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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (g) = {{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u €V | {u,v} € E}.
b) Der Grad von v ist degs(v) = |Ng(v)].

¢) Der Minimalgrad von G ist §(G) = min,ey degs(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

d) Jeder Knoten u € V vom Grad <1 heifit Blatt und die ibrigen
Knoten (vom Grad > 2) heiffen innere Knoten von G.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 1.2.

e Der vollstindige Graph (V, E) auf n Knoten, d.h. |V| =n und
E = (V wird mit K, und der leere Graph (V,0) auf n Knoten

2/
“

wird mit E,, bezeichnet.

Kl:. KQ:._. Ks: i Ky

e Der vollstidndige bipartite Graph (A, B, E) auf a + b Knoten,
dh. ANB=0, |Al =a, |B|=bund E = {{u,v} |u e Av e B}

wird mit Kqp bezeichnet.

Kl,l:._. KLQ: < KQ’Q: X K273: g K3732 %

o Der Pfad mit n Knoten wird mit P, bezeichnet.

P2: *—o P3 *—o—o P4: *—o—o—0 P5 [ ®

o Der Kreis mit n Knoten wird mit C,, bezeichnet.

Cs: A Cy: Cs: Q Co: O

Definition 1.3. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge U C 'V heifit unabhidngig oder stabil, wenn
es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
EN (%) = 0. Die Stabilitéitszahl ist

a(G) =max{|U| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V heifit Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die Cli-
quenzahl ist

w(G) = max{|U| | U ist Clique in G}.

c) Ein Graph G' = (V', E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Im Fall V' =V wird G' auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben fiir
G’ auch G — E" (bzw. G = G'"UE" ), wobei E" = E—E' die Menge
der aus G entfernten Kanten ist. Im Fall E" = {e} schreiben wir

fir G" auch einfach G — e (bzw. G =G Ue).
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d) Ein k-reguldrer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-reguldrer Graph G heif§t k-
faktorisierbar, wenn sich G in | = d/k kantendisjunkte k-
Faktoren G+, ..., Gy zerlegen ldsst.

e) Ein Subgraph G' = (V', E') heifit (durch V') induziert, falls
EF' =FEn (‘;/) ist. Fir G' schreiben wir dann auch G[V'] oder
G — V" wobei V' =V — V' die Menge der aus G entfernten
Knoten ist. Ist V" = {v}, so schreiben wir fir G' auch einfach
G — v und im Fall V' ={vy,..., vt} auch Gluy, ... vg.

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vo, ...,v; mit {v;,vi1} € E furi=0,...,¢ — 1. Die Lange
des Weges ist die Anzahl der durchlaufenen Kanten, also £. Im
Fall ¢ = 0 heifst der Weg trivial. Ein Weg (vo, ..., ve) heifst auch
vo-ve- Weg.

g) G heifit zusammenhéngend, falls es fiir alle Paare {u,v} € (g)
einen u-v-Weg gibt.

h) Die durch die Aquivalenzklassen V; C V' der Relation

Z ={(u,v) e Vx V| esgibtin G einen u-v-Weg}

induzierten Teilgraphen G|V;] heiffen Zusammenhangskompo-
nenten (engl. connected components) oder einfach Komponen-
ten von G.

i) Fin u-v-Weg heifst einfach oder u-v-Pfad, falls alle durchlaufe-
nen Knoten verschieden sind.

j) Ein Zyklus ist ein u-v-Weg mit u = v.

k) Eine Menge von Pfaden heifst disjunkt, wenn je zwei Pfade in der
Menge keine gemeinsamen Knoten haben, kantendisjunkt, wenn
je zwei Pfade in der Menge keine gemeinsamen Kanten haben,
und knotendisjunkt, wenn je zwei Pfade in der Menge héchstens
gemeinsame Endpunkte haben.

) Ein Kreis ist ein Zyklus (vy ...,vs,v1) der Linge € > 3, fir den
v1,...,Vp paarweise verschieden sind.

m) Ein Graph heifit kreisfrei, azyklisch oder Wald, falls er keinen
Kreis enthdlt. Ein Baum ist ein zusammenhdngender Wald.

Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V, E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EQVXV:{(u,v)]u,UEV},

wobei E auch Schlingen (u,u) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={u €V | (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) = {u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg’ (v) = |[N*(v)| und der Ein-
gangsgrad von v ist deg” (v) = |[N~(v)|. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wvo-ve-Weg ist eine Folge wvon Knoten
Vo, -+ -, Up mit (v;,v41) €EF firi=0,...,0—1.

f) FEin (gerichteter) Zyklus ist ein gerichteter u-v-Weg mit u = v.

g) FEin gerichteter Weg heifit einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G st ein gerichteter Zyklus
(v1...,v0,v1) der Linge ¢ > 1, fir den vy, ..., v, paarweise ver-
schieden sind.

i) G heifst kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heifit stark zusammenhéngend, wenn es in G fir jedes Kno-
tenpaar u # v € V sowohl einen u-v-Pfad als auch einen v-u-Pfad
qibt.

k) G heifit gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v € V Fingangsgrad deg™ (v) <1 hat.
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) Ein Knoten w € V' vom Eingangsgrad deg™ (w) = 0 heifft Wurzel
von G, und ein Knoten u € V vom Ausgangsgrad deg™ (u) = 0
heifit Blatt von G.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G' = (V, E') mit
(geordneter) Knotenmenge V' = {vy,...,v,} ist die (n x n)-Matrix
A = (a;j) mit den Eintrégen

1 iy Ug E 17 iy Uj E
%:{, {fvooyeE | %:{ (vi,v5) €

0, sonst 0, sonst.

Fir ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
a; =0fire=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgénger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch andert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.

Betrachte den gerichteten Graphen G = (V, E) @ 3)
mit V. = {1,2,3,4} und E = {(2,3),
(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende ONe

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

|

~3[ {4l
~U el ]
(4[]

O = O O
S O O O
O O~ OlWw
—= o= = O

= W N =

T

2 Farben von Graphen

Definition 2.1. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifst k-farbbar, falls eine Farbung f: V — {1,...,k} exis-
tiert.

¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 2.2.

X(En) =1, X(Kmm) =2, x(K,) =n,

2, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste k& > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 2.3. k-COLORING ist fiir k > 3 NP-vollstindig.

Das folgende Lemma setzt die chromatische Zahl x(G) in Beziehung
zur Stabilitatszahl o(G).

Lemma 2.4. n/a(G) < x(G) <n—a(G) + 1.
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Beweis. Sei G ein Graph und sei ¢ eine x(G)-Farbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil
sind, folgt |5;| < a(G) und somit gilt

x(G)
n= Y15 < x(G)a(@).

i=1

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge

in G mit |S| = a(G). Dann ist G — S k-farbbar fir ein k£ < n — |5].

Da wir alle Knoten in S mit der Farbe k 4 1 farben konnen, folgt
XG)<k+1<n-alG)+1. |

Beide Abschéatzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 2.5. (X(f)> < m und somit X(G) < 1y + /2m + 1/,.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. [ ]

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl w(G)
und zum Maximalgrad A(G):

Lemma 2.6. w(G) < x(G) < A(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal groflen Clique unterschiedliche Farben erhalten miissen.

