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1 Klassische Verfahren

1.1 Einfiihrung

Kryptosysteme (Verschliisselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.

Physikalische MaBnahmen: Tresor etc.
Organisatorische MaBnahmen: einsamer Waldspaziergang etc.
Steganografische MaBnahmen: unsichtbare Tinte etc.

Andererseits konnen durch kryptografische Verfahren weitere Schutzziele realisiert
werden.

o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o [ntegritdt
— von Nachrichten und Daten
o Zurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.

Kryptografie: Lehre von der Geheimhaltung von Informationen durch die Verschliisse-
lung von Daten. Im weiteren Sinne: Wissenschaft von der Ubermittlung, Speiche-
rung und Verarbeitung von Daten in einer von potentiellen Gegnern bedrohten
Umgebung.

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stérken bzw. Schwéachen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).
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1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

— operieren auf semantischen Einheiten,

— starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemafl Funkbefehl testen
yde Frage

sLk Befehl

fin beendet

eom eigene Maschinen

Kryptosysteme

— operieren auf syntaktischen Einheiten,

— flexibler Mechanismus durch Schliisselvereinbarung

Definition 2 (Alphabet). Ein Alphabet A = {aq, ..., a, 1} ist eine geordnete endli-
che Menge von Zeichen a;. Eine Folge v = x1 ...z, € A" heifst Wort (der Linge n).
Die Menge aller Worter diber dem Alphabet A ist A* = 5o A".

Beispiel 3. Das lateinische Alphabet A, enthdilt die 26 Buchstaben A, ... ,Z. Bei
der Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Grof- und Kleinschreibung verzichtet (~ Verringerung der Redundanz
im Klartext). q

Definition 4 (Kryptosystem). Ein Kryptosystem wird durch folgende Komponenten
beschrieben.:

— A, das Klartextalphabet,

— B, das Kryptotextalphabet,

— K, der Schliisselraum (key space),

— M C A*, der Klartextraum (message space),

— C C B*, der Kryptotextraum (ciphertext space),

— E: K x M — C, die Verschliisselungsfunktion (encryption function),

— D: K xC — M, die Entschliisselungsfunktion (decryption function) und

— S C K x K, eine Menge von Schlisselpaaren (k, k") mit der Eigenschaft, dass fir
jeden Klartext x € M folgende Beziehung gilt:

DK, E(k,z)) =z (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k, k) | k € K}, weshalb wir in diesem Fall
auf die Angabe von S verzichten kénnen.
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Chiffrier- 4 Dechiffrier-
funktion F funktion D

Sender Empfianger

Zu jedem Schliissel k € K korrespondiert also eine Chiffrierfunktion Ej : x — E(k, x)
und eine Dechiffrierfunktion Dy : y — D(k,y). Die Gesamtheit dieser Abbildun-
gen wird auch Chiffre (englisch cipher) genannt. (Daneben wird der Begriff | Chiffre“
auch als Bezeichnung fiir einzelne Kryptotextzeichen oder kleinere Kryptotextsequenzen
verwendet. )

Lemma 5. Fir jedes Paar (k, k') € S ist die Chiffrierfunktion Ej. injektiv.

Beweis. Angenommen, fiir zwei unterschiedliche Klartexte xzy # x5 ist E(k,z) =
E(k,z2). Dann folgt

1.1
(:) Z2 # Ty,

D(K,E(k,z1)) = D(K, E(k,x2))

im Widerspruch zu (1.1). O

1.3 Die affine Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a,b,m ganze Zahlen
mit m > 1. Die Zahl a teilt b (kurz: alb), falls ein d € Z existiert mit b = ad. Teilt m
die Differenz a — b, so schreiben wir hierfir

a=,b
(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne
amod m =min{a —dm >0 |d € Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r€{0,..., m— 1}, fir die eine ganze Zahl d € 7 existiert mit a = dm + r.

Die auf Z definierten Operationen
a @y, b:=(a+0b) modm

und
a @ b := ab mod m.
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Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlissel k = 13).

z ABCDEFGHIJKLMNOPQRSTUVWXYZ
E(13,2) [INOPQRSTUVWXYZABCDEFGHIJKLM

sind abgeschlossen auf Z,, = {0,..., m — 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Fir
a P,, —b schreiben wir auch a &,, b.

Durch Identifikation der Buchstaben a; mit ihren Indizes konnen wir die auf Z,,, definierten
Rechenoperationen auf Buchstaben iibertragen.

Definition 7 (Buchstabenrechnung). Sei A = {ag,...,an_1} ein Alphabet. Fiir
Indizes i,j € {0,..., m — 1} und eine ganze Zahl z € 7 ist

a4 + a5 = Qigj, A — A5 = Qigy,j, G0 = Qio,,;,
A+ 2 = Qigpz, G — 2 = Qignz, 205 = 0x0,,;)-

Mit Hilfe dieser Notation lasst sich die Verschiebechiffre, die auch als additive Chiffre
bezeichnet wird, leicht beschreiben.

Definition 8 (additive Chiffre). Bei der additiven Chiffre ist A= B =M =C
ein beliebiges Alphabet mit m := ||Al| > 1 und K ={1,...,m—1}. Firke K, x € M
und y € C gilt

Ek,z)=x+4+k und D(c,y) =y —k.

Im Fall des lateinischen Alphabets fithrt der Schliissel £ = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.1). Natiirlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten geschiitzt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen — etwa von Rétsellosungen — verhindert werden.

ROT13 ist eine involutorische — also zu sich selbst inverse — Abbildung, d.h. fiir alle
x e A gilt

ROT13(ROT13(z)) = =.
Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar eine echt
involutorische Abbildung.

Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe: Anstatt auf
jeden Klartextbuchstaben den Schliisselwert £ zu addieren, konnen wir die Klartextbuch-
staben auch mit k£ multiplizieren. Allerdings erhalten wir hierbei nicht fiir jeden Wert
von k eine injektive Chiffrierfunktion. So bildet etwa die Funktion g : A;,; — Ajer mit
g(x) = 2x sowohl A als auch N auf den Buchstaben g(A) = g(N) = A ab. Um die vom
Schliisselwert k zu erfiillende Bedingung angeben zu konnen, fithren wir folgende Begriffe
ein.

Definition 9 (ggT, kgV, teilerfremd). Seien a,b € Z. Fir (a,b) # (0,0) st
ggT(a,b) = max{d € Z | d teilt die beiden Zahlen a und b}
der grofite gemeinsame Teiler von a und b. Fir a # 0,b # 0 ist

kgV(a,b) = min{d € Z | d > 1 und die beiden Zahlen a und b teilen d}
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das kleinste gemeinsame Vielfache von a und b. Ist ggT(a,b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.

Lemma 10. Seien a,b,c € Z mit (a,b) # (0,0). Dann gilt ggT(a,b) = ggT(b, a + bc)
und somit ggT(a,b) = ggT(b,a mod b), falls b > 1 ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a + bc und umgekehrt. O

Euklidscher Algorithmus: Der grofite gemeinsame Teiler zweier Zahlen a und b lasst
sich wie folgt bestimmen.

O.B.d. A. sei a > b > 0. Bestimme die natiirlichen Zahlen (durch Divsision mit Rest):
ro=a>r =b>ry>--->r;>r, 1 =0 und dy,ds,...dsi1
mit
Ti_lzdi+17‘i+r,~+1 far izl,...,S.*
Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(Tz‘—hTi) = ggT(n, Ti—1 — dz‘+17‘z‘)
————

Tit1
folgt ggT(a,b) = ggT(rs,rs11) = rs.
Beispiel 11. Fiir a = 693 und b = 147 erhalten wir
i Tic1 = dig1e T+ i
1 693 = 4 -147 + 105
2 147 = 1 -105 + 42
3 106 = 2 - 424+ 21
4 42 = 2 21+ 0
und damit ggT(693,147) = ry = 21. Q

Der Euklidsche Algorithmus ldsst sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklid;i(a,b) Prozedur Euklid,e(a,b)

| repeat 1 if b=0 then

2 r:=amod b 2 return(a)

3 a:=b>b 3 else

4 b:=r 4 return(Euklid ek (b, @ mod b))
5 until r=20

¢ return(a)

Zur Abschétzung von s verwenden wir die Folge der Fibonacci-Zahlen F},:

*Also: dl =Ti—2 div Ti—1 und Ty =Ti—2 mod Ti—1-
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0, falls n =0

F,=141, falls n = 1

F,_1+F,, fallsn>2
Durch Induktion iiber i = s,s —1,...,0 folgt r; > F, 1 _;; also a = rq > Fyy1. Weiterhin
lasst sich durch Induktion iiber n > 0 zeigen, dass Fj,41 > ¢™ ! ist, wobei ¢ = (14++/5)/2

der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da Fy = F} =
1 = ¢° > ¢! ist. Unter der Induktionsannahme Fj,; > ¢*~! fiir i < n — 1 folgt wegen

P =041
Fopn=Fo+ Foa 20" 249" =¢" (o +1) = ¢" "

Somit ist @ > ¢*~1, d.h. s < 1+ [log a).

Satz 12. Der Euklidsche Algorithmus fihrt O(n) Divisionsschritte zur Berechnung von
ggT(a,b) durch, wobei n die Linge der Eingabe a > b > 0 in Bindrdarstellung bezeichnet.
Dies fiihrt auf eine Zeitkomplezitit von O(n?), da jede Ganzzahldivision in Zeit O(n?)
durchfihrbar ist.

Erweiterter Euklidscher bzw. Berlekamp-Algorithmus: Der Euklidsche Algorith-
mus kann so modifiziert werden, dass er eine lineare Darstellung

geT(a,b) =AXa+pub mit N\ peZ

des ggT liefert (Zeitkomplexitit ebenfalls O(n?)). Hierzu werden neben r; und d; weitere
Zahlen
pi = pi—2 — dipi—1,  wobei pg=1 und p; =0,

und
¢ = ¢i—2 — d;gi—1, wobei ¢=0 und ¢ =1,

fir ¢ =0,...,n bestimmt. Dann gilt fiir i =0 und ¢ = 1,
ap; +bg; = 1i,
und durch Induktion iiber 7,
apiy1 +bgipn = a(pioy — digapi) +0(gi-1 — div1)
= api—1 +bgi_1 — diy1(ap; + bg;)

- (7"1'—1 - di+17"z')

Tit+1
zeigt man, dass dies auch fir ¢+ = 2, ..., s gilt. Insbesondere gilt also
aps + bgs = rs = ggT(a,b).

Korollar 13 (Lemma von Bezout). Der grofite gemeinsame Teiler von a und b ist in
der Form
geT(a,b) =Xa+pb mit A\ pu€Z

darstellbar.
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Beispiel 14. Fir a = 693 und b = 147 erhalten wir wegen

ioricr = digr T T Di i pi 693+ ¢;-147= 1,
0 1 0 1-693+ 0-147 =693
1 693 = 4 -147+ 105 O 1 0-693+ 1-147=147
2 147 = 1 105+ 42 1 —4 1-693 — 4-147=105
3 105 = 2 - 424 21 -1 5) —1-693+ 5-147= 42
4 42 = 2 -21+ 0 3 -—-14 3-693 —14-147= 21
die lineare Darstellung 3 - 693 — 14 - 147 = 21. N

Aus der linearen Darstellbarkeit des grofiten gemeinsamen Teilers ergeben sich eine Reihe
von niitzlichen Schlussfolgerungen.

Korollar 15. ggT(a,b) = min{Aa + ub > 1| A\, u € Z}.

Beweis. Sei M ={ a+pub> 1|\ p € Z}, m =min M und g = ggT(a,b). Dann folgt
g > m, da g in der Menge M enthalten ist, und g < m, da g jede Zahl in M teilt. O

Korollar 16. Der grifite gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

zla A zlb = z|ggT(a,b).

Beweis. Seien p, A € Z mit pa + A\b = ggT(a,b). Falls x sowohl a als auch b teilt, dann
teilt © auch die Produkte pa und A\b und somit auch deren Summe. O

Korollar 17 (Lemma von Euklid). Teilt a das Produkt bc und sind a, b teilerfremd, so
teilt a auch c,
albc A ggT(a,b) =1 = dalc

Beweis. Wegen ggT(a,b) = 1 existieren Zahlen pu, A € Z mit pa + A\b = 1. Falls a das
Produkt be teilt, muss a auch die Zahl cua 4+ cAb = c teilen. O

Korollar 18. Zwei Zahlen a und b sind genau dann zu einer Zahl m € Z teilerfremd,
wenn thr Produkt ab teilerfremd zu m ist,

ggT(a,m) =ggT(bym)=1 <« ggT(abm)=1.

Beweis. Da aund b teilerfremd zu m sind, existieren Zahlen p, A\, ¢/, ' € Z mit pa+im =
1'b+ N'm = 1. Somit ergibt sich aus der Darstellung

1= (ua+ Im)(@'b+ Nm) = up' ab+ (paX + p/'oOX + A\N'm)m
—~

l’[/” )\N

und Korollar 15, dass auch ab teilerfremd zu m ist.

Gilt umgekehrt ggT(ab,m) = 1, so existieren Zahlen p, A € Z mit pab + Am = 1. Mit
Korollar 15 folgt sofort ggT(a, m) = ggT(b,m) = 1. O

Damit nun eine Abbildung g : A — A von der Bauart g(z) = bx injektiv (oder gleichbe-
deutend, surjektiv) ist, muss es zu jedem Buchstaben y € A genau einen Buchstaben
xr € A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.
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Satz 19. Seien b,m ganze Zahlen mit m > 1. Die lineare Kongruenzgleichung bx =,, y
besitzt genau dann eine eindeutige Losung x € {0,..., m — 1}, wenn ggT(b,m) =1 ist.

Beweis. Angenommen, ggT(b,m) = ¢g > 1. Dann ist mit z auch 2’ = z + m/g eine
Losung von bx =,, y mit x #,, z’. Gilt umgekehrt ggT(b,m) = 1, so folgt aus den
Kongruenzen

bxl =m Y

und
bl’? =m Y

sofort b(z1 — z2) =, 0, also m|b(z1 — z2). Wegen ggT (b, m) = 1 folgt mit dem Lemma
von Euklid m|(x; — x3), also x1 =, xs.

Dies zeigt, dass die Abbildung f : Z,, — Z,, mit f(x) = bz mod m injektiv ist. Da der
Definitions- und der Wertebereich von f die gleiche Méchtigkeit haben, muss f dann
auch surjektiv sein. Dies impliziert, dass die Kongruenz bx =,, y fiir jedes y € Z,, 16sbar
ist. O

Korollar 20. Im Fall ggT(b,m) =1 hat die Kongruenz bx =, 1 genau eine Losung, die
das multiplikative Inverse von b modulo m genannt und mit b=* mod m (oder einfach
mit b= ) bezeichnet wird. Die invertierbaren Elemente von Z,, werden in der Menge

Ly, = {b € Ly, | ggT(b,m) = 1}
zusammengefasst.

Korollar 18 zeigt, dass Z;, unter der Operation ©,, abgeschlossen ist, und mit Korollar 20
folgt, dass (Zf,, ®,,) eine multiplikative Gruppe bildet. Allgemeiner zeigt man, dass fiir
einen beliebigen Ring (R, +,+,0,1) mit Eins die Multiplikation auf der Menge R* = {a €
R|3be€ R:ab=1=ba} aller Einheiten von R eine Gruppe (R*,-, 1) (die so genannte
Einheitengruppe von R) bildet.

Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
Ab+ pm = ggT(b,m) =1 zu b~' = X mod m. Bei Kenntnis von b~! kann die Kongru-
enz bxr =, y leicht zu = yb~! mod m gelost werden. Die folgende Tabelle zeigt die
multiplikativen Inversen b~ fiir alle b € Zi.

b {1 3 5 7 9 11 15 17 19 21 23 25
b'|1 9 21 15 3 19 7 23 11 5 17 25

Nun lasst sich die additive Chiffre leicht zur affinen Chiffre erweitern.

Definition 21 (affine Chiffre). Bei der affinen Chiffre ist A= B = M = C ein
beliebiges Alphabet mit m := ||Al| > 1 und K = Z, X Zy,. Fir k = (b,c) € K, v € M
und y € C gilt

E(k,z) =bxr+c und D(k,y) =0b""(y —c).

In diesem Fall liefert die Schliisselkomponente b = —1 fiir jeden Wert von ¢ eine invo-
lutorische Chiffrierfunktion z — E(b,¢;x) = ¢ — x (verschobenes komplementires
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Alphabet). Wahlen wir fir ¢ ebenfalls den Wert —1, so ergibt sich die Chiffrierfunk-
tion x — —x — 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

x ABCDEFGHIJKLMNOPQRSTUVWXY?Z
- AZYXWVUTSRQPONMLKJIHGFEDCB
—x—1| ZYXWVUTSRQPONMLKIJIHGFEDCBA

Als néchstes illustrieren wir die Ver- und Entschliisselung mit der affinen Chiffre an einem
kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei A ={A,...,Z} = B, also m = 26. Weiter sei k = (9, 2),
also b=9 und ¢ = 2. Um den Klartextbuchstaben x = F zu verschlisseln, berechnen wir

Ek,x)=bx+c=9F+2=1V,

da der Index von F gleich 5, der von V gleich 21 und 9 -5 + 2 = 47 =94 21 ist. Um einen
Kryptotextbuchstaben wieder entschlisseln zu kénnen, benotigen wir das multiplikative
Inverse von b =9, das sich wegen

toricr = dig1 i+ T pi-26+  ¢-9= 1
0 1-26 + 0-9 = 26
1 26 = 2 -94 8 0-26 + 1-9= 9
2 9 = 1-84+ 1 126+ (-2)-9= 8
3 8= 8 -1+ 0 (-1):26+ 3.9= 1

2u b~ = g3 = 3 ergibt. Damit erhalten wir fir den Kryptotextbuchstaben y = V den
urspringlichen Klartextbuchstaben

D(k,y)=b"'y—c)=3(V-2)=F
zurtck, da 3 -19 = 57 =94 5 ist. <
Eine wichtige Rolle spielt die Funktion
o NN mit o(m)=|Z,) = {a]|0<a<m-1, ggTla,m) =1},

die sogenannte Fulersche p-Funktion.

m |1 2 3 4 5 6 7 8 9 10

Zr:, {0 {1}{1,2} {1,3}{1,---, 4} {1,5}{1,---,6} {1,3,5,7} {1,2,4,5,7,8}{1,3,7,9}
pm) 1 1 2 2 4 2 6 4 6 4
Wegen

Lo — Z;k ={0,p,2p,..., (pkil — 1)p}
folgt sofort
() =p" =P =p - 1),
Um hieraus fiir beliebige Zahlen m € N eine Formel fiir ¢(m) zu erhalten, geniigt es,
©(ml) im Fall ggT(m,[) =1 in Abhéngigkeit von ¢(m) und ¢(l) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Z,,; — Z,, X Z; mit

f(x) := (z mod m,z mod I).
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Beispiel 23. Sei m =5 und | = 6. Dann erhalten wir die Funktion f : Zsy — Z5 X Zg
mit

x 0 1 2 3 4 5 6 7 8 9
f(x)] (0,0)(1,1)(2,2) (3,3) (4,4) (0,5) (1,0) (2,1) (3,2) (4,3)

¢ | 10 11 12 13 14 15 16 17 18 19
f(x)] (0,4) (1,5) (2,0)(3,1) (4,2) (0,3) (1,4) (2,5) (3,0) (4,1)

z | 20 21 22 23 24 25 26 27 28 29
f(x)] (0,2) (1,3) (2,4) (3,5) (4,0) (0,1) (1,2) (2,3) (3,4) (4,5)

Man beachte, dass f eine Bijektion zwischen Zsg und Zs X Zg ist. Zudem fdllt auf, dass
ein x-Wert genau dann in Z3, liegt, wenn der Funktionswert f(x) = (y,2) zu ZE X Z
gehort (die Werte x € 7%y, y € Z% und z € Z§ sind fett gedruckt). Folglich bildet f
die Argumente in Zj, bijektiv auf die Werte in Z% x Z ab. Fir f~! erhalten wir somit
folgende Tabelle:

o1 2 3 405

0 25 20 15 10 5
6 1 26 21 16 11
12 7 2 27 22 17
18 13 8 3 28 23
24 19 14 9 4 29

B W N = O

N

Der Chinesische Restsatz, den wir im néchsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m, ) = 1 bijektiv und damit invertierbar ist. Wegen

geT(x,ml) =1 < ggT(x,m)=ggT(x,1) =1
& ggT(x mod m,m) = ggT(z mod [,1) =1

ist daher die Einschrénkung f von f auf den Bereich Z*, eine Bijektion zwischen Z,,
und Z;, x Zj, d.h. es gilt

p(ml) = | Z5ll = (12, X Zi || = |2 | - 1271} = ¢ (m)e(l).
Satz 24. Die Fulersche p-Funktion ist multiplikativ, d. h. fiir teilerfremde Zahlen m und
L gilt p(ml) = o(m)e(l).
Korollar 25. Seim = Hizlpf" die Primfaktorzerleqgung von m. Dann gilt
Lo !
p(m) =[Ipi" (i — 1) =m [ —1)/p:.
i=1 i=1

Beweis. Es gilt

(ITy pf) =TTy () = 1oy (0 — P 1) = TTiey P (pi — 1),
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Der Chinesische Restsatz

Die beiden linearen Kongruenzen

{L‘Ego

$E61

besitzen je eine Losung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfillt.
Der néchste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Losungen
existieren, und wie sie berechnet werden koénnen.

Satz 26 (Chinesischer Restsatz). Falls mq, ..., my paarweise teilerfremd sind, dann
hat das System

x Eml bl
(1.2)

T =y, bk
genau eine Lisung modulo m = TI¥_, m;.
Beweis. Da die Zahl n; = m/,,. teilerfremd zu m; ist, existieren Zahlen y; und A; mit
wing + \m; = ggT(n;,m;) = 1.

Dann gilt

und
i1 Emj 0

fir j # 4. Folglich erfillt z = Z§:1 pin;b; die Kongruenzen
fur ¢ = 1,..., k. Dies zeigt, dass (1.2) 16sbar, also die Funktion

Fi Ty = Doy X v+ X Lo,

mit f(z) = (r mod my, ...,z mod my) surjektiv ist. Da der Definitions- und der Wer-
tebereich von f die gleiche Méachtigkeit haben, muss f auch injektiv sein, d.h. (1.2) ist
sogar eindeutig losbar. O

Man beachte, dass der Beweis des Chinesischen Restsatzes konstruktiv ist und die Losung
x unter Verwendung des erweiterten Euklidschen Algorithmus’ effizient berechenbar ist.

1.4 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblocke, d.h. der Klartext wird nicht zeichenweise, sondern block-
weise verarbeitet. Sowohl der Klartext- als auch der Kryptotextraum enthalt alle Worter
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x Uber A einer festen Lénge [. Als Schliissel wird eine (I x [)-Matrix k = (k;;) mit Koeffi-
zienten in Z,, benutzt, die einen Klartextblock z = z;...2; € A! in den Kryptotextblock
y1 ...y € Al transformiert, wobei

Yi = xiky+ -t aky, =101

ist (hierbei machen wir von der Buchstabenrechnung Gebrauch). y entsteht also durch
Multiplikation von x mit der Schliisselmatrix k:

kll kll

Zlfk’:($1,,$l) :(ylaayl)
]{711 kll

Wir bezeichnen die Menge aller (I x [)-Matrizen mit Koeffizienten in Z,, mit Z¥!. Als
Schliissel konnen nur invertierbare Matrizen k benutzt werden, da sonst der Chiffrier-
vorgang nicht injektiv ist. Eine Matrix k € Z! ist genau dann invertierbar, wenn die
Determinante von k teilerfremd zu m ist (siche Ubungen).

Definition 27 (Determinante). Sei R ein kommutativer Ring mit Eins und sei A =
(a;j) € R™™. Eine Funktion f : R"*" — R heifit Determinantenfunktion, falls sie
folgende drei Eigenschaften erfillt

— f ist multilinear, d.h. fir jede Matric A = (ai,...,a,) € R™™ mit Spalten
ai,...,a, € (R, jeden Spaltenvektor b € (R™)T und jedes r € R gilt

flay,...,ra;+0b,...;a,) =7rf(ar,...,a;...,a,) + flay,...,b,... a,).

— f ist alternierend, d.h. im Fall a; = a; firi # j gilt f(aq,...,a,) =0.
— f ist normiert, d.h. f(E) =1, wobei E die Finheitsmatriz ist.

Tatsdchlich ist f durch diese drei Figenschaften eindeutig festgelegt und wir bezeichnen
f(A) wie dblich mit det(A).

Eine wichtige Eigenschaft der Funktion det wird durch den Laplaceschen Entwicklungssatz
beschrieben. Fir 1 <+¢,5 < n sei A;; die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matrix. Dann ist det(A) = aq1, falls n = 1, und fir n > 1 ist

det(A) = znx—l)“_jai,j det(Ay),

j=1
wobei i € {1,---,n} beliebig wahlbar ist (Entwicklung nach der i-ten Zeile). Das Produkt
(=1)"* det(A;;) wird Cofaktor genannt und mit a; ;.
Fiir die Dechiffrierung wird die zu % inverse Matrix k! benotigt, wofiir effiziente Algo-
rithmen bekannt sind (Gaufisches Eliminationsverfahren; siche Ubungen).
Satz 28. Sei A ein Alphabet und sei k € ZU (1 > 1, m = ||A|). Die Abbildung
f: AL — Al mit

f(z) = xk,
ist genau dann injektiv, wenn ggT(det(k),m) = 1 ist.

Beweis. Siehe Ubungen. O
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Definition 29 (Hill-Chiffre). Sei A = {ao,...,am-1} ein beliebiges Alphabet und fiir
eine natiirliche Zahl 1 > 2 sei M = C = Al. Bei der Hill-Chiffre ist K = {k € Z'X! |
geT(det(k),m) =1} und es gilt

E(k,r) =2k und D(k,y) = yk™".

Beispiel 30 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klarteztblocken der Linge
[ = 4 diber dem lateinischen Alphabet Ay die Schlisselmatriz

11 13 8 21

I — 24 17 3 25
18 12 23 17 |’
6 15 215

so erhalten wir beispielsweise fiir den Klartext HILL wegen

11 13 8 21 11H4+24I+18L+ 6L=N
HILL) 24 17 3 25 — (NERX) baw 13H+17I+12L+15L=E
18 12 23 17 8H+ 3I+23L+ 2L=R
6 15 215 21H4+25T+17L+15L=X

den Kryptotext E(k,HILL) = NERX. Fiir die Entschlisselung wird die inverse Matriz k=!
benétigt. Diese wird in den Ubungen berechnet. <

1.5 Die Vigenere-Chiffre und andere Stromsysteme

Bei der nach dem Franzosen Blaise de Vigenere (1523-1596) benannten Chiffre werden
zwar nur einzelne Buchstaben chiffriert, aber je nach Position im Klartext unterschiedlich.

Definition 31 (Vigenére-Chiffre). Sei A = B ein beliebiges Alphabet. Die Vigenére-
Chiffre chiffriert unter einem Schlissel k = kq... kg1 € K = A* einen Klartext
r=2xq...T,_1 beliebiger Linge zu

E(k,z) =vy0.. . Yn-1, wobei y; =x; + k(i moaa) ist,
und dechiffriert einen Kryptotext y = 1yo...Yp_1 2u
D(k,y) =xo...0p—1, wobei x; =y — K(moda) st

Beispiel 32 (Vigeneére-Chiffre). Verwenden wir das lateinische Alphabet A, als Klar-
textalpabet und wahlen wir als Schliissel das Wort k = WIE, so ergibt sich fiir den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE,VIGENERE) =V+W I+I G+E E+W N+I E4+E R+WE+I

R Q K A v I N M

= RQKAVINM
<

Um einen Klartext x zu verschliisseln, wird also das Schliisselwort k& = kg ...kg_1 so
oft wiederholt, bis der dabei entstehende Schliisselstrom k= ko, ki,..., kq_1,ko... die
Léange von x erreicht. Dann werden x und k zeichenweise addiert, um den zugehorigen
Kryptotext y zu bilden. Aus diesem kann der urspriingliche Klartext x zurtickgewonnen
werden, indem man den Schliisselstrom & wieder subtrahiert.
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Beispiel 33. Vigenére-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) ROKAVINM (Kryptotext y)

+ WIEWIEWI (Schlisselstrom k) —— WIEWIEWI (Schliisselstrom k)
ROKAVINM (Kryptotext y) VIGENERE (Klartext x)

N

Die Chiffrierarbeit lasst sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenére-Tableau bekannt).

