 2 Graphische
- . Darstellung:
all 2 0
b2 0 1

Endzustande werden durch einen doppelten Kreis und der Startzustand
wird durch einen Pfeil gekennzeichnet d

4

Frage: Welche Worter akzeptiert M3?
@ Ist wy = abae L(Ms3)? Ja (akzeptierende Rechnung: 0,1,0,1)
@ Ist wy = abba € L(Ms3)? Nein (verwerfende Rechnung: 0,1,0,2,0)




DFAs beherrschen Modulare Arithmetik 20

Behauptung
Die von Mj3 erkannte Sprache ist

L(M3) ={xe{a,b}" | #a(x) — #b(x) =31}, wobei

@ #,(x) die Anzahl der Vorkommen von a in x bezeichnet und

@ /i =pj (in Worten: i ist kongruent zu j modulo m) bedeutet, dass / —j
durch m teilbar ist

Beweis der Behauptung durch Induktion iiber die Lange von x
Wir betrachten zunichst das Erreichbarkeitsproblem fiir DFAs




Das Erreichbarkeitsproblem fiir DFAs

21

Frage

Sei M =(Z,%,0,qo,E) ein DFA und sei x = x1...x, € £*. Welchen
Zustand erreicht M nach Lesen der Eingabe x?

Antwort

nach 0 Schritten: den Startzustand gq
nach 1 Schritt:  den Zustand d(qo, x1)
nach 2 Schritten: den Zustand (d(qo,x1),x2)

nach n Schritten: den Zustand o(...3(0(qo,x1),%2). ... %)




Das Erreichbarkeitsproblem fiir DFAs 2

Definition

@ Bezeichne S(q,x) denjenigen Zustand, in dem sich M nach Lesen von x
befindet, wenn M im Zustand g gestartet wird

@ Dann koénnen wir die Funktion
§:Zx¥*>Z
induktiv liber die Lange von x wie folgt definieren:
Firge Z, xeX* und a€ X sei
0(q.e) = q,
0(g,xa) = 4(0(g,x),a)
@ Die von M erkannte Sprache lasst sich nun elegant durch
L(M) ={xeX*|5(qo,x) € E}

beschreiben




DFAs beherrschen Modulare Arithmetik

Beweis

23

Behauptung
Fir alle x € {a, b} gilt:

x € L(M3) & #a(x) - #b(x) =31

@ 1 ist der einzige Endzustand von M

Daher ist L(Ms) = {x € {a,b}* | §(0,x) =1}
Obige Behauptung ist also aquivalent zu

fiir alle x € {a, b}*gilt: §(0,x) =1 < #,(x) - #p(x) =31

Folglich reicht es, fir alle x € {a, b}* folgende Kongruenz zu zeigen:

5(0,x) =3 #a(x) — #p(x)




DFAs beherrschen Modulare Arithmetik 24

Induktionsbehauptung: Fiir alle x € {a, b}" gilt $(0, x) =3 #4(x) - #5(x)
Induktionsanfang (n = 0): klar, da §(0,e) = #.(e) = #5() = 0 ist
Induktionsschritt (n~ n+1): Sei x = x1...Xn41 € {a, b} gegeben

@ Nach Induktionsvoraussetzung (1V) gilt fir x" = xq ... x,:

0(0,x") =3 #a(x) - #p(x")
@ Zudem gilt fir alle € Z={0,1,2}:
0(i,Xns1) =3 {

i+1, xp1=a
i_17 Xn+1:b

= i+ #a(Xn+1) - #b(Xle) (*)
@ Somit folgt
S(O,X) = 5(8(07X,)7Xn+1)
=3 S(O,XI)+#3(Xn+1)—#b(xn+l) (*)

=3 #a(X,) —#b(X,)+#a(Xn+1)_#b(Xn+1) (/V)
=3 #a(x) — #p(x) o




Singletonsprachen sind regular 25

Vereinbarung

Fir das Folgende sei ¥ = {a1,...,am} ein fest gewahltes Alphabet

Beobachtung 1

Alle Sprachen, die nur ein Wort x = x1...x, € £* enthalten, sind regular

v

Beweis
Folgender DFA M erkennt die Sprache L(M) = {x}:

