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1 Klassische Verfahren

1.1 Einführung

Kryptosysteme (Verschlüsselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.
Physikalische Maßnahmen: Tresor etc.
Organisatorische Maßnahmen: einsamer Waldspaziergang etc.
Steganografische Maßnahmen: unsichtbare Tinte etc.
Andererseits können durch kryptografische Verfahren weitere Schutzziele realisiert
werden.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.
Kryptografie: Lehre von der Geheimhaltung von Informationen durch die Verschlüsse-

lung von Daten. Im weiteren Sinne: Wissenschaft von der Übermittlung, Speiche-
rung und Verarbeitung von Daten in einer von potentiellen Gegnern bedrohten
Umgebung.

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stärken bzw. Schwächen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).
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1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

– operieren auf semantischen Einheiten,
– starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemäß Funkbefehl testen
yde Frage
sLk Befehl
fin beendet
eom eigene Maschinen

/

Kryptosysteme

– operieren auf syntaktischen Einheiten,
– flexibler Mechanismus durch Schlüsselvereinbarung

Definition 2 (Alphabet). Ein Alphabet A = {a0, . . . , am−1} ist eine geordnete endli-
che Menge von Zeichen ai. Eine Folge x = x1 . . . xn ∈ An heißt Wort (der Länge n).
Die Menge aller Wörter über dem Alphabet A ist A∗ = ⋃

n≥0 A
n.

Beispiel 3. Das lateinische Alphabet Alat enthält die 26 Buchstaben A,...,Z. Bei
der Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Groß- und Kleinschreibung verzichtet (; Verringerung der Redundanz
im Klartext). /

Definition 4 (Kryptosystem). Ein Kryptosystem wird durch folgende Komponenten
beschrieben:

– A, das Klartextalphabet,
– B, das Kryptotextalphabet,
– K, der Schlüsselraum (key space),
– M ⊆ A∗, der Klartextraum (message space),
– C ⊆ B∗, der Kryptotextraum (ciphertext space),
– E : K ×M → C, die Verschlüsselungsfunktion (encryption function),
– D : K × C →M , die Entschlüsselungsfunktion (decryption function) und
– S ⊆ K ×K, eine Menge von Schlüsselpaaren (k, k′) mit der Eigenschaft, dass für

jeden Klartext x ∈M folgende Beziehung gilt:

D(k′, E(k, x)) = x (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k, k) | k ∈ K}, weshalb wir in diesem Fall
auf die Angabe von S verzichten können.
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Angreifer

Klartext x Chiffrier-
funktion E

Kryptotext y Dechiffrier-
funktion D Klartext x

Schlüssel k Schlüssel k′

Sender Empfänger

Zu jedem Schlüssel k ∈ K korrespondiert also eine Chiffrierfunktion Ek : x 7→ E(k, x)
und eine Dechiffrierfunktion Dk : y 7→ D(k, y). Die Gesamtheit dieser Abbildun-
gen wird auch Chiffre (englisch cipher) genannt. (Daneben wird der Begriff „Chiffre“
auch als Bezeichnung für einzelne Kryptotextzeichen oder kleinere Kryptotextsequenzen
verwendet.)

Lemma 5. Für jedes Paar (k, k′) ∈ S ist die Chiffrierfunktion Ek injektiv.

Beweis. Angenommen, für zwei unterschiedliche Klartexte x1 6= x2 ist E(k, x1) =
E(k, x2). Dann folgt

D(k′, E(k, x1)) = D(k′, E(k, x2))
(1.1)= x2 6= x1,

im Widerspruch zu (1.1). �

1.3 Die affine Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a, b,m ganze Zahlen
mit m ≥ 1. Die Zahl a teilt b (kurz: a|b), falls ein d ∈ Z existiert mit b = ad. Teilt m
die Differenz a− b, so schreiben wir hierfür

a ≡m b

(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne

a mod m = min{a− dm ≥ 0 | d ∈ Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r ∈ {0, . . . , m− 1}, für die eine ganze Zahl d ∈ Z existiert mit a = dm+ r.

Die auf Z definierten Operationen

a⊕m b := (a+ b) mod m

und
a�m b := ab mod m.
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Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlüssel k = 13).

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

E(13, x) N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

sind abgeschlossen auf Zm = {0, . . . , m − 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Für
a⊕m −b schreiben wir auch a	m b.
Durch Identifikation der Buchstaben ai mit ihren Indizes können wir die auf Zm definierten
Rechenoperationen auf Buchstaben übertragen.

Definition 7 (Buchstabenrechnung). Sei A = {a0, . . . , am−1} ein Alphabet. Für
Indizes i, j ∈ {0, . . . , m− 1} und eine ganze Zahl z ∈ Z ist

ai + aj = ai⊕mj, ai − aj = ai	mj, aiaj = ai�mj,

ai + z = ai⊕mz, ai − z = ai	mz, zaj = az�mj.

Mit Hilfe dieser Notation lässt sich die Verschiebechiffre, die auch als additive Chiffre
bezeichnet wird, leicht beschreiben.

Definition 8 (additive Chiffre). Bei der additiven Chiffre ist A = B = M = C
ein beliebiges Alphabet mit m := ‖A‖ > 1 und K = {1, . . . ,m− 1}. Für k ∈ K, x ∈M
und y ∈ C gilt

E(k, x) = x+ k und D(c, y) = y − k.

Im Fall des lateinischen Alphabets führt der Schlüssel k = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.1). Natürlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten geschützt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen – etwa von Rätsellösungen – verhindert werden.
ROT13 ist eine involutorische – also zu sich selbst inverse – Abbildung, d.h. für alle
x ∈ A gilt

ROT13(ROT13(x)) = x.

Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar eine echt
involutorische Abbildung.
Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe: Anstatt auf
jeden Klartextbuchstaben den Schlüsselwert k zu addieren, können wir die Klartextbuch-
staben auch mit k multiplizieren. Allerdings erhalten wir hierbei nicht für jeden Wert
von k eine injektive Chiffrierfunktion. So bildet etwa die Funktion g : Alat → Alat mit
g(x) = 2x sowohl A als auch N auf den Buchstaben g(A) = g(N) = A ab. Um die vom
Schlüsselwert k zu erfüllende Bedingung angeben zu können, führen wir folgende Begriffe
ein.

