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1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch 16sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

SchlieBlich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollsténdigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adédquat?
(Automatentheorie)

« Welche Probleme sind losbar? (Berechenbarkeitstheorie)

o Welcher Aufwand ist zur Losung eines algorithmischen Problems

notig? (Komplexitatstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)
Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Fuklid benannte Algorithmus zur Berechnung
des grofiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben kénnen Zahlen, Formeln, Graphen etc. sein. Diese werden
iiber einem FEingabealphabet ¥ kodiert.

Definition 1.

a) Ein Alphabet ¥ ={ay,...,a,} ist eine geordnete Menge von
endlich vielen Zeichen.

b) Eine Folge x = x;...x, vonn Zeichen heiffit Wort (der Linge

c) Die Menge aller Worter diber ¥ ist

s =,
n>0
wobei X" = {xy...x, | n 20 undx; € ¥ firi=1,...,n} alle

Worter der Lange n enthdlt.

d) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen.

e) Jede Teilmenge L € ¥* heifst Sprache tber dem Alphabet .

Beispiel 2. Sei X ein Alphabet. Dann sind @, %*, % und {} Sprachen
tber X. Die Sprache @ enthdlt keine Worter und heifit leere Spra-
che. Die Sprache ¥* enthdlt dagegen alle Wérter diber ¥, wdhrend
die Sprache ¥ alle Wérter tiber ¥ der Linge 1 enthdlt. Die Sprache
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{e} enthalt nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singleton-Sprachen bezeichnet.

Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

gc{e}cxr.

Wir konnen Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen tiber ¥. Dann ist

e AnB={xeX*|zeA xeB} der Schnitt von A und B,

e AuB={xeX*|xzeAvuzre B} die Vereinigung von A und
B, und

e A={zeX*|2¢ A} das Komplement von A.

Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.
e Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B st

AB={zy|xzeAyeB}.

Ist A = {x} eine Singletonsprache, so schreiben wir fir {x}B
auch einfach xB.

e Die n-fache Potenz A"™ ciner Sprache A ist induktiv definiert
durch

An = {e}, n=0,
ATA n>0.

e Die Sternhiille A* von A ist A* = U,s0 A".
e Die Plushiille A* von A ist A* =U,s A" = AA*.

2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
faltige praktische Anwendungen haben, wie z.B. endliche Automaten

(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

FEingabe-

Ein endlicher Automat fithrt band —
bei einer Eingabe der Lénge n
nur n Rechenschritte aus. Um / Lesekopf
die gesamte Eingabe lesen zu

konnen, muss der Automat also Steuer-
in jedem Schritt ein Zeichen der einheit
Eingabe verarbeiten.

Definition 4. Ein endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E) beschrie-
ben, wobei

e 7 #+ @ eine endliche Menge von Zustdnden,
e Y das Eingabealphabet,

e 0:7ZxX% - Z die Uberfiihrungsfunktion,
e qo € Z der Startzustand und

e 'cZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {$1...xn62*

es gibt qi,...,qn-1 € Z,q, € B mit
5((]z‘>xi+1) = (Qiv1 fdri=0,...,n—1 '
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FEine Zustandsfolge qo,q1, ... ,q, heifst Rechnung von M(z;...x,),
falls 6(qi, wiv1) = qivy furi=0,....n—1 gilt. Sie heifit akzeptierend,
falls q, € E ist.

Beispiel 5. Betrachte den DFA M =
(Z,%,6,0,E) mit Z = {0,1,2}, 3 =
{a,b}, E = {1} und der Uberfiihrungs-
funktion

Graphische Darstellung:

5lo 1 2

all 2 0
b2 0 1

Der Startzustand wird meist durch einen Pfeil und Endzustdnde
werden durch einen doppelten Kreis gekennzeichnet. N

Bezeichne & (¢,x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion

5:Zx¥" > 7

induktiv wie folgt definieren. Fiir g€ Z, z € ¥* und a € X sei

A

O(ae) = a
d(q,za) = 6(0(q,x),a).

Die von M erkannte Sprache lasst sich nun auch in der Form
L(M) ={zeX*|6(qo,2) € B}
schreiben.

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache

L(M) ={zeX" | #4(x) - #u(z) =3 1},

2.1 Endliche Automaten

wobei #4(x) die Anzahl der Vorkommen des Zeichens a in x bezeich-
net und i =, j (in Worten: i ist kongruent zu j modulo m) bedeutet,
dass i — 5 durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € ¥* |
6(0,2) =1}, d.h. wir miissen folgende Aquivalenz zeigen:

0(0,2) = 1 < #4(x) - #p(z) =5 1.
Hierzu reicht es, die Kongruenz
5(0,2) =3 #a(x) - #5(2).

zu beweisen, wofilir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n = 0): Klar, da 6(0,¢) = #4(¢) = #,() = 0 ist.