Um die zweite Ungleichung zu erhalten, betrachten wir folgenden
Farbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V, E) mit V ={vy,...,v,}
2 c(v) =1

3 for i:=2tondo

A F,={c(v;) | j < i,v;€ N(v;)}

5 c(v;) :==min{k > 1|k & F;}

2.1 Féarben von planaren Graphen

Da fiir die Farbe c(v;) von v; nur |F;| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. [ ]

2.1 Farben von planaren Graphen

Ein Graph G heiit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien (genauer: Jordankurven) zwischen den
zugehorigen Endpunkten dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich lasst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lénder, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis®. Ubrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfidlle Computer bendtigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-fdarbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lésst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n') gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen
einfacheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deut-
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lich schnelleren O(n?) Algorithmus liefert, aber ebenfalls nur mit
Computer-Unterstiitzung verifizierbar ist.

Beispiel 2.8. Wie die folgenden Einbettungen von Ky und K3 in
die Ebene zeigen, sind Ky und Ky 3 planar.

Ky: Kag3:

N

Zur Beantwortung der Frage, ob auch K5 und K33 planar sind, be-
trachten wir die Gebiete, die bei der Einbettung von (zusammen-
héngenden) Graphen in die Ebene entstehen. Dabei gehéren 2 Punkte
zum selben Gebiet, falls es zwischen ihnen eine Verbindungslinie gibt,
die keine Kante des eingebetten Graphen kreuzt oder beriithrt. Nur
eines dieser Gebiete ist unbeschrankt und dieses wird als duBeres
Gebiet bezeichnet. Die Anzahl der Gebiete von G bezeichnen wir
mit r(G) oder kurz mit r. Die begrenzenden Kanten eines Gebie-
tes g bilden seinen Rand rand(g). Ihre Anzahl bezeichnen wir mit
d(g), wobei Kanten {u,v}, an die g von beiden Seiten grenzt, doppelt
gezahlt werden.

Der Rand rand(g) eines Gebiets g ist die (zirkuldre) Folge aller Kan-
ten, die an g grenzen, wobei man jede Kante so durchléuft, dass g ,in
Fahrtrichtung links“ liegt bzw. jeden Knoten u, den man tiber eine
Kante e erreicht, tiber die im Uhrzeigersinn nachste Kante e’ wieder
verlasst. Auf diese Weise erhélt jede Kante auf dem Rand von g eine
Richtung (oder Orientierung).

Da jede Kante zur Gesamtlinge >, d(g) aller Rénder den Wert 2
beitriagt (sie wird genau einmal in jeder Richtung durchlaufen), folgt

Z d(g) = 2m(G).

Wir nennen das Tripel G' = (V, E, R) eine ebene Realisierung des
Graphen G = (V| E), falls es eine Einbettung von G in die Ebene

2.1 Féarben von planaren Graphen

gibt, deren Gebiete die Rander in R haben. In diesem Fall nennen
wir G’ = (V, E, R) auch einen ebenen Graphen. Ist G nicht zusam-
menhéngend, so betten wir die Komponenten von G in die Ebene ein
und fassen alle Réander, die bei diesen Einbettungen entstehen, zu
einer Randmenge R zusammen.

Fiihren zwei Einbettungen von G in die Ebene auf dieselbe Randmenge
R, so werden sie als dquivalent angesehen. Fine andere Moglichkeit,
Einbettungen bis auf Aquivalenz kombinatorisch zu beschreiben, be-
steht darin, fir jeden Knoten u die (zirkulére) Ordnung m, aller mit
u inzidenten Kanten anzugeben. Man nennt 7 = {m, | u € V} ein
Rotationssystem fiir GG, falls es eine entsprechende Einbettung gibt.
Rotationssysteme haben den Vorteil, dass sie bei Verwendung der
Adjazenzlistendarstellung ohne zusétzlichen Platzaufwand gespeichert
werden kénnen, indem man die zu u adjazenten Knoten geméfl m,
anordnet. ;
Beispiel 2.9. Die beiden nebenstehenden

FEinbettungen eines Graphen G = (V, E) in

die Ebene haben jeweils 7 Gebiete und fiih- V

ren beide auf den ebenen Graphen G' =

(V, E, R) mit den 7 Rindern

R = {((I"/ .f"/‘ ‘q)7 Y (b‘ .(J7 67‘ }l)7 (b7 C7 .])7 j

J
(c,h,d),(d,e k), (f,i,l,m,m,1,k)}.
a
<15
e

Das zugehorige Rotationssystem ist

™= {((I, f> Z)? (a7j> ba g)a (b7 ¢, h)? (67 kv fa g),
(d,e,h),(c,7,i, 1, k,d), (I,m), (m)}.

Man beachte, dass sowohl in R als auch in w jede Kante genau zweimal
vorkommt. Anstelle von (zirkularen) Kantenfolgen kann man die Ele-
mente von R und w natirlich auch durch entsprechende Knotenfolgen
beschreiben. <
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Satz 2.10 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) = 2. €

Beweis. Wir fithren den Beweis durch Induktion iiber die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhangend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (x) erfiillt.

m— 1~ m: Sei G ein zusammenhingender ebener Graph mit m
Kanten.

Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhingenden ebenen Graphen G’ mit n’ = n — 1 Kno-
ten, m’ = m — 1 Kanten und " = r Gebieten. Nach IV folgt
n—m+r=Mn—-1)—m-1)+r=n"—m'+1" =2.

Falls GG kein Baum ist, entfernen wir eine Kante auf einem Kreis in
G und erhalten einen zusammenhéngenden ebenen Graphen G’ mit
n' = n Knoten, m’ = m — 1 Kanten und " = r — 1 Gebieten. Nach
IVfolgtn—m+r=n—(m-1)+@r—-1)=n"—m'+r"=2. 1

Korollar 2.11. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist, gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhéngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m =i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n+2m/3—2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = Y, d(g) > 4r bzw. r < m/2. Eulers Formel

2.1 Féarben von planaren Graphen

liefert daher m =n+r —2 <n+m/2 — 2, was m/2 < n — 2 und
somit m < 2n — 4 impliziert. |

Korollar 2.12. Die Graphen K5 und Ksg sind nicht planar.

Beweis. Wegen n(Ks) = 5, also 3n(K;) — 6 = 9, und wegen
m(Ks) = (5) = 10 gilt m(K5) £ 3n(Ks) — 6.

Wegen n(K33) = 6, also 2n(K33) —4 = 8, und wegen m(Ks3) =
3-3=9 gllt m(K373) $ 2n(K3,3) —4. [ |

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Korollar 2.13. Jeder planare Graph hat einen Minimalgrad 6 < 5.

Beweis. Fir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme ¢ > 6 die Ungleichung

m = %EUGV deg(u) > %ZuGV 6= 3TL,

was im Widerspruch zu m < 3n — 6 steht. [ |

Definition 2.14. Seien G = (V,E) und H Graphen und seien
u,v V.

e Durch Fusion von u und v entsteht aus G der Graph G, =
(V —{v}, E") mit

E'={eecE|vdetU{{u,v'}|{v,v'} € E—{u,v}}.

Ist e = {u,v} eine Kante von G (also e € E), so sagen wir auch,
Gy entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2 mit Ng(v) = {u,w}, so sagen wir auch, G, entsteht
aus G durch Uberbriickung des Knotens v bzw. G aus Gy, durch
Unterteilung der Kante {u,w}.
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G heifit zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.

G heifst Unterteilung von H, falls G aus einer isomorphen Kopie
von H durch wiederholte Unterteilungen gewonnen werden kann.

H heifit Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.

G heifit H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifst G H-frei, falls G fir alle H € H H-frei ist.

