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1 Klassische Verfahren

1.1 Einfiihrung

Kryptosysteme (Verschliisselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.

Physikalische MaBnahmen: Tresor etc.
Organisatorische MaBnahmen: einsamer Waldspaziergang etc.
Steganografische MaBnahmen: unsichtbare Tinte etc.

Andererseits konnen durch kryptografische Verfahren weitere Schutzziele realisiert
werden.

o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o [ntegritdt
— von Nachrichten und Daten
o Zurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.

Kryptografie: Lehre von der Geheimhaltung von Informationen durch die Verschliisse-
lung von Daten. Im weiteren Sinne: Wissenschaft von der Ubermittlung, Speiche-
rung und Verarbeitung von Daten in einer von potentiellen Gegnern bedrohten
Umgebung.

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stérken bzw. Schwéachen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).
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1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

— operieren auf semantischen Einheiten,

— starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemafl Funkbefehl testen
yde Frage

sLk Befehl

fin beendet

eom eigene Maschinen

Kryptosysteme

— operieren auf syntaktischen Einheiten,

— flexibler Mechanismus durch Schliisselvereinbarung

Definition 2 (Alphabet). Ein Alphabet A = {aq, ..., a, 1} ist eine geordnete endli-
che Menge von Zeichen a;. Eine Folge v = x1 ...z, € A" heifst Wort (der Linge n).
Die Menge aller Worter diber dem Alphabet A ist A* = 5o A".

Beispiel 3. Das lateinische Alphabet A, enthdilt die 26 Buchstaben A, ... ,Z. Bei
der Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Grof- und Kleinschreibung verzichtet (~ Verringerung der Redundanz
im Klartext). q

Definition 4 (Kryptosystem). Ein Kryptosystem wird durch folgende Komponenten
beschrieben.:

— A, das Klartextalphabet,

— B, das Kryptotextalphabet,

— K, der Schliisselraum (key space),

— M C A*, der Klartextraum (message space),

— C C B*, der Kryptotextraum (ciphertext space),

— E: K x M — C, die Verschliisselungsfunktion (encryption function),

— D: K xC — M, die Entschliisselungsfunktion (decryption function) und

— S C K x K, eine Menge von Schlisselpaaren (k, k") mit der Eigenschaft, dass fir
jeden Klartext x € M folgende Beziehung gilt:

DK, E(k,z)) =z (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k, k) | k € K}, weshalb wir in diesem Fall
auf die Angabe von S verzichten kénnen.



1.3 Die affine Chiffre 3

Chiffrier- 4 Dechiffrier-
funktion F funktion D

Sender Empfianger

Zu jedem Schliissel k € K korrespondiert also eine Chiffrierfunktion Ej : x — E(k, x)
und eine Dechiffrierfunktion Dy : y — D(k,y). Die Gesamtheit dieser Abbildun-
gen wird auch Chiffre (englisch cipher) genannt. (Daneben wird der Begriff | Chiffre“
auch als Bezeichnung fiir einzelne Kryptotextzeichen oder kleinere Kryptotextsequenzen
verwendet. )

Lemma 5. Fir jedes Paar (k, k') € S ist die Chiffrierfunktion Ej. injektiv.

Beweis. Angenommen, fiir zwei unterschiedliche Klartexte xzy # x5 ist E(k,z) =
E(k,z2). Dann folgt

1.1
(:) Z2 # Ty,

D(K,E(k,z1)) = D(K, E(k,x2))

im Widerspruch zu (1.1). O

1.3 Die affine Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a,b,m ganze Zahlen
mit m > 1. Die Zahl a teilt b (kurz: alb), falls ein d € Z existiert mit b = ad. Teilt m
die Differenz a — b, so schreiben wir hierfir

a=,b
(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne
amod m =min{a —dm >0 |d € Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r€{0,..., m— 1}, fir die eine ganze Zahl d € 7 existiert mit a = dm + r.

Die auf Z definierten Operationen
a @y, b:=(a+0b) modm

und
a @ b := ab mod m.
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Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlissel k = 13).

z ABCDEFGHIJKLMNOPQRSTUVWXYZ
E(13,2) [INOPQRSTUVWXYZABCDEFGHIJKLM

sind abgeschlossen auf Z,, = {0,..., m — 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Fir
a P,, —b schreiben wir auch a &,, b.

Durch Identifikation der Buchstaben a; mit ihren Indizes konnen wir die auf Z,,, definierten
Rechenoperationen auf Buchstaben iibertragen.

Definition 7 (Buchstabenrechnung). Sei A = {ag,...,an_1} ein Alphabet. Fiir
Indizes i,j € {0,..., m — 1} und eine ganze Zahl z € 7 ist

a4 + a5 = Qigj, A — A5 = Qigy,j, G0 = Qio,,;,
A+ 2 = Qigpz, G — 2 = Qignz, 205 = 0x0,,;)-

Mit Hilfe dieser Notation lasst sich die Verschiebechiffre, die auch als additive Chiffre
bezeichnet wird, leicht beschreiben.

Definition 8 (additive Chiffre). Bei der additiven Chiffre ist A= B =M =C
ein beliebiges Alphabet mit m := ||Al| > 1 und K ={1,...,m—1}. Firke K, x € M
und y € C gilt

Ek,z)=x+4+k und D(c,y) =y —k.

Im Fall des lateinischen Alphabets fithrt der Schliissel £ = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.1). Natiirlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten geschiitzt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen — etwa von Rétsellosungen — verhindert werden.

ROT13 ist eine involutorische — also zu sich selbst inverse — Abbildung, d.h. fiir alle
x e A gilt

ROT13(ROT13(z)) = =.
Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar eine echt
involutorische Abbildung.

Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe: Anstatt auf
jeden Klartextbuchstaben den Schliisselwert £ zu addieren, konnen wir die Klartextbuch-
staben auch mit k£ multiplizieren. Allerdings erhalten wir hierbei nicht fiir jeden Wert
von k eine injektive Chiffrierfunktion. So bildet etwa die Funktion g : A;,; — Ajer mit
g(x) = 2x sowohl A als auch N auf den Buchstaben g(A) = g(N) = A ab. Um die vom
Schliisselwert k zu erfiillende Bedingung angeben zu konnen, fithren wir folgende Begriffe
ein.