X1 X2 X3
e (@) O
a* Xxp a+ X3
a* Xy

aey




REG ist unter Komplement abgeschlossen 2

Beobachtung 2
Ist L € REG, so ist auch die Sprache L = ¥* \ L regular

Beweis
@ Sei M=(Z,%,0,q0,E) ein DFA mit L(M) =L

e Dann wird das Komplement L von L von dem DFA
M= (Z,%,0,qo,Z \ E) akzeptiert =

Definition

Fiir eine Sprachklasse C bezeichne co-C die Klasse {L | L eC} aller
Komplemente von Sprachen in C

4

co-REG = REG I




REG ist unter Schnitt abgeschlossen 21

Beobachtung 3
Sind L1, Ly € REG, so ist auch die Sprache L1 n L regular

Beweis
@ Seien M, = (Z,-,Z,(S,-,q,-, E,'), i=1,2, DFAs mit L(M,) =1;.
@ Dann wird der Schnitt L1 n L, von dem DFA
M= (21 x 25,%,6,(q1,92), E1 x E2)
mit
5((p7 q)7 a) = (51(p7 3)752(q7 a))

erkannt

@ M wird auch als Kreuzproduktautomat bezeichnet




REG ist unter Vereinigung abgeschlossen

Beobachtung 4

Die Vereinigung L; U Ly von reguldren Sprachen L; und Ly ist reguldr

28

Beweis

Esgilt LLul, = (L_lnL_g)

Frage

Wie sieht der zugehérige DFA aus?

Antwort

M' = (Zy x 25,%,6,(q1,q2), (E1 x Z2) U (Z1 x E2))




Abschlusseigenschaften von Sprachklassen 22

Definition
@ Ein (k-stelliger) Sprachoperator ist eine Abbildung op, die k Sprachen
Ly,..., Lx auf eine Sprache op(Ly,...,Lx) abbildet
@ Eine Sprachklasse /C heiBt unter op abgeschlossen, wenn gilt:
Ll,...,LkEIC:>Op(Ll,...,Lk)EIC

@ Der Abschluss von K unter op ist die (bzgl. Inklusion) kleinste
Sprachklasse K’, die K enthalt und unter op abgeschlossen ist

Beispiel

@ Der 2-stellige Schnittoperator n bildet L; und Ly auf Ly n Ly ab

@ Der Abschluss der Singletonsprachen unter n besteht aus allen
Singletonsprachen und der leeren Sprache

@ Der Abschluss der Singletonsprachen unter U besteht aus allen
nichtleeren endlichen Sprachen

@ Der Abschluss der Singletonsprachen unter N, u und Komplement
besteht aus allen endlichen und co-endlichen Sprachen <




REG ist unter Mengenoperationen abgeschlossen 50

Korollar

Die Klasse REG der regularen Sprachen ist unter folgenden Operationen
abgeschlossen:

o Komplement
@ Schnitt

e Vereinigung




Wie umfangreich ist REG? 51

Folgerung

@ Aus den Beobachtungen folgt, dass alle endlichen und alle co-endlichen
Sprachen regular sind

@ Da die regulédre Sprache
L(Ms) = {x e{a,b}" | #a(x) - #»(x) =3 1}

weder endlich noch co-endlich ist, haben wir damit allerdings noch
nicht alle regularen Sprachen erfasst




Wie umfangreich ist REG? 52

Nachstes Ziel
Zeige, dass REG unter Produktbildung und Sternhiille abgeschlossen ist

Problem

Bei der Konstruktion eines DFA M fiir das Produkt L(M;)L(M,) bereitet
es Schwierigkeiten, den richtigen Zeitpunkt fiir das Ende der Simulation
des DFA M; und den Start der Simulation des DFA M, zu finden

Losungsidee

Ein nichtdeterministischer endlicher Automat (NFA) kann den richtigen
Zeitpunkt ,raten”

Verbleibendes Problem
Zeige, dass auch NFAs nur reguldre Sprachen erkennen




Nichtdeterministische endliche Automaten 33

Definition
@ Ein nichtdet. endl. Automat (kurz: NFA; Nondet. Finite Automaton)
N=(Z,X,A, Q,E)

ist genau so aufgebaut wie ein DFA, nur dass er

o eine Menge @y € Z von Startzustanden hat und

o die Uberfiihrungsfunktion folgende Form hat

AN:Zx¥->P(Z)
Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge aller
Teilmengen) von Z; diese wird oft auch mit 2Z bezeichnet

@ Die von einem NFA N akzeptierte (oder erkannte) Sprache ist

L(N) = {Xl x| esgibt quQo,ql,--~,qn_1eZ,qneE}
S

mit g1 € A(qj, xi41) fir i=0,...,n-1

e Eine Zustandsfolge qo, ..., g, heiBt Rechnung von N(x;...x,), falls
go € Qo und gj+1 € A(gi, xj+1) fur i=0,...,n—1 gilt




Eigenschaften von NFAs .

@ Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiithren

e Ein Wort x gehort genau dann zu L(N), wenn N(x) mindestens eine
akzeptierende Rechnung hat

@ Im Gegensatz zu einem DFA, der jede Eingabe zu Ende liest, kann ein
NFA N |, stecken bleiben”

@ Dieser Fall tritt ein, wenn N in einen Zustand g gelangt, in dem er das
nachste Eingabezeichen x; wegen

A(q,x) =2

nicht verarbeiten kann




Eigenschaften von NFAs

Beispiel

35

@ Betrachte den NFA N = (Z, X, A, Qo, E) mit Z={p,q,r,s},
¥ ={0,1,2}, Qo ={p}, E = {s} und der Uberfiihrungsfunktion

Graphische Darstellung:
A ‘ p q r s
0 {pg} @ © o
1 {py {r} o @
2| {p} o {s} @

@ Ist wy =012 € L(N)? Ja (akzeptierende Rechnung: p,q,r,s)

Es gibt aber auch verwerfende Rechnungen bei Eingabe wy: p, p, p, p
@ Ist wp =021 € L(N)? Nein, da es keine akzeptierende Rechnung gibt
@ Esgilt L(N)={x012|xeX*}

*@—‘“@—1*@—2*

<




Ein NFA fir das Produkt von regularen Sprachen e

Beobachtung 5

Seien N; = (Z;, X, A;, Qi, Ei) NFAs mit L(N;) = L; fir i =1,2. Dann wird
auch das Produkt LiLy von einem NFA erkannt

Beweis
@ Wir kdnnen Z; n Z, = @ annehmen

e Dann gilt L(N) = L1L, fiir den NFA N = (Z, U Z5, 5, A, Qy, E) mit

Al(p-/a): pezl\Ela
A(p7 a) = Al(P a) U quQQ A2(qa a)a p € Ela
A2(p7 3)7 p€Z2

und

o B @nk-=g,
Ei U Ey, sonst




Ein NFA fir das Produkt von regularen Sprachen

e Dann gilt L(N) = L1L, fiir den NFA N = (Z, U 25,5, A, Qy, E) mit

Al(p7a)7 pezl\Ela
A(p7 3) = Al(p7 3) U Uq€Q2 AZ(qa a)7 pE Ela
AQ(p’ 3)7 P€Z2

und E = Ep, falls @ n E; =@, bzw. E = E; U E, sonst
Beweis von LiLy € L(N):

Seien x = xy---xx € L1,y = y1--y; € Lo und seien qo, ..., gx und pg,.

akzeptierende Rechnungen von Ny (x) und N(y)

Dann ist qo,---, gk, P1,-- -, p; €ine akz. Rechnung von N(xy), da
® go € Q1 und py € Ep ist, und

e im Fall / >1 wegen g € E1, po € Q und p; € Ax(po, y1) zudem
p1 € A(gk, y1) und

@ im Fall /=0 wegen g, € E; und p; € Qxn E; zudem gy € E ist

N

37




Ein NFA fir das Produkt von regularen Sprachen e

@ Dann gilt L(N) = L;L; fir den NFA N = (Z3 U Z5, X, A, @1, E) mit

Al(pva)v PEZI\Ela
A(p7 a) = Al(p7 a) U Uq€Q2 A2(q7 a)a pE€ E17
A2(p7 a): p622

und E = E;, falls @ n E; =g, bzw. E = E; U E> sonst
Beweis von L(N) < L Ly:

Sei x = x1---x, € L(N) und sei qo, ..., gn eine akz. Rechnung von N(x)
Dann gilt go € @1, gn € E, qo,-..,qi € Z1 und @gj41,...,qn € Zo flirein i < n

Wir zeigen, dass qo, - .., g; eine akz. Rechnung von Nj(x;---x;) und
q,Gi+1,---,qn flr ein g € Q, eine akz. Rechnung von Na(xj11-++Xp) ist:

