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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = |NG(v)|.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).
d) Jeder Knoten u ∈ V vom Grad ≤ 1 heißt Blatt und die übrigen

Knoten (vom Grad ≥ 2) heißen innere Knoten von G.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 1.2.

• Der vollständige Graph (V,E) auf n Knoten, d.h. |V | = n und
E =

(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n Knoten

wird mit En bezeichnet.

K1 : K2 : K3 : K4 : K5 :

• Der vollständige bipartite Graph (A,B,E) auf a+ b Knoten,
d.h. A ∩B = ∅, |A| = a, |B| = b und E = {{u, v} | u ∈ A, v ∈ B}
wird mit Ka,b bezeichnet.

K1,1 : K1,2 : K2,2 : K2,3 : K3,3 :

• Der Pfad mit n Knoten wird mit Pn bezeichnet.

P2 : P3 : P4 : P5 :

• Der Kreis mit n Knoten wird mit Cn bezeichnet.

C3 : C4 : C5 : C6 :

Definition 1.3. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt unabhängig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
E ∩

(
U
2

)
= ∅. Die Stabilitätszahl ist

α(G) = max{|U | | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die Cli-

quenzahl ist

ω(G) = max{|U | | U ist Clique in G}.

c) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Im Fall V ′ = V wird G′ auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben für
G′ auch G− E ′′ (bzw. G = G′∪E ′′), wobei E ′′ = E−E ′ die Menge
der aus G entfernten Kanten ist. Im Fall E ′′ = {e} schreiben wir
für G′ auch einfach G− e (bzw. G = G′ ∪ e).
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1 Graphentheoretische Grundlagen

d) Ein k-regulärer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-regulärer Graph G heißt k-
faktorisierbar, wenn sich G in l = d/k kantendisjunkte k-
Faktoren G1, . . . , Gl zerlegen lässt.

e) Ein Subgraph G′ = (V ′, E ′) heißt (durch V ′) induziert, falls
E ′ = E ∩

(
V ′

2

)
ist. Für G′ schreiben wir dann auch G[V ′] oder

G − V ′′, wobei V ′′ = V − V ′ die Menge der aus G entfernten
Knoten ist. Ist V ′′ = {v}, so schreiben wir für G′ auch einfach
G− v und im Fall V ′ = {v1, . . . , vk} auch G[v1, . . . , vk].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , ` − 1. Die Länge
des Weges ist die Anzahl der durchlaufenen Kanten, also `. Im
Fall ` = 0 heißt der Weg trivial. Ein Weg (v0, . . . , v`) heißt auch
v0-v`-Weg.

g) G heißt zusammenhängend, falls es für alle Paare {u, v} ∈
(
V
2

)
einen u-v-Weg gibt.

h) Die durch die Äquivalenzklassen Vi ⊆ V der Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

induzierten Teilgraphen G[Vi] heißen Zusammenhangskompo-
nenten (engl. connected components) oder einfach Komponen-
ten von G.

i) Ein u-v-Weg heißt einfach oder u-v-Pfad, falls alle durchlaufe-
nen Knoten verschieden sind.

j) Ein Zyklus ist ein u-v-Weg mit u = v.
k) Eine Menge von Pfaden heißt disjunkt, wenn je zwei Pfade in der

Menge keine gemeinsamen Knoten haben, kantendisjunkt, wenn
je zwei Pfade in der Menge keine gemeinsamen Kanten haben,
und knotendisjunkt, wenn je zwei Pfade in der Menge höchstens
gemeinsame Endpunkte haben.

l) Ein Kreis ist ein Zyklus (v1 . . . , v`, v1) der Länge ` ≥ 3, für den
v1, . . . , v` paarweise verschieden sind.

m) Ein Graph heißt kreisfrei, azyklisch oder Wald, falls er keinen
Kreis enthält. Ein Baum ist ein zusammenhängender Wald.

Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ V × V =

{
(u, v) | u, v ∈ V

}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = |N+(v)| und der Ein-

gangsgrad von v ist deg−(v) = |N−(v)|. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein (gerichteter) v0-v`-Weg ist eine Folge von Knoten
v0, . . . , v` mit (vi, vi+1) ∈ E für i = 0, . . . , `− 1.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg mit u = v.
g) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad, falls

alle durchlaufenen Knoten verschieden sind.
h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus

(v1 . . . , v`, v1) der Länge ` ≥ 1, für den v1, . . . , v` paarweise ver-
schieden sind.

i) G heißt kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heißt stark zusammenhängend, wenn es in G für jedes Kno-
tenpaar u 6= v ∈ V sowohl einen u-v-Pfad als auch einen v-u-Pfad
gibt.

k) G heißt gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
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2 Färben von Graphen

l) Ein Knoten w ∈ V vom Eingangsgrad deg−(w) = 0 heißt Wurzel
von G, und ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0
heißt Blatt von G.

DieAdjazenzmatrix eines Graphen bzw. Digraphen G = (V,E) mit
(geordneter) Knotenmenge V = {v1, . . . , vn} ist die (n × n)-Matrix
A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst.

Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

2 Färben von Graphen

Definition 2.1. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f : V → {1, . . . , k} exis-

tiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

Beispiel 2.2.

χ(En) = 1, χ(Kn,m) = 2, χ(Kn) = n,

χ(Cn) =

2, n gerade
3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-färbbar ist. Dieses Problem ist für jedes feste k ≥ 3 schwierig.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Satz 2.3. k-Coloring ist für k ≥ 3 NP-vollständig.

Das folgende Lemma setzt die chromatische Zahl χ(G) in Beziehung
zur Stabilitätszahl α(G).

Lemma 2.4. n/α(G) ≤ χ(G) ≤ n− α(G) + 1.
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2 Färben von Graphen 2.1 Färben von planaren Graphen

Beweis. Sei G ein Graph und sei c eine χ(G)-Färbung von G. Da
dann die Mengen Si = {u ∈ V | c(u) = i}, i = 1, . . . , χ(G), stabil
sind, folgt |Si| ≤ α(G) und somit gilt

n =
χ(G)∑
i=1
|Si| ≤ χ(G)α(G).

Für den Beweis von χ(G) ≤ n− α(G) + 1 sei S eine stabile Menge
in G mit |S| = α(G). Dann ist G− S k-färbbar für ein k ≤ n− |S|.
Da wir alle Knoten in S mit der Farbe k + 1 färben können, folgt
χ(G) ≤ k + 1 ≤ n− α(G) + 1. �

Beide Abschätzungen sind scharf, können andererseits aber auch
beliebig schlecht werden.

Lemma 2.5.
(
χ(G)

2

)
≤ m und somit χ(G) ≤ 1/2 +

√
2m+ 1/4.

Beweis. Zwischen je zwei Farbklassen einer optimalen Färbung muss
es mindestens eine Kante geben. �

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl ω(G)
und zum Maximalgrad ∆(G) :

Lemma 2.6. ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal großen Clique unterschiedliche Farben erhalten müssen.
Um die zweite Ungleichung zu erhalten, betrachten wir folgenden
Färbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V,E) mit V = {v1, . . . , vn}
2 c(v1) := 1
3 for i := 2 to n do
4 Fi := {c(vj) | j < i, vj ∈ N(vi)}
5 c(vi) := min{k ≥ 1 | k 6∈ Fi}

Da für die Farbe c(vi) von vi nur |Fi| ≤ ∆(G) Farben verboten sind,
gilt c(vi) ≤ ∆(G) + 1. �

2.1 Färben von planaren Graphen

Ein Graph G heißt planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten höchstens in ihren Endpunkten
berühren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien (genauer: Jordankurven) zwischen den
zugehörigen Endpunkten dargestellt.
Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben höchstens benötigt werden, um eine Landkarte so zu färben,
dass aneinander grenzende Länder unterschiedliche Farben erhalten.
Offensichtlich lässt sich eine Landkarte in einen planaren Graphen
transformieren, indem man für jedes Land einen Knoten zeichnet und
benachbarte Länder durch eine Kante verbindet. Länder, die sich nur
in einem Punkt berühren, gelten dabei nicht als benachbart.
Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
„bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
„Beweis“. Übrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Überprüfung der
vielen auftretenden Spezialfälle Computer benötigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-färbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lässt sich
ein 4-Färbungsalgorithmus für planare Graphen mit einer Laufzeit
von O(n4) gewinnen.
In 1997 fanden Robertson, Sanders, Seymour und Thomas einen
einfacheren Beweis für den 4-Farben-Satz, welcher zwar einen deut-
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2 Färben von Graphen 2.1 Färben von planaren Graphen

lich schnelleren O(n2) Algorithmus liefert, aber ebenfalls nur mit
Computer-Unterstützung verifizierbar ist.
Beispiel 2.8. Wie die folgenden Einbettungen von K4 und K2,3 in
die Ebene zeigen, sind K4 und K2,3 planar.

K4 : K2,3 :

/

Zur Beantwortung der Frage, ob auch K5 und K3,3 planar sind, be-
trachten wir die Gebiete, die bei der Einbettung von (zusammen-
hängenden) Graphen in die Ebene entstehen. Dabei gehören 2 Punkte
zum selben Gebiet, falls es zwischen ihnen eine Verbindungslinie gibt,
die keine Kante des eingebetten Graphen kreuzt oder berührt. Nur
eines dieser Gebiete ist unbeschränkt und dieses wird als äußeres
Gebiet bezeichnet. Die Anzahl der Gebiete von G bezeichnen wir
mit r(G) oder kurz mit r. Die begrenzenden Kanten eines Gebie-
tes g bilden seinen Rand rand(g). Ihre Anzahl bezeichnen wir mit
d(g), wobei Kanten {u, v}, an die g von beiden Seiten grenzt, doppelt
gezählt werden.
Der Rand rand(g) eines Gebiets g ist die (zirkuläre) Folge aller Kan-
ten, die an g grenzen, wobei man jede Kante so durchläuft, dass g „in
Fahrtrichtung links“ liegt bzw. jeden Knoten u, den man über eine
Kante e erreicht, über die im Uhrzeigersinn nächste Kante e′ wieder
verlässt. Auf diese Weise erhält jede Kante auf dem Rand von g eine
Richtung (oder Orientierung).
Da jede Kante zur Gesamtlänge ∑g d(g) aller Ränder den Wert 2
beiträgt (sie wird genau einmal in jeder Richtung durchlaufen), folgt∑

g

d(g) = 2m(G).

Wir nennen das Tripel G′ = (V,E,R) eine ebene Realisierung des
Graphen G = (V,E), falls es eine Einbettung von G in die Ebene

gibt, deren Gebiete die Ränder in R haben. In diesem Fall nennen
wir G′ = (V,E,R) auch einen ebenen Graphen. Ist G nicht zusam-
menhängend, so betten wir die Komponenten von G in die Ebene ein
und fassen alle Ränder, die bei diesen Einbettungen entstehen, zu
einer Randmenge R zusammen.
Führen zwei Einbettungen von G in die Ebene auf dieselbe Randmenge
R, so werden sie als äquivalent angesehen. Eine andere Möglichkeit,
Einbettungen bis auf Äquivalenz kombinatorisch zu beschreiben, be-
steht darin, für jeden Knoten u die (zirkuläre) Ordnung πu aller mit
u inzidenten Kanten anzugeben. Man nennt π = {πu | u ∈ V } ein
Rotationssystem für G, falls es eine entsprechende Einbettung gibt.
Rotationssysteme haben den Vorteil, dass sie bei Verwendung der
Adjazenzlistendarstellung ohne zusätzlichen Platzaufwand gespeichert
werden können, indem man die zu u adjazenten Knoten gemäß πu
anordnet.
Beispiel 2.9. Die beiden nebenstehenden
Einbettungen eines Graphen G = (V,E) in
die Ebene haben jeweils 7 Gebiete und füh-
ren beide auf den ebenen Graphen G′ =
(V,E,R) mit den 7 Rändern

R = {(a, f, g), (a, j, i), (b, g, e, h), (b, c, j),
(c, h, d), (d, e, k), (f, i, l,m,m, l, k)}.

Das zugehörige Rotationssystem ist

π = {(a, f, i), (a, j, b, g), (b, c, h), (e, k, f, g),
(d, e, h), (c, j, i, l, k, d), (l,m), (m)}.

a

i

f

b

h cg
e

k

j

d
l m

a

i

f

b

h
cg

e
k

j

d
l
m

Man beachte, dass sowohl in R als auch in π jede Kante genau zweimal
vorkommt. Anstelle von (zirkulären) Kantenfolgen kann man die Ele-
mente von R und π natürlich auch durch entsprechende Knotenfolgen
beschreiben. /

5



2 Färben von Graphen 2.1 Färben von planaren Graphen

Satz 2.10 (Polyederformel von Euler, 1750).
Für einen zusammenhängenden ebenen Graphen G = (V,E,R) gilt

n(G)−m(G) + r(G) = 2. (∗)

Beweis. Wir führen den Beweis durch Induktion über die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhängend ist, muss dann n = 1 sein.
Somit ist auch r = 1, also (∗) erfüllt.

m− 1 ; m : Sei G ein zusammenhängender ebener Graph mit m
Kanten.
Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhängenden ebenen Graphen G′ mit n′ = n − 1 Kno-
ten, m′ = m − 1 Kanten und r′ = r Gebieten. Nach IV folgt
n−m+ r = (n− 1)− (m− 1) + r = n′ −m′ + r′ = 2.
Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis in
G und erhalten einen zusammenhängenden ebenen Graphen G′ mit
n′ = n Knoten, m′ = m− 1 Kanten und r′ = r − 1 Gebieten. Nach
IV folgt n−m+ r = n− (m− 1) + (r − 1) = n′ −m′ + r′ = 2. �

Korollar 2.11. Sei G = (V,E) ein planarer Graph mit n ≥ 3 Knoten.
Dann ist m ≤ 3n− 6. Falls G dreiecksfrei ist, gilt sogar m ≤ 2n− 4.

Beweis. O.B.d.A. sei G zusammenhängend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n ≥ 3 ist, ist jedes Gebiet g
von d(g) ≥ 3 Kanten umgeben. Daher ist 2m = i = ∑

g d(g) ≥ 3r
bzw. r ≤ 2m/3. Eulers Formel liefert

m = n+ r − 2 ≤ n+ 2m/3− 2,

was (1− 2/3)m ≤ n− 2 und somit m ≤ 3n− 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) ≥ 4 Kanten umge-
ben. Daher ist 2m = i = ∑

g d(g) ≥ 4r bzw. r ≤ m/2. Eulers Formel

liefert daher m = n + r − 2 ≤ n + m/2 − 2, was m/2 ≤ n − 2 und
somit m ≤ 2n− 4 impliziert. �

Korollar 2.12. Die Graphen K5 und K3,3 sind nicht planar.

Beweis. Wegen n(K5) = 5, also 3n(K5) − 6 = 9, und wegen
m(K5) =

(
5
2

)
= 10 gilt m(K5) 6≤ 3n(K5)− 6.

Wegen n(K3,3) = 6, also 2n(K3,3) − 4 = 8, und wegen m(K3,3) =
3 · 3 = 9 gilt m(K3,3) 6≤ 2n(K3,3)− 4. �

Als weitere interessante Folgerung aus der Polyederformel können wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) ≤ 5
hat.

Korollar 2.13. Jeder planare Graph hat einen Minimalgrad δ ≤ 5.

Beweis. Für n ≤ 6 ist die Behauptung klar. Für n > 6 impliziert die
Annahme δ ≥ 6 die Ungleichung

m = 1
2
∑
u∈V deg(u) ≥ 1

2
∑
u∈V 6 = 3n,

was im Widerspruch zu m ≤ 3n− 6 steht. �

Definition 2.14. Seien G = (V,E) und H Graphen und seien
u, v ∈ V .
• Durch Fusion von u und v entsteht aus G der Graph Guv =

(V − {v}, E ′) mit

E ′ = {e ∈ E | v 6∈ e} ∪ {{u, v′} | {v, v′} ∈ E − {u, v}}.

Ist e = {u, v} eine Kante von G (also e ∈ E), so sagen wir auch,
Guv entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2 mit NG(v) = {u,w}, so sagen wir auch, Guv entsteht
aus G durch Überbrückung des Knotens v bzw. G aus Guv durch
Unterteilung der Kante {u,w}.
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2 Färben von Graphen 2.1 Färben von planaren Graphen

• G heißt zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.
• G heißt Unterteilung von H, falls G aus einer isomorphen Kopie
von H durch wiederholte Unterteilungen gewonnen werden kann.
• H heißt Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.
• G heißt H-frei, falls H kein Minor von G ist. Für eine Menge H
von Graphen heißt G H-frei, falls G für alle H ∈ H H-frei ist.

Beispiel 2.15. Betrachte folgende Graphen:

H : G :
a b

G′ :

G ist keine Unterteilung von H, da G Knoten vom Grad 3 hat, aber
H nicht. Entfernen wir jedoch die beiden Kanten a und b aus G, so
ist der resultierende Teilgraph eine Unterteilung von H, d.h. H ist
ein topologischer Minor von G. H ist aber kein topologischer Minor
von G′, da H einen Knoten vom Grad 4 hat und G′ nur Knoten vom
Grad ≤ 3. Da durch Kontraktion der drei umrandeten Kanten ein zu
H isomorpher Graph entsteht, ist H aber ein Minor von G′. /

Es ist klar, dass die Klasse K der planaren Graphen zwar unter Un-
terteilung und (topologischer) Minorenbildung abgeschlossen ist (d.h.
wenn G ∈ K und H ein Minor oder eine Unterteilung von G ist, dann
folgt H ∈ K), aber nicht unter Fusion.
Nach Definition lässt sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:
• Entfernen einer Kante oder eines Knotens,
• Kontraktion einer Kante (bzw. Überbrückung eines Knotens).

