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Gibt es zum organisatorischen Ablauf noch Fragen?



Inhalt der Vorlesung 7

Themen dieser VL:
Welche Rechenmodelle sind adäquat? Automatentheorie
Welche Probleme sind lösbar? Berechenbarkeitstheorie
Welcher Aufwand ist nötig? Komplexitätstheorie

Themen der VL Algorithmen und Datenstrukturen:
Wie lassen sich praktisch relevante Problemstellungen möglichst
effizient lösen? Algorithmik

Themen der VL Logik in der Informatik:
Mathem. Grundlagen der Informatik, Beweise führen, Modellierung

Aussagenlogik, Prädikatenlogik



Maschinenmodelle 8

Rechenmaschinen spielen in der Informatik eine zentrale Rolle.
Es gibt viele unterschiedliche math. Modelle.
Diese können sich in der Berechnungskraft unterscheiden.
Die Turingmaschine (TM) ist ein universales Berechnungsmodell, da sie
alle anderen bekannten Rechenmodelle simulieren kann.
Wir betrachten zunächst Einschränkungen des TM-Modells, die
vielfältige praktische Anwendungen haben, wie z.B.

endliche Automaten (DFA, NFA),
Kellerautomaten (PDA, DPDA) etc.



Der Algorithmenbegriff 9

Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück.
Ältester bekannter nicht-trivialer Algorithmus:
Euklidischer Algorithmus zur Berechnung des größten gemeinsamen
Teilers zweier natürlicher Zahlen (300 v. Chr.).
Von einem Algorithmus wird erwartet, dass er bei jeder zulässigen
Problemeingabe nach endlich vielen Rechenschritten eine korrekte
Ausgabe liefert.
Problemeingaben können Zahlen, Formeln, Graphen etc. sein.
Diese werden über einem Eingabealphabet Σ kodiert.



Alphabet, Wort, Sprache 10

Definition
Ein Alphabet ist eine geordnete endliche Menge

Σ = {a1, . . . , am}, m ≥ 1
von Zeichen ai .
Eine Folge x = x1 . . . xn ∈ Σn heißt Wort (der Länge n).
Die Menge aller Wörter über Σ ist

Σ∗ = ⋃
n≥0

Σn.

Das (einzige) Wort der Länge n = 0 ist das leere Wort, welches wir mit
ε bezeichnen, d.h. Σ0 = {ε}.
Jede Teilmenge L ⊆ Σ∗ heißt Sprache über dem Alphabet Σ.



Beispiele für Sprachen 11

Beispiel
Sei Σ ein Alphabet.

Dann sind ∅,Σ∗,Σ und {ε} Sprachen über Σ.
∅ enthält keine Wörter und heißt leere Sprache.
Σ∗ enthält dagegen alle Wörter über Σ.
Σ enthält alle Wörter über Σ der Länge 1.
{ε} enthält nur das leere Wort, ist also einelementig.
Solche Sprachen werden auch als Singleton-Sprachen bezeichnet.



Operationen auf Sprachen 12

Da Sprachen Mengen sind, können wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt ∅ ⊆ {ε} ⊆ Σ∗.
Wir können Sprachen auch vereinigen, schneiden und komplementieren.
Seien A und B Sprachen über Σ. Dann ist

A ∩B = {x ∈ Σ∗ ∣ x ∈ A ∧ x ∈ B} der Schnitt von A und B,
A ∪B = {x ∈ Σ∗ ∣ x ∈ A ∨ x ∈ B} die Vereinigung von A und B, und
A = {x ∈ Σ∗ ∣ x /∈ A} das Komplement von A.



Konkatenation von Wörtern 13

Definition
Seien x = x1 . . . xn und y = y1 . . . ym Wörter. Dann wird das Wort
x ○ y = x1 . . . xny1 . . . ym als Konkatenation von x und y bezeichnet.
Für x ○ y schreiben wir auch einfach xy .

