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Definition
Sei G = (V ,Σ,P,S) eine Grammatik

1 G heißt vom Typ 3 oder regulär, falls für alle Regeln u → v gilt:
u ∈ V und v ∈ ΣV ∪Σ ∪ {ε}

(d.h. alle Regeln haben die Form A→ aB, A→ a oder A→ ε)
2 G heißt vom Typ 2 oder kontextfrei, falls für alle Regeln u → v gilt:

u ∈ V (d.h. alle Regeln haben die Form A→ α)
3 G heißt vom Typ 1 oder kontextsensitiv, falls für alle Regeln u → v gilt:

∣v ∣ ≥ ∣u∣ (mit Ausnahme der ε-Sonderregel, s. unten)
4 Jede Grammatik ist automatisch vom Typ 0

Die ε-Sonderregel
In einer kontextsensitiven Grammatik ist auch die Regel S → ε zulässig,
falls das Startsymbol S nicht auf der rechten Seite einer Regel vorkommt
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Bemerkung
Wie wir gesehen haben, ist CFL in CSL enthalten
Zudem ist die Sprache L = {anbncn ∣ n ≥ 1} nicht kontextfrei
L kann jedoch von einer kontextsensitiven Grammatik erzeugt werden
(siehe nächste Folie)
Daher ist CFL echt in CSL enthalten
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Beispiel
Betrachte die kontextsensitive Grammatik G = (V ,Σ,P,S) mit
V = {S,B}, Σ = {a,b, c} und den Regeln

P: S→ aSBc, abc (1,2) cB→Bc (3) bB→bb (4)

In G lässt sich beispielsweise das Wort w = aabbcc ableiten:
S ⇒
(1)

aSBc ⇒
(2)

aabcBc ⇒
(3)

aabBcc ⇒
(4)

aabbcc

Allgemein gilt für alle n ≥ 1:
S ⇒
(1)

n−1 an−1S(Bc)n−1 ⇒
(2)

an−1abc(Bc)n−1

⇒
(3)
(

n
2) anbBn−1cn ⇒

(4)
n−1 anbncn

Also gilt anbncn ∈ L(G) für alle n ≥ 1



Eine kontextsensitive Grammatik für {anbncn
∣ n ≥ 1} 236

Beispiel (Fortsetzung)
Betrachte die kontextsensitive Grammatik G = (V ,Σ,P,S) mit
V = {S,B}, Σ = {a,b, c} und den Regeln

P: S→ aSBc, abc (1,2) cB→Bc (3) bB→bb (4)

Umgekehrt folgt durch Induktion über die Ableitungslänge m, dass jede
Satzform α ∈ (V ∪Σ)∗ mit S ⇒m α die folgenden Bedingungen erfüllt:

#a(α) = #b(α) +#B(α) = #c(α)
links von a und links von S kommen nur a’s vor
links von b kommen nur a’s oder b’s vor

Daraus ergibt sich, dass in G nur Wörter w ∈ Σ∗ der Form w = anbncn

ableitbar sind, d.h. L(G) = {anbncn ∣ n ≥ 1} ∈ CSL ◁
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. . . ⊔ x1 . . . xi . . . xn ⊔ . . .

Arbeitsband
mit Eingabe

Schreib-
Lese-Kopf

Steuer-
einheit

←→

Um ein geeignetes Maschinenmodell für die kontextsensitiven Sprachen
zu finden, führen wir zunächst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein
Eine NTM erhält ihre Eingabe auf einem nach links und rechts un-
begrenzten Band, das in Felder unterteilt ist; zudem kann sie weitere
Bänder benutzen, die zu Beginn der Rechnung komplett leer sind
In jedem Rechenschritt kann sie die aktuell besuchten Bandfelder lesen,
die gelesenen Zeichen überschreiben und den Schreib-Lese-Kopf auf
jedem Band um maximal ein Feld nach links oder rechts bewegen
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Definition
Sei k ≥ 1. Eine nichtdeterministische k-Band-Turingmaschine (k-NTM
oder einfach NTM) wird durch ein 6-Tupel M = (Z ,Σ,Γ, δ,q0,E) be-
schrieben. Dabei ist

