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Ubungen (Anmeldung iiber GOYA erforderlich)

Ausgabe der Aufgabenblatter
@ in der VL, auf GOYA und der VL-Webseite

Bearbeitung

@ in Gruppen von zwei bis drei Teilnehmern

@ Teilnehmer miissen nicht in der gleichen Ubungsgruppe sein
e bitte Ubungsgruppe, Namen und Matrikelnr. angeben
°

bitte jede Aufgabe auf einem separaten Blatt bearbeiten

Abgabe (bitte nur in Papierform)
@ bis 15:10 Uhr hier im Hoérsaal (Abgabetermin s. Aufgabenblatt)

Riickgabe
@ in den Ubungsgruppen




Schein, Klausur, Skript

Scheinkriterien
@ Losen von >50% der schriftlichen Aufgaben,

o Erfolgreiches Vorrechnen von > 2 miindl. Aufgaben.

Klausur

e Termin: 19.02.2016

@ Zulassung nur mit Ubungsschein
@ Nachklausur: 22.03.2016

Skript

@ wird wochentlich ins Netz gestellt.




Gibt es zum organisatorischen Ablauf noch Fragen?



Inhalt der Vorlesung

Themen dieser VL:

@ Welche Rechenmodelle sind adaquat? Automatentheorie
@ Welche Probleme sind losbar? Berechenbarkeitstheorie
@ Welcher Aufwand ist notig? Komplexitatstheorie

Themen der VL Algorithmen und Datenstrukturen:

@ Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient l6sen? Algorithmik

Themen der VL Logik in der Informatik:

@ Mathem. Grundlagen der Informatik, Beweise fithren, Modellierung
Aussagenlogik, Pradikatenlogik




Maschinenmodelle

Rechenmaschinen spielen in der Informatik eine zentrale Rolle.
Es gibt viele unterschiedliche math. Modelle.
Diese konnen sich in der Berechnungskraft unterscheiden.

Die Turingmaschine (TM) ist ein universales Berechnungsmodell, da sie
alle anderen bekannten Rechenmodelle simulieren kann.

Wir betrachten zunachst Einschrankungen des TM-Modells, die
vielfaltige praktische Anwendungen haben, wie z.B.

o endliche Automaten (DFA, NFA),

o Kellerautomaten (PDA, DPDA) etc.




Der Algorithmenbegriff

Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick.

@ Altester bekannter nicht-trivialer Algorithmus:

Euklidischer Algorithmus zur Berechnung des gréBten gemeinsamen
Teilers zweier natiirlicher Zahlen (300 v. Chr.).

Von einem Algorithmus wird erwartet, dass er bei jeder zulassigen
Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert.

Problemeingaben kénnen Zahlen, Formeln, Graphen etc. sein.

Diese werden iiber einem Eingabealphabet ¥ kodiert.




Alphabet, Wort, Sprache 10

Definition
@ Ein Alphabet ist eine geordnete endliche Menge
Y={a,...,am}, m>1
von Zeichen a;.
@ Eine Folge x = xq...x, € " heiBt Wort (der Lange n).
@ Die Menge aller Worter tiber X ist
="

n>0

@ Das (einzige) Wort der Lange n =0 ist das leere Wort, welches wir mit
¢ bezeichnen, d.h. ¥° = {e}.

@ Jede Teilmenge L € X heiBt Sprache (iber dem Alphabet ¥.




Beispiele fiir Sprachen -

Sei ¥ ein Alphabet.

@ Dann sind @, 2", X und {e} Sprachen iber X.
@ enthalt keine Worter und heiBt leere Sprache.
Y * enthalt dagegen alle Worter liber X.
> enthalt alle Worter iber ¥ der Lange 1.

{e} enthalt nur das leere Wort, ist also einelementig.
Solche Sprachen werden auch als Singleton-Sprachen bezeichnet.




Operationen auf Sprachen 2

@ Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen.
@ Zum Beispiel gilt @ c {e} c X*.

@ Wir kdnnen Sprachen auch vereinigen, schneiden und komplementieren.
@ Seien A und B Sprachen lber . Dann ist

o AnB={xeX*|xeAAnxe B} der Schnitt von A und B,
o AuB={xeX"|xeAvVxe B} die Vereinigung von A und B, und
o A={xeX*|x¢A} das Komplement von A.




Konkatenation von Woértern 13

Definition

Seien x =xy...xp und y = yy...ym Worter. Dann wird das Wort
X0y =X1...Xpy1...Ym als Konkatenation von x und y bezeichnet.
Fiir x o y schreiben wir auch einfach xy.

| A

Beispiel
@ Fiir x = aba und y = abab erhalten wir xy = abaabab und yx = abababa.

@ Die Konkatenation ist also nicht kommutativ.

Allerdings ist o assoziativ, d.h. es gilt x(yz) = (xy)z.
Daher kénnen wir hierfiir auch einfach xyz schreiben.

Es gibt auch ein neutrales Element, da xe = ex = x ist.

Eine algebraische Struktur (M, O, e) mit einer assoziativen Operation
O: M x M — M und einem neutralen Element e heit Monoid.

(X*,0,¢) ist also ein Monoid.




Spezielle Sprachoperationen -

Neben den Mengenoperationen Schnitt, Vereinigung und Komplement gibt
es auch spezielle Sprachoperationen.

Definition
@ Das Produkt (Verkettung, Konkatenation) der Sprachen A und B ist
AB={xy|xeAyeB}.
@ Ist A= {x} eine Singletonsprache, so schreiben wir fiir {x}B auch
einfach xB.
@ Die n-fache Potenz A" einer Sprache A ist induktiv definiert durch

e {{e}, n=0,

ATA n>0.

@ Die Sternhiille von Aist A" = Ups0 A”.
@ Die Plushiille von Aist A" = U1 A" = AA*.




Algorithmische Erkennung von Sprachen g

@ Ein einfaches Rechenmodell zum Erkennen von Sprachen ist der
endliche Automat.

Eingabe-
band —_

/ Lesekopf

Steuer-
einheit

@ Ein endlicher Automat
o nimmt zu jedem Zeitpunkt genau einen von endlich vielen
Zustanden an,
o macht bei Eingaben der Lange n genau n Rechenschritte und
o liest in jedem Schritt genau ein Eingabezeichen.



Formale Definition eines endlichen Automaten 16

Definition
@ Ein endlicher Automat (kurz: DFA; Deterministic Finite Automaton)
wird durch ein 5-Tupel M = (Z,%,0, qo, E) beschrieben, wobei
o Z + & eine endliche Menge von Zustanden,
> das Eingabealphabet,
d:Z x ¥ — Z die Uberfiihrungsfunktion,
qo € Z der Startzustand und
o E ¢ Z die Menge der Endzustande ist.

©

©

©

@ Die von M akzeptierte oder erkannte Sprache ist

L(M) = {Xl...x,,ez*

es gibt g1,...,9n-1€Z,qn € E mit}
5((],‘,X,‘+1) =dj+1 fur i=0,...,n—1

e Eine Zustandsfolge qo, g1, - - -, qn heiBt Rechnung von M(xz ...x,), falls
5(qiyxi+1) = gis1 fur i=0,...,n-1 gilt.

@ Sie heiBt akzeptierend, falls g, € E ist.




Die Klasse der regularen Sprachen =

Frage

Welche Sprachen lassen sich durch endliche Automaten erkennen und
welche nicht?

Definition
Eine von einem DFA akzeptierte Sprache wird als reguldr bezeichnet. Die
zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}.




Bl behamsdhan Medulkre Al 18

Beispiel

Sei M3 =(Z,%,6,0,E) ein DFA mit Z ={0,1,2}, ¥ ={a, b}, E = {1} und
der Uberfiihrungsfunktion

5 ‘ 01 2 Graphische
- . Darstellung:
all 2 0
b2 0 1

Endzustande werden durch einen doppelten Kreis und der Startzustand
wird durch einen Pfeil gekennzeichnet. d

4

Frage: Welche Worter akzeptiert M3?
@ wi = aba? Ja (Rechnung: 0,1,0,1).
@ wy = abba? Nein (Rechnung: 0,1,0,2,0).




DFAs beherrschen Modulare Arithmetik 19

Behauptung
Die von Mj3 erkannte Sprache ist

L(M3) ={xe{a,b}" | #a(x) — #b(x) =31}, wobei

@ #,(x) die Anzahl der Vorkommen von a in x bezeichnet und

@ /i =pj (in Worten: i ist kongruent zu j modulo m) bedeutet, dass / —j
durch m teilbar ist.

Beweis der Behauptung durch Induktion iiber die Lange von x
Wir betrachten zunichst das Erreichbarkeitsproblem fiir DFAs.




Das Erreichbarkeitsproblem fiir DFAs 20

Frage

Sei M = (Z,%,0,qo, E) ein DFA und sei x = x...x, € *. Welchen
Zustand erreicht M bei Eingabe x nach i Schritten?

Antwort

@ nach 0 Schritten: qo,

@ nach 1 Schritt:  d(qo, x1),

@ nach 2 Schritten: 0(d(qo, x1).x2),

@ nach j Schritten: d(...5(5(qo,x1),%2),...xi).




Das Erreichbarkeitsproblem fiir DFAs

21

Definition

Bezeichne 3(q,x) denjenigen Zustand, in dem sich M nach Lesen von x
befindet, wenn M im Zustand g gestartet wird.

Dann konnen wir die Funktion

§:Zx¥*>Z
induktiv liber die Lange von x wie folgt definieren.
FirgeZ, xe X" und a€ X sei

6(q,€) g,
o(g,xa) = 6(0(q,x),a).
Die von M erkannte Sprache lasst sich nun auch in der Form

L(M) = {x e " | 5(qo,x) € E}

schreiben.




DFAs beherrschen Modulare Arithmetik 22

Behauptung
L(Ms) = {x e{a,b}" | #a(x) - #b(x) =3 1}. J

Beweis

@ 1 ist der einzige Endzustand von M.

e Daher ist L(Ms) = {x e Z* | §(0,x) = 1}.