Beispiel
Für x = aba und y = abab erhalten wir xy = abaabab und yx = abababa.
Die Konkatenation ist also nicht kommutativ.
Allerdings ist ○ assoziativ, d.h. es gilt x(yz) = (xy)z .
Daher können wir hierfür auch einfach xyz schreiben.
Es gibt auch ein neutrales Element, da xε = εx = x ist.
Eine algebraische Struktur (M,◻, e) mit einer assoziativen Operation
◻ ∶ M ×M →M und einem neutralen Element e heißt Monoid.
(Σ∗, ○, ε) ist also ein Monoid.



Spezielle Sprachoperationen 14

Neben den Mengenoperationen Schnitt, Vereinigung und Komplement gibt
es auch spezielle Sprachoperationen.

Definition
Das Produkt (Verkettung, Konkatenation) der Sprachen A und B ist

AB = {xy ∣ x ∈ A, y ∈ B}.

Ist A = {x} eine Singletonsprache, so schreiben wir für {x}B auch
einfach xB.
Die n-fache Potenz An einer Sprache A ist induktiv definiert durch

An =
⎧⎪⎪⎨⎪⎪⎩

{ε}, n = 0,
An−1A, n > 0.

Die Sternhülle von A ist A∗ = ⋃n≥0 An.
Die Plushülle von A ist A+ = ⋃n≥1 An = AA∗.



Algorithmische Erkennung von Sprachen 15

Ein einfaches Rechenmodell zum Erkennen von Sprachen ist der
endliche Automat.

x1 ⋯ xi ⋯ xn

Eingabe-
band

Lesekopf

Steuer-
einheit

Ð→

Ein endlicher Automat
nimmt zu jedem Zeitpunkt genau einen von endlich vielen
Zuständen an,
macht bei Eingaben der Länge n genau n Rechenschritte und
liest in jedem Schritt genau ein Eingabezeichen.



Formale Definition eines endlichen Automaten 16

Definition
Ein endlicher Automat (kurz: DFA; Deterministic Finite Automaton)
wird durch ein 5-Tupel M = (Z ,Σ, δ,q0,E) beschrieben, wobei

Z ≠ ∅ eine endliche Menge von Zuständen,
Σ das Eingabealphabet,
δ ∶ Z ×Σ→ Z die Überführungsfunktion,
q0 ∈ Z der Startzustand und
E ⊆ Z die Menge der Endzustände ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x1 . . . xn ∈ Σ∗ es gibt q1, . . . ,qn−1 ∈ Z ,qn ∈ E mit
δ(qi , xi+1) = qi+1 für i = 0, . . . ,n − 1

}

Eine Zustandsfolge q0,q1, . . . ,qn heißt Rechnung von M(x1 . . . xn), falls
δ(qi , xi+1) = qi+1 für i = 0, . . . ,n − 1 gilt.
Sie heißt akzeptierend, falls qn ∈ E ist.



Die Klasse der regulären Sprachen 17

Frage
Welche Sprachen lassen sich durch endliche Automaten erkennen und
welche nicht?

Definition
Eine von einem DFA akzeptierte Sprache wird als regulär bezeichnet. Die
zugehörige Sprachklasse ist

REG = {L(M) ∣ M ist ein DFA}.



DFAs beherrschen Modulare Arithmetik 18

Beispiel
Sei M3 = (Z ,Σ, δ,0,E) ein DFA mit Z = {0,1,2}, Σ = {a,b}, E = {1} und
der Überführungsfunktion

δ 0 1 2

a 1 2 0
b 2 0 1

Graphische
Darstellung:

2

0

1

a
bb

a

a

b

Endzustände werden durch einen doppelten Kreis und der Startzustand
wird durch einen Pfeil gekennzeichnet. ◁

Frage: Welche Wörter akzeptiert M3?
w1 = aba? Ja (Rechnung: 0,1,0,1).
w2 = abba? Nein (Rechnung: 0,1,0,2,0).



