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Definition
Sei G=(V,X,P,S) eine Grammatik
© G heiBt vom Typ 3 oder regular, falls fiir alle Regeln u — v gilt:
veVundveXrVuXu{e}
(d.h. alle Regeln haben die Form A — aB, A — a oder A — ¢)
@ G heiBt vom Typ 2 oder kontextfrei, falls fiir alle Regeln u — v gilt:
ueV (d.h. alle Regeln haben die Form A — «)
© G heiBt vom Typ 1 oder kontextsensitiv, falls fiir alle Regeln v — v gilt:
lv| > |ul (mit Ausnahme der e-Sonderregel, s. unten)

@ Jede Grammatik ist automatisch vom Typ 0

Die e-Sonderregel

In einer kontextsensitiven Grammatik ist auch die Regel S — ¢ zulassig,
falls das Startsymbol S nicht auf der rechten Seite einer Regel vorkommt
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Bemerkung
@ Wie wir gesehen haben, ist CFL in CSL enthalten
@ Zudem ist die Sprache L = {a"b"c" | n > 1} nicht kontextfrei

@ L[ kann jedoch von einer kontextsensitiven Grammatik erzeugt werden
(siehe nachste Folie)

@ Daher ist CFL echt in CSL enthalten
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@ Betrachte die kontextsensitive Grammatik G = (V, %, P,S) mit
V ={S,B}, X ={a,b,c} und den Regeln

P: S—aSBc,abc (1,2) cB—Bc (3) bB—bb(4)

@ In G l3sst sich beispielsweise das Wort w = aabbcc ableiten:

S

= aS = aabcBc = aabBcc = aabbcc
(1) (2 (3) 4)

o Allgemein gilt fiir alle n > 1:

§ :>n71 — an—l (Bc)n—l
(1) (2) -
:>(5') a"p —n-1 e
3) (4)

@ Also gilt a"b"c" € L(G) fur alle n>1
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Beispiel (Fortsetzung)

@ Betrachte die kontextsensitive Grammatik G = (V, %, P,S) mit
V ={S,B}, ¥ ={a,b,c} und den Regeln

P:S—aSBc,abc (1,2) c¢cB—Bc(3) bB—bb(4)
@ Umgekehrt folgt durch Induktion tber die Ableitungslange m, dass jede
Satzform a € (VU X)* mit S =" « die folgenden Bedingungen erfiillt:

° #a(a) = #b(a) + #B(a) = #c(a)
o links von a und links von S kommen nur a’s vor

o links von b kommen nur a's oder b's vor

@ Daraus ergibt sich, dass in G nur Worter w € ¥* der Form w = a"b"c"
ableitbar sind, d.h. L(G) = {a"b"c" | n>1} e CSL q




Die Turingmaschine 237

Schreib-
Lese-Kopf Arbeitsband
> mit Eingabe
-‘I_I‘Xl‘ ‘x,-‘ ‘Xn‘l_l‘--~
Steuer-
einheit

@ Um ein geeignetes Maschinenmodell fiir die kontextsensitiven Sprachen
zu finden, filhren wir zundchst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein

@ Eine NTM erhilt ihre Eingabe auf einem nach links und rechts un-
begrenzten Band, das in Felder unterteilt ist; zudem kann sie weitere
Bander benutzen, die zu Beginn der Rechnung komplett leer sind

@ In jedem Rechenschritt kann sie die aktuell besuchten Bandfelder lesen,

die gelesenen Zeichen iliberschreiben und den Schreib-Lese-Kopf auf
jedem Band um maximal ein Feld nach links oder rechts bewegen
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Definition
@ Sei k > 1. Eine nichtdeterministische k-Band-Turingmaschine (k-NTM

oder einfach NTM) wird durch ein 6-Tupel M = (Z,%,T,4, qo, E) be-
schrieben. Dabei ist

o Z eine endliche Menge von Zustanden

o ¥ das Eingabealphabet (mit U ¢ X; U heiBt Leerzeichen oder Blank)
o [ das Arbeitsalphabet (mit X u{u}cl)

0 6: ZxTk > P(ZxTkx{L R, N}¥) die Uberfithrungsfunktion

go der Startzustand und

o E ¢ Z die Menge der Endzustande

@ Eine k-NTM M heiBt deterministisch (kurz: M ist eine k-DTM oder
einfach DTM), falls fiir alle (g, a1,...ax) € Z x ¥ gilt:

”6((],31,...3[()” <1

©




Das Rechenmodell der Turingmaschine =

e Fur (g,b1,...,bk,D1,...,Dx) € 6(p,a1,...ax) schreiben wir auch
(pya1;---yak) > (g, b1,..., by, D1, .., Dy)

