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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = |NG(v)|.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).
d) Jeder Knoten u ∈ V vom Grad ≤ 1 heißt Blatt und die übrigen

Knoten (vom Grad ≥ 2) heißen innere Knoten von G.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 1.2.
• Der vollständige Graph (V,E) auf n Knoten, d.h. |V | = n und
E =

(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n Knoten

wird mit En bezeichnet.

K1 : K2 : K3 : K4 : K5 :

• Der vollständige bipartite Graph (A,B,E) auf a+ b Knoten,
d.h. A ∩B = ∅, |A| = a, |B| = b und E = {{u, v} | u ∈ A, v ∈ B}
wird mit Ka,b bezeichnet.

K1,1 : K1,2 : K2,2 : K2,3 : K3,3 :

• Der Pfad mit n Knoten wird mit Pn bezeichnet.

P2 : P3 : P4 : P5 :

• Der Kreis mit n Knoten wird mit Cn bezeichnet.

C3 : C4 : C5 : C6 :

Definition 1.3. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt unabhängig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
E ∩

(
U
2

)
= ∅. Die Stabilitätszahl ist

α(G) = max{|U | | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die Cli-

quenzahl ist

ω(G) = max{|U | | U ist Clique in G}.

c) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Im Fall V ′ = V wird G′ auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben für
G′ auch G− E ′′ (bzw. G = G′∪E ′′), wobei E ′′ = E−E ′ die Menge
der aus G entfernten Kanten ist. Im Fall E ′′ = {e} schreiben wir
für G′ auch einfach G− e (bzw. G = G′ ∪ e).
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1 Graphentheoretische Grundlagen

d) Ein k-regulärer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-regulärer Graph G heißt k-
faktorisierbar, wenn sich G in l = d/k kantendisjunkte k-
Faktoren G1, . . . , Gl zerlegen lässt.

e) Ein Subgraph G′ = (V ′, E ′) heißt (durch V ′) induziert, falls
E ′ = E ∩

(
V ′

2

)
ist. Für G′ schreiben wir dann auch G[V ′] oder

G − V ′′, wobei V ′′ = V − V ′ die Menge der aus G entfernten
Knoten ist. Ist V ′′ = {v}, so schreiben wir für G′ auch einfach
G− v und im Fall V ′ = {v1, . . . , vk} auch G[v1, . . . , vk].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , ` − 1. Die Länge
des Weges ist die Anzahl der durchlaufenen Kanten, also `. Im
Fall ` = 0 heißt der Weg trivial. Ein Weg (v0, . . . , v`) heißt auch
v0-v`-Weg.

g) G heißt zusammenhängend, falls es für alle Paare {u, v} ∈
(
V
2

)
einen u-v-Weg gibt.

h) Die durch die Äquivalenzklassen der Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

induzierten Teilgraphen heißen Zusammenhangskomponen-
ten (engl. connected components) oder einfach Komponenten
von G.

i) Eine Menge S ⊆ V heißt Separator in G, wenn es zwei Knoten
u, v ∈ V \ S gibt, zwischen denen in G− S kein u-v-Weg existiert.
Ist |S| = k, so nennen wir S auch einen k-Separator zwischen
u und v oder auch einen u-v-Separator.

j) Ein Graph G heißt k-zusammenhängend, 0 ≤ k ≤ n− 1, falls
G keinen (k − 1)-Separator hat. Die größte Zahl k, für die G k-
zusammenhängend ist, heißt Zusammenhangszahl von G und
wird mit κ(G) bezeichnet.

k) Ein u-v-Weg heißt einfach oder u-v-Pfad, falls alle durchlaufe-
nen Knoten verschieden sind.

l) Ein Zyklus ist ein u-v-Weg mit u = v.
m) Ein Kreis ist ein Zyklus (v1 . . . , v`, v1) der Länge ` ≥ 3, für den

v1, . . . , v` paarweise verschieden sind.
n) Ein Graph heißt kreisfrei, azyklisch oder Wald, falls er keinen

Kreis enthält. Ein Baum ist ein zusammenhängender Wald.

Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ V × V =

{
(u, v) | u, v ∈ V

}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = |N+(v)| und der Ein-

gangsgrad von v ist deg−(v) = |N−(v)|. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein (gerichteter) v0-v`-Weg ist eine Folge von Knoten
v0, . . . , v` mit (vi, vi+1) ∈ E für i = 0, . . . , `− 1.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg mit u = v.
g) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad, falls

alle durchlaufenen Knoten verschieden sind.
h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus

(v1 . . . , v`, v1) der Länge ` ≥ 1, für den v1, . . . , v` paarweise ver-
schieden sind.

i) G heißt kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.
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2 Färben von Graphen

j) G heißt stark zusammenhängend, wenn es in G für jedes Kno-
tenpaar u 6= v ∈ V sowohl einen u-v-Pfad als auch einen v-u-Pfad
gibt.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G = (V,E) mit
(geordneter) Knotenmenge V = {v1, . . . , vn} ist die (n × n)-Matrix
A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst.

Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

2 Färben von Graphen

Definition 2.1. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f : V → {1, . . . , k} exis-

tiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

Beispiel 2.2.

χ(En) = 1, χ(Kn,m) = 2, χ(Kn) = n,

χ(Cn) =

2, n gerade
3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-färbbar ist. Dieses Problem ist für jedes feste k ≥ 3 schwierig.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Satz 2.3. k-Coloring ist für k ≥ 3 NP-vollständig.

Das folgende Lemma setzt die chromatische Zahl χ(G) in Beziehung
zur Stabilitätszahl α(G).

Lemma 2.4. n/α(G) ≤ χ(G) ≤ n− α(G) + 1.
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2 Färben von Graphen 2.1 Färben von planaren Graphen

Beweis. Sei G ein Graph und sei c eine χ(G)-Färbung von G. Da
dann die Mengen Si = {u ∈ V | c(u) = i}, i = 1, . . . , χ(G), stabil
sind, folgt |Si| ≤ α(G) und somit gilt

n =
χ(G)∑
i=1
|Si| ≤ χ(G)α(G).

Für den Beweis von χ(G) ≤ n− α(G) + 1 sei S eine stabile Menge
in G mit |S| = α(G). Dann ist G− S k-färbbar für ein k ≤ n− |S|.
Da wir alle Knoten in S mit der Farbe k + 1 färben können, folgt
χ(G) ≤ k + 1 ≤ n− α(G) + 1. �

Beide Abschätzungen sind scharf, können andererseits aber auch
beliebig schlecht werden.

Lemma 2.5.
(
χ(G)

2

)
≤ m und somit χ(G) ≤ 1/2 +

√
2m+ 1/4.

Beweis. Zwischen je zwei Farbklassen einer optimalen Färbung muss
es mindestens eine Kante geben. �

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl ω(G)
und zum Maximalgrad ∆(G) :

Lemma 2.6. ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal großen Clique unterschiedliche Farben erhalten müssen.
Um die zweite Ungleichung zu erhalten, betrachten wir folgenden
Färbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V,E) mit V = {v1, . . . , vn}
2 c(v1) := 1
3 for i := 2 to n do
4 Fi := {c(vj) | j < i, vj ∈ N(vi)}
5 c(vi) := min{k ≥ 1 | k 6∈ Fi}

Da für die Farbe c(vi) von vi nur |Fi| ≤ ∆(G) Farben verboten sind,
gilt c(vi) ≤ ∆(G) + 1. �

2.1 Färben von planaren Graphen

Ein Graph G heißt planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten höchstens in ihren Endpunkten
berühren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien (genauer: Jordankurven) zwischen den
zugehörigen Endpunkten dargestellt.
Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben höchstens benötigt werden, um eine Landkarte so zu färben,
dass aneinander grenzende Länder unterschiedliche Farben erhalten.
Offensichtlich lässt sich eine Landkarte in einen planaren Graphen
transformieren, indem man für jedes Land einen Knoten zeichnet und
benachbarte Länder durch eine Kante verbindet. Länder, die sich nur
in einem Punkt berühren, gelten dabei nicht als benachbart.
Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
„bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
„Beweis“. Übrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Überprüfung der
vielen auftretenden Spezialfälle Computer benötigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-färbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lässt sich
ein 4-Färbungsalgorithmus für planare Graphen mit einer Laufzeit
von O(n4) gewinnen.
In 1997 fanden Robertson, Sanders, Seymour und Thomas einen
einfacheren Beweis für den 4-Farben-Satz, welcher zwar einen deut-
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2 Färben von Graphen 2.1 Färben von planaren Graphen

lich schnelleren O(n2) Algorithmus liefert, aber ebenfalls nur mit
Computer-Unterstützung verifizierbar ist.
Beispiel 2.8. Wie die folgenden Einbettungen von K4 und K2,3 in
die Ebene zeigen, sind K4 und K2,3 planar.