DFAs beherrschen Modulare Arithmetik 19

Behauptung
Die von M3 erkannte Sprache ist

L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}, wobei

#a(x) die Anzahl der Vorkommen von a in x bezeichnet und
i ≡m j (in Worten: i ist kongruent zu j modulo m) bedeutet, dass i − j
durch m teilbar ist.

Beweis der Behauptung durch Induktion über die Länge von x
Wir betrachten zunächst das Erreichbarkeitsproblem für DFAs.



Das Erreichbarkeitsproblem für DFAs 20

Frage
Sei M = (Z ,Σ, δ,q0,E) ein DFA und sei x = x1 . . . xn ∈ Σ∗. Welchen
Zustand erreicht M bei Eingabe x nach i Schritten?

Antwort
nach 0 Schritten: q0,
nach 1 Schritt: δ(q0, x1),
nach 2 Schritten: δ(δ(q0, x1), x2),
nach i Schritten: δ(. . . δ(δ(q0, x1), x2), . . . xi).



Das Erreichbarkeitsproblem für DFAs 21

Definition
Bezeichne δ̂(q, x) denjenigen Zustand, in dem sich M nach Lesen von x
befindet, wenn M im Zustand q gestartet wird.
Dann können wir die Funktion

δ̂ ∶ Z ×Σ∗ → Z
induktiv über die Länge von x wie folgt definieren.
Für q ∈ Z , x ∈ Σ∗ und a ∈ Σ sei

δ̂(q, ε) = q,
δ̂(q, xa) = δ(δ̂(q, x), a).

Die von M erkannte Sprache lässt sich nun auch in der Form
L(M) = {x ∈ Σ∗ ∣ δ̂(q0, x) ∈ E}

schreiben.



DFAs beherrschen Modulare Arithmetik 22

M3:

2

0

1

a
bb

a

a

b

Behauptung
L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}.

Beweis
1 ist der einzige Endzustand von M.
Daher ist L(M3) = {x ∈ Σ∗ ∣ δ̂(0, x) = 1}.
Obige Behauptung ist also äquivalent zu

δ̂(0, x) = 1⇔#a(x) −#b(x) ≡3 1
Folglich reicht es, folgende Kongruenzgleichung zu zeigen:

δ̂(0, x) ≡3 #a(x) −#b(x)



DFAs beherrschen Modulare Arithmetik 23

Beweis von δ̂(0, x) ≡3 #a(x) −#b(x):
Wir führen Induktion über die Länge n von x .

Induktionsanfang n = 0: klar, da δ̂(0, ε) = #a(ε) = #b(ε) = 0 ist.

Induktionsschritt n ↝ n + 1:
Sei x = x1 . . . xn+1 gegeben und sei i = δ̂(0, x1 . . . xn).
Nach IV gilt i ≡3 #a(x1 . . . xn) −#b(x1 . . . xn).
Wegen δ(i , a) ≡3 i + 1 und δ(i ,b) ≡3 i − 1 folgt daher

δ(i , xn+1) ≡3 i +#a(xn+1) −#b(xn+1)
≡3 #a(x1 . . . xn) −#b(x1 . . . xn) +#a(xn+1) −#b(xn+1)
= #a(x) −#b(x)

und somit
δ̂(0, x) = δ(δ̂(0, x1 . . . xn), xn+1) = δ(i , xn+1) ≡3 #a(x) −#b(x).

◻



Singletons sind regulär 24

Vereinbarung
Für das Folgende sei Σ = {a1, . . . , am} ein fest gewähltes Alphabet.

Beobachtung 1
Alle Sprachen, die nur ein Wort x = x1 . . . xn ∈ Σ∗ enthalten, sind regulär.

Beweis
Folgender DFA M erkennt die Sprache L(M) = {x}:

q0 q1 q2 ⋯ qn

e

x3 xnx1 x2

a ≠ x1
a ≠ x2 a ≠ x3

a ∈ Σ

a ∈ Σ
◻



REG ist unter Komplement abgeschlossen 25

Beobachtung 2
Ist L ∈ REG, so ist auch die Sprache L = Σ∗ ∖ L regulär.