Definition 9 (ggT, kgV, teilerfremd). Seien a, b ∈ Z. Für (a, b) 6= (0, 0) ist

ggT(a, b) = max{d ∈ Z | d teilt die beiden Zahlen a und b}

der größte gemeinsame Teiler von a und b. Für a 6= 0, b 6= 0 ist

kgV(a, b) = min{d ∈ Z | d ≥ 1 und die beiden Zahlen a und b teilen d}
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das kleinste gemeinsame Vielfache von a und b. Ist ggT(a, b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.

Lemma 10. Seien a, b, c ∈ Z mit (a, b) 6= (0, 0). Dann gilt ggT(a, b) = ggT(b, a + bc)
und somit ggT(a, b) = ggT(b, a mod b), falls b ≥ 1 ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a+ bc und umgekehrt. �

Euklidscher Algorithmus: Der größte gemeinsame Teiler zweier Zahlen a und b lässt
sich wie folgt bestimmen.
O.B. d.A. sei a > b > 0. Bestimme die natürlichen Zahlen (durch Divsision mit Rest):

r0 = a > r1 = b > r2 > · · · > rs > rs+1 = 0 und d2, d3, . . . ds+1

mit
ri−1 = di+1ri + ri+1 für i = 1, . . . , s.∗

Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(ri−1, ri) = ggT(ri, ri−1 − di+1ri︸ ︷︷ ︸
ri+1

)

folgt ggT(a, b) = ggT(rs, rs+1) = rs.

Beispiel 11. Für a = 693 und b = 147 erhalten wir

i ri−1 = di+1 · ri + ri+1

1 693 = 4 · 147 + 105
2 147 = 1 · 105 + 42
3 105 = 2 · 42 + 21
4 42 = 2 · 21 + 0

und damit ggT(693, 147) = r4 = 21. /

Der Euklidsche Algorithmus lässt sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklidit(a, b)
1 repeat
2 r := a mod b
3 a := b
4 b := r
5 until r = 0
6 return(a)

Prozedur Euklidrek(a, b)
1 if b = 0 then
2 return(a)
3 else
4 return(Euklidrek(b, a mod b))

Zur Abschätzung von s verwenden wir die Folge der Fibonacci-Zahlen Fn:
∗Also: di = ri−2 div ri−1 und ri = ri−2 mod ri−1.
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Fn =


0, falls n = 0
1, falls n = 1
Fn−1 + Fn−2, falls n ≥ 2

Durch Induktion über i = s, s− 1, . . . , 0 folgt ri ≥ Fs+1−i; also a = r0 ≥ Fs+1. Weiterhin
lässt sich durch Induktion über n ≥ 0 zeigen, dass Fn+1 ≥ φn−1 ist, wobei φ = (1 +

√
5)/2

der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da F2 = F1 =
1 = φ0 ≥ φ−1 ist. Unter der Induktionsannahme Fi+1 ≥ φi−1 für i ≤ n− 1 folgt wegen
φ2 = φ+ 1

Fn+1 = Fn + Fn−1 ≥ φn−2 + φn−3 = φn−3(φ+ 1) = φn−1.

Somit ist a ≥ φs−1, d. h. s ≤ 1 + blogφ ac.

Satz 12. Der Euklidsche Algorithmus führt O(n) Divisionsschritte zur Berechnung von
ggT(a, b) durch, wobei n die Länge der Eingabe a > b > 0 in Binärdarstellung bezeichnet.
Dies führt auf eine Zeitkomplexität von O(n3), da jede Ganzzahldivision in Zeit O(n2)
durchführbar ist.

Erweiterter Euklidscher bzw. Berlekamp-Algorithmus: Der Euklidsche Algorith-
mus kann so modifiziert werden, dass er eine lineare Darstellung

ggT(a, b) = λa+ µb mit λ, µ ∈ Z

des ggT liefert (Zeitkomplexität ebenfalls O(n3)). Hierzu werden neben ri und di weitere
Zahlen

pi = pi−2 − dipi−1, wobei p0 = 1 und p1 = 0,

und
qi = qi−2 − diqi−1, wobei q0 = 0 und q1 = 1,

für i = 0, . . . , n bestimmt. Dann gilt für i = 0 und i = 1,

api + bqi = ri,

und durch Induktion über i,

api+1 + bqi+1 = a(pi−1 − di+1pi) + b(qi−1 − di+1qi)
= api−1 + bqi−1 − di+1(api + bqi)
= (ri−1 − di+1ri)
= ri+1

zeigt man, dass dies auch für i = 2, . . . , s gilt. Insbesondere gilt also

aps + bqs = rs = ggT(a, b).

Korollar 13 (Lemma von Bezout). Der größte gemeinsame Teiler von a und b ist in
der Form

ggT(a, b) = λa+ µb mit λ, µ ∈ Z

darstellbar.
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Beispiel 14. Für a = 693 und b = 147 erhalten wir wegen

i ri−1 = di+1 · ri + ri+1 pi qi

0 1 0
1 693 = 4 · 147 + 105 0 1
2 147 = 1 · 105 + 42 1 −4
3 105 = 2 · 42 + 21 −1 5
4 42 = 2 · 21 + 0 3 −14

pi · 693 + qi · 147 = ri

1 · 693 + 0 · 147 = 693
0 · 693 + 1 · 147 = 147
1 · 693− 4 · 147 = 105
−1 · 693 + 5 · 147 = 42

3 · 693− 14 · 147 = 21

die lineare Darstellung 3 · 693− 14 · 147 = 21. /

Aus der linearen Darstellbarkeit des größten gemeinsamen Teilers ergeben sich eine Reihe
von nützlichen Schlussfolgerungen.

Korollar 15. ggT(a, b) = min{λa+ µb ≥ 1 | λ, µ ∈ Z}.

Beweis. Sei M = {λa+ µb ≥ 1 | λ, µ ∈ Z}, m = minM und g = ggT(a, b). Dann folgt
g ≥ m, da g in der Menge M enthalten ist, und g ≤ m, da g jede Zahl in M teilt. �

Korollar 16. Der größte gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

x|a ∧ x|b ⇒ x| ggT(a, b).