Induktioqsschritt (n~mn+1): Sei © = x1...7,,1 gegeben und sei
i=0(0,21...2,). Nach IV gilt dann

i =3 H#a(x1. . 2n) —Ho(T1. .. T0).
Wegen 6(i,a) =37+ 1 und 6(i,b) =37 — 1 folgt daher

(S(Z, xn+1) =3 1+ #a($n+1) - #b($n+1)
=3 #a(ml cee xn) - #b(xl e xn) + #a(xm—l) - #b(xn+1)
= Fa(®) = #o(2).

und somit
5(0,2) = 0(0(0, 21 ... 2n), Tns1) = 0(i, Zne1) =3 H#a(x) — #0(2).
]

Eine von einem DFA akzeptierte Sprache wird als regulér bezeichnet.
Die zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}.
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Beobachtung 7. Alle Singletonsprachen sind requldr.

Beweis. Fur jedes Wort x = zy...x, existiert ein DFA M, mit

L(M,) ={x}:

T L2 T3
e @ T
a + T2 a * I3
a* T

acX

Formal ist M, also das Tupel (Z,%,6,qy, E) mit Z = {qo,--.,qn, €},
FE ={¢,} und der Uberfiihrungsfunktion

gi+1, q=g¢ fireintmit 0<i<n-1und a; = 2,4
5(q7 aj) =
e, sonst.

Als néchstes betrachten wir Abschlusseigenschaften der Sprachklasse

REG.

Definition 8. FEin k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen Ly, ..., Ly auf eine Sprache op(L1, ..., Ly) abbildet.

Beispiel 9. Der Schnittoperator n bildet zwei Sprachen Ly und Lo
auf die Sprache Ly n Ly ab. <

Definition 10. Fine Sprachklasse K heifit unter op abgeschlossen,
wenn gilt:
Lh...,LkG/C=>Op(L1,...,Lk) e K.

Der Abschluss von K unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K', die IC enthdlt und unter op abgeschlossen ist.

2.1 Endliche Automaten

Beispiel 11. Der Abschluss der Singletonsprachen unter n besteht
aus allen Singletonsprachen und der leeren Sprache.

Der Abschluss der Singletonsprachen unter U besteht aus allen nicht-
leeren endlichen Sprachen. <

Definition 12. Fir eine Sprachklasse C bezeichne co-C die Klasse
{L|LeC} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L, L, € REG sind auch die Sprachen Ly =
Y*N Ly, Lyn Ly und Ly v Ly requldr.

Beweis. Sind Ml = (Zi,E,(SZ-,qo,EZ-), 1= 1,2, DFAs mit L(MZ) = Li,
so akzeptiert der DFA

M, =(Z1,%,01,q0, Z1 ~ Ey)

das Komplement Ly von Ly. Der Schnitt L; n Ly von L; und Ly wird
dagegen von dem DFA

M = (Zy x Z3,%,6,(q0, ), E1 x Es)

mit
(5(((],]9), CL) = (51(Q7 (I), 52(]9, CL))
akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen

LiulL, = (L_lﬂL_g) ist dann aber auch die Vereinigung von L; und
Lo reguldr. (Wie sieht der zugehérige DFA aus?) |

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regular sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regularen Sprachen erfasst.

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
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Operationen wie etwa Produkt oder Sternhiille abgeschlossen ist. Im
iiberndchsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt
und Sternhiille charakterisierbar ist.

Beim Versuch, einen endlichen Automaten fiir das Produkt Lq Lo zwei-
er regularer Sprachen zu konstruieren, stot man auf die Schwierigkeit,
den richtigen Zeitpunkt fiir den Ubergang von (der Simulation von)
M zu My zu finden. Unter Verwendung eines nichtdeterministischen
Automaten lasst sich dieses Problem jedoch leicht beheben, da dieser
den richtigen Zeitpunkt ,erraten kann.

Im néchsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur regulidre Sprachen erkennen
konnen.

2.2 Nichtdeterministische endliche Automaten

Definition 14. FEin nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,%,A,Qo, E) ist dhnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustinde (zusammengefasst in der Menge Qo € Z ) haben
kann und seine Uberfihrungsfunktion die Form

A:Zx¥->P(Z)

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2% bezeichnet. Die
von N akzeptierte Sprache ist

L(N) = {xl...xnez*

3q0 € Qo,q1, - qn-1 € Z,qn € B
Giv1 € A(Gi, xig1) fiiri=0,...,n-1 |

FEine Zustandsfolge qo,q1,- ., q, heifst Rechnung von N(z;...x,),
falls g1 € A(qi,xi41) firi=0,...,n-1 gilt.

2.2 Nichtdeterministische endliche Automaten

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren. Ein Wort x ge-
hort genau dann zu L(N), wenn N (x) mindestens eine akzeptierende
Rechnung hat.