Beweis
Sei M = (Z ,Σ, δ,q0,E) ein DFA mit L(M) = L.
Dann wird das Komplement L von L von dem DFA
M = (Z ,Σ, δ,q0,Z ∖ E) akzeptiert.

◻

Definition
Für eine Sprachklasse C bezeichne co-C die Klasse {L̄ ∣ L ∈ C} aller
Komplemente von Sprachen in C.

Korollar
co-REG = REG.



REG ist unter Schnitt abgeschlossen 26

Beobachtung 3
Sind L1,L2 ∈ REG, so ist auch die Sprache L1 ∩ L2 regulär.

Beweis
Seien Mi = (Zi ,Σ, δi ,qi ,Ei), i = 1,2, DFAs mit L(Mi) = Li .
Dann wird der Schnitt L1 ∩ L2 von dem DFA

M = (Z1 × Z2,Σ, δ, (q1,q2),E1 × E2)

mit
δ((p,q), a) = (δ1(p, a), δ2(q, a))

erkannt.
M wird auch als Kreuzproduktautomat bezeichnet.

◻



REG ist unter Vereinigung abgeschlossen 27

Beobachtung 4
Die Vereinigung L1 ∪ L2 von regulären Sprachen L1 und L2 ist regulär.

Beweis

Es gilt L1 ∪ L2 = (L1 ∩ L2). ◻

Frage
Wie sieht der zugehörige DFA aus?

Antwort
M ′ = (Z1 × Z2,Σ, δ, (q1,q2), (E1 × Z2) ∪ (Z1 × E2)).



Abschlusseigenschaften von Sprachklassen 28

Definition
Ein (k-stelliger) Sprachoperator ist eine Abbildung op, die k Sprachen
L1, . . . ,Lk auf eine Sprache op(L1, . . . ,Lk) abbildet.
Eine Sprachklasse K heißt unter op abgeschlossen, wenn gilt:

L1, . . . ,Lk ∈ K ⇒ op(L1, . . . ,Lk) ∈ K.

Der Abschluss von K unter op ist die (bzgl. Inklusion) kleinste
Sprachklasse K′, die K enthält und unter op abgeschlossen ist.

Beispiel
Der 2-stellige Schnittoperator ∩ bildet L1 und L2 auf L1 ∩ L2 ab.
Der Abschluss der Singletonsprachen unter ∩ besteht aus allen
Singletonsprachen und der leeren Sprache.
Der Abschluss der Singletonsprachen unter ∪ besteht aus allen
nichtleeren endlichen Sprachen. ◁



REG ist unter Mengenoperationen abgeschlossen 29

Korollar
Die Klasse REG der regulären Sprachen ist unter folgenden Operationen
abgeschlossen:

Komplement,
Schnitt,
Vereinigung.



Wie umfangreich ist REG? 30

Folgerung
Aus den Beobachtungen folgt, dass alle endlichen und alle co-endlichen
Sprachen regulär sind.
Da die reguläre Sprache

L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}
weder endlich noch co-endlich ist, haben wir damit allerdings noch
nicht alle regulären Sprachen erfasst.



Wie umfangreich ist REG? 31

Nächstes Ziel
Zeige, dass REG unter Produktbildung und Sternhülle abgeschlossen ist.

Problem
Bei der Konstruktion eines DFA für das Produkt L1L2 bereitet es
Schwierigkeiten, den richtigen Zeitpunkt für den Übergang von (der
Simulation von) M1 zu M2 zu finden.

Lösungsidee
Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
für den Übergang „raten“.

Verbleibendes Problem
Zeige, dass auch NFAs nur reguläre Sprachen erkennen.



