
Vorlesungsskript

Graphalgorithmen
Wintersemester 2018/19

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

30. November 2018



Inhaltsverzeichnis

1 Graphentheoretische Grundlagen 1

2 Färben von Graphen 3
2.1 Färben von planaren Graphen . . . . . . . . . . . . . 4
2.2 Färben von chordalen Graphen . . . . . . . . . . . . 10
2.3 Der Satz von Brooks . . . . . . . . . . . . . . . . . . 17
2.4 Kantenfärbungen . . . . . . . . . . . . . . . . . . . . 18

ii



1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = |NG(v)|.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).
d) Jeder Knoten u ∈ V vom Grad ≤ 1 heißt Blatt und die übrigen

Knoten (vom Grad ≥ 2) heißen innere Knoten von G.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 1.2.
• Der vollständige Graph (V,E) auf n Knoten, d.h. |V | = n und
E =

(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n Knoten

wird mit En bezeichnet.

K1 : K2 : K3 : K4 : K5 :

• Der vollständige bipartite Graph (A,B,E) auf a+ b Knoten,
d.h. A ∩B = ∅, |A| = a, |B| = b und E = {{u, v} | u ∈ A, v ∈ B}
wird mit Ka,b bezeichnet.

K1,1 : K1,2 : K2,2 : K2,3 : K3,3 :

• Der Pfad mit n Knoten wird mit Pn bezeichnet.

P2 : P3 : P4 : P5 :

• Der Kreis mit n Knoten wird mit Cn bezeichnet.

C3 : C4 : C5 : C6 :

Definition 1.3. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt unabhängig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
E ∩

(
U
2

)
= ∅. Die Stabilitätszahl ist

α(G) = max{|U | | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die Cli-

quenzahl ist

ω(G) = max{|U | | U ist Clique in G}.

c) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Im Fall V ′ = V wird G′ auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben für
G′ auch G− E ′′ (bzw. G = G′∪E ′′), wobei E ′′ = E−E ′ die Menge
der aus G entfernten Kanten ist. Im Fall E ′′ = {e} schreiben wir
für G′ auch einfach G− e (bzw. G = G′ ∪ e).

1



1 Graphentheoretische Grundlagen

d) Ein k-regulärer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-regulärer Graph G heißt k-
faktorisierbar, wenn sich G in l = d/k kantendisjunkte k-
Faktoren G1, . . . , Gl zerlegen lässt.

e) Ein Subgraph G′ = (V ′, E ′) heißt (durch V ′) induziert, falls
E ′ = E ∩

(
V ′

2

)
ist. Für G′ schreiben wir dann auch G[V ′] oder

G − V ′′, wobei V ′′ = V − V ′ die Menge der aus G entfernten
Knoten ist. Ist V ′′ = {v}, so schreiben wir für G′ auch einfach
G− v und im Fall V ′ = {v1, . . . , vk} auch G[v1, . . . , vk].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , ` − 1. Die Länge
des Weges ist die Anzahl der durchlaufenen Kanten, also `. Im
Fall ` = 0 heißt der Weg trivial. Ein Weg (v0, . . . , v`) heißt auch
v0-v`-Weg.

g) G heißt zusammenhängend, falls es für alle Paare {u, v} ∈
(
V
2

)
einen u-v-Weg gibt.

h) Die durch die Äquivalenzklassen Vi ⊆ V der Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

induzierten Teilgraphen G[Vi] heißen Zusammenhangskompo-
nenten (engl. connected components) oder einfach Komponen-
ten von G.

i) Ein u-v-Weg heißt einfach oder u-v-Pfad, falls alle durchlaufe-
nen Knoten verschieden sind.

j) Ein Zyklus ist ein u-v-Weg mit u = v.
k) Eine Menge von Pfaden heißt disjunkt, wenn je zwei Pfade in der

Menge keine gemeinsamen Knoten haben, kantendisjunkt, wenn
je zwei Pfade in der Menge keine gemeinsamen Kanten haben,
und knotendisjunkt, wenn je zwei Pfade in der Menge höchstens
gemeinsame Endpunkte haben.

l) Ein Kreis ist ein Zyklus (v1 . . . , v`, v1) der Länge ` ≥ 3, für den
v1, . . . , v` paarweise verschieden sind.

m) Ein Graph heißt kreisfrei, azyklisch oder Wald, falls er keinen
Kreis enthält. Ein Baum ist ein zusammenhängender Wald.

Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ V × V =

{
(u, v) | u, v ∈ V

}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = |N+(v)| und der Ein-

gangsgrad von v ist deg−(v) = |N−(v)|. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein (gerichteter) v0-v`-Weg ist eine Folge von Knoten
v0, . . . , v` mit (vi, vi+1) ∈ E für i = 0, . . . , `− 1.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg mit u = v.
g) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad, falls

alle durchlaufenen Knoten verschieden sind.
h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus

(v1 . . . , v`, v1) der Länge ` ≥ 1, für den v1, . . . , v` paarweise ver-
schieden sind.

i) G heißt kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heißt stark zusammenhängend, wenn es in G für jedes Kno-
tenpaar u 6= v ∈ V sowohl einen u-v-Pfad als auch einen v-u-Pfad
gibt.

k) G heißt gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
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2 Färben von Graphen

l) Ein Knoten w ∈ V vom Eingangsgrad deg−(w) = 0 heißt Wurzel
von G, und ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0
heißt Blatt von G.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G = (V,E) mit
(geordneter) Knotenmenge V = {v1, . . . , vn} ist die (n × n)-Matrix
A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst.

Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

2 Färben von Graphen

Definition 2.1. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f : V → {1, . . . , k} exis-

tiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

Beispiel 2.2.

χ(En) = 1, χ(Kn,m) = 2, χ(Kn) = n,

χ(Cn) =

2, n gerade
3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-färbbar ist. Dieses Problem ist für jedes feste k ≥ 3 schwierig.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Satz 2.3. k-Coloring ist für k ≥ 3 NP-vollständig.

Das folgende Lemma setzt die chromatische Zahl χ(G) in Beziehung
zur Stabilitätszahl α(G).

Lemma 2.4. n/α(G) ≤ χ(G) ≤ n− α(G) + 1.
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2 Färben von Graphen 2.1 Färben von planaren Graphen

Beweis. Sei G ein Graph und sei c eine χ(G)-Färbung von G. Da
dann die Mengen Si = {u ∈ V | c(u) = i}, i = 1, . . . , χ(G), stabil
sind, folgt |Si| ≤ α(G) und somit gilt

n =
χ(G)∑
i=1
|Si| ≤ χ(G)α(G).

Für den Beweis von χ(G) ≤ n− α(G) + 1 sei S eine stabile Menge
in G mit |S| = α(G). Dann ist G− S k-färbbar für ein k ≤ n− |S|.
Da wir alle Knoten in S mit der Farbe k + 1 färben können, folgt
χ(G) ≤ k + 1 ≤ n− α(G) + 1. �

Beide Abschätzungen sind scharf, können andererseits aber auch
beliebig schlecht werden.

Lemma 2.5.
(
χ(G)

2

)
≤ m und somit χ(G) ≤ 1/2 +

√
2m+ 1/4.