Im Gegensatz zu einem DFA, dessen Uberfiihrungsfunktion auf der
gesamten Menge Z x Y definiert ist, kann ein NFA stecken bleiben®.
Das ist dann der Fall, wenn er in einen Zustand ¢ gelangt, in dem das
nichste Eingabezeichen x; wegen A(q,x;) = @ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,%,A,Qo, E) mit Zustands-
menge Z ={p,q,r,s}, Eingabealphabet 3 ={0,1,2}, Start- und End-
zustandsmenge Qo = {p} und E = {s} sowie der Uberfiihrungsfunktion

Graphische Darstellung:
A‘ P q r s

0{pqgy @ @ @ —’@—0'@—1’@—2’
Ll () (1} o o oY
%

2| {py @ {s}

Offensichtlich akzeptiert N die Sprache L(N) ={xz012 |z € ¥*} aller
Wérter, die mit dem Suffiz 012 enden. <

Beobachtung 16. Sind N; = (Z;,3,A,;,Q;, E;) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(Ny) und L(Ny)* von einem NFA
erkannt.

Beweis. Sei L; = L(N;). Wir konnen Z; n Z, = @ annehmen. Dann
akzeptiert der NFA

N = (Zl UZ2727A37Q17E>
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mit
Al(paa)u peZl\Eh
A3(p7a) = Al(paa) U quQg AQ(Qua)u pE E17
As(p,a), sonst
und
E. FEs =
[l Rkt Q2nEy=02
EiuFE;, sonst

die Sprache L;L,.

Beweis von Li1Ly € L(N): Seien x = x1--xy € L1,y = y1--y; € Ly und
seien qq,...,qx und py,...,p; akzeptierende Rechnungen von Nj(x)
und Ny (y). Dann gilt go € Q1, g € E7 und pg € Qo, p; € Es.

o Im Fall [ > 1 ist zudem p; € Ay(po,y1) und somit p; € A(qx, y1)-

e Im Fall [ =0 ist zudem p; € Y N E5 und somit ¢ € .

Also ist qo, - .., qk, p1,- - ., eine akzeptierende Rechnung von N (zy).

Beweis von L(N) ¢ LiLy: Sei x = x1---x, € L(N) und sei qo,...,qn
eine akz. Rechnung von N (). Dann gilt gy € Q1, ¢, € E, qo,---,¢ € Z1
und @iy1, .-+, qn € Zo fir ein 1 € {0,...,n}.

e Im Fall i =n ist ¢, € By (dh. x € Ly) und Q2 n Fy # @ (d.h.

e € Ls).

o Im Fall i < n impliziert der Ubergang ¢;;1 € A(q;,xi1), dass
¢ € By und ¢;11 € As(q, z441) fiir ein g € Q5 ist.

Also ist qo, . . ., g; eine akz. Rechnung von Ny (x1--x;) und ¢, gis1, - - -, Gn
eine akz. Rechnung von No(x1---2,), d.h. x € Ly Ls.

Ganz dhnlich lasst sich zeigen, dass der NFA

N* = (Zl U {%@eu}v 27 A47 Ql U {Qneu}a El U {Qneu})

mit

2.2 Nichtdeterministische endliche Automaten

Al(pva')7 pezl\Ela
A4(paa’) = Al(p7a)UquQ1 Al(Q7a)> peEl?
a, sonst
die Sprache L} akzeptiert. [

Satz 17 (Rabin und Scott).
REG = {L(N) | N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Fiir die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,3,A,Qq, E) einen DFA M =
(P(Z2),%,0,Qo, E') mit L(M) = L(N). Wir definieren die Uberfiih-
rungsfunktion § : P(Z) x ¥ - P(Z) von M mittels

0(Q,a) = J Ag, a).

qeQ

Die Menge §(Q, a) enthélt also alle Zustande, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand ¢ € () das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand () die Information speichert,
in welchen Zustédnden sich N momentan befinden kénnte. Fiir die
Erweiterung 6 : P(Z) x £* - P(Z) von § (siehe Seite 3) kénnen wir
nun folgende Behauptung zeigen.

Behauptung. § (Qo,x) enthalt alle Zusténde, die N ausgehend von
einem Startzustand nach Lesen von z erreichen kann.

Wir beweisen die Behauptung induktiv tiber die Lange n von z.
Induktionsanfang (n =0): Klar, da 6(Qo,¢) = Qq ist.

Induktionsschritt (n—1~»mn): Sei x = x; ...x, gegeben. Nach Induk-
tionsvoraussetzung enthalt

Qn-1= S(Qo,xl .- -xn—l)
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alle Zustande, die N(z) in genau n —1 Schritten erreichen kann.
Wegen
0(Qo,7) =0(Qn-1,72) = U Alg,zn)
q€Qn-1
enthilt dann aber 6(Qy, ) alle Zustinde, die N(x) in genau n
Schritten erreichen kann.

Deklarieren wir nun diejenigen Teilmengen @) € Z, die mindestens
einen Endzustand von N enthalten, als Endzustande des Potenz-
mengenautomaten M, d.h.

