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1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch 16sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

SchlieBlich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollsténdigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adédquat?
(Automatentheorie)

« Welche Probleme sind losbar? (Berechenbarkeitstheorie)

o Welcher Aufwand ist zur Losung eines algorithmischen Problems

notig? (Komplexitatstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)
Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Fuklid benannte Algorithmus zur Berechnung
des grofiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben kénnen Zahlen, Formeln, Graphen etc. sein. Diese werden
iiber einem FEingabealphabet ¥ kodiert.

Definition 1.

a) Ein Alphabet ¥ ={ay,...,a,} ist eine geordnete Menge von
endlich vielen Zeichen.

b) Eine Folge x = x;...x, vonn Zeichen heiffit Wort (der Linge

c) Die Menge aller Worter diber ¥ ist

s =,
n>0
wobei X" = {xy...x, | n 20 undx; € ¥ firi=1,...,n} alle

Worter der Lange n enthdlt.

d) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen.

e) Jede Teilmenge L € ¥* heifst Sprache tber dem Alphabet .

Beispiel 2. Sei X ein Alphabet. Dann sind @, %*, % und {} Sprachen
tber X. Die Sprache @ enthdlt keine Worter und heifit leere Spra-
che. Die Sprache ¥* enthdlt dagegen alle Wérter diber ¥, wdhrend
die Sprache ¥ alle Wérter tiber ¥ der Linge 1 enthdlt. Die Sprache



2 Regulédre Sprachen

{e} enthalt nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singleton-Sprachen bezeichnet.

Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

gc{e}cxr.

Wir konnen Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen tiber ¥. Dann ist

e AnB={xeX*|zeA xeB} der Schnitt von A und B,

e AuB={xeX*|xzeAvuzre B} die Vereinigung von A und
B, und

e A={zeX*|2¢ A} das Komplement von A.

Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.
e Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B st

AB={zy|xzeAyeB}.

Ist A = {x} eine Singletonsprache, so schreiben wir fir {x}B
auch einfach xB.

e Die n-fache Potenz A"™ ciner Sprache A ist induktiv definiert
durch

An = {e}, n=0,
ATA n>0.

e Die Sternhiille A* von A ist A* = U,s0 A".
e Die Plushiille A* von A ist A* =U,s A" = AA*.

2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
faltige praktische Anwendungen haben, wie z.B. endliche Automaten

(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

FEingabe-

Ein endlicher Automat fithrt band —
bei einer Eingabe der Lénge n
nur n Rechenschritte aus. Um / Lesekopf
die gesamte Eingabe lesen zu

konnen, muss der Automat also Steuer-
in jedem Schritt ein Zeichen der einheit
Eingabe verarbeiten.

Definition 4. Ein endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E) beschrie-
ben, wobei

e 7 #+ @ eine endliche Menge von Zustdnden,
e Y das Eingabealphabet,

e 0:7ZxX% - Z die Uberfiihrungsfunktion,
e qo € Z der Startzustand und

e 'cZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {$1...xn62*

es gibt qi,...,qn-1 € Z,q, € B mit
5((]z‘>xi+1) = (Qiv1 fdri=0,...,n—1 '
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FEine Zustandsfolge qo,q1, ... ,q, heifst Rechnung von M(z;...x,),
falls 6(qi, wiv1) = qivy furi=0,....n—1 gilt. Sie heifit akzeptierend,
falls q, € E ist.

Beispiel 5. Betrachte den DFA M =
(Z,%,6,0,E) mit Z = {0,1,2}, 3 =
{a,b}, E = {1} und der Uberfiihrungs-
funktion

Graphische Darstellung:

5lo 1 2

all 2 0
b2 0 1

Der Startzustand wird meist durch einen Pfeil und Endzustdnde
werden durch einen doppelten Kreis gekennzeichnet. N

Bezeichne & (¢,x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion

5:Zx¥" > 7

induktiv wie folgt definieren. Fiir g€ Z, z € ¥* und a € X sei

A

O(ae) = a
d(q,za) = 6(0(q,x),a).