Definition 9 (ggT, kgV, teilerfremd). Seien a,b € Z. Fir (a,b) # (0,0) st
ggT(a,b) = max{d € Z | d teilt die beiden Zahlen a und b}
der grofite gemeinsame Teiler von a und b. Fir a # 0,b # 0 ist

kgV(a,b) = min{d € Z | d > 1 und die beiden Zahlen a und b teilen d}
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das kleinste gemeinsame Vielfache von a und b. Ist ggT(a,b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.

Lemma 10. Seien a,b,c € Z mit (a,b) # (0,0). Dann gilt ggT(a,b) = ggT(b, a + bc)
und somit ggT(a,b) = ggT(b,a mod b), falls b > 1 ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a + bc und umgekehrt. O

Euklidscher Algorithmus: Der grofite gemeinsame Teiler zweier Zahlen a und b lasst
sich wie folgt bestimmen.

O.B.d. A. sei a > b > 0. Bestimme die natiirlichen Zahlen (durch Divsision mit Rest):
ro=a>r =b>ry>--->r;>r, 1 =0 und dy,ds,...dsi1
mit
Ti_lzdi+17‘i+r,~+1 far izl,...,S.*
Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(Tz‘—hTi) = ggT(n, Ti—1 — dz‘+17‘z‘)
————

Tit1
folgt ggT(a,b) = ggT(rs,rs11) = rs.
Beispiel 11. Fiir a = 693 und b = 147 erhalten wir
i Tic1 = dig1e T+ i
1 693 = 4 -147 + 105
2 147 = 1 -105 + 42
3 106 = 2 - 424+ 21
4 42 = 2 21+ 0
und damit ggT(693,147) = ry = 21. Q

Der Euklidsche Algorithmus ldsst sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklid;i(a,b) Prozedur Euklid,e(a,b)

| repeat 1 if b=0 then

2 r:=amod b 2 return(a)

3 a:=b>b 3 else

4 b:=r 4 return(Euklid ek (b, @ mod b))
5 until r=20

¢ return(a)

Zur Abschétzung von s verwenden wir die Folge der Fibonacci-Zahlen F},:

*Also: dl =Ti—2 div Ti—1 und Ty =Ti—2 mod Ti—1-
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0, falls n =0

F,=141, falls n = 1

F,_1+F,, fallsn>2
Durch Induktion iiber i = s,s —1,...,0 folgt r; > F, 1 _;; also a = rq > Fyy1. Weiterhin
lasst sich durch Induktion iiber n > 0 zeigen, dass Fj,41 > ¢™ ! ist, wobei ¢ = (14++/5)/2

der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da Fy = F} =
1 = ¢° > ¢! ist. Unter der Induktionsannahme Fj,; > ¢*~! fiir i < n — 1 folgt wegen

P =041
Fopn=Fo+ Foa 20" 249" =¢" (o +1) = ¢" "

Somit ist @ > ¢*~1, d.h. s < 1+ [log a).

Satz 12. Der Euklidsche Algorithmus fihrt O(n) Divisionsschritte zur Berechnung von
ggT(a,b) durch, wobei n die Linge der Eingabe a > b > 0 in Bindrdarstellung bezeichnet.
Dies fiihrt auf eine Zeitkomplezitit von O(n?), da jede Ganzzahldivision in Zeit O(n?)
durchfihrbar ist.

Erweiterter Euklidscher bzw. Berlekamp-Algorithmus: Der Euklidsche Algorith-
mus kann so modifiziert werden, dass er eine lineare Darstellung

geT(a,b) =AXa+pub mit N\ peZ

des ggT liefert (Zeitkomplexitit ebenfalls O(n?)). Hierzu werden neben r; und d; weitere
Zahlen
pi = pi—2 — dipi—1,  wobei pg=1 und p; =0,

und
¢ = ¢i—2 — d;gi—1, wobei ¢=0 und ¢ =1,

fir ¢ =0,...,n bestimmt. Dann gilt fiir i =0 und ¢ = 1,
ap; +bg; = 1i,
und durch Induktion iiber 7,
apiy1 +bgipn = a(pioy — digapi) +0(gi-1 — div1)
= api—1 +bgi_1 — diy1(ap; + bg;)

- (7"1'—1 - di+17"z')

Tit+1
zeigt man, dass dies auch fir ¢+ = 2, ..., s gilt. Insbesondere gilt also
aps + bgs = rs = ggT(a,b).

Korollar 13 (Lemma von Bezout). Der grofite gemeinsame Teiler von a und b ist in
der Form
geT(a,b) =Xa+pb mit A\ pu€Z

darstellbar.
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Beispiel 14. Fir a = 693 und b = 147 erhalten wir wegen

ioricr = digr T T Di i pi 693+ ¢;-147= 1,
0 1 0 1-693+ 0-147 =693
1 693 = 4 -147+ 105 O 1 0-693+ 1-147=147
2 147 = 1 105+ 42 1 —4 1-693 — 4-147=105
3 105 = 2 - 424 21 -1 5) —1-693+ 5-147= 42
4 42 = 2 -21+ 0 3 -—-14 3-693 —14-147= 21
die lineare Darstellung 3 - 693 — 14 - 147 = 21. N

Aus der linearen Darstellbarkeit des grofiten gemeinsamen Teilers ergeben sich eine Reihe
von niitzlichen Schlussfolgerungen.

Korollar 15. ggT(a,b) = min{Aa + ub > 1| A\, u € Z}.

Beweis. Sei M ={ a+pub> 1|\ p € Z}, m =min M und g = ggT(a,b). Dann folgt
g > m, da g in der Menge M enthalten ist, und g < m, da g jede Zahl in M teilt. O

Korollar 16. Der grifite gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

zla A zlb = z|ggT(a,b).

