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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (g) = {{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u €V | {u,v} € E}.
b) Der Grad von v ist degs(v) = |Ng(v)].

¢) Der Minimalgrad von G ist §(G) = min,ey degs(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

d) Jeder Knoten u € V vom Grad <1 heifit Blatt und die ibrigen
Knoten (vom Grad > 2) heiffen innere Knoten von G.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 1.2.

e Der vollstindige Graph (V, E) auf n Knoten, d.h. |V| =n und
E = (V wird mit K, und der leere Graph (V,0) auf n Knoten

2/
“

wird mit E,, bezeichnet.

Kl:. KQ:._. Ks: i Ky

e Der vollstidndige bipartite Graph (A, B, E) auf a + b Knoten,
dh. ANB=0, |Al =a, |B|=bund E = {{u,v} |u e Av e B}

wird mit Kqp bezeichnet.

Kl,l:._. KLQ: < KQ’Q: X K273: g K3732 %

o Der Pfad mit n Knoten wird mit P, bezeichnet.

P2: *—o P3 *—o—o P4: *—o—o—0 P5 [ ®

o Der Kreis mit n Knoten wird mit C,, bezeichnet.

Cs: A Cy: Cs: Q Co: O

Definition 1.3. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge U C 'V heifit unabhidngig oder stabil, wenn
es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
EN (%) = 0. Die Stabilitéitszahl ist

a(G) =max{|U| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V heifit Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die Cli-
quenzahl ist

w(G) = max{|U| | U ist Clique in G}.

c) Ein Graph G' = (V', E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Im Fall V' =V wird G' auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben fiir
G’ auch G — E" (bzw. G = G'"UE" ), wobei E" = E—E' die Menge
der aus G entfernten Kanten ist. Im Fall E" = {e} schreiben wir

fir G" auch einfach G — e (bzw. G =G Ue).
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d) Ein k-reguldrer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-reguldrer Graph G heif§t k-
faktorisierbar, wenn sich G in | = d/k kantendisjunkte k-
Faktoren G+, ..., Gy zerlegen ldsst.

e) Ein Subgraph G' = (V', E') heifit (durch V') induziert, falls
EF' =FEn (‘;/) ist. Fir G' schreiben wir dann auch G[V'] oder
G — V" wobei V' =V — V' die Menge der aus G entfernten
Knoten ist. Ist V" = {v}, so schreiben wir fir G' auch einfach
G — v und im Fall V' ={vy,..., vt} auch Gluy, ... vg.

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vo, ...,v; mit {v;,vi1} € E furi=0,...,¢ — 1. Die Lange
des Weges ist die Anzahl der durchlaufenen Kanten, also £. Im
Fall ¢ = 0 heifst der Weg trivial. Ein Weg (vo, ..., ve) heifst auch
vo-ve- Weg.

g) G heifit zusammenhéngend, falls es fiir alle Paare {u,v} € (g)
einen u-v-Weg gibt.

h) Die durch die Aquivalenzklassen der Relation

Z ={(u,v) € Vx V| esgibtin G einen u-v-Weg}

induzierten Teilgraphen heiflen Zusammenhangskomponen-
ten (engl. connected components) oder einfach Komponenten
von G.

i) Fine Menge S C V' heifit Separator in G, wenn es zwei Knoten
u,v € V\'S gibt, zwischen denen in G — S kein u-v-Weg existiert.
Ist |S| =k, so nennen wir S auch einen k-Separator zwischen
u und v oder auch einen u-v-Separator.

j) Ein Graph G heifit k-zusammenhingend, 0 < k <n — 1, falls
G keinen (k — 1)-Separator hat. Die gréfite Zahl k, fir die G k-
zusammenhdngend ist, heiffit Zusammenhangszahl von G und
wird mit k(G) bezeichnet.

k) Ein u-v-Weg heifit einfach oder u-v-Pfad, falls alle durchlaufe-

nen Knoten verschieden sind.

) Ein Zyklus ist ein u-v-Weg mit u = v.
m) Ein Kreis ist ein Zyklus (vy ... ,ve,v1) der Linge ¢ > 3, fir den
v1,. ..,V paarweise verschieden sind.

n) Ein Graph heifit kreisfrei, azyklisch oder Wald, falls er keinen
Kreis enthdlt. Fin Baum ist ein zusammenhdngender Wald.