Beweis. Zwischen je zwei Farbklassen einer optimalen Färbung muss
es mindestens eine Kante geben. �

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl ω(G)
und zum Maximalgrad ∆(G) :

Lemma 2.6. ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal großen Clique unterschiedliche Farben erhalten müssen.
Um die zweite Ungleichung zu erhalten, betrachten wir folgenden
Färbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V,E) mit V = {v1, . . . , vn}
2 c(v1) := 1
3 for i := 2 to n do
4 Fi := {c(vj) | j < i, vj ∈ N(vi)}
5 c(vi) := min{k ≥ 1 | k 6∈ Fi}

Da für die Farbe c(vi) von vi nur |Fi| ≤ ∆(G) Farben verboten sind,
gilt c(vi) ≤ ∆(G) + 1. �

2.1 Färben von planaren Graphen

Ein Graph G heißt planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten höchstens in ihren Endpunkten
berühren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien (genauer: Jordankurven) zwischen den
zugehörigen Endpunkten dargestellt.
Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben höchstens benötigt werden, um eine Landkarte so zu färben,
dass aneinander grenzende Länder unterschiedliche Farben erhalten.
Offensichtlich lässt sich eine Landkarte in einen planaren Graphen
transformieren, indem man für jedes Land einen Knoten zeichnet und
benachbarte Länder durch eine Kante verbindet. Länder, die sich nur
in einem Punkt berühren, gelten dabei nicht als benachbart.
Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
„bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
„Beweis“. Übrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Überprüfung der
vielen auftretenden Spezialfälle Computer benötigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-färbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lässt sich
ein 4-Färbungsalgorithmus für planare Graphen mit einer Laufzeit
von O(n4) gewinnen.
In 1997 fanden Robertson, Sanders, Seymour und Thomas einen
einfacheren Beweis für den 4-Farben-Satz, welcher zwar einen deut-
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2 Färben von Graphen 2.1 Färben von planaren Graphen

lich schnelleren O(n2) Algorithmus liefert, aber ebenfalls nur mit
Computer-Unterstützung verifizierbar ist.
Beispiel 2.8. Wie die folgenden Einbettungen von K4 und K2,3 in
die Ebene zeigen, sind K4 und K2,3 planar.

K4 : K2,3 :

/

Zur Beantwortung der Frage, ob auch K5 und K3,3 planar sind, be-
trachten wir die Gebiete, die bei der Einbettung von (zusammen-
hängenden) Graphen in die Ebene entstehen. Dabei gehören 2 Punkte
zum selben Gebiet, falls es zwischen ihnen eine Verbindungslinie gibt,
die keine Kante des eingebetten Graphen kreuzt oder berührt. Nur
eines dieser Gebiete ist unbeschränkt und dieses wird als äußeres
Gebiet bezeichnet. Die Anzahl der Gebiete von G bezeichnen wir
mit r(G) oder kurz mit r. Die begrenzenden Kanten eines Gebie-
tes g bilden seinen Rand rand(g). Ihre Anzahl bezeichnen wir mit
d(g), wobei Kanten {u, v}, an die g von beiden Seiten grenzt, doppelt
gezählt werden.
Der Rand rand(g) eines Gebiets g ist die (zirkuläre) Folge aller Kan-
ten, die an g grenzen, wobei man jede Kante so durchläuft, dass g „in
Fahrtrichtung links“ liegt bzw. jeden Knoten u, den man über eine
Kante e erreicht, über die im Uhrzeigersinn nächste Kante e′ wieder
verlässt. Auf diese Weise erhält jede Kante auf dem Rand von g eine
Richtung (oder Orientierung).
Da jede Kante zur Gesamtlänge ∑g d(g) aller Ränder den Wert 2
beiträgt (sie wird genau einmal in jeder Richtung durchlaufen), folgt∑

g

d(g) = 2m(G).

Wir nennen das Tripel G′ = (V,E,R) eine ebene Realisierung des
Graphen G = (V,E), falls es eine Einbettung von G in die Ebene

gibt, deren Gebiete die Ränder in R haben. In diesem Fall nennen
wir G′ = (V,E,R) auch einen ebenen Graphen. Ist G nicht zusam-
menhängend, so betten wir die Komponenten von G in die Ebene ein
und fassen alle Ränder, die bei diesen Einbettungen entstehen, zu
einer Randmenge R zusammen.
Führen zwei Einbettungen von G in die Ebene auf dieselbe Randmenge
R, so werden sie als äquivalent angesehen. Eine andere Möglichkeit,
Einbettungen bis auf Äquivalenz kombinatorisch zu beschreiben, be-
steht darin, für jeden Knoten u die (zirkuläre) Ordnung πu aller mit
u inzidenten Kanten anzugeben. Man nennt π = {πu | u ∈ V } ein
Rotationssystem für G, falls es eine entsprechende Einbettung gibt.
Rotationssysteme haben den Vorteil, dass sie bei Verwendung der
Adjazenzlistendarstellung ohne zusätzlichen Platzaufwand gespeichert
werden können, indem man die zu u adjazenten Knoten gemäß πu
anordnet.
Beispiel 2.9. Die beiden nebenstehenden
Einbettungen eines Graphen G = (V,E) in
die Ebene haben jeweils 7 Gebiete und füh-
ren beide auf den ebenen Graphen G′ =
(V,E,R) mit den 7 Rändern

R = {(a, f, g), (a, j, i), (b, g, e, h), (b, c, j),
(c, h, d), (d, e, k), (f, i, l,m,m, l, k)}.

Das zugehörige Rotationssystem ist

π = {(a, f, i), (a, j, b, g), (b, c, h), (e, k, f, g),
(d, e, h), (c, j, i, l, k, d), (l,m), (m)}.

a

i

f

b

h cg
e

k

j

d
l m

a

i

f

b

h
cg

e
k

j

d
l
m

Man beachte, dass sowohl in R als auch in π jede Kante genau zweimal
vorkommt. Anstelle von (zirkulären) Kantenfolgen kann man die Ele-
mente von R und π natürlich auch durch entsprechende Knotenfolgen
beschreiben. /
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2 Färben von Graphen 2.1 Färben von planaren Graphen

Satz 2.10 (Polyederformel von Euler, 1750).
Für einen zusammenhängenden ebenen Graphen G = (V,E,R) gilt

n(G)−m(G) + r(G) = 2. (∗)

Beweis. Wir führen den Beweis durch Induktion über die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhängend ist, muss dann n = 1 sein.
Somit ist auch r = 1, also (∗) erfüllt.

m− 1 ; m : Sei G ein zusammenhängender ebener Graph mit m
Kanten.
Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhängenden ebenen Graphen G′ mit n′ = n − 1 Kno-
ten, m′ = m − 1 Kanten und r′ = r Gebieten. Nach IV folgt
n−m+ r = (n− 1)− (m− 1) + r = n′ −m′ + r′ = 2.
Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis in
G und erhalten einen zusammenhängenden ebenen Graphen G′ mit
n′ = n Knoten, m′ = m− 1 Kanten und r′ = r − 1 Gebieten. Nach
IV folgt n−m+ r = n− (m− 1) + (r − 1) = n′ −m′ + r′ = 2. �

Korollar 2.11. Sei G = (V,E) ein planarer Graph mit n ≥ 3 Knoten.
Dann ist m ≤ 3n− 6. Falls G dreiecksfrei ist, gilt sogar m ≤ 2n− 4.

Beweis. O.B.d.A. sei G zusammenhängend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n ≥ 3 ist, ist jedes Gebiet g
von d(g) ≥ 3 Kanten umgeben. Daher ist 2m = i = ∑

g d(g) ≥ 3r
bzw. r ≤ 2m/3. Eulers Formel liefert

m = n+ r − 2 ≤ n+ 2m/3− 2,

was (1− 2/3)m ≤ n− 2 und somit m ≤ 3n− 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) ≥ 4 Kanten umge-
ben. Daher ist 2m = i = ∑

g d(g) ≥ 4r bzw. r ≤ m/2. Eulers Formel

liefert daher m = n + r − 2 ≤ n + m/2 − 2, was m/2 ≤ n − 2 und
somit m ≤ 2n− 4 impliziert. �

Korollar 2.12. Die Graphen K5 und K3,3 sind nicht planar.

Beweis. Wegen n(K5) = 5, also 3n(K5) − 6 = 9, und wegen
m(K5) =

(
5
2

)
= 10 gilt m(K5) 6≤ 3n(K5)− 6.

Wegen n(K3,3) = 6, also 2n(K3,3) − 4 = 8, und wegen m(K3,3) =
3 · 3 = 9 gilt m(K3,3) 6≤ 2n(K3,3)− 4. �

Als weitere interessante Folgerung aus der Polyederformel können wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) ≤ 5
hat.

