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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (g) = {{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u €V | {u,v} € E}.
b) Der Grad von v ist degs(v) = |Ng(v)].

¢) Der Minimalgrad von G ist §(G) = min,ey degs(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

d) Jeder Knoten u € V vom Grad <1 heifit Blatt und die ibrigen
Knoten (vom Grad > 2) heiffen innere Knoten von G.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 1.2.

e Der vollstindige Graph (V, E) auf n Knoten, d.h. |V| =n und
E = (V wird mit K, und der leere Graph (V,0) auf n Knoten

2/
“

wird mit E,, bezeichnet.

Kl:. KQ:._. Ks: i Ky

e Der vollstidndige bipartite Graph (A, B, E) auf a + b Knoten,
dh. ANB=0, |Al =a, |B|=bund E = {{u,v} |u e Av e B}

wird mit Kqp bezeichnet.

Kl,l:._. KLQ: < KQ’Q: X K273: g K3732 %

o Der Pfad mit n Knoten wird mit P, bezeichnet.

P2: *—o P3 *—o—o P4: *—o—o—0 P5 [ ®

o Der Kreis mit n Knoten wird mit C,, bezeichnet.

Cs: A Cy: Cs: Q Co: O

Definition 1.3. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge U C 'V heifit unabhidngig oder stabil, wenn
es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
EN (%) = 0. Die Stabilitéitszahl ist

a(G) =max{|U| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V heifit Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die Cli-
quenzahl ist

w(G) = max{|U| | U ist Clique in G}.

c) Ein Graph G' = (V', E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Im Fall V' =V wird G' auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben fiir
G’ auch G — E" (bzw. G = G'"UE" ), wobei E" = E—E' die Menge
der aus G entfernten Kanten ist. Im Fall E" = {e} schreiben wir

fir G" auch einfach G — e (bzw. G =G Ue).
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d) Ein k-reguldrer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-reguldrer Graph G heif§t k-
faktorisierbar, wenn sich G in | = d/k kantendisjunkte k-
Faktoren G+, ..., Gy zerlegen ldsst.

e) Ein Subgraph G' = (V', E') heifit (durch V') induziert, falls
EF' =FEn (‘;/) ist. Fir G' schreiben wir dann auch G[V'] oder
G — V" wobei V' =V — V' die Menge der aus G entfernten
Knoten ist. Ist V" = {v}, so schreiben wir fir G' auch einfach
G — v und im Fall V' ={vy,..., vt} auch Gluy, ... vg.

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vo, ...,v; mit {v;,vi1} € E furi=0,...,¢ — 1. Die Lange
des Weges ist die Anzahl der durchlaufenen Kanten, also £. Im
Fall ¢ = 0 heifst der Weg trivial. Ein Weg (vo, ..., ve) heifst auch
vo-ve- Weg.

g) G heifit zusammenhéngend, falls es fiir alle Paare {u,v} € (g)
einen u-v-Weg gibt.

h) Die durch die Aquivalenzklassen V; C V' der Relation

Z ={(u,v) e Vx V| esgibtin G einen u-v-Weg}

induzierten Teilgraphen G|V;] heiffen Zusammenhangskompo-
nenten (engl. connected components) oder einfach Komponen-
ten von G.

i) Fin u-v-Weg heifst einfach oder u-v-Pfad, falls alle durchlaufe-
nen Knoten verschieden sind.

j) Ein Zyklus ist ein u-v-Weg mit u = v.

k) Eine Menge von Pfaden heifst disjunkt, wenn je zwei Pfade in der
Menge keine gemeinsamen Knoten haben, kantendisjunkt, wenn
je zwei Pfade in der Menge keine gemeinsamen Kanten haben,
und knotendisjunkt, wenn je zwei Pfade in der Menge héchstens
gemeinsame Endpunkte haben.

) Ein Kreis ist ein Zyklus (vy ...,vs,v1) der Linge € > 3, fir den
v1,...,Vp paarweise verschieden sind.

m) Ein Graph heifit kreisfrei, azyklisch oder Wald, falls er keinen
Kreis enthdlt. Ein Baum ist ein zusammenhdngender Wald.

Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V, E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EQVXV:{(u,v)]u,UEV},

wobei E auch Schlingen (u,u) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={u €V | (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) = {u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg’ (v) = |[N*(v)| und der Ein-
gangsgrad von v ist deg” (v) = |[N~(v)|. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wvo-ve-Weg ist eine Folge wvon Knoten
Vo, -+ -, Up mit (v;,v41) €EF firi=0,...,0—1.

f) FEin (gerichteter) Zyklus ist ein gerichteter u-v-Weg mit u = v.

g) FEin gerichteter Weg heifit einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G st ein gerichteter Zyklus
(v1...,v0,v1) der Linge ¢ > 1, fir den vy, ..., v, paarweise ver-
schieden sind.

i) G heifst kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heifit stark zusammenhéngend, wenn es in G fir jedes Kno-
tenpaar u # v € V sowohl einen u-v-Pfad als auch einen v-u-Pfad
qibt.

k) G heifit gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v € V Fingangsgrad deg™ (v) <1 hat.
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) Ein Knoten w € V' vom Eingangsgrad deg™ (w) = 0 heifft Wurzel
von G, und ein Knoten u € V vom Ausgangsgrad deg™ (u) = 0
heifit Blatt von G.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G' = (V, E') mit
(geordneter) Knotenmenge V' = {vy,...,v,} ist die (n x n)-Matrix
A = (a;j) mit den Eintrégen

1 iy Ug E 17 iy Uj E
%:{, {fvooyeE | %:{ (vi,v5) €

0, sonst 0, sonst.

Fir ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
a; =0fire=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgénger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch andert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.

Betrachte den gerichteten Graphen G = (V, E) @ 3)
mit V. = {1,2,3,4} und E = {(2,3),
(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende ONe

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

|

~3[ {4l
~U el ]
(4[]

O = O O
S O O O
O O~ OlWw
—= o= = O

= W N =

T

2 Farben von Graphen

Definition 2.1. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifst k-farbbar, falls eine Farbung f: V — {1,...,k} exis-
tiert.

¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 2.2.

X(En) =1, X(Kmm) =2, x(K,) =n,

2, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste k& > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 2.3. k-COLORING ist fiir k > 3 NP-vollstindig.

Das folgende Lemma setzt die chromatische Zahl x(G) in Beziehung
zur Stabilitatszahl o(G).

Lemma 2.4. n/a(G) < x(G) <n—a(G) + 1.
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Beweis. Sei G ein Graph und sei ¢ eine x(G)-Farbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil
sind, folgt |5;| < a(G) und somit gilt

x(G)
n= Y15 < x(G)a(@).

i=1

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge

in G mit |S| = a(G). Dann ist G — S k-farbbar fir ein k£ < n — |5].

Da wir alle Knoten in S mit der Farbe k 4 1 farben konnen, folgt
XG)<k+1<n-alG)+1. |

Beide Abschéatzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 2.5. (X(f)> < m und somit X(G) < 1y + /2m + 1/,.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. [ ]

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl w(G)
und zum Maximalgrad A(G):

Lemma 2.6. w(G) < x(G) < A(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal groflen Clique unterschiedliche Farben erhalten miissen.

Um die zweite Ungleichung zu erhalten, betrachten wir folgenden
Farbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V, E) mit V ={vy,...,v,}
2 c(v) =1

3 for i:=2tondo

A F,={c(v;) | j < i,v;€ N(v;)}

5 c(v;) :==min{k > 1|k & F;}

2.1 Féarben von planaren Graphen

Da fiir die Farbe c(v;) von v; nur |F;| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. [ ]

2.1 Farben von planaren Graphen

Ein Graph G heiit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien (genauer: Jordankurven) zwischen den
zugehorigen Endpunkten dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich lasst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lénder, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis®. Ubrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfidlle Computer bendtigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-fdarbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lésst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n') gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen
einfacheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deut-
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lich schnelleren O(n?) Algorithmus liefert, aber ebenfalls nur mit
Computer-Unterstiitzung verifizierbar ist.

Beispiel 2.8. Wie die folgenden Einbettungen von Ky und K3 in
die Ebene zeigen, sind Ky und Ky 3 planar.

Ky: Kag3:

N

Zur Beantwortung der Frage, ob auch K5 und K33 planar sind, be-
trachten wir die Gebiete, die bei der Einbettung von (zusammen-
héngenden) Graphen in die Ebene entstehen. Dabei gehéren 2 Punkte
zum selben Gebiet, falls es zwischen ihnen eine Verbindungslinie gibt,
die keine Kante des eingebetten Graphen kreuzt oder beriithrt. Nur
eines dieser Gebiete ist unbeschrankt und dieses wird als duBeres
Gebiet bezeichnet. Die Anzahl der Gebiete von G bezeichnen wir
mit r(G) oder kurz mit r. Die begrenzenden Kanten eines Gebie-
tes g bilden seinen Rand rand(g). Ihre Anzahl bezeichnen wir mit
d(g), wobei Kanten {u,v}, an die g von beiden Seiten grenzt, doppelt
gezahlt werden.

Der Rand rand(g) eines Gebiets g ist die (zirkuldre) Folge aller Kan-
ten, die an g grenzen, wobei man jede Kante so durchléuft, dass g ,in
Fahrtrichtung links“ liegt bzw. jeden Knoten u, den man tiber eine
Kante e erreicht, tiber die im Uhrzeigersinn nachste Kante e’ wieder
verlasst. Auf diese Weise erhélt jede Kante auf dem Rand von g eine
Richtung (oder Orientierung).

Da jede Kante zur Gesamtlinge >, d(g) aller Rénder den Wert 2
beitriagt (sie wird genau einmal in jeder Richtung durchlaufen), folgt

Z d(g) = 2m(G).

Wir nennen das Tripel G' = (V, E, R) eine ebene Realisierung des
Graphen G = (V| E), falls es eine Einbettung von G in die Ebene

2.1 Féarben von planaren Graphen

gibt, deren Gebiete die Rander in R haben. In diesem Fall nennen
wir G’ = (V, E, R) auch einen ebenen Graphen. Ist G nicht zusam-
menhéngend, so betten wir die Komponenten von G in die Ebene ein
und fassen alle Réander, die bei diesen Einbettungen entstehen, zu
einer Randmenge R zusammen.

Fiihren zwei Einbettungen von G in die Ebene auf dieselbe Randmenge
R, so werden sie als dquivalent angesehen. Fine andere Moglichkeit,
Einbettungen bis auf Aquivalenz kombinatorisch zu beschreiben, be-
steht darin, fir jeden Knoten u die (zirkulére) Ordnung m, aller mit
u inzidenten Kanten anzugeben. Man nennt 7 = {m, | u € V} ein
Rotationssystem fiir GG, falls es eine entsprechende Einbettung gibt.
Rotationssysteme haben den Vorteil, dass sie bei Verwendung der
Adjazenzlistendarstellung ohne zusétzlichen Platzaufwand gespeichert
werden kénnen, indem man die zu u adjazenten Knoten geméfl m,
anordnet. ;
Beispiel 2.9. Die beiden nebenstehenden

FEinbettungen eines Graphen G = (V, E) in

die Ebene haben jeweils 7 Gebiete und fiih- V

ren beide auf den ebenen Graphen G' =

(V, E, R) mit den 7 Rindern

R = {((I"/ .f"/‘ ‘q)7 Y (b‘ .(J7 67‘ }l)7 (b7 C7 .])7 j

J
(c,h,d),(d,e k), (f,i,l,m,m,1,k)}.
a
<15
e

Das zugehorige Rotationssystem ist

™= {((I, f> Z)? (a7j> ba g)a (b7 ¢, h)? (67 kv fa g),
(d,e,h),(c,7,i, 1, k,d), (I,m), (m)}.

Man beachte, dass sowohl in R als auch in w jede Kante genau zweimal
vorkommt. Anstelle von (zirkularen) Kantenfolgen kann man die Ele-
mente von R und w natirlich auch durch entsprechende Knotenfolgen
beschreiben. <
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Satz 2.10 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) = 2. €

Beweis. Wir fithren den Beweis durch Induktion iiber die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhangend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (x) erfiillt.

m— 1~ m: Sei G ein zusammenhingender ebener Graph mit m
Kanten.

Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhingenden ebenen Graphen G’ mit n’ = n — 1 Kno-
ten, m’ = m — 1 Kanten und " = r Gebieten. Nach IV folgt
n—m+r=Mn—-1)—m-1)+r=n"—m'+1" =2.

Falls GG kein Baum ist, entfernen wir eine Kante auf einem Kreis in
G und erhalten einen zusammenhéngenden ebenen Graphen G’ mit
n' = n Knoten, m’ = m — 1 Kanten und " = r — 1 Gebieten. Nach
IVfolgtn—m+r=n—(m-1)+@r—-1)=n"—m'+r"=2. 1

Korollar 2.11. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist, gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhéngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m =i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n+2m/3—2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = Y, d(g) > 4r bzw. r < m/2. Eulers Formel

2.1 Féarben von planaren Graphen

liefert daher m =n+r —2 <n+m/2 — 2, was m/2 < n — 2 und
somit m < 2n — 4 impliziert. |

Korollar 2.12. Die Graphen K5 und Ksg sind nicht planar.

Beweis. Wegen n(Ks) = 5, also 3n(K;) — 6 = 9, und wegen
m(Ks) = (5) = 10 gilt m(K5) £ 3n(Ks) — 6.

Wegen n(K33) = 6, also 2n(K33) —4 = 8, und wegen m(Ks3) =
3-3=9 gllt m(K373) $ 2n(K3,3) —4. [ |

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Korollar 2.13. Jeder planare Graph hat einen Minimalgrad 6 < 5.

Beweis. Fir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme ¢ > 6 die Ungleichung

m = %EUGV deg(u) > %ZuGV 6= 3TL,

was im Widerspruch zu m < 3n — 6 steht. [ |

Definition 2.14. Seien G = (V,E) und H Graphen und seien
u,v V.

e Durch Fusion von u und v entsteht aus G der Graph G, =
(V —{v}, E") mit

E'={eecE|vdetU{{u,v'}|{v,v'} € E—{u,v}}.

Ist e = {u,v} eine Kante von G (also e € E), so sagen wir auch,
Gy entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2 mit Ng(v) = {u,w}, so sagen wir auch, G, entsteht
aus G durch Uberbriickung des Knotens v bzw. G aus Gy, durch
Unterteilung der Kante {u,w}.



2 Férben von Graphen

G heifit zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.

G heifst Unterteilung von H, falls G aus einer isomorphen Kopie
von H durch wiederholte Unterteilungen gewonnen werden kann.

H heifit Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.

G heifit H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifst G H-frei, falls G fir alle H € H H-frei ist.

Beispiel 2.15. Betrachte folgende Graphen:

G st keine Unterteilung von H, da G Knoten vom Grad 3 hat, aber
H nicht. Entfernen wir jedoch die beiden Kanten a und b aus G, so
ist der resultierende Teilgraph eine Unterteilung von H, d.h. H ist
ein topologischer Minor von G. H ist aber kein topologischer Minor
von G', da H einen Knoten vom Grad 4 hat und G' nur Knoten vom
Grad < 3. Da durch Kontraktion der drei umrandeten Kanten ein zu
H isomorpher Graph entsteht, ist H aber ein Minor von G'. N

Es ist klar, dass die Klasse K der planaren Graphen zwar unter Un-
terteilung und (topologischer) Minorenbildung abgeschlossen ist (d.h.
wenn G € K und H ein Minor oder eine Unterteilung von G ist, dann
folgt H € K), aber nicht unter Fusion.

Nach Definition ldsst sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:

e Entfernen einer Kante oder eines Knotens,

e Kontraktion einer Kante (bzw. Uberbriickung eines Knotens).

2.1 Farben von planaren Graphen

Da die Kontraktionen (bzw. Uberbriickungen) 0.B.d.A. auch zuletzt
ausgefithrt werden kénnen, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.16 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-fdarbbar.

Beweis. Wir beweisen den Satz durch Induktion tiber n.
n=1: Klar.

n— 1~ mn: Da G planar ist, existiert ein Knoten u mit deg(u) < 5.
Im Fall deg(u) < 4 entfernen wir v aus G. Andernfalls hat u zwei
Nachbarn v und w, die nicht durch eine Kante verbunden sind
(andernfalls wiare K5 ein Teilgraph von G). In diesem Fall entfer-
nen wir alle mit u inzidenten Kanten auer {u,v} und {u,w} und
kontrahieren diese beiden Kanten zum Knoten v.

In beiden Féllen ist der resultierende Graph G’ ein Minor von G und
daher planar. Da G’ zudem hochstens n — 1 Knoten hat, existiert
nach IV eine 5-Farbung ¢’ fir G'. Da wir im 2. Fall dem Knoten w
die Farbe ¢/(v) geben kénnen, haben die Nachbarn von u héchstens
4 verschiedene Farben und wir kénnen G 5-farben. |

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K33 oder den K7 als topologischen Minor enthélt. Fiir den Beweis
bendtigen wir noch folgende Notationen.