Beweis. Seien µ, λ ∈ Z mit µa+ λb = ggT(a, b). Falls x sowohl a als auch b teilt, dann
teilt x auch die Produkte µa und λb und somit auch deren Summe. �

Korollar 17 (Lemma von Euklid). Teilt a das Produkt bc und sind a, b teilerfremd, so
teilt a auch c,

a|bc ∧ ggT(a, b) = 1 ⇒ a|c.

Beweis. Wegen ggT(a, b) = 1 existieren Zahlen µ, λ ∈ Z mit µa + λb = 1. Falls a das
Produkt bc teilt, muss a auch die Zahl cµa+ cλb = c teilen. �

Korollar 18. Zwei Zahlen a und b sind genau dann zu einer Zahl m ∈ Z teilerfremd,
wenn ihr Produkt ab teilerfremd zu m ist,

ggT(a,m) = ggT(b,m) = 1 ⇔ ggT(ab,m) = 1.

Beweis. Da a und b teilerfremd zum sind, existieren Zahlen µ, λ, µ′, λ′ ∈ Z mit µa+λm =
µ′b+ λ′m = 1. Somit ergibt sich aus der Darstellung

1 = (µa+ λm)(µ′b+ λ′m) = µµ′︸︷︷︸
µ′′

ab+ (µaλ′ + µ′bλ+ λλ′m)︸ ︷︷ ︸
λ′′

m

und Korollar 15, dass auch ab teilerfremd zu m ist.
Gilt umgekehrt ggT(ab,m) = 1, so existieren Zahlen µ, λ ∈ Z mit µab + λm = 1. Mit
Korollar 15 folgt sofort ggT(a,m) = ggT(b,m) = 1. �

Damit nun eine Abbildung g : A→ A von der Bauart g(x) = bx injektiv (oder gleichbe-
deutend, surjektiv) ist, muss es zu jedem Buchstaben y ∈ A genau einen Buchstaben
x ∈ A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.
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Satz 19. Seien b,m ganze Zahlen mit m ≥ 1. Die lineare Kongruenzgleichung bx ≡m y
besitzt genau dann eine eindeutige Lösung x ∈ {0, . . . , m− 1}, wenn ggT(b,m) = 1 ist.

Beweis. Angenommen, ggT(b,m) = g > 1. Dann ist mit x auch x′ = x + m/g eine
Lösung von bx ≡m y mit x 6≡m x′. Gilt umgekehrt ggT(b,m) = 1, so folgt aus den
Kongruenzen

bx1 ≡m y

und
bx2 ≡m y

sofort b(x1 − x2) ≡m 0, also m|b(x1 − x2). Wegen ggT(b,m) = 1 folgt mit dem Lemma
von Euklid m|(x1 − x2), also x1 ≡m x2.
Dies zeigt, dass die Abbildung f : Zm → Zm mit f(x) = bx mod m injektiv ist. Da der
Definitions- und der Wertebereich von f die gleiche Mächtigkeit haben, muss f dann
auch surjektiv sein. Dies impliziert, dass die Kongruenz bx ≡m y für jedes y ∈ Zm lösbar
ist. �

Korollar 20. Im Fall ggT(b,m) = 1 hat die Kongruenz bx ≡m 1 genau eine Lösung, die
das multiplikative Inverse von b modulo m genannt und mit b−1 mod m (oder einfach
mit b−1) bezeichnet wird. Die invertierbaren Elemente von Zm werden in der Menge

Z∗m = {b ∈ Zm | ggT(b,m) = 1}

zusammengefasst.

Korollar 18 zeigt, dass Z∗m unter der Operation �m abgeschlossen ist, und mit Korollar 20
folgt, dass (Z∗m,�m) eine multiplikative Gruppe bildet. Allgemeiner zeigt man, dass für
einen beliebigen Ring (R,+, ·, 0, 1) mit Eins die Multiplikation auf der Menge R∗ = {a ∈
R | ∃b ∈ R : ab = 1 = ba} aller Einheiten von R eine Gruppe (R∗, ·, 1) (die so genannte
Einheitengruppe von R) bildet.
Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
λb + µm = ggT(b,m) = 1 zu b−1 = λ mod m. Bei Kenntnis von b−1 kann die Kongru-
enz bx ≡m y leicht zu x = yb−1 mod m gelöst werden. Die folgende Tabelle zeigt die
multiplikativen Inversen b−1 für alle b ∈ Z∗26.

b 1 3 5 7 9 11 15 17 19 21 23 25
b−1 1 9 21 15 3 19 7 23 11 5 17 25

Nun lässt sich die additive Chiffre leicht zur affinen Chiffre erweitern.

Definition 21 (affine Chiffre). Bei der affinen Chiffre ist A = B = M = C ein
beliebiges Alphabet mit m := ‖A‖ > 1 und K = Z∗m × Zm. Für k = (b, c) ∈ K, x ∈ M
und y ∈ C gilt

E(k, x) = bx+ c und D(k, y) = b−1(y − c).

In diesem Fall liefert die Schlüsselkomponente b = −1 für jeden Wert von c eine invo-
lutorische Chiffrierfunktion x 7→ E(b, c;x) = c − x (verschobenes komplementäres
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Alphabet). Wählen wir für c ebenfalls den Wert −1, so ergibt sich die Chiffrierfunk-
tion x 7→ −x− 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
−x A Z Y X W V U T S R Q P O N M L K J I H G F E D C B
−x− 1 Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Als nächstes illustrieren wir die Ver- und Entschlüsselung mit der affinen Chiffre an einem
kleinen Beispiel.
Beispiel 22 (affine Chiffre). Sei A = {A, . . . , Z} = B, also m = 26. Weiter sei k = (9, 2),
also b = 9 und c = 2. Um den Klartextbuchstaben x = F zu verschlüsseln, berechnen wir