Da die Kontraktionen (bzw. Überbrückungen) o.B.d.A. auch zuletzt
ausgeführt werden können, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.16 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-färbbar.

Beweis. Wir beweisen den Satz durch Induktion über n.
n = 1: Klar.
n− 1 ; n : Da G planar ist, existiert ein Knoten u mit deg(u) ≤ 5.
Im Fall deg(u) ≤ 4 entfernen wir u aus G. Andernfalls hat u zwei
Nachbarn v und w, die nicht durch eine Kante verbunden sind
(andernfalls wäre K5 ein Teilgraph von G). In diesem Fall entfer-
nen wir alle mit u inzidenten Kanten außer {u, v} und {u,w} und
kontrahieren diese beiden Kanten zum Knoten v.
In beiden Fällen ist der resultierende Graph G′ ein Minor von G und
daher planar. Da G′ zudem höchstens n− 1 Knoten hat, existiert
nach IV eine 5-Färbung c′ für G′. Da wir im 2. Fall dem Knoten w
die Farbe c′(v) geben können, haben die Nachbarn von u höchstens
4 verschiedene Farben und wir können G 5-färben. �

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K3,3 oder den K5 als topologischen Minor enthält. Für den Beweis
benötigen wir noch folgende Notationen.

Definition 2.17. Sei G = (V,E) ein Graph.
• Eine Menge S ⊆ V heißt Separator in G, wenn es zwei Knoten
u, v ∈ V \S gibt, zwischen denen in G−S kein u-v-Weg existiert. Ist
|S| = k, so nennen wir S auch einen k-Separator zwischen u und
v oder auch einen u-v-Separator der Größe k. Ein 1-Separator
wird auch Artikulation oder Schnittknoten von G genannt.
• Ein Graph G heißt k-zusammenhängend, 0 ≤ k ≤ n− 1, falls
G keinen (k − 1)-Separator hat. Die größte Zahl k, für die G k-
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zusammenhängend ist, heißt Zusammenhangszahl von G und
wird mit κ(G) bezeichnet.

Ein Graph G mit n ≥ 2 Knoten ist also genau dann zusammenhän-
gend, wenn κ(G) ≥ 1 ist.

Lemma 2.18. Ist ein Graph G = (V,E) nicht planar, so hat er einen
• 2-zusammenhängenden Untergraphen U = (V ′, E ′) und einen
• 3-zusammenhängenden topologischen Minor M = (V ′′, E ′′),
die minimal nicht planar sind, d.h. U und M sind nicht planar
und für alle e′ ∈ E ′ und e′′ ∈ E ′′ sind die Graphen U − e′ und M − e′′
planar.

Beweis. Wir entfernen zuerst solange Kanten und Knoten aus G, bis
wir aus dem verbliebenen Teilgraphen U = (V ′, E ′) keine weiteren
Kanten oder Knoten entfernen können, ohne dass U planar wird.
U ist zusammenhängend, da andernfalls mindestens eine Komponente
von U nicht planar ist und wir alle übrigen Komponenten entfernen
könnten, ohne dass U planar wird.
U ist sogar 2-zusammenhängend, da U sonst einen Schnittknoten s
enthält und U − s in k ≥ 2 Komponenten U [V1], . . . , U [Vk] zerfällt.
Dann ist aber mindestens ein Teilgraph Ti = U [Vi ∪ {s}] nicht planar
und wir können alle Knoten außerhalb von Ti entfernen, ohne dass U
planar wird.
Um einen topologischen Minor M von G mit den behaupteten Eigen-
schaften zu erhalten, konstruieren wir zu U einen topologischen Minor
U ′, der minimal nicht planar ist und zudem 3-zusammenhängend
ist oder weniger Knoten als U hat. Indem wir diese Konstruktion
wiederholen, erhalten wir schließlich M .
Falls U 3-zusammenhängend ist, ist U ′ = U . Andernfalls gibt es in
U einen 2-Separator S = {u, v}, d.h. U − S zerfällt in k ≥ 2 Kom-
ponenten U [V1], . . . , U [Vk]. Betrachte die (2-zusammenhängenden)
Graphen Gi = U [Vi ∪ {u, v}] ∪ {u, v}. Dann ist mindestens ein Gi

nicht planar (z.B. G1), da sonst auch U planar wäre. Da k ≥ 2 ist,
erhalten wir einen zu G1 isomorphen Graphen U ′ als topologischen
Minor von H = U [V1 ∪ V2 ∪ {u, v}] (und damit von U), indem wir
in U [V2 ∪ {u, v}] einen beliebigen u-v-Pfad P wählen und aus H alle
Knoten und Kanten entfernen, die nicht auf P liegen und danach
P überbrücken. Dann hat U ′ weniger Knoten als U und ist wie U
minimal nicht planar. �

Definition 2.19. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heißt Brücke von K in G, falls
• B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Brücken werden auch als Sehnen
von K bezeichnet), oder
• B−K eine Komponente von G−K ist und B aus B−K durch Hin-
zufügen aller Kanten zwischen B −K und K (und der zugehörigen
Endpunkte auf K) entsteht.

Die Knoten von B, die auf K liegen, heißen Kontaktpunkte von
B. Zwei Brücken B und B′ von K heißen inkompatibel, falls
• B Kontaktpunkte u, v und B′ Kontaktpunkte u′, v′ hat, so dass diese
vier Punkte in der Reihenfolge u, u′, v, v′ auf K liegen, oder
• B und B′ mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass in einem planaren Graphen kein Kreis
mehr als zwei inkompatible Brücken haben kann.

Satz 2.20 (Kuratowski 1930).
Für einen Graphen G sind folgende Aussagen äquivalent:

(i) G ist planar.
(ii) G enthält weder den K3,3 noch den K5 als topologischen Minor.

Beweis. Die Implikation von i) nach ii) folgt aus der Abgeschlossen-
heit der planaren Graphen unter (topologischer) Minorenbildung.
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Die Implikation von ii) nach i) zeigen wir durch Kontraposition.
Sei also G = (V,E) nicht planar. Dann hat G nach Lemma 2.18
einen 3-zusammenhängenden nicht planaren topologischen Minor
M = (V ′, E ′), so dass M − e′ für jede Kante e′ ∈ E ′ planar ist. Wir
entfernen eine beliebige Kante e0 = {a0, b0} aus M . Dann ist M − e0
planar. Da M − e0 2-zusammenhängend ist, gibt es in M − e0 einen
Kreis K durch die beiden Knoten a0 und b0 (siehe Übungen). Wir
wählen K zusammen mit einer ebenen Realisierung H ′ von M − e0
so, dass K möglichst viele Gebiete in H ′ einschließt.
Für zwei Knoten a, b auf K bezeichnen wir mit K[a, b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K[a, b) = K[a, b] \ {b}. Die Mengen K(a, b) und
K(a, b] sind analog definiert.
Die Kanten jeder Brücke B von K in M −e0 verlaufen in H ′ entweder
alle innerhalb oder alle außerhalb von K. Im ersten Fall nennen wir
B eine innere Brücke und im zweiten eine äußere Brücke.
Es ist klar, dass K in H ′ mindestens eine innere und mindestens
eine äußere Brücke haben muss. Zudem muss jede äußere Brücke B
aus einer Kante {u, v} bestehen, die zwei Knoten u ∈ K(a0, b0) und
v ∈ K(b0, a0) verbindet. Andernfalls hätte B nämlich mindestens 2
Kontaktpunkte auf K[a0, b0] oder auf K[b0, a0]. Daher könnte K zu
einem Kreis K ′ erweitert werden, der in H ′ mehr Gebiete einschließt
(bzw. ausschließt) als K, was der Wahl von K und H ′ widerspricht.
K hat in M außer den Brücken in M − e0 noch zusätzlich die Brücke
e0. Wir wählen nun eine innere Brücke B, die sowohl zu e0 als auch
zu mindestens einer äußeren Brücke e1 = {a1, b1} inkompatibel ist.
Eine solche Brücke muss es geben, da wir sonst alle mit e0 inkompati-
blen inneren Brücken nach außen klappen und e0 als innere Brücke
hinzunehmen könnten, ohne die Planarität zu verletzen.
Wir benutzen K und die drei Brücken e0, e1 und B, um eine Untertei-
lung des K3,3 oder des K5 in M zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A1, A2 ⊆ V ′ mit jeweils 3 Knoten an, so dass

9 knotendisjunkte Pfade zwischen allen Knoten a ∈ A1 und b ∈ A2
existieren. Oder wir geben eine Menge A ⊆ V ′ mit fünf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a, b ∈ A
existieren. Da e0 und e1 inkompatibel sind, können wir annehmen,
dass die vier Knoten a0, a1, b0, b1 in dieser Reihenfolge auf K liegen.
Fall 1: B hat einen Kontaktpunkt k1 6∈ {a0, a1, b0, b1}. Aus Symme-
triegründen können wir k1 ∈ K(a0, a1) annehmen. Da B weder
zu e0 noch zu e1 kompatibel ist, hat B weitere Kontaktpunkte
k2 ∈ K(b0, a0) und k3 ∈ K(a1, b1), wobei k2 = k3 sein kann.
Fall 1a: Ein Knoten ki ∈ {k2, k3} liegt auf dem Bogen K(b0, b1).
In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{a0, a1, ki} und {b0, b1, k1}.

Fall 1b: K(b0, b1) ∩ {k2, k3} = ∅. In diesem Fall ist k2 ∈ K[b1, a0)
und k3 ∈ K(a1, b0]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {k1, k2, k3} existieren. Folg-
lich gibt es 9 knotendisjunkte Pfade zwischen {a0, a1, u} und
{k1, k2, k3}.

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {a0, a1, b0, b1}.
Da B inkompatibel zu e0 und e1 ist, müssen in diesem Fall alle vier
Punkte zu B gehören. Sei P0 ein a0-b0-Pfad in B und sei P1 ein
a1-b1-Pfad in B. Sei u der erste Knoten auf P0, der auch auf P1
liegt und sei v der letzte solche Knoten.
Fall 2a: u = v. Dann gibt es in B vier knotendisjunkte Pfade von
u zu {a0, a1, b0, b1} und somit existieren in M 10 knotendisjunkte
Pfade zwischen den Knoten u, a0, a1, b0, b1.

Fall 2b: u 6= v. Durch u und v wird der Pfad P1 in drei Teilpfade
Pxu, Puv und Pvy unterteilt, wobei die Indizes die Endpunkte
bezeichnen und {x, y} = {a1, b1} ist.
Somit gibt es in B drei Pfade zwischen u und jedem Knoten
in {a0, v, x} und zwei Pfade zwischen v und jedem Knoten in
{b0, y}, die alle 5 knotendisjunkt sind. Folglich gibt es in M 9
knotendisjunkte Pfade zwischen {a0, v, x} und {b0, y, u}. �
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Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.
Alternativ lässt sich der K5 auch als ein
topologischer Minor von G erhalten, in-
dem wir die dünnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 überbrücken. /

a b

c d e

f g h i

j k l

m n

a b

d

j l

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.

Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er {K3,3, K5}-frei ist.

Satz 2.23 (Satz von Robertson und Seymour, 1983-2004). Sei K eine
Graphklasse, die unter Minorenbildung abgeschlossen ist. Dann gibt
es eine endliche Menge H von Graphen mit

K = {G | G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heißen verbotene Minoren für die Klasse K.

Eine interessante Folgerung aus diesem Satz ist, dass jede unendliche
Graphklasse zwei Graphen G und H enthält, so dass H ein Minor
von G ist. Das Problem, für zwei gegebene Graphen G und H zu
entscheiden, ob H ein Minor von G ist, ist zwar NP-vollständig (da
sich das Hamiltonkreisproblem darauf reduzieren lässt). Für einen
festen Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 2.24 (Robertson und Seymour, 1995). Für jeden Graphen H gibt
es einen O(n3)-zeitbeschränkten Algorithmus, der für einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 2.25. Die Zugehörigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus für K lässt sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren für K kennen. Leider ist der
Beweis von Theorem 2.23 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus für K führt.

2.2 Färben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitätsgraphen (auch transitiv orientierba-
re Graphen genannt) chordal. Wir werden sehen, dass sich für chordale
Graphen effizient eine optimale Knotenfärbung berechnen lässt.
Definition 2.26. Ein Graph G = (V,E) heißt chordal oder trian-
guliert, wenn jeder Kreis K = (u1, . . . , ul, u1) der Länge l ≥ 4 in G
mindestens eine Sehne hat.

G ist also genau dann chordal, wenn er keinen induzierten Kreis der
Länge l ≥ 4 enthält (ein induzierter Kreis ist ein induzierter Teilgraph
G[V ′], V ′ ⊆ V, der ein Kreis ist). Dies zeigt, dass die Klasse der
chordalen Graphen unter induzierter Teilgraphbildung abgeschlos-
sen ist (aber nicht unter Teilgraphbildung). Jede solche Graphklasse
G ist durch eine Familie von minimalen verbotenen induzierten
Teilgraphen Hi charakterisiert, die bis auf Isomorphie eindeutig
bestimmt sind. Die Graphen Hi gehören also nicht zu G, aber sobald
wir einen Knoten daraus entfernen, erhalten wir einen Graphen in G.
Die Klasse der chordalen Graphen hat die Familie der Kreise Cn der
Länge n ≥ 4 als verbotene induzierte Teilgraphen.
Lemma 2.27. Für einen Graphen G sind folgende Aussagen äquiva-
lent.

(i) G ist chordal.
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(ii) Jeder inklusionsminimale x-y-Separator S in G ist eine Clique.
(iii) Jedes Paar von nicht adjazenten Knoten x und y in G hat einen

x-y-Separator S, der eine Clique ist.

Beweis. Um zu zeigen, dass die zweite Aussage aus der ersten folgt,
nehmen wir an, dass G einen minimalen x-y-Separator S hat (d.h.
S\{s} ist für jedes s ∈ S kein x-y-Separator), der zwei nicht adjazente
Knoten u und v enthält. Seien G[V1] und G[V2] die beiden Kompo-
nenten in G − S mit x ∈ V1 und y ∈ V2. Da S minimal ist, haben
die beiden Knoten u und v sowohl einen Nachbarn in V1 als auch in
V2. Betrachte die beiden Teilgraphen Gi = G[Vi ∪ {u, v}] (i = 1, 2)
und wähle jeweils einen kürzesten u-v-Pfad Pi in Gi. Da deren Länge
≥ 2 ist, ist K = P1 ∪ P2 ein Kreis der Länge ≥ 4. Aufgrund der
Konstruktion ist zudem klar, dass K keine Sehnen in G hat.
Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen x-y-Separator S hat, und
S eine Clique sein muss, wenn wir S inklusionsminimal wählen.
Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen wir
an, dass G nicht chordal ist. Dann gibt es in G einen induzierten Kreis
K der Länge ≥ 4. Seien x und y zwei beliebige nicht adjazente Knoten
auf K und sei S ein x-y-Separator in G. Dann muss S mindestens
zwei nicht adjazente Knoten aus K enthalten. �

Definition 2.28. Sei G = (V,E) ein Graph und sei k ≥ 0. Ein
Knoten u ∈ V vom Grad k heißt k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhängende chordale Graphen können als eine Verallgemeine-
rung von Bäumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K1 durch sukzessives Hinzufügen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heißt G k-Baum, wenn G aus
Kk durch sukzessives Hinzufügen von k-simplizialen Knoten erzeugt

werden kann. Wir werden sehen, dass ein zusammenhängender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufügen von simplizialen
Knoten erzeugt werden kann. Äquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.
Definition 2.29. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt perfekte Eliminationsordnung (PEO)
von G, wenn ui simplizial in G[u1, . . . , ui] für i = 2, . . . , n ist.

Es ist klar dass alle Knoten eines vollständigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder nicht vollständige Baum T (also T 6∈ {K1, K2}) mindestens
zwei nicht adjazente Blätter hat.
Lemma 2.30. Jeder nicht vollständige chordale Graph G besitzt
mindestens zwei simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir führen Induktion über n. Für n ≤ 2 ist die Behauptung
klar. Sei G = (V,E) ein Graph mit n ≥ 3 Knoten. Da G nicht voll-
ständig ist, enthält G zwei nichtadjazente Knoten x1 und x2. Sei S
ein minimaler x1-x2-Separator der Größe k ≥ 0. Im Fall k > 0 ist S
nach Lemma 2.27 eine Clique in G. Seien G[V1] und G[V2] die beiden
Komponenten von G− S mit xi ∈ Vi. Wir zeigen die Existenz zweier
simplizialer Knoten si ∈ Vi, i = 1, 2.
Betrachte die Teilgraphen Gi = G[Vi ∪ S]. Da Gi chordal ist und
weniger als n Knoten hat, ist Gi nach IV entweder eine Clique oder
Gi enthält mindestens zwei nicht adjazente simpliziale Knoten yi, zi.
Falls Gi eine Clique ist, ist si = xi simplizial in Gi, und da xi keine
Nachbarn außerhalb von Vi ∪ S hat, ist si dann auch simplizial in G.
Ist Gi keine Clique, kann höchstens einer der beiden Knoten yi, zi
zu S gehören (da S im Fall S 6= ∅ eine Clique und {yi, zi} /∈ E ist).
O.B.d.A. sei yi ∈ Vi. Dann hat si = yi keine Nachbarn außerhalb von
Vi ∪ S und somit ist si auch simplizial in G. �
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Satz 2.31. Ein Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, lässt sich eine PEO gemäß Lemma 2.30
bestimmen, indem wir für i = n, . . . , 2 sukzessive einen simplizialen
Knoten ui in G− {ui+1, . . . , un} wählen.
Für die umgekehrte Richtung sei (u1, . . . , un) eine PEO von G. Wir
zeigen induktiv, dass Gi = G[u1, . . . , ui] chordal ist. Da ui+1 simplizial
in Gi+1 ist, enthält jeder Kreis K der Länge ≥ 4 in Gi+1, auf dem
ui+1 liegt, eine Sehne zwischen den beiden Kreisnachbarn von ui+1.
Daher ist mit Gi auch Gi+1 chordal. �

Korollar 2.32. Es gibt einen Polynomialzeitalgorithmus A, der für
einen gegebenen Graphen G eine PEO berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Länge ≥ 4 ausgibt.