Nichtdeterministische endliche Automaten 32

Definition
Ein nichtdet. endl. Automat (kurz: NFA; Nondet. Finite Automaton)

N = (Z ,Σ,∆,Q0,E)
ist genau so aufgebaut wie ein DFA, nur dass er

eine Menge Q0 ⊆ Z von Startzuständen hat und
die Überführungsfunktion folgende Form hat:

∆ ∶ Z ×Σ→ P(Z).

Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge aller
Teilmengen) von Z . Diese wird auch oft mit 2Z bezeichnet.

Die von einem NFA N akzeptierte oder erkannte Sprache ist

L(N) = {x1 . . . xn ∈ Σ∗ ∃q0 ∈ Q0,q1, . . . ,qn−1 ∈ Z ,qn ∈ E ∶
qi+1 ∈ ∆(qi , xi+1) für i = 0, . . . ,n − 1

} .

Eine Zustandsfolge q0,q1, . . . ,qn heißt Rechnung von N(x1 . . . xn), falls
q0 ∈ Q0 und qi+1 ∈ ∆(qi , xi+1) für i = 0, . . . ,n − 1 gilt.



Eigenschaften von NFAs 33

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausführen.
Ein Wort x gehört genau dann zu L(N), wenn N(x) mindestens eine
akzeptierende Rechnung hat.
Im Gegensatz zu einem DFA, der jede Eingabe zu Ende liest, kann ein
NFA N „stecken bleiben“.
Dieser Fall tritt ein, wenn N in einen Zustand q gelangt, in dem er das
nächste Eingabezeichen xi wegen

∆(q, xi) = ∅

nicht verarbeiten kann.



Eigenschaften von NFAs 34

Beispiel
Betrachte den NFA N = (Z ,Σ,∆,Q0,E) mit Z = {p,q, r , s},
Σ = {0,1,2}, Q0 = {p}, E = {s} und der Überführungsfunktion

∆ p q r s

0 {p,q} ∅ ∅ ∅
1 {p} {r} ∅ ∅
2 {p} ∅ {s} ∅

Graphische Darstellung:

p q r s0 1 2

0,1,2

Dann ist L(M) = {x012 ∣ x ∈ Σ∗} die Sprache aller Wörter, die mit dem
Suffix 012 enden. ◁



Eigenschaften von NFAs 35

Beobachtung 5
Seien Ni = (Zi ,Σ,∆i ,Qi ,Ei) NFAs mit L(Ni) = Li für i = 1,2. Dann wird
auch das Produkt L1L2 von einem NFA erkannt.

Beweis
Wir können Z1 ∩ Z2 = ∅ annehmen.
Dann gilt L(N) = L1L2 für den NFA N = (Z1 ∪ Z2,Σ,∆,Q1,E) mit

∆(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖ E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), sonst
und

E =
⎧⎪⎪⎨⎪⎪⎩

E2, Q2 ∩ E2 = ∅,
E1 ∪ E2, sonst.



Eigenschaften von NFAs 36

Dann gilt L(N) = L1L2 für den NFA N = (Z1 ∪ Z2,Σ,∆,Q1,E) mit

∆(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖ E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), sonst,
und E = E2, falls Q2 ∩ E2 = ∅, bzw. E = E1 ∪ E2 sonst.

Beweis von L1L2 ⊆ L(N):
Seien x = x1⋯xk ∈ L1, y = y1⋯yl ∈ L2 und seien q0, . . . ,qk und p0, . . . ,pl
akzeptierende Rechnungen von N1(x) und N2(y).
Dann gilt q0 ∈ Q1, qk ∈ E1 und p0 ∈ Q2, pl ∈ E2.
Im Fall l ≥ 1 ist zudem p1 ∈ ∆2(p0, y1) und somit p1 ∈ ∆(qk , y1).
Im Fall l = 0 ist zudem pl ∈ Q2 ∩ E2 und somit qk ∈ E .
Also ist q0, . . . ,qk ,p1, . . . ,pl eine akzeptierende Rechnung von N(xy).