@ Eine solche Anweisung ist ausfiihrbar, falls
o p der aktuelle Zustand von M ist und
o sich fir i=1,..., k der Kopf des i-ten Bandes auf einem mit a;
beschrifteten Feld befindet
@ Bei ihrer Ausfiihrung
o geht M vom Zustand p in den Zustand g iiber
o ersetzt auf Band i=1,..., k das Symbol a; durch b; und

o bewegt den Kopf auf Band i=1,..., k gemaB D;
(L: ein Feld nach links, R: ein Feld nach rechts, N: keine Bewegung)
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e Eine Konfiguration ist ein (3k + 1)-Tupel
K= (q,Ul,a]_,V]_,...,Uk,ak,Vk)EZX(F* err*)k

und besagt, dass

o g der momentane Zustand ist und

o das i-te Band mit ... U ujajv; U ... beschriftet ist, wobei sich der
Kopf auf dem Zeichen a; befindet

@ Im Fall k =1 notieren wir eine Konfiguration K = (q, u, a, v) auch in
der Form K = ugav




Das Rechenmodell der Turingmaschine

@ Seien K=(p, u1,a1,v1,..

Konfigurationen
e K’ heiBt Folgekonfiguration von K (kurz K  K'), falls eine Anweisung

(pvalv"
i=1,..

'aak) _>(q)b17"
.k gilt:

..., Dy) existiert, so dass fiir

241

! ! ! !/ / ! /
-y Ug,ak,vi) und K'=(q, ug,a],vy, ..., Up,a5, V)
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Man beachte, dass sich die Lange der Bandinschrift uja;v; beim
Ubergang von K zu K’ genau dann um 1 erhéht, wenn in K’ zum
ersten Mal ein neues Feld auf dem i-ten Band besucht wird
Andernfalls bleibt die Lange von u;a;v; unverandert

Die Lange von u;a;v; entspricht also genau der Anzahl der bisher auf
dem i-ten Band besuchten Felder (inkl. Eingabezeichen im Fall i =1)

Die Startkonfiguration von M bei Eingabe x = x;...x, € " ist
K. - (go,&,X1,X2 ... Xp, €,0,€, ..., &,LU,€), X#E€,
=
(q07€7u7€7"'7€u7€)7 XZE

Eine Rechnung von M bei Eingabe x ist eine (endliche oder unendliche)
Konfigurationenfolge Ko, K1, Ko... mit Ko = Ky und Ko+ K1+ K> . ..
Die von M akzeptierte oder erkannte Sprache ist

LM)={xeX* |IK e Ex (I xTxM) : K+ K}
M akzeptiert also genau dann ein Wort x (kurz: M(x) akzeptiert),

wenn es eine Rechnung von M bei Eingabe x gibt, bei der ein
Endzustand erreicht wird
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Beispiel

Betrachte die 1-DTM M = (Z,%,T,6,q0, E) mit Z={qo,...qa},
Y ={a, b}, =X U{A,B,u}, E={qgs} und den Anweisungen

d: goa — gq1AR (1) Beginn der Schleife: Falls ein a gelesen wird,
ersetze es durch A und ...

gia >@giaR (2) ... lies a's und B's bis ein b kommt (falls kein b
g1B—q1BR (3) kommt, halte ohne zu akzeptieren), ersetze
g1b - g:BL (4) das b durch ein B und ...

g2a > qeal  (5) ... bewege den Kopf wieder nach links bis
g2B— q:BL (6) auf das Feld hinter dem letzten A und
g2A = goAR (7) gehe zum Beginn der Schleife

qoB— g3BR (8) Falls zu Beginn der Schleife ein B gelesen wird,
qg3B— q3BR (9) teste, ob alle Eingabezeichen gelesen wurden
g3l - g4uUN (10) (wenn ja, dann akzeptiere)
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Beispiel (Fortsetzung)

Betrachte die 1-DTM M = (Z,%,T,6,q0, E) mit Z={qo,...qa},
Y ={a, b}, =X U{A,B,u}, E={qgs} und den Anweisungen

0: qoa—>q1AR (1) qra—qiaR (2) gqra—qgral (5) qoB—g3BR (8)
q1B—>q1BR (3) qB—q:BL (6) q3B—~q3BR (9)
qlb—>q28L (4) q2A—>qOAR (7) q3I_J—>q4LJN (10)
@ Dann akzeptiert M die Eingabe aabb wie folgt:

goaabb + Agiabb + Aagibb + AgaBb + g AaBb
(1) (2 (4) (5)
AqgoaBb AAqg1Bb AABqgib AAg, BB
(';) Goa ('I) g1 ('5) q1 ('4-) g2
Ag,ABB AAqoBB AABg3:B - AABBqgsL
(&) " (PP 5 TEBE ) @
+ AABBq,u
(10)