Beweis. A versucht wie im Beweis von Theorem 2.31 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass Gi = G− {ui+1, . . . , un}
keinen simplizialen Knoten ui hat, so ist Gi wegen Lemma 2.30 nicht
chordal. Daher gibt es in Gi nach Lemma 2.27 (iii) ein Knotenpaar
x, y, so dass kein x-y-Separator eine Clique ist. Berechnen wir für
dieses Paar einen beliebigen minimalen x-y-Separator S, so ist S
keine Clique und wir können wie im Beweis von (i) =⇒ (ii) einen
induzierten Kreis K der Länge ≥ 4 in Gi konstruieren. Da Gi ein
induzierter Teilgraph von G ist, ist K auch ein induzierter Kreis in G.

�

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
färben:

Algorithmus chordal-color(V,E)

1 berechne eine PEO (u1, . . . , un) für G = (V,E)
2 starte greedy-color mit der Knotenfolge (u1, . . . , un)

Satz 2.33. Für einen gegebenen chordalen Graphen G = (V,E) be-
rechnet der Algorithmus chordal-color eine k-Färbung c von G mit
k = χ(G) = ω(G).

Beweis. Sei ui ein beliebiger Knoten mit c(ui) = k. Da (u1, . . . , un)
eine PEO von G ist, ist ui simplizial in G[u1, . . . , ui]. Somit bilden die
Nachbarn uj von ui mit j < i eine Clique und wegen c(ui) = k bilden
sie zusammen mit ui eine k-Clique. Daher gilt χ(G) ≤ k ≤ ω(G),
woraus wegen ω(G) ≤ χ(G) die Behauptung folgt. �

Um chordal-color in Linearzeit zu implementieren, benötigen wir
einen Linearzeit-Algorithmus zur Bestimmung einer PEO. Rose, Tar-
jan und Lueker haben 1976 einen solchen Algorithmus angegeben, der
auf lexikographischer Breitensuche (kurz LexBFS oder LBFS, engl.
lexicographic breadth-first search) basiert. Bevor wir diese Variante
der Breitensuche vorstellen, gehen wir kurz auf verschiedene Ansätze
zum Durchsuchen von Graphen ein.
Der folgende Algorithmus GraphSearch(V,E) startet eine Suche in
einem beliebigen Knoten u und findet zunächst alle von u aus erreich-
baren Knoten. Danach wird solange von einem noch nicht erreichten
Knoten eine neue Suche gestartet, bis alle Knoten erreicht wurden.
Die Menge der aktuellen Knoten wird dabei in einer Datenstruktur A
gespeichert. Genauer enthält A alle bereits entdeckten Knoten, die
noch nicht abgearbeitet sind.

Algorithmus GraphSearch(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R // u wurde neu entdeckt
5 append(L, u)
6 parent(u) := ⊥
7 A := {u} // Menge der aktuellen Knoten
8 R := R ∪ {u}
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9 while A 6= ∅ do
10 wähle u aus A
11 if ∃v ∈ N(u)\R then
12 A := A ∪ {v} // v wurde neu entdeckt
13 R := R ∪ {v}
14 append(L, v)
15 parent(v) := u
16 else entferne u aus A // u wurde abgearbeitet
17 until R = V
18 return(L)

Der Algorithmus GraphSearch(V,E) findet in jedem Durchlauf der
repeat-Schleife eine neue Komponente des EingabegraphenG = (V,E).
Dies bedeutet, dass alle Knoten, die zu einer Komponente gehören,
konsekutiv in der Ausgabeliste L = (u1, . . . , un) auftreten, wobei ab-
gesehen vom ersten Knoten jeder Komponente jeder Knoten uk einen
Nachbarn ui mit i < k hat.
Die folgende Definition fasst diese Eigenschaften der Ausgabeliste
zusammen.

Definition 2.34. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt Suchordnung (SO) von G, wenn für jedes
Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < k : i 6= j ∧ ui ∈ N(uk).

Satz 2.35. Für jeden Graphen G = (V,E) gibt der Algorithmus
GraphSearch(V,E) eine SO von G aus.

Beweis. Ein Knoten uk erhält nur dann den Wert parent(uk) = ⊥,
wenn alle Knoten uj mit j < k bereits abgearbeitet sind und diese nur
Nachbarn ul mit l < k hatten. Falls also ein Vorgänger uj von uk mit
einem Nachfolger ul von uk verbunden ist, liefert die parent-Funktion
einen Nachbarn ui = parent(uk) von uk mit i < k. Da uj 6∈ N(uk)
ist, gilt zusätzlich i 6= j. �

Die parent-Funktion induziert einen gerichteten Wald W =
(V,Eparent), dessen Kantenmenge aus allen Kanten der Form
(parent(v), v) mit parent(v) 6= ⊥ besteht. Die Kanten von W wer-
den auch als Baumkanten (kurz B-Kanten) und W wird auch als
Suchwald von G = (V,E) bezeichnet. Für jeden Knoten v ∈ V gibt
es genau eine Wurzel w in W , von der aus v in W erreichbar ist. Der
eindeutig bestimmte w-v-Pfad P = (u0, . . . , ul) in W mit u0 = w
und ul = v lässt sich ausgehend von ul = v unter Verwendung der
parent-Funktion mittels ui−1 = parent(ui) für i = l, . . . , 1 berech-
nen. P wird auch als parent-Pfad von v bezeichnet. Es ist klar, dass
2 Knoten v und v′ genau dann in einer Komponente von G liegen,
wenn sie die gleiche Wurzel haben.
Realisieren wir die Menge der aktuellen Knoten als einen Keller S,
so erhalten wir eine Suchstrategie, die als Tiefensuche (kurz DFS,
engl. depth first search) bezeichnet wird. Die Benutzung eines Kellers
bewirkt, dass nach der Entdeckung eines neuen Knotens v unter den
Nachbarn des aktuellen Knotens u die Suche zuerst bei den Nachbarn
von v fortgesetzt wird, bevor die anderen Nachbarn von u getestet
werden.

Algorithmus DFS(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R // u wurde neu entdeckt
5 R := R ∪ {u}
6 append(L, u)
7 parent(u) := ⊥
8 S := (u) // Keller der aktuellen Knoten
9 while S 6= () do

10 u := top(S)
11 if ∃v ∈ N(u)\R then
12 push(S, v) // v wurde neu entdeckt

13
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13 R := R ∪ {v}
14 append(L, v)
15 parent(v) := u
16 else pop(S) // u wurde abgearbeitet
17 until R = V
18 return(L)

Definition 2.36. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt DFS-Ordnung (DO) von G, wenn für
jedes Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i : j < i < k ∧ ui ∈ N(uk).

Satz 2.37. Für jeden Graphen G = (V,E) gibt der Algorithmus
DFS(V,E) eine DO von G aus.

Beweis. Siehe Übungen. �

Realisieren wir die Menge der abzuarbeitenden Knoten als eine Warte-
schlange Q, so findet der resultierende Algorithmus BFS(V,E) einen
kürzesten Weg vom Startknoten u zu allen von u aus erreichbaren
Knoten. Diese Suchstrategie wird als Breitensuche (kurz BFS, engl.
breadth first search) bezeichnet. Die Benutzung einer Warteschlange
Q zur Speicherung der noch abzuarbeitenden Knoten bewirkt, dass
alle Nachbarknoten v des aktuellen Knotens u vor den bisher noch
nicht erreichten Nachbarn von v ausgegeben werden.

Algorithmus BFS(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R // u wurde neu entdeckt
5 R := R ∪ {u}
6 parent(u) := ⊥

7 Q := (u) // Warteschlange der aktuellen Knoten
8 while Q 6= () do
9 u := dequeue(Q) // u wird komplett abgearbeitet

10 append(L, u)
11 for all v ∈ N(u)\R do
12 enqueue(Q, v) // v wurde neu entdeckt
13 parent(v) := u
14 R := R ∪N(u)
15 until R = V
16 return(L)

Definition 2.38. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt BFS-Ordnung (BO) von G, wenn für jedes
Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < j : ui ∈ N(uk).

Satz 2.39. Für jeden Graphen G = (V,E) gibt der Algorithmus
BFS(V,E) eine BO von G aus.

Beweis. Existiert im Fall k < l eine Position j < k mit uj ∈
N(ul) \ N(uk), so muss es einen Knoten ui ∈ N(uk) mit i < j
geben, der dafür gesorgt hat, dass der Knoten uk vor dem Knoten ul
in die Warteschlange aufgenommen wurde. �

BFS-Ordnungen lassen sich anschaulich anhand der Adjazenzmatrix
charakterisieren. Sei (u1, . . . , un) eine BO für G = (V,E) und sei
A = (aij) die Adjazenzmatrix von G mit aij = 1⇔ {ui, uj} ∈ E. Wei-
ter seien zi = ai1 . . . ai,i−1 die Präfixe der Zeilen von A, die unterhalb
der Diagonale verlaufen. Sind nun die ersten j Einträge ak1 . . . akj
einer Zeile sk Null, so muss dies auch für jede Zeile sl mit l > k so
sein, da im Fall alj = 1 der Knoten uj ∈ N(ul) \ N(uk) wäre und
somit ein i < j mit aki = 1 existieren müsste. Dies bedeutet, dass sl
mindestens so viele Nullen als Präfix hat wie zk. Es ist aber möglich,
dass zk bspw. mit 00010. . . beginnt und zl mit 00011. . . .
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Alternativ können wir Q auch als eine Warteschlange von Knotenmen-
gen realisieren (siehe Algorithmus BFS’), um einen Überblick über
alle möglichen Fortsetzungen der aktuellen Liste L zu einer BO zu
erhalten. Die Prozedur Dequeue(Q) liefert ein beliebiges Element aus
der ersten Menge in Q zurück und entfernt dieses aus Q.

Algorithmus BFS’(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R
5 R := R ∪ {u}
6 Q := ({u}) // Warteschlange von Knotenmengen
7 while Q 6= () do
8 u := Dequeue(Q) // u wird komplett abgearbeitet
9 append(L, u)

10 if N(u) 6⊆ R then enqueue(Q,N(u)\R)
11 R := R ∪N(u)
12 until R = V
13 return(L)

Prozedur Dequeue(Q)
1 entferne u aus first(Q)
2 if first(Q) = ∅ then dequeue(Q)
3 return(u)

Fassen wir die Menge V \ R der noch nicht erreichten Knoten als
Nachfolgemenge der letzten Menge in Q auf, so wird von dieser Rest-
menge in jedem Durchlauf der while-Schleife von BFS’ die Teilmenge
N(u) \ R abgetrennt und im Fall N(u) \ R 6= ∅ der Schlange Q
hinzugefügt.
Der Unterschied von LexBFS zur normalen Breitensuche besteht
darin, dass die zulässigen Ausgabefolgen gegenüber der BFS weiter

eingeschränkt werden. Der Name von LexBFS rührt daher, dass die
Knoten in einer Reihenfolge ausgegeben werden, die eine lexikogra-
phische Sortierung der Zeilenpräfixe zi bewirkt, sofern man sie durch
Anhängen von Einsen auf die gleiche Länge bringt. Eine solche Sor-
tierung kann auch bei einer gewöhnlichen Breitensuche auftreten, ist
bei dieser aber nicht garantiert. Bei einer Breitensuche werden die
noch nicht besuchten Nachbarn des aktuellen Knotens in beliebiger
Reihenfolge zur Warteschlange hinzugefügt und auch wieder in dieser
Reihenfolge entfernt. Dagegen werden bei einer LexBFS die Knoten
in der Warteschlange nachträglich umsortiert, falls dies notwendig
ist, um eine LexBFS-Ordnung der Knoten zu erhalten (siehe Defi-
nition 2.40). Ähnlich wie bei BFS’ wird hierzu die Menge der noch
nicht abgearbeiteten Knoten in eine Folge von Knotenmengen zerlegt.
Im Gegensatz zu BFS’ kann LexBFS aber nicht nur die letzte Menge
V \R splitten, sondern alle Mengen der Folge.

Algorithmus LexBFS(V,E, u)

1 L := () // Ausgabeliste
2 Q := (V ) // Warteschlange von Knotenmengen
3 while Q 6= () do
4 u := Dequeue(Q) // u wird komplett abgearbeitet
5 append(L, u)
6 Splitqueue(Q,N(u))
7 return(L)

Prozedur Splitqueue(Q,S)
1 for T in Q with T ∩ S /∈ {∅, T} do
2 ersetze die Teilfolge (T ) in Q durch (T ∩ S, T \ S)

Für eine effiziente Implementierung sollte die Schlange Q =
(S1, . . . , Sk) von Knotenmengen Si ⊆ V als doppelt verkettete Liste
realisiert werden und für jeden Knoten u in der Adjazenzliste ein
Zeiger auf die Menge Si, die u enthält und auf seinen Eintrag in
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Si gespeichert werden. Zudem sollte die for-Schleife in der Prozedur
Splitqueue durch eine Schleife über die Knoten in S = N(u) ersetzt
werden.

Definition 2.40. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt LexBFS-Ordnung (LBO) von G, wenn
für jedes Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < j : ui ∈ N(uk) \N(ul).

Ob eine Ordnung (u1, . . . , un) eine LBO ist, lässt sich wie folgt an
der gemäß (u1, . . . , un) geordneten Adjazenzmatrix A ablesen: die
verkürzten Zeilen z1, . . . , zn unter der Diagonalen müssen wie folgt
sortiert sein: entweder ist zi ein Präfix von zi+1 oder zi hat an der
ersten Position, wo sich die beiden Strings unterscheiden, eine Eins.
Bringen wir also die verkürzten Zeilen durch Anhängen von Einsen auf
dieselbe Länge, so sind sie lexikographisch sortiert. In den Übungen
wird gezeigt, dass man sogar eine lexikographische Ordnung auf den
kompletten Zeilen von A erhält, falls man die Diagonale auf 1 setzt
und die Knoten in jeder Menge von Q nach absteigendem Knotengrad
in G sortiert.

Satz 2.41. Für jeden Graphen G = (V,E) gibt der Algorithmus
LexBFS(V,E) eine LBO (u1, . . . , un) von G aus.

Beweis. Sei A = (aij) die Adjazenzmatrix von G mit aij = 1 ⇔
{ui, uj} ∈ E. Wir zeigen, dass die Strings zi = ai1, . . . , ai,i−1 lexika-
lisch sortiert sind. Existiert nämlich im Fall k < l eine Position j < k
mit akj = 0 und alj = 1, so muss es eine Position i < j mit aki = 1
und ali = 0 geben. Ansonsten wäre der Knoten ul spätestens beim
Abarbeiten von uj in eine Menge vor dem Knoten uk sortiert worden
und könnte daher nicht nach dem Knoten uk ausgegeben werden. �

Satz 2.42. Jede LBO für einen chordalen Graphen G ist eine PEO
für G.

Beweis. Sei (u1, . . . , un) eine LBO für G = (V,E) und sei A = (aij)
die Adjazenzmatrix von G mit aij = 1⇔ {ui, uj} ∈ E, wobei wir für
aij auch A[i, j] schreiben. Wir zeigen, dass G nicht chordal ist, wenn
ui nicht simplizial in Gi = G[u1, . . . , ui] ist.
Falls ui nicht simplizial in Gi ist, müssen Indizes i2 < i1 < i =: i0 mit
A[i0, i1] = A[i0, i2] = 1 und A[i1, i2] = 0 existieren. Wegen A[i1, i2] = 0
und A[i0, i2] = 1 muss es einen Index i3 < i2 geben mit A[i1, i3] = 1
und A[i0, i3] = 0, wobei wir i3 möglichst klein wählen.
Falls nun A[i2, i3] = 1 ist, haben wir einen induzierten Kreis
G[ui0 , ui1 , ui2 , ui3 ] = (ui0 , ui1 , ui3 , ui2) der Länge 4 in G gefunden. An-
dernfalls muss es wegen A[i2, i3] = 0 und A[i1, i3] = 1 einen Index
i4 < i3 geben mit A[i2, i4] = 1 und A[i1, i4] = 0, wobei wir i4 wieder
möglichst klein wählen. Da spätestens für ik = 1 kein Index ik+1 < ik
existiert, also A[ik−1, ik] = 1 sein muss, erhalten wir eine Indexfolge
1 ≤ ik < · · · < i1 < i0 mit
(a) A[i0, i1] = A[ij, ij+2] = A[ik−1, ik] = 1 für j = 0, . . . , k − 2 und
(b) A[i0, i3] = A[ij, ij+1] = A[ij, ij+3] = A[ik−2, ik−1] = 0 für

j = 1, . . . , k − 3 und
(c) A[ij, l] = A[ij−1, l] für j = 1, . . . , k − 3 und l < ij+2.
Die Eigenschaften (a) und (b) ergeben sich direkt aus der Konstruk-
tion der Folge. Eigenschaft (c) folgt aus der minimalen Wahl der
Indizes i3, . . . , ik und impliziert für r = 3, . . . , k die Gleichungen
A[i0, ir] = A[i1, ir] = · · · = A[ir−3, ir], indem wir j = 1, . . . , r − 3
und l = ir setzen. Da zudem A[ir−3, ir] gemäß Eigenschaft (b) für
r = 3, . . . , k den Wert 0 hat, folgt für alle Paare 0 ≤ j < r ≤ k die
Äquivalenz

A[ij, ir] = 1⇔ r = j + 2 oder j = 0 ∧ r = 1 oder j = k − 1 ∧ r = k.