Beispiel 2.15. Betrachte folgende Graphen:

G st keine Unterteilung von H, da G Knoten vom Grad 3 hat, aber
H nicht. Entfernen wir jedoch die beiden Kanten a und b aus G, so
ist der resultierende Teilgraph eine Unterteilung von H, d.h. H ist
ein topologischer Minor von G. H ist aber kein topologischer Minor
von G', da H einen Knoten vom Grad 4 hat und G' nur Knoten vom
Grad < 3. Da durch Kontraktion der drei umrandeten Kanten ein zu
H isomorpher Graph entsteht, ist H aber ein Minor von G'. N

Es ist klar, dass die Klasse K der planaren Graphen zwar unter Un-
terteilung und (topologischer) Minorenbildung abgeschlossen ist (d.h.
wenn G € K und H ein Minor oder eine Unterteilung von G ist, dann
folgt H € K), aber nicht unter Fusion.

Nach Definition ldsst sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:

e Entfernen einer Kante oder eines Knotens,

e Kontraktion einer Kante (bzw. Uberbriickung eines Knotens).

2.1 Farben von planaren Graphen

Da die Kontraktionen (bzw. Uberbriickungen) 0.B.d.A. auch zuletzt
ausgefithrt werden kénnen, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.16 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-fdarbbar.

Beweis. Wir beweisen den Satz durch Induktion tiber n.
n=1: Klar.

n— 1~ mn: Da G planar ist, existiert ein Knoten u mit deg(u) < 5.
Im Fall deg(u) < 4 entfernen wir v aus G. Andernfalls hat u zwei
Nachbarn v und w, die nicht durch eine Kante verbunden sind
(andernfalls wiare K5 ein Teilgraph von G). In diesem Fall entfer-
nen wir alle mit u inzidenten Kanten auer {u,v} und {u,w} und
kontrahieren diese beiden Kanten zum Knoten v.

In beiden Féllen ist der resultierende Graph G’ ein Minor von G und
daher planar. Da G’ zudem hochstens n — 1 Knoten hat, existiert
nach IV eine 5-Farbung ¢’ fir G'. Da wir im 2. Fall dem Knoten w
die Farbe ¢/(v) geben kénnen, haben die Nachbarn von u héchstens
4 verschiedene Farben und wir kénnen G 5-farben. |

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K33 oder den K7 als topologischen Minor enthélt. Fiir den Beweis
bendtigen wir noch folgende Notationen.

Definition 2.17. Sei G = (V, E) ein Graph.

o Fine Menge S CV heifit Separator in G, wenn es zwei Knoten
u,v € V\S gibt, zwischen denen in G—S kein u-v-Weg existiert. Ist
|S| = k, so nennen wir S auch einen k-Separator zwischen u und
v oder auch einen u-v-Separator der Grofie k. Ein 1-Separator
wird auch Artikulation oder Schnittknoten von G genannt.

o Fin Graph G heifit k-zusammenhingend, 0 < k <n — 1, falls
G keinen (k — 1)-Separator hat. Die grofite Zahl k, fir die G k-
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zusammenhdngend ist, heifst Zusammenhangszahl von G und
wird mit k(G) bezeichnet.

Ein Graph G mit n > 2 Knoten ist also genau dann zusammenhan-
gend, wenn k(G) > 1 ist.

Lemma 2.18. Ist ein Graph G = (V, E) nicht planar, so hat er einen
o 2-zusammenhdangenden Untergraphen U = (V' E') und einen
o 3-zusammenhdngenden topologischen Minor M = (V" E"),

die minimal nicht planar sind, d.h. U und M sind nicht planar
und fir alle ¢’ € E' und €’ € E" sind die Graphen U — e’ und M — e
planar.

Beweis. Wir entfernen zuerst solange Kanten und Knoten aus G, bis
wir aus dem verbliebenen Teilgraphen U = (V’, E’) keine weiteren
Kanten oder Knoten entfernen kénnen, ohne dass U planar wird.

U ist zusammenhéngend, da andernfalls mindestens eine Komponente
von U nicht planar ist und wir alle tibrigen Komponenten entfernen
konnten, ohne dass U planar wird.

U ist sogar 2-zusammenhéngend, da U sonst einen Schnittknoten s
enthélt und U — s in k > 2 Komponenten U[V}], ..., U[Vy] zerfallt.
Dann ist aber mindestens ein Teilgraph T; = U[V; U {s}] nicht planar
und wir kénnen alle Knoten auflerhalb von T} entfernen, ohne dass U
planar wird.

Um einen topologischen Minor M von G mit den behaupteten Eigen-
schaften zu erhalten, konstruieren wir zu U einen topologischen Minor
U’, der minimal nicht planar ist und zudem 3-zusammenhangend
ist oder weniger Knoten als U hat. Indem wir diese Konstruktion
wiederholen, erhalten wir schliellich M.

Falls U 3-zusammenhéngend ist, ist U’ = U. Andernfalls gibt es in
U einen 2-Separator S = {u,v}, d.h. U — S zerfillt in k > 2 Kom-
ponenten U[Vy],...,U[Vi]. Betrachte die (2-zusammenhédngenden)
Graphen G; = U[V; U {u,v}] U {u,v}. Dann ist mindestens ein G;
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nicht planar (z.B. Gy), da sonst auch U planar wére. Da k > 2 ist,
erhalten wir einen zu G; isomorphen Graphen U’ als topologischen
Minor von H = U[V; UV, U {u,v}] (und damit von U), indem wir
in U[Va U {u,v}] einen beliebigen u-v-Pfad P wéhlen und aus H alle
Knoten und Kanten entfernen, die nicht auf P liegen und danach
P iiberbriicken. Dann hat U’ weniger Knoten als U und ist wie U
minimal nicht planar. |

Definition 2.19. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heifit Briicke von K in G, falls

e B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Briicken werden auch als Sehnen
von K bezeichnet), oder

e B—K eine Komponente von G— K ist und B aus B— K durch Hin-
zufiigen aller Kanten zwischen B — K und K (und der zugehirigen
Endpunkte auf K ) entsteht.

Die Knoten von B, die auf K liegen, heiffen Kontaktpunkte von
B. Zwei Bricken B und B' von K heiflen inkompatibel, falls

e B Kontaktpunkte u,v und B’ Kontaktpunkte u’,v" hat, so dass diese
vier Punkte in der Reihenfolge u,u',v,v" auf K liegen, oder

e B und B" mindestens 8 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass in einem planaren Graphen kein Kreis
mehr als zwei inkompatible Briicken haben kann.

Satz 2.20 (Kuratowski 1930).
Fiir einen Graphen G sind folgende Aussagen dquivalent:

(i) G ist planar.
(i) G enthdlt weder den K33 noch den Ky als topologischen Minor.

Beweis. Die Implikation von i) nach i7) folgt aus der Abgeschlossen-
heit der planaren Graphen unter (topologischer) Minorenbildung.
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Die Implikation von #i) nach i) zeigen wir durch Kontraposition.
Sei also G = (V) E) nicht planar. Dann hat G nach Lemma 2.18
einen 3-zusammenhéngenden nicht planaren topologischen Minor
M = (V' E"), so dass M — €' fir jede Kante ¢’ € E’ planar ist. Wir
entfernen eine beliebige Kante eq = {ag, bp} aus M. Dann ist M — eq
planar. Da M — ey 2-zusammenhangend ist, gibt es in M — ey einen
Kreis K durch die beiden Knoten ay und b, (siche Ubungen). Wir
wéhlen K zusammen mit einer ebenen Realisierung H' von M — eq
so, dass K moglichst viele Gebiete in H' einschliefit.

Fir zwei Knoten a,b auf K bezeichnen wir mit KJa,b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K|a,b) = KJa,b] \ {b}. Die Mengen K (a,b) und
K (a, b] sind analog definiert.