Eigenschaften von NFAs 37

Dann gilt L(N) = L1L2 für den NFA N = (Z1 ∪ Z2,Σ,∆,Q1,E) mit

∆(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖ E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), sonst,
und E = E2, falls Q2 ∩ E2 = ∅, bzw. E = E1 ∪ E2 sonst.

Beweis von L(N) ⊆ L1L2:
Sei x = x1⋯xn ∈ L(N) und sei q0, . . . ,qn eine akz. Rechnung von N(x).
Dann gilt q0 ∈ Q1, qn ∈ E , q0, . . . ,qi ∈ Z1 und qi+1, . . . ,qn ∈ Z2 für ein i .
Im Fall i = n ist qn ∈ E1 (d.h. x ∈ L1) und Q2 ∩ E2 ≠ ∅ (d.h. ε ∈ L2).
Im Fall i < n impliziert der Übergang qi+1 ∈ ∆(qi , xi+1), dass qi ∈ E1
und qi+1 ∈ ∆2(q, xi+1) für ein q ∈ Q2 ist.
Also ist q0, . . . ,qi eine akz. Rechnung von N1(x1⋯xi) und
q,qi+1, . . . ,qn eine akz. Rechnung von N2(xi+1⋯xn), d.h. x ∈ L1L2. ◻



Eigenschaften von NFAs 38

Beobachtung 6
Ist N = (Z ,Σ,∆,Q0,E) ein NFA, so wird auch die Sprache L(N)∗ von
einem NFA erkannt.

Beweis
Die Sprache L(N)∗ wird von dem NFA

N ′ = (Z∪{qneu},Σ,∆′,Q0∪{qneu},E∪{qneu})

mit

∆′(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆(p, a), p ∈ Z ∖ E ,
∆(p, a) ∪ ⋃q∈Q0 ∆(q, a), p ∈ E ,
∅, p = qneu

erkannt.
◻



Überblick 39

Ziel
Zeige, dass REG unter Produktbildung und Sternhülle abgeschlossen ist.

Problem
Bei der Konstruktion eines DFA für das Produkt L1L2 bereitet es
Schwierigkeiten, den richtigen Zeitpunkt für den Übergang von (der
Simulation von) M1 zu M2 zu finden.

Lösungsidee (bereits umgesetzt)
Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt
für den Übergang „raten“.

Noch zu zeigen
NFAs erkennen genau die regulären Sprachen.



NFAs erkennen genau die regulären Sprachen 40

Satz (Rabin und Scott)
REG = {L(N) ∣ N ist ein NFA}.

Beweis von REG ⊆ {L(N) ∣ N ist ein NFA}
Diese Inklusion ist klar, da jeder DFA M = (Z ,Σ, δ,q0,E) leicht in einen
äquivalenten NFA

N = (Z ,Σ,∆,Q0,E)

transformiert werden kann, indem wir ∆(q, a) = {δ(q, a)} und Q0 = {q0}
setzen.

◻

Für die umgekehrte Inklusion ist das Erreichbarkeitsproblem für NFAs von
zentraler Bedeutung.
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Frage
Sei N = (Z ,Σ,∆,Q0,E) ein NFA und sei x = x1 . . . xn eine Eingabe. Welche
Zustände sind in i Schritten erreichbar?

Antwort
in 0 Schritten: alle Zustände in Q0.
in einem Schritt: alle Zustände in

Q1 = ⋃
q∈Q0

∆(q, x1).

in i Schritten: alle Zustände in
Qi = ⋃

q∈Qi−1

∆(q, xi).
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Idee
Wir können einen NFA N = (Z ,Σ,∆,Q0,E) durch einen DFA
M = (Z ′,Σ, δ,q′0,E ′) simulieren, der in seinem Zustand die Information
speichert, in welchen Zuständen sich N momentan befinden könnte.
Die Zustände von M sind also Teilmengen Q von Z (d.h. Z ′ = P(Z))
mit Q0 als Startzustand (d.h. q′0 = Q0) und der Endzustandsmenge

E ′ = {Q ⊆ Z ∣ Q ∩ E /= ∅}.