@ Ahnlich lasst sich fiir ein beliebiges n> 1 zeigen, dass a"b" € L(M) ist
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Beispiel (Schluss)
d: qoa—>q1AR (1) qla—>qlaR (2) q2a—>qzaL (5) qoB—>quR (8)
@B->qiBR (3) qB->q@BL (6) g3B~>q3BR (9)
gib—>q2BL (4) qA—>qoAR (7) gsu—qgsuN (10)
@ Andererseits fiihren die Eingaben aba, abb und aab auf die Rechnungen

goaba - Agqiba + qABa - AgqyBa + ABgsa und
(1) (4) (7) (8)

qoabb + Agibb + gABb - AqyBb + ABg3b und
(1) (4) (7) (8)

goaab - Aqiab + Aagqib + Ag,aB + qpAaB
(1) () (4) (5)

+ AgoaB  AAqi1B - AABqgiU
(7) (1) (8)

@ Da diese nicht fortsetzbar sind und M deterministisch ist, kann M nicht
den Endzustand gqa erreichen, d.h. aba, abb, aab ¢ L(M)

@ Tatsachlich lasst sich zeigen, dass L(M) = {a"b" | n > 1} ist <
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@ In den Ubungen werden wir eine 1-DTM M’ fiir die Sprache
L"={a"b"c" | n> 1} konstruieren

@ Wie M besucht auch M’ auBer den Eingabefeldern nur das erste Blank
hinter der Eingabe

@ Dies ist notwendig, damit M’ das Ende der Eingabe erkennen kann

o Falls wir jedoch das letzte Zeichen der Eingabe x markieren, muss der
Eingabebereich im Fall |x| > 1 fir diesen Zweck nicht mehr verlassen

werden:
La | o Poe1] |
Steuer-
einheit

@ NTMs und DTMs mit dieser Eigenschaft werden auch als LBAs bzw.
DLBAs bezeichnet
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Definition

Fiir ein Alphabet ¥ sei ¥ =¥ u{a|acX}

Flr x =x1...x,€ X" sei X =x1...Xp-1Xn

Eine I-NTM M = (Z,f,r,é, qo, E) heiBt LBA, falls gilt:

Vx e X" : Ky =" ugav = |uav| <|x|

Die von einem LBA M akzeptierte oder erkannte Sprache ist
L(M) ={xeX" | M(X) akzeptiert}
Ein deterministischer LBA wird auch als DLBA bezeichnet

Die Klasse der deterministisch kontextsensitiven Sprachen ist
DCSL = {L(M) | M ist ein DLBA}

Bemerkung

Jede k-NTM, die bei Eingaben der Lange n hochstens linear viele (also
cn + ¢ fir eine Konstante ¢) Bandfelder benutzt, kann von einem LBA
simuliert werden; LBA steht also fiir linear beschrankter Automat
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@ Es ist nicht schwer, die 1-DTM M = (Z,%,T,§, qo, E) mit der Uber-
fuhrungsfunktion

0: qoa—~q1AR (1) qra—>q1aR (2) gra—qgeal (5) qoB—qg3BR (8)
@1B-q1BR (3) q2B—q2BL (6) q3B—»q3BR (9)
g1b—qBL (4) q2A—-qoAR (7) gsu—qquN (10)
in einen DLBA M'=(Z, P KA qo, E) fur die Sprache {a"b"|n>1}
umzuwandeln
@ Ersetze hierzu
o ¥ ={a,b} durch ¥ = {a,b,3,b} und
o T=X U{A, B,u} durch " =¥ U{A,B,B,u}
o Fiige zudem
o die Anweisungen und hinzu und

o ersetze die Anweisung gsu — qaUN (10) durch
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Beispiel (Fortsetzung)
@ Damit erhalten wir folgende Uberfiihrungsfunktion fiir den DLBA M':
8": qoa > quAR (1) qib »qBL (4a) q01?—> q3:?R (8)
gia >q1aR (2) qa—->qal (5) qB—-qBN (8a)
q18—>q18R (3) qQB—>q2BL (6) q3§—> q3§R (9)
qlb —>q2BL (4) q2A—>q0AR (7) q3B—> q4BN (10’)