@ Im Fall i < n impliziert der Ubergang gj,1 € A(qj, xij+1), dass g; € E;
und gj+1 € Az(q, xi+1) fir ein g€ Qy ist. Zudem ist g, € EN 2, = E

e ImFalli=nist g,€ EnZy, was g, € E; und Qxn E; # & impliziert




Ein NFA fiir die Sternhiille einer regularen Sprache

Beobachtung 6

Ist N=(Z,X,A, Qo, E) ein NFA, so wird auch die Sprache L(N)* von
einem NFA erkannt

Beweis
Die Sprache L(N)* wird von dem NFA

N = (Zu{qneu}a 2, A’a QOU{Qneu}> Eu{qneu})

mit
A(p,a), PEZN 15,
A/(pv a) = A(pv 3)UUq€Qo A(q’ a)’ p€ E’
@, P = Qneu

erkannt 5




Uberblick

Ziel
Zeige, dass REG unter Produktbildung und Sternhiille abgeschlossen ist

40

Problem
Bei der Konstruktion eines DFA firr das Produkt L;L> bereitet es

Schwierigkeiten, den richtigen Zeitpunkt fiir den Ubergang von (der
Simulation von) My zu M, zu finden

Losungsidee (bereits umgesetzt)

Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
fir den Ubergang ,raten”

Noch zu zeigen

NFAs erkennen genau die reguldren Sprachen




41

NFAs erkennen genau die regularen Sprachen

Satz (Rabin und Scott)
REG = {L(N) | N ist ein NFA}

Beweis von REG ¢ {L(N) | N ist ein NFA}
Diese Inklusion ist klar, da jeder DFA M = (Z,%,4, qo, E) in einen
aquivalenten NFA

N=(ZX A, Q,E)

transformiert werden kann, indem wir A(q,a) = {0(g,a)} und Qo ={qo}
setzen. o

4

Fur die umgekehrte Inklusion ist das Erreichbarkeitsproblem fiir NFAs von
zentraler Bedeutung




Das Erreichbarkeitsproblem fiir NFAs =

Frage

Sei N=(Z,%,A, Qp, E) ein NFA und sei x = x; ... x, eine Eingabe. Welche
Zustande sind in i Schritten erreichbar?

v

Antwort
@ in 0 Schritten: alle Zustiande in Qg
@ in einem Schritt: alle Zustande in
Q= U A(g,x1)
qeQo
@ in i Schritten: alle Zustande in

Q= U Ag,x)

qeQi-1




Simulenfen v NERs direh Bhe 43

Idee

@ Wir kénnen einen NFA N = (Z, X, A, Qo, E) durch einen DFA
M= (2',%,0,qp, E") simulieren, der in seinem Zustand die Information
speichert, in welchen Zustanden sich N momentan befinden kdnnte
e Die Zustinde von M sind also Teilmengen Q von Z (d.h. Z' =P (Z))
mit Qo als Startzustand (d.h. g{ = Qo) und der Endzustandsmenge
E'={QcZ|QnE+g)}

@ Die Uberfiihrungsfunktion § : P(Z) x ¥ - P(Z) von M berechnet dann
fiir einen Zustand Q € Z und ein Zeichen a € ¥ die Menge
0(Q,a) = A(qg,a)
qe@
aller Zustande, in die N gelangen kann, wenn N ausgehend von einem
beliebigen Zustand g € @ das Zeichen a liest

@ M wird auch als der zu N gehérige Potenzmengenautomat bezeichnet




Simulation von NFAs durch DFAs 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»




St v NERE ¢ e B 5 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:




St v NERE ¢ e B 5 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:




St v NERE ¢ e B 5 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

{r} | {p.q} @




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1
{p} | {p.a} {p} @




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1.2
{p} | {p,a} {p} {p} @




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1.2
{p} | {pa} {p} {p} @

{p.q}




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

0 1 2
9@—'@—@%
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1,2 0
e m®
—_
iy | {par Py {p}

{p,aq} | {p,q}




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

0 1 2
9@—'@—@%
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

1,2 0
S oa®
—_
iy | par Py {p}

{p,q} | {p.q} {p,r} 1

e




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

e O
{p} | {p.qt {p} {p} @ 2

{p,a} | {p.a} {p,r} {p} 1




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

e O
{p} | {p.qt {p} {p} @ 2

{p,a} | {p,a} {p,r} {p} 1
{p,r}




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

s | o 1 2

{p} | {p.qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p;q}




Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

0 1 2
9@_,@_,@_,
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:
1,2 0

s | o 1 2 8f0N

—_
pr | {par Py {p} 2

{p,a} | {p,a} {p,r} {p}
{p,r} | {p,q} {p}




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

0 1 2
9@_,@_,@_,
0,1,2
@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:
1,2 0
s | o 1 2 PN
—_
pr | {par Py {p} 2