E(k, x) = bx+ c = 9F + 2 = V,

da der Index von F gleich 5, der von V gleich 21 und 9 · 5 + 2 = 47 ≡26 21 ist. Um einen
Kryptotextbuchstaben wieder entschlüsseln zu können, benötigen wir das multiplikative
Inverse von b = 9, das sich wegen

i ri−1 = di+1 · ri + ri+1 pi · 26 + qi · 9 = ri

0 1 · 26 + 0 · 9 = 26
1 26 = 2 · 9 + 8 0 · 26 + 1 · 9 = 9
2 9 = 1 · 8 + 1 1 · 26 + (−2) · 9 = 8
3 8 = 8 · 1 + 0 (−1) · 26 + 3 · 9 = 1

zu b−1 = q3 = 3 ergibt. Damit erhalten wir für den Kryptotextbuchstaben y = V den
ursprünglichen Klartextbuchstaben

D(k, y) = b−1(y − c) = 3(V− 2) = F

zurück, da 3 · 19 = 57 ≡26 5 ist. /

Eine wichtige Rolle spielt die Funktion

ϕ : N → N mit ϕ(m) = ‖Z∗m‖ = ‖{a | 0 ≤ a ≤ m− 1, ggT(a,m) = 1}‖,

die sogenannte Eulersche ϕ-Funktion.

m 1 2 3 4 5 6 7 8 9 10
Z∗m {0} {1} {1, 2} {1, 3} {1,· · ·, 4} {1, 5} {1,· · ·, 6} {1, 3, 5, 7} {1, 2, 4, 5, 7, 8} {1, 3, 7, 9}
ϕ(m) 1 1 2 2 4 2 6 4 6 4

Wegen
Zpk − Z∗pk = {0, p, 2p, . . . , (pk−1 − 1)p}

folgt sofort
ϕ(pk) = pk − pk−1 = pk−1(p− 1).

Um hieraus für beliebige Zahlen m ∈ N eine Formel für ϕ(m) zu erhalten, genügt es,
ϕ(ml) im Fall ggT(m, l) = 1 in Abhängigkeit von ϕ(m) und ϕ(l) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Zml → Zm × Zl mit

f(x) := (x mod m,x mod l).
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Beispiel 23. Sei m = 5 und l = 6. Dann erhalten wir die Funktion f : Z30 → Z5 × Z6
mit

x 0 1 2 3 4 5 6 7 8 9
f(x) (0, 0) (1,1) (2, 2) (3, 3) (4, 4) (0,5) (1, 0) (2,1) (3, 2) (4, 3)

x 10 11 12 13 14 15 16 17 18 19
f(x) (0, 4) (1,5) (2, 0) (3,1) (4, 2) (0, 3) (1, 4) (2,5) (3, 0) (4,1)

x 20 21 22 23 24 25 26 27 28 29
f(x) (0, 2) (1, 3) (2, 4) (3,5) (4, 0) (0,1) (1, 2) (2, 3) (3, 4) (4,5)

Man beachte, dass f eine Bijektion zwischen Z30 und Z5 × Z6 ist. Zudem fällt auf, dass
ein x-Wert genau dann in Z∗30 liegt, wenn der Funktionswert f(x) = (y, z) zu Z∗5 × Z∗6
gehört (die Werte x ∈ Z∗30, y ∈ Z∗5 und z ∈ Z∗6 sind fett gedruckt). Folglich bildet f
die Argumente in Z∗30 bijektiv auf die Werte in Z∗5 × Z∗6 ab. Für f−1 erhalten wir somit
folgende Tabelle:

f−1 0 1 2 3 4 5

0 0 25 20 15 10 5
1 6 1 26 21 16 11
2 12 7 2 27 22 17
3 18 13 8 3 28 23
4 24 19 14 9 4 29

/

Der Chinesische Restsatz, den wir im nächsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m, l) = 1 bijektiv und damit invertierbar ist. Wegen

ggT(x,ml) = 1 ⇔ ggT(x,m) = ggT(x, l) = 1
⇔ ggT(x mod m,m) = ggT(x mod l, l) = 1

ist daher die Einschränkung f̂ von f auf den Bereich Z∗ml eine Bijektion zwischen Z∗ml
und Z∗m × Z∗l , d.h. es gilt

ϕ(ml) = ‖Z∗ml‖ = ‖Z∗m × Z∗l ‖ = ‖Z∗m‖ · ‖Z∗l ‖ = ϕ(m)ϕ(l).

Satz 24. Die Eulersche ϕ-Funktion ist multiplikativ, d. h. für teilerfremde Zahlen m und
l gilt ϕ(ml) = ϕ(m)ϕ(l).

Korollar 25. Sei m = ∏l
i=1 p

ki
i die Primfaktorzerlegung von m. Dann gilt

ϕ(m) =
l∏

i=1
pki−1
i (pi − 1) = m

l∏
i=1

(pi − 1)/pi.

Beweis. Es gilt

ϕ(∏l
i=1 p

ki
i ) = ∏l

i=1 ϕ(pki
i ) = ∏l

i=1(pki
i − pki−1

i ) = ∏l
i=1 p

ki−1
i (pi − 1).

�
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Der Chinesische Restsatz

Die beiden linearen Kongruenzen

x ≡3 0
x ≡6 1

besitzen je eine Lösung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfüllt.
Der nächste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Lösungen
existieren, und wie sie berechnet werden können.

Satz 26 (Chinesischer Restsatz). Falls m1, . . . , mk paarweise teilerfremd sind, dann
hat das System

x ≡m1 b1
... (1.2)

x ≡mk
bk

genau eine Lösung modulo m = ∏k
i=1 mi.

Beweis. Da die Zahl ni = m/mi
teilerfremd zu mi ist, existieren Zahlen µi und λi mit

µini + λimi = ggT(ni,mi) = 1.

Dann gilt
µini ≡mi

1

und
µini ≡mj

0

für j 6= i. Folglich erfüllt x = ∑k
j=1 µjnjbj die Kongruenzen

x ≡mi
µinibi ≡mi

bi

für i = 1, . . . , k. Dies zeigt, dass (1.2) lösbar, also die Funktion

f : Zm → Zm1 × · · · × Zmk

mit f(x) = (x mod m1, . . . , x mod mk) surjektiv ist. Da der Definitions- und der Wer-
tebereich von f die gleiche Mächtigkeit haben, muss f auch injektiv sein, d.h. (1.2) ist
sogar eindeutig lösbar. �

Man beachte, dass der Beweis des Chinesischen Restsatzes konstruktiv ist und die Lösung
x unter Verwendung des erweiterten Euklidschen Algorithmus’ effizient berechenbar ist.