@ Dieser akzeptiert die beiden Eingaben ab und aabb wie folgt:

b Aagi b AB AgoB Aq.B
Gab . Amb - @ b AwE L A

qoaabB - AqlabB + Aaqle - AqgaBB + quaBB
(1) () (4) (5)

- AgoaBb + AAqBb ~ AABqib +~ AAqBB
() (1) 3) (42)

Ag>ABB AAqoBB +~ AABgB AABq, B
6 P (7 "BEE ) AAPBE oy AABWME

249

4
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Bemerkung

@ Der DLBA M’ fiir die Sprache {a"b" | n > 1} aus obigem Beispiel lasst
sich leicht in einen DLBA fiir die kontextsensitive Sprache
{a"b"c™ | n > 1} transformieren (siehe Ubungen)

@ Die Sprache {a"b"c" | n > 1} liegt also in DCSL \ CFL

@ Bis heute ungeldst ist die Frage, ob die Klasse DCSL eine echte
Teilklasse von CSL ist oder nicht

@ Diese Fragestellung ist als LBA-Problem bekannt
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Als nachstes zeigen wir, dass LBAs genau die kontextsensitiven Sprachen
erkennen

CSL = {L(M) | M ist ein LBA} \

Bemerkung

Eine einfache Modifikation des Beweises zeigt, dass 1-NTMs genau die
Sprachen vom Typ 0 akzeptieren (siehe Ubungen)




Beweis von CSL ¢ {L(M) | M ist ein LBA} 252

Sei G=(V,X,P,S) eine kontextsensitive Grammatik. Dann wird L(G)
von folgendem LBA M akzeptiert (0.B.d.A. sei ¢ ¢ L(G)):

Arbeitsweise von M bei Eingabe %X = x7 ... Xxp-1X, mit n> 0:

1 Markiere das erste Eingabezeichen x; mittels X; (bzw. %; mittels §1)

2 Wahle (nichtdeterministisch) eine Regel o — (3 aus P

3 Wabhle ein beliebiges Vorkommen von 3 auf dem Band
(falls 5 nicht vorkommt, halte ohne zu akzeptieren)

4 Ersetze die ersten |a| Zeichen von S durch «

Falls das erste (oder letzte) Zeichen von /3 markiert war,

markiere auch das erste (letzte) Zeichen von «

6 Verschiebe die Zeichen rechts von 3 um |§| — |a| Positionen nach
links und liberschreibe die frei werdenden Felder mit Blanks

7 Falls auf dem Band das (doppelt markierte) Startsymbol erscheint,
halte in einem Endzustand

8 Gehe zuriick zu Schritt 2
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@ Da M sukzessive ein Teilwort 8 des aktuellen Bandinhalts durch ein
Wort v mit |a| < |3 ersetzt, ist M tatsachlich ein LBA

@ Zudem akzeptiert M eine Eingabe x genau dann, falls es gelingt, eine
Ableitung S =" x in G zu finden (in umgekehrter Reihenfolge von
rechts nach links)

@ Da sich genau fiir die Wérter x € L(G) eine solche Ableitung finden
lasst, folgt L(M) = L(G) o
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@ Sei M=(Z,%,T,0,q0, E) ein LBA (0.B.d.A. sei ¢ ¢ L(M))
@ Betrachte die kontextsensitive Grammatik G = (V, %, P,S) mit
V = {S5A}u(ZTul)xx = {5,A,(qd,a),(d,a) |qge Z,del,aec X},
die fiir alle a, b€ X und c¢,c’,d €T folgende Regeln enthilt:

2 S5 A(4,a), (q0a,a)
A—A(a,a), (qoa,a)
(c,a) > a
(gc,a) - a, falls
(gc,a) > (g'c,a), falls
(gc,a)(d,b) - (c',a)(q'd,b), falls
(d,a)(qgc,b) - (g'd,a)(c’,b), falls

cE
c—mqcN
c—-mqcR

c—->mqgclL

(S)
(A
(F
(E
(
(
(

~—

N
R
L

~— O O — —

»Startregeln”
»A-Regeln*
,Finale Regeln*
, E-Regeln*”

. N-Regeln“
»R-Regeln”
,L-Regeln*
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Beispiel

o Betrachte den LBA M = (Z,%,T,6, qo, E) mit Z = {qo, ... qa},
Y ={a,b}, ={a,b,3,b,A,B,B,u} und E = {qs}, sowie

0: qoa > AR qib>@BL  @A—qAR  qoB-qBN
ma >qaR  @qb->q@BL  @B->q@BL  q3sB-q3BR
@B—>@BR  qa-qal  qB-qBR  q3B->aquBN

e Die zugehorige kontextsensitive Grammatik G = (V, %, P, S) hat dann
die Variablenmenge
V = {S§A u(ZTul)xX
{S,A,(qic,a),(qgic,b),(c,a),(c,b)|0<i<4,cel}