@ Obige Behauptung ist also dquivalent zu
5(0,x) =1 #a(x) ~ #5(x) =3 1

@ Folglich reicht es, folgende Kongruenzgleichung zu zeigen:

8(0,x) =3 #4(x) - #b(x)




DFAs beherrschen Modulare Arithmetik 23

Beweis von 8(0, x) =3 #,(x) — #5(x):
Wir fiihren Induktion Gber die Lange n von x.
Induktionsanfang n = 0: klar, da §(0,¢) = #,(¢) = #5(g) = 0 ist.
Induktionsschritt n ~ n+ 1:
@ Sei x =x1...x,11 gegeben und sei i = 3(0,x1 - o o 2%p))c
o Nach IV gilt i =3 #a(x1...x0) — #Hp(x1 ... Xpn)-
@ Wegen (i,a) =37+ 1 und 6(i,b) =3 i-1 folgt daher
0(i,xne1) =3 0+ #a(Xns1) = #p(Xne1)
=3 Falx1...Xn) —Fs(x1...Xn) + Fa(Xne1) — Fo(Xns1)
= #a(X) - #b(x)

und somit

5(0,x) = 8(5(0,x1 ... Xn), Xns1) = 0(i, Xne1) =3 #a(x) — #p(X).




Singletons sind regular 24

Vereinbarung

Fir das Folgende sei ¥ = {a1,...,am} ein fest gewahltes Alphabet.

Beobachtung 1

Alle Sprachen, die nur ein Wort x = x1...x, € L* enthalten, sind regular.

v

Beweis
Folgender DFA M erkennt die Sprache L(M) = {x}:

X1 X2 X3
e (@) O
a* Xxp a+ X3
a* Xy

aey




REG ist unter Komplement abgeschlossen 25

Beobachtung 2
Ist L € REG, so ist auch die Sprache L = X* \ L regular.

Beweis
@ Sei M=(Z,%,0,qo,E) ein DFA mit L(M) = L.

e Dann wird das Komplement L von L von dem DFA
M= (Z,%,0,q0,Z \ E) akzeptiert. =

Definition

Fiir eine Sprachklasse C bezeichne co-C die Klasse {L | L eC} aller
Komplemente von Sprachen in C.

4

co-REG = REG. I




REG ist unter Schnitt abgeschlossen 2

Beobachtung 3
Sind Li, L € REG, so ist auch die Sprache L; n Ly regulér.

Beweis
@ Seien M, = (Z,-,Z,(S,-,q,-, E,'), i=1,2, DFAs mit L(M,) =1;.
@ Dann wird der Schnitt L1 n L, von dem DFA
M= (21 x 25,%,6,(q1,92), E1 x E2)
mit
5((p7 q)7 a) = (51(p7 3)752(q7 a))

erkannt.

@ M wird auch als Kreuzproduktautomat bezeichnet.




REG ist unter Vereinigung abgeschlossen

Beobachtung 4

Die Vereinigung L1 U Ly von reguldren Sprachen L und L ist regular.

27

Beweis

Es gilt Ly ULy =(LynLy).

Frage

Wie sieht der zugehérige DFA aus?

Antwort

M’ = (Zl X Z27 2767 (ql’ q2)7 (El X Z2) U (Zl X E2))




Abschlusseigenschaften von Sprachklassen 2

Definition
@ Ein (k-stelliger) Sprachoperator ist eine Abbildung op, die k Sprachen
Ly,..., Ly auf eine Sprache op(Ly,..., L) abbildet.

@ Eine Sprachklasse IC heiBt unter op abgeschlossen, wenn gilt:
L]_,...,LkEIC:>Op(Ll,...,Lk)EIC.

@ Der Abschluss von KC unter op ist die (bzgl. Inklusion) kleinste
Sprachklasse K’, die K enthalt und unter op abgeschlossen ist.

| \

Beispiel
@ Der 2-stellige Schnittoperator n bildet L; und Ly auf Ly n Ly ab.

@ Der Abschluss der Singletonsprachen unter n besteht aus allen
Singletonsprachen und der leeren Sprache.

@ Der Abschluss der Singletonsprachen unter U besteht aus allen
nichtleeren endlichen Sprachen. d




REG ist unter Mengenoperationen abgeschlossen =

Korollar

Die Klasse REG der regularen Sprachen ist unter folgenden Operationen
abgeschlossen:

e Komplement,
@ Schnitt,

@ Vereinigung.




Wie umfangreich ist REG? 50

Folgerung

@ Aus den Beobachtungen folgt, dass alle endlichen und alle co-endlichen
Sprachen regulér sind.

@ Da die regulédre Sprache
L(Ms) = {x e{a,b}" | #a(x) - #»(x) =3 1}

weder endlich noch co-endlich ist, haben wir damit allerdings noch
nicht alle regularen Sprachen erfasst.




Wie umfangreich ist REG? 51

Nachstes Ziel
Zeige, dass REG unter Produktbildung und Sternhiille abgeschlossen ist.

Problem

Bei der Konstruktion eines DFA fiir das Produkt L;L> bereitet es
Schwierigkeiten, den richtigen Zeitpunkt fiir den Ubergang von (der
Simulation von) My zu M, zu finden.

Losungsidee

Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
fiir den Ubergang ,raten".

Verbleibendes Problem
Zeige, dass auch NFAs nur reguldre Sprachen erkennen.




Nichtdeterministische endliche Automaten 2
Definition
@ Ein nichtdet. endl. Automat (kurz: NFA; Nondet. Finite Automaton)
N = (Z,Z,A,Qo,E)
ist genau so aufgebaut wie ein DFA, nur dass er

o eine Menge @ € Z von Startzustidnden hat und
o die Uberfiihrungsfunktion folgende Form hat:

A:ZxY —>P(2Z).
o Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge aller
Teilmengen) von Z. Diese wird auch oft mit 24 bezeichnet.
@ Die von einem NFA N akzeptierte oder erkannte Sprache ist

queQO;Qlw-'aCIn—lEZaanE‘ }

L(N) = Lo XpEXT
(V) {Xl 5 gt € A(gi,xin) fiiri=0,...,n—1

e Eine Zustandsfolge qo, q1,- - ., g, heiBt Rechnung von N(x ...x,), falls
qo € Qo und g1 € A(qi, xj+1) fur i=0,...,n-1 gilt.




Eigenschaften von NFAs 53

@ Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren.

e Ein Wort x gehort genau dann zu L(N), wenn N(x) mindestens eine
akzeptierende Rechnung hat.

@ Im Gegensatz zu einem DFA, der jede Eingabe zu Ende liest, kann ein
NFA N |, stecken bleiben”.

@ Dieser Fall tritt ein, wenn N in einen Zustand g gelangt, in dem er das
nachste Eingabezeichen x; wegen

A(q,x) =2

nicht verarbeiten kann.




Eigenschaften von NFAs

Beispiel

@ Betrachte den NFA N = (Z,%X,A, Qo, E) mit Z={p,q,r,s},
¥ ={0,1,2}, Qo ={p}, E = {s} und der Uberfiihrungsfunktion

Graphische Darstellung:
A ‘ p

q r s

o o
2| {p} o {s} o T

0l{pg} @ o o _’%_O'@_l’@i’
1| {p} {r} e

@ Dannist L(M) ={x012| x € ¥*} die Sprache aller Woérter, die mit dem

Suffix 012 enden.

<

34

4



Eigenschaften von NFAs 29

Beobachtung 5

Seien N; = (Z;, X, A;, Qi, Ei) NFAs mit L(N;) = L; fir i =1,2. Dann wird
auch das Produkt LiLs von einem NFA erkannt.

Beweis
@ Wir kdnnen Z; n Z, = @ annehmen.

e Dann gilt L(N) = L1L, fiir den NFA N = (Z, U Z5, 5, A, Qy, E) mit

Al(p7a)7 pezl\Ela
A(p7 a) = Al(P» a)UquQQ A2(q7 3), p € Ela
As(p,a), sonst

und

E; U Ey, sonst.

E E> =
E:{z, Grnk =g,




Eigenschaften von NFAs 50

e Dann gilt L(N) = L;L; fir den NFA N = (3 u Z5, X, A, @1, E) mit

Al(pva)a pezl\Elv
A(p, a) = Al(P, a) u quQQ AQ(q7 a)a pE E]_,
Ar(p,a), sonst,

und E = E;, falls @ n E> =@, bzw. E = E; U E> sonst.
Beweis von LiLy € L(N):

@ Seien x = xy---xx € L1,y = y1--+y; € Lo und seien qo,...,qx und po, ..., ps
akzeptierende Rechnungen von Nj(x) und Na(y).

Dann gilt go € Q1, gk € E1 und po € Q2, pj € Ex.
Im Fall / > 1 ist zudem p; € Aa(po, y1) und somit p1 € A(gk,y1)-
Im Fall /=0 ist zudem p; € @ N E> und somit gy € E.

Also ist qo, ..., qk,p1,---,p; eine akzeptierende Rechnung von N(xy).




Eigenschaften von NFAs St

@ Dann gilt L(N) = L;Ly fir den NFA N = (Z3 u Z5, X, A, Q1, E) mit

Al(p7a)7 pEZI\Ela
A(p7 a) = Al(l% a) U Uq€Q2 A2(q? a): pe€ Ela
Ao (p, a), sonst,

und E = E5, falls @ n E> =@, bzw. E = E; U E> sonst.
Beweis von L(N) < Ly Ly:
@ Sei x =x1---x, € L(N) und sei qo, ..., qn eine akz. Rechnung von N(x).
@ Danngilt goe @1, gn € E, qo,...,9; € Z1 und gis1,...,qn € Z» fiir ein i.
e ImFall i=nist g,e E; (d.h. xe L) und Qxn Ey # @ (d.h. e € Ly).
°

Im Fall i < n impliziert der Ubergang g;+1 € A(qj, xi+1), dass g; € E;
und g1 € AQ(q,X;+1) fir ein g € @ ist.

Also ist qo, ..., q; eine akz. Rechnung von Nj(xj---x;) und
q,qi+1,---,qn eine akz. Rechnung von Nao(xjs1---xp), d.h. x € Lils.