Z eine endliche Menge von Zuständen
Σ das Eingabealphabet (mit ⊔ ∉ Σ; ⊔ heißt Leerzeichen oder Blank)
Γ das Arbeitsalphabet (mit Σ ∪ {⊔} ⊆ Γ)
δ: Z × Γk → P(Z × Γk × {L,R,N}k) die Überführungsfunktion
q0 der Startzustand und
E ⊆ Z die Menge der Endzustände

Eine k-NTM M heißt deterministisch (kurz: M ist eine k-DTM oder
einfach DTM), falls für alle (q, a1, . . . ak) ∈ Z × Γk gilt:
∥δ(q, a1, . . . ak)∥ ≤ 1
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Für (q,b1, . . . ,bk ,D1, . . . ,Dk) ∈ δ(p, a1, . . . ak) schreiben wir auch
(p, a1, . . . , ak) → (q,b1, . . . ,bk ,D1, . . . ,Dk)

Eine solche Anweisung ist ausführbar, falls
p der aktuelle Zustand von M ist und
sich für i = 1, . . . , k der Kopf des i-ten Bandes auf einem mit ai
beschrifteten Feld befindet

Bei ihrer Ausführung
geht M vom Zustand p in den Zustand q über
ersetzt auf Band i = 1, . . . , k das Symbol ai durch bi und
bewegt den Kopf auf Band i = 1, . . . , k gemäß Di
(L: ein Feld nach links, R: ein Feld nach rechts, N: keine Bewegung)
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Eine Konfiguration ist ein (3k + 1)-Tupel

K = (q,u1, a1, v1, . . . ,uk , ak , vk) ∈ Z × (Γ∗ × Γ × Γ∗)k

und besagt, dass
q der momentane Zustand ist und
das i-te Band mit . . . ⊔ uiaivi ⊔ . . . beschriftet ist, wobei sich der
Kopf auf dem Zeichen ai befindet

Im Fall k = 1 notieren wir eine Konfiguration K = (q,u, a, v) auch in
der Form K = uqav
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Seien K =(p,u1,a1,v1, . . . ,uk ,ak ,vk) und K ′=(q,u′1,a′1,v ′1, . . . ,u′k ,a′k ,v ′k)
Konfigurationen
K ′ heißt Folgekonfiguration von K (kurz K ⊢ K ′), falls eine Anweisung
(p, a1, . . . , ak) → (q,b1, . . . ,bk ,D1, . . . ,Dk) existiert, so dass für
i = 1, . . . , k gilt:

Di = N Di = R Di = L

K ∶ ui ai vi

K ′∶ ui bi vi

K ∶ ui ai vi

K ′∶ ui bi a′i v ′i

K ∶ ui ai vi

K ′∶ u′i a′i bi vi

u′i = ui

a′i = bi

v ′i = vi

u′i = uibi

a′iv ′i =
⎧⎪⎪⎨⎪⎪⎩

vi , vi /= ε
⊔, sonst

u′i a′i =
⎧⎪⎪⎨⎪⎪⎩

ui , ui /= ε
⊔, sonst

v ′i = bivi
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Man beachte, dass sich die Länge der Bandinschrift uiaivi beim
Übergang von K zu K ′ genau dann um 1 erhöht, wenn in K ′ zum
ersten Mal ein neues Feld auf dem i-ten Band besucht wird
Andernfalls bleibt die Länge von uiaivi unverändert
Die Länge von uiaivi entspricht also genau der Anzahl der bisher auf
dem i-ten Band besuchten Felder (inkl. Eingabezeichen im Fall i = 1)
Die Startkonfiguration von M bei Eingabe x = x1 . . . xn ∈ Σ∗ ist

Kx =
⎧⎪⎪⎨⎪⎪⎩

(q0, ε, x1, x2 . . . xn, ε,⊔, ε, . . . , ε,⊔, ε), x /= ε,
(q0, ε,⊔, ε, . . . , ε⊔, ε), x = ε

Eine Rechnung von M bei Eingabe x ist eine (endliche oder unendliche)
Konfigurationenfolge K0,K1,K2 . . . mit K0 = Kx und K0 ⊢ K1 ⊢ K2 . . .
Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃K ∈ E × (Γ∗ × Γ × Γ∗)k ∶ Kx ⊢∗ K}
M akzeptiert also genau dann ein Wort x (kurz: M(x) akzeptiert),
wenn es eine Rechnung von M bei Eingabe x gibt, bei der ein
Endzustand erreicht wird
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Beispiel
Betrachte die 1-DTM M = (Z ,Σ,Γ, δ,q0,E) mit Z = {q0, . . .q4},
Σ = {a,b}, Γ = Σ ∪ {A,B,⊔}, E = {q4} und den Anweisungen