K4 : K2,3 :

/

Zur Beantwortung der Frage, ob auch K5 und K3,3 planar sind, be-
trachten wir die Gebiete, die bei der Einbettung von (zusammen-
hängenden) Graphen in die Ebene entstehen. Dabei gehören 2 Punkte
zum selben Gebiet, falls es zwischen ihnen eine Verbindungslinie gibt,
die keine Kante des eingebetten Graphen kreuzt oder berührt. Nur
eines dieser Gebiete ist unbeschränkt und dieses wird als äußeres
Gebiet bezeichnet. Die Anzahl der Gebiete von G bezeichnen wir
mit r(G) oder kurz mit r. Die begrenzenden Kanten eines Gebie-
tes g bilden seinen Rand rand(g). Ihre Anzahl bezeichnen wir mit
d(g), wobei Kanten {u, v}, an die g von beiden Seiten grenzt, doppelt
gezählt werden.
Der Rand rand(g) eines Gebiets g ist die (zirkuläre) Folge aller Kan-
ten, die an g grenzen, wobei man jede Kante so durchläuft, dass g „in
Fahrtrichtung links“ liegt bzw. jeden Knoten u, den man über eine
Kante e erreicht, über die im Uhrzeigersinn nächste Kante e′ wieder
verlässt. Auf diese Weise erhält jede Kante auf dem Rand von g eine
Richtung (oder Orientierung).
Da jede Kante zur Gesamtlänge ∑g d(g) aller Ränder den Wert 2
beiträgt (sie wird genau einmal in jeder Richtung durchlaufen), folgt∑

g

d(g) = 2m(G).

Wir nennen das Tripel G′ = (V,E,R) eine ebene Realisierung des
Graphen G = (V,E), falls es eine Einbettung von G in die Ebene

gibt, deren Gebiete die Ränder in R haben. In diesem Fall nennen
wir G′ = (V,E,R) auch einen ebenen Graphen. Ist G nicht zusam-
menhängend, so betten wir die Zusammenhangskomponenten von G
in die Ebene ein und fassen alle Ränder, die bei diesen Einbettungen
entstehen, zu einer Randmenge R zusammen.
Führen zwei Einbettungen von G in die Ebene auf dieselbe Randmenge
R, so werden sie als äquivalent angesehen. Eine andere Möglichkeit,
Einbettungen bis auf Äquivalenz kombinatorisch zu beschreiben, be-
steht darin, für jeden Knoten u die (zirkuläre) Ordnung πu aller mit
u inzidenten Kanten anzugeben. Man nennt π = {πu | u ∈ V } ein
Rotationssystem für G, falls es eine entsprechende Einbettung gibt.
Rotationssysteme haben den Vorteil, dass sie bei Verwendung der
Adjazenzlistendarstellung ohne zusätzlichen Platzaufwand gespeichert
werden können, indem man die zu u adjazenten Knoten gemäß πu
anordnet.
Beispiel 2.9. Die beiden nebenstehenden
Einbettungen eines Graphen G = (V,E) in
die Ebene haben jeweils 7 Gebiete und füh-
ren beide auf den ebenen Graphen G′ =
(V,E,R) mit den 7 Rändern

R = {(a, f, g), (a, j, i), (b, g, e, h), (b, c, j),
(c, h, d), (d, e, k), (f, i, l,m,m, l, k)}.