Korollar 2.13. Jeder planare Graph hat einen Minimalgrad δ ≤ 5.

Beweis. Für n ≤ 6 ist die Behauptung klar. Für n > 6 impliziert die
Annahme δ ≥ 6 die Ungleichung

m = 1
2
∑
u∈V deg(u) ≥ 1

2
∑
u∈V 6 = 3n,

was im Widerspruch zu m ≤ 3n− 6 steht. �

Definition 2.14. Seien G = (V,E) und H Graphen und seien
u, v ∈ V .
• Durch Fusion von u und v entsteht aus G der Graph Guv =

(V − {v}, E ′) mit

E ′ = {e ∈ E | v 6∈ e} ∪ {{u, v′} | {v, v′} ∈ E − {u, v}}.

Ist e = {u, v} eine Kante von G (also e ∈ E), so sagen wir auch,
Guv entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2 mit NG(v) = {u,w}, so sagen wir auch, Guv entsteht
aus G durch Überbrückung des Knotens v bzw. G aus Guv durch
Unterteilung der Kante {u,w}.
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2 Färben von Graphen 2.1 Färben von planaren Graphen

• G heißt zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.
• G heißt Unterteilung von H, falls G aus einer isomorphen Kopie
von H durch wiederholte Unterteilungen gewonnen werden kann.
• H heißt Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.
• G heißt H-frei, falls H kein Minor von G ist. Für eine Menge H
von Graphen heißt G H-frei, falls G für alle H ∈ H H-frei ist.

Beispiel 2.15. Betrachte folgende Graphen:

H : G :
a b

G′ :

G ist keine Unterteilung von H, da G Knoten vom Grad 3 hat, aber
H nicht. Entfernen wir jedoch die beiden Kanten a und b aus G, so
ist der resultierende Teilgraph eine Unterteilung von H, d.h. H ist
ein topologischer Minor von G. H ist aber kein topologischer Minor
von G′, da H einen Knoten vom Grad 4 hat und G′ nur Knoten vom
Grad ≤ 3. Da durch Kontraktion der drei umrandeten Kanten ein zu
H isomorpher Graph entsteht, ist H aber ein Minor von G′. /

Es ist klar, dass die Klasse K der planaren Graphen zwar unter Un-
terteilung und (topologischer) Minorenbildung abgeschlossen ist (d.h.
wenn G ∈ K und H ein Minor oder eine Unterteilung von G ist, dann
folgt H ∈ K), aber nicht unter Fusion.
Nach Definition lässt sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:
• Entfernen einer Kante oder eines Knotens,
• Kontraktion einer Kante (bzw. Überbrückung eines Knotens).

Da die Kontraktionen (bzw. Überbrückungen) o.B.d.A. auch zuletzt
ausgeführt werden können, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.16 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-färbbar.

Beweis. Wir beweisen den Satz durch Induktion über n.
n = 1: Klar.
n− 1 ; n : Da G planar ist, existiert ein Knoten u mit deg(u) ≤ 5.
Im Fall deg(u) ≤ 4 entfernen wir u aus G. Andernfalls hat u zwei
Nachbarn v und w, die nicht durch eine Kante verbunden sind
(andernfalls wäre K5 ein Teilgraph von G). In diesem Fall entfer-
nen wir alle mit u inzidenten Kanten außer {u, v} und {u,w} und
kontrahieren diese beiden Kanten zum Knoten v.
In beiden Fällen ist der resultierende Graph G′ ein Minor von G und
daher planar. Da G′ zudem höchstens n− 1 Knoten hat, existiert
nach IV eine 5-Färbung c′ für G′. Da wir im 2. Fall dem Knoten w
die Farbe c′(v) geben können, haben die Nachbarn von u höchstens
4 verschiedene Farben und wir können G 5-färben. �

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K3,3 oder den K5 als topologischen Minor enthält. Für den Beweis
benötigen wir noch folgende Notationen.

Definition 2.17. Sei G = (V,E) ein Graph.
• Eine Menge S ⊆ V heißt Separator in G, wenn es zwei Knoten
u, v ∈ V \S gibt, zwischen denen in G−S kein u-v-Weg existiert. Ist
|S| = k, so nennen wir S auch einen k-Separator zwischen u und
v oder auch einen u-v-Separator der Größe k. Ein 1-Separator
wird auch Artikulation oder Schnittknoten von G genannt.
• Ein Graph G heißt k-zusammenhängend, 0 ≤ k ≤ n− 1, falls
G keinen (k − 1)-Separator hat. Die größte Zahl k, für die G k-
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zusammenhängend ist, heißt Zusammenhangszahl von G und
wird mit κ(G) bezeichnet.

Ein Graph G mit n ≥ 2 Knoten ist also genau dann zusammenhän-
gend, wenn κ(G) ≥ 1 ist.

Lemma 2.18. Ist ein Graph G = (V,E) nicht planar, so hat er einen
• 2-zusammenhängenden Untergraphen U = (V ′, E ′) und einen
• 3-zusammenhängenden topologischen Minor M = (V ′′, E ′′),
die minimal nicht planar sind, d.h. U und M sind nicht planar
und für alle e′ ∈ E ′ und e′′ ∈ E ′′ sind die Graphen U − e′ und M − e′′
planar.

Beweis. Wir entfernen zuerst solange Kanten und Knoten aus G, bis
wir aus dem verbliebenen Teilgraphen U = (V ′, E ′) keine weiteren
Kanten oder Knoten entfernen können, ohne dass U planar wird.
U ist zusammenhängend, da andernfalls mindestens eine Komponente
von U nicht planar ist und wir alle übrigen Komponenten entfernen
könnten, ohne dass U planar wird.
U ist sogar 2-zusammenhängend, da U sonst einen Schnittknoten s
enthält und U − s in k ≥ 2 Komponenten U [V1], . . . , U [Vk] zerfällt.
Dann ist aber mindestens ein Teilgraph Ti = U [Vi ∪ {s}] nicht planar
und wir können alle Knoten außerhalb von Ti entfernen, ohne dass U
planar wird.
Um einen topologischen Minor M von G mit den behaupteten Eigen-
schaften zu erhalten, konstruieren wir zu U einen topologischen Minor
U ′, der minimal nicht planar ist und zudem 3-zusammenhängend
ist oder weniger Knoten als U hat. Indem wir diese Konstruktion
wiederholen, erhalten wir schließlich M .
Falls U 3-zusammenhängend ist, ist U ′ = U . Andernfalls gibt es in
U einen 2-Separator S = {u, v}, d.h. U − S zerfällt in k ≥ 2 Kom-
ponenten U [V1], . . . , U [Vk]. Betrachte die (2-zusammenhängenden)
Graphen Gi = U [Vi ∪ {u, v}] ∪ {u, v}. Dann ist mindestens ein Gi

nicht planar (z.B. G1), da sonst auch U planar wäre. Da k ≥ 2 ist,
erhalten wir einen zu G1 isomorphen Graphen U ′ als topologischen
Minor von H = U [V1 ∪ V2 ∪ {u, v}] (und damit von U), indem wir
in U [V2 ∪ {u, v}] einen beliebigen u-v-Pfad P wählen und aus H alle
Knoten und Kanten entfernen, die nicht auf P liegen und danach
P überbrücken. Dann hat U ′ weniger Knoten als U und ist wie U
minimal nicht planar. �

Definition 2.19. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heißt Brücke von K in G, falls
• B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Brücken werden auch als Sehnen
von K bezeichnet), oder
• B−K eine Komponente von G−K ist und B aus B−K durch Hin-
zufügen aller Kanten zwischen B −K und K (und der zugehörigen
Endpunkte auf K) entsteht.

Die Knoten von B, die auf K liegen, heißen Kontaktpunkte von
B. Zwei Brücken B und B′ von K heißen inkompatibel, falls
• B Kontaktpunkte u, v und B′ Kontaktpunkte u′, v′ hat, so dass diese
vier Punkte in der Reihenfolge u, u′, v, v′ auf K liegen, oder
• B und B′ mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass in einem planaren Graphen kein Kreis
mehr als zwei inkompatible Brücken haben kann.