Definition 2.17. Sei G = (V, E) ein Graph.

o Fine Menge S CV heifit Separator in G, wenn es zwei Knoten
u,v € V\S gibt, zwischen denen in G—S kein u-v-Weg existiert. Ist
|S| = k, so nennen wir S auch einen k-Separator zwischen u und
v oder auch einen u-v-Separator der Grofie k. Ein 1-Separator
wird auch Artikulation oder Schnittknoten von G genannt.

o Fin Graph G heifit k-zusammenhingend, 0 < k <n — 1, falls
G keinen (k — 1)-Separator hat. Die grofite Zahl k, fir die G k-
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zusammenhdngend ist, heifst Zusammenhangszahl von G und
wird mit k(G) bezeichnet.

Ein Graph G mit n > 2 Knoten ist also genau dann zusammenhan-
gend, wenn k(G) > 1 ist.

Lemma 2.18. Ist ein Graph G = (V, E) nicht planar, so hat er einen
o 2-zusammenhdangenden Untergraphen U = (V' E') und einen
o 3-zusammenhdngenden topologischen Minor M = (V" E"),

die minimal nicht planar sind, d.h. U und M sind nicht planar
und fir alle ¢’ € E' und €’ € E" sind die Graphen U — e’ und M — e
planar.

Beweis. Wir entfernen zuerst solange Kanten und Knoten aus G, bis
wir aus dem verbliebenen Teilgraphen U = (V’, E’) keine weiteren
Kanten oder Knoten entfernen kénnen, ohne dass U planar wird.

U ist zusammenhéngend, da andernfalls mindestens eine Komponente
von U nicht planar ist und wir alle tibrigen Komponenten entfernen
konnten, ohne dass U planar wird.

U ist sogar 2-zusammenhéngend, da U sonst einen Schnittknoten s
enthélt und U — s in k > 2 Komponenten U[V}], ..., U[Vy] zerfallt.
Dann ist aber mindestens ein Teilgraph T; = U[V; U {s}] nicht planar
und wir kénnen alle Knoten auflerhalb von T} entfernen, ohne dass U
planar wird.

Um einen topologischen Minor M von G mit den behaupteten Eigen-
schaften zu erhalten, konstruieren wir zu U einen topologischen Minor
U’, der minimal nicht planar ist und zudem 3-zusammenhangend
ist oder weniger Knoten als U hat. Indem wir diese Konstruktion
wiederholen, erhalten wir schliellich M.

Falls U 3-zusammenhéngend ist, ist U’ = U. Andernfalls gibt es in
U einen 2-Separator S = {u,v}, d.h. U — S zerfillt in k > 2 Kom-
ponenten U[Vy],...,U[Vi]. Betrachte die (2-zusammenhédngenden)
Graphen G; = U[V; U {u,v}] U {u,v}. Dann ist mindestens ein G;
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nicht planar (z.B. Gy), da sonst auch U planar wére. Da k > 2 ist,
erhalten wir einen zu G; isomorphen Graphen U’ als topologischen
Minor von H = U[V; UV, U {u,v}] (und damit von U), indem wir
in U[Va U {u,v}] einen beliebigen u-v-Pfad P wéhlen und aus H alle
Knoten und Kanten entfernen, die nicht auf P liegen und danach
P iiberbriicken. Dann hat U’ weniger Knoten als U und ist wie U
minimal nicht planar. |

Definition 2.19. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heifit Briicke von K in G, falls

e B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Briicken werden auch als Sehnen
von K bezeichnet), oder

e B—K eine Komponente von G— K ist und B aus B— K durch Hin-
zufiigen aller Kanten zwischen B — K und K (und der zugehirigen
Endpunkte auf K ) entsteht.

Die Knoten von B, die auf K liegen, heiffen Kontaktpunkte von
B. Zwei Bricken B und B' von K heiflen inkompatibel, falls

e B Kontaktpunkte u,v und B’ Kontaktpunkte u’,v" hat, so dass diese
vier Punkte in der Reihenfolge u,u',v,v" auf K liegen, oder

e B und B" mindestens 8 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass in einem planaren Graphen kein Kreis
mehr als zwei inkompatible Briicken haben kann.

Satz 2.20 (Kuratowski 1930).
Fiir einen Graphen G sind folgende Aussagen dquivalent:

(i) G ist planar.
(i) G enthdlt weder den K33 noch den Ky als topologischen Minor.

Beweis. Die Implikation von i) nach i7) folgt aus der Abgeschlossen-
heit der planaren Graphen unter (topologischer) Minorenbildung.
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Die Implikation von #i) nach i) zeigen wir durch Kontraposition.
Sei also G = (V) E) nicht planar. Dann hat G nach Lemma 2.18
einen 3-zusammenhéngenden nicht planaren topologischen Minor
M = (V' E"), so dass M — €' fir jede Kante ¢’ € E’ planar ist. Wir
entfernen eine beliebige Kante eq = {ag, bp} aus M. Dann ist M — eq
planar. Da M — ey 2-zusammenhangend ist, gibt es in M — ey einen
Kreis K durch die beiden Knoten ay und b, (siche Ubungen). Wir
wéhlen K zusammen mit einer ebenen Realisierung H' von M — eq
so, dass K moglichst viele Gebiete in H' einschliefit.

Fir zwei Knoten a,b auf K bezeichnen wir mit KJa,b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K|a,b) = KJa,b] \ {b}. Die Mengen K (a,b) und
K (a, b] sind analog definiert.

Die Kanten jeder Briicke B von K in M — eq verlaufen in H' entweder
alle innerhalb oder alle aulerhalb von K. Im ersten Fall nennen wir
B eine innere Briicke und im zweiten eine duflere Briicke.

Es ist klar, dass K in H’ mindestens eine innere und mindestens
eine duflere Briicke haben muss. Zudem muss jede duflere Briicke B
aus einer Kante {u, v} bestehen, die zwei Knoten u € K(ag,by) und
v € K(by,ap) verbindet. Andernfalls hiatte B namlich mindestens 2
Kontaktpunkte auf Kfag, bg] oder auf K[by, ag|. Daher kénnte K zu
einem Kreis K’ erweitert werden, der in H’ mehr Gebiete einschliefit
(bzw. ausschliefit) als K, was der Wahl von K und H' widerspricht.

K hat in M aufler den Briicken in M — ey noch zuséatzlich die Briicke
eg. Wir wiahlen nun eine innere Briicke B, die sowohl zu ¢ als auch
zu mindestens einer dufleren Briicke e; = {ay, b} inkompatibel ist.
Eine solche Briicke muss es geben, da wir sonst alle mit ey inkompati-
blen inneren Briicken nach auflen klappen und e; als innere Briicke
hinzunehmen koénnten, ohne die Planaritit zu verletzen.

Wir benutzen K und die drei Briicken ey, e; und B, um eine Untertei-
lung des K333 oder des K5 in M zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A, A C V'’ mit jeweils 3 Knoten an, so dass
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9 knotendisjunkte Pfade zwischen allen Knoten a € A; und b € A,
existieren. Oder wir geben eine Menge A C V'’ mit finf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a,b € A
existieren. Da eg und e; inkompatibel sind, konnen wir annehmen,
dass die vier Knoten ag, ay, by, by in dieser Reihenfolge auf K liegen.

Fall 1: B hat einen Kontaktpunkt k; & {ag, a1, bp, b1 }. Aus Symme-
triegrinden konnen wir k; € K(ag,a;) annehmen. Da B weder
zu ey noch zu e; kompatibel ist, hat B weitere Kontaktpunkte
ko € K(by,ao) und ks € K(ay,by), wobei ky = k3 sein kann.

Fall 1a: Ein Knoten k; € {ko, k3} liegt auf dem Bogen K (by, by).
In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{CL(), ay, kz} und {b(), bl, ]{?1}

Fall 1b: K(by,b1) N {ka, k3} = (. In diesem Fall ist ky € Kby, a0)
und k3 € K(ay,bo]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {k1, k2, k3} existieren. Folg-
lich gibt es 9 knotendisjunkte Pfade zwischen {ag,a;,u} und
{kl, k27 k3}.

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {ag, a1, bg, b1 }.
Da B inkompatibel zu eg und e; ist, miissen in diesem Fall alle vier
Punkte zu B gehoren. Sei Fy ein ag-bp-Pfad in B und sei P; ein
a1-bi-Pfad in B. Sei u der erste Knoten auf Fy, der auch auf P;
liegt und sei v der letzte solche Knoten.

Fall 2a: u = v. Dann gibt es in B vier knotendisjunkte Pfade von
w zu {ag, ay, by, by } und somit existieren in M 10 knotendisjunkte
Pfade zwischen den Knoten w, ag, a1, bo, b;.

Fall 2b: u # v. Durch u und v wird der Pfad P; in drei Teilpfade
P,,, P,, und P,, unterteilt, wobei die Indizes die Endpunkte
bezeichnen und {z,y} = {a, b } ist.

Somit gibt es in B drei Pfade zwischen u und jedem Knoten
in {ag,v,z} und zwei Pfade zwischen v und jedem Knoten in
{bo, y}, die alle 5 knotendisjunkt sind. Folglich gibt es in M 9
knotendisjunkte Pfade zwischen {ag, v, z} und {by,y, u}. [
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Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.

Alternativ lasst sich der Ks auch als ein
topologischer Minor von G erhalten, in-
dem wir die dinnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 tiberbriicken. N

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.

Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er { K33, K5 }-frei ist.

Satz 2.23 (Satz von Robertson und Seymour, 1983-2004). Sei KC eine
Graphklasse, die unter Minorenbildung abgeschlossen ist. Dann gibt
es eine endliche Menge H von Graphen mit

K ={G |G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heiflen verbotene Minoren fir die Klasse K.

Eine interessante Folgerung aus diesem Satz ist, dass jede unendliche
Graphklasse zwei Graphen G und H enthélt, so dass H ein Minor
von G ist. Das Problem, fiir zwei gegebene Graphen G und H zu
entscheiden, ob H ein Minor von G ist, ist zwar NP-vollstéandig (da
sich das Hamiltonkreisproblem darauf reduzieren lasst). Fiir einen
festen Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 2.24 (Robertson und Seymour, 1995). Fir jeden Graphen H gibt
es einen O(n3)-zeitbeschrinkten Algorithmus, der fiir einen gegebenen
Graphen G entscheidet, ob er H-frei ist.
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Korollar 2.25. Die Zugehorigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus fiir /C lasst sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren fiir O kennen. Leider ist der
Beweis von Theorem 2.23 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus fiir £ fiihrt.

2.2 Farben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitdtsgraphen (auch transitiv orientierba-
re Graphen genannt) chordal. Wir werden sehen, dass sich fiir chordale
Graphen effizient eine optimale Knotenférbung berechnen lasst.

Definition 2.26. Ein Graph G = (V, E) heifit chordal oder trian-
guliert, wenn jeder Kreis K = (uq,...,u;,uy) der Linge |l > 4 in G
mindestens eine Sehne hat.

G ist also genau dann chordal, wenn er keinen induzierten Kreis der
Lange [ > 4 enthélt (ein induzierter Kreis ist ein induzierter Teilgraph
G[V'], V! C V, der ein Kreis ist). Dies zeigt, dass die Klasse der
chordalen Graphen unter induzierter Teilgraphbildung abgeschlos-
sen ist (aber nicht unter Teilgraphbildung). Jede solche Graphklasse
G ist durch eine Familie von minimalen verbotenen induzierten
Teilgraphen H; charakterisiert, die bis auf Isomorphie eindeutig
bestimmt sind. Die Graphen H; gehoren also nicht zu G, aber sobald
wir einen Knoten daraus entfernen, erhalten wir einen Graphen in G.
Die Klasse der chordalen Graphen hat die Familie der Kreise C,, der
Lange n > 4 als verbotene induzierte Teilgraphen.

Lemma 2.27. Fir einen Graphen G sind folgende Aussagen dquiva-
lent.

(i) G ist chordal.
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(ii) Jeder inklusionsminimale x-y-Separator S in G ist eine Clique.

(iii) Jedes Paar von nicht adjazenten Knoten x undy in G hat einen
x-y-Separator S, der eine Clique ist.

Beweis. Um zu zeigen, dass die zweite Aussage aus der ersten folgt,
nehmen wir an, dass G einen minimalen z-y-Separator S hat (d.h.
S\ {s} ist fir jedes s € S kein z-y-Separator), der zwei nicht adjazente
Knoten u und v enthélt. Seien G[V;] und G[V5] die beiden Kompo-
nenten in G — S mit x € V; und y € V5. Da S minimal ist, haben
die beiden Knoten u und v sowohl einen Nachbarn in V] als auch in
V,. Betrachte die beiden Teilgraphen G; = G[V; U {u,v}] (i = 1,2)
und wahle jeweils einen kiirzesten u-v-Pfad P; in ;. Da deren Lange
> 2 ist, ist K = P, U P, ein Kreis der Lange > 4. Aufgrund der
Konstruktion ist zudem klar, dass K keine Sehnen in G hat.

Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen z-y-Separator S hat, und
S eine Clique sein muss, wenn wir S inklusionsminimal wéahlen.

Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen wir
an, dass G nicht chordal ist. Dann gibt es in GG einen induzierten Kreis
K der Lange > 4. Seien z und y zwei beliebige nicht adjazente Knoten
auf K und sei S ein z-y-Separator in G. Dann muss S mindestens
zwei nicht adjazente Knoten aus K enthalten. [

Definition 2.28. Sei G = (V, E) ein Graph und sei k > 0. Ein
Knoten u € V vom Grad k heifit k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhéangende chordale Graphen konnen als eine Verallgemeine-
rung von Baumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K durch sukzessives Hinzufiigen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heifit G k-Baum, wenn G aus
K}, durch sukzessives Hinzufiigen von k-simplizialen Knoten erzeugt
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werden kann. Wir werden sehen, dass ein zusammenhéngender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufligen von simplizialen
Knoten erzeugt werden kann. Aquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 2.29. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(u,...,u,) auf V heifst perfekte Eliminationsordnung (PEO)
von G, wenn u; simplizial in Gluy, ..., w] firi=2,...,n ist.

Es ist klar dass alle Knoten eines vollstandigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder nicht vollsténdige Baum 7" (also T' ¢ { K1, K5 }) mindestens
zwei nicht adjazente Blatter hat.

Lemma 2.30. Jeder nicht vollstindige chordale Graph G besitzt
mindestens zwei simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir fiihren Induktion tiber n. Fiir n < 2 ist die Behauptung
klar. Sei G = (V, E)) ein Graph mit n > 3 Knoten. Da G nicht voll-
standig ist, enthélt G zwei nichtadjazente Knoten x; und z5. Sei S
ein minimaler x;-z9-Separator der Gréfle £ > 0. Im Fall £ > 0 ist .S
nach Lemma 2.27 eine Clique in G. Seien G[V;] und G[V3] die beiden
Komponenten von G — S mit z; € V;. Wir zeigen die Existenz zweier
simplizialer Knoten s; € V;, i =1, 2.

Betrachte die Teilgraphen G; = G[V; U S]. Da G; chordal ist und
weniger als n Knoten hat, ist GG; nach IV entweder eine Clique oder
G; enthalt mindestens zwei nicht adjazente simpliziale Knoten ;, z;.
Falls G; eine Clique ist, ist s; = x; simplizial in G;, und da x; keine
Nachbarn auflerhalb von V; U S hat, ist s; dann auch simplizial in G.
Ist G; keine Clique, kann hochstens einer der beiden Knoten ;, 2;
zu S gehoren (da S im Fall S # () eine Clique und {y;, z;} ¢ F ist).
O.B.d.A. sei y; € V;. Dann hat s; = y; keine Nachbarn auflerhalb von
V; U S und somit ist s; auch simplizial in G. [ |
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Satz 2.31. FEin Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, ldsst sich eine PEO gemafl Lemma 2.30
bestimmen, indem wir fiir ¢ = n, ..., 2 sukzessive einen simplizialen
Knoten u; in G — {u;yq, ..., u,} wahlen.

Fir die umgekehrte Richtung sei (uy, ..., u,) eine PEO von G. Wir
zeigen induktiv, dass G; = G[uy, . .., u;) chordal ist. Da u;, 1 simplizial
in G4 ist, enthélt jeder Kreis K der Lange > 4 in G;.1, auf dem

u; 41 liegt, eine Sehne zwischen den beiden Kreisnachbarn von w,;;.

Daher ist mit G; auch G;,; chordal. |

Korollar 2.32. Es gibt einen Polynomialzeitalgorithmus A, der fir
einen gegebenen Graphen G eine PEQ berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Linge > 4 ausgibt.