Die von M erkannte Sprache lasst sich nun auch in der Form
L(M) ={zeX*|6(qo,2) € B}
schreiben.

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache

L(M) ={zeX" | #4(x) - #u(z) =3 1},

2.1 Endliche Automaten

wobei #4(x) die Anzahl der Vorkommen des Zeichens a in x bezeich-
net und i =, j (in Worten: i ist kongruent zu j modulo m) bedeutet,
dass i — 5 durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € ¥* |
6(0,2) =1}, d.h. wir miissen folgende Aquivalenz zeigen:

0(0,2) = 1 < #4(x) - #p(z) =5 1.
Hierzu reicht es, die Kongruenz
5(0,2) =3 #a(x) - #5(2).

zu beweisen, wofilir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n = 0): Klar, da 6(0,¢) = #4(¢) = #,() = 0 ist.

Induktioqsschritt (n~mn+1): Sei © = x1...7,,1 gegeben und sei
i=0(0,21...2,). Nach IV gilt dann

i =3 H#a(x1. . 2n) —Ho(T1. .. T0).
Wegen 6(i,a) =37+ 1 und 6(i,b) =37 — 1 folgt daher

(S(Z, xn+1) =3 1+ #a($n+1) - #b($n+1)
=3 #a(ml cee xn) - #b(xl e xn) + #a(xm—l) - #b(xn+1)
= Fa(®) = #o(2).

und somit
5(0,2) = 0(0(0, 21 ... 2n), Tns1) = 0(i, Zne1) =3 H#a(x) — #0(2).
]

Eine von einem DFA akzeptierte Sprache wird als regulér bezeichnet.
Die zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}.
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Beobachtung 7. Alle Singletonsprachen sind requldr.

Beweis. Fur jedes Wort x = zy...x, existiert ein DFA M, mit

L(M,) ={x}:

T L2 T3
e @ T
a + T2 a * I3
a* T

acX

Formal ist M, also das Tupel (Z,%,6,qy, E) mit Z = {qo,--.,qn, €},
FE ={¢,} und der Uberfiihrungsfunktion

gi+1, q=g¢ fireintmit 0<i<n-1und a; = 2,4
5(q7 aj) =
e, sonst.

Als néchstes betrachten wir Abschlusseigenschaften der Sprachklasse

REG.

Definition 8. FEin k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen Ly, ..., Ly auf eine Sprache op(L1, ..., Ly) abbildet.

Beispiel 9. Der Schnittoperator n bildet zwei Sprachen Ly und Lo
auf die Sprache Ly n Ly ab. <

Definition 10. Fine Sprachklasse K heifit unter op abgeschlossen,
wenn gilt:
Lh...,LkG/C=>Op(L1,...,Lk) e K.

Der Abschluss von K unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K', die IC enthdlt und unter op abgeschlossen ist.

2.1 Endliche Automaten

Beispiel 11. Der Abschluss der Singletonsprachen unter n besteht
aus allen Singletonsprachen und der leeren Sprache.

Der Abschluss der Singletonsprachen unter U besteht aus allen nicht-
leeren endlichen Sprachen. <

Definition 12. Fir eine Sprachklasse C bezeichne co-C die Klasse
{L|LeC} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L, L, € REG sind auch die Sprachen Ly =
Y*N Ly, Lyn Ly und Ly v Ly requldr.

Beweis. Sind Ml = (Zi,E,(SZ-,qo,EZ-), 1= 1,2, DFAs mit L(MZ) = Li,
so akzeptiert der DFA

M, =(Z1,%,01,q0, Z1 ~ Ey)

das Komplement Ly von Ly. Der Schnitt L; n Ly von L; und Ly wird
dagegen von dem DFA

M = (Zy x Z3,%,6,(q0, ), E1 x Es)

mit
(5(((],]9), CL) = (51(Q7 (I), 52(]9, CL))
akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen

LiulL, = (L_lﬂL_g) ist dann aber auch die Vereinigung von L; und
Lo reguldr. (Wie sieht der zugehérige DFA aus?) |

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regular sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regularen Sprachen erfasst.