Die Überführungsfunktion δ ∶ P(Z) ×Σ→ P(Z) von M berechnet dann
für einen Zustand Q ⊆ Z und ein Zeichen a ∈ Σ die Menge

δ(Q, a) = ⋃q∈Q ∆(q, a)
aller Zustände, in die N gelangen kann, wenn N ausgehend von einem
beliebigen Zustand q ∈ Q das Zeichen a liest.
M wird auch als der zu N gehörige Potenzmengenautomat bezeichnet.
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Beispiel
Betrachte den NFA N

p q r s0 1 2

0,1,2

Ausgehend von Q0 = {p} liefert δ dann die folgenden Werte:

δ 0 1 2

{p} {p,q} {p} {p}
{p,q} {p,q} {p, r} {p}
{p, r} {p,q} {p} {p, s}
{p, s} {p,q} {p} {p}

{p}

1,2

{p,q}

0

{p, r}{p, s}

0

10

2

1
01,2

2
◁
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Bemerkung
Im obigen Beispiel werden für die Konstruktion des Potenzmengen-
automaten nur 4 der insgesamt

∥P(Z)∥ = 2∥Z∥ = 24 = 16
Zustände benötigt, da die übrigen 12 Zustände nicht erreichbar sind.
Es gibt jedoch Beispiele, bei denen alle 2∥Z∥ Zustände benötigt werden
(siehe Übungen).
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Beweis von {L(N) ∣ N ist ein NFA} ⊆ REG
Sei N = (Z ,Σ,∆,Q0,E) ein NFA und sei M = (P(Z),Σ, δ,Q0,E ′) der
zugehörige Potenzmengenautomat mit δ(Q, a) = ⋃q∈Q ∆(q, a) und
E ′ = {Q ⊆ Z ∣ Q ∩ E /= ∅}.
Dann folgt die Korrektheit von M leicht mittels folgender Behauptung,
die wir auf der nächsten Folie beweisen.
Behauptung
δ̂(Q0, x) enthält genau die von N nach Lesen von x erreichbaren
Zustände.

Für alle Wörter x ∈ Σ∗ gilt
x ∈ L(N) ⇔ N kann nach Lesen von x einen Endzustand erreichen

Beh.⇔ δ̂(Q0, x) ∩ E /= ∅
⇔ δ̂(Q0, x) ∈ E ′

⇔ x ∈ L(M). ◻
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Behauptung
δ̂(Q0, x) enthält genau die von N nach Lesen von x erreichbaren Zustände.

Beweis durch Induktion über die Länge n von x
n = 0: klar, da δ̂(Q0, ε) = Q0 ist.

n − 1↝ n: Sei x = x1 . . . xn gegeben. Nach IV enthält
Qn−1 = δ̂(Q0, x1 . . . xn−1)

die Zustände, die N nach Lesen von x1 . . . xn−1 erreichen
kann. Wegen

δ̂(Q0, x) = δ(Qn−1, xn) = ⋃
q∈Qn−1

∆(q, xn)

enthält dann aber δ̂(Q0, x) die Zustände, die N nach Lesen
von x erreichen kann. ◻
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Korollar
Die Klasse REG der regulären Sprachen ist unter folgenden Operationen
abgeschlossen:

Komplement,
Schnitt,
Vereinigung,
Produkt,
Sternhülle.
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Nächstes Ziel
Zeige, dass REG als Abschluss der endl. Sprachen unter Vereinigung,
Produkt und Sternhülle charakterisierbar ist.

Bereits gezeigt:
Jede Sprache, die mittels der Operationen Vereinigung, Produkt und
Sternhülle (sowie Schnitt und Komplement) angewandt auf endliche
Sprachen darstellbar ist, ist regulär.