Beweis. A versucht wie im Beweis von Theorem 2.31 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass G; = G — {u;y1, ..., u,}
keinen simplizialen Knoten u; hat, so ist G; wegen Lemma 2.30 nicht
chordal. Daher gibt es in GG; nach Lemma 2.27 (ii7) ein Knotenpaar
x,1, so dass kein x-y-Separator eine Clique ist. Berechnen wir fir
dieses Paar einen beliebigen minimalen z-y-Separator S, so ist S
keine Clique und wir kénnen wie im Beweis von (i) = (ii) einen
induzierten Kreis K der Linge > 4 in G; konstruieren. Da G; ein

induzierter Teilgraph von G ist, ist K auch ein induzierter Kreis in G.

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
farben:
Algorithmus chordal-color(V,FE)

I berechne eine PEO (uy,...,u,) fir G = (V,E)
> starte greedy-color mit der Knotenfolge (u1, ..., u,)
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Satz 2.33. Fir einen gegebenen chordalen Graphen G = (V, E) be-
rechnet der Algorithmus chordal-color eine k-Farbung ¢ von G mit
k=x(G) = w(G).

Beweis. Sei u; ein beliebiger Knoten mit ¢(u;) = k. Da (u1, ..., u,)
eine PEO von G ist, ist u; simplizial in G[uy, . . ., u;]. Somit bilden die
Nachbarn w; von u; mit j < ¢ eine Clique und wegen c¢(u;) = k bilden
sie zusammen mit u; eine k-Clique. Daher gilt x(G) < k < w(G),
woraus wegen w(G) < x(G) die Behauptung folgt. [ |

Um chordal-color in Linearzeit zu implementieren, benétigen wir
einen Linearzeit-Algorithmus zur Bestimmung einer PEO. Rose, Tar-
jan und Lueker haben 1976 einen solchen Algorithmus angegeben, der
auf lexikographischer Breitensuche (kurz LexBFS oder LBFS, engl.
lexicographic breadth-first search) basiert. Bevor wir diese Variante
der Breitensuche vorstellen, gehen wir kurz auf verschiedene Ansétze
zum Durchsuchen von Graphen ein.

Der folgende Algorithmus GraphSearch(V, E') startet eine Suche in
einem beliebigen Knoten v und findet zunéchst alle von u aus erreich-
baren Knoten. Danach wird solange von einem noch nicht erreichten
Knoten eine neue Suche gestartet, bis alle Knoten erreicht wurden.
Die Menge der aktuellen Knoten wird dabei in einer Datenstruktur A
gespeichert. Genauer enthélt A alle bereits entdeckten Knoten, die
noch nicht abgearbeitet sind.

Algorithmus GraphSearch(V, E)

R:=( // Menge der erreichten Knoten
L:=() // Ausgabeliste
repeat
wahle w € VAR  // u wurde neu entdeckt
append(L, u)
¢ parent(u):= L1
7 A:={u} // Menge der aktuellen Knoten
s R:=RU{u}

S B O
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9 while A # () do

10 wahle u aus A

11 if Jv € N(u)\R then

12 A:=AU{v} // v wurde neu entdeckt

13 R:= RU{v}

14 append(L, v)

15 parent(v) :==u

16 else entferne w aus A // u wurde abgearbeitet
17 until R=V

1z return(L)

Der Algorithmus GraphSearch(V, E) findet in jedem Durchlauf der
repeat-Schleife eine neue Komponente des Eingabegraphen G = (V, E).
Dies bedeutet, dass alle Knoten, die zu einer Komponente gehoren,
konsekutiv in der Ausgabeliste L = (uy,...,u,) auftreten, wobei ab-
gesehen vom ersten Knoten jeder Komponente jeder Knoten u; einen
Nachbarn u; mit 7 < k hat.

Die folgende Definition fasst diese Eigenschaften der Ausgabeliste
zZusaminen.

Definition 2.34. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(u1,...,u,) auf V heifft Suchordnung (SO) von G, wenn fir jedes
Tripel 7 < k <1 gilt:

uj € N(u) \ N(ug) = i < k:i#jAu; €N(uyg).

Satz 2.35. Fir jeden Graphen G = (V,E) gibt der Algorithmus
GraphSearch(V, E) eine SO von G aus.

Beweis. Ein Knoten uy erhalt nur dann den Wert parent(uy) = L,
wenn alle Knoten u; mit j < £ bereits abgearbeitet sind und diese nur
Nachbarn u; mit [ < k hatten. Falls also ein Vorganger u; von u;, mit
einem Nachfolger u; von u verbunden ist, liefert die parent-Funktion
einen Nachbarn u; = parent(uy) von w, mit ¢ < k. Da u; & N (ug)
ist, gilt zusatzlich ¢ # j. [ |
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Die parent-Funktion induziert einen gerichteten Wald W =
(V, Eparent), dessen Kantenmenge aus allen Kanten der Form
(parent(v),v) mit parent(v) # L besteht. Die Kanten von W wer-
den auch als Baumkanten (kurz B-Kanten) und W wird auch als
Suchwald von G = (V, E) bezeichnet. Fiir jeden Knoten v € V' gibt
es genau eine Wurzel w in W, von der aus v in W erreichbar ist. Der

eindeutig bestimmte w-v-Pfad P = (ug,...,u;) in W mit vy = w
und u; = v lasst sich ausgehend von u; = v unter Verwendung der
parent-Funktion mittels w;_; = parent(u;) fiir i = [, ..., 1 berech-

nen. P wird auch als parent-Pfad von v bezeichnet. Es ist klar, dass
2 Knoten v und v’ genau dann in einer Komponente von G liegen,
wenn sie die gleiche Wurzel haben.

Realisieren wir die Menge der aktuellen Knoten als einen Keller S,
so erhalten wir eine Suchstrategie, die als Tiefensuche (kurz DFS,
engl. depth first search) bezeichnet wird. Die Benutzung eines Kellers
bewirkt, dass nach der Entdeckung eines neuen Knotens v unter den
Nachbarn des aktuellen Knotens u die Suche zuerst bei den Nachbarn
von v fortgesetzt wird, bevor die anderen Nachbarn von u getestet
werden.

Algorithmus DFS(V, FE)

I R:=0 // Menge der erreichten Knoten
> L:=() // Ausgabeliste

3 repeat

. wahle w € VAR // u wurde neu entdeckt
5 R:=RU{u}

¢ append(L,u)

7 parent(u) == L

s S:=(u) // Keller der aktuellen Knoten
o while S # () do
10 u := top(.S)
11 if Jv € N(u)\R then

12 push(S,v) // v wurde neu entdeckt
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13 R:= RU{v}

14 append(L, v)

15 parent(v) :==u

16 else pop(S) // u wurde abgearbeitet
17 until R=V

18 return(L)

Definition 2.36. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(ug,...,u,) auf V heifst DFS-Ordnung (DO) von G, wenn fir
jedes Tripel 7 < k <1 gilt:

uJEN(ul)\N(uk)éﬂzj<2</{:/\ulEN(uk)

Satz 2.37. Fir jeden Graphen G = (V,E) gibt der Algorithmus
DFS(V, E) eine DO von G aus.

Beweis. Siehe Ubungen. |

Realisieren wir die Menge der abzuarbeitenden Knoten als eine Warte-
schlange @, so findet der resultierende Algorithmus BFS(V, F') einen
kiirzesten Weg vom Startknoten u zu allen von u aus erreichbaren
Knoten. Diese Suchstrategie wird als Breitensuche (kurz BFS, engl.
breadth first search) bezeichnet. Die Benutzung einer Warteschlange
(@ zur Speicherung der noch abzuarbeitenden Knoten bewirkt, dass
alle Nachbarknoten v des aktuellen Knotens u vor den bisher noch
nicht erreichten Nachbarn von v ausgegeben werden.

Algorithmus BFS(V, FE)
R:=0 // Menge der erreichten Knoten

1

> L:=() // Ausgabeliste

3 repeat

4+ wahle w € VAR // u wurde neu entdeckt
5 R:=RU{u}

¢ parent(u):= L

14
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Q) :=(u) // Warteschlange der aktuellen Knoten
while @ # () do

) u := dequeue(Q)
10 append(L, u)

11 for all v € N(u)\R do
12 enqueue(Q,v) // v wurde neu entdeckt
13 parent(v) :==u
14 R:= RUN(u)
5ountil R=V
¢ return(L)

o

// u wird komplett abgearbeitet

Definition 2.38. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(ug,...,u,) auf V heifft BFS-Ordnung (BO) von G, wenn fiir jedes
Tripel j < k <1 gilt:

u;j € N(w) \ N(ug) = Fi < j:u; € N(uy).

Satz 2.39. Fir jeden Graphen G = (V,E) gibt der Algorithmus
BFS(V, E) eine BO von G aus.

Beweis. Existiert im Fall k& < [ eine Position j < k mit u; €
N(w) \ N(ug), so muss es einen Knoten w; € N(u) mit i < j
geben, der dafiir gesorgt hat, dass der Knoten wu; vor dem Knoten
in die Warteschlange aufgenommen wurde. ]

BFS-Ordnungen lassen sich anschaulich anhand der Adjazenzmatrix
charakterisieren. Sei (u1,...,u,) eine BO fir G = (V, E) und sei
A = (a;;) die Adjazenzmatrix von G mit a;; = 1 < {u;, u;} € E. Wei-
ter seien z; = a;; ...a;,;—; die Préfixe der Zeilen von A, die unterhalb
der Diagonale verlaufen. Sind nun die ersten j Eintrage ay: ... ay;
einer Zeile s; Null, so muss dies auch fiir jede Zeile s; mit [ > k so
sein, da im Fall a;; = 1 der Knoten u; € N(w;) \ N(u;) wére und
somit ein ¢ < j mit ay; = 1 existieren miisste. Dies bedeutet, dass s;
mindestens so viele Nullen als Prafix hat wie z;. Es ist aber moglich,
dass z; bspw. mit 00010. .. beginnt und z; mit 00011. ...
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Alternativ konnen wir () auch als eine Warteschlange von Knotenmen-
gen realisieren (siche Algorithmus BFS’), um einen Uberblick iiber
alle moglichen Fortsetzungen der aktuellen Liste L zu einer BO zu
erhalten. Die Prozedur Dequeue(Q) liefert ein beliebiges Element aus
der ersten Menge in () zuriick und entfernt dieses aus Q).

Algorithmus BFS’ (V, E)

. R:=( // Menge der erreichten Knoten
L:=() // Ausgabeliste
repeat
wahle u € V\R
5 R:=RuU{u}
6  Q:=({u}) // Warteschlange von Knotenmengen
7 while Q # () do
8 u := Dequeue(Q)
9 append(L, u)
10 if N(u) Z R then enqueue(Q, N(u)\R)
11 R:= RUN(u)
2 until R=V

13 return(L)

=~ W N

// w wird komplett abgearbeitet

Prozedur Dequeue(Q)

1 entferne u aus first(Q)
2 if first(Q) = 0 then dequeue(Q)
3 return(u)

Fassen wir die Menge V' \ R der noch nicht erreichten Knoten als
Nachfolgemenge der letzten Menge in () auf, so wird von dieser Rest-
menge in jedem Durchlauf der while-Schleife von BFS’ die Teilmenge
N(u) \ R abgetrennt und im Fall N(u) \ R # () der Schlange @
hinzugefiigt.

Der Unterschied von LexBFS zur normalen Breitensuche besteht
darin, dass die zulassigen Ausgabefolgen gegeniiber der BFS weiter
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eingeschrankt werden. Der Name von LexBF'S rithrt daher, dass die
Knoten in einer Reihenfolge ausgegeben werden, die eine lexikogra-
phische Sortierung der Zeilenpréfixe z; bewirkt, sofern man sie durch
Anhéngen von Einsen auf die gleiche Lange bringt. Eine solche Sor-
tierung kann auch bei einer gewohnlichen Breitensuche auftreten, ist
bei dieser aber nicht garantiert. Bei einer Breitensuche werden die
noch nicht besuchten Nachbarn des aktuellen Knotens in beliebiger
Reihenfolge zur Warteschlange hinzugefiigt und auch wieder in dieser
Reihenfolge entfernt. Dagegen werden bei einer LexBFS die Knoten
in der Warteschlange nachtraglich umsortiert, falls dies notwendig
ist, um eine LexBFS-Ordnung der Knoten zu erhalten (siche Defi-
nition 2.40). Ahnlich wie bei BFS’ wird hierzu die Menge der noch
nicht abgearbeiteten Knoten in eine Folge von Knotenmengen zerlegt.
Im Gegensatz zu BFS’ kann LexBFS aber nicht nur die letzte Menge
V'\ R splitten, sondern alle Mengen der Folge.

Algorithmus LexBFS(V, E,u)

1 L:=() // Ausgabeliste
Q@ := (V) // Warteschlange von Knotenmengen
while @ # () do
u := Dequeue(Q)
append(L, u)
i Splitqueue(Q@, N(u))
7 return(L)

// u wird komplett abgearbeitet

[ V]

Prozedur Splitqueue(Q,S)

. for Tin Q with TNS ¢ {0, T} do
> ersetze die Teilfolge (T') in @ durch (T'NS, T\ S)

Fir eine effiziente Implementierung sollte die Schlange @) =
(S1,-..,Sk) von Knotenmengen S; C V' als doppelt verkettete Liste
realisiert werden und fiir jeden Knoten u in der Adjazenzliste ein
Zeiger auf die Menge S;, die u enthélt und auf seinen Eintrag in
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S; gespeichert werden. Zudem sollte die for-Schleife in der Prozedur
Splitqueue durch eine Schleife tiber die Knoten in S = N(u) ersetzt
werden.

Definition 2.40. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(u,...,up) auf V heifft LexBFS-Ordnung (LBO) von G, wenn
fiir jedes Tripel 7 < k <1 gilt:

Ob eine Ordnung (uy,...,u,) eine LBO ist, ldsst sich wie folgt an
der geméf (uq,...,u,) geordneten Adjazenzmatrix A ablesen: die
verkiirzten Zeilen zq,..., 2, unter der Diagonalen miissen wie folgt
sortiert sein: entweder ist z; ein Prafix von z;,; oder z; hat an der
ersten Position, wo sich die beiden Strings unterscheiden, eine Eins.
Bringen wir also die verkiirzten Zeilen durch Anhéngen von Einsen auf
dieselbe Linge, so sind sie lexikographisch sortiert. In den Ubungen
wird gezeigt, dass man sogar eine lexikographische Ordnung auf den
kompletten Zeilen von A erhalt, falls man die Diagonale auf 1 setzt
und die Knoten in jeder Menge von () nach absteigendem Knotengrad
in GG sortiert.

Satz 2.41. Fir jeden Graphen G = (V,E) gibt der Algorithmus
LexBFS(V, E') eine LBO (uq,...,u,) von G aus.

Beweis. Sei A = (a;;) die Adjazenzmatrix von G mit a;; = 1 &
{u;,u;} € E. Wir zeigen, dass die Strings z; = a;, ..., a;;—1 lexika-
lisch sortiert sind. Existiert ndmlich im Fall £ < [ eine Position j < k
mit ar; = 0 und a;; = 1, so muss es eine Position ¢ < j mit a;; = 1
und a; = 0 geben. Ansonsten wére der Knoten u; spitestens beim
Abarbeiten von u; in eine Menge vor dem Knoten u;, sortiert worden
und konnte daher nicht nach dem Knoten w; ausgegeben werden. W

Satz 2.42. Jede LBO fiir einen chordalen Graphen G ist eine PEO
fir G.
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Beweis. Sei (uy, ..., u,) eine LBO fir G = (V, E) und sei A = (a;)
die Adjazenzmatrix von G mit a;; = 1 < {u;,u;} € E, wobei wir fiir
a;; auch A[i, j] schreiben. Wir zeigen, dass G nicht chordal ist, wenn
w; nicht simplizial in G; = Glug, . . ., u;] ist.

Falls u; nicht simplizial in G; ist, miissen Indizes 75 < i1 < 7 =: 7o mit
Alig, 1] = Alig, i2) = 1 und Aliy, i5] = 0 existieren. Wegen A[iq, o] = 0
und Alig, i3] = 1 muss es einen Index i3 < i geben mit Aiq, i3] = 1
und Alig, i3] = 0, wobei wir i3 moglichst klein wéhlen.