1.4 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblöcke, d.h. der Klartext wird nicht zeichenweise, sondern block-
weise verarbeitet. Sowohl der Klartext- als auch der Kryptotextraum enthält alle Wörter
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x über A einer festen Länge l. Als Schlüssel wird eine (l× l)-Matrix k = (kij) mit Koeffi-
zienten in Zm benutzt, die einen Klartextblock x = x1 . . . xl ∈ Al in den Kryptotextblock
y1 . . . yl ∈ Al transformiert, wobei

yi = x1k1i + · · ·+ xlkli, i = 1, . . . , l

ist (hierbei machen wir von der Buchstabenrechnung Gebrauch). y entsteht also durch
Multiplikation von x mit der Schlüsselmatrix k:

xk = (x1, · · · , xl)


k11 . . . k1l
... . . . ...
kl1 . . . kll

 = (y1, · · · , yl)

Wir bezeichnen die Menge aller (l × l)-Matrizen mit Koeffizienten in Zm mit Zl×lm . Als
Schlüssel können nur invertierbare Matrizen k benutzt werden, da sonst der Chiffrier-
vorgang nicht injektiv ist. Eine Matrix k ∈ Zl×lm ist genau dann invertierbar, wenn die
Determinante von k teilerfremd zu m ist (siehe Übungen).

Definition 27 (Determinante). Sei R ein kommutativer Ring mit Eins und sei A =
(aij) ∈ Rn×n. Eine Funktion f : Rn×n → R heißt Determinantenfunktion, falls sie
folgende drei Eigenschaften erfüllt

– f ist multilinear, d.h. für jede Matrix A = (a1, . . . , an) ∈ Rn×n mit Spalten
a1, . . . , an ∈ (Rn)T , jeden Spaltenvektor b ∈ (Rn)T und jedes r ∈ R gilt

f(a1, . . . , rai + b, . . . , an) = rf(a1, . . . , ai, . . . , an) + f(a1, . . . , b, . . . , an).

– f ist alternierend, d.h. im Fall ai = aj für i 6= j gilt f(a1, . . . , an) = 0.
– f ist normiert, d.h. f(E) = 1, wobei E die Einheitsmatrix ist.

Tatsächlich ist f durch diese drei Eigenschaften eindeutig festgelegt und wir bezeichnen
f(A) wie üblich mit det(A).

Eine wichtige Eigenschaft der Funktion det wird durch den Laplaceschen Entwicklungssatz
beschrieben. Für 1 ≤ i, j ≤ n sei Aij die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matrix. Dann ist det(A) = a11, falls n = 1, und für n > 1 ist

det(A) =
n∑
j=1

(−1)i+jai,jdet(Aij),

wobei i ∈ {1, · · · , n} beliebig wählbar ist (Entwicklung nach der i-ten Zeile). Das Produkt
(−1)i+jdet(Aij) wird Cofaktor genannt und mit ãi,j.
Für die Dechiffrierung wird die zu k inverse Matrix k−1 benötigt, wofür effiziente Algo-
rithmen bekannt sind (Gaußsches Eliminationsverfahren; siehe Übungen).

Satz 28. Sei A ein Alphabet und sei k ∈ Zl×lm (l ≥ 1, m = ‖A‖). Die Abbildung
f : Al → Al mit

f(x) = xk,

ist genau dann injektiv, wenn ggT(det(k),m) = 1 ist.

Beweis. Siehe Übungen. �
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Definition 29 (Hill-Chiffre). Sei A = {a0, . . . , am−1} ein beliebiges Alphabet und für
eine natürliche Zahl l ≥ 2 sei M = C = Al. Bei der Hill-Chiffre ist K = {k ∈ Zl×lm |
ggT(det(k),m) = 1} und es gilt

E(k, x) = xk und D(k, y) = yk−1.

Beispiel 30 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klartextblöcken der Länge
l = 4 über dem lateinischen Alphabet Alat die Schlüsselmatrix

k =


11 13 8 21
24 17 3 25
18 12 23 17
6 15 2 15

 ,

so erhalten wir beispielsweise für den Klartext HILL wegen

(H I L L)


11 13 8 21
24 17 3 25
18 12 23 17
6 15 2 15

 = (N E R X) bzw.

11 H+ 24 I+ 18 L+ 6 L= N

13 H+ 17 I+ 12 L+ 15 L= E

8 H+ 3 I+ 23 L+ 2 L= R

21 H+ 25 I+ 17 L+ 15 L= X

den Kryptotext E(k, HILL) = NERX. Für die Entschlüsselung wird die inverse Matrix k−1

benötigt. Diese wird in den Übungen berechnet. /

1.5 Die Vigenère-Chiffre und andere Stromsysteme

Bei der nach dem Franzosen Blaise de Vigenère (1523–1596) benannten Chiffre werden
zwar nur einzelne Buchstaben chiffriert, aber je nach Position im Klartext unterschiedlich.

Definition 31 (Vigenère-Chiffre). Sei A = B ein beliebiges Alphabet. Die Vigenère-
Chiffre chiffriert unter einem Schlüssel k = k0 . . . kd−1 ∈ K = A∗ einen Klartext
x = x0 . . . xn−1 beliebiger Länge zu

E(k, x) = y0 . . . yn−1, wobei yi = xi + k(i mod d) ist,

und dechiffriert einen Kryptotext y = y0 . . . yn−1 zu

D(k, y) = x0 . . . xn−1, wobei xi = yi − k(i mod d) ist.