Eigenschaften von NFAs 58

Beobachtung 6

Ist N=(Z,X,A, Qo, E) ein NFA, so wird auch die Sprache L(N)* von
einem NFA erkannt.

Beweis
Die Sprache L(N)* wird von dem NFA

N = (Zu{qneu}a 2, A’a QOU{Qneu}> Eu{qneu})

mit
A(p,a), PEZN 15,
A/(pv a) = A(pv 3)UUq€Qo A(q’ a)’ p€ E’
@, P = Qneu

erkannt. 5




Uberblick

Ziel
Zeige, dass REG unter Produktbildung und Sternhiille abgeschlossen ist.

39

Problem
Bei der Konstruktion eines DFA firr das Produkt L;L> bereitet es

Schwierigkeiten, den richtigen Zeitpunkt fiir den Ubergang von (der
Simulation von) My zu M, zu finden.

Losungsidee (bereits umgesetzt)

Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
fir den Ubergang ,raten".

Noch zu zeigen

NFAs erkennen genau die reguldren Sprachen.




40

NFAs erkennen genau die regularen Sprachen

Satz (Rabin und Scott)
REG = {L(N) | N ist ein NFA}.

Beweis von REG ¢ {L(N) | N ist ein NFA}
Diese Inklusion ist klar, da jeder DFA M = (Z,%,0, qo, E) leicht in einen
aquivalenten NFA

N=(ZX A, Q,E)

transformiert werden kann, indem wir A(q,a) = {0(g,a)} und Qo ={qo}
setzen. o

4

Fur die umgekehrte Inklusion ist das Erreichbarkeitsproblem fiir NFAs von
zentraler Bedeutung.




Das Erreichbarkeitsproblem fiir NFAs 4l

Frage

Sei N=(Z,%,A, Qp, E) ein NFA und sei x = x; ... x, eine Eingabe. Welche
Zustande sind in i Schritten erreichbar?

v

Antwort
@ in 0 Schritten: alle Zustidnde in Q.
@ in einem Schritt: alle Zustande in
Q= U A(g,x).
qeQo
@ in i Schritten: alle Zustande in

Qi= U A(g,x).

qeQi-1




Simulenfen v NERs direh Bhe 42

Idee

@ Wir kénnen einen NFA N = (Z, X, A, Qo, E) durch einen DFA
M= (Z',%,0,qy, E") simulieren, der in seinem Zustand die Information
speichert, in welchen Zustidnden sich N momentan befinden konnte.

@ Die Zustinde von M sind also Teilmengen Q von Z (d.h. Z' =P (Z))
mit Qo als Startzustand (d.h. g = Qo) und der Endzustandsmenge
E'={QcZ|QnE+o).

e Die Uberfiihrungsfunktion § : P(Z) x £ - P(Z) von M berechnet dann
fiir einen Zustand @ € Z und ein Zeichen a € ¥ die Menge

5(07 a) = UQGQ A(qa a)

aller Zusténde, in die N gelangen kann, wenn N ausgehend von einem
beliebigen Zustand g € @ das Zeichen a liest.

@ M wird auch als der zu N gehorige Potenzmengenautomat bezeichnet.




Simulenfen v NERs direh Bhe 43

Beispiel
@ Betrachte den NFA N

»@_0.@_%@_2»

@ Ausgehend von Qu = {p} liefert 6 dann die folgenden Werte:

s | o 1 2

{p} | {p,ar {p} {p}
{p,a} | {p.a} {p.r} {p}
{p,r} | {psqt {p} {p,s}
{p,s} | {p,qr {p} {p}




St v NERE ¢ e B 5 44

Bemerkung

@ Im obigen Beispiel werden fiir die Konstruktion des Potenzmengen-
automaten nur 4 der insgesamt

IP(2)] =211 = 2* = 16
Zustande bendtigt, da die tibrigen 12 Zustande nicht erreichbar sind.

@ Es gibt jedoch Beispiele, bei denen alle 2121 Zustande benétigt werden
(siehe Ubungen).




NFAs erkennen genau die regularen Sprachen e

Beweis von {L(N) | N ist ein NFA} ¢ REG

@ Sei N=(Z,L,A, Qp, E) ein NFA und sei M = (P(Z),X%,6, Qo, E") der
zugehorige Potenzmengenautomat mit §(Q, a) = Ugeq@ A(q, a) und
E'={QcZ|QnE+gz}.

@ Dann folgt die Korrektheit von M leicht mittels folgender Behauptung,
die wir auf der nachsten Folie beweisen.

Behauptung

S(Qo,x) enthalt genau die von N nach Lesen von x erreichbaren
Zustande.

o Fir alle Wérter x € X gilt

xeL(N) < N kann nach Lesen von x einen Endzustand erreichen

2 5(Qox)nE4o

= S(Qo,x) e E’'
< xel(M). u]




Beweis der Behauptung 0

Behauptung

5(Qo, x) enthilt genau die von N nach Lesen von x erreichbaren Zustinde.

Beweis durch Induktion iiber die Lange n von x
n=0: klar, da S(Qo,e) = @ ist.
n—1~ n: Sei x =xy...x, gegeben. Nach IV enthélt

Qn1=6(Qo,x1 - Xn-1)

die Zustande, die N nach Lesen von x; ...x,_1 erreichen
kann. Wegen

S(Q()vx) = (5(Qn_1,Xn) = %J A(q,x,,)
qeWn-1

enthilt dann aber §(Qo, x) die Zustinde, die N nach Lesen
von x erreichen kann. m

o
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Korollar

Die Klasse REG der reguldren Sprachen ist unter folgenden Operationen
abgeschlossen:

@ Komplement,
@ Schnitt,
@ Vereinigung,
@ Produkt,

@ Sternhiille.




Uberblick 48

Nachstes Ziel

Zeige, dass REG als Abschluss der endl. Sprachen unter Vereinigung,
Produkt und Sternhiille charakterisierbar ist.

Bereits gezeigt:

Jede Sprache, die mittels der Operationen Vereinigung, Produkt und
Sternhiille (sowie Schnitt und Komplement) angewandt auf endliche
Sprachen darstellbar ist, ist regular.

Noch zu zeigen:

Jede reguldre Sprache lasst sich aus endlichen Sprachen mittels
Vereinigung, Produkt und Sternhiille erzeugen.
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Induktive Definition der Menge RAy aller regularen Ausdriicke iiber
Die Symbole @, € und a (a € X) sind regulare Ausdriicke tiber ¥, die
o die leere Sprache L(9) = @,

e die Sprache L(¢) = {¢} und

o fiir jedes a€ X die Sprache L(a) = {a} beschreiben.

Sind « und 3 regulare Ausdriicke iiber ¥, die die Sprachen L(«) und L(/3)
beschreiben, so sind auch af3, («|8) und («)* regulére Ausdriicke iiber X,
die folgende Sprachen beschreiben:

o L(ap) = L(a)L(B),
° L((a|ﬁ)) = L(a) U L(B),
o L((a)*)=L(a)".

Bemerkung
RAs ist eine Sprache iiber dem Alphabet ' =X u {@,¢,|,*,(,)}.
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Regulare Ausdriicke

Beispiel
Die regularen Ausdriicke (¢)*, (@), (0/1)*00 und (0|(e0|@(1)*)) be-
schreiben folgende Sprachen:

v (O (2) (0[1)*00 (0l(e0l2(1)"))
L(v) | {e} {e} {x00|xe{0,1}"} {0}

Vereinbarungen

@ Um Klammern zu sparen, definieren wir folgende Prazedenzordnung:
Der Sternoperator * bindet starker als der Produktoperator und dieser
wiederum starker als der Vereinigungsoperator.

e Fir (0](e0|@(1)*)) konnen wir also kurz 0]e0|@1* schreiben.

@ Da der reguldre Ausdruck vv* die Sprache L(~y)™ beschreibt, verwenden
wir v* als Abkiirzung fiir den Ausdruck yv*.

v




Charakterisierung von REG durch regulare Ausdriicke 2l

{L() |~ ist ein regularer Ausdruck tiber } ¢ REG. \

Beweis.
Klar, da

o die Basisausdriicke @, € und a, a€ ¥*, reguldre Sprachen beschreiben
und

@ die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist. |




Charakterisierung von REG durch regulare Ausdriicke 22

Frage
Wie lasst sich die Sprache

L(Ms) ={x e{a,b}" | #a(x) - #b(x) =3 1}

durch einen regularen Ausdruck beschreiben?

Antwort
@ Sei L, g die Sprache aller Worter x, die M3 vom Zustand p in den
Zustand q uberfithren (d.h. L, g = {x € {a,b}* | d(p,x) = q}).

o Weiter sei L;r die Sprache aller Wérter x = xq---x, € Lp g, die hierzu nur

,q
Zustande ungleich r benutzen (d.h. 6(p, x1---x;) # r fir i=1,...,n-1).
e Dann gilt L(M3) = Lo = Lg?l und = (LS,OO * also

L(Ms) = (L59)* L35,
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Antwort (Fortsetzung)

e Dann gilt L(M3) = (L¢0 )"L”EO

° L’FO1 und Lz;oo lassen sich durch folgende
regulare Ausdriicke beschreiben:

'Yo 1 = (albb)(ab)*,
%% = a(ab)*(aalb) | b(ba)*(albb) | e.

@ Also ist L(Mj3) durch folgenden regularen Ausdruck beschreibbar:
70,1 = (a(ab)” (aalb) | b(ba)™(a|bb))™(a|bb)(ab)".
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REG c {L(7) | v ist ein reguldrer Ausdruck}.

Beweis

@ Wir konstruieren zu einem DFA M = (Z,%,4, qo, E) einen regularen
Ausdruck v mit L(y) = L(M).

@ Wir nehmen an, dass Z ={1,...,m} und go =1 ist.
@ Dann lasst sich L(M) als Vereinigung

L(M) = U Liq
qeE

von Sprachen der Form L, 4 = {x € * | §(p,x) = q} darstellen.

@ Es reicht also, reguldre Ausdriicke fiir die Sprachen L, g mit
1 < p,q < m anzugeben.