Falls nun Alig, i3] = 1 ist, haben wir einen induzierten Kreis
GlWig, Wiy, Uiy, Wiy] = (Uig, Wiy, Uiy, Ui,) der Lange 4 in G gefunden. An-
dernfalls muss es wegen Alig, i3] = 0 und A[iy, i3] = 1 einen Index

iy < i3 geben mit Alis,iq] = 1 und Aliy, 4] = 0, wobei wir iy wieder

moglichst klein wahlen. Da spatestens fiir i, = 1 kein Index i1 < i

existiert, also Alix_1,ix] = 1 sein muss, erhalten wir eine Indexfolge

1< <o <4y < ig mit

(a) A[io, Zl} = A[ij,’ij+2] = A[?:kfl, Zk] =1 fir j = 0, R ,k — 2 und

(b) A[io, 23] = A[Z'j,’l'j+1] = A[’ij,?:j+3] == A[’l'kfg,’l'kfl] =0 fur
j=1,...,k—3und

(C) A[Zj,l] = A[ij_l,l] firgj=1,...,k—3und [ < ij+2.

Die Eigenschaften (a) und (b) ergeben sich direkt aus der Konstruk-

tion der Folge. Eigenschaft (c¢) folgt aus der minimalen Wahl der

Indizes 1i3,...,7; und impliziert fir r = 3,...,k die Gleichungen

Alig, i) = Alir, i) = -+ = Aliy_3,i,], indem wir j = 1,...,r — 3

und [ = i, setzen. Da zudem Al[i,_3,4,| geméaB Eigenschaft (b) fiir

r=3,...,k den Wert 0 hat, folgt fiir alle Paare 0 < 5 < r < k die

Aquivalenz

Alij,iy] =1 r=j+2o0der j=0Ar=1oder j=k—1Ar=k.
Folglich ist Glu,,, ..., u;,] ein Kreis der Lange k +1 > 4. [ |

Damit haben wir einen Linearzeitalgorithmus, der fiir chordale Gra-
phen eine PEO berechnet. Da auch greedy-color linear zeitbe-
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schrankt ist, konnen wir den Algorithmus chordal-color in Linear-
zeit implementieren. Diesen Algorithmus koénnen wir leicht noch so
modifizieren, dass er zusammen mit der gefundenen k-Farbung entwe-
der eine Clique C der Grofle k (als Zertifikat, dass x(G) = k = w(G)
ist) oder einen induzierten Kreis der Liange > 4 (als Zertifikat, dass
G nicht chordal ist) ausgibt.

2.3 Der Satz von Brooks

Satz 2.43 (Brooks 1941). Fir einen zusammenhdngenden Graphen
G gilt x(G) = A(G) + 1 genau dann, wenn G = K, fir einn > 1
oder G = C,, fiir ein ungerades n > 3 ist.

Beweis. Es ist klar, dass die Graphen G = K, firn > 1 und G = C),
fiir ungerades n > 3 die chromatische Zahl A(G) + 1 haben. Fiir
A(G) < 2 ist leicht zu sehen, dass dies auch die einzigen zusammen-
hdngenden Graphen mit dieser Eigenschaft sind.

Fiir zusammenhédngende Graphen G # K, mit A(G) > 3 zeigen wir
induktiv iiber n = n(G), dass x(G) < A(G) ist. Fir n <4 (IA) ist
dies klar, da wir den K, ausgeschlossen haben. Fiir den IS sei also
G # K, ein zusammenhéangender Graph mit n > 5 Knoten und sei
d:=A(G) > 3.

Falls 6(G) < d ist, hat G’ = G — u eine d-Féarbung ¢, wobei u ein
Knoten vom Grad deg(u) < d ist (man beachte, dass 6(G’) < d und
somit G’ nicht d-regulér ist, was nach IV x(G) < d impliziert). Da
deg(u) < d ist, lasst sich ¢’ zu einer d-Farbung ¢ von G erweitern.
Falls x(G) < 1 ist, hat G k > 2 Blocke By, ... By, die nicht d-regular
und somit d-farbbar sind. Dies impliziert x(G) < d, da wir die d-
Farbungen der Blocke ausgehend von einem beliebigen Wurzelblock
des BC-Baums hin zu den Blattblocken in eine d-Férbung fir G
transformieren konnen.

Es bleibt also der Fall, dass G d-regular und «(G) > 2 ist.
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Behauptung 2.44. In G gibt es einen Knoten uy, der zwei Nachbarn
a und b mit {a,b} € E hat, so dass G — {a,b} zusammenhdingend ist.

Da G # K, ist, gibt es einen Knoten z, der zwei Nachbarn y, z € N(x)
mit {y, z} € E hat.

e Falls G — y 2-zusammenhéngend ist, ist G — {y, z} zusammenhan-
gend und die Behauptung folgt fir u; = .

e [st G — y nicht 2-zusammenhéngend, d.h. G — y hat mindestens
zwei Blocke, dann hat der BC-Baum T von G — y mindestens zwei
Blatter. Da k(G) > 2 ist, ist y in G zu mindestens einem Knoten in
jedem Blatt von 1" benachbart, der kein Schnittknoten ist. Wéhlen
wir fiir @ und b zwei dieser Knoten in verschiedenen Blattern, so
ist G — {a,b} zusammenhingend und somit die Behauptung fiir
up = y bewiesen.

Sei also u; ein Knoten, der zwei Nachbarn a und b mit {a,b} ¢ E
hat, so dass G — {a, b} zusammenhéngend ist. Durchsuchen wir den
Graphen G — {a, b} ausgehend vom Startknoten w;, so erhalten wir
eine Suchordnung (uy, ..., u,_2). Starten wir nun greedy-color mit
der Reihenfolge (a,b,u, _o,...,u1), so erhalten wir eine d-Farbung
¢ fir G mit c¢(a) = ¢(b) = 1. Zudem hat Knoten wu;, i > 1, einen
Nachbarn u; mit j < 4, weshalb c(u;) < deg(u;) < d ist. Zuletzt erhélt
auch u; eine Farbe ¢(uy) < d, da die Nachbarn a und b von u; dieselbe
Farbe haben. [ ]

In den Ubungen wird folgende Folgerung aus dem Beweis des Satzes
von Brooks gezeigt.

Korollar 2.45. Es gibt einen Linearzeitalgorithmus, der fir jeden
Graphen G mit A(G) < 3 eine x(G)-Fdarbung berechnet.
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2.4 Kantenfiarbungen

Neben der Frage, mit wievielen Farben die Knoten eines Graphen
gefarbt werden konnen, muss bei vielen Anwendungen auch eine
Kantenfarbung mit moglichst wenigen Farben gefunden werden.

Definition 2.46. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung c: E — N heifst Kantenfirbung von G, wenn
c(e) # c(€') fir allee #¢ € E mitene #0 gilt.

b) G heifit k-kantenfidrbbar, falls eine Kantenfirbung c: E —
{1,...,k} existiert.

¢) Die kantenchromatische Zahl oder der chromatische Index
von G ist

X' (G) = min{k € N | G ist k-kantenfirbbar}.

Eine k-Kantenfarbung c¢: E — N muss also zwei Kanten, die einen
Knoten gemeinsam haben, verschiedene Farben zuweisen. Daher bildet
jede Farbklasse E; = {e € E | f(e) = i} ein Matching von G, d.h. ¢
zerlegt E in k disjunkte Matchings. Umgekehrt liefert jede Zerlegung
von F in k disjunkte Matchings eine k-Kantenfirbung von G.

Neben Graphen treten in manchen Anwendungen auch Multigra-
phen G = (V, E) auf. Diese kénnen mehr als eine Kante zwischen

zwei Knoten haben, d.h. F ist eine Multimenge auf (g)

Eine Multimenge A auf einer Grundmenge M lasst sich durch ei-
ne Funktion vs: M — N beschreiben, wobei v4(a) die Anzahl der
Vorkommen des Elements a in A angibt. Die Machtigkeit von A ist
|A| = ZaeA UA<a>'

Wie bei Graphen gehen wir davon aus, dass jede Kante e = {u, v}
eines Multigraphen G = (V, E) zwei verschiedene Endpunkte u # v
hat, d.h. G ist schlingenfrei. In G gibt es genau vg(e) = vg(u,v)
Kanten zwischen den beiden Knoten v und v. Die Zahl vg(e) wird
auch als (Kanten-)Vielfachheit von e bezeichnet. Ein wichtiger
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Parameter von Multigraphen ist die maximale Kantenvielfachheit

0(G) = max vi(e),

die auch als (Graph-)Vielfachheit von G bezeichnet wird. Der
Grad eines Knotens € V ist degg(u) = Y,en(w) ve(u,v) und der
Maximalgrad von G ist wie iiblich A(G) = max,ey degq(u).

Eine k-Kantenfarbung fiir einen Multigraphen G = (V, E) lasst sich
2) eine
Menge c(e) C {1,...,k} von |c(e)| = vg(e) Farben zuordnet, so dass
cle)Ne(e) =10 fir allee # ¢ € (g) mit e N e’ # () gilt.

Beispiel 2.47.

durch eine Funktion ¢ beschreiben, die jeder Kante e &€ (V

2, n gerade,
3, sonst,

X' (K,) =2[n/2] 1= {

n—1, n gerade,

n, sonst.

Das Kantenfarbungsproblem fiir einen Graphen G lésst sich leicht auf
das Knotenfarbungsproblem fiir einen Graphen G’ reduzieren.

Definition 2.48. Sei G' = (V, E') ein Graph mit m > 1 Kanten.
Dann heifit der Graph G = L(G") = (E', E) mit

E = {{e,e’} € (g)

der Kantengraph oder Line-Graph von G'.

eﬂe’#@}

Ist G’ ein Multigraph, so verwenden wir als Knotenmenge von L(G") ei-
ne Menge Vi mit der Méachtigkeit |Vg/ | = |E'|, die vg(e) verschiedene
Kopien €', ..., e"s(® jeder Kante e € E’ enthilt. Die folgenden Be-
ziehungen zwischen einem (Multi-)Graphen G’ und dem zugehorigen
Line-Graphen lassen sich leicht verifizieren.



2 Férben von Graphen

Proposition 2.49. Fir den Line-Graphen G = L(G') eines Multi-
graphen G’ gilt:

Damit erhalten wir aus den Abschétzungen w(G) < x(G) < A(G) +1
und n/a(G) < x(G) < n — «a(G) + 1 die folgenden Abschitzungen
fur x'(G").

Lemma 2.50. Fur jeden Multigraphen mit m > 1 Kanten gilt
A<Y <2A—Tundm/p<x' <m-—pu+1.

Korollar 2.51. Fiir jeden requldren Multigraphen mit einer ungera-
den Knotenzahl und m > 1 Kanten gilt Y’ > A +1> 3.

Beweis. Wegen p < (n —1)/2 und m = nA/2 folgt x' > m/u >
nA/(n —1) > A. Da n ungerade und m > 1 ist, folgt A > 2. [

Als néchstes geben wir einen effizienten Algorithmus an, der fiir jeden
Graphen eine (A + 1)-Kantenfarbung berechnet. Hierfir benétigen
wir folgende Begriffe.

Definition 2.52. Sei G = (V,E) ein Graph und sei ¢c: E —

{1,...,k} eine k-Kantenfirbung von G. Weiter sei F' C {1,...,k}

und es gelte 1 < i # j <k.

a) Ein Nachbar v von u heifst F-Nachbar von u, wenn c¢(u,v) € F
ist. Im Fall F = {i} nennen wir v auch den i-Nachbarn von u.

b) Die Farbe i ist frei an einem Knoten u (kurz i € free(u)), falls u
keinen i-Nachbarn hat.

2.4 Kantenfarbungen

¢) Der Graph G;; = (V, E;;) mit E;; = {e cE ’ cle) € {i,j}} heifst
(i, )-Subgraph von G.
d) Jede Komponente G' von G;; heif$t (i, j)-Komponente von G.

Je nachdem ob G ein Pfad oder ein Kreis ist, nennen wir G' auch
einen (¢, j)-Pfad bzw. (2, 7)-Kreis in G (bzgl. c).

Man sieht leicht, dass jede (i, j)-Komponente G’ von G entweder ein
Pfad der Lénge [ > 0 oder ein Kreis gerader Lange ist. Zudem koénnen
wir aus c¢ eine weitere k-Kantenfarbung ¢’ von G gewinnen, indem wir
die beiden Farben i und j entlang der Kanten von G’ vertauschen.

Satz 2.53 (Vizing 1964). Fir jeden Graphen G gilt x'(G) <
mineep A(G —e) +1 < A(G) + 1.

Beweis. Wir fiihren Induktion iiber m. Der TA m = 0 ist klar.
Fir den IS sei G = (V,E’) ein Graph mit m + 1 Kanten und
sei k = mineep A(G' — €) + 1. Wir wihlen eine beliebige Kante
er = {yo, 11} € E’', so dass der Graph G = G’ — e; den Maximal-
grad A(G) = k — 1 hat. Dann hat G nach IV eine k-Kantenfarbung
c: E—{1,...,k}. Da zudem unter ¢ an jedem Knoten u mindestens
k — degs(u) > 1 Farben frei sind, folgt free(u) # 0 fir alle u € V.
Betrachte nun folgende Prozeduren.

Prozedur expand(G,c,yo,y1)

(=1

wahle oy € free(y;)

while oy & free(yo) U{ay,...,ap_1} do
sei ys41 der ay-Nachbar von yg
wahle a4y € free(yesq)

6 (=0+1

wahle 0 <4 < ¢ minimal mit ay € free(yo) U {a, ..., a;}

if i =0 then // ay € free(yo)
recolor(¢, ay)

0 else // ay = q

[ N A I

o
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11 wahle eine Farbe o € free(yo)

12 berechne den (ay, a;)-Pfad P mit Startknoten y, und
13 vertausche dabei die Farben oy und «; entlang P

14 sei z der Endknoten von P // z = y, ist moglich

15 case
16 z =1p: recolor(i, ;)
17 z =y, : recolor(i,ap)

18 else recolor(¢, o)
19 return c

Prozedur recolor(i,«)

1 for j:=1toi—1do c(yo,y;) ==
2 C(Z/Ouyi) =

Wir verifizieren, dass die Abbildung ¢ eine Kantenfarbung von G’ ist.

Fall 1 o, € free(yo): Da die Farbe ay an yo und fir j = 1,...,¢ die
Farbe a; an y; frei ist, konnen wir {yo, y;} mit a; farben.

Fall 2 z = yy: In diesem Fall erreicht P den Knoten z = y, iiber die
Kante {yo, y;i1+1}. Nach dem Vertauschen von «y und «; entlang P
hat diese Kante dann die Farbe «g, weshalb wir die Kanten {yo, y;}
fir j =1,...,¢ mit a; farben konnen.

Fall 3 =z = y;: Da «a; € free(y;) N free(y,) ist, missen die Endkanten
von P mit aq gefarbt sein. Nach Vertauschen von ag und «; entlang
P ist daher die Farbe ag an yy und y; frei, weshalb wir die Kante
{yo,y;} mit o und die Kanten {yo,y;} fiir j =1,...,7 — 1 mit a;
farben konnen.

Fall 4 In allen anderen Fallen (d.h. z & {yo,v;}) ist die Farbe «q
nach Vertauschen von ag und «; entlang P neben gy, auch an y, frei,
weshalb wir die Kante {yo, y¢} mit aq farben kénnen. Zudem bleibt
die Farbe o fiir j =1,...,£—1 an y; frei (wegen a; & {ap, o; } gilt
dies auch im Fall y; = z). Daher kénnen wir die Kanten {yo, y;}
fir j =1,...,¢ —1 mit o; farben. [ |
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2.4 Kantenfarbungen

Da die Prozedur expand mit Hilfe geeigneter Datenstrukturen so
implementiert werden kann, dass jeder Aufruf Zeit O(n) erfordert,
und diese Prozedur m-mal aufgerufen wird, um alle m Kanten eines
gegebenen Graphen G zu farben, ergibt sich eine Gesamtlaufzeit von
O(nm).

Fiir einen Graphen G kann x’(G) nur einen der beiden Werte A(G)
oder A(G) + 1 annehmen. Graphen G mit x'(G) = A(G) heiflen
Klasse 1 und Graphen G mit x'(G) = A(G) + 1 heiBen Klasse 2.

Neben allen bipartiten Graphen sind auch die vollstandigen Graphen
K, fir gerades n Klasse 1. Zudem sind alle planaren Graphen G mit
A(G) > 7 Klasse 1. Fiir 2 < d < 5 existieren planare Graphen G mit
A(G) = d, die Klasse 2 sind. Fir d = 6 ist dies offen.

Das Problem, fiir einen gegebenen Graphen GG zu entscheiden, ob er
Klasse 1 ist (also X'(G) < A(G) gilt), ist NP-vollstandig.
Der Satz von Vizing lasst sich wie folgt auf Multigraphen verallgemei-

nern.

Satz 2.54 (Vizing 1964). Fir jeden Multigraphen G = (V, E) gilt
X'(G) < maxy yev(deg(u) + vp(u,v)) < A(G) + v(G).

In den Ubungen leiten wir noch die folgenden oberen Schranken her.