Definition 1.4. FEin gerichteter Graph oder Digraph ist ein
Paar G = (V, E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EQVXV:{(U,UHU,UEV},

wobei E auch Schlingen (u,u) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={u €V | (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) ={u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = Nt(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg”(v) = |[N*(v)| und der Ein-
gangsgrad von v ist deg” (v) = |[N~(v)|. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wvo-ve-Weg ist eine Folge wvon Knoten
Vo, - -, 0 mit (v, v;41) € E firi=0,...,0—1.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg mit u = v.

g) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
(v ...,v5,v1) der Lange ¢ > 1, fiir den vy, ...,v, paarweise ver-
schieden sind.

i) G heifit kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.
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j) G heifit stark zusammenhidngend, wenn es in G fir jedes Kno-
tenpaar u # v € V sowohl einen u-v-Pfad als auch einen v-u-Pfad
qibt.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G' = (V, E') mit
(geordneter) Knotenmenge V' = {vy,...,v,} ist die (n x n)-Matrix
A = (a;j) mit den Eintrégen

1 iy Ug E 17 iy Uj E
%:{, {fvooyeE | %:{ (vi,v5) €

0, sonst 0, sonst.

Fir ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
a; =0fire=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgénger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch andert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.

Betrachte den gerichteten Graphen G = (V, E) @ 3)
mit V. = {1,2,3,4} und E = {(2,3),
(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende ONe

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

|

~3[ {4l
~U el ]
(4[]

O = O O
S O O O
O O~ OlWw
—= o= = O

= W N =

T

2 Farben von Graphen

Definition 2.1. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifst k-farbbar, falls eine Farbung f: V — {1,...,k} exis-
tiert.

¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 2.2.

X(En) =1, X(Kmm) =2, x(K,) =n,

2, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste k& > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 2.3. k-COLORING ist fiir k > 3 NP-vollstindig.

Das folgende Lemma setzt die chromatische Zahl x(G) in Beziehung
zur Stabilitatszahl o(G).

Lemma 2.4. n/a(G) < x(G) <n—a(G) + 1.
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Beweis. Sei G ein Graph und sei ¢ eine x(G)-Farbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil
sind, folgt |5;| < a(G) und somit gilt

x(G)
n= Y15 < x(G)a(@).

i=1

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge

in G mit |S| = a(G). Dann ist G — S k-farbbar fir ein k£ < n — |5].

Da wir alle Knoten in S mit der Farbe k 4 1 farben konnen, folgt
XG)<k+1<n-alG)+1. |

Beide Abschéatzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 2.5. (X(f)> < m und somit X(G) < 1y + /2m + 1/,.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. [ ]

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl w(G)
und zum Maximalgrad A(G):

Lemma 2.6. w(G) < x(G) < A(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal groflen Clique unterschiedliche Farben erhalten miissen.

Um die zweite Ungleichung zu erhalten, betrachten wir folgenden
Farbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V, E) mit V ={vy,...,v,}
2 c(v) =1

3 for i:=2tondo

A F,={c(v;) | j < i,v;€ N(v;)}

5 c(v;) :==min{k > 1|k & F;}

2.1 Féarben von planaren Graphen

Da fiir die Farbe c(v;) von v; nur |F;| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. [ ]

2.1 Farben von planaren Graphen

Ein Graph G heiit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien (genauer: Jordankurven) zwischen den
zugehorigen Endpunkten dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich lasst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lénder, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis®. Ubrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfidlle Computer bendtigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-fdarbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lésst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n') gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen
einfacheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deut-
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lich schnelleren O(n?) Algorithmus liefert, aber ebenfalls nur mit
Computer-Unterstiitzung verifizierbar ist.

Beispiel 2.8. Wie die folgenden Einbettungen von Ky und K3 in
die Ebene zeigen, sind Ky und Ky 3 planar.

Ky: Kag3:

N

Zur Beantwortung der Frage, ob auch K5 und K33 planar sind, be-
trachten wir die Gebiete, die bei der Einbettung von (zusammen-
héngenden) Graphen in die Ebene entstehen. Dabei gehéren 2 Punkte
zum selben Gebiet, falls es zwischen ihnen eine Verbindungslinie gibt,
die keine Kante des eingebetten Graphen kreuzt oder beriithrt. Nur
eines dieser Gebiete ist unbeschrankt und dieses wird als duBeres
Gebiet bezeichnet. Die Anzahl der Gebiete von G bezeichnen wir
mit r(G) oder kurz mit r. Die begrenzenden Kanten eines Gebie-
tes g bilden seinen Rand rand(g). Ihre Anzahl bezeichnen wir mit
d(g), wobei Kanten {u,v}, an die g von beiden Seiten grenzt, doppelt
gezahlt werden.