Satz 2.20 (Kuratowski 1930).
Für einen Graphen G sind folgende Aussagen äquivalent:

(i) G ist planar.
(ii) G enthält weder den K3,3 noch den K5 als topologischen Minor.

Beweis. Die Implikation von i) nach ii) folgt aus der Abgeschlossen-
heit der planaren Graphen unter (topologischer) Minorenbildung.
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Die Implikation von ii) nach i) zeigen wir durch Kontraposition.
Sei also G = (V,E) nicht planar. Dann hat G nach Lemma 2.18
einen 3-zusammenhängenden nicht planaren topologischen Minor
M = (V ′, E ′), so dass M − e′ für jede Kante e′ ∈ E ′ planar ist. Wir
entfernen eine beliebige Kante e0 = {a0, b0} aus M . Dann ist M − e0
planar. Da M − e0 2-zusammenhängend ist, gibt es in M − e0 einen
Kreis K durch die beiden Knoten a0 und b0 (siehe Übungen). Wir
wählen K zusammen mit einer ebenen Realisierung H ′ von M − e0
so, dass K möglichst viele Gebiete in H ′ einschließt.
Für zwei Knoten a, b auf K bezeichnen wir mit K[a, b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K[a, b) = K[a, b] \ {b}. Die Mengen K(a, b) und
K(a, b] sind analog definiert.
Die Kanten jeder Brücke B von K in M −e0 verlaufen in H ′ entweder
alle innerhalb oder alle außerhalb von K. Im ersten Fall nennen wir
B eine innere Brücke und im zweiten eine äußere Brücke.
Es ist klar, dass K in H ′ mindestens eine innere und mindestens
eine äußere Brücke haben muss. Zudem muss jede äußere Brücke B
aus einer Kante {u, v} bestehen, die zwei Knoten u ∈ K(a0, b0) und
v ∈ K(b0, a0) verbindet. Andernfalls hätte B nämlich mindestens 2
Kontaktpunkte auf K[a0, b0] oder auf K[b0, a0]. Daher könnte K zu
einem Kreis K ′ erweitert werden, der in H ′ mehr Gebiete einschließt
(bzw. ausschließt) als K, was der Wahl von K und H ′ widerspricht.
K hat in M außer den Brücken in M − e0 noch zusätzlich die Brücke
e0. Wir wählen nun eine innere Brücke B, die sowohl zu e0 als auch
zu mindestens einer äußeren Brücke e1 = {a1, b1} inkompatibel ist.
Eine solche Brücke muss es geben, da wir sonst alle mit e0 inkompati-
blen inneren Brücken nach außen klappen und e0 als innere Brücke
hinzunehmen könnten, ohne die Planarität zu verletzen.
Wir benutzen K und die drei Brücken e0, e1 und B, um eine Untertei-
lung des K3,3 oder des K5 in M zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A1, A2 ⊆ V ′ mit jeweils 3 Knoten an, so dass

9 knotendisjunkte Pfade zwischen allen Knoten a ∈ A1 und b ∈ A2
existieren. Oder wir geben eine Menge A ⊆ V ′ mit fünf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a, b ∈ A
existieren. Da e0 und e1 inkompatibel sind, können wir annehmen,
dass die vier Knoten a0, a1, b0, b1 in dieser Reihenfolge auf K liegen.
Fall 1: B hat einen Kontaktpunkt k1 6∈ {a0, a1, b0, b1}. Aus Symme-
triegründen können wir k1 ∈ K(a0, a1) annehmen. Da B weder
zu e0 noch zu e1 kompatibel ist, hat B weitere Kontaktpunkte
k2 ∈ K(b0, a0) und k3 ∈ K(a1, b1), wobei k2 = k3 sein kann.
Fall 1a: Ein Knoten ki ∈ {k2, k3} liegt auf dem Bogen K(b0, b1).
In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{a0, a1, ki} und {b0, b1, k1}.

Fall 1b: K(b0, b1) ∩ {k2, k3} = ∅. In diesem Fall ist k2 ∈ K[b1, a0)
und k3 ∈ K(a1, b0]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {k1, k2, k3} existieren. Folg-
lich gibt es 9 knotendisjunkte Pfade zwischen {a0, a1, u} und
{k1, k2, k3}.

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {a0, a1, b0, b1}.
Da B inkompatibel zu e0 und e1 ist, müssen in diesem Fall alle vier
Punkte zu B gehören. Sei P0 ein a0-b0-Pfad in B und sei P1 ein
a1-b1-Pfad in B. Sei u der erste Knoten auf P0, der auch auf P1
liegt und sei v der letzte solche Knoten.
Fall 2a: u = v. Dann gibt es in B vier knotendisjunkte Pfade von
u zu {a0, a1, b0, b1} und somit existieren in M 10 knotendisjunkte
Pfade zwischen den Knoten u, a0, a1, b0, b1.

Fall 2b: u 6= v. Durch u und v wird der Pfad P1 in drei Teilpfade
Pxu, Puv und Pvy unterteilt, wobei die Indizes die Endpunkte
bezeichnen und {x, y} = {a1, b1} ist.
Somit gibt es in B drei Pfade zwischen u und jedem Knoten
in {a0, v, x} und zwei Pfade zwischen v und jedem Knoten in
{b0, y}, die alle 5 knotendisjunkt sind. Folglich gibt es in M 9
knotendisjunkte Pfade zwischen {a0, v, x} und {b0, y, u}. �
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Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.
Alternativ lässt sich der K5 auch als ein
topologischer Minor von G erhalten, in-
dem wir die dünnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 überbrücken. /

a b

c d e

f g h i

j k l

m n

a b

d

j l

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.

Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er {K3,3, K5}-frei ist.

Satz 2.23 (Satz von Robertson und Seymour, 1983-2004). Sei K eine
Graphklasse, die unter Minorenbildung abgeschlossen ist. Dann gibt
es eine endliche Menge H von Graphen mit

K = {G | G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heißen verbotene Minoren für die Klasse K.

Eine interessante Folgerung aus diesem Satz ist, dass jede unendliche
Graphklasse zwei Graphen G und H enthält, so dass H ein Minor
von G ist. Das Problem, für zwei gegebene Graphen G und H zu
entscheiden, ob H ein Minor von G ist, ist zwar NP-vollständig (da
sich das Hamiltonkreisproblem darauf reduzieren lässt). Für einen
festen Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 2.24 (Robertson und Seymour, 1995). Für jeden Graphen H gibt
es einen O(n3)-zeitbeschränkten Algorithmus, der für einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 2.25. Die Zugehörigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus für K lässt sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren für K kennen. Leider ist der
Beweis von Theorem 2.23 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus für K führt.

2.2 Färben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitätsgraphen (auch transitiv orientierba-
re Graphen genannt) chordal. Wir werden sehen, dass sich für chordale
Graphen effizient eine optimale Knotenfärbung berechnen lässt.
Definition 2.26. Ein Graph G = (V,E) heißt chordal oder trian-
guliert, wenn jeder Kreis K = (u1, . . . , ul, u1) der Länge l ≥ 4 in G
mindestens eine Sehne hat.

G ist also genau dann chordal, wenn er keinen induzierten Kreis der
Länge l ≥ 4 enthält (ein induzierter Kreis ist ein induzierter Teilgraph
G[V ′], V ′ ⊆ V, der ein Kreis ist). Dies zeigt, dass die Klasse der
chordalen Graphen unter induzierter Teilgraphbildung abgeschlos-
sen ist (aber nicht unter Teilgraphbildung). Jede solche Graphklasse
G ist durch eine Familie von minimalen verbotenen induzierten
Teilgraphen Hi charakterisiert, die bis auf Isomorphie eindeutig
bestimmt sind. Die Graphen Hi gehören also nicht zu G, aber sobald
wir einen Knoten daraus entfernen, erhalten wir einen Graphen in G.
Die Klasse der chordalen Graphen hat die Familie der Kreise Cn der
Länge n ≥ 4 als verbotene induzierte Teilgraphen.
Lemma 2.27. Für einen Graphen G sind folgende Aussagen äquiva-
lent.