Das zugehörige Rotationssystem ist

π = {(a, f, i), (a, j, b, g), (b, c, h), (e, k, f, g),
(d, e, h), (c, j, i, l, k, d), (l,m), (m)}.

a

i

f

b

h cg
e

k

j

d
l m

a

i

f

b

h
cg

e
k

j

d
l
m

Man beachte, dass sowohl in R als auch in π jede Kante genau zweimal
vorkommt. Anstelle von (zirkulären) Kantenfolgen kann man die Ele-
mente von R und π natürlich auch durch entsprechende Knotenfolgen
beschreiben. /
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2 Färben von Graphen 2.1 Färben von planaren Graphen

Satz 2.10 (Polyederformel von Euler, 1750).
Für einen zusammenhängenden ebenen Graphen G = (V,E,R) gilt

n(G)−m(G) + r(G) = 2. (∗)

Beweis. Wir führen den Beweis durch Induktion über die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhängend ist, muss dann n = 1 sein.
Somit ist auch r = 1, also (∗) erfüllt.

m− 1 ; m : Sei G ein zusammenhängender ebener Graph mit m
Kanten.
Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhängenden ebenen Graphen G′ mit n′ = n − 1 Kno-
ten, m′ = m − 1 Kanten und r′ = r Gebieten. Nach IV folgt
n−m+ r = (n− 1)− (m− 1) + r = n′ −m′ + r′ = 2.
Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis in
G und erhalten einen zusammenhängenden ebenen Graphen G′ mit
n′ = n Knoten, m′ = m− 1 Kanten und r′ = r − 1 Gebieten. Nach
IV folgt n−m+ r = n− (m− 1) + (r − 1) = n′ −m′ + r′ = 2. �

Korollar 2.11. Sei G = (V,E) ein planarer Graph mit n ≥ 3 Knoten.
Dann ist m ≤ 3n− 6. Falls G dreiecksfrei ist, gilt sogar m ≤ 2n− 4.

Beweis. O.B.d.A. sei G zusammenhängend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n ≥ 3 ist, ist jedes Gebiet g
von d(g) ≥ 3 Kanten umgeben. Daher ist 2m = i = ∑

g d(g) ≥ 3r
bzw. r ≤ 2m/3. Eulers Formel liefert

m = n+ r − 2 ≤ n+ 2m/3− 2,

was (1− 2/3)m ≤ n− 2 und somit m ≤ 3n− 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) ≥ 4 Kanten umge-
ben. Daher ist 2m = i = ∑

g d(g) ≥ 4r bzw. r ≤ m/2. Eulers Formel

liefert daher m = n + r − 2 ≤ n + m/2 − 2, was m/2 ≤ n − 2 und
somit m ≤ 2n− 4 impliziert. �

Korollar 2.12. Die Graphen K5 und K3,3 sind nicht planar.

Beweis. Wegen n(K5) = 5, also 3n(K5) − 6 = 9, und wegen
m(K5) =

(
5
2

)
= 10 gilt m(K5) 6≤ 3n(K5)− 6.

Wegen n(K3,3) = 6, also 2n(K3,3) − 4 = 8, und wegen m(K3,3) =
3 · 3 = 9 gilt m(K3,3) 6≤ 2n(K3,3)− 4. �

Als weitere interessante Folgerung aus der Polyederformel können wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) ≤ 5
hat.

Korollar 2.13. Jeder planare Graph hat einen Minimalgrad δ ≤ 5.

Beweis. Für n ≤ 6 ist die Behauptung klar. Für n > 6 impliziert die
Annahme δ ≥ 6 die Ungleichung

m = 1
2
∑
u∈V deg(u) ≥ 1

2
∑
u∈V 6 = 3n,

was im Widerspruch zu m ≤ 3n− 6 steht. �

Definition 2.14. Seien G = (V,E) und H Graphen und seien
u, v ∈ V .
• Durch Fusion von u und v entsteht aus G der Graph Guv =

(V − {v}, E ′) mit

E ′ = {e ∈ E | v 6∈ e} ∪ {{u, v′} | {v, v′} ∈ E − {u, v}}.