Korollar 2.55. Fir jeden Multigraphen G = (V, E) gilt:
(1) X'(G) < 3A(G)/2,
(ii) falls G bipartit (d.h. x(G) < 2) ist, dann ist X' (G) = A(G).



3 Fliisse in Netzwerken

Die Antisymmetrie impliziert, dass f(u,u) = 0 fir alle u € V' ist, d.h.
wir konnen annehmen, dass G schlingenfrei und somit ¢(u, u) = 0 fir
alle Knoten u € V ist. Die folgende Abbildung zeigt einen Fluss f in

3 Fliisse in Netzwerken
12/12

Definition 3.1. Fin Netzwerk N = (V, E. s,t,c) besteht aus einem
gerichteten Graphen G = (V, E) mit einer Quelle s € V' und einer
Senke t € V sowie einer Kapazitatsfunktion ¢ : V x V — N.
Zudem muss jede Kante (u,v) € E positive Kapazitit c(u,v) > 0 und

jede Nichtkante (u,v) ¢ E muss die Kapazitit c(u,v) =0 haben. u s a b ¢ d t
Fr) |18 12 17 10 9 0
Die folgende Abbildung zeigt ein Netzwerk N. 3/3 f(w)| 3 12 17 10 9 15

3.1 Der Ford-Fulkerson-Algorithmus

Wie kann man fiir einen Fluss f in einem Netzwerk N entscheiden, ob
er vergroflert werden kann? Diese Frage ist leicht zu beantworten, falls
fauf V x V den Wert 0 hat: In diesem Fall geniigt es, in G = (V, E)
einen Pfad von s nach ¢ zu finden. Andernfalls kénnen wir zu N und
f ein Netzwerk Ny konstruieren, so dass f genau dann vergrofiert
werden kann, wenn sich in Ny der Nullfluss vergréBern lasst.

Definition 3.2.

Definition 3.3. Set N = (V, E, st n Net k und sei )
a) Ein Fluss in N st eine Funktion f:V x V — Z mit crtion ° (V. E,s,1,¢) ein Netzwerk und sei f ein

Fluss in N. Das zugeordnete Restnetzwerk ist Ny = (V, Ey, s,t, cy)

fu,v) < c(u,v), (Kapazitdtsbedingung) mit der Kapazitdt

flu,v) = —f(v,u), (Antisymmetrie)

>ovey flu,v) =0 fir alle w € V \ {s,t} (Kontinuitdt) es(u,v) = e, v) = f(u,v)
b) Der Fluss in den Knoten w ist f~(u) = Y,y max{0, f(v,u)}. und der Kantenmenge

¢) Der Fluss aus u ist fT(u) =Y ,cy max{0, f(u,v)}.

Ef = VxV .
d) Die GréBe von f ist |f| = [*(s) — [~ (s) = Yuev f(5,0). 7 =A{(w,v) €V XV |ep(u,v) > 0}

Zum Beispiel fiihrt obiger Fluss auf das folgende Restnetzwerk Ny:
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3 Fliisse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

Es ist leicht zu sehen, dass fp tatsachlich ein Fluss in Ny ist. Durch Ad-
dition der beiden Fliisse f und fp erhalten wir einen Fluss f' = f+ fp
in N der GroBe |f'| = |f| + |fp| = |f| + c(P) > |f].

Fluss f: Fluss ' = f + fp:

11/16

Definition 3.4. Sei Ny = (V, Ey,s,t,c¢) ein Restnetzwerk. Dann
heifst jeder s-t-Pfad P in (V, E;) Zunahmepfad in N;. Die Kapa-
zitdt von P in Ny ist

cs(P) = min{cs(u,v) | (u,v) liegt auf P}

3/3

und der zu P gehorige Fluss in Ny ist

c;(P), (u, v) liegt auf P, Nun kénnen wir den Ford-Fulkerson-Algorithmus angeben.

fr(u,v) = § —c;(P), (v,u) liegt auf P, Algorithmus Ford-Fulkerson(V, E,s,t, c)
0, sonst. . for all (u,v) € EUE® do

2 f(u,v) =0

P = (uy,...,uy) ist also genau dann ein Zunahmepfad in Ny, falls 5 while es gibt einen Zunahmepfad P in N; do

e uy = s und u =t ist, 4 f=f+Tp

e die Knoten uy, ..., u; paarweise verschieden sind

o und cp(u;,uip1) >0 firi=0,...,k— 1 ist. Beispiel 3.5. Fir den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

Die folgende Abbildung zeigt den zum Zunahmepfad P = s,c¢,b,t
gehorigen Fluss fp in Ny. Die Kapazitit von P ist ¢y (P) = 4.

In diesem existiert kein Zunahmepfad mehr. <
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Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatsach-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Ny keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benotigen wir den Begriff des Schnitts.

Definition 3.6. Sei N = (V, E,s,t,c¢) ein Netzwerk und sei ) C
S C V. Dann heifit die Menge E(S) = {(u,v) € E |u € S,v ¢ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazitit eines Schnittes S ist

> e(u,v).

ueSvg¢S

c(S) =

Ist f ein Fluss in N, so heifst

f(S): Z f(uvv>

ueS,v¢sS

der Nettofluss (oder einfach Fluss) durch den Schnitt S. Ist
ue€ S undv ¢S, soheifst S auch u-v-Schnitt.

Beispiel 3.7. Betrachte folgenden Schnitt S = {s,a,c} in N:

12/12

Dieser Schnitt hat die Kapazitdt

c(S) =c(a,b) +c(e,d) =124+9 =21
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und der Fluss f durch ihn ist
f(S) = f(a,b) + f(c,0) + f(c,d) + f(s,d)
=12—-3+9-3
= 15.
Dagegen hat der Schnitt S" = {s.a,c,d}

die Kapazitit

c(S") =e(a,b) + ¢(d,b) + c(d,t) =12+5+1=18

= ['(a,b) + f(d,b) + f(d,t) = f'(),
die mit dem Fluss f' durch S’ tibereinstimmt. N
Lemma 3.8. Fliir jeden s-t-Schnitt S und jeden Fluss f gilt
[f1 = F(5) < c(S).

Beweis. Wir zeigen zuerst die Ungleichung f(S) < ¢(S). Wegen
f(u,v) < c(u,v) fur alle (u,v) € V x V folgt

fS) = Y flu,v) < > clu,v) = ¢S).
u€S,w¢S ueS,ve¢S
Die Gleichheit |f| = f(S) zeigen wir durch Induktion tiber k£ = |S|.
k = 1: In diesem Fall ist S = {s} und somit

|f’ = Zf(S,U) = Zf(sav) - f(S)

v#£S
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k—1~>k: Sei S ein Schnitt mit |S| =k > 1 und sei w € S — {s}.
Betrachte den Schnitt S” = S — {w}. Dann gilt

[ = > fluv)= > fluv)+) flww)
u€S,weS ueS’ ¢S v¢S
und
f8)="> flwv)y= > fluo)+ > fluw).
ueS’ wg s’ ueS’ vgsS ueS’

Daher folgt

F(S) = F(8) = Y flw,) = 3 flww) =Y f(w,v) =0,

vgS ues’ vFEW

Nach Induktionsvoraussetzung folgt somit f(S) = f(S') = |f|. W

Satz 3.9 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V, E, s,t,c). Dann sind folgende Aussagen dquivalent:

1. f ist mazimal, d.h. fir jeden Fluss ' in N gilt |f'| < |f].
2. In Ny emistiert kein Zunahmepfad.
3. Es gibt einen s-t-Schnitt S in N mit ¢(S) = | f].

Beweis. Die Implikation ,, 7 = 2“ ist klar, da die Existenz eines Zu-
nahmepfads in Ny zu einer VergroBerung von f fithren wiirde.

Fiir die Implikation ,,2 = 3 betrachten wir den Schnitt
S ={u eV |uistin N von s aus erreichbar}.

Da in Ny kein Zunahmepfad existiert, gilt dann
e s 5, t¢ S und
o ci(u,v)=0firalleue Sundv ¢ S.
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Wegen cf(u,v) = c(u,v) — f(u,v) folgt somit

fl=f0S)= > fluv)= > cluv)=cS).
u€S, ¢S u€S,weS
Die Implikation ,,5 = I1“ ergibt sich aus der Tatsache, dass im Fall
c(S) = |f] fur jeden Fluss f" die Abschétzung |f'| = f'(S) < ¢(S) =
| f] gilt. [ |

Der obige Satz gilt auch fiir Netzwerke mit Kapazitaten in RT.

Sei ¢g = ¢(S) die Kapazitat des Schnittes S = {s}. Dann durchlauft
der Ford-Fulkerson-Algorithmus die while-Schleife hochstens co-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Ny und danach ein
Zunahmepfad in Ny zu berechnen.

Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P dndert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benétigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(co(n + m)) fihrt. Da der Wert von ¢, jedoch exponentiell in der
Léange der Eingabe (also der Beschreibung des Netzwerkes V) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitaten in R* kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siche Ubungen).

Bei nebenstehendem Netzwerk beno-
tigt Ford-Fulkerson zur Bestimmung
des Maximalflusses abhangig von der
Wahl der Zunahmepfade zwischen 2
und 2'* Schleifendurchliufe.

Im giinstigsten Fall wird nédmlich ausgehend vom Nullfluss f; zu-
erst der Zunahmepfad P, = (s, a,t) mit der Kapazitit 2!° und dann
im Restnetzwerk Ny, der Pfad P, = (s,b,¢) mit der Kapazitat 2'°
gewdhlt.

Im ungtinstigsten Fall werden abwechselnd die beiden Zunahmepfade
P, = (s,a,b,t) und P, = (s,b,a,t) (also P, = P, fiir ungerades ¢ und
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P, = P, fur gerades i) mit der Kapazitat 1 gewéahlt. Dies fithrt auf
insgesamt 2! Schleifendurchliufe (siehe nebenstehende Tabelle).

Nicht nur in diesem Beispiel lasst sich die exponentielle Laufzeit wie
folgt vermeiden:

Man betrachtet nur Zunahmepfade mit einer geeignet gewéahlten
Mindestkapazitat. Dies fithrt auf eine Laufzeit, die polynomiell in
n, m und log ¢y ist (sieche Ubungen).

Man bestimmt in jeder Iteration einen kiirzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n 4+ m). Diese
Vorgehensweise fithrt auf den Edmonds-Karp-Algorithmus, der eine
Laufzeit von O(nm?) hat (unabhéngig von der Kapazitéitsfunktion).

Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk Ny,
der nur Kanten benutzt, die auf einem kiirzesten s-t-Pfad in /Ny
liegen. Zudem hat g die Eigenschaft, dass ¢ auf jedem kiirzesten
s-t-Pfad P mindestens eine Kante e € P sdttigt (d.h. der Fluss g(e)
durch e schopft die Restkapazitéit cs(e) von e vollkommen aus),
weshalb diese Kante in der néchsten Iteration fehlt. Dies fithrt auf
den Algorithmus von Dinitz. Da die Linge der kiirzesten s-t-Pfade
im Restnetzwerk in jeder Iteration um mindestens 1 zunimmt, liegt
nach spétestens n — 1 Iterationen ein maximaler Fluss vor. Di-
nitz hat gezeigt, dass der Fluss ¢ in Zeit O(nm) bestimmt werden
kann. Folglich hat der Algorithmus von Dinitz eine Laufzeit von
O(n*m). Malhotra, Kumar und Maheswari fanden spéter einen
O(n?)-Algorithmus zur Bestimmung von g. Damit lisst sich die
Gesamtlaufzeit auf O(n?) verbessern.

3.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus ist eine spezielle Form von Ford-
Fulkerson, die nur Zunahmepfade mit moglichst wenigen Kanten
benutzt, welche mittels Breitensuche bestimmt werden.
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3.2 Der Edmonds-Karp-Algorithmus

Fluss fp, in Ny,

‘ neuer Fluss f;;; in N ‘

1
2
2 — 1,
1<j<2w
23,
1<j<2%
210/210 @ 210/210
11
2 (5] D)

210/210 210/210

0,
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Algorithmus Edmonds-Karp(V, E, s,t,c)

1
2
3
1

5

6

for all (u,v) € EUFE® do
f(u,v):=0
repeat
P := zunahmepfad(f)
if P # | then addierepfad(f, P)
until P = 1

Prozedur zunahmepfad(f)

1
2
3
1

for all ve V\ {s} do
parent(v) := L
parent(s) :=s
Q= (s)
while Q) # () A parent(t) = L do
u := dequeue(Q)
for all ¢ = (u,v) € EUFE" do
if c(e) — f(e) > 0 A parent(v) = L then
d(e) = cle) — f(e)
parent(v) :=u
enqueue(Q,v)
if parent(tf) = L then
P:=_1
else
P := parent-Pfad von s nach ¢
cf(P) :==min{d (e) | e € P}
return P

Prozedur addierepfad(f,P)

1
2
3

for all e € P do
fle) = f(e) +¢4(P)
f(ef) = f(e™) —¢s(P)
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Die Prozedur zunahmepfad(f) berechnet im Restnetzwerk Ny einen
(gerichteten) s-t-Pfad P, sofern ein solcher existiert. Dies ist genau
dann der Fall, wenn die while-Schleife mit parent(¢) # L abbricht.
Der Pfad P lasst sich dann mittels parent wie folgt zuriickverfolgen.
Sei

t, i=0,
U; =
parent(u;—1), @>0und u;—1 # s

und sei £ = min{i¢ > 0 | w; = s}. Dann ist uy = s und P = (uy, . .., uo)
ein s-t-Pfad, den wir als den parent-Pfad von s nach t bezeichnen.

Satz 3.10. Der Edmonds-Karp-Algorithmus durchliuft die repeat-

Schleife hochstens (nm/2)-mal und hat somit eine Laufzeit von
O(nm?).

Beweis. Sei k die Anzahl der Schleifendurchlaufe und seien P, ..., Py
die Zunahmepfade, die der Algorithmus bei Eingabe N berechnet, d.h.
fix1 = fi + fp,, wobei f; der triviale Nullfluss ist. Eine Kante e auf
P, heifit kritisch fiir P, falls der Fluss fp, im Restnetzwerk Ny, die
Kante e sadttigt, d.h. fp,(e) = cy,(e). Man beachte, dass eine kritische
Kante e fiir P; wegen cy,,,(e) = ¢, (e) — fp,(e) = 0 nicht in Ny,,, ent-
halten ist, wohl aber die Kante e, da cy,,, (e®) = c(e®) — fis1(ef) =
c(e®) + fir1(e) = c(ef) + c(e) > 0 ist.

Sei d;(u, v) die minimale Lange eines Pfades von u nach v im Restnetz-
werk Ny, und sei [; = d;(s,t) die Lange von P;. Wir zeigen zuerst, dass
die Abstinde jedes Knotens u € V von s und von ¢ beim Ubergang
von Ny, zu Ny, hochstens zu- aber nicht abnehmen. Hierzu beweisen

wir fiir jeden kiirzesten Pfad P = (uy,...,u;) von ug = s nach u; = u

in Ny,,, (dh. dip1(s,up) = h fiir h =0,...,[) die Ungleichungen
di(s,up) < d;j(s,up_1)+1furh=1,...,1.

Falls die Kante e = (uj,—1, u5) auch in Ny, enthalten ist, ist nichts zu

zeigen. Andernfalls muss f;,1(e) # fi(e) sein, d.h. e oder e miissen

auf P, liegen. Da e nicht in Ny, ist, muss e® = (up,, up—1) auf P; liegen.

Da P, ein kiirzester Pfad von s nach t in Ny, ist, folgt d;(s, up—1) =
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di(s,up)+1, was d;(s,up) = di(s,up—1) —1 < di(s, up—1)+1 impliziert.
Nun folgt

di(s,u) <di(s,up—1) + 1< <di(s,s) + 1 =1=di1(s,u).

Vollkommen analog lasst sich d;(u,t) < d;y1(u,t) zeigen, womit wir
folgende Behauptung bewiesen haben.

Behauptung 3.11. Fir jeden Knotenu € V' gilt d;(s,u) < d;41(s,u)
und d;(u,t) < diyq(u,t).

Daraus ergibt sich nun folgende Behauptung.

Behauptung 3.12. Firl <i < j <k gilt: Falls e = (u,v) in P,
und e® = (v,u) in P; enthalten ist, so ist l; > l; + 2.

Da P; und P; kiirzeste Zunahmepfade sind, folgt

[ =dj(s,t) = d;(s,v) +dj(u,t) +1 > d;(s,v) + d;(u, t) +1 = [; + 2.
—_— = —_— =

>d;(s,v) >d; (u,t) di(s,u)+1  di(v,t)+1

Da jeder Zunahmepfad P; mindestens eine kritische Kante enthalt und
EUE hochstens m Kantenpaare der Form {e, e®} enthilt, impliziert
schliellich folgende Behauptung, dass k < mn/2 ist.