Die Kanten jeder Briicke B von K in M — eq verlaufen in H' entweder
alle innerhalb oder alle aulerhalb von K. Im ersten Fall nennen wir
B eine innere Briicke und im zweiten eine duflere Briicke.

Es ist klar, dass K in H’ mindestens eine innere und mindestens
eine duflere Briicke haben muss. Zudem muss jede duflere Briicke B
aus einer Kante {u, v} bestehen, die zwei Knoten u € K(ag,by) und
v € K(by,ap) verbindet. Andernfalls hiatte B namlich mindestens 2
Kontaktpunkte auf Kfag, bg] oder auf K[by, ag|. Daher kénnte K zu
einem Kreis K’ erweitert werden, der in H’ mehr Gebiete einschliefit
(bzw. ausschliefit) als K, was der Wahl von K und H' widerspricht.

K hat in M aufler den Briicken in M — ey noch zuséatzlich die Briicke
eg. Wir wiahlen nun eine innere Briicke B, die sowohl zu ¢ als auch
zu mindestens einer dufleren Briicke e; = {ay, b} inkompatibel ist.
Eine solche Briicke muss es geben, da wir sonst alle mit ey inkompati-
blen inneren Briicken nach auflen klappen und e; als innere Briicke
hinzunehmen koénnten, ohne die Planaritit zu verletzen.

Wir benutzen K und die drei Briicken ey, e; und B, um eine Untertei-
lung des K333 oder des K5 in M zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A, A C V'’ mit jeweils 3 Knoten an, so dass
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9 knotendisjunkte Pfade zwischen allen Knoten a € A; und b € A,
existieren. Oder wir geben eine Menge A C V'’ mit finf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a,b € A
existieren. Da eg und e; inkompatibel sind, konnen wir annehmen,
dass die vier Knoten ag, ay, by, by in dieser Reihenfolge auf K liegen.

Fall 1: B hat einen Kontaktpunkt k; & {ag, a1, bp, b1 }. Aus Symme-
triegrinden konnen wir k; € K(ag,a;) annehmen. Da B weder
zu ey noch zu e; kompatibel ist, hat B weitere Kontaktpunkte
ko € K(by,ao) und ks € K(ay,by), wobei ky = k3 sein kann.

Fall 1a: Ein Knoten k; € {ko, k3} liegt auf dem Bogen K (by, by).
In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{CL(), ay, kz} und {b(), bl, ]{?1}

Fall 1b: K(by,b1) N {ka, k3} = (. In diesem Fall ist ky € Kby, a0)
und k3 € K(ay,bo]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {k1, k2, k3} existieren. Folg-
lich gibt es 9 knotendisjunkte Pfade zwischen {ag,a;,u} und
{kl, k27 k3}.

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {ag, a1, bg, b1 }.
Da B inkompatibel zu eg und e; ist, miissen in diesem Fall alle vier
Punkte zu B gehoren. Sei Fy ein ag-bp-Pfad in B und sei P; ein
a1-bi-Pfad in B. Sei u der erste Knoten auf Fy, der auch auf P;
liegt und sei v der letzte solche Knoten.

Fall 2a: u = v. Dann gibt es in B vier knotendisjunkte Pfade von
w zu {ag, ay, by, by } und somit existieren in M 10 knotendisjunkte
Pfade zwischen den Knoten w, ag, a1, bo, b;.

Fall 2b: u # v. Durch u und v wird der Pfad P; in drei Teilpfade
P,,, P,, und P,, unterteilt, wobei die Indizes die Endpunkte
bezeichnen und {z,y} = {a, b } ist.

Somit gibt es in B drei Pfade zwischen u und jedem Knoten
in {ag,v,z} und zwei Pfade zwischen v und jedem Knoten in
{bo, y}, die alle 5 knotendisjunkt sind. Folglich gibt es in M 9
knotendisjunkte Pfade zwischen {ag, v, z} und {by,y, u}. [
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Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.

Alternativ lasst sich der Ks auch als ein
topologischer Minor von G erhalten, in-
dem wir die dinnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 tiberbriicken. N

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.

Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er { K33, K5 }-frei ist.

Satz 2.23 (Satz von Robertson und Seymour, 1983-2004). Sei KC eine
Graphklasse, die unter Minorenbildung abgeschlossen ist. Dann gibt
es eine endliche Menge H von Graphen mit

K ={G |G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heiflen verbotene Minoren fir die Klasse K.

Eine interessante Folgerung aus diesem Satz ist, dass jede unendliche
Graphklasse zwei Graphen G und H enthélt, so dass H ein Minor
von G ist. Das Problem, fiir zwei gegebene Graphen G und H zu
entscheiden, ob H ein Minor von G ist, ist zwar NP-vollstéandig (da
sich das Hamiltonkreisproblem darauf reduzieren lasst). Fiir einen
festen Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 2.24 (Robertson und Seymour, 1995). Fir jeden Graphen H gibt
es einen O(n3)-zeitbeschrinkten Algorithmus, der fiir einen gegebenen
Graphen G entscheidet, ob er H-frei ist.
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Korollar 2.25. Die Zugehorigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus fiir /C lasst sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren fiir O kennen. Leider ist der
Beweis von Theorem 2.23 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus fiir £ fiihrt.

2.2 Farben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitdtsgraphen (auch transitiv orientierba-
re Graphen genannt) chordal. Wir werden sehen, dass sich fiir chordale
Graphen effizient eine optimale Knotenférbung berechnen lasst.

Definition 2.26. Ein Graph G = (V, E) heifit chordal oder trian-
guliert, wenn jeder Kreis K = (uq,...,u;,uy) der Linge |l > 4 in G
mindestens eine Sehne hat.

G ist also genau dann chordal, wenn er keinen induzierten Kreis der
Lange [ > 4 enthélt (ein induzierter Kreis ist ein induzierter Teilgraph
G[V'], V! C V, der ein Kreis ist). Dies zeigt, dass die Klasse der
chordalen Graphen unter induzierter Teilgraphbildung abgeschlos-
sen ist (aber nicht unter Teilgraphbildung). Jede solche Graphklasse
G ist durch eine Familie von minimalen verbotenen induzierten
Teilgraphen H; charakterisiert, die bis auf Isomorphie eindeutig
bestimmt sind. Die Graphen H; gehoren also nicht zu G, aber sobald
wir einen Knoten daraus entfernen, erhalten wir einen Graphen in G.
Die Klasse der chordalen Graphen hat die Familie der Kreise C,, der
Lange n > 4 als verbotene induzierte Teilgraphen.

Lemma 2.27. Fir einen Graphen G sind folgende Aussagen dquiva-
lent.

(i) G ist chordal.
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(ii) Jeder inklusionsminimale x-y-Separator S in G ist eine Clique.

(iii) Jedes Paar von nicht adjazenten Knoten x undy in G hat einen
x-y-Separator S, der eine Clique ist.

Beweis. Um zu zeigen, dass die zweite Aussage aus der ersten folgt,
nehmen wir an, dass G einen minimalen z-y-Separator S hat (d.h.
S\ {s} ist fir jedes s € S kein z-y-Separator), der zwei nicht adjazente
Knoten u und v enthélt. Seien G[V;] und G[V5] die beiden Kompo-
nenten in G — S mit x € V; und y € V5. Da S minimal ist, haben
die beiden Knoten u und v sowohl einen Nachbarn in V] als auch in
V,. Betrachte die beiden Teilgraphen G; = G[V; U {u,v}] (i = 1,2)
und wahle jeweils einen kiirzesten u-v-Pfad P; in ;. Da deren Lange
> 2 ist, ist K = P, U P, ein Kreis der Lange > 4. Aufgrund der
Konstruktion ist zudem klar, dass K keine Sehnen in G hat.

Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen z-y-Separator S hat, und
S eine Clique sein muss, wenn wir S inklusionsminimal wéahlen.

Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen wir
an, dass G nicht chordal ist. Dann gibt es in GG einen induzierten Kreis
K der Lange > 4. Seien z und y zwei beliebige nicht adjazente Knoten
auf K und sei S ein z-y-Separator in G. Dann muss S mindestens
zwei nicht adjazente Knoten aus K enthalten. [

Definition 2.28. Sei G = (V, E) ein Graph und sei k > 0. Ein
Knoten u € V vom Grad k heifit k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhéangende chordale Graphen konnen als eine Verallgemeine-
rung von Baumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K durch sukzessives Hinzufiigen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heifit G k-Baum, wenn G aus
K}, durch sukzessives Hinzufiigen von k-simplizialen Knoten erzeugt
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werden kann. Wir werden sehen, dass ein zusammenhéngender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufligen von simplizialen
Knoten erzeugt werden kann. Aquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 2.29. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(u,...,u,) auf V heifst perfekte Eliminationsordnung (PEO)
von G, wenn u; simplizial in Gluy, ..., w] firi=2,...,n ist.

Es ist klar dass alle Knoten eines vollstandigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder nicht vollsténdige Baum 7" (also T' ¢ { K1, K5 }) mindestens
zwei nicht adjazente Blatter hat.

Lemma 2.30. Jeder nicht vollstindige chordale Graph G besitzt
mindestens zwei simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir fiihren Induktion tiber n. Fiir n < 2 ist die Behauptung
klar. Sei G = (V, E)) ein Graph mit n > 3 Knoten. Da G nicht voll-
standig ist, enthélt G zwei nichtadjazente Knoten x; und z5. Sei S
ein minimaler x;-z9-Separator der Gréfle £ > 0. Im Fall £ > 0 ist .S
nach Lemma 2.27 eine Clique in G. Seien G[V;] und G[V3] die beiden
Komponenten von G — S mit z; € V;. Wir zeigen die Existenz zweier
simplizialer Knoten s; € V;, i =1, 2.

Betrachte die Teilgraphen G; = G[V; U S]. Da G; chordal ist und
weniger als n Knoten hat, ist GG; nach IV entweder eine Clique oder
G; enthalt mindestens zwei nicht adjazente simpliziale Knoten ;, z;.
Falls G; eine Clique ist, ist s; = x; simplizial in G;, und da x; keine
Nachbarn auflerhalb von V; U S hat, ist s; dann auch simplizial in G.
Ist G; keine Clique, kann hochstens einer der beiden Knoten ;, 2;
zu S gehoren (da S im Fall S # () eine Clique und {y;, z;} ¢ F ist).
O.B.d.A. sei y; € V;. Dann hat s; = y; keine Nachbarn auflerhalb von
V; U S und somit ist s; auch simplizial in G. [ |
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Satz 2.31. FEin Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, ldsst sich eine PEO gemafl Lemma 2.30
bestimmen, indem wir fiir ¢ = n, ..., 2 sukzessive einen simplizialen
Knoten u; in G — {u;yq, ..., u,} wahlen.

Fir die umgekehrte Richtung sei (uy, ..., u,) eine PEO von G. Wir
zeigen induktiv, dass G; = G[uy, . .., u;) chordal ist. Da u;, 1 simplizial
in G4 ist, enthélt jeder Kreis K der Lange > 4 in G;.1, auf dem

u; 41 liegt, eine Sehne zwischen den beiden Kreisnachbarn von w,;;.

Daher ist mit G; auch G;,; chordal. |

Korollar 2.32. Es gibt einen Polynomialzeitalgorithmus A, der fir
einen gegebenen Graphen G eine PEQ berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Linge > 4 ausgibt.

Beweis. A versucht wie im Beweis von Theorem 2.31 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass G; = G — {u;y1, ..., u,}
keinen simplizialen Knoten u; hat, so ist G; wegen Lemma 2.30 nicht
chordal. Daher gibt es in GG; nach Lemma 2.27 (ii7) ein Knotenpaar
x,1, so dass kein x-y-Separator eine Clique ist. Berechnen wir fir
dieses Paar einen beliebigen minimalen z-y-Separator S, so ist S
keine Clique und wir kénnen wie im Beweis von (i) = (ii) einen
induzierten Kreis K der Linge > 4 in G; konstruieren. Da G; ein

induzierter Teilgraph von G ist, ist K auch ein induzierter Kreis in G.

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
farben:
Algorithmus chordal-color(V,FE)

I berechne eine PEO (uy,...,u,) fir G = (V,E)
> starte greedy-color mit der Knotenfolge (u1, ..., u,)
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Satz 2.33. Fir einen gegebenen chordalen Graphen G = (V, E) be-
rechnet der Algorithmus chordal-color eine k-Farbung ¢ von G mit
k=x(G) = w(G).

Beweis. Sei u; ein beliebiger Knoten mit ¢(u;) = k. Da (u1, ..., u,)
eine PEO von G ist, ist u; simplizial in G[uy, . . ., u;]. Somit bilden die
Nachbarn w; von u; mit j < ¢ eine Clique und wegen c¢(u;) = k bilden
sie zusammen mit u; eine k-Clique. Daher gilt x(G) < k < w(G),
woraus wegen w(G) < x(G) die Behauptung folgt. [ |

Um chordal-color in Linearzeit zu implementieren, benétigen wir
einen Linearzeit-Algorithmus zur Bestimmung einer PEO. Rose, Tar-
jan und Lueker haben 1976 einen solchen Algorithmus angegeben, der
auf lexikographischer Breitensuche (kurz LexBFS oder LBFS, engl.
lexicographic breadth-first search) basiert. Bevor wir diese Variante
der Breitensuche vorstellen, gehen wir kurz auf verschiedene Ansétze
zum Durchsuchen von Graphen ein.

Der folgende Algorithmus GraphSearch(V, E') startet eine Suche in
einem beliebigen Knoten v und findet zunéchst alle von u aus erreich-
baren Knoten. Danach wird solange von einem noch nicht erreichten
Knoten eine neue Suche gestartet, bis alle Knoten erreicht wurden.
Die Menge der aktuellen Knoten wird dabei in einer Datenstruktur A
gespeichert. Genauer enthélt A alle bereits entdeckten Knoten, die
noch nicht abgearbeitet sind.

Algorithmus GraphSearch(V, E)

R:=( // Menge der erreichten Knoten
L:=() // Ausgabeliste
repeat
wahle w € VAR  // u wurde neu entdeckt
append(L, u)
¢ parent(u):= L1
7 A:={u} // Menge der aktuellen Knoten
s R:=RU{u}

S B O
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9 while A # () do

10 wahle u aus A

11 if Jv € N(u)\R then

12 A:=AU{v} // v wurde neu entdeckt

13 R:= RU{v}

14 append(L, v)

15 parent(v) :==u

16 else entferne w aus A // u wurde abgearbeitet
17 until R=V

1z return(L)

Der Algorithmus GraphSearch(V, E) findet in jedem Durchlauf der
repeat-Schleife eine neue Komponente des Eingabegraphen G = (V, E).
Dies bedeutet, dass alle Knoten, die zu einer Komponente gehoren,
konsekutiv in der Ausgabeliste L = (uy,...,u,) auftreten, wobei ab-
gesehen vom ersten Knoten jeder Komponente jeder Knoten u; einen
Nachbarn u; mit 7 < k hat.

Die folgende Definition fasst diese Eigenschaften der Ausgabeliste
zZusaminen.