@ Die Regelmenge P von G enthélt folgende Start- und A-Regeln:

S - A(5,a), A(b, b), (q03, a), (qob, b) (51-54)
A — A(a,a), A(b,b), (qoa,a), (qob, b) (A1-Aq)
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Beispiel (Fortsetzung)

@ Zudem enthélt P wegen E = {q,} fiir jedes c € ' die F- und E-Regeln
(c,a) > a, (¢c,b)—> b (F1-F16)
(gsc,a) - a, (qac,b) > b (E1-Ei6)

@ SchlieBlich enthalt P noch 4 N-, 128 L- und 192 R-Regeln wie z.B.

o fiir die Anweisung g3B — q,BN die beiden folgenden N-Regeln:
(938, 3) > (g4B,a) und (938, b) - (q2B, b)

o fiir g1b — goBL insgesamt 32 L-Regeln, namlich fiir jedes d € I":
(d,a)(q1b,a) - (g2d,a)(B,a) (d,a)(qi1b,b) — (g2d,a)(B,b)
(d,b)(q1b,a) - (god, b)(B,a) (d,b)(g1b,b) - (q2d,b)(B,b)

o fiir gpa = g1 AR insgesamt 32 R-Regeln, namlich fiir jedes d € I":
(goa,a)(d,a) — (A,a)(q1d,a) (qoa,a)(d,b) — (A, a)(q:1d,b)
(qoa, b)(d,a) = (A,b)(g1d,a) (qoa,b)(d,b) - (A,b)(q:1d, b) <
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@ Sei M=(Z,%,T,0,q0, E) ein LBA (0.B.d.A. sei ¢ ¢ L(M))
@ Betrachte die kontextsensitive Grammatik G = (V, %, P,S) mit
V = {S5A}u(ZTul)xx = {5,A,(qd,a),(d,a) |qge Z,del,aec X},
die fiir alle a, b€ X und c¢,c’,d €T folgende Regeln enthilt:

2 S5 A(4,a), (q0a,a)
A—A(a,a), (qoa,a)
(c,a) > a
(gc,a) - a, falls
(gc,a) > (g'c,a), falls
(gc,a)(d,b) - (c',a)(q'd,b), falls
(d,a)(qgc,b) - (g'd,a)(c’,b), falls

cE
c—mqcN
c—-mqcR

c—->mqgclL

(S)
(A
(F
(E
(
(
(

~—

N
R
L

~— O O — —

»Startregeln”
»A-Regeln*
,Finale Regeln*
, E-Regeln*”

. N-Regeln“
»R-Regeln”
,L-Regeln*
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@ Durch Induktion tiber m lasst sich nun leicht fiir alle a;,...,a, €I und
q € Z die folgende Aquivalenz beweisen:

S m
qoX1 .. -Xp—1Xn + " 381...8i-19aj...an gdw.

(gox1,x1) -+ (Rny Xn) (N:’;L")’ (a1, x1).--(qai, x;) ... (an, xn)

@ Ist also gox1...x,-1%, V™ a1...a;_1ga;...a, eine akzeptierende
Rechnung von M(x1 ...x,-1%,) mit g € E, so folgt im Fall n=1

S X ) 4 b)
(:>5) (qok1,x1) (7) (ga1,x1) (7:_>)X1

und im Fall n>?2

S = A()A(rhxn) (?»n_l (qu1,X1)(X2,X2)...(Xn,]_,Xn_l)()?n,Xn)

(9
(Nj:) (a1, x1) ... (ai-1,%i-1)(qai, Xi) - .. (an, Xn) (F:>E)” X1 ... Xp

@ Die Inklusion L(G) < L(M) folgt analog o




Zusammenfassung der Abschlusseigenschaften

Vereinigung  Schnitt  Komplement Produkt Sternhiille
REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja
DCSL ja ja ja ja ja
CSL ja ja ja ja ja
RE ja ja nein ja ja
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@ In der VL Komplexitatstheorie wird gezeigt, dass die Klasse CSL unter

Komplementbildung abgeschlossen ist

@ Im nachsten Kapitel werden wir sehen, dass die Klasse RE nicht unter

Komplementbildung abgeschlossen ist

@ Die (ibrigen Abschlusseigenschaften der Klassen DCSL, CSL und RE in

obiger Tabelle werden zum Teil in den Ubungen bewiesen
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