Charakterisierung von REG durch regulare Ausdriicke e

REG c {L(7) | v ist ein reguldrer Ausdruck}.

Beweis (Fortsetzung)

@ Es reicht also, reguldre Ausdriicke fiir die Sprachen L, g mit
1 < p,q < m anzugeben.

@ Hierzu betrachten wir fiir r =0, ..., m die Sprachen

Lpg = {xeLp,q‘ﬂ]r i=1,...,n-1ist 3(p,x1...x,~)£r}.

o Wegen L, = L7 reicht es, reguldre Ausdriicke fiir die Sprachen L}, .
mit 1 < p,g < mund 0<r < m anzugeben.

e Wir zeigen induktiv iiber r, dass die Sprachen L/ . durch regulare
Ausdriicke beschreibbar sind.
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REG c {L(7) | v ist ein reguldrer Ausdruck}.

Beweis (Schluss)

@ Wir zeigen induktiv iiber r, dass die Sprachen L/ . durch regulare
Ausdriicke beschreibbar sind.

r=0: In diesem Fall sind die Sprachen

LO {{aez|5(pva)=q}v p#4q,

P97 {aeT|6(p,a) = g} u{e}, somst

endlich und somit durch reguldre Ausdriicke beschreibbar.
r~r+1: Wegen
+1
L;,q = L;,q U L;),r+1(L:+1,r+1)*L:+1,q

. . . 1
sind mit L;’q, 1< p,q < m, auch die Sprachen L;Tq,

1< p,qg < m, durch regulére Ausdriicke beschreibbar. |
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel
@ Betrachte den DFA M

.

b b

@ Da M insgesamt m = 2 Zustande und nur den Endzustand 2 besitzt, ist

L(M)= U Lig="l12=13,.
qeE
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Beispiel (Fortsetzung)

e Um reguldre Ausdriicke v, , fiir die Sprachen L , zu bestimmen,
benutzen wir fiir r > 0 die Rekursionsformel
r+1 _ _r r r * _r
’7p,q _’Yp,q|7p,r+1(’7r+1,r+1) ’7r+1,q'
@ Damit erhalten wir

7%,2 = 711,2|’Y%,2 (7%,2)*7%@
7%,2 = ’7?,2|’Y§),1(’Y%1)*’Y%2>

721,2 = ’78,2|’Yg,1 (7(1),1)*7?,2

@ Es genligt also, die regularen Ausdriicke ’y?l, ’Y?zv ’7(2)11 782. ’}’%2, ’Y%_Q

und 7%2 zu berechnen.
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
. a @ Lg,pz{a\é(p,a)zp}u{a},
O _ _ -
@/‘\ajg Lpq={ald(p,a)=q} fir p#q,
b b L;r;,rc} = L/ra,q U L[ra,r+1(l-lr'+1,r+1)*l-lr'+1,q'
) P, q
1,1 1,2 2,1 2,2

0

1

2

<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
a
~ @ Lg71={an|5(1,a)=1}u{5}={5,b}
a
b b ~ ’}/](.),1:€|b
i p:q
1,1 1,2 2,1 2,2
0 ¢€b
1
2
<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
a
o L9,={aex|6(1,a) =2} ={a}
0
b b ~ 71,2 =a
; p,q
1,1 1,2 2,1 2,2
0 ¢€b a
1
2
<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
a
o 19,={aex|6(2,a)=1}={a}
0
b b ~ 72,1 =4
; p,q
1,1 1,2 2,1 2,2
0 ¢€b a a
1
2
<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
a
~ @ Lg,2={an|5(2,a)=2}u{5}={5,b}
a
b b ~ 73,2 = 6|b
i p:q
1,1 1,2 2,1 2,2
0 ¢€b a a e|b
1 -
2
<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
- 2 @ ’Y%,z = V?,z 7?,1(7?,1)*7?,2
@/;8 - al(ce) cle)"
3 3 =b*a
] p:q
1,1 1,2 2,1 2,2

0 ¢€b a a e|b

1 - b*a

2

<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln
- 2 @ 7%,2 = 73,2 78,1(7?,1)*7?,2

3 Y =e|blab*a

] p:q

1,1 1,2 2,1 2,2

0 ¢€b a a e|b

1 - b*a - ¢€|blab*a

2 -

<
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Charakterisierung von REG durch regulare Ausdriicke

Beispiel (Fortsetzung)

DFA M Rekursionsformeln

- @ ’Yf,z = 7%,2 7%,2(72172)*721,2
@/‘\?\/8 =b*a|b*a(e|blab*a)* (¢|blab* a)
=b*a(blab*a)*

b b

p;q
1,1 1,2 2,1 2,2

€|b a a e|b
- b*a - ¢€|blab*a
- b*a(blab*a)* - -

N = O
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Korollar

Sei L eine Sprache. Dann sind folgende Aussagen aquivalent:
o L ist regular,

@ es gibt einen DFA M mit L = L(M),

@ es gibt einen NFA N mit L= L(N),

@ es gibt einen reguldren Ausdruck v mit L = L(7y),

°

L lasst sich mit den Operationen Vereinigung, Produkt und Sternhiille
aus endlichen Sprachen gewinnen,

L |3sst sich mit den Operationen Vereinigung, Schnitt, Komplement,
Produkt und Sternhiille aus endlichen Sprachen gewinnen.

Ausblick

@ Als nachstes wenden wir uns der Frage zu, wie sich die Anzahl der
Zustande eines DFA minimieren l3sst.

@ Da hierbei Aquivalenzrelationen eine wichtige Rolle spielen, befassen
wir uns zunachst mit Relationalstrukturen.
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Definition
@ Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn
RcAf=Ax--xA={(a1,...,ax) |aj e Afiri=1,... k} ist.
| —

k-mal
@ Firi=1,...,nsei R; eine k;-stellige Relation auf A. Dann heiBt
(A; Ry,...,R,) Relationalstruktur.

@ Die Menge A heiBt der Individuenbereich, die Tragermenge oder die
Grundmenge der Relationalstruktur.

Bemerkung

e Wir werden hier hauptsachlich den Fall n=1, k; =2, also (A, R) mit
R c A x A betrachten.

@ Man nennt dann R eine (binare) Relation auf A.
e Oft wird fiir (a,b) € R auch die Infix-Schreibweise aRb benutzt.
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Beispiel
e (F,M) mit F ={f|f ist Fluss in Europa} und
M={(f,g) € FxF|f mindetin g},

e (U,B) mit U= {x| x ist Berliner } und
B={(x,y) e Ux U |x ist Bruder von y},

e (P(M),c), wobei M eine beliebige Menge und ¢ die Inklusionsrelation
auf den Teilmengen von M ist,

@ (A, lda) mit Ida = {(x,x) | x € A} (die Identitat auf A),

o (R,%),

@ (Z,|), wobei | die "teilt"-Relation bezeichnet (d.h. a|b, falls ein c € Z
mit b = ac existiert).




Mengentheoretische Operationen auf Relationen o

@ Da Relationen Mengen sind, kdnnen wir den Schnitt, die Vereinigung,
die Differenz und das Komplement von Relationen bilden:
RnS={(x,y) e AxA| xRy A xSy},
RuS={(x,y) e AxA| xRy Vv xSy},
R-S={(x,y) e Ax A| xRy A -xSy},

R=(AxA)-R.

@ Sei M c P(Ax A) eine beliebige Menge von Relationen auf A. Dann
sind der Schnitt iber M und die Vereinigung tber M folgende
Relationen:

AM =Ngem R={(x,y) | YR e M : xRy},

UM =Urem R={(x,y) | IR e M: xRy}.




Weitere Operationen auf Relationen o

Definition

@ Die transponierte (konverse) Relation zu R ist
RT ={(y,x) | xRy}.

o RT wird oft auch mit R™! bezeichnet.

@ Zum Beispiel ist (R,<7) = (R, >).

@ Das Produkt (oder die Komposition) zweier Relationen R und S ist
RoS={(x,z) e AxA|3Jy e A: xRy A ySz}.

Beispiel
Ist B die Relation
und E = Vu M "ist Elternteil von”, so ist B o E die Onkel-Relation. <

ist Bruder von”, V "ist Vater von", M "ist Mutter von"
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Notation
@ Fiir Ro S wird auch R;S, R-S oder einfach RS geschrieben.

@ Fiir Ro--o R schreiben wir auch R". Dabei ist R° = Id.
N— —

n-mal

Vorsicht!
Das Relationenprodukt R” sollte nicht mit dem kartesischen Produkt

Rx---x R

|
n-mal

verwechselt werden.

Vereinbarung

Wir vereinbaren, dass R" das n-fache Relationenprodukt bezeichnen soll,
falls R eine Relation ist.




Eigenschaften von Relationen

Definition

66

Sei R eine Relation auf A. Dann heiBt R

reflexiv,
irreflexiv,

symmetrisch,

asymmetrisch,

falls Vx € A: xRx (also Ida ¢
falls Vx € A: -=xRx (also Ida ¢
falls Vx,y € A: xRy = yRx (also R ¢
falls Vx,y € A: xRy = —yRx (

antisymmetrisch, falls Vx,y € A: xRy AyRx = x =y (also RN RT c Id

konnex,
semikonnex,

transitiv,
gilt.

falls ¥x,y € A: xRy vV yRx (also AxAC RUuRT

R)
R)
RT)
also Rc RT)
)
)
falls Vx,y e A:x#y = xRy v yRx (also Idc RURT)

)

falls Vx,y,z€ A: xRy A yRz = xRz (also R2c R




Uberblick tiber Relationalstrukturen

Aquivalenz- und Ordnungsrelationen

67

refl. sym. trans. antisym. asym. konnex semikon.
Aquivalenzrelation | v vV
(Halb-)Ordnung v v v
Striktordnung v v
lineare Ordnung v v v
lin. Striktord. v v v
Quasiordnung v v
Bemerkung

In der Tabelle sind nur die definierenden Eigenschaften durch ein "v'"
gekennzeichnet. Das schlieBt nicht aus, dass noch weitere Eigenschaften
vorliegen.
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@ Die Relation "ist Schwester von" ist zwar in einer reinen Damengesell-

schaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch
noch antisymmetrisch.