Definition 2.34. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(u1,...,u,) auf V heifft Suchordnung (SO) von G, wenn fir jedes
Tripel 7 < k <1 gilt:

uj € N(u) \ N(ug) = i < k:i#jAu; €N(uyg).

Satz 2.35. Fir jeden Graphen G = (V,E) gibt der Algorithmus
GraphSearch(V, E) eine SO von G aus.

Beweis. Ein Knoten uy erhalt nur dann den Wert parent(uy) = L,
wenn alle Knoten u; mit j < £ bereits abgearbeitet sind und diese nur
Nachbarn u; mit [ < k hatten. Falls also ein Vorganger u; von u;, mit
einem Nachfolger u; von u verbunden ist, liefert die parent-Funktion
einen Nachbarn u; = parent(uy) von w, mit ¢ < k. Da u; & N (ug)
ist, gilt zusatzlich ¢ # j. [ |
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Die parent-Funktion induziert einen gerichteten Wald W =
(V, Eparent), dessen Kantenmenge aus allen Kanten der Form
(parent(v),v) mit parent(v) # L besteht. Die Kanten von W wer-
den auch als Baumkanten (kurz B-Kanten) und W wird auch als
Suchwald von G = (V, E) bezeichnet. Fiir jeden Knoten v € V' gibt
es genau eine Wurzel w in W, von der aus v in W erreichbar ist. Der

eindeutig bestimmte w-v-Pfad P = (ug,...,u;) in W mit vy = w
und u; = v lasst sich ausgehend von u; = v unter Verwendung der
parent-Funktion mittels w;_; = parent(u;) fiir i = [, ..., 1 berech-

nen. P wird auch als parent-Pfad von v bezeichnet. Es ist klar, dass
2 Knoten v und v’ genau dann in einer Komponente von G liegen,
wenn sie die gleiche Wurzel haben.

Realisieren wir die Menge der aktuellen Knoten als einen Keller S,
so erhalten wir eine Suchstrategie, die als Tiefensuche (kurz DFS,
engl. depth first search) bezeichnet wird. Die Benutzung eines Kellers
bewirkt, dass nach der Entdeckung eines neuen Knotens v unter den
Nachbarn des aktuellen Knotens u die Suche zuerst bei den Nachbarn
von v fortgesetzt wird, bevor die anderen Nachbarn von u getestet
werden.

Algorithmus DFS(V, FE)

I R:=0 // Menge der erreichten Knoten
> L:=() // Ausgabeliste

3 repeat

. wahle w € VAR // u wurde neu entdeckt
5 R:=RU{u}

¢ append(L,u)

7 parent(u) == L

s S:=(u) // Keller der aktuellen Knoten
o while S # () do
10 u := top(.S)
11 if Jv € N(u)\R then

12 push(S,v) // v wurde neu entdeckt
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13 R:= RU{v}

14 append(L, v)

15 parent(v) :==u

16 else pop(S) // u wurde abgearbeitet
17 until R=V

18 return(L)

Definition 2.36. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(ug,...,u,) auf V heifst DFS-Ordnung (DO) von G, wenn fir
jedes Tripel 7 < k <1 gilt:

uJEN(ul)\N(uk)éﬂzj<2</{:/\ulEN(uk)

Satz 2.37. Fir jeden Graphen G = (V,E) gibt der Algorithmus
DFS(V, E) eine DO von G aus.

Beweis. Siehe Ubungen. |

Realisieren wir die Menge der abzuarbeitenden Knoten als eine Warte-
schlange @, so findet der resultierende Algorithmus BFS(V, F') einen
kiirzesten Weg vom Startknoten u zu allen von u aus erreichbaren
Knoten. Diese Suchstrategie wird als Breitensuche (kurz BFS, engl.
breadth first search) bezeichnet. Die Benutzung einer Warteschlange
(@ zur Speicherung der noch abzuarbeitenden Knoten bewirkt, dass
alle Nachbarknoten v des aktuellen Knotens u vor den bisher noch
nicht erreichten Nachbarn von v ausgegeben werden.

Algorithmus BFS(V, FE)
R:=0 // Menge der erreichten Knoten

1

> L:=() // Ausgabeliste

3 repeat

4+ wahle w € VAR // u wurde neu entdeckt
5 R:=RU{u}

¢ parent(u):= L

14
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Q) :=(u) // Warteschlange der aktuellen Knoten
while @ # () do

) u := dequeue(Q)
10 append(L, u)

11 for all v € N(u)\R do
12 enqueue(Q,v) // v wurde neu entdeckt
13 parent(v) :==u
14 R:= RUN(u)
5ountil R=V
¢ return(L)

o

// u wird komplett abgearbeitet

Definition 2.38. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(ug,...,u,) auf V heifft BFS-Ordnung (BO) von G, wenn fiir jedes
Tripel j < k <1 gilt:

u;j € N(w) \ N(ug) = Fi < j:u; € N(uy).

Satz 2.39. Fir jeden Graphen G = (V,E) gibt der Algorithmus
BFS(V, E) eine BO von G aus.

Beweis. Existiert im Fall k& < [ eine Position j < k mit u; €
N(w) \ N(ug), so muss es einen Knoten w; € N(u) mit i < j
geben, der dafiir gesorgt hat, dass der Knoten wu; vor dem Knoten
in die Warteschlange aufgenommen wurde. ]

BFS-Ordnungen lassen sich anschaulich anhand der Adjazenzmatrix
charakterisieren. Sei (u1,...,u,) eine BO fir G = (V, E) und sei
A = (a;;) die Adjazenzmatrix von G mit a;; = 1 < {u;, u;} € E. Wei-
ter seien z; = a;; ...a;,;—; die Préfixe der Zeilen von A, die unterhalb
der Diagonale verlaufen. Sind nun die ersten j Eintrage ay: ... ay;
einer Zeile s; Null, so muss dies auch fiir jede Zeile s; mit [ > k so
sein, da im Fall a;; = 1 der Knoten u; € N(w;) \ N(u;) wére und
somit ein ¢ < j mit ay; = 1 existieren miisste. Dies bedeutet, dass s;
mindestens so viele Nullen als Prafix hat wie z;. Es ist aber moglich,
dass z; bspw. mit 00010. .. beginnt und z; mit 00011. ...
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Alternativ konnen wir () auch als eine Warteschlange von Knotenmen-
gen realisieren (siche Algorithmus BFS’), um einen Uberblick iiber
alle moglichen Fortsetzungen der aktuellen Liste L zu einer BO zu
erhalten. Die Prozedur Dequeue(Q) liefert ein beliebiges Element aus
der ersten Menge in () zuriick und entfernt dieses aus Q).

Algorithmus BFS’ (V, E)

. R:=( // Menge der erreichten Knoten
L:=() // Ausgabeliste
repeat
wahle u € V\R
5 R:=RuU{u}
6  Q:=({u}) // Warteschlange von Knotenmengen
7 while Q # () do
8 u := Dequeue(Q)
9 append(L, u)
10 if N(u) Z R then enqueue(Q, N(u)\R)
11 R:= RUN(u)
2 until R=V

13 return(L)

=~ W N

// w wird komplett abgearbeitet

Prozedur Dequeue(Q)

1 entferne u aus first(Q)
2 if first(Q) = 0 then dequeue(Q)
3 return(u)

Fassen wir die Menge V' \ R der noch nicht erreichten Knoten als
Nachfolgemenge der letzten Menge in () auf, so wird von dieser Rest-
menge in jedem Durchlauf der while-Schleife von BFS’ die Teilmenge
N(u) \ R abgetrennt und im Fall N(u) \ R # () der Schlange @
hinzugefiigt.