E'=-{QcZ|QnE+ta},
so folgt fir alle Worter x € 3*:

reL(N) < N(z)kann in genau |z| Schritten einen Endzustand
erreichen
= 0(Qur)nE+o
< 6(Qo,x) e E
< wel(M).

Beispiel 18. Fiir den NFA N = (Z,%,A,Qo, E) aus Beispiel 15

9@_0.@_%@_2»

ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach
Entfernen aller vom Startzustand Qo = {p} aus nicht erreichbaren
Zustande):

2.3 Regulire Ausdriicke

s | o 1 2

Q={r} |{p.a} {p} {p}
Qi =1{p,q} | {p,a} {7} {p}
Qx={p,r} | {p,a} {p} {p s}
Qs=A{p,s} |{p,a} {p} {p}

Im obigen Beispiel wurden fiir die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2/4l = 16 Zustinde benétigt, da die
tibrigen 12 Zusténde in P(Z) nicht vom Startzustand Qo = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 212/ Zusténde
in P(Z) fir die Konstruktion des Potenzmengenautomaten benétigt
werden (siehe Ubungen).

Korollar 19. Die Klasse REG der requldren Sprachen ist unter fol-
genden Operationen abgeschlossen:

o Komplement, e Produkt,

e Schnitt, e Sternhiille.

e Vereinigunyg,

2.3 Regulare Ausdriicke

Wir haben uns im letzten Abschnitt davon iiberzeugt, dass auch NFAs
nur reguldre Sprachen erkennen kénnen:
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REG = {L(M) | M ist ein DFA} ={L(N) | N ist ein NFA}.
In diesem Abschnitt werden wir eine weitere Charakterisierung der
reguldren Sprachen kennen lernen:

REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhiille aus der leeren Menge und den Singleton-
sprachen bilden lassen.

Tatséchlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der reguldren Ausdriicke v (tber ei-
nem Alphabet ) und die durch v dargestellte Sprache L(vy) sind
induktiv wie folgt definiert. Die Symbole @, € und a (a € ¥) sind
requldre Ausdriicke, die

o die leere Sprache L(2) = @,

e die Sprache L(e) ={e} und

e fiir jedes Zeichen a € X die Sprache L(a) = {a}
beschreiben. Sind o und [ requlire Ausdriicke, die die Sprachen L(a)
und L(B) beschreiben, so sind auch af, («|B) und (a)* regulire Aus-
driicke, die die Sprachen

« L(aB) = L()L(B),

. L(alf) = L(a) U L(B) und

. L((a)") = L(a)*
beschreiben.
Bemerkung 21.

e Um Klammern zu sparen, definieren wir folgende Priazedenz-
ordnung: Der Sternoperator * bindet stirker als der Produktope-
rator und dieser wiederum stdarker als der Vereinigungsoperator.
Fiir ((alb(c)*)|d) kénnen wir also kurz albc*|d schreiben.

e Da der requlire Ausdruck ~v* die Sprache L(7y)* beschreibt,
verwenden wir v+ als Abkiirzung fir den Ausdruck ~vy*.

2.3 Reguléire Ausdriicke

Beispiel 22. Die requliren Ausdricke €*, @*, (0[1)*00 und €0|@1*
beschreiben folgende Sprachen:

v €* o* (0[1)*00 0|z1*

L(y) | {e}r={e} @*={e} {200]xe{0,1}} {0}

Beispiel 23. Betrachte nebenstehenden DFA M.
Um fiir die von M erkannte Sprache

L(M) =A{x €{a,b}" | #a(x) - #(2) =3 1}

etnen requldren Ausdruck zu finden, betrachten
wir zundchst die Sprache Lo aller Worter x, die
den DFA M ausgehend vom Zustand 0 in den
Zustand 0 tiberfihren. Weiter sei L3, die Sprache aller solchen Wérter
w e, die zwischendurch nicht den Zustand 0 besuchen. Dann setzt
sich jedes x € Log aus beliebig vielen Teilwértern wy, ..., wy € L3}
zusammen, d.h. Loo = (L3})*. '

Jedes w € L) beginnt entweder mit einem a (Ubergang von 0 nach 1)
oder mit einem b (Ubergang von 0 nach 2). Im ersten Fall folgt eine
beliebige Anzahl von Teilwortern ab (Wechsel zwischen 1 und 2), an
die sich entweder das Suffix aa (Rickkehr von 1 nach 0 dber 2) oder
das Suffix b (direkte Riickkehr von 1 nach 0) anschliefit. Analog folgt
im zweiten Fall eine beliebige Anzahl von Teilwértern ba (Wechsel
zwischen 2 und 1), an die sich entweder das Suffiz a (direkte Rickkehr
von 2 nach 0) oder das Suffix bb (Rickkehr von 2 nach 0 dber 1)
anschlieffit. Daher ldisst sich LS_% durch den reguldren Ausdruck

7% = a(ab)* (aalb) | b(ba)* (albb)

beschreiben. Eine ahnliche Uberlegung zeigt, dass sich die die Sprache
L3’ aller Worter, die M ausgehend von 0 in den Zustand 1 iiber-
fithren, ohne dass zwischendurch der Zustand 0 nochmals besucht
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wird, durch den reguléren Ausdruck 7 = (albb)(ab)* beschreibbar
ist. Somit erhalten wir fur L(M) den reguldren Ausdruck

.1 = (150)" %50 = (a(ab)* (aalp) | b(ba)* (albb))* (albb) (ab)".