Beweis. Seien p, A € Z mit pa + A\b = ggT(a,b). Falls x sowohl a als auch b teilt, dann
teilt © auch die Produkte pa und A\b und somit auch deren Summe. O

Korollar 17 (Lemma von Euklid). Teilt a das Produkt bc und sind a, b teilerfremd, so
teilt a auch c,
albc A ggT(a,b) =1 = dalc

Beweis. Wegen ggT(a,b) = 1 existieren Zahlen pu, A € Z mit pa + A\b = 1. Falls a das
Produkt be teilt, muss a auch die Zahl cua 4+ cAb = c teilen. O

Korollar 18. Zwei Zahlen a und b sind genau dann zu einer Zahl m € Z teilerfremd,
wenn thr Produkt ab teilerfremd zu m ist,

ggT(a,m) =ggT(bym)=1 <« ggT(abm)=1.

Beweis. Da aund b teilerfremd zu m sind, existieren Zahlen p, A\, ¢/, ' € Z mit pa+im =
1'b+ N'm = 1. Somit ergibt sich aus der Darstellung

1= (ua+ Im)(@'b+ Nm) = up' ab+ (paX + p/'oOX + A\N'm)m
—~

l’[/” )\N

und Korollar 15, dass auch ab teilerfremd zu m ist.

Gilt umgekehrt ggT(ab,m) = 1, so existieren Zahlen p, A € Z mit pab + Am = 1. Mit
Korollar 15 folgt sofort ggT(a, m) = ggT(b,m) = 1. O

Damit nun eine Abbildung g : A — A von der Bauart g(z) = bx injektiv (oder gleichbe-
deutend, surjektiv) ist, muss es zu jedem Buchstaben y € A genau einen Buchstaben
xr € A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.
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Satz 19. Seien b,m ganze Zahlen mit m > 1. Die lineare Kongruenzgleichung bx =,, y
besitzt genau dann eine eindeutige Losung x € {0,..., m — 1}, wenn ggT(b,m) =1 ist.

Beweis. Angenommen, ggT(b,m) = ¢g > 1. Dann ist mit z auch 2’ = z + m/g eine
Losung von bx =,, y mit x #,, z’. Gilt umgekehrt ggT(b,m) = 1, so folgt aus den
Kongruenzen

bxl =m Y

und
bl’? =m Y

sofort b(z1 — z2) =, 0, also m|b(z1 — z2). Wegen ggT (b, m) = 1 folgt mit dem Lemma
von Euklid m|(x; — x3), also x1 =, xs.

Dies zeigt, dass die Abbildung f : Z,, — Z,, mit f(x) = bz mod m injektiv ist. Da der
Definitions- und der Wertebereich von f die gleiche Méchtigkeit haben, muss f dann
auch surjektiv sein. Dies impliziert, dass die Kongruenz bx =,, y fiir jedes y € Z,, 16sbar
ist. O

Korollar 20. Im Fall ggT(b,m) =1 hat die Kongruenz bx =, 1 genau eine Losung, die
das multiplikative Inverse von b modulo m genannt und mit b=* mod m (oder einfach
mit b= ) bezeichnet wird. Die invertierbaren Elemente von Z,, werden in der Menge

Ly, = {b € Ly, | ggT(b,m) = 1}
zusammengefasst.

Korollar 18 zeigt, dass Z;, unter der Operation ©,, abgeschlossen ist, und mit Korollar 20
folgt, dass (Zf,, ®,,) eine multiplikative Gruppe bildet. Allgemeiner zeigt man, dass fiir
einen beliebigen Ring (R, +,+,0,1) mit Eins die Multiplikation auf der Menge R* = {a €
R|3be€ R:ab=1=ba} aller Einheiten von R eine Gruppe (R*,-, 1) (die so genannte
Einheitengruppe von R) bildet.

Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
Ab+ pm = ggT(b,m) =1 zu b~' = X mod m. Bei Kenntnis von b~! kann die Kongru-
enz bxr =, y leicht zu = yb~! mod m gelost werden. Die folgende Tabelle zeigt die
multiplikativen Inversen b~ fiir alle b € Zi.

b {1 3 5 7 9 11 15 17 19 21 23 25
b'|1 9 21 15 3 19 7 23 11 5 17 25

Nun lasst sich die additive Chiffre leicht zur affinen Chiffre erweitern.

Definition 21 (affine Chiffre). Bei der affinen Chiffre ist A= B = M = C ein
beliebiges Alphabet mit m := ||Al| > 1 und K = Z, X Zy,. Fir k = (b,c) € K, v € M
und y € C gilt

E(k,z) =bxr+c und D(k,y) =0b""(y —c).

In diesem Fall liefert die Schliisselkomponente b = —1 fiir jeden Wert von ¢ eine invo-
lutorische Chiffrierfunktion z — E(b,¢;x) = ¢ — x (verschobenes komplementires
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Alphabet). Wahlen wir fir ¢ ebenfalls den Wert —1, so ergibt sich die Chiffrierfunk-
tion x — —x — 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

x ABCDEFGHIJKLMNOPQRSTUVWXY?Z
- AZYXWVUTSRQPONMLKJIHGFEDCB
—x—1| ZYXWVUTSRQPONMLKIJIHGFEDCBA

Als néchstes illustrieren wir die Ver- und Entschliisselung mit der affinen Chiffre an einem
kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei A ={A,...,Z} = B, also m = 26. Weiter sei k = (9, 2),
also b=9 und ¢ = 2. Um den Klartextbuchstaben x = F zu verschlisseln, berechnen wir

Ek,x)=bx+c=9F+2=1V,

da der Index von F gleich 5, der von V gleich 21 und 9 -5 + 2 = 47 =94 21 ist. Um einen
Kryptotextbuchstaben wieder entschlisseln zu kénnen, benotigen wir das multiplikative
Inverse von b =9, das sich wegen

toricr = dig1 i+ T pi-26+  ¢-9= 1
0 1-26 + 0-9 = 26
1 26 = 2 -94 8 0-26 + 1-9= 9
2 9 = 1-84+ 1 126+ (-2)-9= 8
3 8= 8 -1+ 0 (-1):26+ 3.9= 1