δ: q0a →q1AR (1) Beginn der Schleife: Falls ein a gelesen wird,
ersetze es durch A und ...

q1a →q1aR (2) ... lies a’s und B’s bis ein b kommt (falls kein b
q1B→q1BR (3) kommt, halte ohne zu akzeptieren), ersetze
q1b →q2BL (4) das b durch ein B und ...

q2a →q2aL (5) ... bewege den Kopf wieder nach links bis
q2B→q2BL (6) auf das Feld hinter dem letzten A und
q2A→q0AR (7) gehe zum Beginn der Schleife

q0B→q3BR (8) Falls zu Beginn der Schleife ein B gelesen wird,
q3B→q3BR (9) teste, ob alle Eingabezeichen gelesen wurden
q3⊔ →q4⊔N (10) (wenn ja, dann akzeptiere)
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Beispiel (Fortsetzung)
Betrachte die 1-DTM M = (Z ,Σ,Γ, δ,q0,E) mit Z = {q0, . . .q4},
Σ = {a,b}, Γ = Σ ∪ {A,B,⊔}, E = {q4} und den Anweisungen

δ: q0a→q1AR (1) q1a→q1aR (2)
q1B→q1BR (3)
q1b→q2BL (4)

q2a→q2aL (5)
q2B→q2BL (6)
q2A→q0AR (7)

q0B→q3BR (8)
q3B→q3BR (9)
q3⊔→q4⊔N (10)

Dann akzeptiert M die Eingabe aabb wie folgt:
q0aabb ⊢

(1)
Aq1abb ⊢

(2)
Aaq1bb ⊢

(4)
Aq2aBb ⊢

(5)
q2AaBb

⊢
(7)

Aq0aBb ⊢
(1)

AAq1Bb ⊢
(3)

AABq1b ⊢
(4)

AAq2BB

⊢
(6)

Aq2ABB ⊢
(7)

AAq0BB ⊢
(8)

AABq3B ⊢
(9)

AABBq3⊔

⊢
(10)

AABBq4⊔

Ähnlich lässt sich für ein beliebiges n ≥ 1 zeigen, dass anbn ∈ L(M) ist
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Beispiel (Schluss)
δ: q0a→q1AR (1) q1a→q1aR (2)

q1B→q1BR (3)
q1b→q2BL (4)

q2a→q2aL (5)
q2B→q2BL (6)
q2A→q0AR (7)

q0B→q3BR (8)
q3B→q3BR (9)
q3⊔→q4⊔N (10)

Andererseits führen die Eingaben aba, abb und aab auf die Rechnungen
q0aba ⊢

(1)
Aq1ba ⊢

(4)
q2ABa ⊢

(7)
Aq0Ba ⊢

(8)
ABq3a und

q0abb ⊢
(1)

Aq1bb ⊢
(4)

q2ABb ⊢
(7)

Aq0Bb ⊢
(8)

ABq3b und

q0aab ⊢
(1)

Aq1ab ⊢
(2)

Aaq1b ⊢
(4)

Aq2aB ⊢
(5)

q2AaB

⊢
(7)

Aq0aB ⊢
(1)

AAq1B ⊢
(8)

AABq1⊔

Da diese nicht fortsetzbar sind und M deterministisch ist, kann M nicht
den Endzustand q4 erreichen, d.h. aba, abb, aab /∈ L(M)
Tatsächlich lässt sich zeigen, dass L(M) = {anbn ∣ n ≥ 1} ist ◁
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In den Übungen werden wir eine 1-DTM M ′ für die Sprache
L′ = {anbncn ∣ n ≥ 1} konstruieren
Wie M besucht auch M ′ außer den Eingabefeldern nur das erste Blank
hinter der Eingabe
Dies ist notwendig, damit M ′ das Ende der Eingabe erkennen kann
Falls wir jedoch das letzte Zeichen der Eingabe x markieren, muss der
Eingabebereich im Fall ∣x ∣ ≥ 1 für diesen Zweck nicht mehr verlassen
werden:

x1 . . . xn−1 x̂n

Steuer-
einheit

NTMs und DTMs mit dieser Eigenschaft werden auch als LBAs bzw.
DLBAs bezeichnet
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Definition
Für ein Alphabet Σ sei Σ̂ = Σ ∪ {â ∣ a ∈ Σ}
Für x = x1 . . . xn ∈ Σ∗ sei x̂ = x1 . . . xn−1x̂n