(i) G ist chordal.
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(ii) Jeder inklusionsminimale x-y-Separator S in G ist eine Clique.
(iii) Jedes Paar von nicht adjazenten Knoten x und y in G hat einen

x-y-Separator S, der eine Clique ist.

Beweis. Um zu zeigen, dass die zweite Aussage aus der ersten folgt,
nehmen wir an, dass G einen minimalen x-y-Separator S hat (d.h.
S\{s} ist für jedes s ∈ S kein x-y-Separator), der zwei nicht adjazente
Knoten u und v enthält. Seien G[V1] und G[V2] die beiden Kompo-
nenten in G − S mit x ∈ V1 und y ∈ V2. Da S minimal ist, haben
die beiden Knoten u und v sowohl einen Nachbarn in V1 als auch in
V2. Betrachte die beiden Teilgraphen Gi = G[Vi ∪ {u, v}] (i = 1, 2)
und wähle jeweils einen kürzesten u-v-Pfad Pi in Gi. Da deren Länge
≥ 2 ist, ist K = P1 ∪ P2 ein Kreis der Länge ≥ 4. Aufgrund der
Konstruktion ist zudem klar, dass K keine Sehnen in G hat.
Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen x-y-Separator S hat, und
S eine Clique sein muss, wenn wir S inklusionsminimal wählen.
Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen wir
an, dass G nicht chordal ist. Dann gibt es in G einen induzierten Kreis
K der Länge ≥ 4. Seien x und y zwei beliebige nicht adjazente Knoten
auf K und sei S ein x-y-Separator in G. Dann muss S mindestens
zwei nicht adjazente Knoten aus K enthalten. �

Definition 2.28. Sei G = (V,E) ein Graph und sei k ≥ 0. Ein
Knoten u ∈ V vom Grad k heißt k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhängende chordale Graphen können als eine Verallgemeine-
rung von Bäumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K1 durch sukzessives Hinzufügen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heißt G k-Baum, wenn G aus
Kk durch sukzessives Hinzufügen von k-simplizialen Knoten erzeugt

werden kann. Wir werden sehen, dass ein zusammenhängender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufügen von simplizialen
Knoten erzeugt werden kann. Äquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.
Definition 2.29. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt perfekte Eliminationsordnung (PEO)
von G, wenn ui simplizial in G[u1, . . . , ui] für i = 2, . . . , n ist.

Es ist klar dass alle Knoten eines vollständigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder nicht vollständige Baum T (also T 6∈ {K1, K2}) mindestens
zwei nicht adjazente Blätter hat.
Lemma 2.30. Jeder nicht vollständige chordale Graph G besitzt
mindestens zwei simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir führen Induktion über n. Für n ≤ 2 ist die Behauptung
klar. Sei G = (V,E) ein Graph mit n ≥ 3 Knoten. Da G nicht voll-
ständig ist, enthält G zwei nichtadjazente Knoten x1 und x2. Sei S
ein minimaler x1-x2-Separator der Größe k ≥ 0. Im Fall k > 0 ist S
nach Lemma 2.27 eine Clique in G. Seien G[V1] und G[V2] die beiden
Komponenten von G− S mit xi ∈ Vi. Wir zeigen die Existenz zweier
simplizialer Knoten si ∈ Vi, i = 1, 2.
Betrachte die Teilgraphen Gi = G[Vi ∪ S]. Da Gi chordal ist und
weniger als n Knoten hat, ist Gi nach IV entweder eine Clique oder
Gi enthält mindestens zwei nicht adjazente simpliziale Knoten yi, zi.
Falls Gi eine Clique ist, ist si = xi simplizial in Gi, und da xi keine
Nachbarn außerhalb von Vi ∪ S hat, ist si dann auch simplizial in G.
Ist Gi keine Clique, kann höchstens einer der beiden Knoten yi, zi
zu S gehören (da S im Fall S 6= ∅ eine Clique und {yi, zi} /∈ E ist).
O.B.d.A. sei yi ∈ Vi. Dann hat si = yi keine Nachbarn außerhalb von
Vi ∪ S und somit ist si auch simplizial in G. �
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Satz 2.31. Ein Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, lässt sich eine PEO gemäß Lemma 2.30
bestimmen, indem wir für i = n, . . . , 2 sukzessive einen simplizialen
Knoten ui in G− {ui+1, . . . , un} wählen.
Für die umgekehrte Richtung sei (u1, . . . , un) eine PEO von G. Wir
zeigen induktiv, dass Gi = G[u1, . . . , ui] chordal ist. Da ui+1 simplizial
in Gi+1 ist, enthält jeder Kreis K der Länge ≥ 4 in Gi+1, auf dem
ui+1 liegt, eine Sehne zwischen den beiden Kreisnachbarn von ui+1.
Daher ist mit Gi auch Gi+1 chordal. �

Korollar 2.32. Es gibt einen Polynomialzeitalgorithmus A, der für
einen gegebenen Graphen G eine PEO berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Länge ≥ 4 ausgibt.

Beweis. A versucht wie im Beweis von Theorem 2.31 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass Gi = G− {ui+1, . . . , un}
keinen simplizialen Knoten ui hat, so ist Gi wegen Lemma 2.30 nicht
chordal. Daher gibt es in Gi nach Lemma 2.27 (iii) ein Knotenpaar
x, y, so dass kein x-y-Separator eine Clique ist. Berechnen wir für
dieses Paar einen beliebigen minimalen x-y-Separator S, so ist S
keine Clique und wir können wie im Beweis von (i) =⇒ (ii) einen
induzierten Kreis K der Länge ≥ 4 in Gi konstruieren. Da Gi ein
induzierter Teilgraph von G ist, ist K auch ein induzierter Kreis in G.

�

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
färben:

Algorithmus chordal-color(V,E)

1 berechne eine PEO (u1, . . . , un) für G = (V,E)
2 starte greedy-color mit der Knotenfolge (u1, . . . , un)

Satz 2.33. Für einen gegebenen chordalen Graphen G = (V,E) be-
rechnet der Algorithmus chordal-color eine k-Färbung c von G mit
k = χ(G) = ω(G).

Beweis. Sei ui ein beliebiger Knoten mit c(ui) = k. Da (u1, . . . , un)
eine PEO von G ist, ist ui simplizial in G[u1, . . . , ui]. Somit bilden die
Nachbarn uj von ui mit j < i eine Clique und wegen c(ui) = k bilden
sie zusammen mit ui eine k-Clique. Daher gilt χ(G) ≤ k ≤ ω(G),
woraus wegen ω(G) ≤ χ(G) die Behauptung folgt. �

Um chordal-color in Linearzeit zu implementieren, benötigen wir
einen Linearzeit-Algorithmus zur Bestimmung einer PEO. Rose, Tar-
jan und Lueker haben 1976 einen solchen Algorithmus angegeben, der
auf lexikographischer Breitensuche (kurz LexBFS oder LBFS, engl.
lexicographic breadth-first search) basiert. Bevor wir diese Variante
der Breitensuche vorstellen, gehen wir kurz auf verschiedene Ansätze
zum Durchsuchen von Graphen ein.
Der folgende Algorithmus GraphSearch(V,E) startet eine Suche in
einem beliebigen Knoten u und findet zunächst alle von u aus erreich-
baren Knoten. Danach wird solange von einem noch nicht erreichten
Knoten eine neue Suche gestartet, bis alle Knoten erreicht wurden.
Die Menge der aktuellen Knoten wird dabei in einer Datenstruktur A
gespeichert. Genauer enthält A alle bereits entdeckten Knoten, die
noch nicht abgearbeitet sind.