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
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Operationen wie etwa Produkt oder Sternhiille abgeschlossen ist. Im
iiberndchsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt
und Sternhiille charakterisierbar ist.

Beim Versuch, einen endlichen Automaten fiir das Produkt Lq Lo zwei-
er regularer Sprachen zu konstruieren, stot man auf die Schwierigkeit,
den richtigen Zeitpunkt fiir den Ubergang von (der Simulation von)
M zu My zu finden. Unter Verwendung eines nichtdeterministischen
Automaten lasst sich dieses Problem jedoch leicht beheben, da dieser
den richtigen Zeitpunkt ,erraten kann.

Im néchsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur regulidre Sprachen erkennen
konnen.

2.2 Nichtdeterministische endliche Automaten

Definition 14. FEin nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,%,A,Qo, E) ist dhnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustinde (zusammengefasst in der Menge Qo € Z ) haben
kann und seine Uberfihrungsfunktion die Form

A:Zx¥->P(Z)

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2% bezeichnet. Die
von N akzeptierte Sprache ist

L(N) = {xl...xnez*

3q0 € Qo,q1, - qn-1 € Z,qn € B
Giv1 € A(Gi, xig1) fiiri=0,...,n-1 |

FEine Zustandsfolge qo,q1,- ., q, heifst Rechnung von N(z;...x,),
falls g1 € A(qi,xi41) firi=0,...,n-1 gilt.

2.2 Nichtdeterministische endliche Automaten

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren. Ein Wort x ge-
hort genau dann zu L(N), wenn N (x) mindestens eine akzeptierende
Rechnung hat.

Im Gegensatz zu einem DFA, dessen Uberfiihrungsfunktion auf der
gesamten Menge Z x Y definiert ist, kann ein NFA stecken bleiben®.
Das ist dann der Fall, wenn er in einen Zustand ¢ gelangt, in dem das
nichste Eingabezeichen x; wegen A(q,x;) = @ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,%,A,Qo, E) mit Zustands-
menge Z ={p,q,r,s}, Eingabealphabet 3 ={0,1,2}, Start- und End-
zustandsmenge Qo = {p} und E = {s} sowie der Uberfiihrungsfunktion

Graphische Darstellung:
A‘ P q r s

0{pqgy @ @ @ —’@—0'@—1’@—2’
Ll () (1} o o oY
%

2| {py @ {s}

Offensichtlich akzeptiert N die Sprache L(N) ={xz012 |z € ¥*} aller
Wérter, die mit dem Suffiz 012 enden. <

Beobachtung 16. Sind N; = (Z;,3,A,;,Q;, E;) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(Ny) und L(Ny)* von einem NFA
erkannt.

Beweis. Sei L; = L(N;). Wir konnen Z; n Z, = @ annehmen. Dann
akzeptiert der NFA

N = (Zl UZ2727A37Q17E>
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mit
Al(paa)a pezl\Eh
AS(p7a) = Al(paa)UUqEQQ AQ(Q7G)7 pEElJ
Ay(p,a), sonst
und
E. FEs =
gt Q2nEy =2
Eyu By, sonst

die Sprache LqLo.

Beweis von Ly1Ly € L(N): Seien x = x1--xy € L1,y = y1--y; € Ly und
seien qq, ..., qx und po,...,p; akzeptierende Rechnungen von Ny(z)
und No(y). Dann gilt gg € Q1, qx € E7 und pg € Qo, p; € Es.

o Im Fall [ > 1 ist zudem p; € Ay(po,y1) und somit p; € A(qx, y1)-

e Im Fall [ =0 ist zudem p; € Y N E5 und somit ¢ € .

Also ist qo, - -, qk, p1,- - -, 1 eine akzeptierende Rechnung von N (zy).