Satz 24. {L(v) |~ ist ein regulirer Ausdruck} = REG.

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdriicke @, € und a, a € ¥*, nur reguldre Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist (siehe Beobachtungen 13 und 16).

Fiir die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
laren Ausdruck v mit L(v) = L(M). Sei also M = (Z,%,6,q, E') ein
DFA, wobei wir annehmen konnen, dass Z = {1,...,m} und ¢qo = 1 ist.
Dann lésst sich L(M) als Vereinigung

L(M) = U L4

qeE

von Sprachen der Form

Lpg={zeX” | S(pax) =q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen L, , durch
reguldre Ausdriicke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

Ly, = {xl...:pneE*

3(p,a:1...a:n) = ¢ und fiir
i=1,...,n—-1 gilt S(p,wl...xi)ST '

Wegen Ly, = L' reicht es, reguldre Ausdriicke v; , fiir die Sprachen

Ly, , anzugeben. Tm Fall 7 = 0 enthélt

p.q

L0 _{{aez|6<p,a>=q}u{e}, p=q.
{aeX|d(p,a)=q}, sonst

2.3 Regulire Ausdriicke

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen reguldren Ausdruck 77, beschreibbar. Wegen

r+l _ I T r *TT
vaq - vaqULp,r+1(Lr+1,r+1) LT+1,q

lassen sich aus den reguldren Ausdriicken ~j  fiir die Sprachen Lj

leicht reguldre Ausdriicke fiir die Sprachen L7*! gewinnen:

r+l1 _ r r r * 7
’Yp,q _7p7q|’7p,r+1(,}/r+l,r+1) 7r+1,q'

Beispiel 25. Betrachte den DFA

g

Da M insgesamt m =2 Zustinde und nur den Endzustand 2 besitzt,
15t

L(M) = U Lyg=1Lis= L%g = L(712,2)-

qeF

Um ~%, zu berechnen, benutzen wir die Rekursionsformel

r+l _ 7 r r * T
’yp,q _’Yp,q|’yp,r+1(7r+1,r+l) ’yr+1,q

und erhalten

7%,2 = 711,2|%1,2(721,2)*721,2,
711,2 = 7?,2|7?,1(7?,1)*7?,2;
7%,2 = 78,2|78,1(7?,1)*’Y?,2-
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Um den requldren Ausdruck 71272 fir L(M) zu erhalten, gentgt es also,
die reguldren Ausdriicke 7 1, V)5, 791, V5.9, V1o Und v35 2zu berechnen:

. b,q

L1 1,2 2,1 2,2
0 €lb a a €lb
) al(e[b)(elb)*a (e[b)la(elb)*a

n \ , o ,
b*a e|blab*a
) b*alb*a(elblab*a)* (e|blab*a)
b*a(blab*a)*

<

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

e L ist requldr,

e es gibt einen DFA M mit L = L(M),

e es gibt einen NFA N mit L = L(N),

o es gibt einen requldren Ausdruck v mit L = L(7),

e L ldsst sich mit den Operationen Vereinigung, Produkt und
Sternhiille aus endlichen Sprachen gewinnen,

o L ldsst sich mit den Operationen N, U, Komplement, Produkt
und Sternhiille aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, namlich durch regulare Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Aquivalenzrelationen) eine wichtige Rolle.
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2.4 Relationalstrukturen

Sei A eine nichtleere Menge, R; eine k;-stellige Relation auf A, d.h.
R; ¢ Ak far ¢ = 1,...,n. Dann heiit (A;Ry,...,R,) Relational-
struktur. Die Menge A heifit Grundmenge, Triagermenge oder
Individuenbereich der Relationalstruktur.

Wir werden hier hauptsichlich den Fall n =1, k; =2, also (A, R) mit
R ¢ A x A betrachten. Man nennt dann R eine (binire) Relation
auf A. Oft wird fir (a,b) € R auch die Infix-Schreibweise aRb

benutzt.

Beispiel 27.
e (F,M) mit F={f]f ist Fluss in Europa} und

M={(f,g9) € Fx F| f mindet in g}.

(U,B) mit U ={x | x ist Berliner} und

B={(x,y) eUxU | x ist Bruder von y}.

(P(M), <), wobei P(M) die Potenzmenge einer beliebigen Men-
ge M und ¢ die Inklusionsbeziehung auf den Teilmengen von M
18t.