NHKHXI <D OoOUwoZEN R —~OQeEEOQ®E > | >

CHIIQMEBUQEENK A S << NnIOTOZZICR|R
Fe~IZQHEHOQEENX XIS < nTIOIOZEC |
CR I QHMETQEENR XS nIOTOZE|E
ECN e OOEEbQEENI XS <R IOTOZ| 2
ZEORa-IQEEUQEENK XIS <RI OTO|0
OZEEFRu—IQHEUQWENK XS <CcH®nIO T|T
TOZECNR«—IOREOUQEENL XS <cHnRO|O
OUTWOZECDARu~IIQHEIQEENXY XS <3 n T |=
NHEHLOTUOZEZECO Ru—IDQHEHUQWENK XS <3
HNHOTOZEZOD A« —IQHEOQAWENL XIS <C|C
CHRFOTIOZZO R ~IQHEEUQEENK XE <|<
<P NIOTVOZLOC A —HQIEHUQAI >N X =

PNARKHKEI<OH DO TOZECNRu~OOHEHUQW| W
WENAIXS <Al BOIOZECN R —~IDOmEUalQ
QAWEPNKXI<ARIOUTOZEN R ~OOmEgd|d
QWP NK X< nTBOTOZEC R —~IQmE|H
HOQ@WEPNK XIS <Al nIOUTOZEDN R a—~TQ T
HEHOQWEEPNLXYI <l IOTOZEE R~ Q0
QOHMEHUQ@WENK K< nIOUOZZC R —~T| T
HIOHEHOQWENKXI <A IOTOZZE DR w— | —
SO QU EHUOQWENK XIS TOTOZED Ao |w
FOUWOZErN R ~IQHEOUQEENK XS <R ®n|w
S<OHVLTOUOZECOR«—~TZIQTUEHUIQE BN M| X
HE<ORLTOIOZECRu~ODOHEIQE >N |
KIS <R NTOTOZECD Ru—~IHQEHEIQWEN|N

NHHI <R TBOTOZE Ru~OOHmouQw» |+

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schliisselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.

Beispiel 34 (Beaufort-Chiffre). Verschlisseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlisselwort k = WIE, so erhalten wir den Kryptotext XMEQNSNB. FEine
erneute Verschlisselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schliisselstrom) WIEWIEWI (Schlisselstrom)
— BEAUFORT (Klartext) — VEECDQFP (Kryptotext)

VEECDQFP (Kryptotext) BEAUFORT (Klartext)
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Bei den bisher betrachteten Chiffren wird aus einem Schliisselwort k = kg ... kys—1 ein
periodischer Schliisselstrom k = kq ...k, erzeugt, das heifit, es gilt k; = /%ier fiir
alle 2 = 0,...,n —d — 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schliisselstrom mit sehr grofler Periode oder noch besser ein fortlau-
fender Schliisselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schliisselstrom lasst sich beispielsweise ohne groflen Aufwand erzeugen, indem man an
das Schlisselwort den Klartext oder den Kryptotext anhéngt (sogenannte Autokey-
Chiffrierung).’

Beispiel 35 (Autokey-Chiffre). Benutzen wir wieder das Schliisselwort WIE, um den
Schlisselstrom durch Anhdngen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
fiir den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schliisselstrom: Kryptotext-Schliisselstrom:
VIGENERE (Klartext) VIGENERE (Klartext )

+ WIEVIGEN (Schlisselstrom) + WIERQKVD (Schlisselstrom)
ROKZVKVR (Kryptotext ) ROKVDOMH ( Kryptotext )

<

Auch die Dechiffrierung ist in beiden Féllen einfach. Bei der ersten Alternative kann der
Empfanger durch Subtraktion des Schliisselworts den Anfang des Klartextes bilden und
gleichzeitig den Schliisselstrom verlangern, so dass sich auf diese Weise Stiick fiir Stiick der
gesamte Kryptotext entschliisseln lasst. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schliisselstrom vom Kryptotext nur durch das vorangestelle
Schliisselwort unterscheidet.

1.6 Der One-Time-Pad

Es besteht auch die Moglichkeit, eine Textstelle in einem Buch als Schliissel zu vereinbaren
und den dort beginnenden Text als Schliisselstrom zu benutzen (Lauftextverschlisselung).
Besser ist es jedoch, aus einem relativ kurzen Schliissel einen moglichst zufallig erscheinen-
den Schliisselstrom zu erzeugen. Hierzu konnen beispielsweise Pseudozufallsgeneratoren
eingesetzt werden. Absolute Sicherheit wird dagegen erreicht, wenn der Schliisselstrom
rein zufillig erzeugt und nach einmaliger Benutzung wieder vernichtet wird.? Ein solcher
»Wegwerfschliissel* (One-time-pad oder One-time-tape, im Deutschen auch als indivi-
dueller Schliissel bezeichnet) lasst sich allerdings nur mit grofem Aufwand generieren
und verteilen, weshalb diese Chiffre nur wenig praktikabel ist. Dennoch wurde diese
Methode beispielsweise beim ,heiflen Draht*, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weiflen Haus in Washington und dem Kreml in Moskau,
angewandt.

Beispiel 36 (One-time-pad). Sei A = {ag,...,a,_1} ein beliebiges Klartextalphabet.
Um einen Klartext x = xg...x,_1 2zu verschlisseln, wird auf jeden Klartextbuchstaben x;

tDie Idee, den Schliisselstrom durch Anhingen des Klartextes an ein Schliisselwort zu bilden, stammt
von Vigenere, wahrend er mit der Erfindung der nach ihm benannten Vigenere-Chiffre ,nichts zu
tun® hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

! Diese Art der Schliisselerzeugung schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918
vor, nachdem ihm ein von Gilbert S. Vernam fiir den Fernschreibverkehr entwickeltes Chiffriersystem
vorgestellt wurde.
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ein neuer, zufdllig generierter Schliisselbuchstabe k; addiert,

Y=1Y0-- Yn-1, wobeiy; =x; +k;.

Der Klartext wird also wie bei einer additiven Chiffre verschliisselt, nur dass der Schliissel
nach einmaligem Gebrauch gewechselt wird. Dies entspricht dem Gebrauch einer Vigenere-
Chiffre, falls als Schliissel ein zuféllig gewéhltes Wort von der Lange des Klartextes benutzt
wird. Wie diese ist der One-time-pad im Binarfall also involutorisch.

Klartext Kryptotext Klartext

Schliissel

Schliissel

1.7 Klassifikation von Kryptosystemen

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie erzeugen den Kryptotext aus dem Klartext, indem sie Klartextzeichen — einzeln oder
in Gruppen — durch Kryptotextzeichen ersetzen. Dagegen verandern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.

Beispiel 37 (Skytale-Chiffre). Die dlteste bekannte Verschlisselungstechnik stammt aus
der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralférmig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Langsrichtung mit der Geheimbotschaft.

@)@@9@@)

UBERAUS GEHEIMNISVOLL ...
~» UGI...BES...EHV...REO...AIL...UML...SN...

Besitzt der Empfinger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. <

Als Schliissel fungiert hier also der Stabumfang bzw. die Anzahl k£ der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
betragt seine Lénge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext

E(k,xq- Xpm) =

T1Tm1Tom+1 " T(k—1)m+1L2Tm42L2m42 * ** L(k—=1)m+2 "~ TmT2mL3m * * * Tkm
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iiber. Dasselbe Resultat stellt sich ein, wenn wir z zeilenweise in eine k x m-Matrix
schreiben und spaltenweise wieder auslesen (sogenannte Spaltentransposition):

xl x2 “ . xm
Lm+1 Tm+2 o Tom
Tom+1 Tom+2 st T3m

T(k—1)m+1 T(k—)m+2 " Tkm

Ist die Klartextlange kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfiigen von sogenannten Blendern (Fiillzeichen) verlingert werden. Damit der Emp-
fanger diese Fillzeichen nach der Entschliisselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.

Von der Methode, die letzte Zeile nur zum Teil zu fiillen, ist dagegen abzuraten. In diesem
Fall wiirden namlich auf dem abgewickelten Papierstreifen Liicken entstehen, aus deren
Anordnung man Schliisse auf den benutzten Schliissel k ziehen konnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.

Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.

Beispiel 38. Bei Ausfiihrung einer Zick-Zack-Transposition wird der Klartext in
etne Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Hohe der Zick-
Zack-Linie kann als Schlissel vereinbart werden.

C C N [ZICKZACKLINIE ~ ZZLEIKAKIICCN]

N

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass fiir
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 39 (Blocktranspositionschiffre). Sei A = B ein beliebiges Alphabet und
fiir eine natirliche Zahl 1 > 2 sei M = C = Al. Bei einer Blocktranspositionschiffre
wird durch jeden Schlissel k € K eine Permutation m beschrieben, so dass fir alle
Zeichenfolgen x1---x; € M und y,---y, € C

E(kf,.lfl .. xl) = Tr1) " Tr(l)

und
D(k‘,?ﬁ o 'yl) =Yr1(1) " Yr1)
qgilt.

Eine Blocktransposition mit Blocklénge [ lasst sich durch eine Permutation = € S; (also
auf der Menge {1,...,l}) beschreiben.
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Beispiel 40. Fine Skytale, die mit 4 Zeilen der Ldnge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition.:

1 1123 456 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24

m(i)|1 713192814203 9 1521 4 101622 5 111723 6 12 18 24
<

Fiir die Entschliisselung muss die zu 7 inverse Permutation 7! benutzt werden. Wird
7 durch Zyklen (i1 i i3 ... i,) dargestellt, wobei i; auf iy, iy auf i3 usw. und schlieflich
i3 auf i; abgebildet wird, so ist 77! sehr leicht zu bestimmen.

Beispiel 41.

123456 i 123456
461352 7 1(i)[3 64152

?
(i)
Obiges 7 hat beispielsweise die Zyklendarstellung
m=(143)(26)(5) oderm=(143)(26),

wenn, wie allgemein tublich, Einerzklen weggelassen werden. Daraus erhalten wir unmit-

telbar =1 zu

1 =(341)(62) oder (134)(26),

wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Grofle dieser Elemente anordnen. <

Beispiel 42. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine
k x m-Matriz eingelesen und der Kryptotext spaltenweise gemdfS einer Spaltenpermutation
7, die als Schlissel dient, wieder ausgelesen. Fir m = (14 3) (2 6) wird also zuerst Spalte
(1) = 4, dann Spalte 7(2) = 6 und danach Spalte 7(3) = 1 usw. und zuletzt Spalte
7(6) = 2 ausgelesen.

3 6 4 1 5 2

DI ESER

K L ARTE DIESER KLARTEXT IST NICHT SEHR LANG

X T 1S TN ~» SRSTA RENEG DKXIH EAIHL ETTSN ILTCR
I CHTSE

HRLANSG

N

Beispiel 43. Bei der Weg-Transposition wird als Schliissel eine Hamiltonlinie in
einem Graphen mit den Knoten 1,... 1 benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock xy - - x; wird gemdfS der Knotennumerierung in den Graphen
eingelesen und der zugehorige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

1 2

[HAMILTON ~ TIMLONAH]
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Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren lasst. Der Vorteil, eine Hamiltonlinie als Schliissel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einpriagen kann als eine Zahlenfolge.

Sehr beliebt ist auch die Methode, eine Permutationen in Form eines Schliisselworts
(oder einer aus mehreren Wortern bestehenden Schliisselphrase) im Gedéchtnis zu
behalten. Aus einem solchen Schliisselwort lasst sich die zugehorige Permutation o leicht
rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter fir
jeden einzelnen Buchstaben seine Position ¢ innerhalb des Wortes vermerkt.

Schlisselwort fiiro |[CA ES AR

1 123456

o (i) 314625
Zyklendarstellung von o | (13465 2)

DIE BLOCKLAENGE IST SECHS ~»
EDBOIL LCANKE IGSSET EXCSYH

Die Werte (i), die o auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schliisselwort-Buchstaben in alphabetischer Reihenfolge durchzéhlt. Dabei
werden mehrfach vorkommende Buchstaben gemafl ihrer Position im Schliisselwort
an die Reihe genommen. Alternativ kann man auch alle im Schliisselwort wiederholt
vorkommenden Buchstaben streichen, was im Fall des Schliisselworts CAESAR auf eine
Blocklange von 5 fithren wiirde.

Wir wenden uns nun der Klassifikation von Substitutionschiffren zu. Ein wichtiges
Unterscheidungsmerkmal ist z.B. die Léinge der Klartexteinheiten, auf denen die Chiffre
operiert.

Monografische Substitutionen ersetzen Einzelbuchstaben.

Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-
textsegmente auf einmal.

Eine polygrafische Substitution, die auf Buchstabenpaaren operiert, wird digrafisch
genannt. Das élteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta
im Jahr 1563 veroffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextbuchstaben
durch ein einzelnes Kryptotextzeichen ersetzt.

Beispiel 44. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Porta fir
diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer 20 x 20-Matriz
M = (yi;) angeordnet, deren Zeilen und Spalten mit den 20 Klartextbuchstaben
A I L, LTV, Z indiziert sind. Zur Ersetzung des Buchstabenpaars a;a; wird das in
Zeile © und Spalte 7 befindliche Kryptotextzeichen

E(M, CLiCL]‘) = yij
benutzt. q

Eine Substitution heiit monopartit, falls sie die Klartextsegmente durch Einzelzeichen
ersetzt, sonst multipartit. Wird der Kryptotext aus Buchstabenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.

Ein frithes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200—120 v. Chr.) zuriick:
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01234
0|A B CDE
1/F GHTI?J
2IKLMNO [POLYBIOS ~ 3@24214301132433]
3/PQRST
4(U V WXy2Z

Bei der Polybios-Chiffre dient eine 5 x 5-Matrix, die aus samtlichen Klartextbuchstaben
gebildet wird, als Schliissel.5 Die Verschliisselung des Klartextes erfolgt buchstabenweise,
indem man einen in Zeile ¢ und Spalte j eingetragenen Klartextbuchstaben durch das
Koordinatenpaar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren
{00,01,...,44}.

Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verandert wird, fithrt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.

Monoalphabetische Substitutionen ersetzen die einzelnen Klartextsegment unabhén-
gig von ihrer Position im Klartext.

Polyalphabetische Substitutionen verwenden dagegen eine variable Ersetzungsregel,
auf die sich auch die bereits verarbeiteten Klartextsegmente auswirken.

Die Bezeichnung ,,monoalphabetisch® bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus auf einem einzelnen Alphabet beruht (sofern wir das Klartextalphabet als bekannt
voraussetzen). Die von Caesar benutzte Chiffriermethode kann beispielsweise vollstandig
durch Angabe des Ersetzungsalphabets

{D,E,F,G,W,...,Y,Z,A,B,C}

beschrieben werden. Auch im Fall, dass nicht einzelne Zeichen, sondern ganze Buch-
stabengruppen auf einmal ersetzt werden, geniigt im Prinzip ein einzelnes Alphabet
zur Beschreibung. Hierzu sortiert man die Klartexteinheiten, auf denen der Ersetzungs-
mechanismus operiert, und bildet die Folge (sprich: das Alphabet) der zugeordneten
Kryptotextsegmente.

Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Léange
[ > 1 durch Kryptotextsegmente derselben Lange.

Definition 45 (Blockchiffre). Sei A ein beliebiges Alphabet und es gelte M = C = Al,
[ > 1. Eine Blockchiffre realisiert fiir jeden Schliissel k € K eine bijektive Abbildung g
auf A und es gilt

E(k,x) = g(x) und D(k,y) =g~ (y)

fir alle x € M und y € C. Im Falll = 1 spricht man auch von einer einfachen
Substitutionschiffre.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zuriick, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden kénnen. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhédngigkeit von der Lange oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.

SDa nur 25 Plitze zur Verfiigung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein
Buchstabe weggelassen oder ein Platz mit zwei Buchstaben besetzt werden.
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Fast alle polyalphabetischen Chiffrierverfahren operieren — genau wie monoalphabetische
Substitutionen — auf Klartextblocken einer festen Lange [, die sie in Kryptotextblocke einer
festen Lénge [” iberfithren, wobei meist [ = [’ ist. Da diese Blocke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugefithrt werden. Man
nennt die einzelnen Klartextblocke in diesem Zusammenhang auch nicht ,Blocke® sondern
,Zeichen® und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 46 (Stromchiffre). Sei A ein belicbiges Alphabet und sei M = C = Al fiir
eine natirliche Zahll > 1. Weiterhin seien K und K Schlisselriume. Eine Stromchiffre
wird durch eine Verschlusselungsfunktwn E: K x M — C und einen Schliisselstrom-
generator g - K x A* — K beschrieben. Der Generator g erzeugt aus einem externen
Schliissel k € K fir einen Klartext v = xg...x,_1, x; € M, eine Folge kg, o k‘n 1 von
internen Schlisseln k; = glk,xg...zi9) € f(, unter denen x in den Kryptotext

Ey(k,xz) = E(ko,x0) ... E(kn_1,%n_1)
tberfihrt wird.

Der interne Schliisselraum kann also wie bei der Blockchiffre eine maximale Gréfle von
(m")! annehmen (im hiufigen Spezialfall [ = 1 also m!). Die Aufgabe des Schliisselstrom-
generators g besteht darin, aus dem externen Schliissel k£ und dem bereits verarbeiteten
Klartext xg...x;_; den aktuellen internen Schliissel /;:Z zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schliisselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schliisselstromgenerator

Vigeneére E(/%,x) —a+k g(ko .. ka—1,%0...%i—1) = k(i mod m)
Beaufort E(l%,x) =k—ux g(ko .. ka—1,%0...%i—1) = k(i mod m)
Autokey R R i <d
mit Klartext- Ek,x)=x+k glko...ka—1,20...2i—1) = { Ny
Schliisselstrom Ti-dyt 2
Autokey R . e e 4 1< d
mit Kryptotext-  E(k,x) =z +k glko ka1, To - wica) Yieq,t > d
Schliisselstrom

= k(z mod d) + Z]LZ[{U Ti—jd

Bei der Vigenere- und Beaufortchiffre hangt der Schliisselstrom nicht vom Klartext,
sondern nur vom externen Schliissel k£ ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).

Gespreizte Substitutionen

Bei den bisher betrachteten Substitutionen haben die einzelnen Blocke, aus denen der
Kryptotext zusammengesetzt wird, eine einheitliche Lénge. Es liegt nahe, einem Gegner
die unbefugte Rekonstruktion des Klartextes dadurch zu erschweren, dass man Blo-
cke unterschiedlicher Lange verwendet. Man spricht hierbei auch von einer Spreizung
(straddling) des Kryptotextalphabets. Ein bekanntes Beispiel fiir diese Technik ist die
sogenannte Spionage-Chiffre, die vorzugsweise von der ehemaligen sowjetischen Geheim-
polizei NKWD (Narédny Komissariat Wnutrennich Del; zu deutsch: Volkskommissariat
des Innern) benutzt wurde.
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Beispiel 47. Bei der Spionage-Chiffre wird in die erste Zeile einer 3 x 10-Matrix
ein Schliisselwort w geschrieben, welches keinen Buchstaben mehrfach enthdlt und eine
Linge von 6 bis 8 Zeichen hat (also zum Beispiel SPIONAGE ). Danach werden die anderen
beiden Zeilen der Matriz mit den restlichen Klartextbuchstaben (etwa in alphabetischer

Reihenfolge) gefiillt.

4196032758

SPIONAGE GESPREIZT

8/BCDFHJKLMAQ ~ 274154795751
5/RTUVWXYZ

N

Man iiberzeugt sich leicht davon, dass sich die von der Spionage-Chiffre generierten
Kryptotexte wieder eindeutig dechiffrieren lassen, da die Kryptotextsegmente 1, 2,..., 8,
01,02, ...,08,91,92, ..., 98, die fiir die Klartextbuchstaben eingesetzt werden, die Fano-
Bedingung erfiillen: Keines von ihnen bildet den Anfang eines anderen. Da die Nummern
5 und 8 der beiden letzten Spalten der Matrix auch als Zeilennummern verwendet werden,
liefert dies auch eine Erklarung dafiir, warum keine Schliisselwortbuchstaben in die beiden
letzten Spalten eingetragen werden diirfen.

Verwendung von Blendern und Homophonen

Die Verwendung von gespreizten Chiffren zielt offenbar darauf ab, die ,Fuge®“ zwischen
den einzelnen Kryptotextsegmenten, die von unterschiedlichen Klartextbuchstaben her-
rithren, zu verdecken, um dem Gegner eine unbefugte Dechiffrierung zu erschweren.
Dennoch bietet die Spionage-Chiffre noch gentigend Angriffsfliche, da im Klartext haufig
vorkommende Wortmuster auch im Kryptotext zu Textwiederholungen fiithren.

Eine Moglichkeit, diese Muster aufzubrechen, besteht darin, Blender in den Klartext
einzustreuen. Abgesehen davon, dass das Entfernen der Blender auch fiir den rechtmafigen
Empfanger mit Miithe verbunden ist, muss fiir den Zugewinn an Sicherheit auch mit einer
Expansion des Kryptotextes bezahlt werden.

Ist man bereit, dies in Kauf zu nehmen, so gibt es auch noch eine wirksamere Methode,
die Ubertragung struktureller und statistischer Klartextmerkmale auf den Kryptotext
abzumildern. Die Idee dabei ist, zur Chiffrierung der einzelnen Klartextzeichen a nicht
nur jeweils eines, sondern eine Menge H(a) von Chiffrezeichen vorzusehen, und daraus
fir jedes Vorkommen von a im Klartext eines auszuwéihlen (am besten zuféllig). Da
alle Zeichen in H(a) fir dasselbe Klartextzeichen stehen, werden sie auch Homophone
genannt.

Definition 48 (homophonen Substitutionschiffre). Sei A ein Klartestalphabet und
sei M = A. Weiter sei C' ein Kryptotextraum der Grofie ||C|| > ||Al| = m. In einer
(einfachen) homophonen Substitutionschiffre beschreibt jeder Schlissel k € K eine
Zerlegung von C in m disjunkte Mengen H(a), a € A.

Um ein Zeichen a € A unter k zu chiffrieren, wird nach einer bestimmten Methode ein
Homophon y aus der Menge H(a) gewdhlt und fiir a eingesetzt.

Durch den Einsatz einer homophonen Substitution wird also erreicht, dass verschiedene
Vorkommen eines Klartextzeichens auch auf unterschiedliche Weise ersetzt werden konnen.
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Damit der Empfanger den Kryptotext auch wieder eindeutig dechiffrieren kann, diirfen
sich die Homophonmengen zweier verschiedener Klartextzeichen aber nicht iiberlappen.
Daher kann es nicht vorkommen, dass zwei verschiedene Klartextbuchstaben durch
dasselbe Geheimtextzeichen ersetzt werden. Man beachte, dass der Chiffriervorgang
x +— E(k,x) nicht durch eine Funktion beschreibbar ist, da derselbe Klartext x in
mehrere verschiedene Kryptotexte y tibergehen kann.

Durch eine geringfiigige Modifikation der Polybios-Chiffre lasst sich die folgende bipartite
homophone Chiffre erhalten.

Beispiel 49 (homophone Substitution). Sei A = {A,...,Z}, B=1{0,...,9} und C =
{00,...,99}.

\ 1,02,93,84,75,6

16| A F K P U
277B G L Q V
3.8/ C H M R W [HOMOPHON ~ 8203885317320898]
49D I N S x4
50 E J 0 T Z

Genau wie bet Polybios wird eine 5 X 5-Matrix M als Schliissel benutzt. Die Zeilen und
Spalten von M sind jedoch nicht nur mit jeweils einer, sondern mit zwei Ziffern versehen,
so dass jeder Klartextbuchstabe x tiber vier verschiedene Koordinatenpaare ansprechbar ist.
Der Kryptotextraum wird durch M also in 25 Mengen H(a), a € A, mit je 4 Homophonen
partitiongert. N

Wie wir noch sehen werden, sind homophone Chiffrierungen auch deshalb schwerer zu
brechen, weil durch sie die charakteristische Haufigkeitsverteilung der Klartextbuchstaben
zerstort wird. Dieser Effekt kann dadurch noch verstarkt werden, dass man fiir haufig
vorkommende Klartextzeichen a eine entsprechend groBere Menge H(a) an Homophonen
vorsieht. Damit lasst sich erreichen, dass die Verteilung der im Geheimtext auftretenden
Zeichen weitgehend nivelliert wird.

Beispiel 50 (homophone Substitution, verbesserte Version). Ist p(a) die Wahrscheinlich-
keit, mit der ein Zeichen a € A in der Klartextsprache auftritt, so sollte ||H(a)|| =~ 100-p(a)
sein.

a pla) H(a)

A 0.0647 {15,26,44, 59,70, 79}
B 0.0193 {01,84}

C 0.0268 {13, 28,75}

D 0.0/83 {02, 17, 36,60, 95}
E

0.1748 {04, 08, 12, 30, 43, 46, 47, 53, 61, 67, 69, 72, 80, 86, 90, 92, 97}

Da der Buchstabe A im Deutschen beispielsweise mit einer Wahrscheinlichkeit von p(A) =
0.0647 auftritt, sind fir ihn sechs verschiedene Homophone vorgesehen. <

Um den Suchaufwand bei der Dechiffrierung zu reduzieren, empfiehlt es sich, eine 10 x 10-
Matrix anzulegen, in der jeder Klartextbuchstabe a an allen Stellen vorkommt, deren
Koordinaten in H(a) enthalten sind.
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1234567890
I/NECSAODXIN
2/RGSNNAUCHY
3]TLIOUDZMNE
4HREANEESTIT
SINIETPHSLAR [HOMOPHON ~ 5698633455291668]
6/EUMFRJIENED
7ZINEKSCTITAA
8|HNIBREUGVE
9 TELSDREOSE
9/ BDWEQIFETIR

Offenbar kann man diese Matrix auch zur Chiffrierung benutzen, was sogar den positiven
Nebeneffekt hat, dass dadurch eine zufallige Wahl der Homophone begiinstigt wird.

1.8 Realisierung von Blocktranspositionen und einfachen
Substitutionen

Abschlieend mochten wir eine einfache elektronische Realisierungsmoglichkeit von Block-
transpositionen erwiahnen, die auf binir kodierten Klartexten operieren (d.h. A = {0,1}).
Um einen Binérblock x; - - - x; der Lange [ zu permutieren, miissen die einzelnen Bits ledig-
lich auf [ Leitungen gelegt und diese gemafl 7 in einer sogenannten Permutationsbox
(kurz P-Box) vertauscht werden.

T1 —o — Y1
T2 —9 — Y2
3 — — Y3
T4 —o — Y4
T5 —o — U5
e — — Yo

Die Implementierung einer solchen P-Box kann beispielsweise auf einem VLSI-Chip
erfolgen. Allerdings kann hierbei fiir groflere Werte von [ aufgrund der hohen Zahl von
Uberkreuzungspunkten ein hoher Flichenbedarf anfallen.

Blocktranspositionen konnen auch leicht durch Software als eine Folge von Zuweisungen
Y1:=X2; Y2:=X5; ... Y6 := X4,

implementiert werden. Bei grofler Blocklange und sequentieller Abarbeitung erfordert
diese Art der Implementierung jedoch einen relativ hohen Zeitaufwand.

Von Alberti stammt die Idee, das Klartext- und Kryptotextalphabet auf zwei konzentri-
schen Scheiben unterschiedlichen Durchmessers anzuordnen. In Abbildung 1.1 ist gezeigt,
wie sich mit einer solchen Drehscheibe beispielsweise die additive Chiffre realisieren lasst.
Zur Einstellung des Schliissels k£ miissen die Scheiben so gegeneinander verdreht werden,
dass der Schliisselbuchstabe a;, auf der inneren Scheibe mit dem Klartextzeichen ag = A
auf der d&uleren Scheibe zur Deckung kommt. Auf der Drehscheibe in Abbildung 1.1 ist
beispielsweise der Schliissel £ = 2 eingestellt, das heiflt, a, = C. Die Verschliisselung
geschieht nun durch blofles Ablesen der zugehérigen Kryptotextzeichen auf der inneren
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3 Volt

A — - A
B =@ B
cC — —X— C
D —®— D
E 8 E
z . w2

|
\M

Abbildung 1.1: Realisierung von einfachen Substitutionen mit einer Drehscheibe und mit
Hilfe von Steckverbindungen.

Scheibe, so dass von der Drehfunktion der Scheiben nur bei einem Schliisselwechsel
Gebrauch gemacht wird.