Eine 1-NTM M = (Z , Σ̂,Γ, δ,q0,E) heißt LBA, falls gilt:
∀x ∈ Σ+ ∶ Kx̂ ⊢∗ uqav ⇒ ∣uav ∣ ≤ ∣x ∣

Die von einem LBA M akzeptierte oder erkannte Sprache ist
L(M) = {x ∈ Σ∗ ∣M(x̂) akzeptiert}

Ein deterministischer LBA wird auch als DLBA bezeichnet
Die Klasse der deterministisch kontextsensitiven Sprachen ist
DCSL = {L(M) ∣M ist ein DLBA}

Bemerkung
Jede k-NTM, die bei Eingaben der Länge n höchstens linear viele (also
cn + c für eine Konstante c) Bandfelder benutzt, kann von einem LBA
simuliert werden; LBA steht also für linear beschränkter Automat
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Beispiel
Es ist nicht schwer, die 1-DTM M = (Z ,Σ,Γ, δ,q0,E) mit der Über-
führungsfunktion
δ: q0a→q1AR (1) q1a→q1aR (2)

q1B→q1BR (3)
q1b→q2BL (4)

q2a→q2aL (5)
q2B→q2BL (6)
q2A→q0AR (7)

q0B→q3BR (8)
q3B→q3BR (9)
q3⊔→q4⊔N (10)

in einen DLBA M ′= (Z , Σ̂, Γ′, δ′, q0, E) für die Sprache {anbn ∣n ≥ 1}
umzuwandeln
Ersetze hierzu

Σ = {a,b} durch Σ̂ = {a,b, â, b̂} und
Γ = Σ ∪ {A,B,⊔} durch Γ′ = Σ̂ ∪ {A,B, B̂,⊔}

Füge zudem
die Anweisungen q1b̂ → q2B̂L (4a) und q0B̂ → q4B̂N (8a) hinzu und
ersetze die Anweisung q3⊔ → q4⊔N (10) durch q3B̂ → q4B̂N (10′)
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Beispiel (Fortsetzung)
Damit erhalten wir folgende Überführungsfunktion für den DLBA M ′:

δ′: q0a →q1AR (1) q1b̂ →q2B̂L (4a) q0B→q3BR (8)
q1a →q1aR (2) q2a →q2aL (5) q0B̂→q4B̂N (8a)
q1B→q1BR (3) q2B→q2BL (6) q3B→q3BR (9)
q1b →q2BL (4) q2A→q0AR (7) q3B̂→q4B̂N (10′)

Dieser akzeptiert die beiden Eingaben ab̂ und aabb̂ wie folgt:

q0ab̂ ⊢
(1)

Aq1b̂ ⊢
(4a)

q2AB̂ ⊢
(7)

Aq0B̂ ⊢
(8a)

Aq4B̂

q0aabb̂ ⊢
(1)

Aq1abb̂ ⊢
(2)

Aaq1bb̂ ⊢
(4)

Aq2aBb̂ ⊢
(5)

q2AaBb̂

⊢
(7)

Aq0aBb̂ ⊢
(1)

AAq1Bb̂ ⊢
(3)

AABq1b̂ ⊢
(4a)

AAq2BB̂

⊢
(6)

Aq2ABB̂ ⊢
(7)

AAq0BB̂ ⊢
(8)

AABq3B̂ ⊢
(10′)

AABq4B̂
◁
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Bemerkung
Der DLBA M ′ für die Sprache {anbn ∣ n ≥ 1} aus obigem Beispiel lässt
sich leicht in einen DLBA für die kontextsensitive Sprache
{anbncn ∣ n ≥ 1} transformieren (siehe Übungen)
Die Sprache {anbncn ∣ n ≥ 1} liegt also in DCSL ∖ CFL
Bis heute ungelöst ist die Frage, ob die Klasse DCSL eine echte
Teilklasse von CSL ist oder nicht
Diese Fragestellung ist als LBA-Problem bekannt
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Als nächstes zeigen wir, dass LBAs genau die kontextsensitiven Sprachen
erkennen