Beispiel 32 (Vigenère-Chiffre). Verwenden wir das lateinische Alphabet Alat als Klar-
textalpabet und wählen wir als Schlüssel das Wort k = WIE, so ergibt sich für den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE, VIGENERE) = V+W︸ ︷︷ ︸
R

I+I︸ ︷︷ ︸
Q

G+E︸ ︷︷ ︸
K

E+W︸ ︷︷ ︸
A

N+I︸ ︷︷ ︸
V

E+E︸ ︷︷ ︸
I

R+W︸ ︷︷ ︸
N

E+I︸ ︷︷ ︸
M

= RQKAVINM
/

Um einen Klartext x zu verschlüsseln, wird also das Schlüsselwort k = k0 . . . kd−1 so
oft wiederholt, bis der dabei entstehende Schlüsselstrom k̂ = k0, k1, . . . , kd−1, k0 . . . die
Länge von x erreicht. Dann werden x und k̂ zeichenweise addiert, um den zugehörigen
Kryptotext y zu bilden. Aus diesem kann der ursprüngliche Klartext x zurückgewonnen
werden, indem man den Schlüsselstrom k̂ wieder subtrahiert.
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Beispiel 33. Vigenère-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) RQKAVINM (Kryptotext y)

+ WIEWIEWI (Schlüsselstrom k̂) − WIEWIEWI (Schlüsselstrom k̂)
RQKAVINM (Kryptotext y) VIGENERE (Klartext x)

/

Die Chiffrierarbeit lässt sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenère-Tableau bekannt).

+ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schlüsselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.

Beispiel 34 (Beaufort-Chiffre). Verschlüsseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlüsselwort k = WIE, so erhalten wir den Kryptotext XMEQNSNB. Eine
erneute Verschlüsselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schlüsselstrom) WIEWIEWI (Schlüsselstrom)

− BEAUFORT (Klartext) − VEECDQFP (Kryptotext)
VEECDQFP (Kryptotext) BEAUFORT (Klartext)

/
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Bei den bisher betrachteten Chiffren wird aus einem Schlüsselwort k = k0 . . . kd−1 ein
periodischer Schlüsselstrom k̂ = k̂0 . . . k̂n−1 erzeugt, das heißt, es gilt k̂i = k̂i+d für
alle i = 0, . . . , n − d − 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schlüsselstrom mit sehr großer Periode oder noch besser ein fortlau-
fender Schlüsselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schlüsselstrom lässt sich beispielsweise ohne großen Aufwand erzeugen, indem man an
das Schlüsselwort den Klartext oder den Kryptotext anhängt (sogenannte Autokey-
Chiffrierung).†

Beispiel 35 (Autokey-Chiffre). Benutzen wir wieder das Schlüsselwort WIE, um den
Schlüsselstrom durch Anhängen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
für den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schlüsselstrom: Kryptotext-Schlüsselstrom:
VIGENERE (Klartext ) VIGENERE (Klartext )

+ WIEVIGEN (Schlüsselstrom) + WIERQKVD (Schlüsselstrom)
RQKZVKVR (Kryptotext ) RQKVDOMH (Kryptotext )

/

Auch die Dechiffrierung ist in beiden Fällen einfach. Bei der ersten Alternative kann der
Empfänger durch Subtraktion des Schlüsselworts den Anfang des Klartextes bilden und
gleichzeitig den Schlüsselstrom verlängern, so dass sich auf diese Weise Stück für Stück der
gesamte Kryptotext entschlüsseln lässt. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schlüsselstrom vom Kryptotext nur durch das vorangestelle
Schlüsselwort unterscheidet.

1.6 Der One-Time-Pad

Es besteht auch die Möglichkeit, eine Textstelle in einem Buch als Schlüssel zu vereinbaren
und den dort beginnenden Text als Schlüsselstrom zu benutzen (Lauftextverschlüsselung).
Besser ist es jedoch, aus einem relativ kurzen Schlüssel einen möglichst zufällig erscheinen-
den Schlüsselstrom zu erzeugen. Hierzu können beispielsweise Pseudozufallsgeneratoren
eingesetzt werden. Absolute Sicherheit wird dagegen erreicht, wenn der Schlüsselstrom
rein zufällig erzeugt und nach einmaliger Benutzung wieder vernichtet wird.‡ Ein solcher
„Wegwerfschlüssel“ (One-time-pad oder One-time-tape, im Deutschen auch als indivi-
dueller Schlüssel bezeichnet) lässt sich allerdings nur mit großem Aufwand generieren
und verteilen, weshalb diese Chiffre nur wenig praktikabel ist. Dennoch wurde diese
Methode beispielsweise beim „heißen Draht“, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weißen Haus in Washington und dem Kreml in Moskau,
angewandt.

Beispiel 36 (One-time-pad). Sei A = {a0, . . . , am−1} ein beliebiges Klartextalphabet.
Um einen Klartext x = x0 . . . xn−1 zu verschlüsseln, wird auf jeden Klartextbuchstaben xi
†Die Idee, den Schlüsselstrom durch Anhängen des Klartextes an ein Schlüsselwort zu bilden, stammt
von Vigenère, während er mit der Erfindung der nach ihm benannten Vigenère-Chiffre „nichts zu
tun“ hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

‡ Diese Art der Schlüsselerzeugung schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918
vor, nachdem ihm ein von Gilbert S. Vernam für den Fernschreibverkehr entwickeltes Chiffriersystem
vorgestellt wurde.
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ein neuer, zufällig generierter Schlüsselbuchstabe ki addiert,

y = y0 . . . yn−1, wobei yi = xi + ki.

/

Der Klartext wird also wie bei einer additiven Chiffre verschlüsselt, nur dass der Schlüssel
nach einmaligem Gebrauch gewechselt wird. Dies entspricht dem Gebrauch einer Vigenère-
Chiffre, falls als Schlüssel ein zufällig gewähltes Wort von der Länge des Klartextes benutzt
wird. Wie diese ist der One-time-pad im Binärfall also involutorisch.

. . . 01101 + . . . 11001 + . . . 01101

. . . 10100 . . . 10100

Klartext Kryptotext Klartext

Schlüssel Schlüssel

1.7 Klassifikation von Kryptosystemen

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie erzeugen den Kryptotext aus dem Klartext, indem sie Klartextzeichen – einzeln oder
in Gruppen – durch Kryptotextzeichen ersetzen. Dagegen verändern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.

Beispiel 37 (Skytale-Chiffre). Die älteste bekannte Verschlüsselungstechnik stammt aus
der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralförmig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Längsrichtung mit der Geheimbotschaft.

U B E R A U S
G E H E I M N
I S V O L L ...