Algorithmus GraphSearch(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R // u wurde neu entdeckt
5 append(L, u)
6 parent(u) := ⊥
7 A := {u} // Menge der aktuellen Knoten
8 R := R ∪ {u}
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9 while A 6= ∅ do
10 wähle u aus A
11 if ∃v ∈ N(u)\R then
12 A := A ∪ {v} // v wurde neu entdeckt
13 R := R ∪ {v}
14 append(L, v)
15 parent(v) := u
16 else entferne u aus A // u wurde abgearbeitet
17 until R = V
18 return(L)

Der Algorithmus GraphSearch(V,E) findet in jedem Durchlauf der
repeat-Schleife eine neue Komponente des EingabegraphenG = (V,E).
Dies bedeutet, dass alle Knoten, die zu einer Komponente gehören,
konsekutiv in der Ausgabeliste L = (u1, . . . , un) auftreten, wobei ab-
gesehen vom ersten Knoten jeder Komponente jeder Knoten uk einen
Nachbarn ui mit i < k hat.
Die folgende Definition fasst diese Eigenschaften der Ausgabeliste
zusammen.

Definition 2.34. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt Suchordnung (SO) von G, wenn für jedes
Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < k : i 6= j ∧ ui ∈ N(uk).

Satz 2.35. Für jeden Graphen G = (V,E) gibt der Algorithmus
GraphSearch(V,E) eine SO von G aus.

Beweis. Ein Knoten uk erhält nur dann den Wert parent(uk) = ⊥,
wenn alle Knoten uj mit j < k bereits abgearbeitet sind und diese nur
Nachbarn ul mit l < k hatten. Falls also ein Vorgänger uj von uk mit
einem Nachfolger ul von uk verbunden ist, liefert die parent-Funktion
einen Nachbarn ui = parent(uk) von uk mit i < k. Da uj 6∈ N(uk)
ist, gilt zusätzlich i 6= j. �

Die parent-Funktion induziert einen gerichteten Wald W =
(V,Eparent), dessen Kantenmenge aus allen Kanten der Form
(parent(v), v) mit parent(v) 6= ⊥ besteht. Die Kanten von W wer-
den auch als Baumkanten (kurz B-Kanten) und W wird auch als
Suchwald von G = (V,E) bezeichnet. Für jeden Knoten v ∈ V gibt
es genau eine Wurzel w in W , von der aus v in W erreichbar ist. Der
eindeutig bestimmte w-v-Pfad P = (u0, . . . , ul) in W mit u0 = w
und ul = v lässt sich ausgehend von ul = v unter Verwendung der
parent-Funktion mittels ui−1 = parent(ui) für i = l, . . . , 1 berech-
nen. P wird auch als parent-Pfad von v bezeichnet. Es ist klar, dass
2 Knoten v und v′ genau dann in einer Komponente von G liegen,
wenn sie die gleiche Wurzel haben.
Realisieren wir die Menge der aktuellen Knoten als einen Keller S,
so erhalten wir eine Suchstrategie, die als Tiefensuche (kurz DFS,
engl. depth first search) bezeichnet wird. Die Benutzung eines Kellers
bewirkt, dass nach der Entdeckung eines neuen Knotens v unter den
Nachbarn des aktuellen Knotens u die Suche zuerst bei den Nachbarn
von v fortgesetzt wird, bevor die anderen Nachbarn von u getestet
werden.

Algorithmus DFS(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R // u wurde neu entdeckt
5 R := R ∪ {u}
6 append(L, u)
7 parent(u) := ⊥
8 S := (u) // Keller der aktuellen Knoten
9 while S 6= () do

10 u := top(S)
11 if ∃v ∈ N(u)\R then
12 push(S, v) // v wurde neu entdeckt

13



2 Färben von Graphen 2.2 Färben von chordalen Graphen

13 R := R ∪ {v}
14 append(L, v)
15 parent(v) := u
16 else pop(S) // u wurde abgearbeitet
17 until R = V
18 return(L)

Definition 2.36. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt DFS-Ordnung (DO) von G, wenn für
jedes Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i : j < i < k ∧ ui ∈ N(uk).

Satz 2.37. Für jeden Graphen G = (V,E) gibt der Algorithmus
DFS(V,E) eine DO von G aus.

Beweis. Siehe Übungen. �

Realisieren wir die Menge der abzuarbeitenden Knoten als eine Warte-
schlange Q, so findet der resultierende Algorithmus BFS(V,E) einen
kürzesten Weg vom Startknoten u zu allen von u aus erreichbaren
Knoten. Diese Suchstrategie wird als Breitensuche (kurz BFS, engl.
breadth first search) bezeichnet. Die Benutzung einer Warteschlange
Q zur Speicherung der noch abzuarbeitenden Knoten bewirkt, dass
alle Nachbarknoten v des aktuellen Knotens u vor den bisher noch
nicht erreichten Nachbarn von v ausgegeben werden.

Algorithmus BFS(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R // u wurde neu entdeckt
5 R := R ∪ {u}
6 parent(u) := ⊥

7 Q := (u) // Warteschlange der aktuellen Knoten
8 while Q 6= () do
9 u := dequeue(Q) // u wird komplett abgearbeitet

10 append(L, u)
11 for all v ∈ N(u)\R do
12 enqueue(Q, v) // v wurde neu entdeckt
13 parent(v) := u
14 R := R ∪N(u)
15 until R = V
16 return(L)

Definition 2.38. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt BFS-Ordnung (BO) von G, wenn für jedes
Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < j : ui ∈ N(uk).

Satz 2.39. Für jeden Graphen G = (V,E) gibt der Algorithmus
BFS(V,E) eine BO von G aus.

Beweis. Existiert im Fall k < l eine Position j < k mit uj ∈
N(ul) \ N(uk), so muss es einen Knoten ui ∈ N(uk) mit i < j
geben, der dafür gesorgt hat, dass der Knoten uk vor dem Knoten ul
in die Warteschlange aufgenommen wurde. �

BFS-Ordnungen lassen sich anschaulich anhand der Adjazenzmatrix
charakterisieren. Sei (u1, . . . , un) eine BO für G = (V,E) und sei
A = (aij) die Adjazenzmatrix von G mit aij = 1⇔ {ui, uj} ∈ E. Wei-
ter seien zi = ai1 . . . ai,i−1 die Präfixe der Zeilen von A, die unterhalb
der Diagonale verlaufen. Sind nun die ersten j Einträge ak1 . . . akj
einer Zeile sk Null, so muss dies auch für jede Zeile sl mit l > k so
sein, da im Fall alj = 1 der Knoten uj ∈ N(ul) \ N(uk) wäre und
somit ein i < j mit aki = 1 existieren müsste. Dies bedeutet, dass sl
mindestens so viele Nullen als Präfix hat wie zk. Es ist aber möglich,
dass zk bspw. mit 00010. . . beginnt und zl mit 00011. . . .
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Alternativ können wir Q auch als eine Warteschlange von Knotenmen-
gen realisieren (siehe Algorithmus BFS’), um einen Überblick über
alle möglichen Fortsetzungen der aktuellen Liste L zu einer BO zu
erhalten. Die Prozedur Dequeue(Q) liefert ein beliebiges Element aus
der ersten Menge in Q zurück und entfernt dieses aus Q.