(A, Idy), wobei Ida ={(x,x) |z e A} die Identitdt auf A ist.
(R,<).

(Z,)]), wobei | die "teilt”-Relation bezeichnet (d.h. a|b, falls ein
ce€Z mit b=ac existiert). q

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt, Vereinigung, Komplement und Differenz
definiert. Seien R und S Relationen auf A, dann ist

RnS = {(x,y)e Ax A| xRy xSy},
RuS = {(x,y)e Ax A|zRyv xSy},
R-5S = {(x,y) e Ax A| xRy n-zSy},
R = (AxA)-R.
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Sei allgemeiner M ¢ P(A x A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt iiber M und die Vereinigung iiber
M folgende Relationen:

M
UM -

N R={(e.y) | VRe M: xRy},
ReM

U R={(z,y) | IR e M : zRy}.
ReM

Die transponierte (konverse) Relation zu R ist

R" = {(y,z) | zRy}.

R”T wird oft auch mit R™! bezeichnet. Z.B. ist (R,<T) = (R, >).

Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

RoS={(x,2)e AxA|Jye A: xRy nySz}.

Beispiel 28. Ist B die Relation "ist Bruder von”, V' 7ist Vater von”,
M 7ist Mutter von” und E =V u M 7ist Elternteil von”, so ist Bo E
die Onkel-Relation. N

Ubliche Bezeichnungen fiir das Relationenprodukt sind auch R ;S und
R - S oder einfach RS. Das n-fache Relationenprodukt Ro---o R von
R wird mit R™ bezeichnet. Dabei ist R° = Id.

Vorsicht: Das n-fache Relationenprodukt R"™ von R sollte nicht mit
dem n-fachen kartesischen Produkt R x---x R der Menge R verwech-
selt werden. Wir vereinbaren, dass R™ das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heifit R
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reflexiv, falls Vx € A: zRx (also Ids € R)
irreflexiv, falls Vx e A: -xRx (also Idy € R)
symmetrisch, falls Vo,y e A: xRy = yRx (also Rc RT)
asymmetrisch, falls Vz,ye A: xRy = -yRx (also R c ﬁ)

antisymmetrisch, falls Vor,ye A:xRyanyRx=>x =1y
(also Rn RT c Id)

konnex, falls Vx,y e A: xRy v yRx
(also Ax Ac RuRT)
semikonnex, falls Ve,ye A:x +#+y = xRy vyRx
(also Id € Ru RT)
transitiv, falls Vo, y,z€e A: xRy nyRz = xRz
(also R?c R)
gilt.

Die nachfolgende Tabelle gibt einen Uberblick iiber die wichtigsten
Relationalstrukturen.

‘reﬂ. sym. trans. antisym. asym. konnex semikon.

Aquivalenzrelation | v vV

(Halb-)Ordnung v v v

Striktordnung Ve v

lineare Ordnung v v v

lin. Striktord. ve v v
Quasiordnung v e

In der Tabelle sind nur die definierenden Eigenschaften durch ein "v”
gekennzeichnet. Das schliefit nicht aus, dass gleichzeitig auch noch
weitere Eigenschaften vorliegen konnen.

Beispiel 29.

e Die Relation "ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.



2 Regulédre Sprachen

e Die Relation "ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Aquivalenzrelation.

o (R,<) ist irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnung.

e (R,<) und (P(M),<) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

e (R,<) ist auch konnex und somit eine lineare Ordnung.

e (P(M),c) ist zwar im Fall |M| < 1 konnez, aber im Fall
|M| >2 weder semikonnex noch konnex. N

Graphische Darstellung von Relationen

Eine Relation R auf einer endlichen Menge A kann durch einen gerich-
teten Graphen (oder Digraphen) G = (V, E') mit Knotenmenge
V = A und Kantenmenge E = R veranschaulicht werden. Hierzu
stellen wir jedes Element z € A als einen Knoten dar und verbin-
den jedes Knotenpaar (z,y) € R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heiflen benachbart oder
adjazent.

Beispiel 30. Fir die Relation (A,R) mit A = {a,b,c,d} und
R={(b,c),(b,d),(c,a),(c,d),(d,d)} erhalten wir folgende graphische

Darstellung.
b,
e

Der Ausgangsgrad eines Knotens z € V ist deg” (x) = | R[«]|, wobei
R[z] ={y € V | xRy} die Menge der Nachfolger von z ist. Entspre-
chend ist deg™(z) = [{y € V | yRx}| der Eingangsgrad von x und

<
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R1[zx] ={y € V | yRz} die Menge der Vorgdnger von z. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(z) = deg™ (x) = deg” (x) der Grad von z und R[x] = R[]
heilt die Nachbarschaft von z. Ist R zudem irreflexiv, so ist G
schleifenfrei und wir erhalten einen (ungerichteten) Graphen.
Eine irreflexive und symmetrische Relation R wird meist als Menge
der ungeordneten Paare E = {{a,b} | aRb} notiert.