Behauptung 3.13. Zwei Kanten e und e® sind zusammen hichstens
n/2-mal kritisch.

Seien P, ..., P, , 11 < --- <1, die Pfade, fiir die eine der Kanten in
{e, e} kritisch ist. Falls ¢’ € {e, e} kritisch fiir P, mit 1 < j < h ist,
dann verschwindet ¢’ aus N fijer Daher muss unabhingig davon, ob ¢
oder e'f kritisch fiir P, ist, ein Pfad Py mit i; < j" <i;,, existieren,
der ¢/ enthilt. Wegen Behauptung 3.11 und Behauptung 3.12 ist
EZ']._H > gj’ > Ei]- + 2. Daher ist

n—1>0, >0, +2(h—1)>1+2h—1)=2h—1,

was h < n/2 impliziert. [
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3.3 Der Algorithmus von Dinitz

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitdten seine Giiltigkeit behélt.

3.3 Der Algorithmus von Dinitz

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von hoéchstens m Zunahmepfaden konstruieren lasst
(siche Ubungen). Es ist nicht bekannt, ob sich solche Pfade in Zeit
O(n+m) bestimmen lassen. Wenn ja, wiirde dies auf eine Gesamtlauf-
zeit von O(n + m?) fithren. Fiir dichte Netzwerke (d.h. m = ©(n?))
hat der Algorithmus von Dinitz die gleiche Laufzeit O(n*m) = O(n?)
und die verbesserte Version ist mit O(n?) in diesem Fall sogar noch
schneller.

Die Analyse der Laufzeit des Edmonds-Karp-Algorithmus beruht auf
der Tatsache, dass der Fluss fp, durch den Zunahmepfad P;, der in
jedem Schleifendurchlauf auf den aktuellen Fluss f; addiert wird, auf
mindestens einem kiirzesten Pfad im Restnetzwerk Ny, eine Kante
sattigt. Dies hat zur Folge, dass nicht mehr als nm/2 Zunahmepfade
P; benotigt werden, um einen maximalen Fluss zu erhalten.

Dagegen addiert der Algorithmus von Dinitz in jedem Schleifendurch-
lauf auf den aktuellen Fluss f; einen Fluss g;, der auf jedem kiirzesten
Pfad im Restnetzwerk Ny, mindestens eine Kante sattigt. Wir werden
sehen, dass maximal n — 1 solche Fliisse g; benotigt werden.

Definition 3.14. Ein Fluss g in einem Netzwerk N = (V, E, s,t,c)
sdttigt eine Kante e € F, falls g(e) = c(e) ist. g heifit blockierend,
falls g mindestens eine Kante auf jedem Pfad P von s nach t sdttigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen s-t-Schnitt S, so dass alle Kanten in F(S) gesittigt sind.
Da jeder Pfad von s nach ¢ mindestens eine Kante in £(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Fiir die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa
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Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sachlich ist g genau dann ein blockierender Fluss in N, wenn es im
Restnetzwerk N, keinen Zunahmepfad gibt, der nur aus Vorwartskan-
ten e € E mit g(e) < c(e) besteht.

Der Algorithmus von Dinitz berechnet anstelle eines kiirzesten Zunah-
mepfades P im aktuellen Restnetzwerk /Ny einen blockierenden Fluss g
im Schichtnetzwerk N}. Dieses enthélt nur diejenigen Kanten von Ny,
die auf einem kiirzesten Pfad mit Startknoten s liegen. Zudem werden
aus N} alle Knoten u # t entfernt, die einen Abstand d(s,u) > d(s,t)
in Ny haben. Der Name riihrt daher, dass jeder Knoten in N} einer
Schicht S; zugeordnet wird.

Definition 3.15. Sei N = (V, E, s,t,¢) ein Netzwerk. Das zugeordne-
te Schichtnetzwerk ist N' = (V' E' s, t,c) mit der Knotenmenge
VIi=5yU---US, und der Kantenmenge

14
E' = U{(U,U)EE‘UESj_l/\UESj}

j=1
sowie der Kapazitdtsfunktion

¢le) = {c(e), e€ F,

0, sonst,

wobei { = 1 + max{d(s,u) < d(s,t) |u eV} und

’ {t}7 g={t
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ist und d(x,y) die Linge eines kiirzesten Pfades von x nach y in N
bezeichnet.

Der Algorithmus von Dinitz arbeitet wie folgt.

Algorithmus Dinitz(N), N = (V, E,s,t,c)
for all (u,v) € EUFE" do

!
2 f(u,v) =0
3 repeat
| S := schichtnetzwerk(N, f)
5 if S# 1 then f:= f+ blockfluss(S)
6 until S = L
Das zum Restnetzwerk Ny = (V,Ey,s,t,c;) gehorige Schicht-
netzwerk S = N; = (V' E},s,t,c}) wird von der Prozedur

schichtnetzwerk(N, f) in Zeit O(n+m) berechnet. Fiir die Berech-
nung eines blockierenden Flusses g im Schichtnetzwerk N} werden wir
zwei Algorithmen angeben: Eine Prozedur blockflussl, deren Lauf-
zeit durch O(nm) und eine Prozedur blockfluss2, deren Laufzeit
durch O(n?) beschrankt ist.

Wir beschreiben zuerst die Prozedur schichtnetzwerk. Diese Pro-
zedur fiihrt in N eine modifizierte Breitensuche mit Startknoten s
durch und speichert dabei in der Menge E’ nicht nur alle Baumkanten,
sondern zusatzlich alle Querkanten (u, v), die auf einem kiirzesten Weg
von s zu v liegen. Die Suche bricht ab, sobald ¢t am Kopf der Schlange
erscheint oder alle von s aus erreichbaren Knoten abgearbeitet sind.

Falls t erreicht wurde, werden aufler der Senke t alle Knoten wu, die
in Ny einen Abstand d(s,u) < d(s,t) von der Quelle s haben, in der
Menge V' zusammengefasst. Zudem werden alle Kanten aus E’ wieder
entfernt, die nicht zwischen zwei Knoten aus V' verlaufen.

Wurde dagegen t nicht erreicht, so existiert in Ny (und damit in

N}) kein (blockierender) Fluss g mit [g| > 0 und somit auch kein
Zunahmepfad in N¢, d.h. f ist maximal.
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Prozedur schichtnetzwerk(N, f)

I E =10

> for all v eV doniv(v) :=n

3 niv(s) :=0; Q:=(s)

i+ while @ # () Ahead(Q) #t do

5 u := dequeue(Q)

¢  for all e= (u,v) € EUE" do

7 if c(e) — f(e) > 0 Aniv(v) > niv(u) then
8 E = FE' U{e}

9 d(e):=c(e) — f(e)

10 if niv(v) > niv(u) + 1 then

11 niv(v) := niv(u) +1

12 enqueue(Q, v)

13 if head(Q)) =t then

14 V'i={veV|niv(v) <niv(t)} U{t}
15 E =FEn{V' xV

16 return (V' E’' s, t,c)

17 else return L

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in £ U E® hochstens einmal besucht wird und jeder Besuch mit einem
konstanten Zeitaufwand verbunden ist.

Nun kommen wir zur Beschreibung der Prozedur blockflussl. Be-
ginnend mit dem Nullfluss g bestimmt diese in der repeat-Schleife
mittels Tiefensuche einen s-t-Pfad P im Schichtnetzwerk N ]’e, addiert
den Fluss (f + ¢g)p zum aktuellen Fluss g hinzu, aktualisiert die
Restkapazitiaten aller Kanten e auf dem Pfad P und entfernt aus E’
die von g geséittigten Kanten. Der Pfad P lasst sich hierbei direkt
aus dem Inhalt des Kellers K rekonstruieren, weshalb er K-Pfad
genannt wird. Man beachte, dass die Kapazitiaten der Kanten e auf
dem Pfad P nur in Vorwartsrichtung verkleinert, aber anders als bei
Ford-Fulkerson und Edmonds-Karp nicht auch sofort in Riickwérts-
richtung angepasst werden. Dies geschieht erst, nachdem ¢ zu einem
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blockierenden Fluss angewachsen ist.

Falls die Tiefensuche in einem Knoten u # s in einer Sackgasse endet
(weil E" keine von u aus weiterfiihrenden Kanten enthélt), wird die
zuletzt besuchte Kante (v, u) ebenfalls aus £’ entfernt und die Tiefen-
suche vom Startpunkt v’ dieser Kante fortgesetzt (back tracking). Die
Prozedur blockfluss1 bricht ab, sobald alle Kanten mit Startknoten
s aus F' entfernt wurden und somit in (V’, E') keine Pfade mehr von
s nach ¢ existieren (d.h. g ist ein blockierender Fluss in S).

Prozedur blockflussl(S), S = (V' F' s,t,c)
for all e € F'UE'" do g(e) :==0

1

> ui=s; K= (s)

3 done := false

I  repeat

5 if 3 e = (u,v) € E' then
6 push(K,v)

7 d(e) .= (e) —g(e)

8 U=

9 elsif v =t then
10 P := K-Pfad von s nach t

11 c,(P) = min{c"(e) | e € P}

12 for all e€ P do

13 if ¢’(e) = c,(P) then E' := £’ \ {e}
b gle) = g(e) + (P g(eR) = —gle)
15 u:=s; K :=(s)

16 elsif u # s then

17 pop(K)

18 u = top(K)

19 E = FE\{(v,u)}

20 u =

21 else done := true
22 until done
23 return g
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Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus £’ entfernten Kanten nach spéatestens n Schleifen-
durchlaufen um 1 erhoht.

Satz 3.16. Der Algorithmus von Dinitz durchlduft die while-Schleife
hochstens (n — 1)-mal.

Bewers. Sei f; der Nullfluss in N und seien ¢y, . .., gx die blockieren-
den Fliisse, die der Dinitz-Algorithmus der Reihe nach berechnet, d.h.
fix1 = fi + gi- Zudem sei d;(u,v) die minimale Lange eines Pfades
von u nach v im Restnetzwerk Ny, und sei [; = d;(s,t). Wir zeigen,
dass [; < ;41 ist. Da ly > 1 und [, <n — 1 ist, folgt k <n — 1.
Hierzu beweisen wir zunéchst, dass fiir jeden kiirzesten Pfad P =
(ug, ..., w) von ug = s nach w; = win Ny, (d.h. diy1(s,up) = h) fir
h=1,...,l folgende (Un)gleichungen gelten:

IN

d’i (57 Uh)
di(87 Uh) -
Es ist klar, dass (3.1) gilt, falls die Kante e = (uj,_1,us) auch in Ny,
enthalten ist. Andernfalls ist f;11(e) # fi(e), d.h. gi(e) # 0. Da e
nicht in Ny, und somit auch nicht in N} enthalten ist, muss e in
Nj, sein. Da N nur Kanten auf kiirzesten Pfaden mit Startknoten
s enthalt, folgt d;(s,up—1) = d;(s,up) + 1, was (3.2) impliziert. Aus
(3.1 + 3.2) folgt

di(s,up—1) + 1, falls (up—1,up) € B,
Z’(S,Uh_l) — 1, falls (uh_l,uh) g Efi

di(s,w) < di(s,u—1) +1 < - <di(s,s) +1=1=di11(s,u)

und wir haben folgende Behauptung bewiesen.

Behauptung 3.17. Fir jeden Knoten w € V gilt di(s,u) <
dit1(s,u).

Um nun zu zeigen, dass [; < [y fir ¢ = 1,...)k — 1 gilt, sei

P = (ug,u1,...,u,,,) ein kiirzester Pfad von s = uy nach t = v,
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in Ny,,, (und somit auch in N} ). Mit Behauptung 3.17 folgt, dass

di(s,up) < dip1(s,up) = h fir h =0,..., ;41 ist. Wir unterscheiden

zwei Falle.

e Wenn alle Knoten wu;, in N J,c enthalten sind, muss ein h mit
di(s,up) < di(s,up—1) existieren. Wirde namlich d;(s,up) >
d;(s,up_1) gelten, so wéren die Kanten (uj,_q,uy) fir h=1,... A
wegen (3.2) in Ny, enthalten und somit d;(s, us) = d;(s, up—1) + 1.
Dies hatte zur Folge, dass P ein kiirzester Pfad von s nach ¢ in IV,
und somit ein s-t-Pfad in N}, wiére, der von g; nicht blockiert wird.
Da aber g; blockierend ist, muss also ein h mit d;(s, up) < d;(s,up_1)
existieren und es folgt unter Verwendung von (3.1) 4 3.2):

li=di(s,t) < di(s,un) +lix1 — h < di(s,up—1) +liza —h <liy
—_——

<d;iy1(s,up—1)=h—1

e Falls mindestens ein Knoten vy, nicht in NV J'cl enthalten ist, sei u;, der
erste solche Knoten auf P. Da uy, # t ist, folgt d; 11 (s, un) = h < li11.
Zudem liegt die Kante e = (uj_1,u;) nicht nur in Ny, ,,, sondern
wegen fi11(e) = fi(e) (da weder e noch e zu N}, gehoren) auch in
Ny,. Da somit up—1 in N und e in Ny, ist, kann uj, nur aus dem
Grund nicht zu N} gehéren, dass d;(s, un) = d;(s, ) ist. Daher folgt
unter Verwendung von (3.1 + 3.2) sowie Behauptung 3.17 auch in
diesem Fall die Ungleichung [; < [;41:

li = d;(s,t) = di(s,up) < di(S,up—1) +1 = dipa(s,up) <liz: W
N ——
<dit1(s,un—1)

Korollar 3.18. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockflussl einen mazimalen Fluss in Zeit O(n*m).

Die Prozedur blockfluss2 benotigt nur Zeit O(n?), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N} zu berechnen, was auf eine
Gesamtlaufzeit des Algorithmus von Dinitz von O(n?) fiihrt. Zu ihrer
Beschreibung benétigen wir folgende Notation.

Definition 3.19. Sei N = (V, E,| s,t,c) ein Netzwerk.
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a) Der Durchsatz eines Knotens u € V st

ct(u), u=Ss,
D(“) - Ci(u)v u=t,
min{ct(u),c (u)}, sonst,

wobei ¢ (u) =X ey ¢(u,v) die Ausgangskapazitit und ¢ (u) =
>vev ¢(v,u) die Eingangskapazitdt von w ist.
b) Ein Fluss g in N séttigt einen Knoten u € V', falls

e u = s ist und g alle Kanten (s,v) € E mit Startknoten s sdttigt,
oder

e u =t ist und g alle Kanten (v,t) € E mit Zielknoten t sdttigt,
oder

o ueV —{s,t} ist und g alle Kanten (u,v) € E mit Startknoten
u oder alle Kanten (v,u) € E mit Zielknoten u sdttigt.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 3.20. Wenn ein Fluss g in einem Netzwerk N auf jedem
s-t-Pfad P mindestens einen Knoten u sdttigt, dann ist g blockierend.

Beweis. Falls g mindestens einen Knoten u auf dem s-t-Pfad P séttigt,
dann séttigt g auch mindestens eine Kante auf dem Pfad P. [

Beginnend mit dem trivialen Fluss ¢ = 0 berechnet die Prozedur
blockfluss2 fiir jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N¢ und wihlt in jedem Durchlauf der repeat-Schleife einen
Knoten w mit minimalem Durchsatz D(u). Dann benutzt sie die Pro-
zeduren propagierevor und propagiererick, um den aktuellen
Fluss g um den Wert D(u) zu erhohen und die Restkapazitédten der
betroffenen Kanten sowie die Durchsatzwerte D(v) der betroffenen
Knoten entsprechend zu aktualisieren.
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AnschlieSend werden alle gesattigten Knoten aus V'’ und alle gesattig-
ten Kanten aus E’ entfernt. Hierzu werden in der Menge B alle Knoten
gespeichert, deren Durchsatz durch die Erhéhungen des Flusses g auf
0 gesunken ist.

Prozedur blockfluss2(S), S= (V' E' s, t, )
1 for all e € E'U E'® do g(e) :=0

> for all we V' do

‘ D+(u> = Z(U,U)EE’ C/(U, U)

1 D~ (U) = Z(U,U)EE’ Cl(vv U)

5 repeat

6 for all u € V'\ {s,t} do D(u) := min{D~(u), D" (u)}
7 D(s):=D*(s)

8 D(t) .= D~ (t)

9 wahle v € V' mit D(u) minimal

10 B :={u}

11 propagierevor(u)

12 propagiererick(u)

13 while Jv € B\ {s,t} do

14 B := B\ {v};, V':=V"\ {v}

15 for all e = (v,w) € E' do

16 D~ (w) := D™ (w) — (v, w)

17 if D7 (w) =0 then B := BU{w}

18 E' = FE'\ {e}

19 for all e = (w,v) € £/ do

20 D*(w) := D (w) — ¢ (w,v)

21 if D*(w) =0 then B := BU{w}
22 E = FE'\ {e}

23 until u € {s,t}

24 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesittigt und aus V'’ entfernt wird, wird nach hochstens n — 1 Itera-
tionen einer der beiden Knoten s oder ¢ als Knoten u mit minimalem
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Durchsatz D(u) gewahlt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von ¢
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesattigt. Nach Proposition 3.20 ist somit g ein blockierender Fluss.