{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}




Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

0 1 2
9@_,@_,@_,
0,1,2

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:
1,2 0

s | o 1 2 PN

—_
pr | {par Py {p} 2

{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}

{p,s}




44

Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

s | o 1 2

{p} | {p.qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}
{p;s} | {p.q}




44

Simulation von NFAs durch DFAs

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

5 | o 1 2
{p} | {p,qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qa}y {p} {p,s}

{p;s} | {p.q}

{pr}




il en vem WELe dureh BELe 44

Beispiel
@ Betrachte den NFA N

9@_0.@_%@_2»

@ Ausgehend von Qp = {p} liefert § dann die folgenden Werte:

s | o 1 2

{p} | {p.qt {p} {p}
{p,a} | {p,a} {p,r} {p}
{p,r} | {p,qt {p} {p,s}
{p,st | {p.qt {p} {p}




il en vem WELe dureh BELe 45

Bemerkung

@ Im obigen Beispiel werden fiir die Konstruktion des Potenzmengen-
automaten nur 4 der insgesamt

[P(2)] =214 =2* =16
Zustande benétigt, da die iibrigen 12 Zustande nicht erreichbar sind
(hierbei bezeichnet |A|| die Machtigkeit einer Menge A)

@ Es gibt jedoch Beispiele, bei denen alle 2121 Zustande benétigt werden
(siehe Ubungen)




NFAs erkennen genau die regularen Sprachen 5

Beweis von {L(N) | N ist ein NFA} ¢ REG
@ Sei N=(Z,L,A, Qp, E) ein NFA und sei M = (P(Z),X%,6, Qo, E") der
zugehorige Potenzmengenautomat mit §(Q, a) = Ugeq@ A(q, a) und
E'={QcZ|QnE+z}
@ Dann folgt die Korrektheit von M mittels folgender Behauptung, die wir
auf der nachsten Folie beweisen.

Behauptung

S(Qo,x) enthalt genau die von N nach Lesen von x erreichbaren
Zustande

o Fir alle Woérter x € X gilt

xeL(N) < N kann nach Lesen von x einen Endzustand erreichen

2 5(Qox)nE4o

= S(Qo,x) eE’
<~ XEL(/\/I) m]




Beweis der Behauptung Y

Behauptung

S(Qo,x) enthélt genau die von N nach Lesen von x erreichbaren Zustande

Beweis durch Induktion tiber die Lange n von x
n=0: klar, da S(Qo,e) = @ ist
n~n+1: Sei x =xy...Xxn:1 gegeben. Nach IV enthilt
Qn=0(Qo,x1 - Xn)
die Zustande, die N nach Lesen von x; ...x, erreichen kann.
Wegen
3(Qo,x) = 3(Qny Xns1) = L% A(q, Xns1)
qe@n

enthilt dann aber §(Qo, x) die Zustinde, die N nach Lesen
von x erreichen kann. m




48

Abschlusseigenschaften der Klasse REG

Satz (Rabin und Scott)
REG = {L(N) | N ist ein NFA}

Korollar

Die Klasse REG der regularen Sprachen ist unter folgenden Operationen
abgeschlossen:

@ Komplement
@ Schnitt

o Vereinigung
@ Produkt
°

Sternhdlle

A\




berbick 49

Nachstes Ziel
Zeige, dass REG als Abschluss der endlichen Sprachen unter Vereinigung,
Produkt und Sternhiille charakterisierbar ist

Bereits gezeigt:

Jede Sprache, die mittels der Operationen Vereinigung, Produkt und
Sternhiille (sowie Schnitt und Komplement) angewandt auf endliche
Sprachen darstellbar ist, ist regular

Noch zu zeigen:

Jede reguldre Sprache lasst sich aus endlichen Sprachen mittels
Vereinigung, Produkt und Sternhiille erzeugen