2u b~ = g3 = 3 ergibt. Damit erhalten wir fir den Kryptotextbuchstaben y = V den
urspringlichen Klartextbuchstaben

D(k,y)=b""(y—c)=3(V-2)=F
zurtck, da 3 -19 = 57 =94 5 ist. <
Eine wichtige Rolle spielt die Funktion
: N =N mit o(m) =|Z,| =[{a|0<a<m—1, ggT(a,m) =1},

die sogenannte Fulersche p-Funktion.

m |1 2 3 4 5 6 7 8 9 10

Zr:, {0 {1}{1,2} {1,3}{1,---, 4} {1,5}{1,---,6} {1,3,5,7} {1,2,4,5,7,8}{1,3,7,9}
pm) 1 1 2 2 4 2 6 4 6 4
Wegen

Lo — Z;k ={0,p,2p,..., (pkil — 1)p}
folgt sofort
() =p" =P =p - 1),
Um hieraus fiir beliebige Zahlen m € N eine Formel fiir ¢(m) zu erhalten, geniigt es,
©(ml) im Fall ggT(m,[) =1 in Abhéngigkeit von ¢(m) und ¢(l) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Z,,; — Z,, X Z; mit

f(x) := (z mod m,z mod I).
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Beispiel 23. Sei m =5 und | = 6. Dann erhalten wir die Funktion f : Zsy — Z5 X Zg
mit

x 0 1 2 3 4 5 6 7 8 9
f(x)] (0,0)(1,1)(2,2) (3,3) (4,4) (0,5) (1,0) (2,1) (3,2) (4,3)

¢ | 10 11 12 13 14 15 16 17 18 19
f(x)] (0,4) (1,5) (2,0)(3,1) (4,2) (0,3) (1,4) (2,5) (3,0) (4,1)

z | 20 21 22 23 24 25 26 27 28 29
f(x)] (0,2) (1,3) (2,4) (3,5) (4,0) (0,1) (1,2) (2,3) (3,4) (4,5)

Man beachte, dass f eine Bijektion zwischen Zsg und Zs X Zg ist. Zudem fdllt auf, dass
ein x-Wert genau dann in Z3, liegt, wenn der Funktionswert f(x) = (y,2) zu ZE X Z
gehort (die Werte x € 7%y, y € Z% und z € Z§ sind fett gedruckt). Folglich bildet f
die Argumente in Zj, bijektiv auf die Werte in Z% x Z ab. Fir f~! erhalten wir somit
folgende Tabelle:

o1 2 3 405

0 25 20 15 10 5
6 1 26 21 16 11
12 7 2 27 22 17
18 13 8 3 28 23
24 19 14 9 4 29

B W N = O

N

Der Chinesische Restsatz, den wir im néchsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m, ) = 1 bijektiv und damit invertierbar ist. Wegen

geT(x,ml) =1 < ggT(x,m)=ggT(x,1) =1
& ggT(x mod m,m) = ggT(z mod [,1) =1

ist daher die Einschrénkung f von f auf den Bereich Z*, eine Bijektion zwischen Z,,
und Z;, x Zj, d.h. es gilt

p(ml) = | Z5ll = (12, X Zi || = |2 | - 1271} = ¢ (m)e(l).
Satz 24. Die Fulersche p-Funktion ist multiplikativ, d. h. fiir teilerfremde Zahlen m und
L gilt p(ml) = o(m)e(l).
Korollar 25. Seim = Hizlpf" die Primfaktorzerleqgung von m. Dann gilt
Lo !
p(m) =[Ipi" (i — 1) =m [ —1)/p:.
i=1 i=1

Beweis. Es gilt

(ITy pf) =TTy () = 1oy (0 — P 1) = TTiey P (pi — 1),
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Der Chinesische Restsatz

Die beiden linearen Kongruenzen

{L‘Ego

$E61

besitzen je eine Losung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfillt.
Der néchste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Losungen
existieren, und wie sie berechnet werden koénnen.

Satz 26 (Chinesischer Restsatz). Falls mq, ..., my paarweise teilerfremd sind, dann
hat das System

x Eml bl
(1.2)

T =y, bk
genau eine Lisung modulo m = TI¥_, m;.
Beweis. Da die Zahl n; = m/,,. teilerfremd zu m; ist, existieren Zahlen y; und A; mit
wing + \m; = ggT(n;,m;) = 1.

Dann gilt

und
i1 Emj 0

fir j # 4. Folglich erfillt z = Z§:1 pin;b; die Kongruenzen
fur ¢ = 1,..., k. Dies zeigt, dass (1.2) 16sbar, also die Funktion

Fi Ty = Doy X v+ X Lo,

mit f(z) = (r mod my, ...,z mod my) surjektiv ist. Da der Definitions- und der Wer-
tebereich von f die gleiche Méachtigkeit haben, muss f auch injektiv sein, d.h. (1.2) ist
sogar eindeutig losbar. O

Man beachte, dass der Beweis des Chinesischen Restsatzes konstruktiv ist und die Losung
x unter Verwendung des erweiterten Euklidschen Algorithmus’ effizient berechenbar ist.

1.4 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblocke, d.h. der Klartext wird nicht zeichenweise, sondern block-
weise verarbeitet. Sowohl der Klartext- als auch der Kryptotextraum enthalt alle Worter
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x Uber A einer festen Lénge [. Als Schliissel wird eine (I x [)-Matrix k = (k;;) mit Koeffi-
zienten in Z,, benutzt, die einen Klartextblock z = z;...2; € A! in den Kryptotextblock
y1 ...y € Al transformiert, wobei

Yi = xiky+ -t aky, =101

ist (hierbei machen wir von der Buchstabenrechnung Gebrauch). y entsteht also durch
Multiplikation von x mit der Schliisselmatrix k:

kll kll

Zlfk’:($1,,$l) :(ylaayl)
]{711 kll

Wir bezeichnen die Menge aller (I x [)-Matrizen mit Koeffizienten in Z,, mit Z¥!. Als
Schliissel konnen nur invertierbare Matrizen k benutzt werden, da sonst der Chiffrier-
vorgang nicht injektiv ist. Eine Matrix k € Z! ist genau dann invertierbar, wenn die
Determinante von k teilerfremd zu m ist (siche Ubungen).