ÜBERAUS GEHEIMNISVOLL ...

; ÜGI . . . BES . . . EHV . . . REO . . . AIL . . . UML . . . SN . . .

Besitzt der Empfänger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. /

Als Schlüssel fungiert hier also der Stabumfang bzw. die Anzahl k der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
beträgt seine Länge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext

E(k, x1 · · ·xkm) =
x1xm+1x2m+1 · · ·x(k−1)m+1x2xm+2x2m+2 · · ·x(k−1)m+2 · · ·xmx2mx3m · · ·xkm
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über. Dasselbe Resultat stellt sich ein, wenn wir x zeilenweise in eine k × m-Matrix
schreiben und spaltenweise wieder auslesen (sogenannte Spaltentransposition):

x1 x2 · · · xm
xm+1 xm+2 · · · x2m
x2m+1 x2m+2 · · · x3m

... ... . . . ...
x(k−1)m+1 x(k−1)m+2 · · · xkm

Ist die Klartextlänge kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfügen von sogenannten Blendern (Füllzeichen) verlängert werden. Damit der Emp-
fänger diese Füllzeichen nach der Entschlüsselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.
Von der Methode, die letzte Zeile nur zum Teil zu füllen, ist dagegen abzuraten. In diesem
Fall würden nämlich auf dem abgewickelten Papierstreifen Lücken entstehen, aus deren
Anordnung man Schlüsse auf den benutzten Schlüssel k ziehen könnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.
Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.

Beispiel 38. Bei Ausführung einer Zick-Zack-Transposition wird der Klartext in
eine Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Höhe der Zick-
Zack-Linie kann als Schlüssel vereinbart werden.

ZZ Z L EE
I K A K I I
C C N ZICKZACKLINIE ; ZZLEIKAKIICCN

/

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass für
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 39 (Blocktranspositionschiffre). Sei A = B ein beliebiges Alphabet und
für eine natürliche Zahl l ≥ 2 sei M = C = Al. Bei einer Blocktranspositionschiffre
wird durch jeden Schlüssel k ∈ K eine Permutation π beschrieben, so dass für alle
Zeichenfolgen x1 · · ·xl ∈M und y1 · · · yl ∈ C

E(k, x1 · · ·xl) = xπ(1) · · ·xπ(l)

und
D(k, y1 · · · yl) = yπ−1(1) · · · yπ−1(l)

gilt.

Eine Blocktransposition mit Blocklänge l lässt sich durch eine Permutation π ∈ Sl (also
auf der Menge {1, . . . , l}) beschreiben.
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Beispiel 40. Eine Skytale, die mit 4 Zeilen der Länge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
π(i) 1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 23 6 12 18 24

/

Für die Entschlüsselung muss die zu π inverse Permutation π−1 benutzt werden. Wird
π durch Zyklen (i1 i2 i3 . . . in) dargestellt, wobei i1 auf i2, i2 auf i3 usw. und schließlich
i3 auf i1 abgebildet wird, so ist π−1 sehr leicht zu bestimmen.
Beispiel 41.

i 1 2 3 4 5 6
π(i) 4 6 1 3 5 2

i 1 2 3 4 5 6
π−1(i) 3 6 4 1 5 2

Obiges π hat beispielsweise die Zyklendarstellung

π = (1 4 3) (2 6) (5) oder π = (1 4 3) (2 6),

wenn, wie allgemein üblich, Einerzklen weggelassen werden. Daraus erhalten wir unmit-
telbar π−1 zu

π−1 = (3 4 1) (6 2) oder (1 3 4) (2 6),
wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Größe dieser Elemente anordnen. /

Beispiel 42. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine
k×m-Matrix eingelesen und der Kryptotext spaltenweise gemäß einer Spaltenpermutation
π, die als Schlüssel dient, wieder ausgelesen. Für π = (1 4 3) (2 6) wird also zuerst Spalte
π(1) = 4, dann Spalte π(2) = 6 und danach Spalte π(3) = 1 usw. und zuletzt Spalte
π(6) = 2 ausgelesen.

3 6 4 1 5 2

D I E S E R
K L A R T E
X T I S T N
I C H T S E
H R L A N G

DIESER KLARTEXT IST NICHT SEHR LANG
; SRSTA RENEG DKXIH EAIHL ETTSN ILTCR

/

Beispiel 43. Bei der Weg-Transposition wird als Schlüssel eine Hamiltonlinie in
einem Graphen mit den Knoten 1, . . . , l benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock x1 · · ·xl wird gemäß der Knotennumerierung in den Graphen
eingelesen und der zugehörige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

O

7
N

8

L

5
T

6

M

3
I

4H

1
A

2

HAMILTON ; TIMLONAH

/
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Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren lässt. Der Vorteil, eine Hamiltonlinie als Schlüssel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einprägen kann als eine Zahlenfolge.
Sehr beliebt ist auch die Methode, eine Permutationen in Form eines Schlüsselworts
(oder einer aus mehreren Wörtern bestehenden Schlüsselphrase) im Gedächtnis zu
behalten. Aus einem solchen Schlüsselwort lässt sich die zugehörige Permutation σ leicht
rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter für
jeden einzelnen Buchstaben seine Position i innerhalb des Wortes vermerkt.

Schlüsselwort für σ C A E S A R
i 1 2 3 4 5 6

σ(i) 3 1 4 6 2 5
Zyklendarstellung von σ (1 3 4 6 5 2)

DIE BLOCKLAENGE IST SECHS ;
EDBOIL LCANKE IGSSET EXCSYH

Die Werte σ(i), die σ auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schlüsselwort-Buchstaben in alphabetischer Reihenfolge durchzählt. Dabei
werden mehrfach vorkommende Buchstaben gemäß ihrer Position im Schlüsselwort
an die Reihe genommen. Alternativ kann man auch alle im Schlüsselwort wiederholt
vorkommenden Buchstaben streichen, was im Fall des Schlüsselworts CAESAR auf eine
Blocklänge von 5 führen würde.
Wir wenden uns nun der Klassifikation von Substitutionschiffren zu. Ein wichtiges
Unterscheidungsmerkmal ist z.B. die Länge der Klartexteinheiten, auf denen die Chiffre
operiert.
Monografische Substitutionen ersetzen Einzelbuchstaben.
Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-

textsegmente auf einmal.
Eine polygrafische Substitution, die auf Buchstabenpaaren operiert, wird digrafisch
genannt. Das älteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta
im Jahr 1563 veröffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextbuchstaben
durch ein einzelnes Kryptotextzeichen ersetzt.