Der Rand rand(g) eines Gebiets g ist die (zirkuldre) Folge aller Kan-
ten, die an g grenzen, wobei man jede Kante so durchléuft, dass g ,in
Fahrtrichtung links“ liegt bzw. jeden Knoten u, den man tiber eine
Kante e erreicht, tiber die im Uhrzeigersinn nachste Kante e’ wieder
verlasst. Auf diese Weise erhélt jede Kante auf dem Rand von g eine
Richtung (oder Orientierung).

Da jede Kante zur Gesamtlinge >, d(g) aller Rénder den Wert 2
beitriagt (sie wird genau einmal in jeder Richtung durchlaufen), folgt

Z d(g) = 2m(G).

Wir nennen das Tripel G' = (V, E, R) eine ebene Realisierung des
Graphen G = (V| E), falls es eine Einbettung von G in die Ebene

2.1 Féarben von planaren Graphen

gibt, deren Gebiete die Rander in R haben. In diesem Fall nennen
wir G’ = (V, E, R) auch einen ebenen Graphen. Ist G nicht zusam-
menhéngend, so betten wir die Zusammenhangskomponenten von G
in die Ebene ein und fassen alle Rander, die bei diesen Einbettungen
entstehen, zu einer Randmenge R zusammen.

Fiihren zwei Einbettungen von G in die Ebene auf dieselbe Randmenge
R, so werden sie als dquivalent angesehen. Fine andere Moglichkeit,
Einbettungen bis auf Aquivalenz kombinatorisch zu beschreiben, be-
steht darin, fir jeden Knoten u die (zirkulére) Ordnung m, aller mit
u inzidenten Kanten anzugeben. Man nennt 7 = {m, | u € V} ein
Rotationssystem fiir GG, falls es eine entsprechende Einbettung gibt.
Rotationssysteme haben den Vorteil, dass sie bei Verwendung der
Adjazenzlistendarstellung ohne zusétzlichen Platzaufwand gespeichert
werden kénnen, indem man die zu u adjazenten Knoten geméfl m,
anordnet. ;
Beispiel 2.9. Die beiden nebenstehenden

FEinbettungen eines Graphen G = (V, E) in

die Ebene haben jeweils 7 Gebiete und fiih- V

ren beide auf den ebenen Graphen G' =

(V, E, R) mit den 7 Rindern

R = {((I"/ .f"/‘ ‘q)7 Y (b‘ .(J7 67‘ }l)7 (b7 C7 .])7 j

J
(c,h,d),(d,e k), (f,i,l,m,m,1,k)}.
a
<15
e

Das zugehorige Rotationssystem ist

™= {((I, f> Z)? (a7j> ba g)a (b7 ¢, h)? (67 kv fa g),
(d,e,h),(c,7,i, 1, k,d), (I,m), (m)}.

Man beachte, dass sowohl in R als auch in w jede Kante genau zweimal
vorkommt. Anstelle von (zirkularen) Kantenfolgen kann man die Ele-
mente von R und w natirlich auch durch entsprechende Knotenfolgen
beschreiben. <
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Satz 2.10 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) = 2. €

Beweis. Wir fithren den Beweis durch Induktion iiber die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhangend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (x) erfiillt.

m— 1~ m: Sei G ein zusammenhingender ebener Graph mit m
Kanten.

Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhingenden ebenen Graphen G’ mit n’ = n — 1 Kno-
ten, m’ = m — 1 Kanten und " = r Gebieten. Nach IV folgt
n—m+r=Mn—-1)—m-1)+r=n"—m'+1" =2.

Falls GG kein Baum ist, entfernen wir eine Kante auf einem Kreis in
G und erhalten einen zusammenhéngenden ebenen Graphen G’ mit
n' = n Knoten, m’ = m — 1 Kanten und " = r — 1 Gebieten. Nach
IVfolgtn—m+r=n—(m-1)+@r—-1)=n"—m'+r"=2. 1

Korollar 2.11. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist, gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhéngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m =i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n+2m/3—2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = Y, d(g) > 4r bzw. r < m/2. Eulers Formel

2.1 Féarben von planaren Graphen

liefert daher m =n+r —2 <n+m/2 — 2, was m/2 < n — 2 und
somit m < 2n — 4 impliziert. |

Korollar 2.12. Die Graphen K5 und Ksg sind nicht planar.

Beweis. Wegen n(Ks) = 5, also 3n(K;) — 6 = 9, und wegen
m(Ks) = (5) = 10 gilt m(K5) £ 3n(Ks) — 6.

Wegen n(K33) = 6, also 2n(K33) —4 = 8, und wegen m(Ks3) =
3-3=9 gllt m(K373) $ 2n(K3,3) —4. [ |

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Korollar 2.13. Jeder planare Graph hat einen Minimalgrad 6 < 5.