Satz
CSL = {L(M) ∣M ist ein LBA}

Bemerkung
Eine einfache Modifikation des Beweises zeigt, dass 1-NTMs genau die
Sprachen vom Typ 0 akzeptieren (siehe Übungen)
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Sei G = (V ,Σ,P,S) eine kontextsensitive Grammatik. Dann wird L(G)
von folgendem LBA M akzeptiert (o.B.d.A. sei ε /∈ L(G)):

Arbeitsweise von M bei Eingabe x̂ = x1 . . . xn−1x̂n mit n > 0:
1 Markiere das erste Eingabezeichen x1 mittels x̃1 (bzw. x̂1 mittels ˜̂x1)
2 Wähle (nichtdeterministisch) eine Regel α → β aus P
3 Wähle ein beliebiges Vorkommen von β auf dem Band

(falls β nicht vorkommt, halte ohne zu akzeptieren)
4 Ersetze die ersten ∣α∣ Zeichen von β durch α
5 Falls das erste (oder letzte) Zeichen von β markiert war,

markiere auch das erste (letzte) Zeichen von α
6 Verschiebe die Zeichen rechts von β um ∣β∣ − ∣α∣ Positionen nach

links und überschreibe die frei werdenden Felder mit Blanks
7 Falls auf dem Band das (doppelt markierte) Startsymbol erscheint,

halte in einem Endzustand
8 Gehe zurück zu Schritt 2
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Da M sukzessive ein Teilwort β des aktuellen Bandinhalts durch ein
Wort α mit ∣α∣ ≤ ∣β∣ ersetzt, ist M tatsächlich ein LBA
Zudem akzeptiert M eine Eingabe x genau dann, falls es gelingt, eine
Ableitung S ⇒∗ x in G zu finden (in umgekehrter Reihenfolge von
rechts nach links)
Da sich genau für die Wörter x ∈ L(G) eine solche Ableitung finden
lässt, folgt L(M) = L(G) ◻
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Sei M = (Z , Σ̂,Γ, δ,q0,E) ein LBA (o.B.d.A. sei ε /∈ L(M))
Betrachte die kontextsensitive Grammatik G = (V ,Σ,P,S) mit
V = {S,A}∪(ZΓ∪Γ)×Σ = {S,A, (qd , a), (d , a) ∣ q ∈ Z ,d ∈ Γ, a ∈ Σ},

die für alle a,b ∈ Σ und c, c ′,d ∈ Γ folgende Regeln enthält:
P ∶ S →A(â, a), (q0â, a) (S) „Startregeln“

A→A(a, a), (q0a, a) (A) „A-Regeln“
(c, a) → a (F) „Finale Regeln“
(qc, a) → a, falls q ∈ E (E) „E-Regeln“
(qc, a) → (q′c ′, a), falls qc →M q′c ′N (N) „N-Regeln“

(qc, a)(d ,b) → (c ′, a)(q′d ,b), falls qc →M q′c ′R (R) „R-Regeln“
(d , a)(qc,b) → (q′d , a)(c ′,b), falls qc →M q′c ′L (L) „L-Regeln“



Beweis von {L(M) ∣M ist ein LBA} ⊆ CSL 255

Beispiel

Betrachte den LBA M = (Z , Σ̂,Γ, δ,q0,E) mit Z = {q0, . . .q4},
Σ = {a,b}, Γ = {a,b, â, b̂,A,B, B̂,⊔} und E = {q4}, sowie

δ: q0a →q1AR q1b→q2BL q2A→q0AR q0B̂→q4B̂N
q1a →q1aR q1b̂→q2B̂L q2B→q2BL q3B→q3BR
q1B→q1BR q2a→q2aL q0B→q3BR q3B̂→q4B̂N

Die zugehörige kontextsensitive Grammatik G = (V ,Σ,P,S) hat dann
die Variablenmenge

V = {S,A} ∪ (ZΓ ∪ Γ) ×Σ
= {S,A, (qic, a), (qic,b), (c, a), (c,b) ∣ 0 ≤ i ≤ 4, c ∈ Γ}

Die Regelmenge P von G enthält folgende Start- und A-Regeln:

S → A(â, a), A(b̂,b), (q0â, a), (q0b̂,b) (S1-S4)
A→ A(a, a), A(b,b), (q0a, a), (q0b,b) (A1-A4)
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Beispiel (Fortsetzung)
Zudem enthält P wegen E = {q4} für jedes c ∈ Γ die F- und E-Regeln
(c, a) → a, (c,b) → b (F1-F16)
(q4c, a) → a, (q4c,b) → b (E1-E16)