Aufgrund ihrer engen Verwandtschaft mit der Klasse der Blocktranspositionen lassen
sich einfache Substitutionen auch mit Hilfe einer P-Box realisieren. Hierfiir kénnen
beispielsweise zwei Steckkontaktleisten verwendet werden. Der aktuelle Schliissel wird
in diesem Fall durch Verbinden der entsprechenden Kontakte mit elektrischen Kabeln
eingestellt (siche Abbildung 1.1). Um etwa den Klartextbuchstaben E zu verschlisseln,
driickt man auf die entsprechende Taste, und das zugehorige Kryptotextzeichen B wird
im selben Moment durch ein aufleuchtendes Lémpchen signalisiert.

Schliefflich lassen sich Substitutionen auch leicht durch Software realisieren. Hierzu wird
ein Feld (array) deklariert, dessen Eintrdge iiber die Klartextzeichen x € A adressierbar
sind. Das mit z indizierte Feldelemente enthéalt das Kryptotextzeichen, durch welches x
beim Chiffriervorgang zu ersetzen ist.

Ein Nachteil hierbei ist, dass das Feld nach jedem Schliisselwechsel neu beschrieben
werden muss. Um dies zu umgehen, kann ein zweidimensionales Feld deklariert werden,
dessen Eintrage zusétzlich iiber den aktuellen Schliisselwert k£ adressierbar sind. Ist
gentigend Speicherplatz vorhanden, um fiir alle x € A und alle k € K die zugehorigen
Kryptotextzeichen E(k, x) abspeichern zu konnen, so muss das Feld nur einmal initialisiert
und danach nicht mehr geandert werden.

Schliissel- Klartextbuchstabe

wert A B .. YA
0 uH ... C

1 E H ... A

63 Y F ... W
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2 Kryptoanalyse der klassischen Verfahren

2.1 Klassifikation von Angriffen gegen Kryptosysteme

Die Erfolgsaussichten eines Angriffs gegen ein Kryptosystem hiangen sehr stark davon ab,
wie gut die Ausgangslage ist, in der sich der Gegner befindet. Prinzipiell sollte man die
Féahigkeiten des Gegners genauso wenig unterschétzen wie die Unvorsichtigkeit der Anwen-
der von Kryptosystemen. Bereits vor mehr als einem Jahrhundert postulierte Kerckhoffs,
dass die Frage der Sicherheit keinesfalls von irgendwelchen obskuren Annahmen tber
den Wissensstand des Gegners abhangig gemacht werden darf.

Goldene Regel fiir Kryptosystem-Designer (Kerckhoffs' Prinzip)
Unterschditze niemals den Kryptoanalytiker. Gehe insbesondere immer von der
Annahme aus, dass dem Gegner das angewandte System bekannt ist.*

In der folgenden Liste sind eine Reihe von Angriffsszenarien mit zunehmender Geféhrlich-
keit aufgefiihrt. Auch wenn nicht alle Eventualitiaten eines Angriffs vorhersehbar sind, so
vermittelt diese Aufstellung doch eine gute Vorstellung davon, welchen unterschiedlichen
Bedrohungen ein Kryptosystem im praktischen Einsatz ausgesetzt sein kann.

Angriff bei bekanntem Kryptotext (ciphertext-only attack)
Der Gegner fangt Kryptotexte ab und versucht, allein aus ihrer Kenntnis Riick-
schliisse auf die zugehorigen Klartexte oder auf die benutzten Schliissel zu ziehen.

Angriff bei bekanntem Klartext (known-plaintext attack)
Der Gegner ist im Besitz von einigen zusammengehorigen Klartext-Kryptotext-
Paaren. Hierdurch wird erfahrungsgemafl die Entschliisselung weiterer Kryptotexte
oder die Bestimmung der benutzten Schliissel wesentlich erleichtert.

Angriff bei frei wiahlbarem Klartext (chosen-plaintext attack)
Der Angriff des Gegners wird zusatzlich dadurch erleichtert, dass er in der Lage ist
(oder zumindest eine Zeit lang war), sich zu Klartexten seiner Wahl die zugehorigen
Kryptotexte zu besorgen. Kann hierbei die Wahl der Klartexte in Abhéangigkeit
von zuvor erhaltenen Verschliisselungsergebnissen getroffen werden, so spricht
man von einem Angriff bei adaptiv wiahlbarem Klartext (adaptive chosen-
plaintext attack).

Angriff bei frei wahlbarem Kryptotext (chosen-ciphertext attack)

Vor der Beobachtung des zu entschliisselnden Kryptotextes konnte sich der Gegner
zu Kryptotexten seiner Wahl die zugehorigen Klartexte besorgen, ohne dabei jedoch
in den Besitz des Dechiffrierschliissels zu kommen (Mitternachtsattacke). Das
dabei erworbene Wissen steht ihm nun bei der Durchfiihrung seines Angriffs zur
Verfiigung. Auch in diesem Fall konnen sich die Erfolgsaussichten des Gegners
erhohen, wenn ein Angriff bei adaptiv wiahlbarem Kryptotext (adaptive
chosen-ciphertext attack) moglich ist, also der Kryptotext in Abhéngigkeit von
den zuvor erzielten Entschliisselungsergebnissen wahlbar ist.

*Diese Annahme ergibt sich meist schon aus der Tatsache, dass die Prinzipien fast aller heute im
Einsatz befindlichen Kryptosysteme allgemein bekannt sind.
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Angriff bei frei (oder adaptiv) wahlbarem Text (chosen-text attack)
Sowohl Klartexte als auch Kryptotexte sind frei (oder sogar adaptiv) wahlbar.

Ohne Frage ist ein Kryptosystem, das bereits bei einem Angriff mit bekanntem Kryp-
totext Schwéchen erkennen lésst, fiir den praktischen Einsatz vollkommen ungeeignet.
Tatséchlich miissen aber an ein praxistaugliches Kryptosystem noch weit hohere Anforde-
rungen gestellt werden. Denn héufig unterlaufen den Anwendern sogenannte Chiffrier-
fehler, die einen Gegner leicht in eine sehr viel giinstigere Ausgangsposition versetzen
als dies sonst der Fall wire. So ermoglicht beispielsweise das Auftreten stereotyper
Klartext-Formulierungen einen Angriff bei bekanntem Klartext, sofern der Gegner diese
Formulierungen kennt oder auch nur errat. Begiinstigt durch derartige Unvorsichtigkeiten,
die im praktischen Einsatz nicht vollstandig vermeidbar sind, konnen sich selbst winzige
Konstruktionsschwéachen eines Kryptosystems sehr schnell zu einer ernsthaften Bedrohung
der damit verfolgten Sicherheitsinteressen auswachsen. Die Geschichte der Kryptografie
belegt sehr eindrucksvoll, dass es haufig die Anwender eines Kryptosystems selbst sind,
die — im unerschiitterlichen Glauben an seine kryptografische Starke — dem Gegner zum
Erfolg verhelfen.

Zusammenfassend lédsst sich also festhalten, dass die Gefdhrlichkeit von Angriffen, denen
ein Kryptosystem im praktischen Einsatz ausgesetzt ist, kaum zu iiberschétzen ist.
Andererseits kann selbst das beste Kryptosystem keinen Schutz vor einer unbefugten
Dechiffrierung mehr bieten, wenn es dem Gegner etwa gelingt, in den Besitz des geheimen
Schliissels zu kommen — sei es aus Unachtsamkeit der Anwender oder infolge einer
Gewaltandrohung des Gegners (kompromittierte Schliissel).

2.2 Kryptoanalyse von einfachen Substitutionschiffren

Durch eine Haufigkeitsanalyse konnen insbesondere einfache Substitutionen g leicht
gebrochen werden, sofern die einzelnen Buchstaben a in der benutzten Klartextsprache
mit voneinander differierenden Héufigkeiten p(a) auftreten (vergleiche Tabelle 2.1).
Selbst wenn, was insbesondere bei kurzen Texten zu erwarten ist, die tatsédchliche
Haufigkeitsverteilung nur in etwa der vom Gegner angenommenen Verteilung entspricht,
reduziert sich dadurch die Zahl der in Frage kommenden einfachen Substitutionen ganz
erheblich. Berechnet man die relativen Haufigkeiten h der Kryptotextbuchstaben im
Kryptotext, so gilt p(a) ~ h(g(a)) (vorausgesetzt der Kryptotext ist geniigend lang). Fiir
die Schilderung einer nach dieser Methode durchgefiihrten Kryptoanalyse sei auf die
Erzéhlung . Der Goldkéfer von Edgar Allan Poe verwiesen.

Tabelle 2.1: Einteilung von Buchstaben in Cliquen mit vergleichbaren Haufigkeitswerten.

‘Deutsch Englisch Franzosisch
sehr hiufig E E E
héufig NI IRS AT TIAOIN|SRH N|JARSITU
durchschnittlich | DHU | LGO | CM LD | CUMF LD CMP
selten BFWKZ | PV PGWYB | VK V|IFBGQHX
sehr selten JYXQ XJQz JYZKW
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Manche der bisher betrachteten Chiffrierverfahren verwenden einen so kleinen Schliis-
selraum, dass ohne groflen Aufwand eine vollstdndige Schliisselsuche ausgefiihrt werden
kann.

Beispiel 51 (vollstindige Schliisselsuche). Es sei bekannt, dass das Kryptotextstick y =
SAXP mit einer additiven Chiffre erzeugt wurde (K = A = B = Ay ). Entschlisseln wir
y probeweise mit allen maoglichen Schliisselwerten, so erhalten wir folgende Zeichenketten.

k B c D E F G H I J K L M
D(k,y)|RZWO QYVN PXUM OWTL NVSK MURJ LTQI KSPH JROG IQNF HPME GOLD

N 0 P Q R S T u v W X Y Z
FNKC EMJB DLIA CKHZ BJGY AIFX ZHEW YGDV XFCU WEBT VDAS UCZR TBYQ

Unter diesen springen vor allem die beiden Klartextkandidaten x = GOLD (Schlisselwert
k=M) und x = WEBT (k = W) ins Auge. N

Ist s = | K|| die GroBe des Schlisselraums, so kann der Gegner bei bekanntem Kryptotext
y die Suche nach dem zugehorigen Klartext z auf eine Menge von maximal s Texten
x1,...,Ts beschranken. Daneben hat der Gegner ein gewisses a priori Wissen iiber
den Klartext, wie zum Beispiel dass er in deutscher Sprache verfasst ist, das es ihm
gestattet, einen Grofiteil der Texte x; auszuschlieen. Ferner erscheinen aufgrund dieses
Hintergrundwissens manche der tibrig gebliebenen Klartextkandidaten plausibler als
andere (sofern nicht nur ein einziger tbrig bleibt). Mit jedem Text z;, der nicht als
Klartext in Frage kommt, kann auch mindestens ein Schliissel ausgeschlossen werden.
Sind noch mehrere Schliisselwerte moglich, so kann weiteres Kryptotextmaterial Klarheit
bringen. Manchmal hilft aber auch eine Inspektion der verbliebenen Schliisselwerte
weiter, etwa wenn der Schliissel nicht rein zuféllig erzeugt wurde, sondern aus einem
einpragsamen Schliisselwort ableitbar ist.

Meist kennt der Gegner zumindest die Sprache, in der der gesuchte Klartext abgefasst
ist. Mit zunehmender Lénge gleichen sich die Haufigkeitsverteilungen der Buchstaben
in natiirlichsprachigen Texten einer ,Grenzverteilung® an, die in erster Linie von der
benutzten Sprache und nur in geringem Umfang von der Art des Textes abhédngt. Diese
Verteilungen weisen typischerweise eine sehr starke Ungleichméfigkeit auf, was darauf
zuriickzufiithren ist, dass in natiirlichen Sprachen relativ viel Redundanz enthalten ist.

17.48

9.82

7.73 754 o
7 6.13
4.83 195 sio 4.17
2.68 3.06 P 2.98
1.93 H 1.65 1.46 0.96 0.94 1.48 1.14
0.27 ~ 0.02 ; 0.04 0.08
—

A B CDEFGHTIIJIKLMNUOPAOQRSTUVWIXYZ

6.47

Abbildung 2.1: Haufigkeitsverteilung der Einzelbuchstaben im Deutschen (in %).

Die Abbildungen 2.1, 2.2 und 2.3, zeigen typische Verteilungen von Einzelbuchstaben
in der deutschen, englischen und franzésischen Sprache (ohne Beriicksichtigung von
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Abbildung 2.2: Haufigkeitsverteilung der Buchstaben im Englischen (in %).
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Abbildung 2.3: Haufigkeitsverteilung der Buchstaben im Franzosischen (in %).

Interpunktions- und Leerzeichen). Ein typischer deutscher Text besteht demnach zu 62%
aus den sieben haufigsten Zeichen E, N, I, R, S, A, T (das sind nicht einmal 27% der
Klartextzeichen).

Bei additiven Chiffren reicht es oftmals, den héufigsten Buchstaben im Kryptotext zu
bestimmen, und davon den héufigsten Buchstaben der Klartextsprache zu subtrahieren,
um den Schliissel k£ zu erhalten. Bei affinen Chiffren miissen gewohnlich nur die beiden
haufigsten Buchstaben bestimmt werden; dadurch erhélt man zwei Verschliisselungsglei-
chungen. Dieses Gleichungssystem muss gelost werden, und man erhélt das gesuchte
Schliisselpaar.

Beispiel 52 (Analyse einer affinen Chiffre mittels Buchstabenhaufigkeiten). FEs sei
bekannt, dass sich hinter dem Kryptotext

laoea ehoap hwvae ixobg jcbho thlob lokhe ixope vbcix ockix qoppo boapo
mohqc euogk opeho jhkpl eappj seobe ixoap opmcu

ein deutscher Klartext verbirgt, der mit einer affinen Chiffre verschlisselt wurde. Berech-
nen wir fir jedes Chiffrezeichen b die (absolute) Haufigkeit H,(b) seines Auftretens in
obigem Kryptotext vy,

b | ABCDEFGHIJKLMNOUPOQRSTUVWXYZ
Hb)|7 6 50100 285344201911 2011221500

so liegt die Vermutung nahe, dass das am hdufigsten vorkommende Chiffrezeichen O fir
das Klartextzeichen E und das am zweithdufigsten vorkommende P fiir N steht. Unter
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dieser Annahme kann der gesuchte Schliissel k = (b, c¢) als Losung der beiden Gleichungen

b-E4+c = 0
b-N+c = P

bestimmt werden. Subtrahieren wir ndmlich die erste von der zweiten Gleichung, so
erhalten wir die Kongruenz 9 - b =96 1, woraus sich b = 3 und damit ¢ = 2 ergibt.
Tatsdchlich weist der Schliissel k = (3,2) nicht nur fir die beiden Paare (E,0) und
(N, P), sondern auch fiir alle iibrigen Paare (a,b) eine gute Ubereinstimmung zwischen
der Hdiufigkeit H,(b), mit der b= E(k,a) im Kryptotext vorkommt, und der erwarteten
Haufigkeit Hyoo(a) auf, mit der a in einem typischen deutschen Text der Lange 100
vorkommt (die Tabelle zeigt die Werte von Hypo(a) gerundet):

b |0 P EHABCXILKIUMGVQSTWRFNZYD
Hy(b) 191110 8 76 55 5 44 3222221110000 00
Hipo(a)[1710 7 6 8 8 6 43 54333111300221100

a« |ENSTIRAHCDULGMKPWOXYFBVZQ]J

2.3 Kryptoanalyse von Blocktranspositionen

Mit Hilfe von Bigrammbhéufigkeiten, die manchmal auch als Kontakthéufigkeiten be-
zeichnet werden, lassen sich Blocktranspositionen sehr leicht brechen, sofern geniigend
Kryptotext vorliegt. Ist die Blocklange [ bekannt, so tragt man hierzu den Kryptotext
zeilenweise in eine Matrix S = (s;;) mit [ Spalten Si,...,5; ein. Da jede Zeile dieser
Matrix aus dem zugehorigen Klartextblock mit derselben Permutation 7 erzeugt wurde,
miissen die Spalten S; jetzt nur noch in die ,richtige” Reihenfolge gebracht werden, um
den gesuchten Klartext zu erhalten. Der Nachfolger Sy von S; (bzw. der Vorgénger S;
von S) kann sehr gut anhand der Werte von p(S;, S) = >2; p(sij, six) bestimmt werden.

4.09 4.00

H ﬂ ZBOZE193 18T 185 168 163 147 140 1.22 119 1.16 1.12 1.02 1.02 1.01 0.99 0.94 0.93 0.89
R e e e e e e T e T e e
ER EN CH DE EI ND TE IN IE GE ES NE UN ST RE HE AN BE SE NG DI SC

Abbildung 2.4: Die hdufigsten Bigramme im Deutschen (Angaben in %).
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Abbildung 2.5: Die haufigsten Bigramme im Englischen (in %; nach O.P. Meaker, 1939).

Beispiel 53 (Haufigkeitsanalyse von Bigrammen). Fir den mit einer Blocktransposition
(mit vermuteter Blocklinge 5) erzeugten Kryptotext
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122 111 089 0.87 087 086 0.75 075 0.71 0.66 0.61 0.57 0.53 0.52 048 048 047 0.47 046
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Abbildung 2.6: Die hiufigsten Trigramme im Deutschen (in %).
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Abbildung 2.7: Die haufigsten Trigramme im Englischen (in %).

IHEHR BWEAN RNEII NRKEU ELNZK RXTAE VLOTR ENGIE

erhalten wir eine Matrix S mit den folgenden finf Spalten.

Sy Sy S5 84 S5

M<XOM=ZX0WH
Z2rrXrrX=2=
ocooH4=Z=xXmmm
HEAX>NMHDX>I
MXMXCHZX

Um die richtige Vorgdinger- oder Nachfolgerspalte von S7 zu finden, bestimmen wir fiir
jede potentielle Spalte S;, j =2,...,5, wieviele der Bigramme s;;s;1 (bzw. s;18:;) zu den
20 haufigsten (aus Abbildung 2.4) gehéren.

oo
Sy S35 Sy S5]51|52 S5 Sy S5
HEHR[IHEHR R
W EANBWEAN
NEITIRINETITI
R KEU|{NRKEU
L NZKIE|[LNZK
X TAE/RXTAE
LOTR[VILOTR
NGIEEINGTIE
1422 [1421

Da die beiden Spaltenpaare (Ss,S1) und (Si,S3) jeweils vier haufige Bigramme bilden,
konnen wir annehmen, dass im Klartext S1 auf S3 oder Ss auf Sy folgen muss. Entscheiden
wir uns fir die zweite Moglichkeit, so sollten wir als ndchstes die Spaltenpaare (S;, S1)
und (Ss,S;), j = 2,4,5 betrachten.
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\ \
Sy Sy Ss|8; Ss|9, Sy Ss
HHR|I E|HHR
W ANBE[WAN
NITIREINTITI
R E U|N K|R E U
L Z K|E N|L Z K
X A ERT|X AE
L TRIVOLTR
NIE|EGNTIE
12 2] 115

Aufgrund des hohen Wertes von p(Ss, Ss) kénnen wir annehmen, dass auf Ss die Spalte
Sy folgt. Im ndchsten Schritt erhalten wir daher die folgende Tabelle.

Lol
Sy Sy|Sy Sz S5]52 S

HHII ER|HH
WABENWA
N IRETINTI
R E|N K U|/R E
L Z|E N K|L Z
XARTE|XA
L T{VORILT
NIEGE|NTI
1 2 2 1

Diese lisst die Spaltenanordnung Sy, S1,S3, S5, 52 vermuten, welche tatsdchlich auf den
gesuchten Klartext fihrt:

Sy S1 S5 S5 5o

H—eAX>>NMHDX>I
m<2OmMZ0WH
o= Xmmm
mXxXmXxXcCcHZ2X
Z2r-rXrrxX=2==I

2.4 Kryptoanalyse von polygrafischen Chiffren

Blocksysteme mit kleiner Blockliange [ (beispielsweise bigrafische Systeme) lassen sich
dhnlich wie einfache Substitutionen durch Haufigkeitsanalysen brechen. Wird bei Hill-
Chiffren [ sehr grofl gewéhlt, so ist eine solche statistische Analyse nicht mehr moglich.
Das Hill-System kann dann zwar einem Kryptotextangriff widerstehen, jedoch kaum
einem Angriff mit bekanntem Klartext und schon gar nicht einem Angriff mit gewdhltem
Klartext.



2.5 Kryptoanalyse von polyalphabetischen Chiffren 33

Angriff mit gewdhltem Klartext O.B.d. A.sei A ={0,1,...,m—1}. Bei einem GK-Angriff
verschafft sich der Gegner den Kryptotext zu 100...0, 010...0, ..., 0...001 € A"

g(lOOO) = kllkIZ--'kll
9(0100) = lekQQ...le

g(OOOl) = ]{711/{?12...]{3”

und erhalt damit die Schliisselmatrix k.

BK-Angriff (bekannter Klartext). Sind bei einem BK-Angriff ausreichend geeignete
Klartext-Kryptotextpaare bekannt, so kann das Hill-System folgendermafien gebrochen
werden: Sind z;, y; (i = 1,..., ) Paare mit x;k = y; und gilt ggT(det X, m) = 1 fiir eine
aus [ Blocken z;, i € I, als Zeilen gebildete Matrix X, so lasst sich die Schliisselmatrix k
zu k =Y X! bestimmen (Y ist die aus den Blocken y;, i € I, gebildete Matrix).

2.5 Kryptoanalyse von polyalphabetischen Chiffren

Die Vigenere-Chiffre galt bis ins 19. Jahrhundert als sicher. Da der Schliisselstrom bei
der Vigenere-Chiffre periodisch ist, lassen sie sich mit statistischen Methoden ebenfalls
leicht brechen, insbesondere wenn der Kryptotext im Verhéltnis zur Periode d (Lénge
des Schliisselwortes) gentigend lang ist.

Bestimmung der Schliisselwortlange

Es gibt mehrere Methoden, eine Vigenere-Chiffre zu brechen, sobald die Lange des
Schliisselwortes bekannt ist. So kann man beispielsweise den Kryptotext zeilenweise in
eine d-spaltige Matrix schreiben. Verfahrensbedingt wurden dann die einzelnen Spalten
Y1,--.,yq durch eine monoalphabetische Substitution (genauer: durch eine Verschie-
bechiffre) verschliisselt. Sie kénnen daher einzeln wie eine additive Chiffre durch eine
Héaufigkeitsanalyse gebrochen werden. Hierbei liefert jede Spalte y; einen Buchstaben k;
des Schliisselwortes der Vigenere-Chiftre.

Zur Bestimmung der Schliisselwortlange betrachten wir zwei Vorgehensweisen: den
Kasiski-Test und die Koinzidenzindex-Untersuchung.

Der Kasiski-Test. Die fritheste generelle Methode zur Bestimmung der Periode bei der
Vigenere-Chiffre stammt von Friedrich W. Kasiski (1860). Kommt ein Wort an zwei
verschiedenen Stellen im Kryptotext vor, so kann es sein, dass die gleiche Klartextsequenz
zweimal auf die gleiche Weise, d.h. mit der gleichen Schliisselsequenz, verschliisselt
wurde. In diesem Fall ist die Entfernung 0 der beiden Vorkommen ein Vielfaches der
Periode d. Werden mehrere Paare mit verschiedenen Entfernungen ¢; gefunden, so liegt
die Vermutung nahe, dass d gemeinsamer Teiler aller (oder zumindest vieler) ¢; ist, was
die Anzahl der noch in Frage kommenden Werte fiir d stark einschrénkt.

Beispiel 54 (Kasiski-Test).
DERERSTEUNDLETZTEVERS. .. (Klartext x)

+ KASKASKASKASKASKASKAS. .. (Schliisselstrom k)
NEJORKDEMXDDOTRDENORK. .. (Kryptotext y)
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Da die Textstiicke ORK, bzw. DE im Kryptotext in den Entfernungen 61 = 15 und d9 = 9
vorkommen, liegt die Vermutung nahe, dass die Periode d = ggT(9,15) = 3 ist. N

Koinzidenzindex- Untersuchungen. Zur Bestimmung der Periode d gibt es neben heuristi-
schen Methoden auch folgenden statistischen Ansatz, der erstmals von William Frederick
Friedman im Jahr 1920 beschrieben wurde. Er basiert auf der Beobachtung, dass eine
langere Periode eine zunehmende Gldttung der Buchstabenhaufigkeiten im Kryptotext
bewirkt.

Definition 55 (Koinzidenzindex). Der Koinzidenzindex (engl. index of coinci-
dence) eines Textes y der Lange n iber dem Alphabet B ist definiert als

> Hy(a (a) —1).

a€eB

1C(y) =

n-(n— 1
Hierbei ist Hy(a) die absolute Hdiufigkeit des Buchstabens a im Text y.

IC(y) gibt also die Wahrscheinlichkeit an, mit der man im Text y an zwei zuféllig gewahl-
ten Positionen den gleichen Buchstaben vorfindet. Er ist umso gréfer, je ungleichméafliger
die Héufigkeiten H,(a) sind (siehe unten).

Um die Periode d einer Vigenere-Chiffre zu bestimmen, schreibt man den Kryptotext y fiir
d=1,2,3,...in eine Matrix mit d Spalten und berechnet fiir jede Spalte y; den Koinzi-
denzindex IC(y;). Fur geniigend lange Kryptotexte ist dasjenige d, welches das maximale
arithmetische Mittel der Spaltenindizes IC(y;) liefert mit hoher Wahrscheinlichkeit die
gesuchte Periode. Enthélt eine Spalte namlich nur Kryptozeichen, die alle mit demselben
Schliisselbuchstaben k erzeugt wurden, so stimmt der Koinzidenzindex dieser Spalte
mit dem Koinzidenzindex des zugehorigen Klartextes iiberein, nimmt also einen relativ
groflen Wert an. Wurden dagegen die Kryptozeichen einer Spalte mit unterschiedlichen
Schliisselbuchstaben generiert, so wird hierdurch eine Glattung der Héaufigkeitsverteilung
bewirkt, weshalb der Spaltenindex kleiner ausfillt.

Ist die Einzelbuchstabenverteilung p : A — [0, 1] der Klartextsprache bekannt, so kann der
Suchraum fiir den Wert der Periode d erheblich eingeschrénkt werden. Hierzu berechnet
man den erwarteten Koinzidenzindex

Eqn(1C) = E(IC(Y)),

wobei Y ein mittels einer Vigenere-Chiffre mit einem zufalligen Schliisselwort der Lénge
d aus einem zufalligen Klartext der Lénge n generierter Kryptotext ist. Im Fall d = 1
gilt IC(y) = IC(z). Zudem koénnen wir bei lingeren Texten von den gegenseitigen
Abhéngigkeiten der Zeichen im Text absehen und erhalten

a€A

Dieser Wert wird auch als Koinzidenzindex der zugrunde liegenden Sprache bezeichnet.

Definition 56 (Koinzidenzindex einer Sprache). Der Koinzidenzindex IC, ei-
ner Sprache mit Buchstabenverteilung p : A — [0, 1] ist definiert als

ICp = Zp(a)Z

a€A

IC'p ist zudem ein MafB fiir die Rauheit der Verteilung p:
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Definition 57 (Rauheitsgrad; Measure of Roughness). Der Rauheitsgrad MR/
einer Sprache L mit Finzelbuchstabenverteilung p ist

MRL:Z( ( _1/m Zp _l/m:ICL_l/Tm

acA acA
wobei m = || Al| ist.

Beispiel 58. Fir die englische Sprache (m = 26) gilt beispielsweise ICgnglisch ~ 0.0687
und MREnglisch ~ 0.0302. <

Ubersteigt dagegen die Periode d die Klartextlinge n, so ist der Kryptotext bei zufilliger
Wahl des Schliisselswortes ebenfalls rein zuféllig, was auf einen erwarteten Koinzidenzindex
von

Ean(IC) =3 A7 =A™ = 1/, d2n 22

a€A

fithrt. Allgemein gilt fiir hinreichend grofles n,

B, (1C) = =% o, 4

n-(d—1)
d-(n—1) d-(n—1)

-m~, 1<d<n,

da von den (”) moglichen Positionspaaren ungeféhr d- (”/ d) n(n—d)/2d Paare nur eine

2
Spalte (was einem Anteil von (n — d)/d(n — 1) entspricht) und (g) (n/d)*> =n?*(d—1)/2d
Paare zwei unterschiedliche Spalten betreffen (was einem Anteil von n(d —1)/d(n — 1)
entspricht).