Konstruktive Charakterisierung von REG 20

Induktive Definition der Menge RAy aller regularen Ausdriicke iiber
Die Symbole @, € und a (a € X) sind regulare Ausdriicke tiber ¥, die
o die leere Sprache L(@) = @

e die Sprache L(¢) = {¢} und

o fiir jedes a € X die Sprache L(a) = {a} beschreiben

Sind « und 3 regulare Ausdriicke tiber ¥, die die Sprachen L(«) und L(/3)
beschreiben, so sind auch af3, («|8) und («)* regulére Ausdriicke iiber X,
die folgende Sprachen beschreiben:

o L(af) = L(a)L(B)
o L((alB)) = L(a)u L(B)
o L((a)*)=L(a)*

Bemerkung
RAs ist eine Sprache iiber dem Alphabet ' = > u {@,¢,|,*,(,)}




51

Regulare Ausdriicke

Beispiel
Die regularen Ausdriicke (¢)*, (@), (0/1)*00 und (0|(e0|@(1)*)) be-
schreiben folgende Sprachen:

v (O (2) (0[1)*00 (0l(e0l2(1)"))
L(v) | {e} {e} {x00|xe{0,1}"} {0}

Vereinbarungen

@ Um Klammern zu sparen, definieren wir folgende Prazedenzordnung:
Der Sternoperator * bindet starker als der Produktoperator und dieser
wiederum starker als der Vereinigungsoperator

e Fir (0/(e0|@(1)*)) kénnen wir also kurz 0|e0|@1* schreiben

@ Da der reguldre Ausdruck vv* die Sprache L(~y)™ beschreibt, verwenden
wir v* als Abkiirzung fiir den Ausdruck y~*

v




52

Charakterisierung von REG durch regulare Ausdriicke

REG = {L(7) | v ist ein regularer Ausdruck}

Beweis der Inklusion von rechts nach links.
Klar, da

o die Basisausdriicke @, € und a, a€ ¥, regulare Sprachen beschreiben
und

@ die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist o




Charakterisierung von REG durch regulare Ausdriicke >

Fur die umgekehrte Inklusion betrachten wir zunachst den DFA Ms.

Frage
Wie l3sst sich die Sprache

L(Ms) = {x € {a,b}" [ #a(x) - #5(x) =3 1}

durch einen regularen Ausdruck beschreiben?

Antwort
@ Sei L, g die Sprache aller Worter x, die M3 vom AZustand p in den
Zustand q berfithren (d.h. Ly g ={x e {a,b}* | d(p,x) = q})
o Weiter sei L;fq die Sprache aller Wérter x = x1---x, € Lp g, die hierzu nur
Zustande ungleich r benutzen (d.h. d(p, x1---x;) #r firi=1,...,n—-1)

e Dann gilt L(M3) = Loy = Lo oLy’ wobei = (L3%)* ist




Charakterisierung von REG durch regulare Ausdriicke o

Antwort (Fortsetzung)

@ Dannist L(M3) = L 0L¢0 = (L;to )*Lio

° L’FO1 und Léoo lassen sich durch folgende
regulare Ausdriicke beschreiben:

'Yo 1 = (albb)(ab)*
750 = a(ab)* (aalb) | b(ba)*(a|bb) | €

@ Also ist L(Mj3) durch folgenden regularen Ausdruck beschreibbar:
70,1 = (a(ab)”(aalb) | b(ba)™(a|bb))™(a|bb)(ab)"




Charakterisierung von REG durch regulare Ausdriicke e

REG = {L(+y) | v ist ein regulérer Ausdruck} \

Beweis der Inklusion von links nach rechts.

@ Wir konstruieren zu einem DFA M = (Z,%,4, qo, E) einen regularen
Ausdruck v mit L(y) = L(M).

@ Wir nehmen an, dass Z={1,...,m} und gp =1 ist
@ Dann lasst sich L(M) als Vereinigung

L(M) = U Liq
qeE

von Sprachen der Form L, o = {x € * | §(p,x) = q} darstellen

@ Es reicht also, reguldre Ausdriicke fiir die Sprachen L, g mit
1< p,q < m anzugeben




Charakterisierung von REG durch regulare Ausdriicke 20

REG c {L(7) | v ist ein reguldrer Ausdruck}

Beweis (Fortsetzung)
@ Es reicht also, reguldre Ausdriicke fiir die Sprachen L, g mit
1< p,q < m anzugeben
@ Hierzu betrachten wir fiir r =0, ..., m die Sprachen

L,irq = {Xl---XnELp,q furi=1,...,n—-1ist S(p,xl...x,-)ér},

die wir auch einfach mit L}, . bezeichnen

e Wegen L, 4 =L, reicht es, regulare Ausdriicke fur die Sprachen L, .
mit 1 < p,g<mund 0 <r < m anzugeben