Beweis. Fir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme ¢ > 6 die Ungleichung

m = %EUGV deg(u) > %ZuGV 6= 3TL,

was im Widerspruch zu m < 3n — 6 steht. [ |

Definition 2.14. Seien G = (V,E) und H Graphen und seien
u,v V.

e Durch Fusion von u und v entsteht aus G der Graph G, =
(V —{v}, E") mit

E'={eecE|vdetU{{u,v'}|{v,v'} € E—{u,v}}.

Ist e = {u,v} eine Kante von G (also e € E), so sagen wir auch,
Gy entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2 mit Ng(v) = {u,w}, so sagen wir auch, G, entsteht
aus G durch Uberbriickung des Knotens v bzw. G aus Gy, durch
Unterteilung der Kante {u,w}.
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G heifit zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.

G heifst Unterteilung von H, falls G aus einer isomorphen Kopie
von H durch wiederholte Unterteilungen gewonnen werden kann.

H heifit Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.

G heifit H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifst G H-frei, falls G fir alle H € H H-frei ist.

Beispiel 2.15. Betrachte folgende Graphen:

G st keine Unterteilung von H, da G Knoten vom Grad 3 hat, aber
H nicht. Entfernen wir jedoch die beiden Kanten a und b aus G, so
ist der resultierende Teilgraph eine Unterteilung von H, d.h. H ist
ein topologischer Minor von G. H ist aber kein topologischer Minor
von G', da H einen Knoten vom Grad 4 hat und G' nur Knoten vom
Grad < 3. Da durch Kontraktion der drei umrandeten Kanten ein zu
H isomorpher Graph entsteht, ist H aber ein Minor von G'. N

Es ist klar, dass die Klasse K der planaren Graphen zwar unter Un-
terteilung und (topologischer) Minorenbildung abgeschlossen ist (d.h.
wenn G € K und H ein Minor oder eine Unterteilung von G ist, dann
folgt H € K), aber nicht unter Fusion.

Nach Definition ldsst sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:

e Entfernen einer Kante oder eines Knotens,

e Kontraktion einer Kante (bzw. Uberbriickung eines Knotens).

2.1 Farben von planaren Graphen

Da die Kontraktionen (bzw. Uberbriickungen) 0.B.d.A. auch zuletzt
ausgefithrt werden kénnen, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.16 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-farbbar.

Beweis. Wir beweisen den Satz durch Induktion iiber n.
n=1: Klar.

n—1~>n: Da G planar ist, existiert ein Knoten u mit deg(u) < 5.
Im Fall deg(u) < 4 entfernen wir u aus G. Andernfalls hat u zwei
Nachbarn v und w, die nicht durch eine Kante verbunden sind
(andernfalls wire K ein Teilgraph von G). In diesem Fall entfer-
nen wir alle mit u inzidenten Kanten auer {u,v} und {u,w} und
kontrahieren diese beiden Kanten zum Knoten v.

In beiden Féllen ist der resultierende Graph G’ ein Minor von G und
daher planar. Da G’ zudem hochstens n — 1 Knoten hat, existiert
nach IV eine 5-Farbung ¢’ fir G'. Da wir im 2. Fall dem Knoten w
die Farbe ¢/ (v) geben konnen, haben die Nachbarn von u hochstens
4 verschiedene Farben und wir kénnen G 5-farben. |
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Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K33 oder den K als topologischen Minor enthélt. Fiir den Beweis
benotigen wir noch folgende Notationen.

Definition 2.17. Sei G = (V, E) ein Graph.

e G heifit zusammenhidngend, falls es fir alle Paare {u,v} € (‘2/)
einen u-v-Weg gibt.
e Die durch die Aquivalenzklassen V; CV der Relation

Z ={(u,v) € VxV | esgibtin G einen u-v-Weg}

induzierten Teilgraphen G[V;| heiffen Zusammenhangskompo-
nenten (engl. connected components) oder einfach Komponen-
ten von G.

e Fine Menge S CV heifit Separator in G, wenn es zwei Knoten
u,v € V\S gibt, zwischen denen in G—S kein u-v-Weg ezistiert. Ist
|S| = k, so nennen wir S auch einen k-Separator zwischen u und
v oder auch einen u-v-Separator der Grofie k. Fin 1-Separator
wird auch Artikulation oder Schnittknoten von G genannt.

o Ein Graph G heifit k-zusammenhangend, 0 < k <n — 1, falls
G keinen (k — 1)-Separator hat. Die grofite Zahl k, fir die G k-
zusammenhdngend ist, heifst Zusammenhangszahl von G und
wird mit k(G) bezeichnet.

Ein Graph G mit n > 2 Knoten ist also genau dann zusammenhan-
gend, wenn k(G) > 1 ist.
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