Untenstehende Tabelle gibt den Erwartungswert E;,(/C) des Koinzidenzindexes fiir
Kryptotexte der Linge n = 100 in Abhangigkeit von der Periodenlange d einer Vigenere-
Chiffre wieder (in Promille; Klartext ist ein zuféllig gewahlter Text der englischen Sprache
mit 100 Buchstaben).

d |1 2 3 4 5 6 8 10 100
Ei100({C) |69 54 48 46 44 43 42 41 39

Beispiel 59. Berechnet sich der Koinzidenzindex eines Vigenére-Kryptotextes der Linge
100 zu 0.045, so liegt die Vermutung nahe, dass das verwendete Schliisselwort die Linge
vier oder finf hat, falls y aus einem Klartext der englischen Sprache erzeugt wurde. <

Der Koinzidenzindex kann auch Hinweise daftir liefern, mit welchem Kryptoverfahren ein
vorliegender Kryptotext erzeugt wurde. Bei Transpositionschiffren sowie bei einfachen
Substitutionen bleibt namlich der Koinzidenzindex im Gegensatz zu polyalphabetischen
und polygrafischen Verfahren erhalten. Erstere lassen sich von letzteren zudem dadurch
unterscheiden, dass bei ihnen sogar die Buchstabenhéufigkeiten unverdndert bleiben.

Zur Bestimmung des Schliisselwortes bei bekannter Periode d kann auch wie folgt
vorgegangen werden. Man schreibt den Kryptotext y in Spalten y; auf und berechnet
fir a € Aund i = 1,...,d die relativen Haufigkeiten h;(a) von a in y;. Da y; aus dem
Klartext durch Addition von k; entstanden ist, kommt die Verteilung

hi(a+k‘),a €A
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fir k = k; der Klartextverteilung p(a),a € A néher als fur k # k;. Da

Zp hi(a+ k)

a€A

ein MaS fiir die Ahnlichkeit der beiden Verteilungen p(a) und h;(a+k) ist (siehe Ubungen),
wird der Wert von «;(k) wahrscheinlich fir £ = k; maximal werden.

Beispiel 60. Der folgende Kryptotext y

HUDS KUAE ZGXR AVTF PGWS WGWS ZHTP PBIL LRTZ PZHW LOIJ VFIC
VBTH LUGI LGPR KHWM YHTI UAXR BHTW UCGX O0SPW AOCH IMCS YHWQ
HWCF YOCG 0GTZ LBIL SWBF LOHX ZWSI ZVDS ATGS THWI SSUX LMTS
MHWI KSPX OGWI HRPF LSAM USUV VAIL LHGI LHWV VIVL AVTW 0CIJ
PTIC MSTX VII

der Linge 203 wurde von einer Vigenere-Chiffre mit Schlissellinge d = 4 aus englischem
Klartext erzeugt. Schreiben wir den Kryptotext in vier Spalten vy, ...,ys der Linge
ly1] = |yo| = |ys| = 51 und |ys| = 50, so ergeben sich folgende Werte fir a;(k) (in
Promille):

k ‘0 1234567 891011121314 151617181920 2122232425

a(k)|36 31 3145 38 26 42 73 44 26 36 47 30 32 36 29 28 39 48 42 42 39 42 42 35 31
as(k)|44 4140 51 41 31 37 43 34 28 36 26 28 43 68 45 35 27 42 43 40 35 30 24 31 45
as(k) |47 41 48 37 49 40 35 30 48 322542 31 26 43 76 37 31 39 45 35 34 37 26 30 25

(k)|3840 27416547 28 34 39 33 35 36 30 30 48 44 3542 47 38 39 34 27 38 36 37

Oé4k3

Da oy (k) fir k =7 =H, ag(k) fir k = 14 = 0, as(k) fir k = 15 = P und ay(k) fir
k =4 = E einen Maximalwert annimmt, lautet das Schlisselwort HOPE. Damit ergibt
sich folgender Klartext (aus der Erzihlung , Der Goldkdfer® von Edgar Allan Poe).

A GOOD GLASS IN THE BISHOPS HOSTEL IN THE DEVILS SEAT

FORTYONE DEGREES AND THIRTEEN MINUTES NORTH EAST AND

BY NORTH MAIN BRANCH SEVENTH LIMB EAST SIDE SHOOT FROM

THE LEFT EYE OF THE DEATHS HEAD A BEE LINE FROM THE TREE

THROUGH THE SHOT FIFTY FEET OUT <

Zur Bestimmung des Schliisselwortes kann man auch die Methode des gegenseitigen
Koinzidenzindexes verwenden. Dabei ist die verwendete Klartextsprache (und somit deren
Héufigkeitsverteilung) irrelevant, da die Spalten — wie der Name schon sagt — gegenseitig
in Relation gesetzt werden. Aber zuerst die Definition.

Definition 61 (Gegenseitiger Koinzidenzindex). Der gegenseitge Koinzidenz-
index von zwei Texten y und iy’ mit den Langen n und n' tber dem Alphabet B ist

definiert als
72 Hy( (a).

a€eB

1C(y,y)

IC(y,vy') ist also die Wahrscheinlichkeit, dass bei zufélliger Wahl einer Position in y und
einer Position in 3 der gleiche Buchstabe vorgefunden wird. IC(y, ') ist umso grofler, je
besser die Haufigkeitsverteilung von y und ' (d.h. H, und H,/) tibereinstimmen.
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Ist nun y ein Kryptotext, der mit einem Schliisselwort bekannter Lénge d erzeugt
wurde, und sind y;, ¢ = 1,...,d die zugehorigen Spalten, so gibt der gegenseitige
Koinzidenzindex der Spalten y; + 6 und y; (fir 1 <7 < j < dund 0 < ¢ < 25) die
Wahrscheinlichkeit an, dass man bei zufilliger Wahl einer Position in y; + ¢ und in
y; denselben Buchstaben vorfindet. Da die Einzelzeichenverteilungen von y; — k; und
von y; — k; der der Klartextsprache entsprechen, haben y; + ¢ und y; fir 6 = k; — k;
eine ahnliche Verteilung. Mit grofier Wahrscheinlichkeit nimmt also IC(y; + 9,y;) fir
0 = 0;; = k; — k; einen relativ groBen Wert an, wahrend fiir 6 # d6;; mit kleinen Werten
zu rechnen ist.

Beispiel 62. Betrachten wir den Kryptotext aus vorigem Beispiel, so ergeben sich fiir
IC(y; + 9,y;) die folgenden Werte (in Promille):

) ‘0 1234567 8 9101112131415 16171819202122 232425

C(y1 + 0,1)]40 31 25382521 46 74 50 3331444334 31 28 24 314445374864 44 2531
Cy1 + 6, y3) |26 47 2521 4732 18 49 91 4227 51 45 31 29 32 23 29 27 39 45 46 39 58 44 24
IC(y1 + 6, y4)|38 40 2931 3524 32 58 42 324450 43 39 31 20 34 36 30 40 45 24 42 78 47 22
C( )
C( )
C( )

Y2 +0,y3) 50854921 28 3524 34 46 2524 275950 50 53 51 24222643 36 35 32 24 34
Y2 +0,y4) |46 53 403751 4229 23 24 32405538 31 32 45 674925272929 34 37 3835
49 36 3860362534 19 294241 3354273678 47 252933272847 32 2754

Also ist (mit groffer Wahrscheinlichkeit)
012 =T, 013 =38, 014 =23, do3 =1, 024 =16, 434 = 15.

Wir kénnen nun alle Spalten relativ zur ersten Spalte so verschieben, dass der ganze
Text eine einheitliche Verschiebung 6 hat, also die zweite Spalte um —7, die dritte um
—8 und die vierte um —23. Fir die Bestimmung von §, muss man nur den hdufigsten
Buchstaben in dem auf diese Weise erzeugten Text bestimmen (oder eine vollstindige
Suche durchfiihren). Dieserist L (16,3%). Also ist § = L—E = H = 7 und das Schlisselwort
lautet HOPE H+7=0,H+8 =P, H+ 23 =E). q

Analyse der Lauftextverschliisselung

Zum Brechen einer Stromchiffre mit Klartextschliisselstrom kann man so vorgehen:
Man geht zunachst davon aus, dass jeder Kryptotextbuchstabe durch Summation eines
Klartext- und Schliisselstrombuchstabens mit jeweils mittlerer bis hoher Wahrscheinlich-
keit entstanden ist. Dies sind beispielsweise im Englischen die Buchstaben E, T, A, 0, I,
N, S, R, H. Zu einem Teilwort w des Kryptotextes bestimmt man dann alle Paare von
Wortern (wq, wy) mit wy + wy = w und wy,ws € {E,T,A,;0,I,N,S,R H}. In der Regel
ergeben sich nur sehr wenige sinnvolle Paare, aus denen durch Kontextbetrachtungen
und Erweitern von w nach links und rechts der Kryptotext entschliisselt werden kann.
Wird die Analyse durch ein Computerprogramm durchgefiihrt, kann an die Stelle der
Kontextbetrachtungen auch die Haufigkeitsverteilung von n-Grammen der Sprache treten.
Das Programm wéahlt dann solche Wortpaare (w;, wy), die eine hohe Wahrscheinlichkeit
haben.

Beispiel 63. Gegeben ist der Kryptotext MOQKTHCBLMWXF . .. Wir beginnen die Untersu-
chung mit einer Wortlinge von vier Buchstaben, also w = MOQK. Der erste Buchstabe M
kann nur auf eine der folgenden Arten zustande gekommen sein:
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ABCDE...I...T...Z (Klartextzeichen)
+ MLKJI...E...T...N (Schlisselzeichen)
= MMMMM...M...M...

=

(Kryptotextzeichen)
Es ergeben sich folgende wahrscheinliche Paare fir die Einzelbuchstaben von w:

M: (EI) 0: (AO) Q: (I1,I) K: (RT)
(LE) (H7H) (S’S)
(T,T) (O,A) (T’R)

Diese fiihren auf folgende 3 -3 -1 -3 = 27 Wortpaare (wy, ws):

wy; | EAIR EAIS EAIT EHIR ... THIS ... TOIT
wy | IOIT IOIS IOIR IHIT ... THIS ... TAIR
Als sinnvoll stellt sich aber nur die Wahl w; = wy = THIS heraus. <

Autokey Chiffren

Kryptotextschliisselstrom. Diese Systeme bieten eigentlich keinen grofien kryptografischen
Schutz, da sie ohne Kenntnis des Schliisselwortes sehr leicht entschliisselt werden kénnen
(falls die Lange des Schliisselwortes im Verhéltnis zur Lange des Kryptotextes relativ kurz
ist). Man subtrahiert dazu den Kryptotext y fiir 6 = 1,2,... von dem um ¢ Positionen
verschobenen Kryptotext — also yo1s Y145 Y246 Y3+s - - . MiNUS Yo Y1 Y2 Y3 . . . —, bis sinnvoller
(Klar-) Text erscheint:

DUMSQMOZKFN. ..  (Kryptotext y)
— DUMSQMO. .. (,Kryptotextschliisselstrom®)
= ....NSCHUTZ... (Klartext x)

Klartextschlisselstrom. Neben der oben beschriebenen Analyse der Lauftextverschliisse-
lung kann das Brechen der Autokey-Systeme mit Klartextschliisselstrom auch analog
zur Kasiski-Methode erfolgen: Sei d die Lange des Schliisselwortes k. .. ks_1. Falls im
Klartext die gleiche Buchstabenfolge x; ... x; ;1 im Abstand 2d auftritt (beispielsweise
d=3undl=2),

U 14
TOT1 X223 T4 Ty TeT7Lg L9 L0 L1l L12 T13T14 - - - Klartext x
+ kokikoxox1iTe X3 Ty x5 xeTTTs X9 1oyl --- Klartextschlisselstrom kz
= YoY1Y2Y3Y4Ys Y6 YT Ys Yo Y10 Y11 Y12 Y13 Y14 ... Kryptotext y

so tritt im Kryptotext die gleiche Buchstabenfolge im Abstand d auf, d.h. d kann
auf diese Art unter Umstanden leicht bestimmt werden. Ist d bekannt, so konnen die
Buchstaben k; ... k; des Schlisselwortes der Reihe nach bestimmt werden: Da durch
k; die Klartextzeichen an den Positionen i, d + i, 2d + ¢, ... eindeutig festgelegt sind,
kann jedes einzelne k; unabhéngig von den anderen Schliisselwortbuchstaben durch eine
statistische Analyse bestimmt werden.
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3 Sicherheit von Kryptosystemen

3.1 Informationstheoretische Sicherheit

Claude E. Shannon untersuchte die Sicherheit kryptografischer Systeme auf informations-
theoretischer Basis (1945, freigegeben 1949). Seinen Untersuchungen liegt das Modell einer
Nachrichtenquelle X zugrunde, die einzelne Klartextnachrichten x aus dem Klartextraum
M unter einer bestimmten Wahrscheinlichkeitsverteilung p(z) = Pr[X = x| generiert.

Zudem nehmen wir an, dass der zur Verschliisselung benutzte Schliissel £ € K von
einem Schliisselgenerator S unter einer bekannten Wahrscheinlichkeitsverteilung p(k) =
Pr[S = k| erzeugt wird. Da der Schliissel unabhéngig vom Klartext gewéhlt wird, ist
p(k,x) = p(k)p(x) die Wahrscheinlichkeit dafiir, dass X den Klartext = generiert und
dieser mit dem Schliissel & verschliisselt wird. Dabei gehen wir davon aus, dass fiir jede
Nachricht x € M ein neuer Schliissel gewéhlt wird. Dies bedeutet, dass wir beispielsweise
bei der additiven Chiffre den Klartextraum auf M = A" vergroéBern miissen, falls der
Schliissel nach jeweils n Zeichen gewechselt wird.

Die Zufallsvariablen X und S induzieren eine Verteilung auf dem Kryptotextraum, die
wir durch die Zufallsvariable Y beschreiben. Fiir einen Kryptotext y berechnet sich die
Wahrscheinlichkeit zu

ply)=PrY =yl = Y p(k )

k,x:E(k,x)=y
und fiir einen beobachteten Kryptotext y (mit p(y) > 0) ist

T k, x
p(z,y) 3 p(k, )

plaly) = pW) i, PO

die (bedingte) Wahrscheinlichkeit dafiir, dass sich hinter dem Kryptotext y der Klartext
x verbirgt.

Definition 64 (informationstheoretisch sicher). Ein Kryptosystem heifit unter ei-
nem Schlisselgenerator S absolut sicher (informationstheoretisch sicher), falls
X bei jeder Klartextverteilung stochastisch unabhdngig von Y ist, d.h. es gilt fir jeden
Klartext x € M und jeden Kryptotext y € C mit p(y) > 0,

p(x) = p(zly).

Bei einem absolut sicheren Kryptosystem ist demnach die a posteriori Wahrscheinlichkeit
p(z|y) einer Klartextnachricht x gleich der a priori Wahrscheinlichkeit p(x), d.h. die
Wahrscheinlichkeit von z andert sich nicht, ob nun der Kryptotext y bekannt ist oder
nicht. Die Kenntnis von y erlaubt somit keinerlei Riickschliisse auf die gesendete Nachricht
x. Dies bedeutet, dass es dem Gegner nicht moglich ist — auch nicht mit unbegrenzten
Rechenressourcen — das System zu brechen. Wie wir sehen werden, lasst sich dieses Maf3
an Sicherheit nur mit einem sehr hohen Aufwand realisieren.
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Sind p(z),p(y) > 0, so gilt wegen p(z|y)p(y) = p(z,y) = p(y|z)p(x) die Gleichheit

p(ylz)p(x)

p(zly) = o)

(Satz von Bayes) und daher ist die Bedingung p(z) = p(z|y) gleichbedeutend mit
p(y) = p(ylz).

Beispiel 65. Sei (M,C,E,D,K) ein Kryptosystem mit M = {xy,...,24}, K =
{k1,..., ks}, C=A{y1,...,ys} und

E‘Il To T3 T4

kilyi va ys 4o
ky |y y1 s y3
ks |ys Y2 Y1 Ya
kylys ys y2 W

Weiter seip(ky) = 1/2, p(k2) = 1/4 und p(x3) = p(x4) = 1/8. Unter der Klartextverteilung
p(z1) = 1/2, p(x2) = p(xs) = p(ay) = 1/6 ergibt sich dann folgende Verteilung der
Kryptotexte:

pln) = 1/2-1/24(1/4+1/841/8)-1/6 =1/3
plya) = 1/4-1/24+(1/8+1/841/2)-1/6 =1/4
plys) = 1/8-1/2+ (1/8+1/2+1/4)-1/6 =5/24
ply) = 1/8-1/2+(1/2+1/4+1/8)-1/6=5/24

Die bedingten Wahrscheinlichkeiten p(x|y,) berechnen sich wie folgt:

pxalyr) = p(ky,21)/p(yr) = (1/2)(1/2)/(1/3) = 3/4
pxalyr) = plka,22)/p(yr) = (1/4)(1/6)/(1/3) = 1/8
p(zsly) = p(ks, x3)/p(yr) = (1/8)(1/6)/(1/3) = 1/16
pxalyr) = p(ks, 24)/p(y2) = (1/8)(1/6)/(1/3) = 1/16

Wegen p(x1) = 1/2 # 3/4 = p(x1|y1) ist das Kryptosystem nicht absolut sicher, zumindest
nicht unter der gegebenen Schliisselverteilung.

Die Bedingung p(x) = p(zl|y) ist nach dem Satz von Bayes genau dann erfillt, wenn
p(y) = p(y|z) ist. Da jedoch fir jedes Paar (x,y) genau ein Schlissel k = k,, € K
mit E(k,z) =y existiert, also p(y|z) = p(kyy) ist, ist dies dquivalent zu p(y) = p(ksy)-
Fiir y = y; bedeutet dies, dass alle Schliissel k; = k, ,, die gleiche Wahrscheinlichkeit
p(k;) = 1/4 haben miissen. Eine leichte Rechnung zeigt, dass dann auch p(y;) = 1/ fir
1=1,...,4 ist. Somit ist das betrachtete Kryptosystem genau dann absolut sicher, wenn
der Schlissel unter Gleichverteilung gewdhlt wird. <

Wie in diesem Beispiel lédsst sich allgemein folgende hinreichende Bedingung fiir die
absolute Sicherheit von Kryptosystemen zeigen.

Satz 66. Ein Kryptosystem mit | M|| = ||C|| = || K||, in dem es fir jeden Klartext x und
jeden Kryptotext y genau einen Schlissel k mit E(k,x) =y gibt, ist absolut sicher, wenn
die Schlissel unter Gleichverteilung gewdhlt werden.
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Beweis. Bezeichne k, , den eindeutig bestimmten Schliissel, der den Klartext « auf den
Kryptotext y abbildet. Wegen p(k,,) = || K|~ fiir alle z,y folgt zunéchst

plyle) = > plk) =plhey) = | K]

k:E(k,x)=y
und
ZP p(ylz) = | K| IZP ) = [IK[I7,
also p(zly) = p(x)p(y|z)/p(y) = p(v). O

In den Ubungen wird gezeigt, dass auch die Umkehrung dieses Satzes gilt.

Verwendet man beim One-time-pad nur Klartexte einer festen Lénge n, so ist dieser
nach obigem Satz absolut sicher (vorausgesetzt, der Schliissel wird rein zuféllig, also
unter Gleichverteilung gewéhlt). Variiert die Klartextlange, so kann ein Gegner aus y
nur die Lange des zugehorigen Klartextes x ableiten. Wird jedoch derselbe Schliissel %
zweimal verwendet, so kann aus den Kryptotexten die Differenz der zugehorigen Klartexte
ermittelt werden:

Yy = E(ﬂfl,/{?) = X + k

= E(xQ,k):xg—f—k }Myl—yzle—m

Sind die Klartexte natiirlichsprachig, so konnen aus y; — y» die beiden Nachrichten x;
und xo dhnlich wie bei der Analyse einer Lauftextverschliisselung (siehe Abschnitt 2.5)
rekonstruiert werden.

Da in einem absolut sicheren Kryptosystem der Schliisselraum K mindestens die Grofle
des Klartextraumes X haben muss (siehe Ubungen), ist der Aufwand extrem hoch.
Vor der Kommunikation muss ein Schliissel, dessen Léange der des zu iibertragenden
Klartextes entspricht, zuféllig generiert und zwischen den Partnern auf einem sicheren
Kanal ausgetauscht werden. Wird hingegen keine absolute Sicherheit angestrebt, so kann
der Schliisselstrom auch von einem Pseudo-Zufallsgenerator erzeugt werden. Dieser erhélt
als Eingabe eine Zufallsfolge sy (den sogenannten Keim) und erzeugt daraus eine lange
Folge vy vy ... von Pseudo-Zufallszahlen. Als Schliissel muss jetzt nur noch das Wort sq
ausgetauscht werden.

In der Informationstheorie wird die Unsicherheit, mit der eine durch X beschriebene Quelle
ihre Nachrichten aussendet, nach ihrer Entropie bemessen. Das heift, die Unsicherheit
iiber X entspricht genau dem Informationsgewinn, der sich aus der Beobachtung der
Quelle X ziehen lasst. Dabei wird die in einer einzelnen Nachricht x steckende Information
um so hoher bemessen, je seltener x auftritt. Tritt eine Nachricht z mit einer positiven
Wahrscheinlichkeit p(x) = Pr[X = z] > 0 auf, dann ist

Infx (x) = logy (1))

der Informationsgehalt von z. Ist dagegen p(x) = 0, so sei Infx(z) = 0. Dieser Wert
des Informationsgehalts ergibt sich zwangsldufig aus den beiden folgenden Forderungen:
— Der gemeinsame Informationsgehalt Infx y (z,y) von zwei Nachrichten = und y, die
aus stochastisch unabhingigen Quellen X und Y stammen, sollte gleich Infy(z) +
Infy (y) sein;
— der Informationsgehalt einer Nachricht, die mit Wahrscheinlichkeit 1/, auftritt, soll
genau 1 (bit) betragen.
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Die Einheit, in der der Informationsgehalt gemessen wird, ist bit (basic indissoluble
information unit). Die Entropie von X ist nun der erwartete Informationsgehalt einer
von X stammenden Nachricht.

Definition 67 (Entropie). Sei X eine Zufallsvariable mit Wertebereich W (X) =
{z1,...,2,} und sei p; = Pr[X = z;]. Dann ist die Entropie von X definiert als

H(X) = zn:pi Infx (z;) = ipi logy (1/p,)-

i=1

Beispiel 68. Sei X eine Zufallsvariable mit der Verteilung

x; | sonnig leicht bewolkt bewdlkt stark bewdlkt Regen Schnee Nebel

Di 1y 1y s s s /16 16

Dann ergibt sich die Entropie von X zu

HX)=1/1-(24+2)+ s- (3+3+3) + 15 (4+4) = 2.625.

Die Entropie nimmt im Fall p; = --- = p,, = 1/, den Wert log,(n) an. Fiir jede andere
Verteilung py,...,p, gilt dagegen H(X) < log,(n) (Beweis unten). Generell ist die
Unsicherheit iiber X um so kleiner, je ungleichméafiger X verteilt ist. Bringt X nur einen
einzigen Wert mit positiver Wahrscheinlichkeit hervor, dann (und nur dann) nimmt H(X)
den Wert 0 an. Fiir den Nachweis von oberen Schranken fiir die Entropie benutzen wir
folgende Hilfsmittel aus der Analysis.

Definition 69 (konkav). Eine reellwertige Funktion f ist konkav auf einem Intervall
I, falls fiir allex #y € I und 0 <t <1 gilt:

fltr + (1 —t)y) > tf(z)+(1—1)f(y).
Gilt sogar ,>“ anstelle von ,>“, so heifit f streng konkav auf I.

Beispiel 70. Die Funktion f(x) = log,(x) ist streng konkav auf (0,00). <

Fir den Beweis des nédchsten Satzes benotigen wir die Jensensche Ungleichung, die wir
ohne Beweis angeben.

Satz 71 (Jensensche Ungleichung). Sei f eine streng konkave Funktion auf I und seien
0<aq,...,a, <1 reelle Zahlen mit -7, a; = 1. Dann gilt fir alle z1,...,2, € 1,

/ (Z ai%‘) > Z a; f(z;).
i=1 i=1
Hierbei tritt Gleichheit genau dann ein, wenn alle x; den gleichen Wert haben.

Satz 72. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) = {x1,...,z,}
und Verteilung Pr[X =x;] = p;, i = 1,...,n. Dann ist H(X) < log,(n), wobei Gleichheit
genau im Fall p; = 1/n firi=1,... n eintritt.
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Beweis. Es gilt

H(X) = pilogy(1/p;) <logy > pi/pi =logyn.

i=1 i=1
Nach obigem Satz tritt Gleichheit genau im Fall 1/p; = --- = 1/p, ein, was mit p; = 1/n
fir i = 1,...,n gleichbedeutend ist. O

Eine wichtige Eigenschaft der Entropie ist, dass sie eine untere Schranke fiir die mittlere
Codewortlange von Bindrcodes bildet. Ein Bin&rcode fiir X ist eine (geordnete) Menge
C ={y1,...,yn} von bindren Codewortern y; fiir die Nachrichten z; mit der Eigenschaft,
dass die Abbildung ¢ : X* — {0,1}* mit c(x;, ---2;,) = Y4, -~ ¥i, injektiv ist. Die
Injektivitédt von c stellt sicher, dass jede Folge y;, - --v;, von Codewértern eindeutig
decodierbar ist.

Die mittlere Codewortliange von C unter X ist
L(C) = Zpi il
i=1

C heilt optimal, wenn kein anderer Binarcode fiir X eine kiirzere mittlere Codewortlange
besitzt. Fir einen optimalen Bindrcode C' fiir X gilt (ohne Beweis)

H(X) < L(C) < H(X) + 1.

Beispiel 73. Sei X die Zufallsvariable aus dem letzten Beispiel. Betrach-
ten wir die beiden Codes C; = {001,010,011,100,101,110,111} wund Cy =
{00,01,100,101,110,1110,1111}, so erhalten wir fir die mittlere Codewortlinge von
Cy den Wert L(Cy) = 3, wihrend Cy wegen |y;| = logy(1/,,) den Wert L(Cs) = H(X)
erreicht und somit optimal ist. N

Die Redundanz eines Codes fiir eine Zufallsvariable X ist um so hoher, je grofier seine
mittlere Codewortlange im Vergleich zur Entropie von X ist. Um auch Codes iiber
unterschiedlichen Alphabeten miteinander vergleichen zu kénnen, ist es notwendig, die
Codewortlédnge in einer festen Einheit anzugeben. Hierzu berechnet man die Bitlinge
eines Wortes = iiber einem Alphabet A mit m > 2 Buchstaben zu |z|y = |z|logy(m).
Beispielsweise ist die Bitlinge von GOLD (tiber dem lateinischen Alphabet) |GOLD|; =
4log,(26) = 18,8. Entsprechend berechnet sich fiir einen Code C' = {y1,...,y,} unter
einer Verteilung py, ..., p, die mittlere Codewortlinge (in bit) zu

n

Ly(C) = Zpi “|Yi2-

i=1

Damit konnen wir die Redundanz eines Codes als den mittleren Anteil der Codewort-
buchstaben definieren, die keine Information tragen.

Definition 74 (Redundanz). Die (relative) Redundanz eines Codes C fiir X ist
definiert als
Ly(C) — H(X)

RO ="
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Beispiel 75. Wihrend eine von X generierte Nachricht im Durchschnitt H(X) = 2.625
bit an Information enthdlt, haben die Codewdrter von Cy eine Bitlinge von 3. Der Anteil
an ,uberflissigen® Zeichen pro Codewort betrdgt also

3 —2.625

R(Cy) = 3

=12,5%,
wogegen Cy keine Redundanz besitzt. <

Auch Schriftsprachen wie Deutsch oder Englisch und Programmiersprachen wie C oder
PASCAL konnen als eine Art Code aufgefasst werden. Um die statistischen Eigenschaften
einer solchen Sprache L zu erforschen, erweist es sich als zweckmafBig, die Textstiicke der
Lange n (n-Gramme) von L fiir unterschiedliche n getrennt voneinander zu betrachten.
Sei also L, die Zufallsvariable, die die Verteilung aller n-Gramme in L beschreibt.
Interpretieren wir diese n-Gramme als Codeworter einer einheitlichen Codewortliange n,
SO ist

_ nlogym — H(L,)

B nlog, m

R(Ln)

die Redundanz dieses Codes. Es ist zu erwarten, dass eine Sprache umso mehr Redundanz
aufweist, je restriktiver die Gesetzméfigkeiten sind, unter denen in ihr Worte und Séatze
gebildet werden.