Beweis von L(N) € LyLy: Sei x = x1--x, € L(N) und sei qq,...,qn
eine akz. Rechnung von N (). Dann gilt qo € Q1, g, € E, qo,-..,q; € Z1
und Giy1, .-+, qGn € Zo fir ein 1 € {0,...,n}.

e Im Fall i = n ist g, € By (d.h. x € Ly) und Qs n Ey # @ (d.h.

g€ Ls).
o Im Fall i < n impliziert der Ubergang ¢;;1 € A(q;,xi:1), dass
gi € By und ¢;11 € Ao(q, z441) fiir ein g € Q5 ist.
Also ist qq, . . ., ¢; eine akz. Rechnung von Ny (z1---z;) und q, Gis1, - - -, qn
eine akz. Rechnung von No(x;1-+-2,), d.h. x € L1 Ls.

Ganz dhnlich lasst sich zeigen, dass der NFA

N* = (Zl U {Qneu}a 27 A47 Ql U {Qneu}a El U {Qneu})

Al(pva)a pEZI\Ela
A4(p7a): Al(paa)UquQl Al(Qaa)u peEla

a, sonst

2.2 Nichtdeterministische endliche Automaten

die Sprache L} akzeptiert. [ ]

Satz 17 (Rabin und Scott).
REG = {L(N) | N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Fir die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,3, A, Qo, F) einen DFA M =
(P(Z2),%,0,Qo, E') mit L(M) = L(N). Wir definieren die Uberfiih-
rungsfunktion § : P(Z) x ¥ - P(Z) von M mittels

0(Q,a) = J A(g; a).

qeQ

Die Menge §(Q, a) enthélt also alle Zustande, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand ¢ € () das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand () die Information speichert,
in welchen Zustanden sich N momentan befinden kénnte. Fiir die
Erweiterung 6 : P(Z) x £* - P(Z) von § (siehe Seite 3) kénnen wir
nun folgende Behauptung zeigen.
Behauptung. §(Q, z) enthilt alle Zustinde, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.

Wir beweisen die Behauptung induktiv tiber die Lange n von z.
Induktionsanfang (n = 0): klar, da 6(Qp,e) = Qy ist.

Induktionsschritt (n—1~»n): Sei x = x; ... x, gegeben. Nach Induk-
tionsvoraussetzung enthalt

Qn—l = 8(@0,1’1 .. -xn—l)
alle Zusténde, die N(x) in genau n—1 Schritten erreichen kann.
Wegen A
0(Qo,7) =0(Qn-1,72) = U Alg,zn)

q€Qn-1

enthilt dann aber 6(Qo,x) alle Zustinde, die N(z) in genau n
Schritten erreichen kann.
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Deklarieren wir nun diejenigen Teilmengen @) € Z, die mindestens
einen Endzustand von N enthalten, als Endzustiande des Potenz-
mengenautomaten M, d.h.

E'={QcZ|QnE+a},
so folgt fiir alle Worter z € X*:

reL(N) < N(z)kann in genau |z| Schritten einen Endzustand
erreichen
< 0(Qox)NE+2
< 0(Qy,x) e E
< xel(M).

Beispiel 18. Fiir den NFA N = (Z,%,A,Qq, E) aus Beispiel 15

0 1 2
~O—-0—-0—0
0,1,2
ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach

Entfernen aller vom Startzustand Qo = {p} aus nicht erreichbaren
Zustdnde):

s | o 1 2

Q={p} |{p,ay {p} {p}
Qi={p.q} | {p,a} {7} {p}
Qx=1{p,r} | {p,a} {p} {ps}
Qs=A{p,s} |{p,a} {p} {p}

2.2 Nichtdeterministische endliche Automaten

Im obigen Beispiel wurden fiir die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2/4l = 16 Zustéinde benétigt, da die
tibrigen 12 Zusténde in P(Z) nicht vom Startzustand Qo = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 2141 Zusténde
in P(Z) fiir die Konstruktion des Potenzmengenautomaten benétigt
werden (siche Ubungen).

Korollar 19. Die Klasse REG der reguldren Sprachen ist unter fol-
genden Operationen abgeschlossen:

o Komplement, e Produkt,
o Schnitt, e Sternhiille.
o Vereinigung,
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