@ Die Relation "ist Geschwister von" ist zwar symmetrisch, aber weder
reflexiv noch transitiv und somit keine Aquivalenzrelation.

o (R, <) ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit
eine lineare Striktordnung.

@ (R,<) und (P(M),<) sind reflexiv, antisymmetrisch und transitiv und
somit Ordnungen.

e (R, <) ist auch konnex und somit eine lineare Ordnung.

e (P(M),c) ist zwar im Fall [M| <1 konnex, aber im Fall [M| >2
weder semikonnex noch konnex. <
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Graphische Darstellung

@ /(?
A={a,b,c,d}
R={(b,c),(b,d),(c,a),(c,d),(d,d)} é—»%

@ Eine Relation R auf einer (endlichen) Menge A kann durch einen
gerichteten Graphen (kurz Digraphen) G = (A, R) mit Knotenmenge A
und Kantenmenge R veranschaulicht werden.

@ Hierzu stellen wir jedes Element x € A als einen Knoten dar und
verbinden jedes Knotenpaar (x,y) € R durch eine gerichtete Kante
(Pfeil).

@ Zwei durch eine Kante verbundene Knoten heiBen adjazent oder
benachbart.




Darstellung von endlichen Relationen
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Definition

Sei R eine binare Relation auf A.

Die Menge der Nachfolger bzw. Vorganger von x ist
R[x]={y € A| xRy} bzw. R*[x] = {y e A| yRx}.
Der Ausgangsgrad eines Knotens x ist deg” (x) = |R[x]].
Der Eingangsgrad von x ist deg™(x) = | R1[x]]|.
Ist R symmetrisch, so kénnen wir die Pfeilspitzen auch weglassen.

In diesem Fall heiBt deg(x) = deg™(x) = deg™(x) der Grad von x und
R[x] = R™![x] die Nachbarschaft von x in G.

G ist schleifenfrei, falls R irreflexiv ist.
Ist R irreflexiv und symmetrisch, so nennen wir G = (A, R) einen
(ungerichteten) Graphen.

Eine irreflexive und symmetrische Relation R wird meist als Menge der
ungeordneten Paare E = {{a, b} | aRb} notiert.
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Matrixdarstellung (Adjazenzmatrix)

Eine Relation R auf A={a;,...,a,} lasst sich auch durch die boolesche
(nx n)-Matrix Mg = (mj;) darstellen mit
{ 17 a,-Raj,
m,-j =
0, sonst.

Beispiel

Die Relation R ={(b,c),(b,d),(c,a),(c,d),(d,d)} auf A={a,b,c,d}
hat beispielsweise die Matrixdarstellung

| A

0000
oo 11
Me =11 0 0 1

0001




Darstellung von endlichen Relationen iz

Listendarstellung (Adjazenzlisten)

R lasst sich auch durch eine Tabelle darstellen, die jedem Element x € A
seine Nachfolger in Form einer Liste zuordnet.

Beispiel

Die Relation R = {(b,c), (b,d), (c,a),(c,d),(d,d)} auf A={a,b,c,d}
lasst sich beispielsweise durch folgende Adjazenzlisten darstellen:

x:  R[x]
a -

b: «c,d

c: a,d

d: d




Berechnung des Relationenprodukts e

Berechnung von Ro S

@ Sind Mg = (rjj) und Ms = (sj;) boolesche n x n-Matrizen fiir R und S,
so erhalten wir fiir T = Ro S die Matrix M1 = (t;) mit

t','j= \/ (r,-k/\skj).
k=1,...,n
e Die Nachfolgermenge T[x] von x bzgl. der Relation T=Ro S
berechnet sich zu

TIx]= U Shyl

yeR[x]
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Das Relationenprodukt

Beispie
Betrachte die Relationen R = {(a, a), (a,c),(c,b),(c,d)} und
S={(a,b),(d,a),(d,c)} auf der Menge A={a,b,c,d}.

Relation RoS SoR

@@—*@@—*@@

@4@ 0 Co@ e

. 1010 0100 0100 0000
Adjazenz- 0000 0000 0000 0000
matrix 0101 0000 1010 0000

0000 1010 0000 1111

a. a,c a: b a: b a. -
Adjazenz- b: - b: - b: - b: -
listen c: b,d c: c. a,c c:

d: - d: a,c d: - d: a7b7c,d




Hiillenoperatoren L

Frage

Welche Paare muss man zu einer Relation R mindestens hinzufiigen, damit
R transitiv wird?

Antwort

@ Es ist leicht zu sehen, dass der Schnitt von transitiven Relationen
wieder transitiv ist.

@ Die transitive Hiille von R ist
R"=({S<cAxA|S ist transitiv und R ¢ S}.
@ R ist also eine transitive Relation, die R enthalt.

e Da R* zudem in jeder Relation mit diesen Eigenschaften enthalten ist,
gibt es keine transitive Relation mit weniger Paaren, die R enthilt.

@ Da auch die Reflexivitdt und die Symmetrie bei der Schnittbildung
erhalten bleiben, lassen sich nach demselben Muster weitere Hillen-
operatoren definieren.
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Definition
Sei R eine Relation auf A.

@ Die reflexive Hille von R ist

hett(R) =({S<SAxA|S ist reflexiv und R ¢ S}.

@ Die symmetrische Hiille von R ist

hsym(R) =[{ScAxA|S ist symmetrisch und R c S}.

@ Die reflexiv-transitive Hille von R ist

R*=({S<cAxA|S ist reflexiv, transitivund R € S}.

@ Die Aquivalenzhiille von R ist

hsq(R) =({E € Ax A| E ist eine Aquivalenzrelation mit R ¢ E}.

v




Transitive und reflexive Hiille g

hrei(R) = RU Idy, hsym(R) =RURT, Rt= U1 R", R* =Unso R".

Beweis

Siehe Ubungen.

Bemerkung

@ Ein Paar (a, b) ist also genau dann in der reflexiv-transitiven Hille R*
von R enthalten, wenn es ein n > 0 gibt mit aR"b.

@ Dies bedeutet, dass es Elemente xp, ..., x, € A gibt mit
Xo=a, X,=b und xgRx1Rx>...xn_1Rx,.

® Xp,...,X, heiBt Weg der Lange n von a nach b.




Aquivalenzrelationen [

Definition

(A, R) heiBt Aquivalenzrelation, wenn R eine reflexive, symmetrische und
transitive Relation auf A ist.

Beispiel

| A

o Auf der Menge aller Geraden im R? die Parallelitit.
@ Auf der Menge aller Menschen "im gleichen Jahr geboren wie".
@ Auf Z die Relation "gleicher Rest bei Division durch m”. d




Aquivalenzklassen 9

Definition
e Ist E eine Aquivalenzrelation, so nennt man die Nachbarschaft E[x] die

von x reprasentierte Aquivalenzklasse und bezeichnet sie auch mit [x]g
(oder einfach mit [x], falls E aus dem Kontext ersichtlich ist):

[x]e = [x] = E[x] = {y [ xEy}.

@ Eine Menge S C A heiBt Reprasentantensystem, falls sie genau ein
Element aus jeder Aquivalenzklasse enthilt.

@ Die Menge aller Aquivalenzklassen von E wird Quotienten- oder
Faktormenge von A bzgl. E genannt und mit A/E bezeichnet:

AJE = {[x]g | x € A}.

o Die Anzahl |A/E| der Aquivalenzklassen von E wird auch als der Index
von E bezeichnet.
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Beispiel

Fiir die weiter oben betrachteten Aquivalenzrelationen erhalten wir
folgende Klasseneinteilungen:

o Fiir die Parallelitit auf der Menge aller Geraden im R?:
alle Geraden mit derselben Richtung (oder Steigung) bilden jeweils eine
Aquivalenzklasse.

@ Ein Repréasentantensystem wird beispielsweise durch die Menge aller
Ursprungsgeraden gebildet.

o Fiir die Relation "im gleichen Jahr geboren wie" auf der Menge aller
Menschen: jeder Jahrgang bildet eine Aquivalenzklasse.

o Fiir die Relation "gleicher Rest bei Division durch m" auf Z:
jede der m Restklassen [0],[1],...,[m—1] mit

[r]={acZ|amod m=r}

bildet eine Aquivalenzklasse.

@ Reprasentantensystem: {0,1,..., m—1}. <
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Bemerkungen

@ Die kleinste Aquivalenzrelation auf A ist die Identitit /dy, die groBte ist
die Allrelation A x A.

e Die Aquivalenzklassen der Identitat enthalten jeweils nur ein Element,
d.h. [x]ia, = {x} fur alle x € A.

Die Allrelation erzeugt dagegen nur eine Aquivalenzklasse, namlich
[x]axa = A fir alle x € A.

Die ldentitat /da hat nur ein Reprasentantensystem, namlich A.

Dagegen kann jede Singletonmenge {x} mit x € A als
Reprasentantensystem fiir die Allrelation A x A fungieren.




Partition einer Menge 62

Wie wir sehen werden, bilden die Aquivalenzklassen eine Zerlegung von A.
Definition

Eine Familie {B; | i € I} von nichtleeren Teilmengen B; ¢ A heiit Partition
(oder Zerlegung) der Menge A, falls gilt:

@ die Mengen B; iiberdecken A, d.h. A= U;¢ B; und

@ die Mengen B; sind paarweise disjunkt, d.h. fiir je zwei verschiedene
Mengen B; # B; gilt Bin B = @.
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Bemerkungen

@ Fiir zwei Aquivalenzrelationen E ¢ E’ sind auch die Aquivalenzklassen
[x]e von E in den Klassen [x]g von E" enthalten.

e Folglich ist jede Aquivalenzklasse von E’ die Vereinigung von (evtl.
mehreren) Aquivalenzklassen von E.

e Im Fall E ¢ E’ sagt man auch, E bewirkt eine feinere Zerlegung von A
als E'.

@ Demnach ist die Identitat die feinste und die Allrelation die grobste
Aquivalenzrelation.