Definition 27 (Determinante). Sei R ein kommutativer Ring mit Eins und sei A =
(a;j) € R™™. Eine Funktion f : R"*" — R heifit Determinantenfunktion, falls sie
folgende drei Eigenschaften erfillt

— f ist multilinear, d.h. fir jede Matric A = (ai,...,a,) € R™™ mit Spalten
ai,...,a, € (R, jeden Spaltenvektor b € (R™)T und jedes r € R gilt

flay,...,ra;+0b,...;a,) =7rf(ar,...,a;...,a,) + flay,...,b,... a,).

— f ist alternierend, d.h. im Fall a; = a; firi # j gilt f(aq,...,a,) =0.
— f ist normiert, d.h. f(E) =1, wobei E die Finheitsmatriz ist.

Tatsdchlich ist f durch diese drei Figenschaften eindeutig festgelegt und wir bezeichnen
f(A) wie dblich mit det(A).

Eine wichtige Eigenschaft der Funktion det wird durch den Laplaceschen Entwicklungssatz
beschrieben. Fir 1 <+¢,5 < n sei A;; die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matrix. Dann ist det(A) = aq1, falls n = 1, und fir n > 1 ist

det(A) = znx—l)“_jai,j det(Ay),

j=1
wobei i € {1,---,n} beliebig wahlbar ist (Entwicklung nach der i-ten Zeile). Das Produkt
(=1)"* det(A;;) wird Cofaktor genannt und mit a; ;.
Fiir die Dechiffrierung wird die zu % inverse Matrix k! benotigt, wofiir effiziente Algo-
rithmen bekannt sind (Gaufisches Eliminationsverfahren; siche Ubungen).
Satz 28. Sei A ein Alphabet und sei k € ZU (1 > 1, m = ||A|). Die Abbildung
f: AL — Al mit

f(z) = xk,
ist genau dann injektiv, wenn ggT(det(k),m) = 1 ist.

Beweis. Siehe Ubungen. O



1.5 Die Vigenére-Chiffre und andere Stromsysteme 13

Definition 29 (Hill-Chiffre). Sei A = {ao,...,am-1} ein beliebiges Alphabet und fiir
eine natiirliche Zahl 1 > 2 sei M = C = Al. Bei der Hill-Chiffre ist K = {k € Z'X! |
geT(det(k),m) =1} und es gilt

E(k,r) =2k und D(k,y) = yk™".

Beispiel 30 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klarteztblocken der Linge
[ = 4 diber dem lateinischen Alphabet Ay die Schlisselmatriz

11 13 8 21

I — 24 17 3 25
18 12 23 17 |’
6 15 215

so erhalten wir beispielsweise fiir den Klartext HILL wegen

11 13 8 21 11H4+24I+18L+ 6L=N
HILL) 24 17 3 25 — (NERX) baw 13H+17I+12L+15L=E
18 12 23 17 8H+ 3I+23L+ 2L=R
6 15 215 21H4+25T+17L+15L=X

den Kryptotext E(k,HILL) = NERX. Fiir die Entschlisselung wird die inverse Matriz k=!
benétigt. Diese wird in den Ubungen berechnet. <

1.5 Die Vigenere-Chiffre und andere Stromsysteme

Bei der nach dem Franzosen Blaise de Vigenere (1523-1596) benannten Chiffre werden
zwar nur einzelne Buchstaben chiffriert, aber je nach Position im Klartext unterschiedlich.

Definition 31 (Vigenére-Chiffre). Sei A = B ein beliebiges Alphabet. Die Vigenére-
Chiffre chiffriert unter einem Schlissel k = kq... kg1 € K = A* einen Klartext
r=2xq...T,_1 beliebiger Linge zu

E(k,z) =vy0.. . Yn-1, wobei y; =x; + k(i moaa) ist,
und dechiffriert einen Kryptotext y = 1yo...Yp_1 2u
D(k,y) =xo...0p—1, wobei x; =y — K(moda) st

Beispiel 32 (Vigeneére-Chiffre). Verwenden wir das lateinische Alphabet A, als Klar-
textalpabet und wahlen wir als Schliissel das Wort k = WIE, so ergibt sich fiir den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE,VIGENERE) =V+W I+I G+E E+W N+I E4+E R+WE+I

R Q K A v I N M

= RQKAVINM
<

Um einen Klartext x zu verschliisseln, wird also das Schliisselwort k& = kg ...kg_1 so
oft wiederholt, bis der dabei entstehende Schliisselstrom k= ko, ki,..., kq_1,ko... die
Léange von x erreicht. Dann werden x und k zeichenweise addiert, um den zugehorigen
Kryptotext y zu bilden. Aus diesem kann der urspriingliche Klartext x zurtickgewonnen
werden, indem man den Schliisselstrom & wieder subtrahiert.
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Beispiel 33. Vigenére-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) ROKAVINM (Kryptotext y)

+ WIEWIEWI (Schlisselstrom k) —— WIEWIEWI (Schliisselstrom k)
ROKAVINM (Kryptotext y) VIGENERE (Klartext x)

N

Die Chiffrierarbeit lasst sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenére-Tableau bekannt).