@ Wir zeigen induktiv iiber r, dass die Sprachen L/ . durch regulare
Ausdriicke beschreibbar sind




Charakterisierung von REG durch regulare Ausdriicke a0

REG c {L(7) | v ist ein reguldrer Ausdruck}

Beweis (Schluss)

r=0: In diesem Fall sind die Sprachen

LO _ {aez‘(s(pﬂa):q}a p#*q,

P9 |{aex|d(p,a)=q}u{e}, sonst
endlich, also durch reg. Ausdriicke 72,q beschreibbar

r~r+1: Nach IV existieren regulare Ausdriicke v, . fiir die
Sprachen Lj, .. Wegen

r+1 _ gr r r *r
Lp,q - Lp,q U Lp,r+1(Lr+1,r+1) Lr+1,q

R r+1 _ r r * A @
sind dann v, =75 o[V o1 (Vr1.r41) V41,4 reguldre

Ausdriicke fiir die Sprachen L,’,qu. o




Charakterisierung von REG durch regulare Ausdriicke 28

Beispiel
@ Betrachte den DFA M

.

b b

@ Da M nur einen Endzustand g = 2 und insgesamt m = 2 Zustande
besitzt, folgt

L(M) = U Li,g=Li2= LT,
qeE




Charakterisierung von REG durch regulare Ausdriicke 2

Beispiel (Fortsetzung)

e Um reguldre Ausdriicke v, , fiir die Sprachen L , zu bestimmen,
benutzen wir fiir r > 0 die Rekursionsformel

r+1 _ _r r r * _r
'Yp,q _/Vp,q|7p,r+1(’7r+1,r+1) ’7r+1,q

@ Damit erhalten wir

2 1 (1 (1 y*al
Y12 = 71,2|’71,2 (72,2) 72,2
1 0 [0 (~0 \+~0
Y12 = ’Y1,2|’Y1,1(’Y1,1) 71,2

721,2 = ’78,2|’78,1 (7(1),1)*7?,2

o Fiir die Berechnung von V%z werden also nur die regularen Ausdriicke
0 .0 .0 .0 .1 1 s
Y110 V120 Y210 Y220 V2 Und 77, bendtigt




60

Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
- 2 o Ly p={cex|d(p,c)=p}uie}
?i:/g L9 ,={ceX|d(p,c)=q}firpzgqg
1 *
b b V;r)jq :7£,q|'7;r7,r+1(7;+1,r+1) 7:+1,q
. pP,q
1,1 1,2 2,1 2,2
0 ”7(1),1 Vo 1 '78,2
- 7%72 - 721,2

2 - ’Yf,z -




60

Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
~ Q) L21={cex|d(1,c)=1}u{e} = {e, b}
. 0
: J |~ o=
, p,q
1,1 1,2 2,1 2,2
0 elb 7(1),2 ’Yg,l ’Yg,z
- 7%72 - 721,2

2 - ’Yf,z -




Charakterisierung von REG durch regulare Ausdriicke 60

Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
- L3,={cex|d(1,c)=2}={a}
0
b b v M274
, p,q
1,1 1,2 2,1 2,2
0 elb a 78,1 ’Yg,z
- 7%72 - 721,2
2 - ’Yf,z - -




Charakterisierung von REG durch regulare Ausdriicke 60

Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
- L3,={ceX[5(2,c)=1}={a}
~r 0 =a
b b 72,1
, p,q
1,1 1,2 2,1 2,2
0 elb a a ’Yg,z
- 7%72 - 721,2
2 - ’Yf,z - -




Charakterisierung von REG durch regulare Ausdriicke 60

Beispiel (Fortsetzung)

DFA M Rekursionsformel
a
~ Q) L3,={ceX|8(2,¢)=2}u{e} = {¢,b}
a
b b % 78,2 = db
, p,q
1,1 1,2 2,1 2,2
0 elb a a e|b
- 7%2 - 721,2




60

Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformel
- a @ ’Y%,z 27?,2|7(1),1(7(1),1)*’Y?,2
?/\3:8 =a|(e|b)(e|b)*a
¥ 7 =bH*a
. p,q
1,1 1,2 2,1 2,2
0 elb a a e|b
- b*a = 72172




60

Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung

DFA M

N

)