Darstellung durch Adjazenzmatrizen

Eine Relation R auf einer endlichen (geordneten) Menge A =

{a1,...,a,} lasst sich durch eine boolesche n x n-Matrix Mg = (m;;)
mit
M = { ]_, CLZ‘R(IJ',
Y71 0, sonst

darstellen. Beispielsweise hat die Relation

R= {(ba C)? (bv d)> (Cva)a (07 d)a (da d)}

auf der Menge A ={a,b,c,d} die Matrixdarstellung

o~ O O
o O O O
o O = O
— = = O

Darstellung durch Adjazenzlisten

Eine weitere Moglichkeit besteht darin, eine endliche Relation R in
Form einer Tabelle darzustellen, die jedem Element x € A seine Nach-
folger in Form einer Liste zuordnet. Fiir obige Relation R erhalten
wir folgende Listen:
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r: R[z]
a: -
b:  ¢d
c.  a,d
d: d

Sind Mg = (r;) und Mg = (s;;) boolesche n x n-Matrizen fiir R und
S, so erhalten wir fir 7' = R o S die Matrix My = (;;) mit

tij= V  (riAsi)

Die Nachfolgermenge T'[x] von x bzgl. der Relation T' = RoS berechnet
sich zu

Tlx]=U{Sylly e Rlz]} = U Syl

yeR[z]

Beispiel 31. Betrachte die Relationen R = {(a,a), (a,c), (¢,b),(c,d)}
und S ={(a,b),(d,a),(d,c)} auf der Menge A = {a,b,c,d}.

Relation R S RoS SoR
O O 00 @ O

Digraph

=D @k@ (T@?@ O

1010 0100 0100 0000
Adjazenz- | 0000 0000 0000 0000
matrix 0101 0000 1010 0000

0000 1010 0000 1111

a: a,c a: b a: b a: -
Adjazenz- | b: - b: - b - h: -
liste c: b,d c: - c:oa,c c: -

d: - d: a,c d: - d: a,b,c,d
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Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht Ro.S =SS0 R.

Als néachstes zeigen wir, dass die Menge R = P(A x A) aller bindren
Relationen auf A mit dem Relationenprodukt o als bindrer Operation
ein Monoid) (also eine Halbgruppe mit neutralem Element) bildet.

Satz 32. Seien QQ, R, S Relationen auf A. Dann gilt
(i) (QoR)oS=Qo(RoS), d.h. o ist assoziativ,
(ii) Ido R=Rold=R, d.h. Id ist neutrales Element.

Beweis.
(i) Es gilt:
r(QoR)oSy JueA:z (QoR)u A uSy

JueA:(veAd:zQuRu) AuSy
Ju,ve Atz QuRuSvy
FveAd:zQu A (GueA:vRu A uSy)
FveA:zQu(ReS)y
1 Qo(RoS)y
(ii)) Wegen z [doRy < 3z:x=2 A z Ry< x Ry folgt IdoR = R.

Die Gleichheit Ro Id = R folgt analog.

LN

Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine moglichst kleine Modifikation in eine Relation R’ mit
vorgegebenen Figenschaften zu tiberfithren. Will man dabei alle in R

enthaltenen Paare beibehalten, dann sollte R’ aus R durch Hinzufiigen
moglichst weniger Paare hervorgehen.

Es lasst sich leicht nachpriifen, dass der Schnitt iiber eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R’, die R enthélt.

Definition 33. Sei R eine Relation auf A.
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e Die reflexive Hiille von R ist
hrea(R) =({S € Ax A|S ist reflexiv und R c S}.
e Die symmetrische Hiille von R ist
hsym(R) =S € Ax A|S ist symmetrisch und R < S}.
Die transitive Hiille von R ist

R =({ScAxA|S ist transitiv und Rc S}.

e Die reflexiv-transitive Hiille von R ist
R*=({ScAxA|S ist reflexiv, transitiv und R ¢ S}.
e Die Aquivalenzhiille von R ist
hag(R) = ({S| S ist eine Aquivalenzrelation auf A und R < S}.

Satz 34. Sei R eine Relation auf A.
(1) hrea(R) = RU Idy,
(it) hsym(R) =RuURT,
(iii) R =Ups1 R*,
(iv) R* =U,so R",
(v) ha(R) = (RURT)*.

Beweis. Siehe Ubungen. ]

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a,b) genau
dann in der reflexiv-transitiven Hiille R* von R ist, wenn es ein n >0
gibt mit aR"b, d.h. es gibt Elemente x,...,x, € A mit zg=a, x, =b
und

roRx1Rxs ... 2,1 Rx,,.
In der Graphentheorie nennt man xy, ..., z, einen Weg der Linge n

von a nach b.
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2.4.1 Ordnungs- und Aquivalenzrelationen

Wir betrachten zunichst Aquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.