Beispiel 44. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Porta für
diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer 20× 20-Matrix
M = (yij) angeordnet, deren Zeilen und Spalten mit den 20 Klartextbuchstaben
A, . . . , I, L, . . . , T, V, Z indiziert sind. Zur Ersetzung des Buchstabenpaars aiaj wird das in
Zeile i und Spalte j befindliche Kryptotextzeichen

E(M,aiaj) = yij

benutzt. /

Eine Substitution heißt monopartit, falls sie die Klartextsegmente durch Einzelzeichen
ersetzt, sonstmultipartit. Wird der Kryptotext aus Buchstabenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.
Ein frühes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200 – 120 v.Chr.) zurück:
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0 1 2 3 4

0 A B C D E

1 F G H I J

2 K L M N O

3 P Q R S T

4 U V W X/Y Z

POLYBIOS ; 3024214301132433

Bei der Polybios-Chiffre dient eine 5×5-Matrix, die aus sämtlichen Klartextbuchstaben
gebildet wird, als Schlüssel.§ Die Verschlüsselung des Klartextes erfolgt buchstabenweise,
indem man einen in Zeile i und Spalte j eingetragenen Klartextbuchstaben durch das
Koordinatenpaar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren
{00, 01, . . . , 44}.
Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verändert wird, führt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.
Monoalphabetische Substitutionen ersetzen die einzelnen Klartextsegment unabhän-

gig von ihrer Position im Klartext.
Polyalphabetische Substitutionen verwenden dagegen eine variable Ersetzungsregel,

auf die sich auch die bereits verarbeiteten Klartextsegmente auswirken.
Die Bezeichnung „monoalphabetisch“ bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus auf einem einzelnen Alphabet beruht (sofern wir das Klartextalphabet als bekannt
voraussetzen). Die von Caesar benutzte Chiffriermethode kann beispielsweise vollständig
durch Angabe des Ersetzungsalphabets

{D,E,F,G,W,...,Y,Z,A,B,C}

beschrieben werden. Auch im Fall, dass nicht einzelne Zeichen, sondern ganze Buch-
stabengruppen auf einmal ersetzt werden, genügt im Prinzip ein einzelnes Alphabet
zur Beschreibung. Hierzu sortiert man die Klartexteinheiten, auf denen der Ersetzungs-
mechanismus operiert, und bildet die Folge (sprich: das Alphabet) der zugeordneten
Kryptotextsegmente.
Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Länge
l ≥ 1 durch Kryptotextsegmente derselben Länge.

Definition 45 (Blockchiffre). Sei A ein beliebiges Alphabet und es gelte M = C = Al,
l ≥ 1. Eine Blockchiffre realisiert für jeden Schlüssel k ∈ K eine bijektive Abbildung g
auf Al und es gilt

E(k, x) = g(x) und D(k, y) = g−1(y)
für alle x ∈ M und y ∈ C. Im Fall l = 1 spricht man auch von einer einfachen
Substitutionschiffre.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zurück, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden können. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhängigkeit von der Länge oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.

§Da nur 25 Plätze zur Verfügung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein
Buchstabe weggelassen oder ein Platz mit zwei Buchstaben besetzt werden.
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Fast alle polyalphabetischen Chiffrierverfahren operieren – genau wie monoalphabetische
Substitutionen – auf Klartextblöcken einer festen Länge l, die sie in Kryptotextblöcke einer
festen Länge l′ überführen, wobei meist l = l′ ist. Da diese Blöcke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugeführt werden. Man
nennt die einzelnen Klartextblöcke in diesem Zusammenhang auch nicht ‚Blöcke‘ sondern
‚Zeichen‘ und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 46 (Stromchiffre). Sei A ein beliebiges Alphabet und sei M = C = Al für
eine natürliche Zahl l ≥ 1. Weiterhin seien K und K̂ Schlüsselräume. Eine Stromchiffre
wird durch eine Verschlüsselungsfunktion E : K̂ ×M → C und einen Schlüsselstrom-
generator g : K × A∗ → K̂ beschrieben. Der Generator g erzeugt aus einem externen
Schlüssel k ∈ K für einen Klartext x = x0 . . . xn−1, xi ∈M , eine Folge k̂0, . . . , k̂n−1 von
internen Schlüsseln k̂i = g(k, x0 . . . xi−1) ∈ K̂, unter denen x in den Kryptotext

Eg(k, x) = E(k̂0, x0) . . . E(k̂n−1, xn−1)

überführt wird.

Der interne Schlüsselraum kann also wie bei der Blockchiffre eine maximale Größe von
(ml)! annehmen (im häufigen Spezialfall l = 1 also m!). Die Aufgabe des Schlüsselstrom-
generators g besteht darin, aus dem externen Schlüssel k und dem bereits verarbeiteten
Klartext x0 . . . xi−1 den aktuellen internen Schlüssel k̂i zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schlüsselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schlüsselstromgenerator

Vigenère E(k̂, x) = x+ k̂ g(k0 . . . kd−1, x0 . . . xi−1) = k(i mod m)

Beaufort E(k̂, x) = k̂ − x g(k0 . . . kd−1, x0 . . . xi−1) = k(i mod m)

Autokey
mit Klartext-
Schlüsselstrom

E(k̂, x) = x+ k̂ g(k0 . . . kd−1, x0 . . . xi−1) =
{
ki, i < d

xi−d,i ≥ d

Autokey
mit Kryptotext-
Schlüsselstrom

E(k̂, x) = x+ k̂
g(k0 . . . kd−1, x0 . . . xi−1) =

{
ki, i < d

yi−d,i ≥ d

= k(i mod d) + ∑bi/dc
j=1 xi−jd

Bei der Vigenère- und Beaufortchiffre hängt der Schlüsselstrom nicht vom Klartext,
sondern nur vom externen Schlüssel k ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).
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