Rekursionsformel
7%,2 = ’Yg,zhg,l (7(1),1)*7?,2
= (e|b)|a(e|b)*a

¥ 7 =¢|blab*a
r p;q
1,1 1,2 20 o
0 elb a a e|b
1 - b*a - €|blab*a
2 B ’Yf,z - -




Charakterisierung von REG durch regulare Ausdriicke 60

Beispiel (Fortsetzung)

DFA M Rekursionsformel
- 2 @ 7%,2 :’Yil,z|’7%,2(721,2)*7§,2
M =b*a|b*a(e|blab*a)* (¢|blab™ a)
7 2 =b*a(blab*a)*
. p,q
1,1 1,2 2,1 2,2
0 elb a a €|b
- b*a - €|blab*a
2 - b*a(blab*a)* - -
<




Charakterisierungen der Klasse REG ol

Korollar

Fiir jede Sprache L sind folgende Aussagen aquivalent:

o L ist regular (d.h. es gibt einen DFA M mit L= L(M))
@ es gibt einen NFA N mit L= L(N)

@ es gibt einen reguldren Ausdruck v mit L= L(7)

°

L lasst sich mit den Operationen Vereinigung, Produkt und Sternhiille
aus endlichen Sprachen gewinnen

@ L lasst sich mit den Operationen Vereinigung, Schnitt, Komplement,
Produkt und Sternhiille aus endlichen Sprachen gewinnen

Ausblick

@ Als nachstes wenden wir uns der Frage zu, wie sich die Anzahl der
Zustande eines DFA minimieren |3sst

@ Da hierbei Aquivalenzrelationen eine wichtige Rolle spielen, befassen
wir uns zunachst mit Relationalstrukturen




Relationalstrukturen 62

Definition
@ Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn
RcAK=Ax--xA={(a1,...,ax) |aj e Afiri=1,... k} ist
| —

k-mal
@ Firi=1,...,nsei R; eine k;-stellige Relation auf A. Dann heiBt
(A; Ry,. .., R,) Relationalstruktur

@ Die Menge A heiBt der Individuenbereich, die Tragermenge oder die
Grundmenge der Relationalstruktur

Bemerkung

e Wir werden hier hauptsachlich den Fall n=1, k; =2, also (A, R) mit
R c A x A betrachten

@ Man nennt dann R eine (bindre) Relation auf A
e Oft wird fiir (a,b) € R auch die Infix-Schreibweise aRb benutzt




Relationalstrukturen 63

Beispiel
e (F,M) mit F ={f|f ist Fluss in Europa} und
M={(f,g) e FxF|f mindetin g}

e (U,B) mit U= {x| x ist Berliner} und
B={(x,y) e UxU |x ist Bruder von y}

e (P(M),c), wobei M eine beliebige Menge und ¢ die Inklusionsrelation
auf den Teilmengen von M ist

@ (A, lda) mit lda = {(x,x) | x € A} (die Identitat auf A)

o (R,<)

@ (Z,|), wobei | die "teilt"-Relation bezeichnet (d.h. a|b, falls ein c € Z
mit b = ac existiert)




Mengentheoretische Operationen auf Relationen o

@ Da Relationen Mengen sind, kdnnen wir den Schnitt, die Vereinigung,
die Differenz und das Komplement von Relationen bilden:
RnS={(x,y) e AxA| xRy A xSy}
RuS={(x,y) e AxA| xRy v xSy}
R-S={(x,y) e AxA| xRy A -xSy}

R=(AxA)-R
@ Sei M c P(Ax A) eine beliebige Menge von Relationen auf A. Dann
sind der Schnitt iiber M und die Vereinigung ber M folgende
Relationen:

(M=) R={(x,y)| VRe M : xRy}
ReM

UM= U R={(x,y)|IRe M : xRy}
ReM




Weitere Operationen auf Relationen 65

Definition

@ Die transponierte (konverse) Relation zu R ist
RT = {(y,x) | xRy}

o RT wird oft auch mit R™! bezeichnet

@ Zum Beispiel ist (R,<7) = (R,>)

@ Das Produkt (oder die Komposition) zweier Relationen R und S ist
RoS={(x,z) e AxA|3Jy e A: xRy A ySz}

Beispiel
Ist B die Relation
und E = Vu M "ist Elternteil von”, so ist B o E die Onkel-Relation <

ist Bruder von”, V "ist Vater von", M "ist Mutter von"




	Einführung
	Formale Sprachen

	Reguläre Sprachen
	Endliche Automaten
	NFAs
	Reguläre Ausdrücke
	Relationalstrukturen