Folglich ist G[ui0 , . . . , uik ] ein Kreis der Länge k + 1 ≥ 4. �

Damit haben wir einen Linearzeitalgorithmus, der für chordale Gra-
phen eine PEO berechnet. Da auch greedy-color linear zeitbe-
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schränkt ist, können wir den Algorithmus chordal-color in Linear-
zeit implementieren. Diesen Algorithmus können wir leicht noch so
modifizieren, dass er zusammen mit der gefundenen k-Färbung entwe-
der eine Clique C der Größe k (als Zertifikat, dass χ(G) = k = ω(G)
ist) oder einen induzierten Kreis der Länge ≥ 4 (als Zertifikat, dass
G nicht chordal ist) ausgibt.

2.3 Der Satz von Brooks

Satz 2.43 (Brooks 1941). Für einen zusammenhängenden Graphen
G gilt χ(G) = ∆(G) + 1 genau dann, wenn G = Kn für ein n ≥ 1
oder G = Cn für ein ungerades n ≥ 3 ist.

Beweis. Es ist klar, dass die Graphen G = Kn für n ≥ 1 und G = Cn
für ungerades n ≥ 3 die chromatische Zahl ∆(G) + 1 haben. Für
∆(G) ≤ 2 ist leicht zu sehen, dass dies auch die einzigen zusammen-
hängenden Graphen mit dieser Eigenschaft sind.
Für zusammenhängende Graphen G 6= Kn mit ∆(G) ≥ 3 zeigen wir
induktiv über n = n(G), dass χ(G) ≤ ∆(G) ist. Für n ≤ 4 (IA) ist
dies klar, da wir den K4 ausgeschlossen haben. Für den IS sei also
G 6= Kn ein zusammenhängender Graph mit n ≥ 5 Knoten und sei
d := ∆(G) ≥ 3.
Falls δ(G) < d ist, hat G′ = G − u eine d-Färbung c′, wobei u ein
Knoten vom Grad deg(u) < d ist (man beachte, dass δ(G′) < d und
somit G′ nicht d-regulär ist, was nach IV χ(G) ≤ d impliziert). Da
deg(u) < d ist, lässt sich c′ zu einer d-Färbung c von G erweitern.
Falls κ(G) ≤ 1 ist, hat G k ≥ 2 Blöcke B1, . . . Bk, die nicht d-regulär
und somit d-färbbar sind. Dies impliziert χ(G) ≤ d, da wir die d-
Färbungen der Blöcke ausgehend von einem beliebigen Wurzelblock
des BC-Baums hin zu den Blattblöcken in eine d-Färbung für G
transformieren können.
Es bleibt also der Fall, dass G d-regulär und κ(G) ≥ 2 ist.

Behauptung 2.44. In G gibt es einen Knoten u1, der zwei Nachbarn
a und b mit {a, b} 6∈ E hat, so dass G− {a, b} zusammenhängend ist.

Da G 6= Kn ist, gibt es einen Knoten x, der zwei Nachbarn y, z ∈ N(x)
mit {y, z} 6∈ E hat.
• Falls G− y 2-zusammenhängend ist, ist G− {y, z} zusammenhän-

gend und die Behauptung folgt für u1 = x.
• Ist G − y nicht 2-zusammenhängend, d.h. G − y hat mindestens

zwei Blöcke, dann hat der BC-Baum T von G− y mindestens zwei
Blätter. Da κ(G) ≥ 2 ist, ist y in G zu mindestens einem Knoten in
jedem Blatt von T benachbart, der kein Schnittknoten ist. Wählen
wir für a und b zwei dieser Knoten in verschiedenen Blättern, so
ist G − {a, b} zusammenhängend und somit die Behauptung für
u1 = y bewiesen.

Sei also u1 ein Knoten, der zwei Nachbarn a und b mit {a, b} 6∈ E
hat, so dass G− {a, b} zusammenhängend ist. Durchsuchen wir den
Graphen G− {a, b} ausgehend vom Startknoten u1, so erhalten wir
eine Suchordnung (u1, . . . , un−2). Starten wir nun greedy-color mit
der Reihenfolge (a, b, un−2, . . . , u1), so erhalten wir eine d-Färbung
c für G mit c(a) = c(b) = 1. Zudem hat Knoten ui, i > 1, einen
Nachbarn uj mit j < i, weshalb c(ui) ≤ deg(ui) ≤ d ist. Zuletzt erhält
auch u1 eine Farbe c(u1) ≤ d, da die Nachbarn a und b von u1 dieselbe
Farbe haben. �

In den Übungen wird folgende Folgerung aus dem Beweis des Satzes
von Brooks gezeigt.

Korollar 2.45. Es gibt einen Linearzeitalgorithmus, der für jeden
Graphen G mit ∆(G) ≤ 3 eine χ(G)-Färbung berechnet.
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2.4 Kantenfärbungen

Neben der Frage, mit wievielen Farben die Knoten eines Graphen
gefärbt werden können, muss bei vielen Anwendungen auch eine
Kantenfärbung mit möglichst wenigen Farben gefunden werden.

Definition 2.46. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung c : E → N heißt Kantenfärbung von G, wenn

c(e) 6= c(e′) für alle e 6= e′ ∈ E mit e ∩ e′ 6= ∅ gilt.
b) G heißt k-kantenfärbbar, falls eine Kantenfärbung c : E →
{1, . . . , k} existiert.

c) Die kantenchromatische Zahl oder der chromatische Index
von G ist

χ′(G) = min{k ∈ N | G ist k-kantenfärbbar}.

Eine k-Kantenfärbung c : E → N muss also zwei Kanten, die einen
Knoten gemeinsam haben, verschiedene Farben zuweisen. Daher bildet
jede Farbklasse Ei = {e ∈ E | f(e) = i} ein Matching von G, d.h. c
zerlegt E in k disjunkte Matchings. Umgekehrt liefert jede Zerlegung
von E in k disjunkte Matchings eine k-Kantenfärbung von G.
Neben Graphen treten in manchen Anwendungen auch Multigra-
phen G = (V,E) auf. Diese können mehr als eine Kante zwischen
zwei Knoten haben, d.h. E ist eine Multimenge auf

(
V
2

)
.

Eine Multimenge A auf einer Grundmenge M lässt sich durch ei-
ne Funktion vA : M → N beschreiben, wobei vA(a) die Anzahl der
Vorkommen des Elements a in A angibt. Die Mächtigkeit von A ist
|A| = ∑

a∈A vA(a).
Wie bei Graphen gehen wir davon aus, dass jede Kante e = {u, v}
eines Multigraphen G = (V,E) zwei verschiedene Endpunkte u 6= v
hat, d.h. G ist schlingenfrei. In G gibt es genau vE(e) = vE(u, v)
Kanten zwischen den beiden Knoten u und v. Die Zahl vE(e) wird
auch als (Kanten-)Vielfachheit von e bezeichnet. Ein wichtiger

Parameter von Multigraphen ist die maximale Kantenvielfachheit

v(G) = max
e∈E

vE(e),

die auch als (Graph-)Vielfachheit von G bezeichnet wird. Der
Grad eines Knotens ∈ V ist degG(u) = ∑

v∈N(u) vE(u, v) und der
Maximalgrad von G ist wie üblich ∆(G) = maxu∈V degG(u).
Eine k-Kantenfärbung für einen Multigraphen G = (V,E) lässt sich
durch eine Funktion c beschreiben, die jeder Kante e ∈

(
V
2

)
eine

Menge c(e) ⊆ {1, . . . , k} von |c(e)| = vE(e) Farben zuordnet, so dass
c(e) ∩ c(e′) = ∅ für alle e 6= e′ ∈

(
V
2

)
mit e ∩ e′ 6= ∅ gilt.

Beispiel 2.47.

χ′(Cn) =

2, n gerade,
3, sonst,

χ′(Kn) = 2dn/2e − 1 =

n− 1, n gerade,
n, sonst.

Das Kantenfärbungsproblem für einen Graphen G lässt sich leicht auf
das Knotenfärbungsproblem für einen Graphen G′ reduzieren.

Definition 2.48. Sei G′ = (V,E ′) ein Graph mit m ≥ 1 Kanten.
Dann heißt der Graph G = L(G′) = (E ′, E) mit

E =
{
{e, e′} ∈

(
E ′

2

) ∣∣∣∣∣ e ∩ e′ 6= ∅
}

der Kantengraph oder Line-Graph von G′.

Ist G′ ein Multigraph, so verwenden wir als Knotenmenge von L(G′) ei-
ne Menge VE′ mit der Mächtigkeit |VE′ | = |E ′|, die vE′(e) verschiedene
Kopien e1, . . . , evE(e) jeder Kante e ∈ E ′ enthält. Die folgenden Be-
ziehungen zwischen einem (Multi-)Graphen G′ und dem zugehörigen
Line-Graphen lassen sich leicht verifizieren.
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Proposition 2.49. Für den Line-Graphen G = L(G′) eines Multi-
graphen G′ gilt:

(i) n(G) = m(G′),
(ii) χ(G) = χ′(G′),
(iii) α(G) = µ(G′),
(iv) ω(G) ≥ ∆(G′),
(v) ∆(G) = maxe∈E′ degG′(u) +degG′(v)−vE′(e)−1 ≤ 2∆(G′)−2,

wobei u und v die Endpunkte der Kante e = {u, v} sind.

Damit erhalten wir aus den Abschätzungen ω(G) ≤ χ(G) ≤ ∆(G) + 1
und n/α(G) ≤ χ(G) ≤ n − α(G) + 1 die folgenden Abschätzungen
für χ′(G′).

Lemma 2.50. Für jeden Multigraphen mit m ≥ 1 Kanten gilt
∆ ≤ χ′ ≤ 2∆− 1 und m/µ ≤ χ′ ≤ m− µ+ 1.

Korollar 2.51. Für jeden regulären Multigraphen mit einer ungera-
den Knotenzahl und m ≥ 1 Kanten gilt χ′ ≥ ∆ + 1 ≥ 3.

Beweis. Wegen µ ≤ (n − 1)/2 und m = n∆/2 folgt χ′ ≥ m/µ ≥
n∆/(n− 1) > ∆. Da n ungerade und m ≥ 1 ist, folgt ∆ ≥ 2. �

Als nächstes geben wir einen effizienten Algorithmus an, der für jeden
Graphen eine (∆ + 1)-Kantenfärbung berechnet. Hierfür benötigen
wir folgende Begriffe.

Definition 2.52. Sei G = (V,E) ein Graph und sei c : E →
{1, . . . , k} eine k-Kantenfärbung von G. Weiter sei F ⊆ {1, . . . , k}
und es gelte 1 ≤ i 6= j ≤ k.
a) Ein Nachbar v von u heißt F -Nachbar von u, wenn c(u, v) ∈ F

ist. Im Fall F = {i} nennen wir v auch den i-Nachbarn von u.
b) Die Farbe i ist frei an einem Knoten u (kurz i ∈ free(u)), falls u

keinen i-Nachbarn hat.

c) Der Graph Gij = (V,Eij) mit Eij =
{
e ∈ E

∣∣∣ c(e) ∈ {i, j}} heißt
(i, j)-Subgraph von G.

d) Jede Komponente G′ von Gij heißt (i, j)-Komponente von G.
Je nachdem ob G′ ein Pfad oder ein Kreis ist, nennen wir G′ auch
einen (i, j)-Pfad bzw. (i, j)-Kreis in G (bzgl. c).

Man sieht leicht, dass jede (i, j)-Komponente G′ von G entweder ein
Pfad der Länge l ≥ 0 oder ein Kreis gerader Länge ist. Zudem können
wir aus c eine weitere k-Kantenfärbung c′ von G gewinnen, indem wir
die beiden Farben i und j entlang der Kanten von G′ vertauschen.

Satz 2.53 (Vizing 1964). Für jeden Graphen G gilt χ′(G) ≤
mine∈E ∆(G− e) + 1 ≤ ∆(G) + 1.

Beweis. Wir führen Induktion über m. Der IA m = 0 ist klar.
Für den IS sei G′ = (V,E ′) ein Graph mit m + 1 Kanten und
sei k = mine∈E′ ∆(G′ − e) + 1. Wir wählen eine beliebige Kante
e1 = {y0, y1} ∈ E ′, so dass der Graph G = G′ − e1 den Maximal-
grad ∆(G) = k − 1 hat. Dann hat G nach IV eine k-Kantenfärbung
c : E → {1, . . . , k}. Da zudem unter c an jedem Knoten u mindestens
k − degG(u) ≥ 1 Farben frei sind, folgt free(u) 6= ∅ für alle u ∈ V .
Betrachte nun folgende Prozeduren.

Prozedur expand(G, c, y0, y1)
1 ` := 1
2 wähle α1 ∈ free(y1)
3 while α` 6∈ free(y0) ∪ {α1, . . . , α`−1} do
4 sei y`+1 der α`-Nachbar von y0
5 wähle α`+1 ∈ free(y`+1)
6 ` := `+ 1
7 wähle 0 ≤ i < ` minimal mit α` ∈ free(y0) ∪ {α1, . . . , αi}
8 if i = 0 then // α` ∈ free(y0)
9 recolor(`, α`)

10 else // α` = αi
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11 wähle eine Farbe α0 ∈ free(y0)
12 berechne den (α0, αi)-Pfad P mit Startknoten y` und
13 vertausche dabei die Farben α0 und αi entlang P
14 sei z der Endknoten von P // z = y` ist möglich
15 case
16 z = y0 : recolor(i, αi)
17 z = yi : recolor(i, α0)
18 else recolor(`, α0)
19 return c

Prozedur recolor(i, α)
1 for j := 1 to i− 1 do c(y0, yj) := αj
2 c(y0, yi) := α

Wir verifizieren, dass die Abbildung c eine Kantenfärbung von G′ ist.
Fall 1 α` ∈ free(y0): Da die Farbe α` an y0 und für j = 1, . . . , ` die
Farbe αj an yj frei ist, können wir {y0, yj} mit αj färben.

Fall 2 z = y0: In diesem Fall erreicht P den Knoten z = y0 über die
Kante {y0, yi+1}. Nach dem Vertauschen von α0 und αi entlang P
hat diese Kante dann die Farbe α0, weshalb wir die Kanten {y0, yj}
für j = 1, . . . , i mit αj färben können.

Fall 3 z = yi: Da αi ∈ free(yi) ∩ free(y`) ist, müssen die Endkanten
von P mit α0 gefärbt sein. Nach Vertauschen von α0 und αi entlang
P ist daher die Farbe α0 an y0 und yi frei, weshalb wir die Kante
{y0, yi} mit α0 und die Kanten {y0, yj} für j = 1, . . . , i− 1 mit αj
färben können.

Fall 4 In allen anderen Fällen (d.h. z 6∈ {y0, yi}) ist die Farbe α0
nach Vertauschen von α0 und αi entlang P neben y0 auch an y` frei,
weshalb wir die Kante {y0, y`} mit α0 färben können. Zudem bleibt
die Farbe αj für j = 1, . . . , `− 1 an yj frei (wegen αj 6∈ {α0, αi} gilt
dies auch im Fall yj = z). Daher können wir die Kanten {y0, yj}
für j = 1, . . . , `− 1 mit αj färben. �

Da die Prozedur expand mit Hilfe geeigneter Datenstrukturen so
implementiert werden kann, dass jeder Aufruf Zeit O(n) erfordert,
und diese Prozedur m-mal aufgerufen wird, um alle m Kanten eines
gegebenen Graphen G zu färben, ergibt sich eine Gesamtlaufzeit von
O(nm).
Für einen Graphen G kann χ′(G) nur einen der beiden Werte ∆(G)
oder ∆(G) + 1 annehmen. Graphen G mit χ′(G) = ∆(G) heißen
Klasse 1 und Graphen G mit χ′(G) = ∆(G) + 1 heißen Klasse 2.
Neben allen bipartiten Graphen sind auch die vollständigen Graphen
Kn für gerades n Klasse 1. Zudem sind alle planaren Graphen G mit
∆(G) ≥ 7 Klasse 1. Für 2 ≤ d ≤ 5 existieren planare Graphen G mit
∆(G) = d, die Klasse 2 sind. Für d = 6 ist dies offen.
Das Problem, für einen gegebenen Graphen G zu entscheiden, ob er
Klasse 1 ist (also χ′(G) ≤ ∆(G) gilt), ist NP-vollständig.
Der Satz von Vizing lässt sich wie folgt auf Multigraphen verallgemei-
nern.

Satz 2.54 (Vizing 1964). Für jeden Multigraphen G = (V,E) gilt
χ′(G) ≤ maxu,v∈V (deg(u) + vE(u, v)) ≤ ∆(G) + v(G).

In den Übungen leiten wir noch die folgenden oberen Schranken her.