Definition 76 (Entropie einer Sprache). Fir eine Sprache L tiber einem Alphabet
A mit ||Al| = m ist H(L,)/n die n-Gramm-Entropie von L (pro Buchstabe). Falls
dieser Wert fiir n gegen oo gegen einen Grenzwert

H(L) = lim H(L,)/n

n—oo

konvergiert, so wird dieser Grenzwert als die Entropie von L bezeichnet. In diesem
Fall konvergiert R(L,,) gegen den Grenzwert

R(L) = lim R(L,) = 2&2m = H(L)

n—00 ]Og2 m ’

der als die (relative) Redundanz von L bezeichnet wird. Der Zihler Raps(L) = logy m—
H(L) in diesem Ausdruck wird auch als die absolute Redundanz der Klartextsprache
(gemessen in bit/Buchstabe) bezeichnet.

Fiir eine Reihe von natiirlichen Sprachen wurden die Redundanzen R(L,,) der n-Gramme
(fiir nicht allzu groBe Werte von n) empirisch bestimmt, woraus sich R(L) ndherungsweise
bestimmen lasst.

Beispiel 77. Im Deutschen hat die FEinzelbuchstabenverteilung eine Entropie von
H(L1) = 4,1 bit, wihrend eine auf Ay, gleichverteilte Zufallsvariable U einen Entro-
piewert von H(U) = log(26) = 4,7 hat. Fir die Bigramme ergibt sich ein Entropiewert
von H(Ls2)/2 = 3,5 bit pro Buchstabe. Mit wachsender Linge sinkt die Entropie von
deutschsprachigen Texten weiter ab und strebt gegen einen Grenzwert H(L) von 1,5 bit
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pro Buchstabe.

n H(L,) H(Ln)/n Ravs(Ly)/n R(L,)

1 4,1 4,1 0,6 13%
2 7,0 3,5 1,2 26%
39,6 3,2 1,5 32%
6 12,2 2,0 2,7 57%

15 27,6 1,8 2,9 62%

o oo HL)=1,5 Res(L)=3,2 R(L)=67%

Ein durchschnittlicher deutscher Text hinreichender Lange enthdlt also einen Redun-
danzanteil von ca. 67%, so dass er sich bei optimaler Kodierung auf circa 1/3 seiner
urspringlichen Linge komprimieren ldsst. <

Wir betrachten nun den Fall, dass mit einem Kryptosystem Klartexte der Lange n
verschliisselt werden, ohne dass dabei der Schliissel gewechselt wird. D. h. die Chiffrier-
funktion hat die Form

E, K x A" = C,,

wobei wir die Klartextlinge n variabel halten und der Einfachheit halber annehmen, dass
die Menge C,, der zugehérigen Kryptotexte die gleiche Kardinalitat ||C,| = ||A™]] = m”
wie der Klartextraum hat. Ist y ein abgefangener Kryptotext, so ist

Kly)={ke K|Jx e A": E,(k,x) =y Ap(x) > 0}

die Menge aller in Frage kommenden Schliissel fiir y. K (y) besteht aus einem ,echten*
(d.h. dem zur Generierung von y tatsichlich benutzten) und || K (y)|| — 1 so genannten
yunechten®“ Schlusseln. Aus informationstheoretischer Sicht ist das Kryptosystem desto
unsicherer, je kleiner die erwartete Anzahl

= > o) - (IIKWI-1)= > p) - [IKH)| -1
yeCn yely

der unechten Schliissel ist. Ist s,, gleich 0, so liefert der abgefangene Kryptotext y dem
Gegner geniigend Information, um den benutzten Schliissel und somit den zu y gehorigen
Klartext eindeutig bestimmen zu kénnen (sofern er tiber unbegrenzte Ressourcen an
Rechenkraft und Zeit verfugt).

Definition 78 (Eindeutigkeitsdistanz). Die Findeutigkeitsdistanz ny eines Kryp-
tosystems ist der kleinste Wert von n, fir den s, = 0 wird.

Als néchstes wollen wir eine untere Schranke fiir 5, (und damit fiir ng) herleiten. Hierzu
bendtigen wir den Begriff der bedingten Entropie H(X|Y') von X, wenn Y bereits bekannt
ist.

Definition 79 (bedingte Entropie). Seien X,Y Zufallsvariablen. Dann ist die be-
dingte Entropie von X unterY definiert als

HXIY)= > ply)- H(X]y),
yeW (Y)

wobei Xy die Zufallsvarz’able mit der Verteilung Pr[X|y = z] = p(zly) = Pr[X =z |
Y =yl ist (d-h H(X|y) = Xaewx) P(2ly) - 1085 (Vpapy)-
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Satz 80.
1. H(X,Y) =H(Y) + H(X]Y).
2. H(X,Y) <H(X) + H(Y), wobei Gleichheit genau dann eintritt, wenn X und Y
stochastisch unabhdangig sind.

Beweis. s. Ubungen. O

Korollar 81. H(X|Y) < H(X), wobei Gleichheit genau dann eintritt, wenn X und Y
stochastisch unabhdngig sind.

Satz 82. In jedem Kryptosystem gilt fir die Klartextentropie H(X), die Schliisselentropie
H(S) und die Kryptotextentropie H(Y')

H(S|Y) = H(S) + H(X) — H(Y).

Beweis. Zunéchst ist H(S|Y) = H(S,Y) — H(Y). Es reicht also zu zeigen, dass
H(S,Y) =H(S) + H(X)

ist. Da bei Kenntnis des Schliissels der Wert von X bereits eindeutig durch Y und der
Wert von Y eindeutig durch X festgelegt ist, folgt unter Beriicksichtigung der gemachten
Annahme, dass X und S unabhéngig sind,

H(S,Y) =H(S, X,Y) — H(X|S,Y) = H(S,X) + H(V|S, X) = H(S) + H(X).

=0 =0

Jetzt verfiigen wir iiber alle Hilfsmittel, um die erwartete Anzahl

=3 ply) - |1K(y)| -1

yelly

der unechten Schliissel nach unten abschétzen zu kénnen. Seien X,, und Y,, die Zufallsva-
riablen, die die Verteilungen der n-Gramme der Klartextsprache und der zugehoérigen
Kryptotexte beschreiben.

Lemma 83.

1. H(S|Y,) <logy(s, + 1),
2. H(S|Y,) > H(S) — nR(L) logym.
Beweis.

1. Unter Verwendung der Jensenschen Ungleichung folgt

H(SIY,) = > ply)-H(S|y)
yeCnp,
< Y ply) -logy |K (y)ll
yeCn
< log, Z p(y ||K ’
yeCh,
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2. Mit Satz 82 folgt
H(S|Yn) = H(S) + H(Xn) — H(Ya).

Die Klartextentropie H(X,,) ldsst sich durch
H(X,) =H(L,) > nH(L) =n(l —R(L))logym

abschéitzen, wobei m = ||A|| ist. Zudem ldsst sich die Kryptotextentropie H(Y},)
wegen W(Y,,) = C, und ||C,,|| = m" durch

H(Yn> S TLlOgg m
abschitzen. Somit ist

H(S|Y,) = H(S) + H(X,) — H(Yx) -

>—nR(L)logy m

Zusammen ergibt sich also
log, (5, + 1) > H(S) — nR(L) log, m.

Im Fall, dass der Schliissel unter Gleichverteilung gezogen wird, erreicht #H(S) den
maximalen Wert log, || K|, was auf die gesuchte Abschétzung fiir s, fithrt. Wir fassen
zusammen.

Satz 84. Werden mit einem Kryptosystem Klartexte x € A™ der Linge n mit einem unter
Gleichverteilung gezogenen Schlissel k € K wverschlisselt, und ist ||C,| = [|A"|| = m™
fiir den zugehérigen Kryptotextraum C, = {E(k,z) | k € K,x € A"}, so gilt fir die
erwartete Anzahl s,, der unechten Schliissel,

Iy
— mnrR(L)

— 1.

n

Setzen wir in obiger Abschatzung s, = 0, so erhalten wir folgende untere Schranke fiir
die Eindeutigkeitsdistanz ny des Kryptosystems.

Korollar 85. Unter den Bedingungen des obigen Satzes gilt

n 10g2||K|| _ log, HKH _ 10g2||K||
= R(L)log,m logym—H(L)  Ras(L)’

Man beachte, dass wir nur die Mindestmenge an Kryptotext zur eindeutigen Bestimmung
des Schliissels abgeschatzt haben. Nattrlich erlaubt die eindeutige Bestimmung des
Schliissels auch die eindeutige Bestimmung des Klartexts. Unter Umstdnden kann jedoch
der Klartext auch schon bei Kenntnis von wesentlich weniger Kryptotext eindeutig
bestimmbar sein.

Beispiel 86. Fir Substitutionen bei deutschsprachigem Klartext ergeben sich folgende
Werte log, || K||/Raps(L) als untere Schranke fir die Eindeutigkeitsdistanz ny (wobei wir
von einer absoluten Redundanz von Ras(L) = 3.2 bit/Zeichen ausgehen, was einer
relativen Redundanz von R(L) = 3,2/4,7 ~ 67% entspricht):
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Kryptosystem Schliisselanzahl || K| logy || K||  logy || K||/Rabs(L)
additive Chiffre 26 4.7 % ~ 1.5
affine Chiffre 1226 = 312 8.3 2.6
einfache Substitution 26! 88.4 27.6
Vigenére-Chiffre 264 4.7-d 1.5-d

Dagegen erhalten wir fiir Blocktranspositionen folgende unteren Schranken fiir die Min-
destmenge an Kryptotext, die zur eindeutigen Bestimmung des Schliissels bendétigt wird.
Hierbei unterscheiden wir die Analyse danach, welche n-Grammhdufigkeiten dabei benutzt
werden, was einer Analyse von Blocktranspositionen entspricht, falls jedes Klartextzeichen
hochstens von den n — 1 vorhergehenden Zeichen abhdngt.

Analyse auf der Basis von Raps(L) Blocklinge 1

relativen Hdaufigkeiten der 10 20 50 100 1000
FEinzelzeichen 0,6 59 165 578 1415 22986
Bigrammen 1,2 40 111 390 954 15502
Trigrammen 1,5 24 065 226 553 9473
n-Grammen, n — 00 3,2 7 19 67 164 2665

Auch wenn in obiger Tabelle die angegebenen unteren Schranken fiir ng bei der Analyse
auf der Basis von FEinzelzeichenhdufigkeiten endlich sind, gilt in diesem Fall ng = oo, da
eine solche Analyse nicht zum Ziel fiihren kann, und zwar unabhdngig davon, tiber wie viel
Kryptotext der Gegner verfigt. In diesem Fall stimmt namlich die Klartextentropie H(X,)
mit der Kryptoteztentropie H(Y,) tberein, weshalb sich in Lemma 83 die (schdrfere)
Schranke logy(5,+1) > H(S) ergibt. Diese ist bei Verwendung eines unter Gleichverteilung
gewdhlten Schliissels mit der Abschitzung s, + 1 > | K| dquivalent, weshalb 5, hochstens
im Fall | K|| =1 den Wert Null annehmen kann (was wiederum | = 1 impliziert). N

3.2 Weitere Sicherheitsbegriffe

Wie wir gesehen haben, muss fiir die Benutzung eines informationstheoretisch sicheren
Kryptosystems ein immenser Aufwand betrieben werden. Daher begniigt man sich in der
Praxis meist mit schwécheren Sicherheitsanforderungen.

— Ein Kryptosystem gilt als komplexitatstheoretisch sicher oder als berech-
nungssicher (computationally secure), falls es dem Gegner nicht moglich ist,
das System mit einem fiir ihn lohnenswerten Aufwand zu brechen. Das heifit, der
Zeitaufwand und die Kosten fiir einen erfolgreichen Angriff (sofern er iiberhaupt
moglich ist) iibersteigen den potentiellen Nutzen bei weitem.

— FEin Kryptosystem gilt als nachweisbar sicher (provably secure), wenn seine
Sicherheit mit bekannten komplexitdtstheoretischen Hypothesen verkntipft werden
kann, deren Giltigkeit gemeinhin akzeptiert wird.

— Als praktisch sicher (practically secure) werden dagegen Kryptosysteme ein-
gestuft, die iber mehrere Jahre hinweg jedem Versuch einer erfolgreichen Krypto-
analyse widerstehen konnten, obwohl sie bereits eine weite Verbreitung gefunden
haben und allein schon deshalb ein lohnenswertes Ziel fiir einen Angriff darstellen.
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Die komplexitéatstheoretische Analyse eines Kryptosystems ist duflerst schwierig. Dies
héngt damit zusammen, dafl der Aufwand eines erfolgreichen Angriffs unabhéngig von
der vom Gegner angewandten Strategie abgeschétzt werden muss. Das heift, es miissen
nicht nur alle derzeit bekannten kryptoanalytischen Ansétze, sondern alle mdglichen in
Betracht gezogen werden. Dabei darf sich die Aufwandsanalyse nicht ausschlieilich an
einer vollstdndigen Rekonstruktion des Klartextes orientieren, da bereits ein geringfiigiger
Unterschied zwischen dem a posteriori und dem a priori Wissen fiir den Gegner einen
Vorteil bedeuten kann.

Aus den genannten Griinden ist es bis heute noch fiir kein praktikables Kryptosystem
gelungen, seine komplexitatstheoretische Sicherheit mathematisch zu beweisen. Damit
ist auch nicht so schnell zu rechnen, zumindest nicht solange der Status fundamentaler
komplexitatstheoretischer Fragen wie etwa des beriithmten PZNP-Problems offen ist.
Dagegen gibt es eine ganze Reihe praktikabler Kryptosysteme, die als nachweisbar sicher
oder praktisch sicher gelten.

Wir schlieen diesen Abschnitt mit einer Prézisierung des komplexitéitstheoretischen
Sicherheitsbegriffs, die unter dem Namen IND-CPA (indistinguishability under a chosen-
plaintext attack) bekannt ist. Hierzu ist es erforderlich, die Verletzung der Vertraulichkeit
als ein algorithmisches Problem fiir den Gegner zu formulieren.

Definition 87 (Vorteil eines Gegners). Sei (M,C,E, D, K) ein Kryptosystem mit
Schliisselgenerator S. Ein Gegner ist ein Paar G = (X, V') von probabilistischen Algo-
rithmen, wobei X = (Xg, X1) zwei Klartexte xy # x1 € M generiert und V bei Fingabe
zweter Klartexte xg,x1 € M und eines Kryptotextes y € C' ein Bit ausgibt. Der Vorteil
von G ist

ag = Pr[V(Xo, X1, E(S, X)) = B] — 1/2,

wobei B eine auf {0,1} gleichverteilte Zufallsvariable ist (d.h. Pr[B = 0] = Pr[B = 1] =
1/2), die von X und V' stochastisch unabhdingig ist.

Wird bspw. eine Blockchiffre zur Verschliisselung von Klartextblocken z[1], z[2], ...
benutzt, indem die einzelnen Blocke unabhéngig voneinander mit demselben Schliissel &
zu einer Folge y[1],y[2],... von Kryptotextblocken y[i] = E(k, z[i]) verschliisselt werden
(so genannter ECB-Mode; electronic code book mode), so kann ein Gegner ohne grofien
Aufwand einen Vorteil von 1/2 erzielen. Hierzu wahlt er (deterministisch) zwei beliebige
Klartexte xg = z[1]oz[2]o ... und z; = z[1];2[2]; ... mit der Eigenschaft z[1]y = x[2]o
und z[1]; # z[2];. Dann kann er bei Vorlage eines Kryptotextes y = y[1|y[2]... leicht
erkennen, aus welchem der beiden Klartexte sie generiert wurde:

0, y[1] = y[2]
1, sonst.

V($07$1,y> = {

Satz 88. Bei einem absolut sicheren Kryptosystem kann kein Gegner einen Vorteil grofier
als 0 erzielen.

Beweis. Bei einem absolut sicheren Kryptosystem sind der Kryptotext Y = E(S5, X)
und der Klartext X stochastisch unabhéngig. Daher sind auch die Zufallsvariablen
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V(Xo, X1, E(S, Xp)) und B stochastisch unabhéngig und es folgt

Pr[V(Xo, X1, E(S,XB)) =B

= Pr[V(Xo, X1, E(S, X)) = B = 0] + Pr[V(Xo, X1, E(S, X)) = B = 1]
= Pr[V(Xo, X1, E(S, X)) = 0] - Pr[B = 0 | V(Xo, X1, E(S, X5)) = 0]
= Pr[B=0] =1/2
+ Pr[V(Xo, X1, E(S, X5)) = 1] - Pr[B = 1 | V(Xo, X1, E(S, X)) = 1]
=Pr[B=1]=1/2

= 1/2.
O

In den Ubungen wird auch die umgekehrte Implikation bewiesen. Ein Kryptosystem ist
somit genau dann absolut sicher, wenn kein Gegner einen Vorteil grofler 0 erzielt. Fiir
die Prézisierung des komplexitétstheoretischen Sicherheitsbegriffs sind nun die beiden
folgenden Fragen von entscheidender Bedeutung:

— Uber welche Rechenressourcen verfiigt ein Gegner realistischerweise?

— Wie grofl darf der vom Gegner erzielte Vorteil hochstens sein, damit die Vertrau-
lichkeit der Nachricht noch gewahrt bleibt?

Eine Antwort auf diese Fragen liefert Definition 89. Dabei gehen wir davon aus, dass
das gewtlinschte Mafl an Sicherheit durch einen Parameter s € N regulierbar ist. Aus
Praktikabilitatsgriinden sollten dann alle legalen Operationen (wie die Chiffrierung oder
die Schliisselgenerierung) effizient (d.h. in Zeit s®*)) durchfiihrbar sein. Natiirlich hingt
dann auch der Gegner G* vom Parameterwert s ab. Typischerweise werden Kryptosysteme
nach ihrer Schliissellange s = |k| parameterisiert.

Definition 89 (komplexitatstheoretisch sicher). Sei S ein Kryptosystem mit varia-
blem Sicherheitsparameter s € N.

— Fine Funktion € : N — R heifst vernachldssigbar, wenn fiir jedes Polynom p eine
Zahl ng € N ezistiert, so dass e(n) < 1/p(n) fir alle n > ny ist.

— Ein Gegner G* = (X*,V*), s € N, heifst effizient, wenn sowohl das Klartextpaar
X als auch V* durch probabilistische Schaltkreise der Grifie s°Y) berechenbar sind.

— Das Kryptosystem S heifst komplexititstheoretisch sicher, wenn jeder effiziente
Gegner G* nur einen vernachlassigbaren Vorteil erzielen kann (d.h. die Funktion
s+ ags ist vernachldssigbar).
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4 Moderne symmetrische Kryptosysteme & ihre
Analyse

4.1 Produktchiffren

Produktchiffren erhdlt man durch die sequentielle Anwendung mehrerer Verschliisse-
lungsverfahren. Sie konnen extrem schwer zu brechen sein, auch wenn die einzelnen
Komponenten leicht zu brechen sind.

Definition 90 (Produktkryptosystem). Seien Sy = (M, Cy, Ey, D1, K;y) und Sy =
(Ms, Cy, B, Do, K3) Kryptosysteme mit Cy = My. Dann ist das Produktkryptosystem
von Sy und Sy definiert als S; X Sy = (My,Cy, E, D, K; X K3) mit

E(ky, ko x) = Ea(ka, Er(k1, @) und D(ky, kas y) = Di(k1, Da(ka, )
fiir alle x € My, y € Cy und (k1, ko) € Ky X K.

Der Schliisselraum von S; x Sy umfasst also alle Paare (ki, ky) von Schlisseln ky € K
und ky € K5, wobei wir voraussetzen, dass die Schliissel unabhéngig gewéhlt werden (d.h.

es gilt p(k1, k2) = p(k1)p(k2)).

Beispiel 91. Sei A = {ag,...,am-1}. Man sieht leicht, dass die affine Chiffre S =
(M,C,K,E,D) mit M =C = A und K =7}, X Ly, das Produkt S = Sy x Sy der multipli-
kativen Chiffre S1 = (M, C, K1, E1, D1) mit der additiven Chiffre Sy = (M, C, Ky, E5, Ds)
ist, da fir jeden Schlissel k = (k1,ks) € K = Ky X Ky =75, X Loy, gilt:

E(lﬁl’) = kll’ + /{32 = EQ(kQ, El(k:l,x)).

Fir 8" = Sy x Sy erhalten wir das Kryptosystem S' = (M,C,K',E',D") mit K' =
KQXKlZZmXZ:l und

El(kg, kl, iIZ') = ]{]1<SC + kz) = kll' + klkg = E(kl, klkz; l’)
fir jeden Schlissel (ko, k1) € K'. Da die Abbildung
(Ko, k1) — (Ko, kik2)

eine Bijektion zwischen den Schlisselraumen K' und K ist und der Schlissel (ka, ki) im
System S’ die gleiche Chiffrierfunktion realisiert wie der Schlissel (ks, kiks) in S, sind
die Kryptosysteme S = Sy X Sy und S" = Sy x Sy als gleich (genauer: dquivalent, siehe
Ubungen) anzusehen, d.h. S1 und Sy kommutieren. N

Definition 92 (endomorph, idempotent). Ein Kryptosystem S = (M,C, K, D, E)
mit M = C heifit endomorph. Ein endomorphes Kryptosystem S heifst itdempotent,
falls S x S =S ist.

Beispiel 93. Fine leichte Rechnung zeigt, dass die additive, die multiplikative und die
affine Chiffre idempotent sind. Ebenso die Blocktransposition sowie die Vigenére- und

Hill-Chiffre. <
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Will man durch mehrmalige Anwendung (Iteration) derselben Chiffriermethode eine
hohere Sicherheit erreichen, so darf diese nicht idempotent sein. Man kann beispielsweise
versuchen, ein nicht idempotentes System S durch die Kombination S = S} x Sy zweier
idempotenter Verfahren S7 und Sy zu erhalten. Da S im Fall S; x Sy = S5 x S; wegen

(S1 X S3) x (S1 xS3) = Spx(S2xS57) xS,
= 51 % (S X S3) X Sy
= (51 x S1) x (Sg x S)
= 5 x5

idempotent ist, diirfen hierbei S; und Ss jedoch nicht kommutieren.

Im Rest dieses Kapitels werden wir nur noch das Binaralphabet A = {0, 1} als Klar- und
Kryptotextalphabet benutzen und auch der Schliisselraum wird von der Form {0, 1}*
sein, wobei k die Schliissellinge bezeichnet.

Eine iterierte Blockchiffre wird typischerweise durch eine Rundenfunktion (round
function) g und einen Schliisselgenerator (key schedule algorithm) f beschrieben.
Ist N die Rundenzahl, so erzeugt f bei Eingabe eines Schliissels K eine Folge
f(K)=(K',...,K") von N Rundenschliisseln K fiir g. Mit diesen wird ein Klartext
x = w° durch N-malige Anwendung der Rundenfunktion g zu einem Kryptotext y = w®
verschliisselt:

w? = g(KN, wN™1)
Um y wieder zu entschliisseln, muss die inverse Rundenfunktion ¢g~! mit umgekehrter
Rundenschliisselfolge KV, ..., K benutzt werden:

wN1 = g (KN, wh)

w = g (K, wh)
Beispiele fiir iterierte Chiffren sind der aus 16 Runden bestehende DES-Algorithmus und
der AES mit einer variablen Rundenzahl N € {10, 12, 14}, die wir in spateren Abschnitten
behandeln werden.

4.2 Substitutions-Permutations-Netzwerke

In diesem Abschnitt betrachten wir den prinzipiellen Aufbau von iterierten Blockchiffren.
Als Basisbausteine fiir die Rundenfunktion eignen sich Substitutionen und Transpositionen
besonders gut. Aus Effizienzgriinden sollten die Substitutionen nur eine relativ kleine
Blocklange [ haben.

Definition 94 (Teilwort). Fir ein Wort u = uy---u, € {0,1}" und Indizes 1 < i <
J < n bezeichne uli,j| das Teilwort u;---u; von w. Im Fall n = Ilm bezeichnen wir
das Teilwort u[(i — 1)l 4 1,4l] auch einfach mit ugy, d.h. es gilt uw = @) - - - Uy, wobel
lu| = 1.

Sei ag : {0,1} — {0, 1}" eine Substitution, die Bindrblocke u der Lange [ in Bindrblocke
v = ag(u) der Lange I’ iiberfithrt (engl. auch als S-Box bezeichnet).
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Uy Uz U3z Ug

/ S-Box \

V1 V2 V3 Vg4 Vs Vg

Durch parallele Anwendung von m dieser S-Boxen erhalten wir folgende Substitution
S {0,1}™ — {0,1}'™,

Suy - um) = as(uy) - as(Ugm))-

Fiir die Speicherung einer S-Box ag : {0, 1} — {0,1}" auf einem Speicherchip werden
I'2! Bit Speicherplatz bendtigt (im Fall [ = I’ also 12! Bit). Fiir [ = I’ = 16 wéren dies
beispielsweise 2%° Bit, was Smartcard-Anwendungen bereits ausschlieen wiirde.

Fiir eine Transposition P auf {0, 1}™ bezeichnen wir die zugehérige Permutation auf
{1,...,Im} mit 7p, d.h.

P(ui - tm) = Urp(1) -+ Unp(m)-

Definition 95 (Substitutions-Permutations-Netzwerk). Sei M = C = {0, 1}'™ fiir
natirliche Zahlen [,m > 1. Ein Substitutions- Permutations-Netzwerk (SPN) wird
durch Permutationen mg : {0, 1} — {0, 1} und 7p : {1,...,Im} — {1,...,Im} sowie
durch einen Schliisselgenerator f : {0, 1}* — {0, 1}™N+1) beschrieben. Der Generator f
erzeugt aus einem (externen) Schliissel K € {0,1}* eine Folge f(K) = (K*',..., KN
von N +1 Rundenschliisseln K", unter denen ein Klartext x € {0, 1}'™ gemdp folgendem
Algorithmus in einen Kryptotext y = Ef o »p (K, x) € {0, 1}'™ dberfihrt wird.

Chiffrierfunktion E ., ..(K, )
0

Low? =
2> for r:=1to N—1 do
3 ui=w e KT

4 v = S(u")

5 w” = P(v")

o ulN =wNte KN

- oV = S)

sy i=oN @ KN

Zu Beginn jeder Runde r € {1,..., N} wird w"~! zunéchst einer XOR-Operation mit dem
Rundenschliissel K" unterworfen (dies wird round key mixing genannt), deren Resultat
u” den S-Boxen zugefiihrt wird. Auf die Ausgabe v" der S-Boxen wird in jeder Runde
r < N — 1 die Transposition P angewendet, was die Eingabe w" fiir die nachste Runde
r + 1 liefert.

Am Ende der letzten Runde » = N wird nicht die Transposition P angewandt, sondern der
Rundenschliissel KV +1 auf vV addiert. Durch diese (whitening genannte) Vorgehensweise
wird einerseits erreicht, dass auch fiir den letzten Chiffrierschritt der Schlissel ben6tigt
und somit der Gegner von einer partiellen Entschliisselung des Kryptotexts abgehalten
wird. Zum Zweiten ermoglicht dies eine (legale) Entschliisselung nach fast demselben
Verfahren (siehe Ubungen).
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Abbildung 4.1: Ein Substitutions-Permutations-Netzwerk.

Beispiel 96. Seil =m = N =4 und sei k = 32. Fir f wdihlen wir die Funktion f(K) =
(K',...,K®) mit K" = K[4(r — 1)+ 1,4(r — 1) + 16]. Weiter seien g : {0,1}* — {0,1}*
und mp : {1,...,16} — {1,...,16} die folgenden Permutationen (wobei die Argumente
und Werte von g hexadezimal dargestellt sind; siehe auch Abbildung /.1):

z 01 2 345 6 789 ABCCDFEF
ms(z)|E 4 D1 2 F B8 3 A6 C 5 9 0 7
und
1 1 23 4 56 7 8 9 10 11 12 13 14 15 16
mp(i)|1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Fiir den Schlissel K = 0011101010010100110101100011 1111 liefert f beispiclsweise
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die Rundenschlissel f(K) = (K',..., K°) mit

K' = 001110101001 0100,
K? =10101001 01001101,
K3 =1001010011010110,
K*=0100110101100011,
K®=110101100011 1111,

unter denen der Klartext x = 001001101011 0111 die folgenden Chiffrierschritte durch-
lauft:
x = 0010011010110111 = w®

w® @ K' = 0001110000100011 = u!
S(u') = 010001011101 0001 = v!
P(v') = 0010111000000111 = w?