Aquivalenzrelationen und Partitionen s

Sei E eine Relation auf A. Dann sind folgende Aussagen aquivalent:

@ E ist eine Aquivalenzrelation auf A,
@ Fur alle x,y € A gilt xEy < E[x] = E[y],
© Es gibt eine Partition {B; | i€} von A mit xEy < Jiel:x,y € B;.

Beweis.
@ impliziert @: Sei E eine Aquivalenzrelation auf A.
Da E transitiv ist, impliziert xEy die Inklusion E[y] < E[x]:
E
ze Ely] :>yEzX=>ysz:z€ E[x].
Da E symmetrisch ist, folgt aus xEy aber auch E[x] ¢ E[y].

Umgekehrt folgt aus E[x] = E[y] wegen der Reflexivitidt von E, dass
y € E[y] = E[x] enthalten ist, und somit xEy.
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Sei E eine Relation auf A. Dann sind folgende Aussagen aquivalent:

@ E ist eine Aquivalenzrelation auf A,
@ Fur alle x,y € A gilt xEy < E[x] = E[y],
© Es gibt eine Partition {B; | i€} von A mit xEy < Jiel:x,y € B;.

Beweis.
@ impliziert @: Gelte xEy < E[x] = E[y] fur alle x,y € A.
e Wegen E[x] = E[x] folgt xEx und somit x € E[x], d.h. A=Uyea E[x].

@ Ist E[x]n E[y] # @ und z ein Element in E[x]n E[y], so folgt
xEz und yEz und somit E[x] = E[z] = E[y].

@ Folglich bildet {E[x] | x € A} eine Partition von A.
@ Zudem gilt

xEy < E[x] = E[y] < 3z: E[x] = E[z] = E[y] & 3z:x,y € E[z].
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Sei E eine Relation auf A. Dann sind folgende Aussagen aquivalent:
@ E ist eine Aquivalenzrelation auf A,

@ Fur alle x,y € A gilt xEy < E[x] = E[y],

© Es gibt eine Partition {B; | i€} von A mit xEy < Jiel:x,y € B;.

Beweis.

© impliziert @: Existiert schlieBlich eine Partition {B; | i€ [} von A mit
xEy < Jiel:x,y e B;, soist E

o reflexiv, da zu jedem x € A eine Menge B; mit x € B; existiert,
@ symmetrisch, da aus x,y € B; auch y,x € B; folgt, und

@ transitiv, da aus x,y € B; und y, z € B; wegen y € B; n B; die Gleichheit
Bi = Bj und somit x, z € B; folgt.

O
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Definition
(A, R) heiBt Ordnung (auch Halbordnung oder partielle Ordnung), wenn R
eine reflexive, antisymmetrische und transitive Relation auf A ist.

Beispiel
e (P(M),9), (Z,<), (R,<), (N,]), sind Ordnungen. (Z,]) ist keine
Ordnung, aber eine Quasiordnung.

@ Ist R eine Relation auf A und BC A, so ist Rg = Rn (B x B) die
Einschrankung von R auf B.

| \

@ Einschrankungen von (linearen) Ordnungen sind ebenfalls (lineare)
Ordnungen.

@ Beispielsweise ist (Q, <) die Einschrankung von (R, <) auf Q und (N,])
die Einschrankung von (Z,|) auf N. <

vy




Darstellung einer Ordnung durch ein Hasse-Diagramm e

Sei < eine Ordnung auf A und sei < die Relation <\ Id4, d.h.

X<y & X<YAX#Yy

@ Ein Element x € A heiBt unterer Nachbar von y (kurz: x < y), falls x <y
gilt und kein z € A existiert mit x <z < y.

< ist also die Relation <\ <.

Um die Ordnung (A, <) in einem Hasse-Diagramm darzustellen, wird
nur der Digraph der Relation (A, <) gezeichnet.

Weiterhin wird im Fall x < y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf die Pfeilspitzen verzichtet werden kann.




Das Hasse-Diagramm fiir (P(M); <) e

Beispiel

Die Inklusion ¢ auf P(M) mit M = {a, b, c} lasst sich durch folgendes
Hasse-Diagramm darstellen:

{a, b}




Das Hasse-Diagramm der Feiner-Relation 20

Beispiel

Die "feiner als" Relation auf der Menge aller Partitionen von M = {a, b, c}
ist durch folgendes Hasse-Diagramm darstellbar:

{M}

{{a, b}, {c}} {{a},{b,c}}

{{a}, {b},{c}}




Das Hasse-Diagramm der "teilt"-Relation o1

Beispiel

Die Einschrankung der "teilt"-Relation auf die Menge {1,2,...,10} ist
durch folgendes Hasse-Diagramm darstellbar:
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Definition
Sei < eine Ordnung auf A und sei b ein Element in einer Teilmenge B c A.

@ b heiBt kleinstes Element oder Minimum von B, falls gilt:
Vb eB:b<b.

@ b heiBt groBtes Element oder Maximum von B, falls gilt:
Vb eB:b <b.

@ b heiBt minimal in B, falls es in B kein kleineres Element gibt:
Vb eB:b' <b=b"=b.

@ b heilt maximal in B, falls es in B kein groBeres Element gibt:
Vb'eB:b<b =b=1"

Bemerkung

Wegen der Antisymmetrie kann es in B hochstens ein kleinstes und
hochstens ein groBtes Element geben.
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Beispiel
Betrachte folgende Ordnung.
B minimal maximal Minimum Maximum
e 0 in B in B von B von B
e‘.‘@ {a, b} a, b a, b - -
{c,d} c,d c,d - -
e {a,b,c} c a, b c -
{a,b,c,e} e a, b e =
{a,c,d, e} e a e a
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Definition
Sei < eine Ordnung auf A und sei B € A.

@ Ein Element u € A mit u < b fiir alle b € B heiBt untere Schranke von B.
Ein Element o € A mit b < o fiir alle b € B heiBt obere Schranke von B.
B heiBt nach oben beschrankt, wenn B eine obere Schranke hat.

B heiBt nach unten beschrankt, wenn B eine untere Schranke hat.

B heiBt beschrankt, wenn B nach oben und nach unten beschrankt ist.
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Beispiel (Fortsetzung)

untere obere

B minimal maximal min max Schranken
{a, b} a, b a, b - - c¢de -
{c,d} c,d c,d S e a, b
{a,b,c} c a, b c - c,e -
{a,b,c,e} e a, b e - -
{a,c,d, e} e a e a e a




Infima und Suprema 26

Definition
Sei < eine Ordnung auf A und sei B € A.
@ Besitzt B eine groBte untere Schranke i, d.h. besitzt die Menge U aller
unteren Schranken von B ein groBtes Element i, so heiBt i das Infimum

von B (i =inf B):
(VbeB:b>i)A[VueA: (VbeB:b>u)=u<i].

@ Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge O aller
oberen Schranken von B ein kleinstes Element s, so heiBt s das
Supremum von B (s = sup B):

(VbeB:b<s)A[VoeA:(VbeB:b<o)=s<o]

Bemerkung
B kann nicht mehr als ein Supremum und ein Infimum haben.




Infima und Suprema

Beispiel (Schluss

97

)

untere obere

B minimal maximal min max Schranken inf sup

{a, b} a, b a,b - - c¢de - - -
{c,d} c,d c,d - = e ab e -
{a,b, c} c a,b c - ce - c -
{a,b,c,e} e a,b e - e - e -
{a,c,d, e} e a e a a e a




Existenz von Infima und Suprema in linearen Ordnungen

Bemerkung

@ Auch in linearen Ordnungen muss nicht jede beschrankte Teilmenge ein
Supremum oder Infimum besitzen.

@ So hat in der linear geordneten Menge (Q, <) die Teilmenge
B={xeQ|x*<2} = {xeQ|x*<2}
weder ein Supremum noch ein Infimum.

@ Dagegen hat in (IR, <) jede beschrankte Teilmenge B ein Supremum
und ein Infimum (aber méglicherweise kein Maximum oder Minimum).

v




Abbildungen 2

Definition
Sei R eine binare Relation auf einer Menge M.

@ R heiBt rechtseindeutig, falls fiir alle x,y,z € M gilt:
xRy AxRz =y = z.

@ R heiBt linkseindeutig, falls fiir alle x,y,z € M gilt:
xRz AyRz = x =y.

@ Der Nachbereich N(R) und der Vorbereich V(R) von R sind

N(R) = L{AR[X] und V(R) = %RT[X].
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Abbildungen ordnen jedem Element ihres Definitionsbereichs genau ein
Element zu.

Definition
Eine rechtseindeutige Relation R mit V(R) = A und N(R) c B heiBt
Abbildung oder Funktion von A nach B (kurz R: A — B).

Bemerkung

@ Wie iiblich werden wir Abbildungen meist mit kleinen Buchstaben
f,g,h,... bezeichnen und fiir (x,y) € f nicht xfy sondern f(x) = y oder
f : x + y schreiben.

@ Ist f : A— B eine Abbildung, so wird der Vorbereich V(f) = A der
Definitionsbereich und die Menge B der Wertebereich oder Wertevorrat
von f genannt.

@ Der Nachbereich N(f) wird als Bild von f bezeichnet.




Abbildungen .

Definition
Sei f : A — B eine Abbildung.

e Im Fall N(f) = B heiBit f surjektiv.

@ Ist f linkseindeutig, so heiBt f injektiv.

@ In diesem Fall impliziert f(x) = f(y) die Gleichheit x = y.

@ Eine injektive und surjektive Abbildung heiBt bijektiv.

e Ist f injektiv, so ist auch f~1: N(f) — A eine Abbildung, die als die zu

f inverse Abbildung bezeichnet wird.

Bemerkung

Man beachte, dass der Definitionsbereich V(1) = N(f) von £~ nur dann
gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

v




Homomorphismen —

Definition

Seien (A1, R1) und (A2, R2) Relationalstrukturen.

@ Eine Abbildung h: A; - Ay heiBt Homomorphismus, falls fiir alle
a,be A gilt:

aRib = h(a)Rxh(b).
@ Sind (A1, R1) und (A2, R»2) Ordnungen, so spricht man auch von

Ordnungshomomorphismen oder einfach von monotonen Abbildungen.