Der Unterschied von LexBFS zur normalen Breitensuche besteht
darin, dass die zulassigen Ausgabefolgen gegeniiber der BFS weiter
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eingeschrankt werden. Der Name von LexBF'S rithrt daher, dass die
Knoten in einer Reihenfolge ausgegeben werden, die eine lexikogra-
phische Sortierung der Zeilenpréfixe z; bewirkt, sofern man sie durch
Anhéngen von Einsen auf die gleiche Lange bringt. Eine solche Sor-
tierung kann auch bei einer gewohnlichen Breitensuche auftreten, ist
bei dieser aber nicht garantiert. Bei einer Breitensuche werden die
noch nicht besuchten Nachbarn des aktuellen Knotens in beliebiger
Reihenfolge zur Warteschlange hinzugefiigt und auch wieder in dieser
Reihenfolge entfernt. Dagegen werden bei einer LexBFS die Knoten
in der Warteschlange nachtraglich umsortiert, falls dies notwendig
ist, um eine LexBFS-Ordnung der Knoten zu erhalten (siche Defi-
nition 2.40). Ahnlich wie bei BFS’ wird hierzu die Menge der noch
nicht abgearbeiteten Knoten in eine Folge von Knotenmengen zerlegt.
Im Gegensatz zu BFS’ kann LexBFS aber nicht nur die letzte Menge
V'\ R splitten, sondern alle Mengen der Folge.

Algorithmus LexBFS(V, E,u)

1 L:=() // Ausgabeliste
Q@ := (V) // Warteschlange von Knotenmengen
while @ # () do
u := Dequeue(Q)
append(L, u)
i Splitqueue(Q@, N(u))
7 return(L)

// u wird komplett abgearbeitet

[ V]

Prozedur Splitqueue(Q,S)

. for Tin Q with TNS ¢ {0, T} do
> ersetze die Teilfolge (T') in @ durch (T'NS, T\ S)

Fir eine effiziente Implementierung sollte die Schlange @) =
(S1,-..,Sk) von Knotenmengen S; C V' als doppelt verkettete Liste
realisiert werden und fiir jeden Knoten u in der Adjazenzliste ein
Zeiger auf die Menge S;, die u enthélt und auf seinen Eintrag in
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S; gespeichert werden. Zudem sollte die for-Schleife in der Prozedur
Splitqueue durch eine Schleife tiber die Knoten in S = N(u) ersetzt
werden.

Definition 2.40. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(u,...,up) auf V heifft LexBFS-Ordnung (LBO) von G, wenn
fiir jedes Tripel 7 < k <1 gilt:

Ob eine Ordnung (uy,...,u,) eine LBO ist, ldsst sich wie folgt an
der geméf (uq,...,u,) geordneten Adjazenzmatrix A ablesen: die
verkiirzten Zeilen zq,..., 2, unter der Diagonalen miissen wie folgt
sortiert sein: entweder ist z; ein Prafix von z;,; oder z; hat an der
ersten Position, wo sich die beiden Strings unterscheiden, eine Eins.
Bringen wir also die verkiirzten Zeilen durch Anhéngen von Einsen auf
dieselbe Linge, so sind sie lexikographisch sortiert. In den Ubungen
wird gezeigt, dass man sogar eine lexikographische Ordnung auf den
kompletten Zeilen von A erhalt, falls man die Diagonale auf 1 setzt
und die Knoten in jeder Menge von () nach absteigendem Knotengrad
in GG sortiert.

Satz 2.41. Fir jeden Graphen G = (V,E) gibt der Algorithmus
LexBFS(V, E') eine LBO (uq,...,u,) von G aus.

Beweis. Sei A = (a;;) die Adjazenzmatrix von G mit a;; = 1 &
{u;,u;} € E. Wir zeigen, dass die Strings z; = a;, ..., a;;—1 lexika-
lisch sortiert sind. Existiert ndmlich im Fall £ < [ eine Position j < k
mit ar; = 0 und a;; = 1, so muss es eine Position ¢ < j mit a;; = 1
und a; = 0 geben. Ansonsten wére der Knoten u; spitestens beim
Abarbeiten von u; in eine Menge vor dem Knoten u;, sortiert worden
und konnte daher nicht nach dem Knoten w; ausgegeben werden. W

Satz 2.42. Jede LBO fiir einen chordalen Graphen G ist eine PEO
fir G.
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Beweis. Sei (uy, ..., u,) eine LBO fir G = (V, E) und sei A = (a;)
die Adjazenzmatrix von G mit a;; = 1 < {u;,u;} € E, wobei wir fiir
a;; auch A[i, j] schreiben. Wir zeigen, dass G nicht chordal ist, wenn
w; nicht simplizial in G; = Glug, . . ., u;] ist.

Falls u; nicht simplizial in G; ist, miissen Indizes 75 < i1 < 7 =: 7o mit
Alig, 1] = Alig, i2) = 1 und Aliy, i5] = 0 existieren. Wegen A[iq, o] = 0
und Alig, i3] = 1 muss es einen Index i3 < i geben mit Aiq, i3] = 1
und Alig, i3] = 0, wobei wir i3 moglichst klein wéhlen.

Falls nun Alig, i3] = 1 ist, haben wir einen induzierten Kreis
GlWig, Wiy, Uiy, Wiy] = (Uig, Wiy, Uiy, Ui,) der Lange 4 in G gefunden. An-
dernfalls muss es wegen Alig, i3] = 0 und A[iy, i3] = 1 einen Index

iy < i3 geben mit Alis,iq] = 1 und Aliy, 4] = 0, wobei wir iy wieder

moglichst klein wahlen. Da spatestens fiir i, = 1 kein Index i1 < i

existiert, also Alix_1,ix] = 1 sein muss, erhalten wir eine Indexfolge

1< <o <4y < ig mit

(a) A[io, Zl} = A[ij,’ij+2] = A[?:kfl, Zk] =1 fir j = 0, R ,k — 2 und

(b) A[io, 23] = A[Z'j,’l'j+1] = A[’ij,?:j+3] == A[’l'kfg,’l'kfl] =0 fur
j=1,...,k—3und

(C) A[Zj,l] = A[ij_l,l] firgj=1,...,k—3und [ < ij+2.

Die Eigenschaften (a) und (b) ergeben sich direkt aus der Konstruk-

tion der Folge. Eigenschaft (c¢) folgt aus der minimalen Wahl der

Indizes 1i3,...,7; und impliziert fir r = 3,...,k die Gleichungen

Alig, i) = Alir, i) = -+ = Aliy_3,i,], indem wir j = 1,...,r — 3

und [ = i, setzen. Da zudem Al[i,_3,4,| geméaB Eigenschaft (b) fiir

r=3,...,k den Wert 0 hat, folgt fiir alle Paare 0 < 5 < r < k die

Aquivalenz

Alij,iy] =1 r=j+2o0der j=0Ar=1oder j=k—1Ar=k.
Folglich ist Glu,,, ..., u;,] ein Kreis der Lange k +1 > 4. [ |

Damit haben wir einen Linearzeitalgorithmus, der fiir chordale Gra-
phen eine PEO berechnet. Da auch greedy-color linear zeitbe-



2 Férben von Graphen

schrankt ist, konnen wir den Algorithmus chordal-color in Linear-
zeit implementieren. Diesen Algorithmus koénnen wir leicht noch so
modifizieren, dass er zusammen mit der gefundenen k-Farbung entwe-
der eine Clique C der Grofle k (als Zertifikat, dass x(G) = k = w(G)
ist) oder einen induzierten Kreis der Liange > 4 (als Zertifikat, dass
G nicht chordal ist) ausgibt.