NHKHXI <D OoOUwoZEN R —~OQeEEOQ®E > | >

CHIIQMEBUQEENK A S << NnIOTOZZICR|R
Fe~IZQHEHOQEENX XIS < nTIOIOZEC |
CR I QHMETQEENR XS nIOTOZE|E
ECN e OOEEbQEENI XS <R IOTOZ| 2
ZEORa-IQEEUQEENK XIS <RI OTO|0
OZEEFRu—IQHEUQWENK XS <CcH®nIO T|T
TOZECNR«—IOREOUQEENL XS <cHnRO|O
OUTWOZECDARu~IIQHEIQEENXY XS <3 n T |=
NHEHLOTUOZEZECO Ru—IDQHEHUQWENK XS <3
HNHOTOZEZOD A« —IQHEOQAWENL XIS <C|C
CHRFOTIOZZO R ~IQHEEUQEENK XE <|<
<P NIOTVOZLOC A —HQIEHUQAI >N X =

PNARKHKEI<OH DO TOZECNRu~OOHEHUQW| W
WENAIXS <Al BOIOZECN R —~IDOmEUalQ
QAWEPNKXI<ARIOUTOZEN R ~OOmEgd|d
QWP NK X< nTBOTOZEC R —~IQmE|H
HOQ@WEPNK XIS <Al nIOUTOZEDN R a—~TQ T
HEHOQWEEPNLXYI <l IOTOZEE R~ Q0
QOHMEHUQ@WENK K< nIOUOZZC R —~T| T
HIOHEHOQWENKXI <A IOTOZZE DR w— | —
SO QU EHUOQWENK XIS TOTOZED Ao |w
FOUWOZErN R ~IQHEOUQEENK XS <R ®n|w
S<OHVLTOUOZECOR«—~TZIQTUEHUIQE BN M| X
HE<ORLTOIOZECRu~ODOHEIQE >N |
KIS <R NTOTOZECD Ru—~IHQEHEIQWEN|N

NHHI <R TBOTOZE Ru~OOHmouQw» |+

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schliisselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.

Beispiel 34 (Beaufort-Chiffre). Verschlisseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlisselwort k = WIE, so erhalten wir den Kryptotext XMEQNSNB. FEine
erneute Verschlisselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schliisselstrom) WIEWIEWI (Schlisselstrom)
— BEAUFORT (Klartext) — VEECDQFP (Kryptotext)

VEECDQFP (Kryptotext) BEAUFORT (Klartext)
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Bei den bisher betrachteten Chiffren wird aus einem Schliisselwort k = kg ... kys—1 ein
periodischer Schliisselstrom k = kq ...k, erzeugt, das heifit, es gilt k; = /%ier fiir
alle 2 = 0,...,n —d — 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schliisselstrom mit sehr grofler Periode oder noch besser ein fortlau-
fender Schliisselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schliisselstrom lasst sich beispielsweise ohne groflen Aufwand erzeugen, indem man an
das Schlisselwort den Klartext oder den Kryptotext anhéngt (sogenannte Autokey-
Chiffrierung).’

Beispiel 35 (Autokey-Chiffre). Benutzen wir wieder das Schliisselwort WIE, um den
Schlisselstrom durch Anhdngen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
fiir den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schliisselstrom: Kryptotext-Schliisselstrom:
VIGENERE (Klartext) VIGENERE (Klartext )

+ WIEVIGEN (Schlisselstrom) + WIERQKVD (Schlisselstrom)
ROKZVKVR (Kryptotext ) ROKVDOMH ( Kryptotext )

<

Auch die Dechiffrierung ist in beiden Féllen einfach. Bei der ersten Alternative kann der
Empfanger durch Subtraktion des Schliisselworts den Anfang des Klartextes bilden und
gleichzeitig den Schliisselstrom verlangern, so dass sich auf diese Weise Stiick fiir Stiick der
gesamte Kryptotext entschliisseln lasst. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schliisselstrom vom Kryptotext nur durch das vorangestelle
Schliisselwort unterscheidet.

1.6 Der One-Time-Pad

Es besteht auch die Moglichkeit, eine Textstelle in einem Buch als Schliissel zu vereinbaren
und den dort beginnenden Text als Schliisselstrom zu benutzen (Lauftextverschlisselung).
Besser ist es jedoch, aus einem relativ kurzen Schliissel einen moglichst zufallig erscheinen-
den Schliisselstrom zu erzeugen. Hierzu konnen beispielsweise Pseudozufallsgeneratoren
eingesetzt werden. Absolute Sicherheit wird dagegen erreicht, wenn der Schliisselstrom
rein zufillig erzeugt und nach einmaliger Benutzung wieder vernichtet wird.? Ein solcher
»Wegwerfschliissel* (One-time-pad oder One-time-tape, im Deutschen auch als indivi-
dueller Schliissel bezeichnet) lasst sich allerdings nur mit grofem Aufwand generieren
und verteilen, weshalb diese Chiffre nur wenig praktikabel ist. Dennoch wurde diese
Methode beispielsweise beim ,heiflen Draht*, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weiflen Haus in Washington und dem Kreml in Moskau,
angewandt.

Beispiel 36 (One-time-pad). Sei A = {ag,...,a,_1} ein beliebiges Klartextalphabet.
Um einen Klartext x = xg...x,_1 2zu verschlisseln, wird auf jeden Klartextbuchstaben x;

tDie Idee, den Schliisselstrom durch Anhingen des Klartextes an ein Schliisselwort zu bilden, stammt
von Vigenere, wahrend er mit der Erfindung der nach ihm benannten Vigenere-Chiffre ,nichts zu
tun® hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

! Diese Art der Schliisselerzeugung schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918
vor, nachdem ihm ein von Gilbert S. Vernam fiir den Fernschreibverkehr entwickeltes Chiffriersystem
vorgestellt wurde.
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ein neuer, zufdllig generierter Schliisselbuchstabe k; addiert,

Y=1Y0-- Yn-1, wobeiy; =x; +k;.

Der Klartext wird also wie bei einer additiven Chiffre verschliisselt, nur dass der Schliissel
nach einmaligem Gebrauch gewechselt wird. Dies entspricht dem Gebrauch einer Vigenere-
Chiffre, falls als Schliissel ein zuféllig gewéhltes Wort von der Lange des Klartextes benutzt
wird. Wie diese ist der One-time-pad im Binarfall also involutorisch.

Klartext Kryptotext Klartext

Schliissel

Schliissel

1.7 Klassifikation von Kryptosystemen

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie erzeugen den Kryptotext aus dem Klartext, indem sie Klartextzeichen — einzeln oder
in Gruppen — durch Kryptotextzeichen ersetzen. Dagegen verandern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.