Korollar 2.55. Für jeden Multigraphen G = (V,E) gilt:
(i) χ′(G) ≤ 3∆(G)/2,
(ii) falls G bipartit (d.h. χ(G) ≤ 2) ist, dann ist χ′(G) = ∆(G).
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3 Flüsse in Netzwerken

3 Flüsse in Netzwerken

Definition 3.1. Ein Netzwerk N = (V,E, s, t, c) besteht aus einem
gerichteten Graphen G = (V,E) mit einer Quelle s ∈ V und einer
Senke t ∈ V sowie einer Kapazitätsfunktion c : V × V → N.
Zudem muss jede Kante (u, v) ∈ E positive Kapazität c(u, v) > 0 und
jede Nichtkante (u, v) 6∈ E muss die Kapazität c(u, v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N .

a b

s t

c d

16

8

12

98

20

9

4 5
1

3

Definition 3.2.
a) Ein Fluss in N ist eine Funktion f : V × V → Z mit

f(u, v) ≤ c(u, v), (Kapazitätsbedingung)
f(u, v) = −f(v, u), (Antisymmetrie)∑
v∈V f(u, v) = 0 für alle u ∈ V \ {s, t} (Kontinuität)

b) Der Fluss in den Knoten u ist f−(u) = ∑
v∈V max{0, f(v, u)}.

c) Der Fluss aus u ist f+(u) = ∑
v∈V max{0, f(u, v)}.

d) Die Größe von f ist |f | = f+(s)− f−(s) = ∑
v∈V f(s, v).

Die Antisymmetrie impliziert, dass f(u, u) = 0 für alle u ∈ V ist, d.h.
wir können annehmen, dass G schlingenfrei und somit c(u, u) = 0 für
alle Knoten u ∈ V ist. Die folgende Abbildung zeigt einen Fluss f in
N .

a b

s t

c d
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12/12

3/9
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14/20
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1/4 5/5

1/1

3/3

u s a b c d t

f+(u) 18 12 17 10 9 0
f−(u) 3 12 17 10 9 15

3.1 Der Ford-Fulkerson-Algorithmus

Wie kann man für einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrößert werden kann? Diese Frage ist leicht zu beantworten, falls
f auf V × V den Wert 0 hat: In diesem Fall genügt es, in G = (V,E)
einen Pfad von s nach t zu finden. Andernfalls können wir zu N und
f ein Netzwerk Nf konstruieren, so dass f genau dann vergrößert
werden kann, wenn sich in Nf der Nullfluss vergrößern lässt.

Definition 3.3. Sei N = (V,E, s, t, c) ein Netzwerk und sei f ein
Fluss in N . Das zugeordnete Restnetzwerk ist Nf = (V,Ef , s, t, cf )
mit der Kapazität

cf (u, v) = c(u, v)− f(u, v)

und der Kantenmenge

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.

Zum Beispiel führt obiger Fluss auf das folgende Restnetzwerk Nf :
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Definition 3.4. Sei Nf = (V,Ef , s, t, cf) ein Restnetzwerk. Dann
heißt jeder s-t-Pfad P in (V,Ef ) Zunahmepfad in Nf . Die Kapa-
zität von P in Nf ist

cf (P ) = min{cf (u, v) | (u, v) liegt auf P}

und der zu P gehörige Fluss in Nf ist

fP (u, v) =


cf (P ), (u, v) liegt auf P,
−cf (P ), (v, u) liegt auf P,
0, sonst.

P = (u0, . . . , uk) ist also genau dann ein Zunahmepfad in Nf , falls
• u0 = s und uk = t ist,
• die Knoten u0, . . . , uk paarweise verschieden sind
• und cf (ui, ui+1) > 0 für i = 0, . . . , k − 1 ist.
Die folgende Abbildung zeigt den zum Zunahmepfad P = s, c, b, t
gehörigen Fluss fP in Nf . Die Kapazität von P ist cf (P ) = 4.

a b
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Es ist leicht zu sehen, dass fP tatsächlich ein Fluss in Nf ist. Durch Ad-
dition der beiden Flüsse f und fP erhalten wir einen Fluss f ′ = f+fP
in N der Größe |f ′| = |f |+ |fP | = |f |+ cf (P ) > |f |.

Fluss f :

a b
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Fluss f ′ = f + fP :
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Nun können wir den Ford-Fulkerson-Algorithmus angeben.

Algorithmus Ford-Fulkerson(V,E, s, t, c)
1 for all (u, v) ∈ E ∪ ER do
2 f(u, v) := 0
3 while es gibt einen Zunahmepfad P in Nf do
4 f := f + fP

Beispiel 3.5. Für den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

a b

s t
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In diesem existiert kein Zunahmepfad mehr. /
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3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatsäch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Nf keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benötigen wir den Begriff des Schnitts.

Definition 3.6. Sei N = (V,E, s, t, c) ein Netzwerk und sei ∅ (
S ( V . Dann heißt die Menge E(S) = {(u, v) ∈ E | u ∈ S, v /∈ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazität eines Schnittes S ist

c(S) =
∑

u∈S,v /∈S
c(u, v).

Ist f ein Fluss in N , so heißt

f(S) =
∑

u∈S,v /∈S
f(u, v)

der Nettofluss (oder einfach Fluss) durch den Schnitt S. Ist
u ∈ S und v /∈ S, so heißt S auch u-v-Schnitt.

Beispiel 3.7. Betrachte folgenden Schnitt S = {s, a, c} in N :

a b

s t

c d
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s t

c d

Dieser Schnitt hat die Kapazität

c(S) = c(a, b) + c(c, d) = 12 + 9 = 21

und der Fluss f durch ihn ist

f(S) = f(a, b) + f(c, b) + f(c, d) + f(s, d)
= 12− 3 + 9− 3
= 15.

Dagegen hat der Schnitt S ′ = {s, a, c, d}

a b

s t

c d
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12/12

9
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1/1

3

a b

s t

c d

die Kapazität

c(S ′) = c(a, b) + c(d, b) + c(d, t) = 12 + 5 + 1 = 18
= f ′(a, b) + f ′(d, b) + f ′(d, t) = f ′(S ′),

die mit dem Fluss f ′ durch S ′ übereinstimmt. /

Lemma 3.8. Für jeden s-t-Schnitt S und jeden Fluss f gilt

|f | = f(S) ≤ c(S).

Beweis. Wir zeigen zuerst die Ungleichung f(S) ≤ c(S). Wegen
f(u, v) ≤ c(u, v) für alle (u, v) ∈ V × V folgt

f(S) =
∑

u∈S,v /∈S
f(u, v) ≤

∑
u∈S,v /∈S

c(u, v) = c(S).

Die Gleichheit |f | = f(S) zeigen wir durch Induktion über k = |S|.
k = 1: In diesem Fall ist S = {s} und somit

|f | =
∑
v

f(s, v) =
∑
v 6=s

f(s, v) = f(S).
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3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

k − 1 ; k: Sei S ein Schnitt mit |S| = k > 1 und sei w ∈ S − {s}.
Betrachte den Schnitt S ′ = S − {w}. Dann gilt

f(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
v/∈S

f(w, v)

und

f(S ′) =
∑

u∈S′,v /∈S′
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
u∈S′

f(u,w).

Daher folgt

f(S)− f(S ′) =
∑
v 6∈S

f(w, v)−
∑
u∈S′

f(u,w) =
∑
v 6=w

f(w, v) = 0.

Nach Induktionsvoraussetzung folgt somit f(S) = f(S ′) = |f |. �

Satz 3.9 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V,E, s, t, c). Dann sind folgende Aussagen äquivalent:
1. f ist maximal, d.h. für jeden Fluss f ′ in N gilt |f ′| ≤ |f |.
2. In Nf existiert kein Zunahmepfad.
3. Es gibt einen s-t-Schnitt S in N mit c(S) = |f |.

Beweis. Die Implikation „1 ⇒ 2“ ist klar, da die Existenz eines Zu-
nahmepfads in Nf zu einer Vergrößerung von f führen würde.
Für die Implikation „2 ⇒ 3“ betrachten wir den Schnitt

S = {u ∈ V | u ist in Nf von s aus erreichbar}.

Da in Nf kein Zunahmepfad existiert, gilt dann
• s ∈ S, t /∈ S und
• cf (u, v) = 0 für alle u ∈ S und v /∈ S.

Wegen cf (u, v) = c(u, v)− f(u, v) folgt somit

|f | = f(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S,v /∈S

c(u, v) = c(S).

Die Implikation „3 ⇒ 1“ ergibt sich aus der Tatsache, dass im Fall
c(S) = |f | für jeden Fluss f ′ die Abschätzung |f ′| = f ′(S) ≤ c(S) =
|f | gilt. �

Der obige Satz gilt auch für Netzwerke mit Kapazitäten in R+.
Sei c0 = c(S) die Kapazität des Schnittes S = {s}. Dann durchläuft
der Ford-Fulkerson-Algorithmus die while-Schleife höchstens c0-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Nf und danach ein
Zunahmepfad in Nf zu berechnen.
Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P ändert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benötigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(c0(n + m)) führt. Da der Wert von c0 jedoch exponentiell in der
Länge der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitäten in R+ kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siehe Übungen).
Bei nebenstehendem Netzwerk benö-
tigt Ford-Fulkerson zur Bestimmung
des Maximalflusses abhängig von der
Wahl der Zunahmepfade zwischen 2
und 211 Schleifendurchläufe.

a

s t

b

210

210

210

210

1

Im günstigsten Fall wird nämlich ausgehend vom Nullfluss f1 zu-
erst der Zunahmepfad P1 = (s, a, t) mit der Kapazität 210 und dann
im Restnetzwerk Nf1 der Pfad P2 = (s, b, t) mit der Kapazität 210

gewählt.
Im ungünstigsten Fall werden abwechselnd die beiden Zunahmepfade
P1 = (s, a, b, t) und P2 = (s, b, a, t) (also Pi = P1 für ungerades i und
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Pi = P2 für gerades i) mit der Kapazität 1 gewählt. Dies führt auf
insgesamt 211 Schleifendurchläufe (siehe nebenstehende Tabelle).
Nicht nur in diesem Beispiel lässt sich die exponentielle Laufzeit wie
folgt vermeiden:
• Man betrachtet nur Zunahmepfade mit einer geeignet gewählten

Mindestkapazität. Dies führt auf eine Laufzeit, die polynomiell in
n, m und log c0 ist (siehe Übungen).
• Man bestimmt in jeder Iteration einen kürzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n + m). Diese
Vorgehensweise führt auf den Edmonds-Karp-Algorithmus, der eine
Laufzeit von O(nm2) hat (unabhängig von der Kapazitätsfunktion).
• Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk Nf ,
der nur Kanten benutzt, die auf einem kürzesten s-t-Pfad in Nf

liegen. Zudem hat g die Eigenschaft, dass g auf jedem kürzesten
s-t-Pfad P mindestens eine Kante e ∈ P sättigt (d.h. der Fluss g(e)
durch e schöpft die Restkapazität cf(e) von e vollkommen aus),
weshalb diese Kante in der nächsten Iteration fehlt. Dies führt auf
den Algorithmus von Dinitz. Da die Länge der kürzesten s-t-Pfade
im Restnetzwerk in jeder Iteration um mindestens 1 zunimmt, liegt
nach spätestens n − 1 Iterationen ein maximaler Fluss vor. Di-
nitz hat gezeigt, dass der Fluss g in Zeit O(nm) bestimmt werden
kann. Folglich hat der Algorithmus von Dinitz eine Laufzeit von
O(n2m). Malhotra, Kumar und Maheswari fanden später einen
O(n2)-Algorithmus zur Bestimmung von g. Damit lässt sich die
Gesamtlaufzeit auf O(n3) verbessern.

3.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus ist eine spezielle Form von Ford-
Fulkerson, die nur Zunahmepfade mit möglichst wenigen Kanten
benutzt, welche mittels Breitensuche bestimmt werden.

i Fluss fPi
in Nfi

neuer Fluss fi+1 in N
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Algorithmus Edmonds-Karp(V,E, s, t, c)
1 for all (u, v) ∈ E ∪ ER do
2 f(u, v) := 0
3 repeat
4 P := zunahmepfad(f)
5 if P 6= ⊥ then addierepfad(f, P )
6 until P = ⊥

Prozedur zunahmepfad(f)

1 for all v ∈ V \ {s} do
2 parent(v) := ⊥
3 parent(s) := s
4 Q := (s)
5 while Q 6= () ∧ parent(t) = ⊥ do
6 u := dequeue(Q)
7 for all e = (u, v) ∈ E ∪ ER do
8 if c(e)− f(e) > 0 ∧ parent(v) = ⊥ then
9 c′(e) := c(e)− f(e)

10 parent(v) := u
11 enqueue(Q, v)
12 if parent(t) = ⊥ then
13 P := ⊥
14 else
15 P := parent-Pfad von s nach t
16 cf (P ) := min{c′(e) | e ∈ P}
17 return P

Prozedur addierepfad(f, P )
1 for all e ∈ P do
2 f(e) := f(e) + cf (P )
3 f(eR) := f(eR)− cf (P )

Die Prozedur zunahmepfad(f) berechnet im Restnetzwerk Nf einen
(gerichteten) s-t-Pfad P , sofern ein solcher existiert. Dies ist genau
dann der Fall, wenn die while-Schleife mit parent(t) 6= ⊥ abbricht.
Der Pfad P lässt sich dann mittels parent wie folgt zurückverfolgen.
Sei

ui =

t, i = 0,
parent(ui−1), i > 0 und ui−1 6= s

und sei ` = min{i ≥ 0 | ui = s}. Dann ist u` = s und P = (u`, . . . , u0)
ein s-t-Pfad, den wir als den parent-Pfad von s nach t bezeichnen.
Satz 3.10. Der Edmonds-Karp-Algorithmus durchläuft die repeat-
Schleife höchstens (nm/2)-mal und hat somit eine Laufzeit von
O(nm2).

Beweis. Sei k die Anzahl der Schleifendurchläufe und seien P1, . . . , Pk
die Zunahmepfade, die der Algorithmus bei Eingabe N berechnet, d.h.
fi+1 = fi + fPi

, wobei f1 der triviale Nullfluss ist. Eine Kante e auf
Pi heißt kritisch für Pi, falls der Fluss fPi

im Restnetzwerk Nfi
die

Kante e sättigt, d.h. fPi
(e) = cfi

(e). Man beachte, dass eine kritische
Kante e für Pi wegen cfi+1(e) = cfi

(e)− fPi
(e) = 0 nicht in Nfi+1 ent-

halten ist, wohl aber die Kante eR, da cfi+1(eR) = c(eR)− fi+1(eR) =
c(eR) + fi+1(e) = c(eR) + c(e) > 0 ist.
Sei di(u, v) die minimale Länge eines Pfades von u nach v im Restnetz-
werk Nfi

und sei li = di(s, t) die Länge von Pi. Wir zeigen zuerst, dass
die Abstände jedes Knotens u ∈ V von s und von t beim Übergang
von Nfi

zu Nfi+1 höchstens zu- aber nicht abnehmen. Hierzu beweisen
wir für jeden kürzesten Pfad P = (u0, . . . , ul) von u0 = s nach ul = u
in Nfi+1 (d.h. di+1(s, uh) = h für h = 0, . . . , l) die Ungleichungen

di(s, uh) ≤ di(s, uh−1) + 1 für h = 1, . . . , l.
Falls die Kante e = (uh−1, uh) auch in Nfi

enthalten ist, ist nichts zu
zeigen. Andernfalls muss fi+1(e) 6= fi(e) sein, d.h. e oder eR müssen
auf Pi liegen. Da e nicht in Nfi

ist, muss eR = (uh, uh−1) auf Pi liegen.
Da Pi ein kürzester Pfad von s nach t in Nfi

ist, folgt di(s, uh−1) =
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di(s, uh)+1, was di(s, uh) = di(s, uh−1)−1 ≤ di(s, uh−1)+1 impliziert.
Nun folgt

di(s, u) ≤ di(s, ul−1) + 1 ≤ · · · ≤ di(s, s) + l = l = di+1(s, u).

Vollkommen analog lässt sich di(u, t) ≤ di+1(u, t) zeigen, womit wir
folgende Behauptung bewiesen haben.
Behauptung 3.11. Für jeden Knoten u ∈ V gilt di(s, u) ≤ di+1(s, u)
und di(u, t) ≤ di+1(u, t).

Daraus ergibt sich nun folgende Behauptung.
Behauptung 3.12. Für 1 ≤ i < j ≤ k gilt: Falls e = (u, v) in Pi
und eR = (v, u) in Pj enthalten ist, so ist lj ≥ li + 2.

Da Pi und Pj kürzeste Zunahmepfade sind, folgt

lj = dj(s, t) = dj(s, v)︸ ︷︷ ︸
≥di(s,v)

+ dj(u, t)︸ ︷︷ ︸
≥di(u,t)

+1 ≥ di(s, v)︸ ︷︷ ︸
di(s,u)+1

+ di(u, t)︸ ︷︷ ︸
di(v,t)+1

+1 = li + 2.

Da jeder Zunahmepfad Pi mindestens eine kritische Kante enthält und
E∪ER höchstens m Kantenpaare der Form {e, eR} enthält, impliziert
schließlich folgende Behauptung, dass k ≤ mn/2 ist.
Behauptung 3.13. Zwei Kanten e und eR sind zusammen höchstens
n/2-mal kritisch.

Seien Pi1 , . . . , Pih , i1 < · · · < ih, die Pfade, für die eine der Kanten in
{e, eR} kritisch ist. Falls e′ ∈ {e, eR} kritisch für Pij mit 1 ≤ j < h ist,
dann verschwindet e′ aus Nfij +1 . Daher muss unabhängig davon, ob e′

oder e′R kritisch für Pij+1 ist, ein Pfad Pj′ mit ij < j′ ≤ ij+1 existieren,
der e′R enthält. Wegen Behauptung 3.11 und Behauptung 3.12 ist
`ij+1 ≥ `j′ ≥ `ij + 2. Daher ist

n− 1 ≥ `ih ≥ `i1 + 2(h− 1) ≥ 1 + 2(h− 1) = 2h− 1,

was h ≤ n/2 impliziert. �

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitäten seine Gültigkeit behält.