Die Prozeduren propagierevor und propagiererick propagieren
den Fluss durch u in Vorwéartsrichtung hin zu ¢ bzw. in Riickwarts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in E’ bzw. E'®. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knotens v ausreicht, um den fiir
ihn ermittelten Zusatzfluss in Hohe von z(v) weiterzuleiten.

Prozedur propagierevor(u)

for all ve V' do z(v) :=0

z(u) := D(u)

Q= (u); R = {u}

while @ # () do

5 v := dequeue(Q)

¢ while z(v) #0A Je = (v,w) € E' do

7 if w ¢ R then enqueue(Q, w)

8 R:= RU{w}

9 m :=min{z(v),d(e)}; z(v) := z(v) — m; z(w) = z(w) + m
10 aktualisierekante(e,m)

O N

Prozedur aktualisierekante(e,m), e = (v,w)

T ge) =g(e) +m
% d(e):=d(e)—m

if d(e) =0 then E' := E’\ {e}
Dt (v):= D" (v) —m
5 if D*(v) =0 then B:= BU {v}
¢ D7 (w):=D (w)—m
7 if D7 (w) =0 then B := BU {w}
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Die Prozedur propagiereruck unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 6 die Bedingung
Jde = (v,w) € E’" durch die Bedingung Je = (w,v) € E’ ersetzt wird.
Da die repeat-Schleife von blockfluss2 maximal (n — 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giereriick hochstens (n — 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchléufe der inneren while-Schleife von propagierevor, sum-
miert tiber alle Aufrufe. Da in jedem Durchlauf eine Kante aus E’
entfernt wird (falls m = ¢/(v,u) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf héchstens einmal vorkommt, ist a < n? + m.
Der gesamte Zeitaufwand ist daher O(n? + m) innerhalb der beiden
while-Schleifen und O(n?) auflerhalb. Die gleichen Schranken gelten
fir propagiererick.

Eine ahnliche Uberlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n?).

Korollar 3.21. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockfluss2 einen mazimalen Fluss in Zeit O(n?).

Auf Netzwerken, deren Flisse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C' beschréankt sind, lassen sich noch
bessere Laufzeitschranken fiir den Dinitz-Algorithmus nachweisen.
Hierzu bendtigen wir folgende Beziehungen zwischen einem Netzwerk
und den zugehorigen Restnetzwerken.

Lemma 3.22. Sei N = (V, E, s,t,c) ein Netzwerk, f ein Fluss in N
und Ny das zugehorige Restnetzwerk. Zudem sei h : V. x V. — 7.

(i) Die Funktion h ist genau dann ein Fluss (bzw. mazimaler Fluss)

in Ny, wenn f+ h ein Fluss (bzw. mazimaler Fluss) in N ist.

(ii) Fir jede Kante e € EU ER gilt ci(e) + c;(eft) = cle) + c(ef?).

(iii) Fir jeden Knoten u € V \ {s,t} gilt ¢j(u) = c"(u) und
cy (u) = c™(u) und somit Dy(u) = D(u).
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Bewess.

(i) Da f die Antisymmetrie und die Kontinuitét erfillt, iibertragen
sich diese Eigenschaften von h auf f + h und umgekehrt. Weiter
gilt

h(u,v) < cp(u,v) < f(u,v) + h(u,v) < c(u,v),
———
c(u,v)—f(u,v)
d.h. h erfiillt genau dann die Kapazitatsbedingung in Ny, wenn
f + h sie in N erfillt. Zudem ist f + h genau dann ein maxi-
maler Fluss in N, wenn A ein maximaler Fluss in Ny ist, da
jeder Fluss A’ in Ny mit |h’| > |h| einen Fluss f + A" der Grofie
|f+h'|>|f+h|in N und jeder Fluss g in N mit |g| > |f + Al
einen Fluss g— f der GroBe |[g—f| = |g|—|f| > |f+h|—|f] = |h|
in Ny liefern wiirde.
(ii) Es gilt cs(e) + cp(e®) =cle) +cle®) — (f(e) + f(ef).
——

——
c(e)=fle)  c(eF)—f(ef) =0

(iii) Fir jeden Knoten u € V'\ {s,t} gilt
cfu) =Y cplu,v) = c(u,v) =Y f(u,v).

veV ST—~—~ veV veV
c(u,v)—f(u,v)

ct(u) =0

Die Gleichheit ¢} (u) = ¢~ (u) folgt analog. |

Lemma 3.23. Sei F' > 0 die maximale Flussgrofie in einem Netzwerk
N wund sei £ die Linge des zu N gehorigen Schichtnetzwerks N'.

(i) Falls jeder Knoten u € V'\ {s,t} einen Durchsatz D(u) < C'in
N hat, gilt ¢ <1+ (n—2)C/F.
(ii) Falls jede Kante e € E eine Kapazitit c(e) < C' hat, gilt

¢ < min{mC'/F,2n,/C/F}.
Beweis. Sei f ein Fluss der Grofle F'in N.
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(i) Da f fiir j = 1,...,¢ — 1 durch die n; Knoten der Schicht S
von N’ fliefit, von denen jeder einen Durchsatz < C' hat, muss

F <n;C bzw. F/C < n,

sein, woraus n — 2 > Zﬁ;ﬁ nj > (0l —1)F/C bzw. { <
1+ (n—2)C/F folgt.

(i) Fir j=1,...,£ — 1 sei E; die Menge der Kanten von Schicht
S;—1 nach Schicht S; und sei E, die Menge der Kanten von Sy
nach S, .=V — Uﬁ;éSj in N. Da der Fluss f fur j =1,...,¢
durch die m; Kanten in E; fliefit, die alle eine Kapazitat < C
haben, muss

F < m;C < C1S;]|S5] bzw. F/C < m; < |S;-1][5]

sein, woraus sofort m > Z?Zl m; > LF/C bzw. £ < mC/F folgt.
Wegen F/C < |S;_1]]5;| muss zudem S;_; oder S; mindestens

\/F/C Knoten enthalten und es folgt

(€/2)\JF/C <|So| + -+ |Se| =n bzw. ¢ < 2ny/C/F R

Satz 3.24. Sei k die Anzahl der Schleifendurchliufe des Algorithmus
von Dinitz bei Fingabe eines Netzwerks N = (V, E, s,t,c).
(i) Falls jeder Knoten u € V '\ {s,t} einen Durchsatz D(u) < C
hat, so gilt k <1+ 2(Cn)'/2.
(ii) Falls jede Kante e € E eine Kapazitit c(e) < C hat, so gilt
k < min{(2°mC)'/2, (26Cn?)'/3}.

Beweis. Sei F' = |f| die Grofe eines maximalen Flusses f in N und
seien ¢, ..., g die blockierenden Flisse, die der Dinitz-Algorithmus
der Reihe nach im Schichtnetzwerk N} berechnet, d.h. f; ist der
Nullfluss in N und f;11 = f; + ¢;.



3 Fliisse in Netzwerken

(i)

Da die Anzahl k der Schleifendurchléufe durch F' beschrankt ist,
kénnen wir F > (Cn)Y? annehmen. Betrachte den i-ten Schlei-
fendurchlauf. Da f — f; nach Lemma 3.22(i) ein maximaler Fluss
in Ny, der GroBe R; = F' — | f;] ist und nach Lemma 3.22(iii)
jeder Knoten u € V' \ {s,t} in Ny, den gleichen Durchsatz
wie in NV hat, folgt nach Lemma 3.23(i), dass N} eine Liange
¢; <1+ nC/R; hat. Damit ist die Anzahl k der Schleifendurch-
laufe durch

k<i+Ri1 <li+Ri1 <Ri1+1+nC/R;

beschrankt. Nun wihlen wir i so, dass R; > (Cn)Y? und
Riy1 < (COn)'/? ist. Dann folgt

k—1< Ry +nC/R; < (Cn)Y* +nC/(Cn)'/? = 2(Cn)/2,

Wir betrachten wieder den i-ten Schleifendurchlauf. Da jede
Kante e € Ey, nach Lemma 3.22(ii) eine Kapazitét cy,(e) < 2C
hat und f — f; nach Lemma 3.22(i) ein maximaler Fluss in N,
ist und die Grofe R; = F' — | f;| hat, folgt nach Lemma 3.23(ii),
dass N}, eine Léinge ¢; < 2mC /R; hat. Damit ist die Anzahl k
der Schleifendurchléufe durch

kE<i+Ri1 <l;+ Riy1 < Ry +2mC/R;

beschrinkt. Falls F' < (2mC)/? ist, folgt sofort k < (2mC)Y/2.
Andernfalls withlen wihlen wir i so, dass R; > (2mC)'/? und
Riy1 < (2mC)Y/? ist. Dann folgt

k< (2mC)Y? 4+ (2mC)? = (23mC)*/2,

Zudem folgt nach Lemma 3.23(ii), dass N}, eine Linge {; <

2n4/2C/ R; hat. Damit ist die Anzahl k der Schleifendurchlaufe
auch durch

k Sl—i— Ri+1 S EZ +Ri+1 S RZ‘+1 + 2n QC/RZ
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beschriankt. Falls F' < (2nv20)%3 ist, folgt sofort k <
(2n+/2C)%/3. Andernfalls wihlen wir 7 so, dass R; > (2nv/20)%/3
und R; 1 < (2nV/2C)?/3 ist. Dann folgt

k < (2nV20)* + 2nV/2C /(20nV20)2 = (20Cn?)Y° M

Korollar 3.25. Sei T' die Laufzeit des Algorithmus von Dinitz unter
Verwendung von blockflussl bei Fingabe von N = (V, E,s,t,c).

(i) Falls jeder Knoten u € V '\ {s,t} einen Durchsatz D(u) < C

hat, so gilt T'= O((nC' + m)v/Chn).

(ii) Falls jede Kante e € E eine Kapazitit c(e) < C hat, so gilt

T = O(min{(mC)*?, C¥*n**m}).

Beweis. Zunachst folgt mit Lemma 3.22, dass jeder Knoten u (aufler
s und t) und jede Kante e in jedem Restnetzwerk Ny (und somit
auch in jedem Schichtnetzwerk N} ) einen Durchsatz D(u) < C bzw.
eine Kapazitét c(e) < 2C haben.

(i)

Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich der Durchsatz ¢’(u) der auf P lie-
genden Knoten u um den Wert ¢ (P) > 1, da der Fluss g durch
diese Knoten um diesen Wert steigt. Daher kann jeder Kno-
ten an maximal C' Flusserh6hungen beteiligt sein, bevor sein
Durchsatz auf 0 sinkt. Da somit pro Knoten ein Zeitaufwand
von O(C) fiir alle erfolgreichen Tiefensuchschritte, die zu einem
s-t-Pfad fiihren, und zusétzlich pro Kante ein Zeitaufwand von
O(1) fur alle nicht erfolgreichen Tiefensuchschritte anfallt, lauft
blockflussl in Zeit O(nC + m).

Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazitat ¢’(e) der auf P liegen-
den Kanten e um den Wert ¢} (P) > 1. Da somit pro Kante ein
Zeitaufwand von O(C') fir alle erfolgreichen Tiefensuchschritte
und O(1) fiir alle nicht erfolgreichen Tiefensuchschritte anfallt,
lauft blockflussl in Zeit O(mC + m) = O(mC). [ |
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Definition 4.1. Sei G = (V, E) ein Graph.
e Zwei Kanten e, ¢’ € E heiflen unabhingig, falls eNe' = () ist.

e Fine Kantenmenge M C E heifst Matching in G, falls alle Kanten
in M paarweise unabhdngig sind.

e Sei M C E. Ein Knoten v € V heifst M-gebunden, falls v End-
punkt einer Kante e € M (also v € UM ) ist und sonst M-frei.

e Fin Matching M heifit perfekt, falls alle Knoten in G M -gebunden
sind (also V= M ist).
e Die Matchingzahl von G ist

u(G) = max{|M|| M ist ein Matching in G}

e [in Matching M heifst maximal (engl. maximum), falls |M| =
w(G) ist. M heifit geséttigt (engl. maximal), falls es in keinem
groferen Matching enthalten ist.

Offensichtlich ist M C E genau dann ein Matching, wenn |J M| =
2| M| ist. Das Ziel besteht nun darin, ein maximales Matching M in
einem gegebenen Graphen G zu finden.

Beispiel 4.2. Ein gesdttigtes Matching muss nicht mazimal sein:

M = {{v,w}} ist gesdttigt, da es sich nicht erweitern lisst. M ist
jedoch kein mazimales Matching, da M’ = {{v,z}, {u,w}} grofer ist.
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Die Greedy-Methode, ausgehend von M = () solange Kanten zu M
hinzuzufigen, bis sich M nicht mehr zu einem gréfferen Matching
erweitern ldsst, funktioniert also nicht.

Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhélt man aus Korollar 3.25 das folgende Resultat.

Satz 4.3. In einem bipartiten Graphen G = (A, B, E) ldsst sich ein
mazimales Matching in Zeit O(m+/n) bestimmen.

Beweis. Konstruiere zu G das Netzwerk N = (V, E', s,t, ¢) mit den
Knoten V =AU B U {s,t} und den Kanten

E'=({s} x A)U{(u,0) € Ax B|{uv} € E}U(B x {t}),

die alle Kapazitdat 1 haben. Es ist leicht zu sehen, dass sich aus jedem
Matching M in G ein Fluss f in N konstruieren lasst mit |M| = | f]
und umgekehrt. Es gentigt also, einen maximalen Fluss in NV zu finden.

Nach Korollar 3.25 ist dies mit dem Algorithmus von Dinitz unter
Einsatz von blockflussl in Zeit O(m+/n) moglich, da der Durchsatz
aller Knoten (aufler s und ¢) durch 1 beschrénkt ist. [

In den Ubungen wird gezeigt, dass sich die Laufzeit durch eine ver-
besserte Analyse sogar durch O(m,/p) begrenzen lasst.

Die Konstruktion aus Satz 4.3 lasst sich nicht ohne Weiteres auf
Graphen verallgemeinern, die nicht bipartit sind. Wir werden jedoch
sehen, dass sich manche bei den Flussalgorithmen verwendete Ideen
auch fiir Matchingalgorithmen einsetzen lassen. So lassen sich Mat-
chings, die nicht maximal sind, dhnlich vergréfern wie dies bei nicht
maximalen Fliisssen durch einen Zunahmepfad moglich ist.

Definition 4.4. Sei G = (V, E) ein Graph und sei M ein Matching

in G.

1. Ein Pfad P = (ug,...,w) in G der Lange | > 1 heifst M-alter-
nierend, falls fiiri=1,...,1 —1 gilt:

e; = {ui—1,u;} € M & ey = {ui, uip } & M.
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2. Fin Kreis C = (uy,...,u,u) in G heifit M-alternierend, falls
der Pfad P = (uy,...,w) M-alternierend ist und zudem gilt:

{ur,us} € M < {uy,w} & M.

3. Ein M-alternierender Pfad P = (uo,...,w;) heifft M-ver-
groBernder Pfad (oder einfach M-Pfad), falls beide Endpunkte
von P M-frei sind.

Satz 4.5. Fin Matching M in G ist genau dann mazimal, wenn es
keinen M -Pfad in G gibt.

Beweis. Ist P = (uo,...,u;) ein M-Pfad, so liefert M’ = M A E(P)
ein Matching der Grole |M'| = |M| + 1 in G. Hierbei ist E(P)
{{uwi—1,u;} | i=1,...,1} die Menge aller Kanten auf P.

Ist dagegen M nicht maximal und M’ ein groferes Matching, so
betrachten wir die Kantenmenge M A M'. Da jeder Knoten in dem
Graphen G’ = (V, M A M') hochstens den Grad 2 hat, lasst sich G’
in disjunkte Kreise und Pfade zerlegen. Da diese Kreise und Pfade

M-alternierend sind, und M’ grofler als M ist, muss mindestens einer
dieser Pfade ein M-Pfad sein. [ |

Damit haben wir das Problem, ein maximales Matching in einem
Graphen G zu finden, auf das Problem reduziert, zu einem Matching
M in G einen M-Pfad zu finden (sofern ein solcher existiert).