@ Injektive Ordnungshomomorphismen werden auch streng monotone
Abbildungen genannt.
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@ Die Abbildung h: A — B ist ein bijektiver Ordnungshomomorphismus.

@ Die Umkehrabbildung h™! ist jedoch kein Homomorphismus, da h™!
nicht monoton ist.

o Es gilt namlich 2c 3, aber h™1(2) = b ¢ c = h™1(3). <




: 104
Isomorphismen

Definition
@ Seien (A1, R1) und (A2, R») Relationalstrukturen.

e Ein bijektiver Homomorphismus h: A; — Ay, bei dem auch h™! ein
Homomorphismus ist, d.h. es gilt fiir alle a,b € Aq,

aRib < h(a)Rxh(b).
heiBt Isomorphismus.

@ In diesem Fall heiBen die Strukturen (A1, R1) und (Az, R») isomorph
(kurz: (Al, Rl) = (Az, Rz))

Sind (A1, R1) und (A2, Rz) isomorph, so bedeutet dies, dass sich die
beiden Strukturen nur in der Benennung ihrer Elemente unterscheiden.
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Beispiel

@ Die Bijektion h: x — €~ ist ein Ordnungsisomorphismus zwischen (R, <)
und (R*,<).

@ Fiur neN sej

Tn = {keN|k teilt n}

P, = {pe T,|pist prim}.
Dann ist die Abbildung
h: ke Py
ein Ordnungshomomorphismus von ( T,,|) auf (P(P,),<).

h ist sogar ein Isomorphismus, falls n quadratfrei ist (d.h. es gibt keine
Primzahl p, so dass p? die Zahl n teilt). <

4
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Isomorphismen

v (12345
G=(V,E) hi(v)|13524 G'=(V,E"
hy(v)|14253

@ Die beiden Graphen G und G’ sind isomorph.
@ Zwei Isomorphismen sind beispielsweise h; und h;. d




Isomorphismen

107

Beispiel

@ Wahrend auf der Knotenmenge V = {1,2,3} insgesamt 20) =23-3
verschiedene Graphen existieren, gibt es auf dieser Menge nur 4

verschiedene nichtisomorphe Graphen:

[ ] [ ] *—O

VANVAN
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Isomorphismen

Beispiel

@ Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elementen:

eee o AL N/

@ Anders ausgedriickt: Die Klasse aller dreielementigen Ordnungen
zerfallt unter der Isomorphierelation = in fiinf Aquivalenzklassen, die
durch obige fiinf Hasse-Diagramme reprasentiert werden. d
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Frage

Wie kénnen wir feststellen, ob ein DFA M = (Z, X, 6, qo, E) eine minimale
Anzahl von Zustanden besitzt (und Z evtl. verkleinern)?

Beispiel

@ Betrachte den DFA M

b a a

— v\_/./_\)
(O
al |a b| |b b| |b
®)

b a a

@ Zunachst kdnnen alle vom Startzustand aus unerreichbaren Zustande
entfernt werden. 2
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Frage

Wie kénnen wir feststellen, ob ein DFA M = (Z, X, 6, qo, E) eine minimale
Anzahl von Zustanden besitzt (und Z evtl. verkleinern)?

Antwort

@ Zunachst kénnen alle vom Startzustand aus unerreichbaren Zustande
entfernt werden.

@ Zudem lassen sich zwei Zustande p und g verschmelzen, wenn
M von p und g aus jeweils dieselben Worter akzeptiert.

@ Fir z € Z sei

M, =(Z,%,6,z,E).
Dann kénnen wir p und g verschmelzen (in Zeichen: p ~ g), wenn
L(M,) = L(My) ist.

Offensichtlich ist ~ eine Aquivalenzrelation auf Z.
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Idee

Verschmelze jeden Zustand z mit allen aquivalenten Zustanden z’' ~ z zu
einem neuen Zustand.

Notation
e Fiir die durch z reprasentierte Aquivalenzklasse
[z].={ZeZ|Z ~2z}={Z e Z|L(My)=L(M,)}
schreiben wir auch einfach [z] oder Z.
@ Fiir eine Teilmenge Q ¢ Z bezeichne
Q={glqeQ}
die Menge aller Aquivalenzklassen &, die mind. ein g € Q enthalten.
@ Dann fiihrt obige Idee auf folgenden DFA:
M =(Z,%,8,d,E) mit 6'(§,a)=0(q,a).
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@ Es geniigt, alle Paare p 4 g von inidquivalenten Zustanden zu finden.

@ Sei AAB = (A~ B)u (B A) die symmetrische Differenz von A und B.
e Dann gilt p 4 g < L(Mp)AL(My) + @.

e Worter x € L(M,)AL(Mjg) heiBen Unterscheider zwischen p und q.

°

Fir i >0 sei D; die Menge aller Paare {p, q}, die einen Unterscheider x
der Lange |x| < i haben.

@ Dann enthilt D = U;so D; alle indquivalenten Paare {p, g}, d.h.

p~q<{p,q}¢D.




Algorithmische Konstruktion von M’ —

Offenbar unterscheidet € Endzustande und Nichtendzustande, d.h.

Do={{p,q}92‘peE,q¢E}-
@ Zudem haben p und g genau dann einen Unterscheider ax der Lange
i+1, wenn x die Zustédnde d(p, a) und 6(q, a) unterscheidet, d.h.

Di.1=D;u {{p, qrc”Z | JaeX:{d(p,a),0(q,a)} € D,-}.

@ Da es nur endlich viele Zustandspaare gibt, muss es ein k geben mit
D = Dy.

e Offensichtlich gilt
D = Dy < Dy,1 = Dy.




Algorithmus zur Berechnung eines minimalen DFA s

Algorithmus min-DFA(M)
Input: DFA M =(Z,%,6,qo, E)
entferne alle nicht erreichbaren Zustande
D':={{z,z2/}cZ|zeE,Z/ ¢ E}
repeat
D:=D
D= DU{{p,q} | 3a ¢ T: {5(p,a),6(q,a)} € D}
until D'=D
Output: M’ = (Z,%,68', 8o, E), wobei fiir jeden Zustand
zeZgilt: z={2'eZ|{z,2'} ¢ D}

0 N o o b~ W N =




Algorithmus fiir die Konstruktion von M’ 1

Beispiel
Betrachte den DFA M o]
b a
uh 3le|e
—(—= .
a a b b 5 e
b a
6|c|¢ ele
\‘éDf\é@
b 1 2 3 4 5

Dann enthalt Dy die Paare

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.




Algorithmus fir die Konstruktion von M’ =

Beispiel
Betrachte den DFA M o]
3le|e
b a 4| a|a
a\ |4 b{ |b 5lala
b a
6|c|¢ €
\égf\g
b 1 2 3 4 5

{p,qa} {14} {1,5} {24} {2,5}
{0(q,a),6(p,a)} | {2,3} {2,6} {1,3} {1,6}

enthalt D; zusatzlich die Paare {1,4}, {1,5}, {2,4}, {2,5}.




Algorithmus fir die Konstruktion von M’ L

Beispiel
Betrachte den DFA M o]
3lel|e
b a 4| a|a
a\ |4 b{ |b 5lala
Q\: b a E
6|ec|¢ €
— ‘
b 1 2 3 4 5

Da nun jedoch keines der verbliebenen Paare {1,2}, {3,6}, {4,5} wegen

{p,q} {1,2} {3,6} {45}
{0(p,a),6(q,a)} | {1,2} {45} {3,6}
{6(p, b),8(q,b)} | {3,6} {1,2} {4,5}

zu D, hinzugefiigt werden kann, gilt D> = D; und somit D = D;.




Algorithmus fir die Konstruktion von M’ —

Beispiel
Betrachte den DFA M -

2
3lel|e
b a 4| a|a
asa bsb 5|ala
b a
6|ec|¢ ele
\)
b 1 2 3 4 5

Da die Paare {1,2}, {3,6} und {4,5} nicht in D enthalten sind, kénnen
die Zustande 1 und 2, 3 und 6, sowie 4 und 5 verschmolzen werden.
Demnach hat M’ die Zustande 1= {1,2}, 3={3,6} und 4={4,5}:

b a
~ ==
a

b <
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Sei M = (Z,%,4,qo, E) ein DFA ohne unerreichbare Zustdnde. Dann ist

MI = (2’ z? 5,7 6707 E) mlt 5’(67 a) = 5(q7 a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustanden.

Beweis
@ Zuerst missen wir zeigen, dass &' wohldefiniert ist, also ¢'(g, a) nicht
von der Wahl des Reprasentanten g fiir die Aquivalenzklasse § abhiangt.
@ Hierzu ist die Implikation p ~ g = 0(p,a) ~ d(q, a) zu zeigen.
@ Diese ist wiederum aquivalent zur Kontraposition
d(p,a) +0(q,a) = p ¢ q, die wir bereits gezeigt haben.
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Sei M = (Z,%,4,qo, E) ein DFA ohne unerreichbare Zustdnde. Dann ist

MI = (2’ z? 5,7 6707 E) mlt 5’(67 a) = 5(q7 a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustanden.

Beweis (Fortsetzung)
@ Als nachstes zeigen wir, dass L(M") = L(M) ist.

@ Sei x =xj...x, € L* eine Eingabe und seien qo, g1, .. ., g, die von M(x)
durchlaufenen Zustande, d.h. es gilt (q;j-1,x;) = q; furi=1,... n.

@ Nach Definition von ¢’ folgt daher 6’(g;_1,x;) = @; fur i=1,...,n,
d.h. M’ durchlauft bei Eingabe x die Zustande go, g1, ..., Gn.

@ Da aber G, entweder nur End- oder nur Nicht-Endzustdnde enthilt,
gehort g, genau dann zu E, wenn g, € E, d.h. es gilt

xelL(M) < xelL(M).
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Sei M = (Z,%,4,qo, E) ein DFA ohne unerreichbare Zustdnde. Dann ist
MI = (2’ z? 6,7 2'707 E) mlt 5,(67 a) = 5(q7 a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustanden.