3.3 Der Algorithmus von Dinitz

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von höchstens m Zunahmepfaden konstruieren lässt
(siehe Übungen). Es ist nicht bekannt, ob sich solche Pfade in Zeit
O(n+m) bestimmen lassen. Wenn ja, würde dies auf eine Gesamtlauf-
zeit von O(n+m2) führen. Für dichte Netzwerke (d.h. m = Θ(n2))
hat der Algorithmus von Dinitz die gleiche Laufzeit O(n2m) = O(n4)
und die verbesserte Version ist mit O(n3) in diesem Fall sogar noch
schneller.
Die Analyse der Laufzeit des Edmonds-Karp-Algorithmus beruht auf
der Tatsache, dass der Fluss fPi

durch den Zunahmepfad Pi, der in
jedem Schleifendurchlauf auf den aktuellen Fluss fi addiert wird, auf
mindestens einem kürzesten Pfad im Restnetzwerk Nfi

eine Kante
sättigt. Dies hat zur Folge, dass nicht mehr als nm/2 Zunahmepfade
Pi benötigt werden, um einen maximalen Fluss zu erhalten.
Dagegen addiert der Algorithmus von Dinitz in jedem Schleifendurch-
lauf auf den aktuellen Fluss fi einen Fluss gi, der auf jedem kürzesten
Pfad im Restnetzwerk Nfi

mindestens eine Kante sättigt. Wir werden
sehen, dass maximal n− 1 solche Flüsse gi benötigt werden.

Definition 3.14. Ein Fluss g in einem Netzwerk N = (V,E, s, t, c)
sättigt eine Kante e ∈ E, falls g(e) = c(e) ist. g heißt blockierend,
falls g mindestens eine Kante auf jedem Pfad P von s nach t sättigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen s-t-Schnitt S, so dass alle Kanten in E(S) gesättigt sind.
Da jeder Pfad von s nach t mindestens eine Kante in E(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Für die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa
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Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sächlich ist g genau dann ein blockierender Fluss in N , wenn es im
Restnetzwerk Ng keinen Zunahmepfad gibt, der nur aus Vorwärtskan-
ten e ∈ E mit g(e) < c(e) besteht.
Der Algorithmus von Dinitz berechnet anstelle eines kürzesten Zunah-
mepfades P im aktuellen Restnetzwerk Nf einen blockierenden Fluss g
im Schichtnetzwerk N ′f . Dieses enthält nur diejenigen Kanten von Nf ,
die auf einem kürzesten Pfad mit Startknoten s liegen. Zudem werden
aus N ′f alle Knoten u 6= t entfernt, die einen Abstand d(s, u) ≥ d(s, t)
in Nf haben. Der Name rührt daher, dass jeder Knoten in N ′f einer
Schicht Sj zugeordnet wird.

Definition 3.15. Sei N = (V,E, s, t, c) ein Netzwerk. Das zugeordne-
te Schichtnetzwerk ist N ′ = (V ′, E ′, s, t, c′) mit der Knotenmenge
V ′ = S0 ∪ · · · ∪ S` und der Kantenmenge

E ′ =
⋃̀
j=1
{(u, v) ∈ E | u ∈ Sj−1 ∧ v ∈ Sj}

sowie der Kapazitätsfunktion

c′(e) =

c(e), e ∈ E ′,
0, sonst,

wobei ` = 1 + max{d(s, u) < d(s, t) | u ∈ V } und

Sj =

{u ∈ V | d(s, u) = j}, 0 ≤ j ≤ `− 1,
{t}, j = `

ist und d(x, y) die Länge eines kürzesten Pfades von x nach y in N
bezeichnet.

Der Algorithmus von Dinitz arbeitet wie folgt.

Algorithmus Dinitz(N), N = (V,E, s, t, c)
1 for all (u, v) ∈ E ∪ ER do
2 f(u, v) := 0
3 repeat
4 S := schichtnetzwerk(N, f)
5 if S 6= ⊥ then f := f + blockfluss(S)
6 until S = ⊥

Das zum Restnetzwerk Nf = (V,Ef , s, t, cf) gehörige Schicht-
netzwerk S = N ′f = (V ′, E ′f , s, t, c′f) wird von der Prozedur
schichtnetzwerk(N, f) in Zeit O(n+m) berechnet. Für die Berech-
nung eines blockierenden Flusses g im Schichtnetzwerk N ′f werden wir
zwei Algorithmen angeben: Eine Prozedur blockfluss1, deren Lauf-
zeit durch O(nm) und eine Prozedur blockfluss2, deren Laufzeit
durch O(n2) beschränkt ist.
Wir beschreiben zuerst die Prozedur schichtnetzwerk. Diese Pro-
zedur führt in Nf eine modifizierte Breitensuche mit Startknoten s
durch und speichert dabei in der Menge E ′ nicht nur alle Baumkanten,
sondern zusätzlich alle Querkanten (u, v), die auf einem kürzesten Weg
von s zu v liegen. Die Suche bricht ab, sobald t am Kopf der Schlange
erscheint oder alle von s aus erreichbaren Knoten abgearbeitet sind.
Falls t erreicht wurde, werden außer der Senke t alle Knoten u, die
in Nf einen Abstand d(s, u) < d(s, t) von der Quelle s haben, in der
Menge V ′ zusammengefasst. Zudem werden alle Kanten aus E ′ wieder
entfernt, die nicht zwischen zwei Knoten aus V ′ verlaufen.
Wurde dagegen t nicht erreicht, so existiert in Nf (und damit in
N ′f) kein (blockierender) Fluss g mit |g| > 0 und somit auch kein
Zunahmepfad in Nf , d.h. f ist maximal.

28



3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

Prozedur schichtnetzwerk(N, f)
1 E ′ := ∅
2 for all v ∈ V do niv(v) := n
3 niv(s) := 0; Q := (s)
4 while Q 6= () ∧ head(Q) 6= t do
5 u := dequeue(Q)
6 for all e = (u, v) ∈ E ∪ ER do
7 if c(e)− f(e) > 0 ∧ niv(v) > niv(u) then
8 E ′ := E ′ ∪ {e}
9 c′(e) := c(e)− f(e)

10 if niv(v) > niv(u) + 1 then
11 niv(v) := niv(u) + 1
12 enqueue(Q, v)
13 if head(Q) = t then
14 V ′ := {v ∈ V | niv(v) < niv(t)} ∪ {t}
15 E ′ := E ′ ∩ (V ′ × V ′)
16 return (V ′, E ′, s, t, c′)
17 else return ⊥

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in E ∪ER höchstens einmal besucht wird und jeder Besuch mit einem
konstanten Zeitaufwand verbunden ist.
Nun kommen wir zur Beschreibung der Prozedur blockfluss1. Be-
ginnend mit dem Nullfluss g bestimmt diese in der repeat-Schleife
mittels Tiefensuche einen s-t-Pfad P im Schichtnetzwerk N ′f , addiert
den Fluss (f + g)P zum aktuellen Fluss g hinzu, aktualisiert die
Restkapazitäten aller Kanten e auf dem Pfad P und entfernt aus E ′
die von g gesättigten Kanten. Der Pfad P lässt sich hierbei direkt
aus dem Inhalt des Kellers K rekonstruieren, weshalb er K-Pfad
genannt wird. Man beachte, dass die Kapazitäten der Kanten e auf
dem Pfad P nur in Vorwärtsrichtung verkleinert, aber anders als bei
Ford-Fulkerson und Edmonds-Karp nicht auch sofort in Rückwärts-
richtung angepasst werden. Dies geschieht erst, nachdem g zu einem

blockierenden Fluss angewachsen ist.
Falls die Tiefensuche in einem Knoten u 6= s in einer Sackgasse endet
(weil E ′ keine von u aus weiterführenden Kanten enthält), wird die
zuletzt besuchte Kante (u′, u) ebenfalls aus E ′ entfernt und die Tiefen-
suche vom Startpunkt u′ dieser Kante fortgesetzt (back tracking). Die
Prozedur blockfluss1 bricht ab, sobald alle Kanten mit Startknoten
s aus E ′ entfernt wurden und somit in (V ′, E ′) keine Pfade mehr von
s nach t existieren (d.h. g ist ein blockierender Fluss in S).

Prozedur blockfluss1(S), S = (V ′, E ′, s, t, c′)
1 for all e ∈ E ′ ∪ E ′R do g(e) := 0
2 u := s; K := (s)
3 done := false
4 repeat
5 if ∃ e = (u, v) ∈ E ′ then
6 push(K, v)
7 c′′(e) := c′(e)− g(e)
8 u := v
9 elsif u = t then

10 P := K-Pfad von s nach t
11 c′g(P ) := min{c′′(e) | e ∈ P}
12 for all e ∈ P do
13 if c′′(e) = c′g(P ) then E ′ := E ′ \ {e}
14 g(e) := g(e) + c′g(P ); g(eR) := −g(e)
15 u := s; K := (s)
16 elsif u 6= s then
17 pop(K)
18 u′ := top(K)
19 E ′ := E ′ \ {(u′, u)}
20 u := u′

21 else done := true
22 until done
23 return g
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Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus E ′ entfernten Kanten nach spätestens n Schleifen-
durchläufen um 1 erhöht.

Satz 3.16. Der Algorithmus von Dinitz durchläuft die while-Schleife
höchstens (n− 1)-mal.

Beweis. Sei f1 der Nullfluss in N und seien g1, . . . , gk die blockieren-
den Flüsse, die der Dinitz-Algorithmus der Reihe nach berechnet, d.h.
fi+1 = fi + gi. Zudem sei di(u, v) die minimale Länge eines Pfades
von u nach v im Restnetzwerk Nfi

und sei li = di(s, t). Wir zeigen,
dass li < li+1 ist. Da l1 ≥ 1 und lk ≤ n− 1 ist, folgt k ≤ n− 1.
Hierzu beweisen wir zunächst, dass für jeden kürzesten Pfad P =
(u0, . . . , ul) von u0 = s nach ul = u in Nfi+1 (d.h. di+1(s, uh) = h) für
h = 1, . . . , l folgende (Un)gleichungen gelten:

di(s, uh) ≤ di(s, uh−1) + 1, falls (uh−1, uh) ∈ Efi
(3.1)

di(s, uh) = di(s, uh−1)− 1, falls (uh−1, uh) 6∈ Efi
(3.2)

Es ist klar, dass (3.1) gilt, falls die Kante e = (uh−1, uh) auch in Nfi

enthalten ist. Andernfalls ist fi+1(e) 6= fi(e), d.h. gi(e) 6= 0. Da e
nicht in Nfi

und somit auch nicht in N ′fi
enthalten ist, muss eR in

N ′fi
sein. Da N ′fi

nur Kanten auf kürzesten Pfaden mit Startknoten
s enthält, folgt di(s, uh−1) = di(s, uh) + 1, was (3.2) impliziert. Aus
(3.1 + 3.2) folgt

di(s, ul) ≤ di(s, ul−1) + 1 ≤ · · · ≤ di(s, s) + l = l = di+1(s, ul)

und wir haben folgende Behauptung bewiesen.
Behauptung 3.17. Für jeden Knoten u ∈ V gilt di(s, u) ≤
di+1(s, u).

Um nun zu zeigen, dass li < li+1 für i = 1, . . . , k − 1 gilt, sei
P = (u0, u1, . . . , uli+1) ein kürzester Pfad von s = u0 nach t = uli+1

in Nfi+1 (und somit auch in N ′fi+1
). Mit Behauptung 3.17 folgt, dass

di(s, uh) ≤ di+1(s, uh) = h für h = 0, . . . , li+1 ist. Wir unterscheiden
zwei Fälle.
• Wenn alle Knoten uh in N ′fi

enthalten sind, muss ein h mit
di(s, uh) ≤ di(s, uh−1) existieren. Würde nämlich di(s, uh) >
di(s, uh−1) gelten, so wären die Kanten (uh−1, uh) für h = 1, . . . , h
wegen (3.2) in Nfi

enthalten und somit di(s, uh) = di(s, uh−1) + 1.
Dies hätte zur Folge, dass P ein kürzester Pfad von s nach t in Nfi

und somit ein s-t-Pfad in N ′fi
wäre, der von gi nicht blockiert wird.

Da aber gi blockierend ist, muss also ein h mit di(s, uh) ≤ di(s, uh−1)
existieren und es folgt unter Verwendung von (3.1) + 3.2):

li = di(s, t) ≤ di(s, uh) + li+1 − h ≤ di(s, uh−1)︸ ︷︷ ︸
≤di+1(s,uh−1)=h−1

+ li+1 − h < li+1

• Falls mindestens ein Knoten uh nicht in N ′fi
enthalten ist, sei uh der

erste solche Knoten auf P . Da uh 6= t ist, folgt di+1(s, uh) = h < li+1.
Zudem liegt die Kante e = (uh−1, uh) nicht nur in Nfi+1 , sondern
wegen fi+1(e) = fi(e) (da weder e noch eR zu N ′fi

gehören) auch in
Nfi

. Da somit uh−1 in N ′fi
und e in Nfi

ist, kann uh nur aus dem
Grund nicht zu N ′fi

gehören, dass di(s, uh) = di(s, t) ist. Daher folgt
unter Verwendung von (3.1 + 3.2) sowie Behauptung 3.17 auch in
diesem Fall die Ungleichung li < li+1:

li = di(s, t) = di(s, uh) ≤ di(s, uh−1)︸ ︷︷ ︸
≤di+1(s,uh−1)

+1 = di+1(s, uh) < li+1 �

Korollar 3.18. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockfluss1 einen maximalen Fluss in Zeit O(n2m).

Die Prozedur blockfluss2 benötigt nur Zeit O(n2), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N ′f zu berechnen, was auf eine
Gesamtlaufzeit des Algorithmus von Dinitz von O(n3) führt. Zu ihrer
Beschreibung benötigen wir folgende Notation.
Definition 3.19. Sei N = (V,E, s, t, c) ein Netzwerk.
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a) Der Durchsatz eines Knotens u ∈ V ist

D(u) =


c+(u), u = s,

c−(u), u = t,

min{c+(u), c−(u)}, sonst,

wobei c+(u) = ∑
v∈V c(u, v) die Ausgangskapazität und c−(u) =∑

v∈V c(v, u) die Eingangskapazität von u ist.
b) Ein Fluss g in N sättigt einen Knoten u ∈ V , falls
• u = s ist und g alle Kanten (s, v) ∈ E mit Startknoten s sättigt,
oder
• u = t ist und g alle Kanten (v, t) ∈ E mit Zielknoten t sättigt,
oder
• u ∈ V − {s, t} ist und g alle Kanten (u, v) ∈ E mit Startknoten
u oder alle Kanten (v, u) ∈ E mit Zielknoten u sättigt.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 3.20. Wenn ein Fluss g in einem Netzwerk N auf jedem
s-t-Pfad P mindestens einen Knoten u sättigt, dann ist g blockierend.

Beweis. Falls g mindestens einen Knoten u auf dem s-t-Pfad P sättigt,
dann sättigt g auch mindestens eine Kante auf dem Pfad P . �

Beginnend mit dem trivialen Fluss g = 0 berechnet die Prozedur
blockfluss2 für jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N ′f und wählt in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u). Dann benutzt sie die Pro-
zeduren propagierevor und propagiererück, um den aktuellen
Fluss g um den Wert D(u) zu erhöhen und die Restkapazitäten der
betroffenen Kanten sowie die Durchsatzwerte D(v) der betroffenen
Knoten entsprechend zu aktualisieren.

Anschließend werden alle gesättigten Knoten aus V ′ und alle gesättig-
ten Kanten aus E ′ entfernt. Hierzu werden in der Menge B alle Knoten
gespeichert, deren Durchsatz durch die Erhöhungen des Flusses g auf
0 gesunken ist.

Prozedur blockfluss2(S), S = (V ′, E ′, s, t, c′)
1 for all e ∈ E ′ ∪ E ′R do g(e) := 0
2 for all u ∈ V ′ do
3 D+(u) := ∑

(u,v)∈E′ c
′(u, v)

4 D−(u) := ∑
(v,u)∈E′ c

′(v, u)
5 repeat
6 for all u ∈ V ′ \ {s, t} do D(u) := min{D−(u), D+(u)}
7 D(s) := D+(s)
8 D(t) := D−(t)
9 wähle u ∈ V ′ mit D(u) minimal

10 B := {u}
11 propagierevor(u)
12 propagiererück(u)
13 while ∃v ∈ B \ {s, t} do
14 B := B \ {v}; V ′ := V ′ \ {v}
15 for all e = (v, w) ∈ E ′ do
16 D−(w) := D−(w)− c′(v, w)
17 if D−(w) = 0 then B := B ∪ {w}
18 E ′ := E ′ \ {e}
19 for all e = (w, v) ∈ E ′ do
20 D+(w) := D+(w)− c′(w, v)
21 if D+(w) = 0 then B := B ∪ {w}
22 E ′ := E ′ \ {e}
23 until u ∈ {s, t}
24 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesättigt und aus V ′ entfernt wird, wird nach höchstens n− 1 Itera-
tionen einer der beiden Knoten s oder t als Knoten u mit minimalem

31



3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

Durchsatz D(u) gewählt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von t
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesättigt. Nach Proposition 3.20 ist somit g ein blockierender Fluss.
Die Prozeduren propagierevor und propagiererück propagieren
den Fluss durch u in Vorwärtsrichtung hin zu t bzw. in Rückwärts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in E ′ bzw. E ′R. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knotens v ausreicht, um den für
ihn ermittelten Zusatzfluss in Höhe von z(v) weiterzuleiten.