Schließlich enthält P noch 4 N-, 128 L- und 192 R-Regeln wie z.B.
für die Anweisung q3B̂ → q4B̂N die beiden folgenden N-Regeln:
(q3B̂, a) → (q4B̂, a) und (q3B̂,b) → (q4B̂,b)

für q1b → q2BL insgesamt 32 L-Regeln, nämlich für jedes d ∈ Γ:
(d , a)(q1b, a) → (q2d , a)(B, a) (d , a)(q1b,b) → (q2d , a)(B,b)
(d ,b)(q1b, a) → (q2d ,b)(B, a) (d ,b)(q1b,b) → (q2d ,b)(B,b)

für q0a → q1AR insgesamt 32 R-Regeln, nämlich für jedes d ∈ Γ:
(q0a, a)(d , a) → (A, a)(q1d , a) (q0a, a)(d ,b) → (A, a)(q1d ,b)
(q0a,b)(d , a) → (A,b)(q1d , a) (q0a,b)(d ,b) → (A,b)(q1d ,b)

◁



Beweis von {L(M) ∣M ist ein LBA} ⊆ CSL 257

Sei M = (Z , Σ̂,Γ, δ,q0,E) ein LBA (o.B.d.A. sei ε /∈ L(M))
Betrachte die kontextsensitive Grammatik G = (V ,Σ,P,S) mit
V = {S,A}∪(ZΓ∪Γ)×Σ = {S,A, (qd , a), (d , a) ∣ q ∈ Z ,d ∈ Γ, a ∈ Σ},

die für alle a,b ∈ Σ und c, c ′,d ∈ Γ folgende Regeln enthält:
P ∶ S →A(â, a), (q0â, a) (S) „Startregeln“

A→A(a, a), (q0a, a) (A) „A-Regeln“
(c, a) → a (F) „Finale Regeln“
(qc, a) → a, falls q ∈ E (E) „E-Regeln“
(qc, a) → (q′c ′, a), falls qc →M q′c ′N (N) „N-Regeln“

(qc, a)(d ,b) → (c ′, a)(q′d ,b), falls qc →M q′c ′R (R) „R-Regeln“
(d , a)(qc,b) → (q′d , a)(c ′,b), falls qc →M q′c ′L (L) „L-Regeln“
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Durch Induktion über m lässt sich nun leicht für alle a1, . . . , an ∈ Γ und
q ∈ Z die folgende Äquivalenz beweisen:

q0x1 . . . xn−1x̂n ⊢m a1 . . . ai−1qai . . . an gdw.

(q0x1, x1) . . . (x̂n, xn) ⇒
(N,R,L)

m (a1, x1) . . . (qai , xi) . . . (an, xn)

Ist also q0x1 . . . xn−1x̂n ⊢m a1 . . . ai−1qai . . . an eine akzeptierende
Rechnung von M(x1 . . . xn−1x̂n) mit q ∈ E , so folgt im Fall n = 1

S ⇒
(S)
(q0x̂1, x1) ⇒

(N)
m (qa1, x1) ⇒

(E)
x1

und im Fall n ≥ 2
S ⇒
(S)

A(x̂n, xn) ⇒
(A)

n−1 (q0x1, x1)(x2, x2) . . . (xn−1, xn−1)(x̂n, xn)

⇒
(N,L,R)

m (a1, x1) . . . (ai−1, xi−1)(qai , xi) . . . (an, xn) ⇒
(F ,E)

n x1 . . . xn

Die Inklusion L(G) ⊆ L(M) folgt analog ◻
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Vereinigung Schnitt Komplement Produkt Sternhülle

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja
DCSL ja ja ja ja ja
CSL ja ja ja ja ja
RE ja ja nein ja ja

In der VL Komplexitätstheorie wird gezeigt, dass die Klasse CSL unter
Komplementbildung abgeschlossen ist
Im nächsten Kapitel werden wir sehen, dass die Klasse RE nicht unter
Komplementbildung abgeschlossen ist
Die übrigen Abschlusseigenschaften der Klassen DCSL, CSL und RE in
obiger Tabelle werden zum Teil in den Übungen bewiesen
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