Beweis (Schluss)
@ Noch z.z.: die Anzahl | Z| der Zustande von M’ ist minimal.

Wegen | Z|| < | Z| ist M’ sicher dann minimal, wenn M minimal ist.
Es reicht also zu zeigen, dass | Z| nur von der Sprache L(M) abhingt.
Wegen p ~ g < L(M,) = L(Mg) gilt [ Z] = [{L(M,) | z € Z}|.
Sei L=L(M) und fiir x € ¥* sei L, die Sprache {y e X* | xy € L}.
Dann gilt {Ly |xeX*} ={L(M,) |z Z}:

c: Klar, da Ly = L(M,) fiir z=6(qo,x) ist.

2: Auch klar, da jedes z € Z (iber ein x € X* erreichbar ist.

Also hangt | Z] = [{Lx | x € *}| nur von L ab. O
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Sei M = (Z,%,4,qo, E) ein DFA ohne unerreichbare Zustdnde. Dann ist

M =(Z,%,68,G,E) mit §'(g,a) =0(q,a)
ein DFA fir L(M) mit einer minimalen Anzahl von Zustanden.

Bemerkung

@ M’ erreicht nach Lesen von x den Zustand S(qo,x). Wegen

5(q0,x) = (g0, y) < 6(q0,x) ~(q0,¥)
& L(Mj(g0) = L(M;
kénnen wir den Zustand §(qo,x) von M’ auch mit L, bezeichnen.
e Dies fuhrt auf den zu M’ isomorphen DFA M, = (Z;,%,6;, L., E;) mit
Zp={Li|xeX"}, Ef ={Lx|xel}und d,(Lx,a) = Lxa,

der sich direkt aus der Sprache L gewinnen l&sst.

(qo,y)) < Le=1Ly,




Direkte Konstruktion eines Minimal-DFA aus L 123

Beispiel

@ Betrachte die Sprache L={x3...x,€{0,1}* | x,-1 = 0}.
@ Dann hat M, die folgenden Sprachen als Zustande:

L, x €{e,1} oder x endet mit 11,
Lu{0,1}, x = 0 oder x endet mit 10,
Lu{e, 0,1}, x endet mit 00,

Lu{e}, x endet mit O1.

@ Graphische Darstellung von M, :




Der Satz von Myhill und Nerode 124

@ Notwendig und hinreichend fiir die Existenz von M ist, dass die Menge
Z; ={Ls | xeX*} endlich ist.

@ L ist also genau dann regular, wenn folgende Aquivalenzrelation R;
einen endlichen Index hat:

xRy = Ly=1L,

@ Ist M ein DFA mit einer minimalen Anzahl von Zusténden, so haben
die Zustande von M’ die Form § = {q}, d.h. M ist isomorph zu M'.

e Da M’ wiederum isomorph zu M ist, ist jeder minimale DFA M mit
L(M) = L isomorph zu My, d.h. fiir jede regulére Sprache L gibt es bis
auf Isomorphie nur einen Minimal-DFA.




Der Satz von Myhill und Nerode 125

Satz (Myhill und Nerode)

Q@ REG={L|index(Ry) < c0}.
@ Sei L reguldr und sei index(R;) der Index von R;. Dann gibt es fiir L

bis auf Isomorphie genau einen Minimal-DFA. Dieser hat index(R,)
Zustande.




Der Aquivalenzklassen-DFA Mg, fiir L —

@ Zwei Eingaben x und y lberfiihren den DFA M, genau dann in
denselben Zustand, wenn L, = L, ist (also xR,y gilt).

@ Die Zustande von M; kénnen daher anstelle von L, auch mit den
Aquivalenzklassen [x] von R, (bzw. mit geeigneten Reprisentanten)
benannt werden.

@ Der resultierende Minimal-DFA Mg, wird auch als Aquivalenzklassen-
automat bezeichnet:

Mg, = (Z,%,5,[¢], E) mit Z={[x]|xeX*} und E = {[x] | x € L}.

e Fiir die Konstruktion von § geniigt es, ausgehend von r; = ¢ eine Folge
von Wortern ry,. .., re mit [r;] # [r;] zu bestimmen, so dass zu jedem r;
und jedem Zeichen a € X ein r; existiert mit rja € [r;].

o In diesem Fall ist dann §([r;],a) = [r;a] = [r}].

@ Die Konstruktion von Mg, erfordert meist weniger Aufwand als die von
M, da die Bestimmung der Sprachen L, entfallt.




Direkte Konstruktion von Mg, aus L 2

Beispiel
Fir die Sprache L= {x3...x, € {0,1}* | x,—1 = 0} lasst sich der
Aquivalenzklassen-DFA Mg, ausgehend von r; = ¢ wie folgt konstruieren:
@ Wegen rn0=0¢ [e] ist » =0 und 6([¢],0) = [0].

@ Wegen il =1¢[e]ist 6([¢],1) = [g].

© Wegen rn0=00¢ [¢]u[0] ist r3 =00 und §([0],0) = [00]

Q Wegen rnl=01¢[e]u[0]u[00] ist rs =01 und 6([0],1) =[01].

© Wegen 30 =000¢ [00] ist 6([00],0) = [00].

@ Wegen r31 =001¢ [01] ist 6([00],1) = [01].

@ Wegen r,0=010¢ [0] ist 6([01],0) = [ ]

@ Wegen ry1=011¢ [e] ist 6([01],1) =

r | e 0 00 01 >
[r0] | [0] [0O] [o0] [O] @ "

0

<




Charakterisierungen der Klasse REG

Korollar

Sei L eine Sprache. Dann sind folgende Aussagen aquivalent:

L ist regular,

es gibt einen DFA M mit L = L(M),

es gibt einen NFA N mit L= L(N),

es gibt einen reguldren Ausdruck v mit L = L(7),

die Aquivalenzrelation R; hat endlichen Index.

128

Wir koénnen also beweisen, dass eine Sprache L nicht regular ist, indem wir
unendlich viele Wérter finden, die paarweise indquivalent bzgl. R; sind.

4




Nachweis von L ¢ REG mittels Myhill und Nerode L2

Die Sprache L = {a"b" | n > 0} ist nicht regular. \

Beweis

Die Worter a', i >0, sind bzgl. R; paarweise iniquivalent.
Fir i +j gilt ndmlich -a'R;a’, da

b' e LiAL,;

enthalten ist. 8]




Das Pumping-Lemma 130

Frage

Wie l3sst sich moglichst einfach zeigen, dass eine Sprache nicht regular ist?

Antwort
Oft fuhrt die Kontraposition folgender Aussage zum Ziel.

Satz (Pumping-Lemma fiir regulare Sprachen)

Zu jeder regularen Sprache L gibt es eine Zahl / > 0, so dass sich alle
Worter x € L mit x| >/ in x = uvw zerlegen lassen mit
0 vi#eg,

@ |uv|< [ und

© u'wel firalle i >0.

Das kleinste solche / wird auch die Pumping-Zahl von L genannt.
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Beispiel

@ Die Sprache

L={xe{a, b}" [ #a(x) - #b(x) =31}
|asst sich ,,pumpen” (mit Pumping-Zahl / = 3).
@ Sei x € L beliebig mit |x| > 3.
o 1. Fall: x hat das Préafix ab.
Zerlege x = uvw mit u=¢ und v = ab.
o 2. Fall: x hat das Préfix aab.
Zerlege x = uvw mit u=a und v = ab.
o 3. Fall: x hat das Préfix aaa.
Zerlege x = uvw mit u =¢€ und v = aaa.

o Restliche Falle (Prafixe ba, bba und bbb): analog.
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@ Sei L eine endliche Sprache.
@ Offenbar lasst sich kein Wort x € L ,pumpen®.

@ Sei

- {1 +maxye x|, L+@,

0, sonst.

@ Dann lasst sich jedes Wort x € L der Lange >/ ,,pumpen”, da solche
Worter gar nicht existieren. Also hat L eine Pumping-Zahl < /.

@ Zudem gibt es im Fall / >0 ein Wort x € L der Lange /-1, das sich
nicht ,,pumpen* |asst.

@ Somit ist die Pumping-Zahl von L gleich /.
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Satz (Pumping-Lemma fiir reguldre Sprachen)

Zu jeder reguldren Sprache L gibt es eine Zahl /, so dass sich alle Worter
x € L mit [x| >/ in x = uvw zerlegen lassen mit
0 vie,

@ |uv| </ und

© u'wel firalle i > 0.

Das kleinste solche / wird auch die Pumping-Zahl von L genannt.




Das Pumping-Lemma —

Beweis
@ Sei M=(Z,%,0,qo, E) ein DFA mit | Zustanden und sei

X=x1...xp€ L mit n=|x| >/
@ Dann muss M(x) nach spatestens / Schritten einen Zustand zum
zweiten Mal annehmen, d.h. esex. 0<j< k </ und z € Z mit
S(qo,xl...xj) =7 und
S(qo,xl...><jxj+1...xk) = 72
@ Setze U=X1...Xj, V=Xj41...Xk und W = Xps1 ... Xp.
e Danngilt |v|=k—-j>1(dh. v#e), k=]uv|<]
@ Zudem gehért fiir alle i > 0 das Wort uv/w zu L, da wegen §(~,v') =
3(qo, uv'w) = 8(3(8(qo, u), v'), w) = 3(5(5(qo, u), v), w) = 5(qo, x)
— ————

— ————
in E ist. O




Kontraposition des Pumping-Lemmas 135

Um also L ¢ REG zu Beispiel: L = {a"b" | n>0} ¢ REG

zeigen, genugt es, o Fiir jede Zahl / > 0 enthalt L das
e fir jede Zahl />0 ein Wort x = a'b! mit |x| =2/ > 1.
Wort x € L der Lange

|x| >/ zu finden, so dass

o Fiir jede Zerlegung x = uvw von
x = a'b! mit

o fiir jede Zerlegung
X = uvw mindestens
eine der folgenden drei

0 vie
ist die Bedingung

Bedingungen verletzt @ uw'wel
ist: fur alle i > 2 verletzt. )
0 vi#e,

@ |uv| <[ oder
© uv'wel fir alle
i>0.
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