P(v3) = 1110010001101110 = w?®
w? @ K* = 10101001 00001101 = u*
S(u*) = 011010101110 1001 = v*
u* @ K° =101111001101 0110 = y.

4.3 Lineare Approximationen

Sei f:{0,1}' = {0,1}" eine Abbildung. Wihlen wir fiir f eine zufillige Eingabe U =
Uy - - - U; unter Gleichverteilung, so gilt fir die zugehorige Ausgabe V = f(U) =V; -V,
1 mg(u) =,

0 sonst

Pr[V:v|U:u]:{

fiir alle u € {0,1}' und v € {0, 1}". Wegen Pr[U = u] = 27! folgt

Pr[V=v,U=u]= {Q_Z ms(u) = v,

0 sonst.
Ist f linear, so sind die Zufallsvariablen V; in der Form
Vi=U,@---0U,
fiir geeignete Indizes 1 < iy < --- < i3 < [ darstellbar. Die Idee hinter der linearen
Kryptoanalyse ist nun, Gleichungen der Form
Vy@-- 0oV, =U,@® - aU, dc

mit 1 <4 << <, 1 <7 < <jp <U'und ¢ € {0,1} zu finden, die mit
groBer Wahrscheinlichkeit gelten. Definieren wir fiir a € {0,1} und b € {0,1}" die
Zufallsvariablen

l 4
Ua = @aZUZ und ‘/b = @bz‘/za
i=1 i=1
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so sind wir also an solchen Werten fiir a und b interessiert, fiir die das Ereignis V,, =
U, (oder gleichbedeutend: U, &V}, = 0) eine moglichst grofie oder moglichst kleine
Wahrscheinlichkeit besitzt. In beiden Féllen lasst sich ndmlich der Wert von V, in
Abhéangigkeit von U, relativ gut vorhersagen. Die durch das Paar (a,b) beschriebene
lineare Approximation U, @V} ist also um so besser, je stiarker die Wahrscheinlichkeit
Pr[U, & Vi, = 0] von 1/, abweicht.

Definition 97. Fir eine Zufallsvariable X mit Wertebereich W (X) = {0,1} bezeichne
e(X) den Wert e(X) = Pr[X = 0] — 1/, (auch Bias von X genannt).

Unter Benutzung dieser Notation lésst sich also die Giite einer linearen Approximation
U, &V}, durch den Absolutbetrag |e(U, & V;)| ihres Bias-Wertes bemessen.

Beispiel 98. Wir betrachten die S-Boz s : {0,1}* — {0,1}* aus Beispiel 96. Dann
nimmt die Zufallsvariable (Uy, ..., Uy, Vi,..., V) die folgenden 16 Werte jeweils mit
Wahrscheinlichkeit 2=% = 1/ an.

Uy Uy Us Up Vi Vo V3 Vy Us@Us® Vi@V,

o 0 0 o 1 1 1 0 1
o 0 0 1 0 1 0 0 1
o 0 1 0 1 1 0 1 1
o 0 1 1 0 0 0 1 1
o 1 0 0 0 0 1 0 0
o 1 o0 1 1 1 1 1 1
o 1 1 0 1 0 1 1 1
o 1 1 1 1 0 0 O 1
1 0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 O 0
1 0 1 0 0 1 1 O 1
1 0 1 1 1 1 0 O 1
11 0 0 O 1 0 1 1
11 0 1 1 0 0 1 1
11 1 0 0 0 0 O 1
11 1 1 0 1 1 1 1

Um nun (U, & V4) zu berechnen, gentigt es, die Anzahl L(a,b) der Zeilen zu bestimmen,
fir die U, =V}, ist. Dann gilt Pr[U, &V, = 0] = Pr[U, = V| = L(a,b)/16 und somit

(U, ® V) = L(a,b)/16 — 1/2 = (L(a,b) — 8)/16.

Fiir a = 0011 und b = 1001 g¢ibt es z.B. L(a,b) = 2 Zeilen (Zeile 5 und Zeile 10) mit
Ua = U3@U4 == VE; = V1 @‘/47 d.h. €(U3@U4@‘/1 @‘/4) = (L(a,b) —8)/16 = —3/8. Die
folgende Tabelle zeigt fiir alle Werte von a und b (hezadezimal dargestellt) die Anzahlen
L(a,b).
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b
a 0 123 45 6 7 8 9A B C D E F
016 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 86 6 8 8 6 14 10 10 8 8 10 10 8 8
2 8 86 6 88 6 6 8 81010 8 8 210
3 8 888 8 8 8 810 2 6 6 10 10 6 6
4 810 8 6 6 4 6

8§ & 6 8 10 10 4 10 8
B 812 8 412 812 8 8 8 8 & & 8 & 8

F 8 6 46 6 810 8 8 612 6 6 8 10 8

4.4 Lineare Kryptoanalyse eines SPN

Wir betrachten nun das SPN aus Beispiel 96 und fithren eine lineare Kryptoanalyse
durch. Dabei handelt es sich um einen Angriff bei bekanntem Klartext, d.h. es steht
eine Menge M von t Klartext-Kryptotext-Paaren (z,y) zur Verfiigung, die alle mit dem
gleichen unbekannten Schliissel K erzeugt wurden.

Seien K',..., K° die zu K gehérigen Rundenschliissel (diese sind wie K unbekannt, aber
konstant). Das Ziel besteht zunichst einmal darin, eine lineare Approximation fiir die Ab-
bildung = ~ u* zu finden, bei der nur die ersten vier Rundenschliissel K*, ..., K* benutzt
werden (siehe Abbildung 4.2). Hierzu verwenden wir die beiden linearen Approximationen

T:Ul@Ug@U4@‘/2 und T/:UQ@‘/Q@W

an die S-Box S mit den Bias-Werten ¢(7T") = (L(B,4) — 8)/16 = (12 — 8)/16 = 1/, und
e(T") = (L(4,5) — 8)/16 = (4 — 8)/16 = 1/, (also Pr[T' = 0] = Pr[T" = 1] = 3/4).

Konkret verwenden wir T fiir die S-Box 53,
T,=UleoUleoUlo V]
und 7" fiir die drei S-Boxen Sz, S5, S3,
L=UieVgeVy, Th=UieVieVd T.=UjeVie Vi

Nun schalten wir diese vier linearen Approximationen an die S-Boxen Si, S3, S5 und
S3% zu einer linearen Approximation X, @ Uy an die Abbildung x +— u* zusammen und
erhalten fiir ein Bit ¢ € {0,1} die Gleichung

X0 X0 XgoUs0Us o U oUy=T10TLoToTidc (1)
=X, fiir a=0B00 —U fitr b=0505

An dieser Stelle ergeben sich nun folgende drei Fragen.
1. Warum gilt (4.1)7
2. Wie gut ist die lineare Approximation X, @ U an die Abbildung x — u*?

3. Wie konnen wir mit ihrer Hilfe einzelne Schlusselbits bestimmen?
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Abbildung 4.2: Eine lineare Approximation an ein Substitutions-Permutations-Netzwerk.

Wir gehen zunéchst auf Frage 1 ein. Seien ¢y, ..., ¢4 die Schliisselbitsummen
a=K oK &K}, =K cs=K,®K},, ca=K;dKsdK] DK

(man beachte, dass die Schlusselbits K] konstant sind) und sei ¢ = ¢; @ ¢2 @ ¢3 @ ¢4. Dann
gilt

X X7 Xg = Ug@U%@Ugl@cl

= TieVidag

= TeaWida

= TVOUZ®c1 Doy

= T1eLhdoVioVeada
T, dWERWE der®e
TeThoUd U, der & cy® s
eheleTue Ve Ve Vo Vida ®condc
TiehohholhoWaWsaW,eWhd®o ®cdc
= ohohoTioUioUioULeoUida®andada

C
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Nun zu Frage 2: Waren die Zufallsvariablen 77, ..., Ty unabhéngig, so wiirde uns das
folgende Piling-up-Lemma den Bias-Wert 23(1/4)(—1/4)* = —1/32 fiir deren Summe
Ty @®---® Ty und somit den Bias-Wert (—1)¢*!/32 fiir die lineare Approximation X, ® U
liefern. Sind namlich X, Xy unabhéngige Zufallsvariablen mit Wertebereich W (X;) =
{0,1} und Bias ¢; = £(X;), dann ist

PI'[Xl D X2 = 0] = PI‘[Xl = XQ = O] + Pl"[Xl = X2 = 1]
= (hte)(loter) + (1a—e)(ta— &)
o+ 26169

und Pr[X; & Xy = 1] = 1/, — 2e169, d.h. es gilt e(X; & X3) = 2e165. Diese Beobachtung
lasst sich leicht verallgemeinern.
Lemma 99 (Piling-up Lemma).
Seien X1, ..., X, unabhdingige {0, 1}-wertige Zufallsvariablen mit Bias ¢; = £(X;). Dann
qgilt
X @@ X,) =2""1 H&v
i=1

Beweis. Wir fuhren den Beweis durch Induktion iiber n.
Induktionsanfang (n = 1): Klar.

Induktionsschritt (n ~ n + 1): Nach Induktionsvoraussetzung hat die Zufallsvariable
Z=X,® - ®X, den Bias e(Z) = 2" '¢(X}) - - - £(X,,) und daher folgt

eE(Xi® - ® Xpq1) =e(Z ® Xny1) = 26(Z)ent1 = 2"1 - Enpa

O

Beispiel 100. Seien X, Xo, X3 paarweise unabhdingige Zufallsvariablen mit (X;) = 1/,
firi=1,2,3. Dann liefert das Piling-up Lemma die Bias-Werte e(X; ® X;) = 1/ fir
1 <i<j<3. Man beachte, dass die Zufallsvariablen Y = X1 ® Xy und Z = Xy ® X3
nicht unabhdngig sind und somit das Piling-up-Lemma in diesem Fall nicht anwendbar
ist. Dieses wiirde niamlich fiir Y @& Z einen Bias-Wert von 2(1/5)* = 1/55 ergeben, wogegen

YOZ=(X1dXs)®(Xo® X3) =X D X5
und daher (Y & Z) = (X1 ® X3) = 15 ist. N

Zwar sind die Zufallsvariablen T}, aus denen eine lineare Approximation X, @ Uj¥ =
Ty ®---® Ty ®can die Abbildung z — u gebildet wird, in der Regel nicht unabhingig.
Dennoch zeigt sich in praktischen Anwendungen, dass der Bias-Wert e(T; @ - - - @ T)
von T} @ - -- @ T}, meist nicht zu sehr von dem “hypothetischen” Wert 2+~1 Hle e(Ty)
abweicht, welcher sich aus dem Piling-up Lemma ergeben wiirde. Daher konnen wir

e(Xopoo ® Upsgs) = (—1)°1/32 bzw. Pr[Usses = Xopoo @ c® 1] =~ 1/2 +1/32

annehmen.
Und schliellich zu Frage 3:

Wir wissen bereits, dass ein zufilliger Klartext X entweder mit hoher (falls ¢ = 1 ist)
oder mit niedriger Wahrscheinlichkeit (falls ¢ = 0 ist) auf ein Zwischenresultat U? mit

Xs0X: 0 Xs0Us @U@ UL UL =0 (4.2)
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fithrt. Gehen wir also davon aus, dass M eine reprisentative Auswahl von Klartext-
Kryptotext-Paaren (x,y) darstellt, so wird die Anzahl der Paare (z,y) in M, die (4.2)
erfiillen, ebenfalls eine Mehrheit oder eine Minderheit in M bilden. Man beachte, dass
sich fiir jeden Subschliissel-Kandidaten (engl. candidate subkey) (L1, Lg) fiir (Kfy), K()))
die zu einem Kryptotext y gehorigen Werte ug, ug, ui, und ufs leicht berechnen lassen,
da 75! bekannt ist.

Die Idee besteht nun darin, fir jeden Kandidaten (L, Ls) die Anzahl a(Ly, Ly) aller
Paare (z,y) in M zu bestimmen, fir die der Kandidat (Ly, Ly) die Gleichung (4.2) erfillt.
Fiir den richtigen Subschliissel (Ly, Lo) wird diese Anzahl ungefahr bei t/, £ t/3, liegen,
wogegen bei einem falschen Subschliissel (L, Ly) mit einer Anzahl von circa t/, zu rechnen
ist. Fiir geniigend grofe Werte von ¢ lassen sich auf diese Weise 8 Bit von K®° (und damit
von K) bestimmen.

Algorithmus LINEARATTACK

1 for (Li,Ls):=(0,0) to (F,F) do

2 Oé(Ll, LQ) =0

3 for each (z,y) € M do

4 for (L, Ls) :=(0,0) to (F,F) do
5 U?Q) =L @y

6 Uél) = LQ @D y(4)

7 uj(?) = W%i(v?))

. Ugy = Tg (0(4))

9 if x5 ® vy B 8 B ug B us B uy dulg =0 then
10 Oé(Ll, LQ) = Oé(Ll, LQ) +1

11 mazr = —1

12 for (Ly, Ls):=(0,0) to (F,F) do

5 B(Ly, Le) == |a(Ly, La) — t/y|

14 if B(Ly, Ly) > max then
15 max = (L1, Ls)

16 mazxkey := (L1, La)

17 output (maxkey)

Im allgemeinen werden fiir eine erfolgreiche lineare Attacke circa t ~ ce~2 Klartext-
Kryptotext-Paare benotigt, wobei ¢ eine ,kleine“ Konstante ist (im Beispielfall reichen
t ~ 8000 Paare, d.h. c ~ 8, da e72 = 1024 ist).

4.5 Differentielle Kryptoanalyse von SPNs

Bei der differentiellen Kryptoanalyse handelt es sich um einen Angriff bei frei wahlba-
rem Klartext. Genauer gesagt, basiert der Angriff auf einer Menge M von t Klartext-
Kryptotext-Doppelpaaren (z,x*,y,y*) mit der Eigenschaft, dass alle Klartext-Paare
(x,z*) die gleiche Differenz 2’ = x @ z* bilden.

Definition 101 (Eingabe- und Ausgabedifferenz). Seien u,u* € {0,1}! zwei Ein-
gaben fiir eine S-Box mg : {0,1} — {0,1} und seien v = 7g(u) und v* = wg(u*) die
zugehorigen Ausgaben. Dann wird u' = u ® u* die EFingabedifferenz (engl. input-zor)
und v = mg(u) @ s(u*) die Ausgabedifferenz (engl. output-zor) des Paares (u,u*)
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genannt. Fiir eine vorgegebene Eingabedifferenz a’ € {0,1}'} sei weiter
A(d) = {(u,u*) |u,u* € {0, 1} udu* =d'} = {(u,u®d) |ue{01}}

die Menge aller Eingabepaare, die die Differenz o realisieren.

Berechnen wir fiir alle Eingabepaare (u,u*) € A(a’) die zugehorigen Ausgabedifferenzen,
so verteilen sich diese mehr oder weniger gleichmaBig auf die 2° moglichen Werte in
{0,1}". Man beachte, dass im Fall einer affinen S-Box nur die Ausgabedifferenz 7g(a’)
auftritt, da dann 7g(u) @ mg(u*) = mg(udu*) ist. Ist dagegen mg nicht linear, so kann die
Eingabedifferenz o’ auf unterschiedliche Ausgabedifferenzen fiithren, je nachdem, durch
welches Eingabepaar (u, u*) € A(a’) die Differenz a’ realisiert wird. Im Allgemeinen lasst
sich eine differentielle Kryptoanalyse um so leichter durchfithren, je ungleichmafiger die
auftretenden Ausgabedifferenzen verteilt sind.

Definition 102 (Differential, Weitergabequotient). Sei a’ € {0,1}' eine Eingabe-
und sei ' € {0,1}" eine Ausgabedifferenz fiir eine S-Box mg. Dann heift (a/,V') Diffe-
rential. Die Anzahl der Eingabepaare (u,u*), die die Fingabedifferenz a' in die Ausgabe-
differenz b uberfiihren, bezeichnen wir mit D(a’, V'), d.h.

D(d’, V) = [{(u,u") € Ad) | ms(u) ® ms(u”) = V'}].
Der Weitergabequotient (engl. propagation ratio) von wg fir ein Differential (a’,b') ist

D(d b
Q(a/,b,) — (2l )
Q(a', V) ist also die (bedingte) Wahrscheinlichkeit

N\ 1l x
Prirs(U) & ns(U*) = b |UGjU =d],
v/ '

dass zwei zufillig gewédhlte Eingaben U und U* die Ausgabedifferenz V' = b’ erzeugen,
wenn sie die Eingabedifferenz U’ = a' haben.

Beispiel 103. Betrachten wir die S-Box ws : {0,1}* — {0,1}* aus Beispiel 96, so
erhalten wir fir die Fingabedifferenz ' = 1011 die Menge

A(d’) = {(0000,1011), ..., (1111,0100)}

von méglichen Eingabepaaren, die auf folgende Ausgabedifferenzen v' = v @ v* = mg(u) @
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ms(u*) fihren:

U u* v v* v’

0000 1011 1110 1100 0010
0001 1010 0100 0110 0010
0010 1001 1101 1010 0111
0011 1000 0001 0011 0010
0100 1111 0010 0111 0101
0101 1110 1111 0000 1111
0110 1101 1011 1001 0010
0111 1100 1000 0101 1101
1000 0011 0011 0001 0010
1001 0010 1010 1101 0111
1010 0001 0110 0100 0010
1011 0000 1100 1110 0010
1100 0111 0101 1000 1101
1101 0110 1001 1011 0010
1110 0101 0000 1111 1111
1111 0100 0111 0010 0101

Die Ausgabedifferenz v = 0010 kommt also D(a’,0010) = 8 Mal vor, wéihrend die
Differenzen 0101, 0111, 1101 und 1111 je zwei Mal und die tibrigen Werte tiberhaupt nicht
vorkommen (siehe Zeile B in nachfolgender Tabelle). Fihren wir diese Berechnungen fir
jede der 2* = 16 Eingabedifferenzen o’ € {0,1}* aus, so erhalten wir die folgenden Werte
fiir die Haufigkeiten D(a’,b") der Ausgabedifferenz b/ bei Fingabedifferenz a' (a' und V/
sind hexadezimal dargestellt):

a’ v
0123456789 A BCDFEF
0O 16 0O 0O OOOO0O0OOODOO0O OO0 00
1 0 0020002024 0 4 2 00
2 0 00206 22020 0 0 0 2 0
3 0 0202000042 0 2 0 0 4

B 0 080020200000 2 0 2

F 0 2006000040 2 00 20

N

Kénnen wir nun in einem SPN fiir bestimmte S-Boxen S; Differentiale (a}, b}) finden, so
dass die Eingabedifferenz dieser Differentiale mit der (permutierten) Ausgabedifferenz der
Differentiale in der jeweils vorhergehenden Runde iibereinstimmt (siehe Abbildung 4.3), so
kénnen wir diese Differentiale zu einer so genannten Differentialspur (engl. differential
trail) zusammen setzen. Unter der Annahme, dass die Ereignisse, ob die ausgewéhlten S-
Boxen S; (diese werden auch als aktiv bezeichnet) den zugeordneten Differentialen (a, b))

folgen, unabhangig voneinander eintreten, berechnet sich der Weitergabequotient der
Spur als das Produkt der Weitergabequotienten der beteiligten Differentiale. Obwohl diese
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Annahme i.a. nicht zutrifft, treten in praktischen Anwendungen kaum grofie Abweichungen
von diesem hypothetischen Wert auf.

Beispiel 104. Betrachten wir das SPN aus Beispiel 96, so lassen sich folgende Differen-

tiale zu einer Spur fiir die Abbildung x — u* kombinieren (siche auch Abbildung 4.3):
Fiir Si: das Differential (1011,0010) = (B, 2) mit Q(B,2) = 1,
fiir S3: das Differential (0100,0110) = (4, 6) mit Q(4,6) = 3/s und
fiir S3 und S3: das Differential (0010,0101) = (2,5) mit Q(2,5) = 3/s.
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Abbildung 4.3: Eine Differentialspur fiir ein Substitutions-Permutations-Netzwerk.

Gemdfs dieser Spur fiihrt also die Klartextdifferenz
2’ = 00001011 0000 0000
mit hypothetischer Wahrscheinlichkeit 1/5(3/5) = 27/,004 & 0,026 auf die Differenz
(v*)" = 00000101 0101 0000,
welche wiederum mit Wahrscheinlichkeit 1 auf die Differenz

(u*)’ = 000001100000 0110
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fiihrt. Das Differential
(a’,b") = (00001011 0000 0000, 0000 01100000 0110)

fiir die Abbildung x — u* hat also einen hypothetischen Weitergabequotienten von & =
Qd', ') = 27/1994. q

Sei nun (a’,V’) ein Differential fiir die Abbildung x — u* mit einem hypothetischen
Weitergabequotienten € = Q(a’, b'"). Weiter sei M eine Menge von t Klartext-Kryptotext-
Doppelpaaren (z, x*,y, y*), die alle mit dem gleichen unbekannten Schliissel K erzeugt
wurden und zusétzlich die Eigenschaft haben, dass die Klartextdifferenz 2’ = = & 2* = o’
ist. Dann wird ca. ein e-Anteil dieser Doppelpaare der vorgegebenen Differentialspur
folgen und daher bei Verschliisselung mit K Zwischenergebnisse u* und (u*)* liefern, die
die Differenz
(u4)/ _ u4 D (u4)* — b/

aufweisen. Doppelpaare mit dieser Eigenschaft werden richtige Doppelpaare (fir das
Differential (a’,V’)) genannt. Ein Grofiteil der falschen Doppelpaare lasst sich daran
erkennen, dass die Kryptotext-Differenzen nicht die erwarteten 0'-Blécke aufweisen (im
aktuellen Beispiel sind dies die Blocke yEl) und y23)>‘ Es empfiehlt sich, diese Doppelpaare
auszufiltern, da sie (wie alle falschen Doppelpaare) nur , Hintergrundrauschen® erzeugen
und somit die Bestimmung des Schliissels eher behindern.

Beobachtung 105. Fir die Ausgabe v, der S-Box S}¥ in Runde N gilt
N N+1
Vi) = Yo O K"
und die Bingabe ufjy der S-Box S} in Runde N ist

uly =75 () = 5 (yo & KHH

N
Uz
gN
N
V(i)
N+1
K
Y(i)

Falls die S-Box SN nicht affin ist, hingt die aus den Kryptotextblicken Yy und (Ye))*
zuriickgerechnete Eingabedifferenz

(ué\i])), = Ug) ® (Uf\i{))* =75 (Y © K{f»)“) Sy ((Ye)* @ K(JX')H)

von dem Schliisselblock K(ZN)H ab. Ist also (x,x*,y,y*) ein richtiges Doppelpaar, so sind
neben den Kryptotextblocken ya) und yg; auch die FEingabedifferenzen b’(i) = (ug))’ von
SN bekannt. Folglich kommen nur solche Subkey-Werte L fiir K(Jy)ﬂ infrage, fir die

s (@ ® L) @ w5 (v © L) = bl (4.3)

ist. Erfillt L Gleichung (4.3), so sagen wir auch, L ist mit dem Doppelpaar (z,x*,y, y*)
konsistent.
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Geméfl Beobachtung 105 kann jedes richtige Doppelpaar dazu benutzt werden, einige
Kandidaten fiir den Rundenschliisselblock K (lN)“ auszuschliefen. Ist M hinreichend grof,
so wird sich schliellich der richtige Schliisselblock als derjenige herausstellen, der mit
den meisten Doppelpaaren konsistent ist. Wir benutzen nun die Spur aus Beispiel 104
fir einen Angriff mittels differentieller Analyse.

Beispiel 106. Der Algorithmus DIFFERENTIALATTACK bestimmdt fiir jeden Subschlissel-
Kandidaten (L, Ls) fir (K(52), Kf’4)) die Anzahl v(Lq, Lo) aller Doppelpaare (x,x*,y, y*)
in M, die mit (Ly, Ly) konsistent sind und (in Zeile 4) nicht als falsch erkannt werden.
Ausgegeben wird der Kandidat (L1, Ly) mit dem gréfiten - Wert. <

Algorithmus DIFFERENTIALATTACK

1 for (Li,Ly):=(0,0) to (F,F) do
2 ’}/(Ll,Lg) =0
3
1

*

for each (z,2*,y,y*) € M do
if yq) = Y1y und ys) =y, then
5 for (L1, L,):=(0,0) to (F,F) do

6 ’Ué) =11 & Y(2)

7 va) = Ly @y

8 u‘é) = ﬂgl(vé))

9 Ulyy = ng(va))

10 (v()" = L1 & ypy

11 (vi)* = La D yy

()" 2= 75 (1))

()" 1= 75" (v)")

4 (uly) )

15 (u(y)" = uly

16 if (ufy) = 0110 und (u(y)" = 0110 then
17 ’}/(Ll, LQ) = ’Y(Lla Lg) +1
15 mar—1

10 for (Ly, L) :=(0,0) to (F,F) do
20 if v(L1, Ly) > maz then

21 max = y(Ly, Lo)

22 maxkey := (Ly, Ls)

23 output (maxkey)

Im allgemeinen werden fiir eine erfolgreiche differentielle Attacke circa t ~ ce~! Klartext-

Kryptotext-Doppelpaare bendtigt, wobei € der Weitergabequotient der benutzten Spur

und ¢ eine ,kleine“ Konstante ist (im Beispielfall reichen ¢ ~ 80 Doppelpaare, wobei
—1 .

7 ~ 38 ist).
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5 DES und AES

5.1 Der Data Encryption Standard (DES)

Der DES wurde von IBM im Zuge einer im Mai 1973 veroffentlichten Ausschreibung
des NBS (National Bureau of Standards; heute National Institute of Standards and
Technology, NIST') als ein Nachfolger von Lucifer entwickelt, im Mérz 1975 veroffentlicht,
und im Januar 1977 als Verschliisselungsstandard der US-Regierung fiir nicht geheime
Nachrichten genormt. Obwohl DES urspriinglich nur fiir einen Zeitraum von 10 bis 15
Jahren als Standard dienen sollte, wurde er circa alle 5 Jahre (zuletzt im Januar 1999)
iiberprift und als Standard fortgeschrieben.

Bereits im September 1997 veroffentlichte das NIST eine Ausschreibung fiir den AES
(Advanced Encryption Standard) genannten Nachfolger des DES. Nach einer mehrjahrigen
Auswahlprozedur wurde im November 2001 der Rijndael-Algorithmus als AES genormt
und im Mai 2002 wurde DES von AES als Standard abgelost. Allerdings wurde Triple
DES (auch TDES oder 3DES genannt) vom NIST als Standard bis 2030 fortgeschrieben.

Der DES ist eine Feistel-Chiffre mit 16 Runden. Die Rundenfunktion g einer Feistel-
Chiffre berechnet das Zwischenergebnis w’ aus den beiden Hélften L~ und R*! von
w~! geméafB der Vorschrift - .
g(KZ, szlefl) — LlRZ,
wobei sich w® = L'R! zusammensetzt aus
Li—l Ri—l
32 32 K

L' = R~!und
Ri — Lifl@f(Rifl’Ki)'

32 32
Der DES chiffriert Binarblocke der Lénge 64 und benutzt hierzu einen Schliissel mit
56 Bit. Der Schlissel ergibt zusammen mit 8 Paritétsbits (die Bits 8, 16,..., 64) einen

ebenfalls 64 Bit langen Schliisselblock K. Es gibt somit 2°¢ ~ 7.2 - 10'® verschiedene
Schliissel. Im Einzelnen werden folgende Chiffrierschritte ausgefiihrt:

— Zuerst wird der Klartextblock x einer Initialpermutation I P unterzogen:

1T " Tea — IP(J}) — I58%50 " " 7.