Algorithmus BFS’(V,E)

1 R := ∅ // Menge der erreichten Knoten
2 L := () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R
5 R := R ∪ {u}
6 Q := ({u}) // Warteschlange von Knotenmengen
7 while Q 6= () do
8 u := Dequeue(Q) // u wird komplett abgearbeitet
9 append(L, u)

10 if N(u) 6⊆ R then enqueue(Q,N(u)\R)
11 R := R ∪N(u)
12 until R = V
13 return(L)

Prozedur Dequeue(Q)
1 entferne u aus first(Q)
2 if first(Q) = ∅ then dequeue(Q)
3 return(u)

Fassen wir die Menge V \ R der noch nicht erreichten Knoten als
Nachfolgemenge der letzten Menge in Q auf, so wird von dieser Rest-
menge in jedem Durchlauf der while-Schleife von BFS’ die Teilmenge
N(u) \ R abgetrennt und im Fall N(u) \ R 6= ∅ der Schlange Q
hinzugefügt.
Der Unterschied von LexBFS zur normalen Breitensuche besteht
darin, dass die zulässigen Ausgabefolgen gegenüber der BFS weiter

eingeschränkt werden. Der Name von LexBFS rührt daher, dass die
Knoten in einer Reihenfolge ausgegeben werden, die eine lexikogra-
phische Sortierung der Zeilenpräfixe zi bewirkt, sofern man sie durch
Anhängen von Einsen auf die gleiche Länge bringt. Eine solche Sor-
tierung kann auch bei einer gewöhnlichen Breitensuche auftreten, ist
bei dieser aber nicht garantiert. Bei einer Breitensuche werden die
noch nicht besuchten Nachbarn des aktuellen Knotens in beliebiger
Reihenfolge zur Warteschlange hinzugefügt und auch wieder in dieser
Reihenfolge entfernt. Dagegen werden bei einer LexBFS die Knoten
in der Warteschlange nachträglich umsortiert, falls dies notwendig
ist, um eine LexBFS-Ordnung der Knoten zu erhalten (siehe Defi-
nition 2.40). Ähnlich wie bei BFS’ wird hierzu die Menge der noch
nicht abgearbeiteten Knoten in eine Folge von Knotenmengen zerlegt.
Im Gegensatz zu BFS’ kann LexBFS aber nicht nur die letzte Menge
V \R splitten, sondern alle Mengen der Folge.

Algorithmus LexBFS(V,E, u)

1 L := () // Ausgabeliste
2 Q := (V ) // Warteschlange von Knotenmengen
3 while Q 6= () do
4 u := Dequeue(Q) // u wird komplett abgearbeitet
5 append(L, u)
6 Splitqueue(Q,N(u))
7 return(L)

Prozedur Splitqueue(Q,S)
1 for T in Q with T ∩ S /∈ {∅, T} do
2 ersetze die Teilfolge (T ) in Q durch (T ∩ S, T \ S)

Für eine effiziente Implementierung sollte die Schlange Q =
(S1, . . . , Sk) von Knotenmengen Si ⊆ V als doppelt verkettete Liste
realisiert werden und für jeden Knoten u in der Adjazenzliste ein
Zeiger auf die Menge Si, die u enthält und auf seinen Eintrag in
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Si gespeichert werden. Zudem sollte die for-Schleife in der Prozedur
Splitqueue durch eine Schleife über die Knoten in S = N(u) ersetzt
werden.

Definition 2.40. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt LexBFS-Ordnung (LBO) von G, wenn
für jedes Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < j : ui ∈ N(uk) \N(ul).

Ob eine Ordnung (u1, . . . , un) eine LBO ist, lässt sich wie folgt an
der gemäß (u1, . . . , un) geordneten Adjazenzmatrix A ablesen: die
verkürzten Zeilen z1, . . . , zn unter der Diagonalen müssen wie folgt
sortiert sein: entweder ist zi ein Präfix von zi+1 oder zi hat an der
ersten Position, wo sich die beiden Strings unterscheiden, eine Eins.
Bringen wir also die verkürzten Zeilen durch Anhängen von Einsen auf
dieselbe Länge, so sind sie lexikographisch sortiert. In den Übungen
wird gezeigt, dass man sogar eine lexikographische Ordnung auf den
kompletten Zeilen von A erhält, falls man die Diagonale auf 1 setzt
und die Knoten in jeder Menge von Q nach absteigendem Knotengrad
in G sortiert.

Satz 2.41. Für jeden Graphen G = (V,E) gibt der Algorithmus
LexBFS(V,E) eine LBO (u1, . . . , un) von G aus.

Beweis. Sei A = (aij) die Adjazenzmatrix von G mit aij = 1 ⇔
{ui, uj} ∈ E. Wir zeigen, dass die Strings zi = ai1, . . . , ai,i−1 lexika-
lisch sortiert sind. Existiert nämlich im Fall k < l eine Position j < k
mit akj = 0 und alj = 1, so muss es eine Position i < j mit aki = 1
und ali = 0 geben. Ansonsten wäre der Knoten ul spätestens beim
Abarbeiten von uj in eine Menge vor dem Knoten uk sortiert worden
und könnte daher nicht nach dem Knoten uk ausgegeben werden. �

Satz 2.42. Jede LBO für einen chordalen Graphen G ist eine PEO
für G.

Beweis. Sei (u1, . . . , un) eine LBO für G = (V,E) und sei A = (aij)
die Adjazenzmatrix von G mit aij = 1⇔ {ui, uj} ∈ E, wobei wir für
aij auch A[i, j] schreiben. Wir zeigen, dass G nicht chordal ist, wenn
ui nicht simplizial in Gi = G[u1, . . . , ui] ist.
Falls ui nicht simplizial in Gi ist, müssen Indizes i2 < i1 < i =: i0 mit
A[i0, i1] = A[i0, i2] = 1 und A[i1, i2] = 0 existieren. Wegen A[i1, i2] = 0
und A[i0, i2] = 1 muss es einen Index i3 < i2 geben mit A[i1, i3] = 1
und A[i0, i3] = 0, wobei wir i3 möglichst klein wählen.
Falls nun A[i2, i3] = 1 ist, haben wir einen induzierten Kreis
G[ui0 , ui1 , ui2 , ui3 ] = (ui0 , ui1 , ui3 , ui2) der Länge 4 in G gefunden. An-
dernfalls muss es wegen A[i2, i3] = 0 und A[i1, i3] = 1 einen Index
i4 < i3 geben mit A[i2, i4] = 1 und A[i1, i4] = 0, wobei wir i4 wieder
möglichst klein wählen. Da spätestens für ik = 1 kein Index ik+1 < ik
existiert, also A[ik−1, ik] = 1 sein muss, erhalten wir eine Indexfolge
1 ≤ ik < · · · < i1 < i0 mit
(a) A[i0, i1] = A[ij, ij+2] = A[ik−1, ik] = 1 für j = 0, . . . , k − 2 und
(b) A[i0, i3] = A[ij, ij+1] = A[ij, ij+3] = A[ik−2, ik−1] = 0 für

j = 1, . . . , k − 3 und
(c) A[ij, l] = A[ij−1, l] für j = 1, . . . , k − 3 und l < ij+2.
Die Eigenschaften (a) und (b) ergeben sich direkt aus der Konstruk-
tion der Folge. Eigenschaft (c) folgt aus der minimalen Wahl der
Indizes i3, . . . , ik und impliziert für r = 3, . . . , k die Gleichungen
A[i0, ir] = A[i1, ir] = · · · = A[ir−3, ir], indem wir j = 1, . . . , r − 3
und l = ir setzen. Da zudem A[ir−3, ir] gemäß Eigenschaft (b) für
r = 3, . . . , k den Wert 0 hat, folgt für alle Paare 0 ≤ j < r ≤ k die
Äquivalenz

A[ij, ir] = 1⇔ r = j + 2 oder j = 0 ∧ r = 1 oder j = k − 1 ∧ r = k.

Folglich ist G[ui0 , . . . , uik ] ein Kreis der Länge k + 1 ≥ 4. �

Damit haben wir einen Linearzeitalgorithmus, der für chordale Gra-
phen eine PEO berechnet. Da auch greedy-color linear zeitbe-
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schränkt ist, können wir den Algorithmus chordal-color in Linear-
zeit implementieren. Diesen Algorithmus können wir leicht noch so
modifizieren, dass er zusammen mit der gefundenen k-Färbung entwe-
der eine Clique C der Größe k (als Zertifikat, dass χ(G) = k = ω(G)
ist) oder einen induzierten Kreis der Länge ≥ 4 (als Zertifikat, dass
G nicht chordal ist) ausgibt.