Prozedur propagierevor(u)
1 for all v ∈ V ′ do z(v) := 0
2 z(u) := D(u)
3 Q := (u); R := {u}
4 while Q 6= () do
5 v := dequeue(Q)
6 while z(v) 6= 0 ∧ ∃e = (v, w) ∈ E ′ do
7 if w 6∈ R then enqueue(Q,w)
8 R := R ∪ {w}
9 m := min{z(v), c′(e)}; z(v) := z(v)−m; z(w) := z(w) +m

10 aktualisierekante(e,m)

Prozedur aktualisierekante(e,m), e = (v, w)
1 g(e) := g(e) +m
2 c′(e) := c′(e)−m
3 if c′(e) = 0 then E ′ := E ′ \ {e}
4 D+(v) := D+(v)−m
5 if D+(v) = 0 then B := B ∪ {v}
6 D−(w) := D−(w)−m
7 if D−(w) = 0 then B := B ∪ {w}

Die Prozedur propagiererück unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 6 die Bedingung
∃e = (v, w) ∈ E ′ durch die Bedingung ∃e = (w, v) ∈ E ′ ersetzt wird.
Da die repeat-Schleife von blockfluss2 maximal (n− 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giererück höchstens (n− 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchläufe der inneren while-Schleife von propagierevor, sum-
miert über alle Aufrufe. Da in jedem Durchlauf eine Kante aus E ′
entfernt wird (falls m = c′(v, u) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf höchstens einmal vorkommt, ist a ≤ n2 +m.
Der gesamte Zeitaufwand ist daher O(n2 +m) innerhalb der beiden
while-Schleifen und O(n2) außerhalb. Die gleichen Schranken gelten
für propagiererück.
Eine ähnliche Überlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n2).

Korollar 3.21. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockfluss2 einen maximalen Fluss in Zeit O(n3).

Auf Netzwerken, deren Flüsse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C beschränkt sind, lassen sich noch
bessere Laufzeitschranken für den Dinitz-Algorithmus nachweisen.
Hierzu benötigen wir folgende Beziehungen zwischen einem Netzwerk
und den zugehörigen Restnetzwerken.

Lemma 3.22. Sei N = (V,E, s, t, c) ein Netzwerk, f ein Fluss in N
und Nf das zugehörige Restnetzwerk. Zudem sei h : V × V → Z.

(i) Die Funktion h ist genau dann ein Fluss (bzw. maximaler Fluss)
in Nf , wenn f + h ein Fluss (bzw. maximaler Fluss) in N ist.

(ii) Für jede Kante e ∈ E ∪ ER gilt cf (e) + cf (eR) = c(e) + c(eR).
(iii) Für jeden Knoten u ∈ V \ {s, t} gilt c+

f (u) = c+(u) und
c−f (u) = c−(u) und somit Df (u) = D(u).
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Beweis.
(i) Da f die Antisymmetrie und die Kontinuität erfüllt, übertragen

sich diese Eigenschaften von h auf f +h und umgekehrt. Weiter
gilt

h(u, v) ≤ cf (u, v)︸ ︷︷ ︸
c(u,v)−f(u,v)

⇔ f(u, v) + h(u, v) ≤ c(u, v),

d.h. h erfüllt genau dann die Kapazitätsbedingung in Nf , wenn
f + h sie in N erfüllt. Zudem ist f + h genau dann ein maxi-
maler Fluss in N , wenn h ein maximaler Fluss in Nf ist, da
jeder Fluss h′ in Nf mit |h′| > |h| einen Fluss f + h′ der Größe
|f + h′| > |f + h| in N und jeder Fluss g in N mit |g| > |f + h|
einen Fluss g−f der Größe |g−f | = |g|−|f | > |f+h|−|f | = |h|
in Nf liefern würde.

(ii) Es gilt cf (e)︸ ︷︷ ︸
c(e)−f(e)

+ cf (eR)︸ ︷︷ ︸
c(eR)−f(eR)

= c(e) + c(eR)− (f(e) + f(eR)︸ ︷︷ ︸
=0

).

(iii) Für jeden Knoten u ∈ V \ {s, t} gilt

c+
f (u) =

∑
v∈V

cf (u, v)︸ ︷︷ ︸
c(u,v)−f(u,v)

=
∑
v∈V

c(u, v)︸ ︷︷ ︸
c+(u)

−
∑
v∈V

f(u, v)︸ ︷︷ ︸
=0

.

Die Gleichheit c−f (u) = c−(u) folgt analog. �

Lemma 3.23. Sei F > 0 die maximale Flussgröße in einem Netzwerk
N und sei ` die Länge des zu N gehörigen Schichtnetzwerks N ′.

(i) Falls jeder Knoten u ∈ V \ {s, t} einen Durchsatz D(u) ≤ C in
N hat, gilt ` ≤ 1 + (n− 2)C/F .

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, gilt
` ≤ min{mC/F, 2n

√
C/F}.

Beweis. Sei f ein Fluss der Größe F in N .

(i) Da f für j = 1, . . . , `− 1 durch die nj Knoten der Schicht Sj
von N ′ fließt, von denen jeder einen Durchsatz ≤ C hat, muss

F ≤ njC bzw. F/C ≤ nj

sein, woraus n − 2 ≥ ∑`−1
j=1 nj ≥ (` − 1)F/C bzw. ` ≤

1 + (n− 2)C/F folgt.
(ii) Für j = 1, . . . , `− 1 sei Ej die Menge der Kanten von Schicht

Sj−1 nach Schicht Sj und sei E` die Menge der Kanten von S`−1
nach S` := V − ⋃`−1

j=0 Sj in N . Da der Fluss f für j = 1, . . . , `
durch die mj Kanten in Ej fließt, die alle eine Kapazität ≤ C
haben, muss

F ≤ mjC ≤ C|Sj−1||Sj| bzw. F/C ≤ mj ≤ |Sj−1||Sj|

sein, woraus sofortm ≥ ∑`
j=1 mj ≥ `F/C bzw. ` ≤ mC/F folgt.

Wegen F/C ≤ |Sj−1||Sj| muss zudem Sj−1 oder Sj mindestens√
F/C Knoten enthalten und es folgt

(`/2)
√
F/C ≤ |S0|+ · · ·+ |S`| = n bzw. ` ≤ 2n

√
C/F �

Satz 3.24. Sei k die Anzahl der Schleifendurchläufe des Algorithmus
von Dinitz bei Eingabe eines Netzwerks N = (V,E, s, t, c).

(i) Falls jeder Knoten u ∈ V \ {s, t} einen Durchsatz D(u) ≤ C
hat, so gilt k ≤ 1 + 2(Cn)1/2.

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, so gilt
k ≤ min{(23mC)1/2, (26Cn2)1/3}.

Beweis. Sei F = |f | die Größe eines maximalen Flusses f in N und
seien g1, . . . , gk die blockierenden Flüsse, die der Dinitz-Algorithmus
der Reihe nach im Schichtnetzwerk N ′fi

berechnet, d.h. f1 ist der
Nullfluss in N und fi+1 = fi + gi.
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(i) Da die Anzahl k der Schleifendurchläufe durch F beschränkt ist,
können wir F > (Cn)1/2 annehmen. Betrachte den i-ten Schlei-
fendurchlauf. Da f−fi nach Lemma 3.22(i) ein maximaler Fluss
in Nfi

der Größe Ri = F − |fi| ist und nach Lemma 3.22(iii)
jeder Knoten u ∈ V \ {s, t} in Nfi

den gleichen Durchsatz
wie in N hat, folgt nach Lemma 3.23(i), dass N ′fi

eine Länge
`i ≤ 1 + nC/Ri hat. Damit ist die Anzahl k der Schleifendurch-
läufe durch

k ≤ i+Ri+1 ≤ `i +Ri+1 ≤ Ri+1 + 1 + nC/Ri

beschränkt. Nun wählen wir i so, dass Ri > (Cn)1/2 und
Ri+1 ≤ (Cn)1/2 ist. Dann folgt

k − 1 ≤ Ri+1 + nC/Ri < (Cn)1/2 + nC/(Cn)1/2 = 2(Cn)1/2.

(ii) Wir betrachten wieder den i-ten Schleifendurchlauf. Da jede
Kante e ∈ Efi

nach Lemma 3.22(ii) eine Kapazität cfi
(e) ≤ 2C

hat und f − fi nach Lemma 3.22(i) ein maximaler Fluss in Nfi

ist und die Größe Ri = F − |fi| hat, folgt nach Lemma 3.23(ii),
dass N ′fi

eine Länge `i ≤ 2mC/Ri hat. Damit ist die Anzahl k
der Schleifendurchläufe durch

k ≤ i+Ri+1 ≤ `i +Ri+1 ≤ Ri+1 + 2mC/Ri

beschränkt. Falls F ≤ (2mC)1/2 ist, folgt sofort k ≤ (2mC)1/2.
Andernfalls wählen wählen wir i so, dass Ri > (2mC)1/2 und
Ri+1 ≤ (2mC)1/2 ist. Dann folgt

k ≤ (2mC)1/2 + (2mC)1/2 = (23mC)1/2.

Zudem folgt nach Lemma 3.23(ii), dass N ′fi
eine Länge `i ≤

2n
√

2C/Ri hat. Damit ist die Anzahl k der Schleifendurchläufe
auch durch

k ≤ i+Ri+1 ≤ `i +Ri+1 ≤ Ri+1 + 2n
√

2C/Ri

beschränkt. Falls F ≤ (2n
√

2C)2/3 ist, folgt sofort k ≤
(2n
√

2C)2/3. Andernfalls wählen wir i so, dass Ri > (2n
√

2C)2/3

und Ri+1 ≤ (2n
√

2C)2/3 ist. Dann folgt

k ≤ (2n
√

2C)2/3 + 2n
√

2C/(2n
√

2C)1/3 = (26Cn2)1/3 �

Korollar 3.25. Sei T die Laufzeit des Algorithmus von Dinitz unter
Verwendung von blockfluss1 bei Eingabe von N = (V,E, s, t, c).

(i) Falls jeder Knoten u ∈ V \ {s, t} einen Durchsatz D(u) ≤ C
hat, so gilt T = O((nC +m)

√
Cn).

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, so gilt
T = O(min{(mC)3/2, C4/3n2/3m}).

Beweis. Zunächst folgt mit Lemma 3.22, dass jeder Knoten u (außer
s und t) und jede Kante e in jedem Restnetzwerk Nfi

(und somit
auch in jedem Schichtnetzwerk N ′fi

) einen Durchsatz D(u) ≤ C bzw.
eine Kapazität c(e) ≤ 2C haben.

(i) Jedesmal wenn blockfluss1 einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich der Durchsatz c′′(u) der auf P lie-
genden Knoten u um den Wert c′g(P ) ≥ 1, da der Fluss g durch
diese Knoten um diesen Wert steigt. Daher kann jeder Kno-
ten an maximal C Flusserhöhungen beteiligt sein, bevor sein
Durchsatz auf 0 sinkt. Da somit pro Knoten ein Zeitaufwand
von O(C) für alle erfolgreichen Tiefensuchschritte, die zu einem
s-t-Pfad führen, und zusätzlich pro Kante ein Zeitaufwand von
O(1) für alle nicht erfolgreichen Tiefensuchschritte anfällt, läuft
blockfluss1 in Zeit O(nC +m).

(ii) Jedesmal wenn blockfluss1 einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazität c′′(e) der auf P liegen-
den Kanten e um den Wert c′g(P ) ≥ 1. Da somit pro Kante ein
Zeitaufwand von O(C) für alle erfolgreichen Tiefensuchschritte
und O(1) für alle nicht erfolgreichen Tiefensuchschritte anfällt,
läuft blockfluss1 in Zeit O(mC +m) = O(mC). �
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4 Matchings

Definition 4.1. Sei G = (V,E) ein Graph.
• Zwei Kanten e, e′ ∈ E heißen unabhängig, falls e ∩ e′ = ∅ ist.
• Eine KantenmengeM ⊆ E heißt Matching in G, falls alle Kanten
in M paarweise unabhängig sind.
• Sei M ⊆ E. Ein Knoten v ∈ V heißt M-gebunden, falls v End-
punkt einer Kante e ∈M (also v ∈ ⋃M) ist und sonst M-frei.
• Ein MatchingM heißt perfekt, falls alle Knoten in G M -gebunden
sind (also V = ⋃

M ist).
• Die Matchingzahl von G ist

µ(G) = max{|M | | M ist ein Matching in G}

• Ein Matching M heißt maximal (engl. maximum), falls |M | =
µ(G) ist. M heißt gesättigt (engl. maximal), falls es in keinem
größeren Matching enthalten ist.

Offensichtlich ist M ⊆ E genau dann ein Matching, wenn |⋃M | =
2|M | ist. Das Ziel besteht nun darin, ein maximales Matching M in
einem gegebenen Graphen G zu finden.

Beispiel 4.2. Ein gesättigtes Matching muss nicht maximal sein:

v

u

x

w

v

u

x

w

M = {{v, w}} ist gesättigt, da es sich nicht erweitern lässt. M ist
jedoch kein maximales Matching, da M ′ = {{v, x}, {u,w}} größer ist.

Die Greedy-Methode, ausgehend von M = ∅ solange Kanten zu M
hinzuzufügen, bis sich M nicht mehr zu einem größeren Matching
erweitern lässt, funktioniert also nicht.

Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhält man aus Korollar 3.25 das folgende Resultat.
Satz 4.3. In einem bipartiten Graphen G = (A,B,E) lässt sich ein
maximales Matching in Zeit O(m

√
n) bestimmen.

Beweis. Konstruiere zu G das Netzwerk N = (V,E ′, s, t, c) mit den
Knoten V = A ∪B ∪ {s, t} und den Kanten

E ′ = ({s} × A) ∪
{

(u, v) ∈ A×B
∣∣∣ {u, v} ∈ E} ∪ (B × {t}),

die alle Kapazität 1 haben. Es ist leicht zu sehen, dass sich aus jedem
Matching M in G ein Fluss f in N konstruieren lässt mit |M | = |f |
und umgekehrt. Es genügt also, einen maximalen Fluss in N zu finden.
Nach Korollar 3.25 ist dies mit dem Algorithmus von Dinitz unter
Einsatz von blockfluss1 in Zeit O(m

√
n) möglich, da der Durchsatz

aller Knoten (außer s und t) durch 1 beschränkt ist. �

In den Übungen wird gezeigt, dass sich die Laufzeit durch eine ver-
besserte Analyse sogar durch O(m√µ) begrenzen lässt.
Die Konstruktion aus Satz 4.3 lässt sich nicht ohne Weiteres auf
Graphen verallgemeinern, die nicht bipartit sind. Wir werden jedoch
sehen, dass sich manche bei den Flussalgorithmen verwendete Ideen
auch für Matchingalgorithmen einsetzen lassen. So lassen sich Mat-
chings, die nicht maximal sind, ähnlich vergrößern wie dies bei nicht
maximalen Flüssen durch einen Zunahmepfad möglich ist.
Definition 4.4. Sei G = (V,E) ein Graph und sei M ein Matching
in G.
1. Ein Pfad P = (u0, . . . , ul) in G der Länge l ≥ 1 heißt M-alter-

nierend, falls für i = 1, . . . , l − 1 gilt:

ei = {ui−1, ui} ∈M ⇔ ei+1 = {ui, ui+1} 6∈M.
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2. Ein Kreis C = (u1, . . . , ul, u1) in G heißt M-alternierend, falls
der Pfad P = (u1, . . . , ul) M-alternierend ist und zudem gilt:

{u1, u2} ∈M ⇔ {u1, ul} 6∈M.

3. Ein M-alternierender Pfad P = (u0, . . . , ul) heißt M-ver-
größernder Pfad (oder einfach M-Pfad), falls beide Endpunkte
von P M-frei sind.

Satz 4.5. Ein Matching M in G ist genau dann maximal, wenn es
keinen M-Pfad in G gibt.

Beweis. Ist P = (u0, . . . , ul) ein M -Pfad, so liefert M ′ = M 4E(P )
ein Matching der Größe |M ′| = |M | + 1 in G. Hierbei ist E(P ) =
{{ui−1, ui} | i = 1, . . . , l} die Menge aller Kanten auf P .
Ist dagegen M nicht maximal und M ′ ein größeres Matching, so
betrachten wir die Kantenmenge M 4M ′. Da jeder Knoten in dem
Graphen G′ = (V,M 4M ′) höchstens den Grad 2 hat, lässt sich G′
in disjunkte Kreise und Pfade zerlegen. Da diese Kreise und Pfade
M -alternierend sind, und M ′ größer als M ist, muss mindestens einer
dieser Pfade ein M -Pfad sein. �

Damit haben wir das Problem, ein maximales Matching in einem
Graphen G zu finden, auf das Problem reduziert, zu einem Matching
M in G einen M -Pfad zu finden (sofern ein solcher existiert).

4.1 Der Algorithmus von Edmonds

Sei G ein Graph ohne isolierte Knoten und sei M ein Matching in G.
Der Algorithmus von Edmonds benutzt die Prozedur FindePfad, um
einen M -Pfad in G zu finden, falls das aktuelle Matching M nicht
bereits maximal ist. Da M nicht mehr als n/2 Kanten enthalten kann,
muss diese Prozedur höchstens (n/2 + 1)-mal aufgerufen werden, um
ausgehend von M = ∅ ein maximales Matching in G zu berechnen.