58 50 42 34 26 18 10 2 321 2 3 45 16 7 20 21
60 52 44 36 28 20 12 4 456 789 2912 28 17
62 54 46 38 3022 14 6 8 9 10111213 1 1523 26
64 56 48 40 32 24 16 8 1213 14 15 16 17 5 183110
574941332517 9 1 16 17 18 19 20 21 2 82414
09 514335271911 3 20 21 22 23 24 25 3227 3 9
61 534537292113 5 24 25 26 27 28 29 191330 6
63 554739312315 7 28293031321 2211 4 25

Initialpermutation I P Expansion F Permutation P
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— Danach wird 16 Mal die Rundenfunktion ¢ mit den Rundenschliisseln K*, ..., K16
angewendet, wobei die Funktion f : {0,1}%?x{0,1}*® — {0, 1}3* wie folgt berechnet
wird:

f(RKY)

Berechnung der Funktion f

Bei Eingabe (R*!, K') wird R*"! durch die Expansionsabbildung E auf einen
48-Bit Block E(R"!) erweitert. Dieser wird mit K* bitweise addiert (x-or); als
Ergebnis erhélt man den Vektor B = E(R'™!) @ K'. Danach wird B in acht 6-Bit
Blocke By, ..., Bg aufgeteilt, die mittels 8 S-Boxen Sy, ...,Ss auf 4-Bit Blocke
C; = Si(B;) reduziert werden. Die S-Boxen sind in Form einer Tabelle dargestellt,
die wie folgt ausgewertet wird:
Ist Bz = bl s b(j, so findet man SZ(BJ in Zeile b1b6 und Spalte b2b3b4b5
(jeweils aufgefasst als Bindrzahl) der Tabelle fir S;. Zum Beispiel ist
S1(011010) = 1001, da in Zeile (00); = 0 und Spalte (1101); = 13 die
Zahl 9 = (1001), steht.
Die Konkatenation der von den acht S-Boxen gelieferten Bitblocke C ... Cy ergibt
einen 32-Bit Vektor C', welcher noch der Permutation P unterworfen wird.

Aus dem nach der 16. Iteration erhaltenen Bitvektor w!® = L®R'6 wird durch
Vertauschen der beiden Hélften und Anwendung der inversen Initialpermutation
der Kryptotext y gebildet:

144131 215118 3106125 90 7 S5:2124 1 710116 8 5 315130149
0157 4142131106 12119 5 3 8 14112124 7131 5 015103 9 8 6
4 1148136 21115129 7 3105 0 4 2 11110137 8159125 6 3 014
15128 2 491 7 511314100 6 13 118127 1142136150 9104 5 3
151 8146113 49 7 213120 510 S4:12110159 2 6 8 0133 4147 511
3134 7152 814120 1106 9115 10154 2 7129 5 6 113140113 8
014711104131 5 8126 9 3 215 914155 2 8123 7 0 4101 13116
138101 3154 2116 7120 5149 4 3 2129 5151011141 7 6 0 8 13
100 9146 3155 113127114 2 8 S7;: 411214150 8133129 7 5106 1
13709 346102 8 5141211151 130117 4 9 110143 5122158 6
136 4 9 8153 0111 21251014 7 1 41113123 71410156 8 0 5 9 2
110130 6 9 8 7 415143115 212 611138 1 4107 9 5 015142 3 12
713143 0 6 9101 2 8 51112415 Sx:132 8 4 615111109 3145 0127
138115 6150 3 4 7 212110149 115138103 7 4125 6110149 2
106 9 01211 713151 3145 2 8 4 7114 1 912142 0 6 1013153 5 8
31506101138 94 511127 214 21147 41081315129 0 3 5 611
Die acht Substitutionsboxen
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Die Schliisselgenerierung. Zuerst wéhlt die Funktion PC'1 (permuted choice 1) aus
dem Schliissel K die kryptografisch relevanten Bits aus und permutiert sie. Das erhaltene
Ergebnis wird in zwei 28-Bit Blocke unterteilt. Diese beiden Blocke werden dann in 16
Runden jeweils zyklisch um ein oder zwei Bit verschoben (siche dazu Tabelle LS(7)).

57 49 41 33 25 17 9 14 17 11 24 1 5
K 1 58 50 42 34 26 18 3 28 15 6 21 10
10 2 59 51 43 35 27 23 19 12 4 26 8
64 19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55
PC1 7 62 54 46 38 30 22 30 40 51 45 33 48
14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32
permuted choice 1 permuted choice 2
28 28
LS(1) LS(1)
Anzahl der
Iteration  Links-Shifts
PC2 ) LS(4)
1
LS(2) LS(2) K : ;
48 : )
3 2
4 2
: K? 6 2
it 7 2
| l s >
LS(16) LS(16) 9 1
10 2
11 2
12 2
PC?2 13 5
K16 14 2
15 2
16 1

Aus den beiden Blécken nach Runde ¢ bestimmt die Funktion PC 2 (permuted choice 2)
jeweils den Rundenschliissel K* durch Entfernen der 8 Bits an den Stellen 9, 18, 22, 25,
35, 38, 43 und 56 sowie einer Permutation der verbleibenden 48 Bits.

Eigenschaften von DES Der DES hat sich zwar weitgehend durchgesetzt, jedoch
wurde er anfangs von manchen US-Behorden und -Banken nicht verwendet. Der Grund
dafiir liegt in folgenden Sicherheitsbedenken, die nach seiner Veroffentlichung im Jahre
1975 geduflert wurden:

— Die 56-Bit Schliissellinge bietet eventuell eine zu geringe Sicherheit gegen Auspro-
bieren aller Schliissel bei einem Angriff mit bekanntem oder gewéhltem Klartext.

— Die Entwurfskriterien fiir die einzelnen Bestandteile, insbesondere fiir die S-Boxen,
sind nicht veréffentlicht worden. Es wurde der Verdacht geauflert, dass der DES
mit Hilfe von Falltiirinformationen leicht zu brechen sei.

— Kryptoanalytische Untersuchungen, die von IBM und der US National Securi-
ty Agency (NSA) durchgefithrt wurden, sind nicht veréffentlicht worden. Als jedoch
Biham und Shamir Anfang der 90er Jahre das Konzept der differentiellen Kryp-
toanalyse veroffentlichten, gaben die Entwickler von DES bekannt, dass sie diese
Angriffsmoglichkeit beim Entwurf von DES bereits kannten und speziell die S-Boxen
entsprechend konzipiert hatten.

Im Fall von DES ist die lineare Kryptoanalyse effizienter als die differentielle Krypto-



5.2 Endliche Korper 69

analyse. Da hierzu jedoch circa 2*3 Klartext-Kryptotext-Paare notwendig sind (deren
Generierung bei einem von Matsui, dem Erfinder der linearen Kryptoanalyse, unternom-
menen Angriff bereits 40 Tage in Anspruch nahm), stellen diese Angriffe keine realistische
Bedrohung dar.

Dagegen wurde im Juli 1998 mit einer von der Electronic Frontier Foundation (EFF) fiir
250 000 Dollar gebauten Maschine namens “DES Cracker” eine vollstandige Schliisselsuche
in circa 56 Stunden durchgefithrt (was den Gewinn der von RSA Laboratory ausgeschrie-
benen “DES Challenge I1-2” bedeutete). Und im Januar 1999 gewann Distributed.Net,
eine weltweite Vereinigung von Computerfans, den mit 10 000 Dollar dotierten “DES
Challenge II1”. Durch den kombinierten Einsatz eines Supercomputer namens “Deep
Crack” von EFF und 100 000 PCs, die weltweit iiber das Internet kommunizierten,
wurden nur 22 Stunden und 15 Minuten ben6tigt, um den Schliissel fiir ein Klartext-
Kryptotextpaar mit dem Klartext ,,See you in Rome (second AES Conference, March
22-23, 1999)“ zu finden.

Definition 107 (schwache Schliissel). Ein DES-Schlissel K heifit schwach, falls
alle durch ihn erzeugten Rundenschliissel gleich sind (d.h. es gilt |[{K',..., K'}||=1).

Es gibt vier schwache Schliissel (siche Ubungen):

0101010101010101
FEFEFEFEFEFEFEFE
1F1FIFIFOEOGEQEQE
EOEOEOEOF1FIFIF1

und fir sie gilt DES(K,DES(K, x)) = =.
Neben diesen schwachen Schliisseln existieren noch sechs weitere sogenannte ,,semischwa-
che* Schliisselpaare (K, K'), fiir die DES(K’, DES(K, z)) = z gilt (sieche Ubungen).

5.2 Endliche Korper

Wie wir bereits wissen, bildet Z,, fiir primes p einen endlichen Kérper der Grofie p. Dieser
Korper lasst sich fiir jede Zahl n > 1 zu einem Koérper der Grole p” erweitern. Da bis
auf Isomorphie nur ein Kérper dieser Grofe existiert, wird er einfach mit F(p™) oder Fyn
bezeichnet. Um diesen Korper zu konstruieren, betrachten wir zunachst den Polynomring
Zy|x] Gber Z,.

Definition 108 (Polynomring). Sei p prim. Dann enthdlt Z,[x] alle Polynome
p(r) = apz™ + - a1z + ag

in der Variablen x mit Koeffizienten a; € Z,, a, # 0. n heifit Grad von p (kurz:
deg(p) = n). Zy,|x] bildet mit der iblichen Polynomaddition und Polynommultiplikation
einen Ring. Man sagt, Z,|x] entsteht aus Z, durch Adjunktion der Unbestimmten (oder
Variablen) x.

FEin Polynom m(x) teilt ein Polynom g(x) (kurz: m(z)|g(x)), falls ein Polynom d(z) €
Zy|x] existiert mit g(x) = d(x)m(z). Teilt m(x) die Differenz f(x)—g(x) zweier Polynome,
so schreiben wir hierfiir
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und sagen, f(x) ist kongruent zu g(x) modulo m(x). Weiterhin bezeichne
f(z) mod m(x)

den bei der Polynomdivision von f(x) durch m(x) auftretenden Rest, also dasjenige
Polynom r(z) vom Grad deg(r) < deg(m), fir das ein Polynom d(x) € Zy|z| existiert
mit f(x) = d(x)m(z)+r(x).

Ahnlich wie beim Ubergang von Z zu Z,, kénnen wir fiir ein fest gewihltes Polynom
m(x) vom Grad deg(m) = n jedem Polynom p(z) € Z,[z]| mittels

p(z) = p(x) mod m(z)

eindeutig ein Polynom vom Grad héchstens n — 1 zuordnen. Auf diese Weise erhalten
wir den endlichen Polynomring (genauer Faktorring) Z,[z|/m(x) aller Polynome vom
Grad hochstens n — 1, wobei die Addition und Multiplikation wie in Z,[z], gefolgt von
einer Reduktion modulo m(z), definiert ist. Und wie Z,, ist Z,[x]/m(x) genau dann ein
Koérper, wenn m(x) nur triviale Teiler besitzt.

Definition 109 (irreduzibel). Ein Polynom m(x) € Z,[zx| heifit irreduzibel, falls
keine Polynome p(x),q(z) € Z,|x] vom Grad deg(p),deg(q) > 1 existieren mit

m(z) = p(x)q(z).
Satz 110. Der Faktorring Zy[z]/m(x) ist genau dann ein Kérper, wenn m(x) in Z,|x]
irreduzibel ist.

Beweis. sieche Ubungen. O

Da fiir jede Zahl n > 1 ein irreduzibles Polynom m(z) = z" + Y1) ma’ € Z,[1]
vom Grad n existiert, lasst sich auf diese Weise fiir jede Primzahlpotenz p™ ein Koérper
Zp|z]/m(z) der GroBe p™ konstruieren. Tatsdchlich gibt es bis auf Isomorphie nur einen
Korper mit p" Elementen, den wir mit F,» bezeichnen. Die Elemente

a(x) = HZ_: a;x’ € Zy[x]/m(z)

konnen wir durch den Koeffizientenvektor (a,_1,...,ap) € (F,)" darstellen. Die Addition
zweier Polynome a(z) = Y74 a;2' und b(z) = Y1) bz’ in Fan entspricht dann der

iiblichen Vektoraddition (komponentenweisen Addition modulo p):
(an,l,...,ao) + (bnfl,...,bo) = (Cnfl,...,Co) mit C; :al—l—bl fir ¢ = O,...,n— 1.

Im Fall p = 2 ist dies also die bitweise Addition modulo 2 (x-or). Die Multiplikation in
Zy|x]/m(z) lasst sich wegen

a(x)b(x) = 3:0 a;x'b(x)

auf die Addition und (wiederholte) Multiplikation mit dem Polynom p(z) = x zuriickfiih-
ren. Dabei ist

n—1
2b(x) ) 2b(x) — bpoim(x) Sy Y (bim1 — bp_amy)a’,
i=0
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wobei wir b_; = 0 setzen. Die Multiplikation von b(z) mit x entspricht somit einem
Linksshift um eine Stelle, dem sich im Fall b,,_; # 0 noch die Subtraktion des Koeffizien-

tenvektors (b,_1mMy_1, ..., b,_1mg) anschlieBt. Im Fall p = 2 erhalten wir also
n—1 ;
i— bi* 17 bnf = 07
xzb(x) = 21_11 e . !
o (bici ®my)zt, by =1

bzw. in Vektorschreibweise:

(bn_Q,...,bo,O), b1 = 07

(0,...,0,1,0) - (bp_1, ..., by) =
(bn—27"'7b070)@(mn—lw"am())a bn—l =1

Beispiel 111. Seip = 2 und n = 3. Zundchst bendtigen wir ein irreduzibles Polynom
m(z) € Zs[x] vom Grad 3,

m(z) = azx® + a*z® + a1 + ap.

Da m(x) im Fall ag = 0 den nichttrivialen Teiler p(x) = x hat und im Fall a3 = 0 nicht
den Grad 3 hat, geniigt es, die 4 Kandidaten

mi(z) = 2°+1

me(x) = 2°+x+1
ms(z) = 2°+22+1
my(z) = 2*+2°+2+1

zu betrachten. Da nun aber
P rl=(r+1)(2*+x+1)

und
Pt tr+l=(@+1)(*+1)

ist, gibt es in Zs|z] nur zwei irreduzible Polynome vom Grad 3: 23 +x+1 und 23+ z* + 1.
Nehmen wir bspw. m(z) = 23+ x + 1, so ist

2+ D+ +)=2>+2z

und
(22 + 1) (x+1) = 22

in Zslz]/(2® + x4+ 1), da
P+ D)+ =2+ +a+1=2"+ @+ +1) =ps 0 22
18t. <

Wie das folgende Beispiel zeigt, lasst sich das multiplikative Inverse eines Polynoms
p(x) # 0 in Fy» mit dem erweiterten Euklidschen Algorithmus berechnen.
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Beispiel 112. Seip = 2 und seien m(x) = 28+ 2* + 23 +z+1 und a(z) = 25+ 2+ 2 +1
zwei Polynome. Dann kénnen wir mit dem Euklidschen Algorithmus den (in Bezug auf
den Grad) gréfiten gemeinsamen Teiler g(x) von m(x) und a(x) berechnen:

i rioi(z) = diga(x) ri(x) + ria1 ()
1 B+t +23+z2+1 = (2241 (@ +2*+2+1) + 22

2 4+t +r+1 = (2t +22) 22 +z+1
3 2 = (z+1)-(x+1) +1

4 r+1 = (z+1)-1 +0

Es ist also g(x) = r4(x) = 1. Der erweiterte Euklidsche Algorithmus berechnet nun
Polynome p;(x) und q;(x) gemdf der Vorschrift

pi(x) = pia(x) — di(z) - pic1(x), wobei po(x) =1 wund pi(z) =0,
und

¢i(x) = qi—a(x) — di(x) - qi—1(x), wobei qo(z) =0 wund q(x)=1,
welche firi=0,1,2,3,4 die Gleichung p;(x)m(x) + ¢;(x)a(z) = r;(z) erfillen:

i pi(x) -m(z) + ¢i(z)-alx) = ri(z)
0 1-m(z) + 0-a(x) = m(x)
1 0-m(z) + l-a(z) = a(z
2 1-m(z) + (22 +1)-a(x) = 2?

3 (z* +x2) -m(z) + (x +22+1)-a(z) = z+1
4 @+t +23+224+1) mx) + (2" +2°+ 23 +2)-a(z) = 1

Aus der letzten Zeile konnen wir das multiplikative Inverse q4(x) = 27 + 2% + 2 + x von
a(x) modulo m(z) ablesen. N

5.3 Der Advanced Encryption Standard (AES)

5.3.1 Geschichte des AES

— Im September 1997 veroffentlichte das NIST eine Ausschreibung fiir den AES, in
der eine Blockléinge von 128 Bit und variable Schliissellangen von 128, 192 und 256
Bit gefordert wurden. Einreichungsschluss war der 15. Juni 1998.

— Von den 21 Einreichungen erfiillten 15 die geforderten Kriterien. Diese stammten
aus den Landern Australien, Belgien, Costa Rica, Deutschland, Frankreich, Grof-
britannien, Israel, Japan, Korea, Norwegen sowie den USA und wurden auf der 1.
AES-Konferenz am 20. August 1998 als AES-Kandidaten akzeptiert.

— Im August 1999 wahlte NIST auf der 2. AES-Konferenz in Rom die Finalisten
MARS, RC6, Rijndael, Serpent und Twofish aus.

— Im April 2000 wurde der Rijndael-Algorithmus auf der 3. AES-Konferenz zum
Sieger erklart und im November 2001 als AES genormt.

Die wichtigsten Entscheidungskriterien waren
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— Sicherheit,
— Kosten (Effizienz bei Software-, Hardware- und Smartcard-Implementationen) sowie

— Algorithmen- und Implementations-Charakeristika (unter anderem Flexibilitat und
Einfachheit des Designs).
Die Blocklédnge und die Schliissellinge konnen beim Rijndael unabhéngig voneinander im
Bereich 128, 160, 192, 224 oder 256 Bit gewahlt werden. Die Rundenzahl N des Rijndael
hangt wie folgt von der Blockldnge [ und der gewahlten Schliissellinge k ab:

l k
128 160 192 224 256

128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Beim AES-Standard wurde die Blocklange auf 128 Bit fixiert und die Schliissellénge auf die
Werte 128, 192 oder 256 Bit beschrankt. Wir beschranken uns hier auf die Beschreibung
des 10-Runden AES mit [ = 128 Bit Blockldnge und k = 128 Bit Schliissellange.
Die Elemente a(x) = Y a;z° des Korpers Fos = Zy[x] /(28 +a* +2°+2+1) kénnen jeweils
durch ein Byte (az,...,ao) dargestellt werden. Hierzu verwenden wir die Funktionen
FIELDTOBINARY und BINARYTOFIELD, die wie folgt definiert sind:
— BINARYTOFIELD: {0, 1}® — Fys berechnet aus der Byte-Darstellung das zugehorige
Korperelement.
— FIELDTOBINARY: Fas — {0, 1}® berechnet die Inverse der Funktion BINARYTO-
FIELD.

5.3.2 Die AES S-Box.

Sowohl bei der Schliisselgenerierung als auch bei der Chiffrierung wird eine Substitution
SUBBYTES verwendet, die auf einer 8-Bit S-Box mguppyres basiert. Diese S-Box benutzt
als nicht-linearen Bestandteil die Funktion FIELDINV: Fos — [Fos, die das multiplikative
Inverse im Korper Fos berechnet. Konkret wird die S-Box mgyspyres durch folgenden
Algorithmus berechnet (die Indexrechnung in Zeile 7 erfolgt modulo 8).

7T'SUBBYTP:S(CW ce aO)

1 input ar---qg

> z:=BinaryToField(a;---ap)

3 if 2#0 then z:=FieldInv(z)

I ay---ap:= FieldToBinary(z)

5 c7---co:= 01100011

¢ for ::=0 to 7 do

7 bi == a; ® ai14 D aiy5 D Ai6 D a7 D¢
s output b7---by

Beispiel 113. Wir berechnen wsyspyres(01010011). Die Funktion BINARY TOFIELD liefert
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das zugehorige Polynom
z = BINARYTOFIELD(01010011) = 2% + 2* + z + 1.
Das multiplikative Inverse von z in Fos ist
e A

(siehe Beispiel 112). Die Funktion FIELDTOBINARY liefert die zugehorige Koeffizienten-
Darstellung
FIELDTOBINARY (2" 4 2° + 2° + z) = 11001010.

FEs folgt die Berechnung der Ausgabe by - --by = 11101101 mittels

by = a7 PasPasDasPag®e; = 11001 H0 =1
be = agDasPazsPasPas®Dcg = 10D1D0R0D1 =1

b =1 PasPagParPas®c; = 1001010001 =0
bo = ap@asPasDagPa;®cy = 0p0P0P1P1p1 =1

Somit ist TsysByres(01010011) = 11101101 oder hexadezimal: wsyppyres(53) = ED. N

Wir kénnen die AES S-Box in Form einer 16 x 16-Matrix angeben, wobei der Eintrag in
Zeile X und Spalte Y den Wert mgyppyres(XY') enthélt:

X Y
0123456789 ABCDETF

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
CA 82 C9 7D FA59 47 FO AD D4 A2 AF 9C A4 72 CO
B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
04 C7 23 C3 1896 059A 07 12 80 E2 EB 27 B2 75
09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

o B~ WNPEFP O

F 8C A1 89 0D BF E6 42 68 41 99 2D OF BO 54 BB 16

5.3.3 Die Schliisselgenerierung.

Beim 10-Runden AES mit Block- und Schliissellénge [ = k& = 128 werden 11 Rundenschliis-
sel K, ..., K% der Liange 128 benutzt. Jedes K* besteht also aus 16 Bytes bzw. 4 Worten
mit jeweils 4 Bytes. Bei der Berechnung der Rundenschliissel werden (Wort-)Konstanten
RCon[1],..., RCon[10] mit RCon[i] = FIELDTOBINARY (z'~!)0%* € {0,1}?* benutzt. In
Hexadezimal-Darstellung ergeben sich folgende Werte:

l 1 2 3 4 5
RConli] | 01000000 02000000 04000000 08000000 10000000

{ 6 7 8 9 10
RConli] | 20000000 40000000 80000000 13000000 36000000
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Reihen wir die 11 Rundenschliissel aneinander, so entsteht ein Array w0}, ..., w[43] von
44 Worten, die geméf folgendem Algorithmus aus dem 128-Bit Schliissel K berechnet
werden.

KEYEXPANSION(K)

input K = K|0]--- K[15]
for ::=0 to 3 do
wli] == (K[41], K[4i + 1], K41 + 2], K[41 + 3))
for ::=4 to 43 do
5 temp 1= w(i — 1]
6 if i =,0 then temp := SubWord(RotWord(temp)) & RCon[i/4]
7 wli] == wli — 4] & temp
s output w0]...w[43]

S S

Die hierbei benutzten Funktionen sind wie folgt definiert:
— ROTWORD : (]F2)8 X (FQ)B X (IF2)8 X (F2)8 — (IF2)8 X (F2)8 X (F2)8 X (]FQ)S fiuhrt
eine zyklische Verschiebung der 4 Eingabebytes um ein Byte nach links durch:

ROTWORD(BO, Bl, BQ, Bg) = (Bl, BQ, B3, BO),
— SUBWORD : (FQ)S X (F2>8 X (FQ)S X (Fz)g — (F2>8 X (FQ)S X (]F2>8 X (FQ)S ersetzt
jedes Eingabebyte B; durch msyspyres(B;):

SUBWORD(B(), By, Bs, Bg)
= SUB]_D)Y'TES(BO7 Bh BQ, Bg)

= (WSUBBYTES (BO> » TSUBBYTES (Bl ) ; TSUBBYTES (BQ) » TSUBBYTES (BS))

5.3.4 Der AES-Chiffrieralgorithmus

Unter Benutzung der 11 Rundenschliissel K°, ..., K1 wird der 128 Bit Klartextblock
wie folgt chiffriert:

AES-VERSCHLUSSELUNG

i AddRoundKey(K?")

2> for i:=1 to 9 do
3 SubBytes

4 ShiftRows

5 MixColumns

6 AddRoundKey(K")
7 SubBytes

s ShiftRows

9 AddRoundKey(K'%)

Im einzelnen werden also die folgenden Chiffrierschritte ausgefiihrt:

— Zuerst wird der Klartextblock x einer Addition mit dem 128-Bit Rundenschliissel
K9 unterworfen. Diese Operation wird mit ADDROUNDKEY bezeichnet.

— Danach werden 9 Runden ausgefiihrt, wobei in jeder Runde i eine auf der S-
Box 7quspyres basierende 128-Bit Substitution SUBBYTES, eine Transposition
namens SHIFTROWS, eine lineare Substitution namens MiXCOLUMNS und eine
ADDROUNDKEY Operation mit dem Rundenschliissel K durchgefiihrt werden.
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— Es folgt Runde 10 mit den Operationen SUBBYTES, SHIFTROWS und
ADDROUNDKEY(K ™).
Abgesehen von der zusatzlichen linearen Substitution MIXCOLUMNS entspricht der
Aufbau des AES also exakt dem in Abschnitt 4.2 beschriebenen Aufbau eines SPNs.
Der Klartext z = g« - - 215, 7; € {0,1}%, und alle daraus berechneten Zwischenergebnisse
werden in Form eines Arrays

50,0 So0,1 S0,2 50,3
510 S1,1 S1,2 S1.3
S2.0 S2,1 S22 S23
$30 531 S32 833

dargestellt, das wie folgt initialisiert wird:

Top Ty Tg T12
Ty Is T9 13
T2 Tg T10 Ti4
I3 T7 T11 T15

SHIFTROWS ist eine 128-Bit Transposition, die wie folgt definiert ist:

50,0 S0,1 S0,2 503 50,0 So0,1 S0,2 S0,3
510 S1,1 S1,2 S1.3 s S11 S12 51,3 S1,0
520 S21 S22 S23 S22 S23 S20 S21
530 53,1 532 9533 533 830 53,1 S32

Mi1xCOLUMNS basiert auf einer linearen 32-Bit S-Box MIXCOLUMN, die parallel auf
den vier Spalten der Zwischenergebnisse ausgefiihrt wird. Zu ihrer Berechnung wird die
Multiplikation FIELDMULT: Fas X Fos — Fos im Korper Fas benutzt.

MIXCOLUMN(SOJ, 51,55 52,5; Sgyj)

for i:=0 to 3 do t;:=BinaryToField(s;;)

up := FieldMult(x,to) + FieldMult(z + 1,t1) +to + t3
uy := FieldMult(x,t;) + FieldMult(z + 1,t2) +t3 + to
ug := FieldMult(z, ty) + FieldMult(z + 1,¢3) + to + 4
ug := FieldMult(z,t3) + FieldMult(x + 1,t0) + t1 + 2
¢ for i:=0 to 3 do s;,:= FieldToBinary(u;)
7 output (s);,5];,55;,55;)

TR W N

M1xCOLUMN fiihrt also eine lineare Transformation in dem Vektorraum (Fys)?* aus, die
sich auch wie folgt beschreiben ldsst (hierbei stellen wir die 8-Bit Koeffizientenvektoren
der Polynome in Fgs hexadezimal dar, also 03 fir  + 1 usw.):

Co 02 03 01 01 Co
c1 . 01 02 03 01 1
Co 01 01 02 03 Co
3 03 01 01 02 c3

Die Operation MIXCOLUMN realisiert somit eine Hill-Chiffrierfunktion mit einer Schliis-
selmatrix & = (k;;), deren Spalten aus der ersten Spalte (02,01,01,03) durch zir-
kuldre Shifts entstehen. Da k diese spezielle Form hat, ldsst sich MIxCOLUMN im
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Faktorring Fos[y]/(y* + 1) sogar als Multiplikation mit einem festen Ringelement be-
schreiben. Interpretieren wir ndmlich eine Spalte (¢, ¢1, ¢2, ¢3) als Reprisentation des
Polynoms c(y) = 33 ,ciy® in Fas[y]/(y* + 1) und wihlen wir fiir a(y) das Polynom

03y% 4+ 01y? + 01y + 02, das durch die erste Spalte von k reprisentiert wird, so gilt
MixCoLUMN(c(y)) = a(y)c(y).

Der Ring Fas[y]/(y* + 1) ist zwar kein Korper, da das Polynom y* + 1 in Fas[y] nicht
irreduzibel ist. Da das Polynom a(y) jedoch ein multiplikatives Inverses a~!(y) = 0By> +
0Dy?+09y +0F in Fas[y]/(y* + 1) besitzt, kann die inverse Abbildung von MixCOLUMN
mittels MIXCOLUMN ' (¢(y)) = a~!(y)c(y) berechnet werden.

5.3.5 Kryptoanalytische Betrachtungen

Bis heute konnten keine Schwachstellen gefunden werden, d.h. alle bekannten Angriffe
sind mindestens so aufwiandig wie eine vollsténdige Schliisselsuche. Die Tatsache, dass fiir
die S-Box die Inversenbildung in einem endlichen Korper benutzt wird, fiihrt dazu, dass
die Tabellen fiir die Giite der linearen Approximationen und fiir die Weitergabequotienten
der Differenzenpaare einen hohen Grad an Uniformitat aufweisen. Dadurch wird die
S-Box resistent gegen lineare und differentielle Analysen. Zudem verhindert die lineare
Substitution MIXCOLUMNS lineare und differentielle Angriffe mit nur wenigen aktiven
S-Boxen (diese Technik wird von den AES-Entwicklern als wide trail strategy bezeichnet).