Ist e = {u, v} eine Kante von G (also e ∈ E), so sagen wir auch,
Guv entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2 mit NG(v) = {u,w}, so sagen wir auch, Guv entsteht
aus G durch Überbrückung des Knotens v bzw. G aus Guv durch
Unterteilung der Kante {u,w}.
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2 Färben von Graphen 2.1 Färben von planaren Graphen

• G heißt zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.
• G heißt Unterteilung von H, falls G aus einer isomorphen Kopie

von H durch wiederholte Unterteilungen gewonnen werden kann.
• H heißt Minor von G, wenn ein Teilgraph von G zu H kontra-

hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.
• G heißt H-frei, falls H kein Minor von G ist. Für eine Menge H

von Graphen heißt G H-frei, falls G für alle H ∈ H H-frei ist.

Beispiel 2.15. Betrachte folgende Graphen:

H : G :
a b

G′ :

G ist keine Unterteilung von H, da G Knoten vom Grad 3 hat, aber
H nicht. Entfernen wir jedoch die beiden Kanten a und b aus G, so
ist der resultierende Teilgraph eine Unterteilung von H, d.h. H ist
ein topologischer Minor von G. H ist aber kein topologischer Minor
von G′, da H einen Knoten vom Grad 4 hat und G′ nur Knoten vom
Grad ≤ 3. Da durch Kontraktion der drei umrandeten Kanten ein zu
H isomorpher Graph entsteht, ist H aber ein Minor von G′. /

Es ist klar, dass die Klasse K der planaren Graphen zwar unter Un-
terteilung und (topologischer) Minorenbildung abgeschlossen ist (d.h.
wenn G ∈ K und H ein Minor oder eine Unterteilung von G ist, dann
folgt H ∈ K), aber nicht unter Fusion.
Nach Definition lässt sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:
• Entfernen einer Kante oder eines Knotens,
• Kontraktion einer Kante (bzw. Überbrückung eines Knotens).

Da die Kontraktionen (bzw. Überbrückungen) o.B.d.A. auch zuletzt
ausgeführt werden können, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.16 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-färbbar.

Beweis. Wir beweisen den Satz durch Induktion über n.
n = 1: Klar.
n− 1 ; n : Da G planar ist, existiert ein Knoten u mit deg(u) ≤ 5.
Im Fall deg(u) ≤ 4 entfernen wir u aus G. Andernfalls hat u zwei
Nachbarn v und w, die nicht durch eine Kante verbunden sind
(andernfalls wäre K5 ein Teilgraph von G). In diesem Fall entfer-
nen wir alle mit u inzidenten Kanten außer {u, v} und {u,w} und
kontrahieren diese beiden Kanten zum Knoten v.
In beiden Fällen ist der resultierende Graph G′ ein Minor von G und
daher planar. Da G′ zudem höchstens n− 1 Knoten hat, existiert
nach IV eine 5-Färbung c′ für G′. Da wir im 2. Fall dem Knoten w
die Farbe c′(v) geben können, haben die Nachbarn von u höchstens
4 verschiedene Farben und wir können G 5-färben. �
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2 Färben von Graphen 2.1 Färben von planaren Graphen

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K3,3 oder den K5 als topologischen Minor enthält. Für den Beweis
benötigen wir noch folgende Notationen.

Definition 2.17. Sei G = (V,E) ein Graph.
• G heißt zusammenhängend, falls es für alle Paare {u, v} ∈

(
V
2

)
einen u-v-Weg gibt.
• Die durch die Äquivalenzklassen Vi ⊆ V der Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

induzierten Teilgraphen G[Vi] heißen Zusammenhangskompo-
nenten (engl. connected components) oder einfach Komponen-
ten von G.
• Eine Menge S ⊆ V heißt Separator in G, wenn es zwei Knoten
u, v ∈ V \S gibt, zwischen denen in G−S kein u-v-Weg existiert. Ist
|S| = k, so nennen wir S auch einen k-Separator zwischen u und
v oder auch einen u-v-Separator der Größe k. Ein 1-Separator
wird auch Artikulation oder Schnittknoten von G genannt.
• Ein Graph G heißt k-zusammenhängend, 0 ≤ k ≤ n− 1, falls
G keinen (k − 1)-Separator hat. Die größte Zahl k, für die G k-
zusammenhängend ist, heißt Zusammenhangszahl von G und
wird mit κ(G) bezeichnet.

Ein Graph G mit n ≥ 2 Knoten ist also genau dann zusammenhän-
gend, wenn κ(G) ≥ 1 ist.
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