Beispiel 37 (Skytale-Chiffre). Die dlteste bekannte Verschlisselungstechnik stammt aus
der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralférmig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Langsrichtung mit der Geheimbotschaft.

@)@@9@@)

UBERAUS GEHEIMNISVOLL ...
~» UGI...BES...EHV...REO...AIL...UML...SN...

Besitzt der Empfinger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. <

Als Schliissel fungiert hier also der Stabumfang bzw. die Anzahl k£ der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
betragt seine Lénge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext

E(k,xq- Xpm) =

T1Tm1Tom+1 " T(k—1)m+1L2Tm42L2m42 * ** L(k—=1)m+2 "~ TmT2mL3m * * * Tkm
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iiber. Dasselbe Resultat stellt sich ein, wenn wir z zeilenweise in eine k x m-Matrix
schreiben und spaltenweise wieder auslesen (sogenannte Spaltentransposition):

xl x2 “ . xm
Lm+1 Tm+2 o Tom
Tom+1 Tom+2 st T3m

T(k—1)m+1 T(k—)m+2 " Tkm

Ist die Klartextlange kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfiigen von sogenannten Blendern (Fiillzeichen) verlingert werden. Damit der Emp-
fanger diese Fillzeichen nach der Entschliisselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.

Von der Methode, die letzte Zeile nur zum Teil zu fiillen, ist dagegen abzuraten. In diesem
Fall wiirden namlich auf dem abgewickelten Papierstreifen Liicken entstehen, aus deren
Anordnung man Schliisse auf den benutzten Schliissel k ziehen konnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.

Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.

Beispiel 38. Bei Ausfiihrung einer Zick-Zack-Transposition wird der Klartext in
etne Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Hohe der Zick-
Zack-Linie kann als Schlissel vereinbart werden.

C C N [ZICKZACKLINIE ~ ZZLEIKAKIICCN]

N

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass fiir
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 39 (Blocktranspositionschiffre). Sei A = B ein beliebiges Alphabet und
fiir eine natirliche Zahl 1 > 2 sei M = C = Al. Bei einer Blocktranspositionschiffre
wird durch jeden Schlissel k € K eine Permutation m beschrieben, so dass fir alle
Zeichenfolgen x1---x; € M und y,---y, € C

E(kf,.lfl .. xl) = Tr1) " Tr(l)

und
D(k‘,?ﬁ o 'yl) =Yr1(1) " Yr1)
qgilt.

Eine Blocktransposition mit Blocklénge [ lasst sich durch eine Permutation = € S; (also
auf der Menge {1,...,l}) beschreiben.
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Beispiel 40. Fine Skytale, die mit 4 Zeilen der Ldnge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition.:

1 1123 456 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24

m(i)|1 713192814203 9 1521 4 101622 5 111723 6 12 18 24
<

Fiir die Entschliisselung muss die zu 7 inverse Permutation 7! benutzt werden. Wird
7 durch Zyklen (i1 i i3 ... i,) dargestellt, wobei i; auf iy, iy auf i3 usw. und schlieflich
i3 auf i; abgebildet wird, so ist 77! sehr leicht zu bestimmen.

Beispiel 41.

123456 i 123456
461352 7 1(i)[3 64152

?
(i)
Obiges 7 hat beispielsweise die Zyklendarstellung
m=(143)(26)(5) oderm=(143)(26),

wenn, wie allgemein tublich, Einerzklen weggelassen werden. Daraus erhalten wir unmit-

telbar =1 zu

1 =(341)(62) oder (134)(26),

wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Grofle dieser Elemente anordnen. <

Beispiel 42. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine
k x m-Matriz eingelesen und der Kryptotext spaltenweise gemdfS einer Spaltenpermutation
7, die als Schlissel dient, wieder ausgelesen. Fir m = (14 3) (2 6) wird also zuerst Spalte
(1) = 4, dann Spalte 7(2) = 6 und danach Spalte 7(3) = 1 usw. und zuletzt Spalte
7(6) = 2 ausgelesen.

3 6 4 1 5 2

DI ESER

K L ARTE DIESER KLARTEXT IST NICHT SEHR LANG

X T 1S TN ~» SRSTA RENEG DKXIH EAIHL ETTSN ILTCR
I CHTSE

HRLANSG

N

Beispiel 43. Bei der Weg-Transposition wird als Schliissel eine Hamiltonlinie in
einem Graphen mit den Knoten 1,... 1 benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock xy - - x; wird gemdfS der Knotennumerierung in den Graphen
eingelesen und der zugehorige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

1 2

[HAMILTON ~ TIMLONAH]
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Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren lasst. Der Vorteil, eine Hamiltonlinie als Schliissel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einpriagen kann als eine Zahlenfolge.

Sehr beliebt ist auch die Methode, eine Permutationen in Form eines Schliisselworts
(oder einer aus mehreren Wortern bestehenden Schliisselphrase) im Gedéchtnis zu
behalten. Aus einem solchen Schliisselwort lasst sich die zugehorige Permutation o leicht
rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter fir
jeden einzelnen Buchstaben seine Position ¢ innerhalb des Wortes vermerkt.

Schlisselwort fiiro |[CA ES AR

1 123456

o (i) 314625
Zyklendarstellung von o | (13465 2)

DIE BLOCKLAENGE IST SECHS ~»
EDBOIL LCANKE IGSSET EXCSYH

Die Werte (i), die o auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schliisselwort-Buchstaben in alphabetischer Reihenfolge durchzéhlt. Dabei
werden mehrfach vorkommende Buchstaben gemafl ihrer Position im Schliisselwort
an die Reihe genommen. Alternativ kann man auch alle im Schliisselwort wiederholt
vorkommenden Buchstaben streichen, was im Fall des Schliisselworts CAESAR auf eine
Blocklange von 5 fithren wiirde.