5.4 Betriebsarten von Blockchiffren

Fir den DES wurden vier verschiedene Betriebsarten vorgeschlagen, in denen grundsétz-
lich jede Blockchiffre £ mit beliebiger Blocklédnge [ betrieben werden kann. Bei den ersten
beiden Betriebsarten (ECB und CBC) werden Kryptotextblocke der Lange [ tibertragen.
Mit einer Blockchiffre kann aber auch ein Stromsystem realisiert werden, mit dem sich
Kryptotextblocke einer beliebigen Lange ¢, 1 <t <[, tibertragen lassen (OFB und CFB).

T L2 Ln

L L - e

ECB-Mode (electronic code book; elektronisches Codebuch): Die Bindr-Nachricht
x wird in Klartextblocke z; zerlegt. Der letzte Block z, wird, falls notig, mit
einer vorher vereinbarten Bitfolge aufgefiillt. Die Blocke werden nacheinander mit
demselben Schliissel K einzeln verschliisselt, iibertragen und auf Empfangerseite
mittels der zu E gehorigen Dechiffrierfunktion D wieder entschliisselt.
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Um zu verhindern, dass ein Eindringling den Kryptotext verdndert, ohne dass der
Empfanger dies bemerkt, wird beim CBC-Mode jeder Kryptotextblock nicht nur von dem
zugehorigen Klartextblock, sondern auch von allen vorausgehenden Blocken abhangig
gemacht. Dies hat auch zur Folge, dass gleiche Klartextblocke auf unterschiedliche
Kryptotextblocke abgebildet werden.

) T T2 T3

Empfinger
(4 n Y2 Y3
— =
+
X1 T2 L3

CBC-Mode (cipher block chaining; Blockverkettung des Schliisseltextes): Jeder
Klartextblock z; wird mit dem Kryptotextblock Ex(x;_1) bitweise (modulo
2) addiert, bevor er verschliisselt wird (zur Verschliisselung von z; wird ein
Initialisierungsvektor v verwendet.

OFB-Mode (output feedback; Riickfiihrung der Ausgabe): Die Binér-Nachricht x
wird in ¢-Bit Blocke (fir festes ¢: 1 <t <) zerlegt. Die Chiffrierfunktion Ex dient
zur Erzeugung einer pseudozufilligen Folge von ¢-Bit Blocken, die bitweise (modulo
2) zu den entsprechenden Klartextblocken addiert werden. Als Eingabe fiir die
Chiffrierfunktion Ex dient ein Schieberegister, das anfangs mit einem Initialisie-
rungsvektor iv geladen ist. Bei jeder Ubertragung eines ¢-Bit Klartextblockes z;
erzeugt die Chiffrierfunktion Ex zunéchst einen Ausgabevektor, von dem nur die
ersten ¢ Bits verwendet werden. Diese dienen sowohl zur Verschliisselung von z;,
als auch zur Modifikation des Eingaberegisters, in das sie von rechts geschoben
werden.
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J\t’ 1 7 l
; ® vi ¥ ;

CFB-Mode (cipher feedback; Riickfiihrung des Kryptotextes): Ahnlich zum OFB-
Mode, nur dass zur Erneuerung des Eingaberegisters nicht die ersten ¢ Bits der
Ex-Ausgabe, sondern der daraus gewonnene ¢-Bit Kryptotextblock verwendet wird.

Eine weitere Variante des OFB-Modes ist der Counter-Mode, bei dem die Pseudo-
zufallsfolge mit Hilfe von Ej aus einer fortlaufenden Binarblockfolge Ty, 77, ... mit
Tiv1 = T; + 1 mod 2! erzeugt wird. Dies hat den Vorteil, dass spatere Blocke der Pseu-
dozufallsfolge nicht von den vorhergehenden abhédngen, und daher die Blocke F(T;)
parallel berechnet werden koénnen.
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6 Zahlentheoretische Grundlagen

In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum
Verstédndnis der Public-Key Verfahren benétigen, die im néchsten Abschnitt vorgestellt
werden.

Satz 114. Sei G eine endliche Gruppe der Ordnung ||G|| = m. Dann gilt a™ = 1 fir
alle a € G.

Beweis. Wir betrachten hier nur den Fall, dass G kommutativ ist. Der allgemeine Fall
wird in den Ubungen bewiesen.

Sei also G = {by,...,b,} abelsch und sei a € G beliebig. Wegen ab; # ab; fiir i # j folgt
G = {aby,...,aby,}. Dies impliziert IT", b; = [T\%, ab; = a™ %, b;. Also muss ™ = 1
sein. O

Korollar 115 (Kleiner Satz von Fermat). Ist p eine Primzahl und a eine nicht durch p
teilbare Zahl (d.h. a € Z;), dann ist a?~! — 1 durch p teilbar:

Ya € Z; cqP! =, 1.

6.1 Diskrete Logarithmen

Nehmen wir ein beliebiges Element a € G und betrachten die Folge der Potenzen a° = 1,
a' =a, a?, a®, ..., so besagt obiger Satz, dass spitestens fiir n = ||G|| wieder a™ = 1 gilt.

Definition 116 (Ordnung). Die Ordnung von a in G ist
ordg(a) =min{n > 1| a" = 1}.

Im Fall G = 7, schreiben wir auch einfach ord,,(a). Die von a in G erzeugte Untergruppe
{a” | n >0} = {d°, ..., a6 @1} bezeichnen wir mit [a)g oder mit [a], wenn G aus
dem Kontext ersichtlich ist.

Da ord(a) die Ordnung der Untergruppe [a] ist, muss ord(a) fiir alle a € G ein Teiler von
|G| = m sein. Zudem gilt fiir beliebige ganze Zahlen 4, j (siehe Ubungen)

a=d &i =ord(a) J.

Fiir manche Anwendungen wird ein Element a € G bendtigt, das die gesamte Gruppe
erzeugt.

Definition 117 (Primitivwurzel/Erzeuger). Sei G eine endliche Gruppe der Ord-
nung ||G|| = m. Ein Element g € G der Ordnung ordg(g) = ||G|| = m heifit Erzeuger
von G. G heifit zyklisch, falls G mindestens einen Erzeuger besitzt.

Ein Element a € G ist also genau dann ein Erzeuger, wenn die von a erzeugte Untergruppe

la] = G ist.
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Satz 118 (GauBl). Genau fir m € {1,2,4,p%,2p* | 2 < p prim} ist die Gruppe Z7,
zyklisch (ohne Beweis).

Fiir ein beliebiges Gruppenelement a € G ist die Exponentiation n +— a™ eine bijektive
Abbildung von der Menge {0, 1, ..., ord(a)—1} auf [a]. Die zugehérige Umkehrabbildung
spielt in der Kryptografie eine wichtige Rolle.

Definition 119 (Index/diskreter Logarithmus). Seien a € G und b € [a]. Dann
heifit der eindeutig bestimmte Exponent n € {0,1,...,ord(a) — 1} mit

a’=b

Index oder diskreter Logarithmus von b zur Basis a in G (kurz: n = logg ,(b)). Im
Fall G = Z;, schreiben wir auch einfach n = log,, ,(b).

Wiéhrend die diskrete Exponentialfunktion n — a™ durch wiederholtes Quadrieren
und Multiplizieren (siche nichsten Abschnitt) effizient berechenbar ist, sind bis heute
keine effizienten Verfahren zur Berechnung des diskreten Logarithmus bekannt.

Beispiel 120. Betrachte die Gruppe G = Z7,. Dann ist g = 2 ein Erzeuger von G, d.h.
ordy;(2) = 10.

n|0123456789 b 12345678910
2"112485109736 log;;,(b)|018249736 5
Das folgende Lemma bendtigen wir fiir den Beweis des néchsten Satzes.
Lemma 121 (Euler). Sei m > 1, dann gilt
> e(d) =m,
dlm
wobei die Summe tiber alle Teiler d > 1 von m lduft.
Beweis. Sei d > 1 ein Teiler von m. Wegen
p(m/a) = [I{b € Zmy, | g8T (b, m/q) = 1}|| = |[{a € Zn | ggT(a,m) = d}|
< ggT(bd,m) =d
folgt
doeld)=> e(ma) => I{a € Zin | ggT(a,m) = d}|| = |Zm] = m.
dlm dlm dlm H

Wir zeigen nun, dass G genau dann zyklisch ist, wenn jede Gleichung der Form z" =1
hochstens n verschiedene Losungen in G hat.

Satz 122. Eine endliche Gruppe G der Ordnung ||G|| = m ist genau dann zyklisch, falls
jede Gleichung der Form x™ =1, n > 1, hiochstens n verschiedene Losungen a € G hat.
In diesem Fall hat G genau p(m) Erzeuger.
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Beweis. Falls G zyklisch und g ein Erzeuger von G ist, so ist ¢¥, y € Z,,, genau dann
eine Losung von 2" = 1, wenn ¢¥" = 1 also y eine Losung von ny =, 0 ist. Wie diese
Kongruenz hat daher auch die Gleichung 2™ = 1 genau ggT(n,m) < n Losungen.

Fir die Riickrichtung sei fiir jeden Teiler d von m
Sq={a € G |ord(a) = d}

die Menge aller Elemente der Ordnung d. Wir zeigen zuerst, dass Sy hochstens ¢(d)
Elemente enthalt. Falls S; ein Element a enthélt, sind die Potenzen a°, a', a?, ..., a?!
d verschiedene Losungen der Gleichung 2¢ = 1. Da nach Voraussetzung keine weiteren
Losungen existieren, folgt Sy C {a°, ..., a®'}. Zudem hat @’ genau dann die Ordnung
ord(a’) = ord(a) = d, wenn ggT(i,d) = 1 ist (siche Ubungen), d.h. S; = {a’ | i € Z}}.
Da die Mengen S; eine Partition von G bilden, folgt mit Lemma 121

Do NSall =m =3 w(d).

dlm dlm
Da aber, wie gerade gezeigt, ||Sq|| € {0, ¢(d)} ist, muss ||S4]| = ¢(d) und insbesondere
Sl = (m) gelten. 0

Da die Gleichung z™ = 1 in jedem Korper hochstens n verschiedene Lésungen hat (siehe
Ubungen), hat die multiplikative Gruppe . genau p(p" — 1) Erzeuger. Insbesondere
hat die Gruppe Fy, = Z» genau p(p — 1) Erzeuger.

Falls die Primfaktorzerlegung von der Gruppenordnung m bekannt ist, lasst sich effizient
iiberpriifen, ob ein gegebenes Element a € G ein Erzeuger ist oder nicht.

Satz 123. Sei G eine endliche Gruppe der Ordnung ||G|| = m. Ein Element a € G st
genau dann ein Erzeuger, wenn fir jeden Primteiler ¢ von m gilt:

a™e 4.

Beweis. Falls a ein Erzeuger von G ist, so gilt a® # 1 fir alle Exponenten e € {1,...,m—1}
und somit auch fir alle Exponenten e der Form m/q, ¢ prim.

Ist dagegen a € G kein Erzeuger, so ist ord(a) < m, und da ord(a) ein Teiler von m ist,
existiert eine Zahl d > 2 mit d - ord(a) = m. Sei ¢ ein beliebiger Primteiler von d. Dann
gilt

am/q _ adord(a)/q _ (aord(a))d/q -1 0
Der folgende probabilistische Algorithmus COMPUTEGENERATOR berechnet einen Er-
zeuger a fiir eine zyklische Gruppe G, falls alle Primteiler ¢ von m = ||G|| bekannt sind
und sich die Elemente von G zufillig generieren lassen.

COMPUTEGENERATOR(G, q1, . . ., qx)
i input zyklische Gruppe G und alle Primteiler g¢,...,q. von m = ||G]|
2 repeat
3 guess randomly a € G
o ountil @4 £ 1 fur i=1,...k
5 output a

Da ¢(m) > m/(2Inlnm) fir hinreichend grofie m gilt, findet der Algorithmus in jedem
Schleifendurchlauf mit Wahrscheinlichkeit ¢(m)/m > 1/(2Inlnm) einen Erzeuger. Die
erwartete Anzahl der Schleifendurchlaufe ist also O(Inlnm).
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6.2 Effiziente Berechnung von Potenzen

Falls sich in einer Gruppe G das Produkt zweier Elemente effizient berechnen lésst,
sind auch Potenzen a¢ durch wiederholtes Quadrieren und Multiplizieren effizient
berechenbar. Hierzu sind maximal 2[log e| Multiplikationen erforderlich.

Sei e = YI_,e; - 2" mit r = |log, e| die Bindrdarstellung von e. Dann kénnen wir den

Exponenten e sukzessive mittels by = eg und b; = b;_; +¢;2° = é‘:o e; D firi=1,...,r
zu b, = e berechnen. Der Algorithmus POT berechnet nach diesem Schema in der
Variablen y die Potenzen a% fiir i = 0,...,r.
Alternativ konnen wir auch das Horner-Schema zur Berechnung von e benutzen. Sei
¢ = e, = 1lund sei ¢;_y = 2¢; + e,y fir i = r,..., 1. Dann ist ¢; = 3j_; ¢; - 2777, also
Co = Z;ZO e; - 2) = e. Dies fithrt auf den Algorithmus HORNERPOT, der in der Variablen
z die Potenzen a% fiir i = r,...,0 berechnet.
Por(a,e) HORNERPOT(a, e)

I ri=a; y:=a* 1 zZi=a

2> for 1:=1 to r do > for i:=7r—1 downto 0 do

3 ri=x% yi=y- 2% 3 2 =22 a%

| |

return(y) return(z)

Beispiel 124. Sei a = 1920, e = 19 und G = Z;, fir m = 2773. Dann berechnen die
Algorithmen PoT und HORNERPOT die modulare Potenz 1920' mod 2773 = 1868 wie

folgt.

i e b x; = a? y; = a ‘ i e ¢ 2 =a%

0 1 1 1920'=1920 1920' = 1920 4 1 1 1920' = 1920

1 1 3 1920°=1083 1920-1083'=2383 (3 0 2 1920%-1920° = 1083
2 0 3 1083%2=2683 2383-2683°=2383|2 0 4 1083%-1920° = 2683
3 0 3 26832=2554 2383-2554°=2383 |1 1 9 2683%-1920! = 1016
4 1 19 25542 =820 2383-820'=1868 |0 1 19 1016%-1920' = 1868

6.3 Primzahlen

Bezeichne P die Menge der Primzahlen. Fiir n > 1 sei P, = {p € P | p < n} die Menge
der Primzahlen p < n und P,(a,m) = |[{p € P, | p = a} die Menge der Primzahlen
p < n, die kongruent a modulo m sind. Folgende Funktionen bestimmen die Anzahlen
der Primzahlen in diesen Mengen,

T, Ta,m : N — Ng mit 7(n) = ||P,|| und 74, m(n) = ||Pnla, m)||
Satz 125. (Primzahlsatz, Hadamard, de la Vallée Poussin 1896)
Ist ggT(a,m) =1, so gilt*
n

n
m(n) ~ o und Tg, m(n) ~ o(m) Tnn

*f(n) ~ g(n) bedeutet lim,, o, f(n)/g(n) = 1.




84 6 Zahlentheoretische Grundlagen

Wie folgende Tabelle zeigt, liefert die Funktion Li(n) = [;'(Inz)~'dz im Vergleich zu
n/Inn eine deutlich bessere Abschétzung von 7(n).

n m(n) m(n) —n/Inn Li(n) —7(n)

10 4 —0.3 2.2
100 25 3.3 5.1
1000 168 23 10
10000 1229 143 17
10100 1240 144 18
10° 78498 6116 130
10° 00 847534 2592592 1701
1012 37607912018 1416705193 38263
10% 29844 570422 669 891604 962 452 1052619

10" 24739954 287 740 860 612483 070 893 536 21949 555
1021 21127269486018 731928 446579871578 168707 597 394 254

_a
Ina”

Beispiel 126. Die Anzahl der Primzahlen in einem Intervall [a, b ist ungefihr & —
Fiir das Intervall I = [10000, 10100] ergibt sich z. B. ein Ndiherungswert von

10100 10 10100 10*

In ~ — ~ —
| Pl In10100 1n104 9.22 9.21

~ 1095.4 — 1085.7 = 9.7 =~ 10,

wdhrend der tatsdchliche Wert gleich 11 ist.

Fiir die Anzahl aller 100-stelligen Primzahlen (in Dezimaldarstellung), also aller Prim-

zahlen im Intervall I' = [10%°,10'%° — 1] erhalten wir den Niherungswert
10100 10% 10\ 10%® 89 -10%
AP~ - :< —) = ~ 390 - 10%.
100In10  991n10 99/ In10  991In 10

Vergleicht man diese Zahl mit der Anzahl 1010 — 10% = 9-10% aller 100-stelligen Dezi-
malzahlen, so sehen wir, dass ungefihr jede 90000/390 ~ 231-te 100-stellige Dezimalzahl
prim 1st.

Fiir die Anzahl aller 1000-stelligen Primzahlen (in Dezimaldarstellung), also aller Prim-

zahlen im Intervall I' = [10%%°,1019%° — 1] erhalten wir dagegen den Niherungswert
101000 10999 100 10%7 899 - 10%7
1000In 10 9991n 10 999/ In10 9991n 10

Hier sehen wir, dass ungefihr jede 900000/391 =~ 2301-te der 10'°° — 109% = 9. 10%°
1000-stelligen Dezimalzahlen prim ist. N

Der Beweis des Primzahlsatzes ist sehr aufwéindig. Mit elementaren Mitteln lasst sich
jedoch folgender Satz beweisen, der fiir die meisten Anwendungen vollkommen ausreicht.

Satz 127 (Tschebyscheff). Fir alle n > 200 gilt w(n) > 352
(Ohne Beweis)
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6.4 Pseudo-Primzahlen und der Fermat-Test

Bei der Konstruktion eines probabilistischen Monte-Carlo Primzahltests geht man iib-
licherweise so vor, dass man eine Folge von Teilmengen A, C Z definiert, die fiir alle
n > ng folgende drei Eigenschaften erfiillen:

1. Fir gegebene Zahlen a,n € N kann effizient, d. h. in Polynomialzeit getestet werden,
ob a € A, ist.

2. Fir primes n ist A, = Z;.
3. Fir zusammengesetztes n ist ein konstanter Anteil aller Elemente von Z nicht in
A, enthalten, d.h. || A,|| < ep(n) fir eine Konstante € < 1.

Typischerweise wéhlt man fiir A,, daher eine Eigenschaft, die fiir alle Elemente a € Z
gilt, falls n prim ist. Der zugehorige generische Primzahltest GT arbeitet dann wie folgt.

GT(n,k), k> 1
I for j:=1 to k do
2 guess randomly a € {1,...,n—1}
3 if a € A, then return(zusammengesetzt)
1

return(prim)

Hierbei steuert der Parameter k& die maximale Fehlerwahrscheinlichkeit von GT'(n, k).
Gilt namlich ||A,]] < ep(n) fir zusammengesetztes n und eine Konstante e < 1, so gibt
GT(n, k) fir primes n immer ,prim* aus und fiir zusammengesetztes n hochstens mit

Wahrscheinlichkeit (|| A.[l/(n —1))" < (| All/0(n)" < .

Da der Algorithmus (mit beliebig kleiner Wahrscheinlichkeit) eine falsche Ausgabe pro-
duzieren kann, handelt es sich um einen sogenannten Monte-Carlo-Algorithmus (mit
einseitigem Fehler, da es nur im Fall n zusammengesetzt zu einer falschen Ausgabe
kommen kann). Im Gegensatz hierzu gibt ein sogenannter Las-Vegas-Algorithmus nie
eine falsche Antwort. Allerdings darf ein Las-Vegas-Algorithmus (mit kleiner Wahrschein-
lichkeit) die Antwort schuldig bleiben, also ,,7* ausgeben. Es liegt nahe, den Satz von

Fermat zur Konstruktion einer ,, Testmengensequenz*
AT =JaecZ: |a" ' =, 1}
zu verwenden. Dies fiihrt auf folgenden Fermat-Test (FT).

FT(n,k), n > 3 ungerade und k > 1

i berechne die Binardarstellung >/ _,e; -2, e, =1, von n—1
> for j:=1 to k do

3 guess randomly a € {1,...,n— 1}
| zi=a

5 for i:=7r—1 downto 0 do

6 2z =2z’ mod n

7 if ¢, =1 then

8 z:=z-amodn

9 if z#, 1 then
10 return(zusammengesetzt)
11 return(prim)
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Der Fermat-Test berechnet also die Potenz "' = 2, genau wie der Algorithmus HORNER-

PoOT iiber eine Folge 2, ...,z mit z, = a und z;_; = z2a% mod n firi =r —1,...,0.
Er erkennt n als zusammengesetzt, falls 2o # 1 ist. Man nennt eine zusammengesetzte
Zahl n, die den Fermat-Test bei Wahl von a € Z7 besteht (d.h. es gilt a"! =, 1) eine
Fermat-Pseudo-Primzahl oder einfach Pseudo-Primzahl zur Basis a. Man sagt auch, a ist
ein (falscher) Primzahlzeuge fur n. Zum Beispiel ist die Zahl 91 pseudo-prim zur Basis
3. Es gibt sogar Zahlen n (z.B. n = 561) die pseudo-prim zu jeder Basis a € Z} sind
(sogenannte Carmichael-Zahlen). Fur diese Zahlen ist Bedingung c) in obiger Aufzahlung
nicht erfiillt, weshalb der Fermat-Test als Pseudo-Primzahltest bezeichnet wird. In den
Ubungen wird gezeigt, dass Bedingung c) fiir jede zusammengesetzte Zahl, die keine
Carmichael-Zahl ist, mit ¢ = 1/, erfiillt ist. Carmichael-Zahlen kommen nur sehr selten
vor (erst 1992 konnte die Existenz unendlich vieler Carmichael-Zahlen nachgewiesen
werden).

6.5 Der Miller-Rabin Test

Der Fermat-Pseudoprimzahltest kann zu einem Monte-Carlo Primzahltest (dem sogenann-
ten Miller-Rabin Test, kurz MRT) erweitert werden. Wie wir gesehen haben, berechnet
der Fermat-Test die Potenz a®~! = z;, iiber eine Folge z,,. .., 2 von Potenzen mit z, = a
und z_y = z2a®" mod n = a® mod n fir i =r —1,...,0, wobei ¢; = >7_; e; - 277" ist.
Er erkennt n als zusammengesetzt, falls zg # 1 ist. Der Miller-Rabin Test iiberpriift nun
zusitzlich bei jeder Quadrierung, ob 2? =, 1 und z; #,, +1 ist. Ist dies der Fall, so muss
n ebenfalls zusammengesetzt sein, da z; eine nichttriviale Losung der Kongruenz 22 =, 1

in Z; ist. Die MRT-Testmenge ist also
AMRY — (g e 7F | 2o =, lund Vi=17,...,1: 22 =, 1 = 2 =, £1}.

Es ist klar, dass diese Testmengen die Bedingungen a) und b) erfiillen. Mit etwas
zahlentheoretischem Aufwand lésst sich zeigen, dass sie auch Bedingung c) fur ¢ = 1/,
erfullen. Weiter unten werden wir dies fiir ¢ = 1/, zeigen.

Der Miller-Rabin Test lasst sich in Pseudocode wie folgt implementieren.
MRT(n, k), n > 3 ungerade und %k > 1

I berechne die Binardarstellung >/ _,e¢;-2' von n—1, wobei e, =1 ist
> for j:=1 to k do
3
1

guess randomly a € {1,...,n— 1}

z:i=a
5 for i:=r—-1 downto 0 do

6 Y=z

7 2=z mod n

8 if 2=, 1Ny #, +1 then

9 return(zusammengesetzt)
10 if e, =1 then

11 z:=z-amodn

12 if 2 #, 1 then
13 return(zusammengesetzt)
14 return(prim)




6.5 Der Miller-Rabin Test 87

Beispiel 128. Sein = 221. Dann berechnet der Miller-Rabin Test fir a = 174, o’ = 137
und o = 18 die folgenden Werte z;, z. bzw. 2! (die dinn gedruckten Werte werden nur
vom Fermat-Test berechnet, da der Miller-Rabin Test vorher abbricht).

i e o |z=(a) () | 2 = (a)" () |2 = (@) ()
71 1 |174 220 | 137 205 | 18 103
6 1 220174 =47 220 |205-137 =18 103 |103-18 =86 103
5 0 6 |220 1]103 1|103 1
41 13 |1-174=174 220|1-137=137  205|1-18 =18 103
3 1 27 [220-174=47 220|205-137=18 103 /103-18=86 103
2 1 55 [220-174=47 220 |103-137=188 205/ 103-18 =86 103
1 0 110|220 1205 35 | 103 1
0 0 2201 35 1

Der Miller-Rabin Test erkennt also die Zahl n = 221 bei Wahl von a = 174 nicht als
zusammengesetzt, wohl aber bei Wahl von a = 137 und a = 18. Dagegen wiirde dies der
Fermat-Test ber Wahl von a = 18 ebenfalls nicht erkennen. <

Die Zahlen a € AMRT werden starke Primzahlzeugen fiir n genannt. Falls n zusam-
mengesetzt ist, sagt man auch, n ist eine starke Pseudo-Primzahl zur Basis a. Es gibt
nur eine Zahl n < 2,5 - 109 die stark pseudo-prim zu den Basen 2, 3, 5 und 7 ist:
n =3215031751 = 151 - 751 - 28 351.

Wir zeigen nun, dass jede ungerade zusammengesetzte Zahl n > 2 hochstens ¢(n)/2
starke Primzahlzeugen hat. Sei n — 1 = 2™y mit u ungerade und sei

U, ={a €Z | a®" =, £1}, wobei j = max{0 <i<m|3a € Z’ : a®" =, —1}.
Behauptung 129. U, ist eine Untergruppe von Z .

Es geniigt zu zeigen, dass U,, unter Multiplikation abgeschlossen ist. Seien hierzu a,b € U,,.
Dann gilt

(ab)?" = ¥ "b?v =, (£1)(£1) = £1.

Behauptung 130. AMFT C U,,.

) ‘ e; G ‘ z; = a““mod n
m 1 U “ modn
m—110 2u a®* modn
. , j
m—3|0]| 2u a®?* modn
—1
1 012 | o *modn
0 0| 2™u a®"" modn
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Seia € AnMRT. Dann gilt 20 =, 1 und 22 =, 1 = z; =, +1 fir i =r,..., 1. Aus Ersterem
folgt wegen zy =, a" ! =, a*"" sofort a*"* =, 1 und aus Letzterem insbesondere
m-i)> =p 1 = 2 =, £l fiir i =0,...,m — 1. Da fiir i = 0,...,m die Kongruenz

Zm—i =n a2 gilt, folgt daraus
Vie{0,....om—1}:a*" "=, 1 d"" =, +1 (*)

Zudem folgt aus der Definition von 7, dass

Vie{j+1,....m}:a®"#, -1 (**)
gilt. Nun folgen aus a®™* =, 1, (*) und (**) die Kongruenzen a** =, 1 fiir i =
m,m —1,...,j+ 1. Eine weitere Anwendung von (*) auf die resultierende Kongruenz

a? v =, 1 impliziert schlieBlich ?'* =,, £1, also a € U,.
Behauptung 131. Fulls n zusammengesetzt ist, ist U, eine echte Untergruppe von Z;,
und daher

A3 < [T < o) /2.

Falls n = p* eine Primzahlpotenz mit p > 2 unf k > 2 ist, gilt (p*~! + 1)pk*1 # £1
(sieche Ubungen) und somit a = p*~! +1 ¢ U,. Andernfalls kénnen wir n = nyny in
teilerfremde Faktoren n;,n, > 2 zerlegen. Zudem existiert nach Definition von j eine
Zahl b € Z* mit v*'* =, —1. Dann ist aber die eindeutige Losung a € Z} von

T =p, b,

T =p, 1
nicht in U,, enthalten:

20 _ 20w _ 2w
a =m b =n —1=a ?‘én 1,

"=, 17" =1=ad""#, -1

Unter Verwendung der verallgemeinerten Riemannschen Hypothese kann man sogar
zeigen, dass es keine Zahl n gibt, die stark pseudo-prim zu allen Basen a mit a <
2 - (Inn)? ist. Unter dieser Hypothese kann der Miller-Rabin Test daher zu einem
deterministischen Polynomialzeit-Algorithmus derandomisiert werden (mit der Folge,
dass das Primzahlproblem in P 16sbar ist). Erst 2002 fanden Agrawal, Kayal und Saxena
einen Algorithmus, der das Primzahlproblem auch ohne diese Voraussetzung in P 16st.
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