Ist E eine Aquivalenzrelation, so nennt man die Nachbarschaft E[z]
die von x représentierte Aquivalenzklasse und bezeichnet sie
mit [z]g oder einfach mit [z]. Eine Menge S ¢ A heifit Reprédsen-
tantensystem, falls sie genau ein Element aus jeder Aquivalenzklasse
enthalt.

Beispiel 35.

o Auf der Menge aller Geraden im R? die Parallelitit. Offen-
bar bilden alle Geraden mit derselben Richtung (oder Steigung)
jeweils eine Aquivalenzklasse. Daher wird ein Reprdsentanten-
system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

o Auf der Menge aller Menschen “im gleichen Jahr geboren wie”.
Hier bildet jeder Jahrgang eine Aquivalenzklasse.

e AufZ die Relation "gleicher Rest bei Division durch m” Die
zugehérigen Aquivalenzklassen sind
[r]={a€Z|a=,r}, r=0,1,...,m—-1.

Fin Reprdsentantensystem wird beispielsweise durch die Reste
0,1,...,m—1 gebildet. <

Die (bzgl. Inklusion) kleinste Aquivalenzrelation auf A ist die Identi-
téit Idy, die groBte die Allrelation A x A. Die Aquivalenzklassen der
Identitat enthalten jeweils nur ein Element, d.h. [2];4, = {2} fir alle
x € A, und die Allrelation erzeugt nur eine Aquivalenzklasse, nimlich
[2]axa = A fiir jedes x € A. Die Identitdt Id4 hat nur ein Représen-
tantensystem, ndmlich A. Dagegen kann jede Singletonmenge {x} mit
x € A als Reprisentantensystem fiir die Allrelation A x A fungieren.
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Definition 36. Fine Familie {B; |1 € I} von nichtleeren Teilmengen
B; ¢ A heifst Partition der Menge A, falls gilt:

a) die Mengen B; iiberdecken A, d.h. A= U B; und

b) die Mengen B; sind paarweise disjunkt, d.h. fir je zwei ver-
schiedene Mengen B; # B; gilt B;n B; = @.

Wie der néchste Satz zeigt, bilden die Aquivalenzklassen einer Aqui-
valenzrelation E eine Partition {[z] |z € A} von A. Diese Partition
wird auch Quotienten- oder Faktormenge genannt und mit A/F
bezeichnet. Die Anzahl der Aquivalenzklassen von E wird auch als
der Index von I bezeichnet.

Fiir zwei Aquivalenzrelationen F ¢ E’ sind auch die Aquivalenzklas-
sen [x]g von E in den Klassen [x]g von E’ enthalten. Folglich ist
jede Aquivalenzklasse von E’ die Vereinigung von (evtl. mehreren)
Aquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als B'. Demnach ist die Identitéit die feinste und die Allrelation die
grobste Aquivalenzrelation.

Satz 37. Sei E eine Relation auf A. Dann sind folgende Aussagen
aquivalent.

(i) E ist eine Aquivalenzrelation auf A.
(ii) Fir alle x,y e A gilt

©By < Elx]=Ely] (%)
(iii) Es gibt eine Partition {B;|ie€ I} von A mit
rEy < Jdiel:x,yeB,.

Beweis.

(i) = (ii) Sei E eine Aquivalenzrelation auf A. Da F transitiv ist,
impliziert xEy die Inklusion E[y] ¢ E[z]:

ze Elyl|=>yFz=xFEz= z¢€ E[x].
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Da E symmetrisch ist, folgt aus zEy aber auch E[x] ¢ E[y].

Umgekehrt folgt aus F[x] = E[y] wegen der Reflexivitit von F,
dass y € E[y] = F[z] enthalten ist, und somit zEy. Dies zeigt,
dass E die Aquivalenz () erfiillt.

(it) = (uit) Erfillle E die Bedingung (). Dann folgt xFEx (wegen
E[z] = E[z]) und somit = € E[z]. Die Mengen E[x], = € A,
iiberdecken also A.

Ist weiterhin E[z]n E[y] # @ und z ein Element in E[z]n E[y],
so gilt zEz und yEz und daher folgt E[z] = E[z] = E[y].

Folglich bildet {E[x]|x € A} eine Partition von A. Diese erfillt
wegen

rEy < E[z] = Ely]
< 32:E[z] = E[2] = E[y]
< dz:x,y€ E[z]

auch die in (7ii) geforderte Zusatzbedingung.
(ii7) = (i) Existiert schlieflich eine Partition {B; |7 € I} von A mit
rEy < Jdiel:x,yeB;, soist F
o reflexiv, da zu jedem = € A eine Menge B; mit = € B;
existiert,
o symmetrisch, da aus x,y € B; auch y,z € B; folgt, und

« transitiv, da aus z,y € B, und y,z € B; wegen y € B;n B;
die Gleichheit B; = B; und somit z, z € B; folgt.
[
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