2.3 Der Satz von Brooks

Satz 2.43 (Brooks 1941). Fir einen zusammenhdngenden Graphen
G gilt x(G) = A(G) + 1 genau dann, wenn G = K, fir einn > 1
oder G = C,, fiir ein ungerades n > 3 ist.

Beweis. Es ist klar, dass die Graphen G = K, firn > 1 und G = C),
fiir ungerades n > 3 die chromatische Zahl A(G) + 1 haben. Fiir
A(G) < 2 ist leicht zu sehen, dass dies auch die einzigen zusammen-
hdngenden Graphen mit dieser Eigenschaft sind.

Fiir zusammenhédngende Graphen G # K, mit A(G) > 3 zeigen wir
induktiv iiber n = n(G), dass x(G) < A(G) ist. Fir n <4 (IA) ist
dies klar, da wir den K, ausgeschlossen haben. Fiir den IS sei also
G # K, ein zusammenhéangender Graph mit n > 5 Knoten und sei
d:=A(G) > 3.

Falls 6(G) < d ist, hat G’ = G — u eine d-Féarbung ¢, wobei u ein
Knoten vom Grad deg(u) < d ist (man beachte, dass 6(G’) < d und
somit G’ nicht d-regulér ist, was nach IV x(G) < d impliziert). Da
deg(u) < d ist, lasst sich ¢’ zu einer d-Farbung ¢ von G erweitern.
Falls x(G) < 1 ist, hat G k > 2 Blocke By, ... By, die nicht d-regular
und somit d-farbbar sind. Dies impliziert x(G) < d, da wir die d-
Farbungen der Blocke ausgehend von einem beliebigen Wurzelblock
des BC-Baums hin zu den Blattblocken in eine d-Férbung fir G
transformieren konnen.

Es bleibt also der Fall, dass G d-regular und «(G) > 2 ist.
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Behauptung 2.44. In G gibt es einen Knoten uy, der zwei Nachbarn
a und b mit {a,b} € E hat, so dass G — {a,b} zusammenhdingend ist.

Da G # K, ist, gibt es einen Knoten z, der zwei Nachbarn y, z € N(x)
mit {y, z} € E hat.

e Falls G — y 2-zusammenhéngend ist, ist G — {y, z} zusammenhan-
gend und die Behauptung folgt fir u; = .

e [st G — y nicht 2-zusammenhéngend, d.h. G — y hat mindestens
zwei Blocke, dann hat der BC-Baum T von G — y mindestens zwei
Blatter. Da k(G) > 2 ist, ist y in G zu mindestens einem Knoten in
jedem Blatt von 1" benachbart, der kein Schnittknoten ist. Wéhlen
wir fiir @ und b zwei dieser Knoten in verschiedenen Blattern, so
ist G — {a,b} zusammenhingend und somit die Behauptung fiir
up = y bewiesen.

Sei also u; ein Knoten, der zwei Nachbarn a und b mit {a,b} ¢ E
hat, so dass G — {a, b} zusammenhéngend ist. Durchsuchen wir den
Graphen G — {a, b} ausgehend vom Startknoten w;, so erhalten wir
eine Suchordnung (uy, ..., u,_2). Starten wir nun greedy-color mit
der Reihenfolge (a,b,u, _o,...,u1), so erhalten wir eine d-Farbung
¢ fir G mit c¢(a) = ¢(b) = 1. Zudem hat Knoten wu;, i > 1, einen
Nachbarn u; mit j < 4, weshalb c(u;) < deg(u;) < d ist. Zuletzt erhélt
auch u; eine Farbe ¢(uy) < d, da die Nachbarn a und b von u; dieselbe
Farbe haben. [ ]

In den Ubungen wird folgende Folgerung aus dem Beweis des Satzes
von Brooks gezeigt.

Korollar 2.45. Es gibt einen Linearzeitalgorithmus, der fir jeden
Graphen G mit A(G) < 3 eine x(G)-Fdarbung berechnet.
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2.4 Kantenfiarbungen

Neben der Frage, mit wievielen Farben die Knoten eines Graphen
gefirbt werden kénnen, muss bei vielen Anwendungen auch eine Kan-
tenfarbung mit moglichst wenigen Farben gefunden werden. Neben
Graphen treten hierbei auch Multigraphen G = (V, E) auf, d.h.
die Kantenmenge von G ist eine Multimenge auf der Grundmenge
‘2/ . In diesem Fall kénnen 2 Kanten nicht nur einen, sondern sogar
beide Endpunkte gemeinsam haben. Wie bei Graphen gehen wir aber
davon aus, dass jede Kante 2 verschiedene Endpunkte hat, d.h. G ist
schlingenfrei.
Eine Multimenge A auf einer Grundmenge M lasst sich durch ei-
ne Funktion vs: M — N beschreiben, wobei v4(a) die Anzahl der
Vorkommen von a in A angibt. Die Méachtigkeit von A ist dann
|A| = Y 4cava(a). Eine Multimenge A ist Teilmenge einer Multimen-
ge B, wenn vu(a) < wvp(a) fir alle a € M gilt.

Definition 2.46. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung c: E — N heifst Kantenfarbung von G, wenn
cle) # c(e) fir allee #¢€ € E mitene # 0 gilt.

b) G heifst k-kantenfiarbbar, falls eine Kantenfirbung c¢: E —
{1,...,k} existiert.

c¢) Die kantenchromatische Zahl oder der chromatische Index
von G ist

X' (G) = min{k € N | G ist k-kantenfarbbar}.

Eine k-Kantenfiarbung ¢: E — N muss also je 2 Kanten, die einen
gemeinsamen Endpunkt haben, verschiedene Farben zuweisen. Daher
bildet jede Farbklasse E; = {e € E| f(e) =i} ein Matching von G,
d.h. c zerlegt E in k disjunkte Matchings E7, ..., Ej. Umgekehrt liefert
jede Zerlegung von E in k disjunkte Matchings eine k-Kantenfarbung
von G.
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Ist G = (V, E) ein Multigraph, so kénnen wir eine k-Kantenfarbung
von G auch durch eine Funktion ¢ beschreiben, die jeder Kante e €
eine Menge c(e) C {1,...,k} von |c(e)| = vg(e) Farben zuordnet, so
dass c(e) Nc(e') = 0 fir alle e # €' € E mit eNe’ # ( gilt.

Beispiel 2.47.
2, n gerade,
3, sonst,

V(K) = 2[n/2] —1 = {

n—1, n gerade,

n, sonst.

Das Kantenfarbungsproblem fiir einen Graphen G lasst sich leicht auf
das Knotenfiarbungsproblem fiir einen Graphen G’ reduzieren.

Definition 2.48. Sei G = (V, E) ein Graph mit m > 1 Kanten.
Dann heifit der Graph L(G) = (E, E") mit

E = {{e,e'} C <§> ene # (Z)}

der Kantengraph oder Line-Graph von G.

Ist G ein Multigraph, so ersetzen wir die Multimenge E in L(G)
durch eine Menge Vg derselben Machtigkeit, die fiir jede Kante e € E
vg(e) verschiedene Kopien e!,..., e"2(®) von e enthilt. Die folgen-
den Beziehungen zwischen einem Graphen G und dem zugehorigen
Line-Graphen lassen sich leicht verifizieren.

Proposition 2.49. Sei G’ = L(G) der Line-Graph eines Graphen G.
Dann gilt

’\

<
>

—~
Q

N~—
I

maxgy s}er degg(u) + degg(v) — 2 < 2A(G) — 2.
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