2.3 Der Satz von Brooks

Satz 2.43 (Brooks 1941). Für einen zusammenhängenden Graphen
G gilt χ(G) = ∆(G) + 1 genau dann, wenn G = Kn für ein n ≥ 1
oder G = Cn für ein ungerades n ≥ 3 ist.

Beweis. Es ist klar, dass die Graphen G = Kn für n ≥ 1 und G = Cn
für ungerades n ≥ 3 die chromatische Zahl ∆(G) + 1 haben. Für
∆(G) ≤ 2 ist leicht zu sehen, dass dies auch die einzigen zusammen-
hängenden Graphen mit dieser Eigenschaft sind.
Für zusammenhängende Graphen G 6= Kn mit ∆(G) ≥ 3 zeigen wir
induktiv über n = n(G), dass χ(G) ≤ ∆(G) ist. Für n ≤ 4 (IA) ist
dies klar, da wir den K4 ausgeschlossen haben. Für den IS sei also
G 6= Kn ein zusammenhängender Graph mit n ≥ 5 Knoten und sei
d := ∆(G) ≥ 3.
Falls δ(G) < d ist, hat G′ = G − u eine d-Färbung c′, wobei u ein
Knoten vom Grad deg(u) < d ist (man beachte, dass δ(G′) < d und
somit G′ nicht d-regulär ist, was nach IV χ(G) ≤ d impliziert). Da
deg(u) < d ist, lässt sich c′ zu einer d-Färbung c von G erweitern.
Falls κ(G) ≤ 1 ist, hat G k ≥ 2 Blöcke B1, . . . Bk, die nicht d-regulär
und somit d-färbbar sind. Dies impliziert χ(G) ≤ d, da wir die d-
Färbungen der Blöcke ausgehend von einem beliebigen Wurzelblock
des BC-Baums hin zu den Blattblöcken in eine d-Färbung für G
transformieren können.
Es bleibt also der Fall, dass G d-regulär und κ(G) ≥ 2 ist.

Behauptung 2.44. In G gibt es einen Knoten u1, der zwei Nachbarn
a und b mit {a, b} 6∈ E hat, so dass G− {a, b} zusammenhängend ist.

Da G 6= Kn ist, gibt es einen Knoten x, der zwei Nachbarn y, z ∈ N(x)
mit {y, z} 6∈ E hat.
• Falls G− y 2-zusammenhängend ist, ist G− {y, z} zusammenhän-

gend und die Behauptung folgt für u1 = x.
• Ist G − y nicht 2-zusammenhängend, d.h. G − y hat mindestens

zwei Blöcke, dann hat der BC-Baum T von G− y mindestens zwei
Blätter. Da κ(G) ≥ 2 ist, ist y in G zu mindestens einem Knoten in
jedem Blatt von T benachbart, der kein Schnittknoten ist. Wählen
wir für a und b zwei dieser Knoten in verschiedenen Blättern, so
ist G − {a, b} zusammenhängend und somit die Behauptung für
u1 = y bewiesen.

Sei also u1 ein Knoten, der zwei Nachbarn a und b mit {a, b} 6∈ E
hat, so dass G− {a, b} zusammenhängend ist. Durchsuchen wir den
Graphen G− {a, b} ausgehend vom Startknoten u1, so erhalten wir
eine Suchordnung (u1, . . . , un−2). Starten wir nun greedy-color mit
der Reihenfolge (a, b, un−2, . . . , u1), so erhalten wir eine d-Färbung
c für G mit c(a) = c(b) = 1. Zudem hat Knoten ui, i > 1, einen
Nachbarn uj mit j < i, weshalb c(ui) ≤ deg(ui) ≤ d ist. Zuletzt erhält
auch u1 eine Farbe c(u1) ≤ d, da die Nachbarn a und b von u1 dieselbe
Farbe haben. �

In den Übungen wird folgende Folgerung aus dem Beweis des Satzes
von Brooks gezeigt.

Korollar 2.45. Es gibt einen Linearzeitalgorithmus, der für jeden
Graphen G mit ∆(G) ≤ 3 eine χ(G)-Färbung berechnet.
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2.4 Kantenfärbungen

Neben der Frage, mit wievielen Farben die Knoten eines Graphen
gefärbt werden können, muss bei vielen Anwendungen auch eine Kan-
tenfärbung mit möglichst wenigen Farben gefunden werden. Neben
Graphen treten hierbei auch Multigraphen G = (V,E) auf, d.h.
die Kantenmenge von G ist eine Multimenge auf der Grundmenge(
V
2

)
. In diesem Fall können 2 Kanten nicht nur einen, sondern sogar

beide Endpunkte gemeinsam haben. Wie bei Graphen gehen wir aber
davon aus, dass jede Kante 2 verschiedene Endpunkte hat, d.h. G ist
schlingenfrei.
Eine Multimenge A auf einer Grundmenge M lässt sich durch ei-
ne Funktion vA : M → N beschreiben, wobei vA(a) die Anzahl der
Vorkommen von a in A angibt. Die Mächtigkeit von A ist dann
|A| = ∑

a∈A vA(a). Eine Multimenge A ist Teilmenge einer Multimen-
ge B, wenn vA(a) ≤ vB(a) für alle a ∈M gilt.

Definition 2.46. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung c : E → N heißt Kantenfärbung von G, wenn

c(e) 6= c(e′) für alle e 6= e′ ∈ E mit e ∩ e′ 6= ∅ gilt.
b) G heißt k-kantenfärbbar, falls eine Kantenfärbung c : E →
{1, . . . , k} existiert.

c) Die kantenchromatische Zahl oder der chromatische Index
von G ist

χ′(G) = min{k ∈ N | G ist k-kantenfärbbar}.

Eine k-Kantenfärbung c : E → N muss also je 2 Kanten, die einen
gemeinsamen Endpunkt haben, verschiedene Farben zuweisen. Daher
bildet jede Farbklasse Ei = {e ∈ E | f(e) = i} ein Matching von G,
d.h. c zerlegt E in k disjunkte Matchings E1, . . . , Ek. Umgekehrt liefert
jede Zerlegung von E in k disjunkte Matchings eine k-Kantenfärbung
von G.

Ist G = (V,E) ein Multigraph, so können wir eine k-Kantenfärbung
von G auch durch eine Funktion c beschreiben, die jeder Kante e ∈ E
eine Menge c(e) ⊆ {1, . . . , k} von |c(e)| = vE(e) Farben zuordnet, so
dass c(e) ∩ c(e′) = ∅ für alle e 6= e′ ∈ E mit e ∩ e′ 6= ∅ gilt.
Beispiel 2.47.

χ′(Cn) =

2, n gerade,
3, sonst,

χ′(Kn) = 2dn/2e − 1 =

n− 1, n gerade,
n, sonst.

Das Kantenfärbungsproblem für einen Graphen G lässt sich leicht auf
das Knotenfärbungsproblem für einen Graphen G′ reduzieren.
Definition 2.48. Sei G = (V,E) ein Graph mit m ≥ 1 Kanten.
Dann heißt der Graph L(G) = (E,E ′) mit

E ′ =
{
{e, e′} ⊆

(
E

2

) ∣∣∣∣∣ e ∩ e′ 6= ∅
}

der Kantengraph oder Line-Graph von G.

Ist G ein Multigraph, so ersetzen wir die Multimenge E in L(G)
durch eine Menge VE derselben Mächtigkeit, die für jede Kante e ∈ E
vE(e) verschiedene Kopien e1, . . . , evE(e) von e enthält. Die folgen-
den Beziehungen zwischen einem Graphen G und dem zugehörigen
Line-Graphen lassen sich leicht verifizieren.
Proposition 2.49. Sei G′ = L(G) der Line-Graph eines Graphen G.
Dann gilt

(i) n(G′) = m(G),
(ii) χ(G′) = χ′(G),
(iii) α(G′) = µ(G),
(iv) ω(G′) ≥ ∆(G),
(v) ∆(G′) = max{u,v}∈E degG(u) + degG(v)− 2 ≤ 2∆(G)− 2.
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