Prozedur FindePfad(G,M), G = (V,E)
1 Q := ∅
2 for all u ∈ V do
3 parent(u) := ⊥
4 if ∃e ∈M : u ∈ e then
5 zustand(u) := unerreicht
6 else
7 zustand(u) := gerade
8 root(u) := u
9 Q := Q ∪ {(u, v) | {u, v} ∈ E}

10 while Q 6= ∅ do
11 entferne eine Kante (u, v) aus Q
12 if zustand(v) = unerreicht then
13 parent(v) := u
14 zustand(v) := ungerade
15 parent(M(v)) := v
16 zustand(M(v)) := gerade
17 root(M(v)) := root(v) := root(u)
18 Q := Q ∪ {(M(v), w) | {M(v), w} ∈ E \M}
19 if zustand(v) = gerade then
20 if root(u) = root(v) then // Blüte gefunden
21 kontrahiere die Blüte C zu ihrer Basis b und,
22 speichere den Kreis C unter der Basis b ab
23 füge alle Kanten (b, a) zu Q hinzu, so dass a 6∈ C ist
24 und ein ungerader Knoten c ∈ C mit {c, a} ∈ E existiert
25 else // M -Pfad gefunden
26 setze die parent-Pfade Pu und Pv von u und v mit Hilfe
27 der Kante {u, v} zu einem ru-rv-Pfad P zusammen
28 und expandiere P zu einem M -Pfad P ′ in G
29 return P ′

30 return ⊥

Die Prozedur FindePfad sucht wie folgt nach einem M -Pfad in G.
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Jeder Knoten u hat einen von 3 Zuständen: gerade, ungerade oder
unerreicht. Zu Beginn sind alle M -freien Knoten gerade und alle
M -gebundenen Knoten unerreicht. Dann wird ausgehend von den
M -freien Knoten als Wurzeln ein Suchwald W in G aufgebaut, indem
ausgehend von den geraden Knoten u eine Kante zu einem unerreich-
ten oder ebenfalls geraden Knoten v besucht wird. Kanten von u zu
ungeraden Knoten werden also ignoriert.
Ist v unerreicht, so wird der aktuelle Suchwald W nicht nur um die
Kante {u, v}, sondern auch um die Matching-Kante {v,M(v)} erwei-
tert, wobei M(v) der Matchingpartner von v ist. Zudem wechselt der
Zustand von v von unerreicht zu ungerade und der von M(v) von
unerreicht zu gerade. Somit erhält jeder erreichte Knoten v genau
dann den Zustand gerade, wenn der Pfad inW von v zu seiner Wurzel
rv eine gerade Länge hat. Um diesen Wurzelpfad effizient berechnen
zu können, wird die Funktion parent benutzt.
Ist v dagegen wie u gerade, so gibt es zwei Unterfälle. Haben u und
v verschiedene Wurzeln ru 6= rv, so lassen sich die beiden parent-
Pfade Pu von u und Pv von v mit Hilfe der Kante {u, v} zu einem
Pfad P zusammensetzen, der die beiden M -freien Wurzeln ru und rv
verbindet. Da bis zum Auffinden von P möglicherweise Kontraktionen
stattgefunden haben (siehe unten), muss P evtl. noch expandiert
werden, um einen M -Pfad P ′ in G zu erhalten.
Im Fall ru = rv befinden sich die beiden Knoten u und v im gleichen
Suchbaum von W . Sei b der erste Knoten auf dem parent-Pfad Pu
von u, der auch auf dem parent-Pfad Pv von v liegt. Da b (mindes-
tens) 2 Kinder hat und ungerade Knoten nur ein Kind in W haben,
muss b gerade sein. Da auch u und v gerade sind, haben sie auf Pu
bzw. Pv einen geraden Abstand zu b. Die Teilpfade von Pu und Pv mit
Endpunkt b und die Kante {u, v} bilden also einen Kreis C ungerader
Länge, der als Blüte mit der Basis b bezeichnet wird.
Zwar führt das Auffinden einer Blüte C nicht direkt zu einem M -Pfad.
Sie bedeutet dennoch einen Fortschritt, da sich G durch die Kontrak-

tion von C zu ihrer Basis b verkleinern lässt. In dem kontrahierten
Graphen GC erbt b die Nachbarschaften aller Knoten in C zu den
Knoten außerhalb von C. Entfernen wir aus M alle Kanten, die auf
dem Kreis C liegen, so erhalten wir ein Matching MC in GC . Das
folgende Lemma zeigt, dass aus jedem MC-Pfad in GC ein M -Pfad in
G konstruiert werden kann.

Lemma 4.6. Sei C eine Blüte in G mit Basis b. Dann lässt sich
jeder MC-Pfad P in GC zu einem M-Pfad P ′ in G expandieren.

Beweis. Falls P nicht schon selbst ein M -Pfad in G ist, muss P eine
Kante e enthalten, die in G fehlt. Da durch die Kontraktion von C zu
b in GC nur solche Kanten neu entstehen, die die Basis b mit einem
Knoten a 6= M(b) außerhalb der Blüte C verbinden, muss e die Form
e = {a, b} haben. Zudem muss a in G einen Nachbarn c 6= b innnerhalb
von C haben. Von c aus führen im Kreis C genau zwei Pfade zur Basis
b, wovon genau einer den Knoten c über eine Matchingkante verlässt
(also eine gerade Länge hat). Indem wir diesem Pfad die Kante {a, c}
hinzufügen, erhalten wir einen M -alternierenden a-b-Pfad P ′′ in G,
d.h. wir können P zu einem M -Pfad P ′ in G expandieren, indem wir
die Kante {a, b} durch den a-b-Pfad P ′′ ersetzen. �

Da sich die Anzahl der Knoten von G bei jeder Kontraktion einer
Blüte mindestens um 2 verringert, kann die Prozedur FindePfad
höchstens n/2 Blüten kontrahieren. Bei Verwendung entsprechender
Datenstrukturen zur Verwaltung der Blüten lässt sich die Prozedur
FindePfad in Zeit O(m) implementieren, was auf eine Gesamtlaufzeit
von O(nm) für den Algorithmus von Edmonds führt.
Tatsächlich lässt sich die Laufzeit noch auf O(m√µ) verringern. Dazu
berechnet man ähnlich wie beim Algorithmus von Dinitz im bipartiten
Fall pro Runde nicht nur einen M -Pfad, sondern in Zeit O(m) eine
maximale Menge knotendisjunkter M -Pfade, die alle eine minimale
Länge haben. Dann kann man wieder zeigen, dass O(√µ) solcher
Runden ausreichen, um ein maximales Matching zu finden. Diese
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Strategie führt auf den Hopcroft-Karp-Algorithmus im bipartiten
Fall und auf den Algorithmus von Micali und Vazirani für beliebige
Graphen.
Für den Beweis der Korrektheit des Edmonds-Algorithmus (genauer:
zum Nachweis der Maximalität des berechneten Matchings M) be-
nötigen wir den Begriff der Odd Set Cover (OSC). Es ist leicht zu
sehen, dass für jedes Matching M in einem Graphen G = (V,E) und
jede Knotenüberdeckung C ⊆ V in G die Ungleichung |M | ≤ |C| gilt.
Wir werden sehen, dass es in bipartiten Graphen sogar ein Matching
M und eine Knotenüberdeckung C mit |M | = |C| gibt. Die Angabe
einer Knotenüberdeckung C mit |C| = |M | bietet also eine einfache
Möglichkeit, die Maximalität von M nachzuweisen. Dies geht jedoch
nicht in allen Graphen, da z.B. der K4 nur Matchings der Größe ≤ 2
und Knotenüberdeckungen der Größe ≥ 3 hat.

Definition 4.7. Sei G = (V,E) ein Graph. Eine Menge S =
{v1, . . . , vk, V1, . . . , V`} von Knoten v1, . . . , vk ∈ V und Teilmengen
V1, . . . , V` ⊆ V heißt OSC (engl. odd set cover) in G, falls
• es für jede Kante e ∈ E einen Knoten vi ∈ S mit vi ∈ e oder eine
Menge Vj ∈ S mit e ⊆ Vj gibt und
• alle Mengen Vj ∈ S eine ungerade Größe nj = |Vj| haben.
Das Gewicht von S ist w(S) = k +∑`

j=1(nj − 1)/2.

Im Fall ` = 0 ist S = {v1, . . . , vk} also eine Knotenüberdeckung in G
(oder kurz VC für engl. vertex cover).

Beispiel 4.8. Der K4 hat auf der Knotenmenge V = {1, . . . , 4} eine
OSC S = {1, {2, 3, 4}} vom Gewicht w(S) = 1 + (3− 1)/2 = 2.

Lemma 4.9. Für jedes Matching M in einem Graphen G = (V,E)
und jede OSC S = {v1, . . . , vk, V1, . . . , V`} in G gilt |M | ≤ w(S).

Beweis. M kann für jeden Knoten vi ∈ S höchstens eine Kante e mit
vi ∈ e und für jede Menge Vj ∈ S höchstens (nj− 1)/2 Kanten e ⊆ Vj
enthalten. �

Satz 4.10. Falls M ein Matching für G ist und FindePfad(G,M)
keinen M-Pfad findet (also ⊥ zurückgibt), dann ist M maximal.

Beweis. Um eine OSC S für G mit w(S) = |M | zu finden, analysieren
wir die Struktur des bei der erfolglosen Suche nach einem M -Pfad
generierten Suchwalds W = (VW , EW ).
Sei V0 ⊆ VW die Menge der geraden und V1 = {u1, . . . , uk} ⊆ VW die
Menge der ungeraden Knoten in W . Weiter seien b1, . . . , b` ∈ V0 die
Knoten in W , zu denen die gefundenen Blüten kontrahiert wurden,
und für j = 1, . . . , ` sei Cj ⊆ V die Menge aller Knoten, die zu bj
kontrahiert wurden (d.h. von den Knoten in Cj ist nur noch bj in
VW vorhanden). Zudem sei V2 = V0 ∪ C1 ∪ · · · ∪ C` ⊆ V die Menge
aller geraden und zu einem geraden Knoten kontrahierten Knoten
und Vu = V \ (V1 ∪ V2) sei die Menge der unerreichten Knoten.
Zunächst überlegen wir uns, dass es in E keine Kante {u, v} zwischen
V2 und Vu geben kann. Dies liegt daran, dass der Algorithmus im Fall
u ∈ V2 eine Kante (u′, v) mit u′ ∈ V2 (wobei u′ = u ist oder u′ zur
selben Menge Cj wie u gehört) zu Q hinzufügen und somit v nach
dem Entfernen der Kante (u′, v) aus Q ungerade werden würde.
Zudem muss jede Kante e ∈ E, die beide Endpunkte in V2 hat, in einer
der Mengen Ci liegen, da sonst EW eine Kante {u, v} mit u, v ∈ V0
enthalten würde, die nach dem Entfernen aus Q entweder zu einer
weiteren Blüte oder zu einem M -Pfad führen würde.
Folglich muss jede Kante e ∈ E entweder
• einen ungeraden Endpunkt haben (d.h. e ∩ V1 6= ∅) oder
• komplett in einer Menge Cj liegen (d.h. ∃j : e ∈ Cj) oder
• zwei unerreichte Knoten verbinden (d.h. e ⊆ Vu).
Daher können wir wie folgt eine OSC S für G konstruieren. Wir
fügen alle ungeraden Knoten u1, . . . , uk und alle Mengen C1, . . . , C`
zu S hinzu. Man beachte, dass die Mengen Cj eine ungerade Größe
nj = |Cj| haben, da Cj durch eine Folge von Kontraktionen auf die
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Menge {bj} verkleinert wird und bei jeder solchen Kontraktion gerade
viele Knoten aus Cj verschwinden.
Zudem fügen wir im Fall, dass Vu 6= ∅ ist, einen beliebigen Knoten
u0 ∈ Vu als Einzelknoten und im Fall, dass |Vu| > 2 ist, auch noch
die Menge C0 = Vu \ {u0} zu S hinzu. Man beachte, dass |Vu| gerade
und somit n0 = |C0| ungerade ist, da alle Knoten in Vu durch eine
Matchingkante e ⊆ Vu gebunden sind.
Dann ist S eine OSC für G, da jede Kante e ∈ E entweder einen End-
punkt in S hat oder von einer der Mengen Cj ∈ S überdeckt wird. Zu-
dem ist w(S) = |M |, da sich M in |S| Mengen Mi = {e ∈M | ui ∈ e}
und M ′

j = {e ∈ M | e ⊆ Cj} zerlegen lässt mit |Mi| = 1 und
|M ′

j| = (nj − 1)/2. �

Der Algorithmus von Edmonds lässt sich leicht dahingehend modifizie-
ren, dass er zusammen mit dem berechneten Matching M eine OSC
S mit w(S) = |M | zum Nachweis der Maximalität von M ausgibt.

Korollar 4.11. Für jeden Graphen G gilt

µ(G) = min{w(S) | S ist eine OSC in G}.

Korollar 4.12 (Satz von König). Für bipartite Graphen G gilt

µ(G) = min{|C| | C ist eine Knotenüberdeckung in G}.

Zudem lässt sich eine (kleinste) Knotenüberdeckung C der Größe
|C| = µ(G) in Zeit O(m

√
µ(G)) berechnen.

Beweis. Sei G = (A,B,E) und sei W = (VW , EW ) der Suchwald zum
Zeitpunkt, wenn der Algorithmus von Edmonds die Suche nach einem
M -Pfad erfolglos abbricht. Da G bipartit ist, werden keine Blüten
gefunden. Daher hat jede Kante e ∈ E entweder einen ungeraden
Endpunkt oder ist in Vu enthalten und somit einen Endpunkt in
Vu ∩ A. Folglich ist C = V1 ∪ (Vu ∩ A) eine VC für G. Zudem gilt
|C| = |M |, da jede Matchingkante genau einen Endpunkt in C hat.

Wir berechnen zuerst in Zeit O(m√µ) mit dem Algorithmus von
Dinitz ein maximales Matching M für G, starten danach die Prozedur
FindePfad(G,M) zum Aufbau des Suchwalds W in Zeit O(n+m)
und geben C aus. �
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5 Baum- und Pfadweite

Definition 5.1. Sei G = (V,E) ein Graph.
a) Eine Baumzerlegung (kurz TD für tree decomposition) von G

ist ein Tripel (VT , ET , X), wobei T = (VT , ET ) ein Baum ist und
X : VT → P(V ) \ {∅} die folgenden 3 Eigenschaften erfüllt (für
(VT , ET , X) schreiben wir meist (T,X) und für X(t) meist Xt).
• Es gilt V =

⋃
t∈VT

Xt (die Mengen Xt ⊆ V heißen Taschen).
• Für jede Kante e ∈ E gibt es eine Tasche Xt mit e ⊆ Xt.
• Für jeden Knoten u ∈ V ist der induzierte Teilgraph T [X−1(u)]
von T zusammenhängend (also ein Teilbaum), wobei X−1(u) =
{t ∈ VT | u ∈ Xt} ist.

b) Die Weite von (T,X) ist w(T,X) = maxt∈VT
|Xt| − 1.

c) Die Baumweite tw(G) von G ist die kleinste Weite aller mögli-
chen Baumzerlegungen von G.

d) Eine Baumzerlegung (T,X) von G heißt Pfadzerlegung (kurz
PD für path decomposition), wenn T ein Pfad ist. Die Pfadweite
pw(G) von G ist die kleinste Weite aller möglichen Pfadzerlegungen
von G.

e) TW(k) := {G | tw(G) ≤ k} und PW(k) := {G | pw(G) ≤ k}.

Beispiel 5.2. (i) Der leere Graph En = (V, ∅) hat Baum- und
Pfadweite tw(En) = pw(En) = 0. Wir generieren für jeden
Knoten u ∈ V eine Tasche Xu = {u}, die nur diesen Knoten
enthält, und verbinden diese Taschen in beliebiger Reihenfolge
zu einem Pfad. Umgekehrt muss die Kantenmenge jedes Gra-
phen G mit tw(G) = 0 leer sein, da jede Tasche nur einen
Knoten enthält, d.h. TW(0) besteht aus allen leeren Graphen.

(ii) Jeder Baum G = (V,E) hat eine Baumweite tw(G) ≤ 1. Z.B.
hat die TD (T,X) mit VT = E ∪

{
{u}

∣∣∣ u ∈ V }, Xt = t für
t ∈ VT und ET = {{s, t} | s ⊂ t} die Weite w(T,X) ≤ 1.

(iii) Folgender Graph G hat eine Baumzerlegung (T,X) der Weite
2:

G: a b c

d e

f g h

T : ab
d

dbg
b
g e

bc
e

d
fg

e
gh

Der Baum T = ({1, . . . , 6}, ET ) verbindet die Taschen X1 =
{a, b, d}, X2 = {b, d, g}, X3 = {b, e, g}, X4 = {b, e, c}, X5 =
{e, g, h}, X6 = {d, f, g} durch die 5 Kanten {1, 2}, {2, 3},
{3, 4}, {3, 5} und {2, 6}.

(iv) Für den Gittergraphen Gk×` mit k` Knoten gilt

tw(Gk×`) ≤ pw(Gk×`) ≤ min{k, `}.

Der Graph G5×4 hat bspw. folgende Pfadzerlegung der Weite 4:

a b c d

e f g h

i j k l
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q r s t
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40


	1 Graphentheoretische Grundlagen
	2 Färben von Graphen
	2.1 Färben von planaren Graphen
	2.2 Färben von chordalen Graphen
	2.3 Der Satz von Brooks
	2.4 Kantenfärbungen

	3 Flüsse in Netzwerken
	3.1 Der Ford-Fulkerson-Algorithmus
	3.2 Der Edmonds-Karp-Algorithmus
	3.3 Der Algorithmus von Dinitz

	4 Matchings
	4.1 Der Algorithmus von Edmonds

	5 Baum- und Pfadweite