Wir wenden uns nun der Klassifikation von Substitutionschiffren zu. Ein wichtiges
Unterscheidungsmerkmal ist z.B. die Léinge der Klartexteinheiten, auf denen die Chiffre
operiert.

Monografische Substitutionen ersetzen Einzelbuchstaben.

Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-
textsegmente auf einmal.

Eine polygrafische Substitution, die auf Buchstabenpaaren operiert, wird digrafisch
genannt. Das élteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta
im Jahr 1563 veroffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextbuchstaben
durch ein einzelnes Kryptotextzeichen ersetzt.

Beispiel 44. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Porta fir
diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer 20 x 20-Matriz
M = (yi;) angeordnet, deren Zeilen und Spalten mit den 20 Klartextbuchstaben
A I L, LTV, Z indiziert sind. Zur Ersetzung des Buchstabenpaars a;a; wird das in
Zeile © und Spalte 7 befindliche Kryptotextzeichen

E(M, CLiCL]‘) = yij
benutzt. q

Eine Substitution heiit monopartit, falls sie die Klartextsegmente durch Einzelzeichen
ersetzt, sonst multipartit. Wird der Kryptotext aus Buchstabenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.

Ein frithes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200—120 v. Chr.) zuriick:
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01234
0|A B CDE
1/F GHTI?J
2IKLMNO [POLYBIOS ~ 3@24214301132433]
3/PQRST
4(U V WXy2Z

Bei der Polybios-Chiffre dient eine 5 x 5-Matrix, die aus samtlichen Klartextbuchstaben
gebildet wird, als Schliissel.5 Die Verschliisselung des Klartextes erfolgt buchstabenweise,
indem man einen in Zeile ¢ und Spalte j eingetragenen Klartextbuchstaben durch das
Koordinatenpaar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren
{00,01,...,44}.

Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verandert wird, fithrt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.

Monoalphabetische Substitutionen ersetzen die einzelnen Klartextsegment unabhén-
gig von ihrer Position im Klartext.

Polyalphabetische Substitutionen verwenden dagegen eine variable Ersetzungsregel,
auf die sich auch die bereits verarbeiteten Klartextsegmente auswirken.

Die Bezeichnung ,,monoalphabetisch® bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus auf einem einzelnen Alphabet beruht (sofern wir das Klartextalphabet als bekannt
voraussetzen). Die von Caesar benutzte Chiffriermethode kann beispielsweise vollstandig
durch Angabe des Ersetzungsalphabets

{D,E,F,G,W,...,Y,Z,A,B,C}

beschrieben werden. Auch im Fall, dass nicht einzelne Zeichen, sondern ganze Buch-
stabengruppen auf einmal ersetzt werden, geniigt im Prinzip ein einzelnes Alphabet
zur Beschreibung. Hierzu sortiert man die Klartexteinheiten, auf denen der Ersetzungs-
mechanismus operiert, und bildet die Folge (sprich: das Alphabet) der zugeordneten
Kryptotextsegmente.

Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Léange
[ > 1 durch Kryptotextsegmente derselben Lange.

Definition 45 (Blockchiffre). Sei A ein beliebiges Alphabet und es gelte M = C = Al,
[ > 1. Eine Blockchiffre realisiert fiir jeden Schliissel k € K eine bijektive Abbildung g
auf A und es gilt

E(k,x) = g(x) und D(k,y) =g~ (y)

fir alle x € M und y € C. Im Falll = 1 spricht man auch von einer einfachen
Substitutionschiffre.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zuriick, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden kénnen. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhédngigkeit von der Lange oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.

SDa nur 25 Plitze zur Verfiigung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein
Buchstabe weggelassen oder ein Platz mit zwei Buchstaben besetzt werden.
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Fast alle polyalphabetischen Chiffrierverfahren operieren — genau wie monoalphabetische
Substitutionen — auf Klartextblocken einer festen Lange [, die sie in Kryptotextblocke einer
festen Lénge [” iberfithren, wobei meist [ = [’ ist. Da diese Blocke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugefithrt werden. Man
nennt die einzelnen Klartextblocke in diesem Zusammenhang auch nicht ,Blocke® sondern
,Zeichen® und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 46 (Stromchiffre). Sei A ein beliebiges Alphabet und sei M = C = A! fiir
eine natirliche Zahll > 1. Weiterhin seien K und K Schlisselriume. Eine Stromchiffre
wird durch eine Verschlisselungsfunktion E - K x M — C und einen Schliisselstrom-
generator g - K x A* — K beschrieben. Der Generator g erzeugt aus einem externen

Schlissel k € K fir einen Klartext v = xg...x,_1, ©; € M, eine Folge 12;0, ooy kpn_1 von
internen Schlisseln k; = g(k,xo...x;_1) € K, unter denen x in den Kryptotext

Eg(k?, CL’) = E(Eo, IL‘Q) . E(]%n—la xn—l)
tberfihrt wird.

Der interne Schliisselraum kann also wie bei der Blockchiffre eine maximale Grofle von
(m')! annehmen (im hiufigen Spezialfall [ = 1 also m!). Die Aufgabe des Schliisselstrom-
generators g besteht darin, aus dem externen Schliissel £ und dem bereits verarbeiteten
Klartext zg ... z;_; den aktuellen internen Schliissel k; zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schliisselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schliisselstromgenerator

Vigeneére E(l%, r)=2x+ k g(ko .. ka—1,%0 ... Ti—1) = k(i mod m)
Beaufort E(/%, T) = k—ux g(ko .. ka—1,%0 ... Ti—1) = k(i mod m)
Aytokey R R ki i<d
mit Klartext- E(k’,l‘) =x+k g(kfo...kd_l,l'o...xi_l) = > d
Schliisselstrom Li-d)t =
Autokey A A e e oy Yk i<
mit Kryptotext- E(k,x)=x+k g(ko - ka1, %0 i) Yi_agyh > d
Schliisselstrom — ki moa ) + Z]LZ:/fJ Ti_jd

Bei der Vigenere- und Beaufortchiffre hiangt der Schliisselstrom nicht vom Klartext,
sondern nur vom externen Schliissel k£ ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).
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