4.1 Der Algorithmus von Edmonds

Sei GG ein Graph ohne isolierte Knoten und sei M ein Matching in G.
Der Algorithmus von Edmonds benutzt die Prozedur FindePfad, um
einen M-Pfad in G zu finden, falls das aktuelle Matching M nicht
bereits maximal ist. Da M nicht mehr als n/2 Kanten enthalten kann,
muss diese Prozedur héchstens (n/2 + 1)-mal aufgerufen werden, um
ausgehend von M = () ein maximales Matching in G zu berechnen.
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Prozedur FindePfad(G,M),G = (V,E)

Q=10

> for all v €V do

3 parent(u) := L

| if dee M : u € e then

5 zustand(u) := unerreicht
6 else

7 zustand(u) := gerade

8 root(u) :=u

9 Q= QU{(u,v) |[{u,v} € E}
) while Q # 0 do
11 entferne eine Kante (u,v) aus @
if zustand(v) = unerreicht then
parent(v) := u
zustand(v) := ungerade
parent(M (v)) == v
zustand(M (v)) := gerade
root(M (v)) := root(v) := root(u)
Q= QU{(M(v), w) [ {M(v),w} € E\ M}
if zustand(v) = gerade then
if root(u) = root(v) then // Bliite gefunden
kontrahiere die Blite C' zu ihrer Basis b und,
speichere den Kreis C' unter der Basis b ab
fuge alle Kanten (b,a) zu @ hinzu, so dass a ¢ C' ist
und ein ungerader Knoten ¢ € C' mit {c,a} € E existiert
else // M-Pfad gefunden
setze die parent-Pfade P, und P, von u und v mit Hilfe
der Kante {u,v} zu einem r,-r,-Pfad P zusammen
und expandiere P zu einem M-Pfad P’ in G
return P’
30 return L

=
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Die Prozedur FindePfad sucht wie folgt nach einem M-Pfad in G.
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Jeder Knoten u hat einen von 3 Zustanden: gerade, ungerade oder
unerreicht. Zu Beginn sind alle M-freien Knoten gerade und alle
M-gebundenen Knoten unerreicht. Dann wird ausgehend von den
M-freien Knoten als Wurzeln ein Suchwald W in G aufgebaut, indem
ausgehend von den geraden Knoten u eine Kante zu einem unerreich-
ten oder ebenfalls geraden Knoten v besucht wird. Kanten von u zu
ungeraden Knoten werden also ignoriert.

Ist v unerreicht, so wird der aktuelle Suchwald W nicht nur um die
Kante {u,v}, sondern auch um die Matching-Kante {v, M (v)} erwei-
tert, wobei M (v) der Matchingpartner von v ist. Zudem wechselt der
Zustand von v von unerreicht zu ungerade und der von M (v) von
unerreicht zu gerade. Somit erhélt jeder erreichte Knoten v genau
dann den Zustand gerade, wenn der Pfad in W von v zu seiner Wurzel
r, eine gerade Lange hat. Um diesen Wurzelpfad effizient berechnen
zu konnen, wird die Funktion parent benutzt.

Ist v dagegen wie u gerade, so gibt es zwei Unterfille. Haben v und
v verschiedene Wurzeln r, # r,, so lassen sich die beiden parent-
Pfade P, von u und P, von v mit Hilfe der Kante {u,v} zu einem
Pfad P zusammensetzen, der die beiden M-freien Wurzeln r, und r,
verbindet. Da bis zum Auffinden von P moéglicherweise Kontraktionen
stattgefunden haben (siehe unten), muss P evtl. noch expandiert
werden, um einen M-Pfad P’ in G zu erhalten.

Im Fall r, = r, befinden sich die beiden Knoten v und v im gleichen
Suchbaum von W. Sei b der erste Knoten auf dem parent-Pfad P,
von u, der auch auf dem parent-Pfad P, von v liegt. Da b (mindes-
tens) 2 Kinder hat und ungerade Knoten nur ein Kind in W haben,
muss b gerade sein. Da auch u und v gerade sind, haben sie auf P,
bzw. P, einen geraden Abstand zu b. Die Teilpfade von P, und P, mit
Endpunkt b und die Kante {u, v} bilden also einen Kreis C' ungerader
Lange, der als Bliite mit der Basis b bezeichnet wird.

Zwar fithrt das Auffinden einer Bliite C' nicht direkt zu einem M-Pfad.
Sie bedeutet dennoch einen Fortschritt, da sich G durch die Kontrak-
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tion von C zu ihrer Basis b verkleinern lasst. In dem kontrahierten
Graphen G erbt b die Nachbarschaften aller Knoten in C' zu den
Knoten auflerhalb von C. Entfernen wir aus M alle Kanten, die auf
dem Kreis C' liegen, so erhalten wir ein Matching M¢s in G¢. Das
folgende Lemma zeigt, dass aus jedem Me-Pfad in G¢ ein M-Pfad in
G konstruiert werden kann.

Lemma 4.6. Sei C' eine Blite in G mit Basis b. Dann ldisst sich
jeder Mc-Pfad P in G zu einem M-Pfad P’ in G expandieren.

Beweis. Falls P nicht schon selbst ein M-Pfad in G ist, muss P eine
Kante e enthalten, die in GG fehlt. Da durch die Kontraktion von C' zu
b in G¢ nur solche Kanten neu entstehen, die die Basis b mit einem
Knoten a # M (b) auerhalb der Bliite C' verbinden, muss e die Form
e = {a, b} haben. Zudem muss a in G einen Nachbarn ¢ # b innnerhalb
von C' haben. Von c aus fiihren im Kreis C' genau zwei Pfade zur Basis
b, wovon genau einer den Knoten ¢ iiber eine Matchingkante verlasst
(also eine gerade Lange hat). Indem wir diesem Pfad die Kante {a, c}
hinzuftigen, erhalten wir einen M-alternierenden a-b-Pfad P” in G,
d.h. wir kénnen P zu einem M-Pfad P’ in G expandieren, indem wir
die Kante {a,b} durch den a-b-Pfad P” ersetzen. [

Da sich die Anzahl der Knoten von G bei jeder Kontraktion einer
Bliitte mindestens um 2 verringert, kann die Prozedur FindePfad
hochstens n/2 Bliten kontrahieren. Bei Verwendung entsprechender
Datenstrukturen zur Verwaltung der Bliiten lésst sich die Prozedur
FindePfad in Zeit O(m) implementieren, was auf eine Gesamtlaufzeit
von O(nm) fir den Algorithmus von Edmonds fiihrt.

Tatséchlich ldsst sich die Laufzeit noch auf O(m. /i) verringern. Dazu
berechnet man ahnlich wie beim Algorithmus von Dinitz im bipartiten
Fall pro Runde nicht nur einen M-Pfad, sondern in Zeit O(m) eine
maximale Menge knotendisjunkter M-Pfade, die alle eine minimale
Lange haben. Dann kann man wieder zeigen, dass O(,/u) solcher
Runden ausreichen, um ein maximales Matching zu finden. Diese
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Strategie fithrt auf den Hopcroft-Karp-Algorithmus im bipartiten
Fall und auf den Algorithmus von Micali und Vazirani fiir beliebige
Graphen.

Fiir den Beweis der Korrektheit des Edmonds-Algorithmus (genauer:
zum Nachweis der Maximalitat des berechneten Matchings M) be-
notigen wir den Begriff der Odd Set Cover (OSC). Es ist leicht zu
sehen, dass fir jedes Matching M in einem Graphen G = (V, E) und
jede Knotentiberdeckung C' C V' in G die Ungleichung |M| < |C| gilt.
Wir werden sehen, dass es in bipartiten Graphen sogar ein Matching
M und eine Knoteniiberdeckung C' mit |M| = |C| gibt. Die Angabe
einer Knoteniiberdeckung C' mit |C| = | M| bietet also eine einfache
Moglichkeit, die Maximalitdt von M nachzuweisen. Dies geht jedoch
nicht in allen Graphen, da z.B. der K, nur Matchings der Grofle < 2
und Knoteniiberdeckungen der Gréle > 3 hat.

Definition 4.7. Sei G = (V,E) ein Graph. Eine Menge S =
{v1,.. ., 06, V1, ..., Vi} von Knoten vq,...,ux € V und Teilmengen
Vi,..., Vo CV heifit OSC (engl. odd set cover) in G, falls

e cs fiir jede Kante e € E einen Knoten v; € S mit v; € e oder eine
Menge V; € S mit e C V; gibt und

e alle Mengen V; € S eine ungerade Grofse nj = |V;| haben.

Das Gewicht von S ist w(S) =k + >4 (n; — 1)/2.

Im Fall ¢ =0ist S = {vy,...,v;} also eine Knoteniiberdeckung in G
(oder kurz VC fiir engl. vertex cover).

Beispiel 4.8. Der Ky hat auf der Knotenmenge V = {1,...,4} eine
0SC S ={1,{2,3,4}} vom Gewicht w(S) =1+ (3—-1)/2 =2.

Lemma 4.9. Fir jedes Matching M in einem Graphen G = (V, E)
und jede OSC' S ={vy,..., 06, V1,...,Vi} in G gilt |M| < w(S).

Beweis. M kann fiir jeden Knoten v; € S hochstens eine Kante e mit
v; € e und fir jede Menge V; € S hochstens (n; —1)/2 Kanten e C V;
enthalten. [ |
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Satz 4.10. Falls M ein Matching fir G ist und FindePfad(G, M)
keinen M-Pfad findet (also L zuriickgibt), dann ist M mazimal.

Beweis. Um eine OSC S fiir G mit w(S) = |M| zu finden, analysieren
wir die Struktur des bei der erfolglosen Suche nach einem M-Pfad
generierten Suchwalds W = (Viy, Ey).

Sei Vo € Vi die Menge der geraden und Vi = {uy,...,u} C Vi die
Menge der ungeraden Knoten in W. Weiter seien by, ..., b, € V} die
Knoten in W, zu denen die gefundenen Bliiten kontrahiert wurden,
und fir j = 1,...,¢ sei C; C V die Menge aller Knoten, die zu b,
kontrahiert wurden (d.h. von den Knoten in C; ist nur noch b; in
Viy vorhanden). Zudem sei Vo, = Vo UCL U --- U Cy €V die Menge
aller geraden und zu einem geraden Knoten kontrahierten Knoten
und V,, = V' \ (V4 U V3) sei die Menge der unerreichten Knoten.

Zunéchst iiberlegen wir uns, dass es in F keine Kante {u, v} zwischen
V5 und V,, geben kann. Dies liegt daran, dass der Algorithmus im Fall
u € V4 eine Kante (v/,v) mit v’ € V5 (wobei v’ = w ist oder u' zur
selben Menge C; wie u gehort) zu () hinzufiigen und somit v nach
dem Entfernen der Kante (v/,v) aus @) ungerade werden wiirde.

Zudem muss jede Kante e € E, die beide Endpunkte in V5 hat, in einer
der Mengen C; liegen, da sonst Ey, eine Kante {u, v} mit u,v € 1}
enthalten wiirde, die nach dem Entfernen aus () entweder zu einer
weiteren Bliite oder zu einem M-Pfad fithren wiirde.

Folglich muss jede Kante e € E entweder

e cinen ungeraden Endpunkt haben (d.h. e NV} # 0) oder
e komplett in einer Menge C; liegen (d.h. 3j : e € C}) oder
e zwei unerreichte Knoten verbinden (d.h. e C V).

Daher konnen wir wie folgt eine OSC S fiir G konstruieren. Wir
fligen alle ungeraden Knoten uyq, ..., u; und alle Mengen C4,...,Cy
zu S hinzu. Man beachte, dass die Mengen C; eine ungerade Grofie
n; = |C;| haben, da C; durch eine Folge von Kontraktionen auf die
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Menge {b;} verkleinert wird und bei jeder solchen Kontraktion gerade
viele Knoten aus C; verschwinden.

Zudem figen wir im Fall, dass V,, # () ist, einen beliebigen Knoten
up € V, als Einzelknoten und im Fall, dass |V,| > 2 ist, auch noch
die Menge Cy = V,, \ {uo} zu S hinzu. Man beachte, dass |V,| gerade
und somit ng = |Cy| ungerade ist, da alle Knoten in V,, durch eine
Matchingkante e C V,, gebunden sind.

Dann ist .S eine OSC fiir GG, da jede Kante e € E entweder einen End-
punkt in .S hat oder von einer der Mengen C; € S iiberdeckt wird. Zu-
dem ist w(S) = |M]|, da sich M in |S| Mengen M; = {e € M |u; € e}
und M; = {e € M |e C Cj} zerlegen ldsst mit M| = 1 und
M| = (n; — 1) /2. .

Der Algorithmus von Edmonds lasst sich leicht dahingehend modifizie-
ren, dass er zusammen mit dem berechneten Matching M eine OSC
S mit w(S) = |M| zum Nachweis der Maximalitét von M ausgibt.

Korollar 4.11. Fiir jeden Graphen G gilt
w(G) = min{w(S) | S ist eine OSC in G}.
Korollar 4.12 (Satz von Koénig). Fir bipartite Graphen G gilt
u(G) = min{|C| | C ist eine Knoteniiberdeckung in G}.

Zudem ldsst sich eine (kleinste) Knoteniberdeckung C der Grifle
|C| = w(Q) in Zeit O(my/u(G)) berechnen.

Beweis. Sei G = (A, B, E) und sei W = (Viy, Ey) der Suchwald zum
Zeitpunkt, wenn der Algorithmus von Edmonds die Suche nach einem
M-Pfad erfolglos abbricht. Da G bipartit ist, werden keine Bliiten
gefunden. Daher hat jede Kante e € E entweder einen ungeraden
Endpunkt oder ist in V, enthalten und somit einen Endpunkt in
V. N A. Folglich ist C = V; U (V, N A) eine VC fiir G. Zudem gilt
|C| = | M|, da jede Matchingkante genau einen Endpunkt in C' hat.
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Wir berechnen zuerst in Zeit O(m,/f) mit dem Algorithmus von
Dinitz ein maximales Matching M fiir G, starten danach die Prozedur
FindePfad(G, M) zum Aufbau des Suchwalds W in Zeit O(n 4+ m)
und geben C' aus. |
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5 Baum- und Pfadweite

Definition 5.1. Sei G = (V, E) ein Graph.
a) Fine Baumzerlegung (kurz TD fiir tree decomposition) von G
ist ein Tripel (Vp, Ep, X), wobei T = (Vp, Er) ein Baum ist und
X : Vi — P(V)\ {0} die folgenden 3 Eigenschaften erfillt (fiir
(Vir, B, X) schreiben wir meist (T, X) und fir X (t) meist X;).
e Fsqilt V = UteVTXt (die Mengen X, C 'V heiflen Taschen).
e Fliir jede Kante e € E gibt es eine Tasche X; mit e C X;.
e Fir jeden Knoten u € V ist der induzierte Teilgraph T[X ' (u)]
von T zusammenhdingend (also ein Teilbaum), wobei X ' (u) =
{t e Vr | u e Xt} 1st.
b) Die Weite von (T, X) ist w(T, X) = maxey, | X¢| — 1.
¢) Die Baumweite tw(G) von G ist die kleinste Weite aller magli-
chen Baumzerlegungen von G.

d) FEine Baumzerlegung (T, X) von G heifit Pfadzerlegung (kurz
PD fir path decomposition), wenn T ein Pfad ist. Die Pfadweite
pw(G) von G ist die kleinste Weite aller méglichen Pfadzerlegungen
von G.

e) TW(k) :={G | tw(G) <k} und PW(k) :={G | pw(G) < k}.

Beispiel 5.2. (i) Der leere Graph E, = (V,0) hat Baum- und
Pfadweite tw(E,) = pw(E,) = 0. Wir generieren fir jeden
Knoten uw € V' eine Tasche X, = {u}, die nur diesen Knoten
enthdlt, und verbinden diese Taschen in beliebiger Reihenfolge
zu einem Pfad. Umgekehrt muss die Kantenmenge jedes Gra-
phen G mit tw(G) = 0 leer sein, da jede Tasche nur einen
Knoten enthalt, d.h. TW(0) besteht aus allen leeren Graphen.
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(ii) Jeder Baum G = (V, E) hat eine Baumweite tw(G) < 1. Z.B.
hat die TD (T, X) mit Vp = EU {{u} | u € V}, X, =t fir
t € Vr und Ex = {{s,t}|s C t} die Weite w(T, X) < 1.

(iii) Folgender Graph G hat eine Baumzerlequng (T, X) der Weite
2:

Der Baum T = ({1,...,6}, Ex) verbindet die Taschen X; =
{a,b,d}, Xy = {b,d, g}, X3 = {b,e,g}, X4 = {b,e,c}, X5 =
{e,g,h}, Xo¢ = {d, f,g} durch die 5 Kanten {1,2}, {2,3},
{3,4}, {3,5} und {2,6}.

(iv) Fir den Gittergraphen Gy, mit k{ Knoten gilt

tw(Grxe) < pw(Grxe) < min{k, £}.

Der Graph G4 hat bspw. folgende Pfadzerlegung der Weite 4:
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