Noch zu zeigen:
Jede reguläre Sprache lässt sich aus endlichen Sprachen mittels
Vereinigung, Produkt und Sternhülle erzeugen.
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Induktive Definition der Menge RAΣ aller regulären Ausdrücke über Σ
Die Symbole ∅, ε und a (a ∈ Σ) sind reguläre Ausdrücke über Σ, die

die leere Sprache L(∅) = ∅,
die Sprache L(ε) = {ε} und
für jedes a ∈ Σ die Sprache L(a) = {a} beschreiben.

Sind α und β reguläre Ausdrücke über Σ, die die Sprachen L(α) und L(β)
beschreiben, so sind auch αβ, (α∣β) und (α)∗ reguläre Ausdrücke über Σ,
die folgende Sprachen beschreiben:

L(αβ) = L(α)L(β),
L((α∣β)) = L(α) ∪ L(β),
L((α)∗) = L(α)∗.

Bemerkung
RAΣ ist eine Sprache über dem Alphabet Γ = Σ ∪ {∅, ε, ∣,∗ , (, )}.
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Beispiel
Die regulären Ausdrücke (ε)∗, (∅)∗, (0∣1)∗00 und (0∣(ε0∣∅(1)∗)) be-
schreiben folgende Sprachen:

γ (ε)∗ (∅)∗ (0∣1)∗00 (0∣(ε0∣∅(1)∗))
L(γ) {ε} {ε} {x00 ∣ x ∈ {0,1}∗} {0}

◁

Vereinbarungen
Um Klammern zu sparen, definieren wir folgende Präzedenzordnung:
Der Sternoperator ∗ bindet stärker als der Produktoperator und dieser
wiederum stärker als der Vereinigungsoperator.
Für (0∣(ε0∣∅(1)∗)) können wir also kurz 0∣ε0∣∅1∗ schreiben.
Da der reguläre Ausdruck γγ∗ die Sprache L(γ)+ beschreibt, verwenden
wir γ+ als Abkürzung für den Ausdruck γγ∗.
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Satz
{L(γ) ∣ γ ist ein regulärer Ausdruck über Σ} ⊆ REG.

Beweis.
Klar, da

die Basisausdrücke ∅, ε und a, a ∈ Σ∗, reguläre Sprachen beschreiben
und
die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle
abgeschlossen ist. ◻
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M3:

2

0

1

a
bb

a

a

b

Frage
Wie lässt sich die Sprache

L(M3) = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}
durch einen regulären Ausdruck beschreiben?

Antwort
Sei Lp,q die Sprache aller Wörter x , die M3 vom Zustand p in den
Zustand q überführen (d.h. Lp,q = {x ∈ {a,b}∗ ∣ δ̂(p, x) = q}).
Weiter sei L≠r

p,q die Sprache aller Wörter x = x1⋯xn ∈ Lp,q, die hierzu nur
Zustände ungleich r benutzen (d.h. δ̂(p, x1⋯xi) ≠ r für i = 1, . . . ,n − 1).
Dann gilt L(M3) = L0,1 = L0,0L≠00,1 und L0,0 = (L≠00,0)

∗, also
L(M3) = (L≠00,0)

∗L≠00,1.
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Antwort (Fortsetzung)

M3:

2

0

1

a
bb

a

a

b

Dann gilt L(M3) = (L≠00,0)
∗L≠00,1.

L≠00,1 und L≠00,0 lassen sich durch folgende
reguläre Ausdrücke beschreiben:

γ≠00,1 = (a∣bb)(ab)∗,

γ≠00,0 = a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb) ∣ ε.

Also ist L(M3) durch folgenden regulären Ausdruck beschreibbar:
γ0,1 = (a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb))∗(a∣bb)(ab)∗.
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Satz
REG ⊆ {L(γ) ∣ γ ist ein regulärer Ausdruck}.

Beweis
Wir konstruieren zu einem DFA M = (Z ,Σ, δ,q0,E) einen regulären
Ausdruck γ mit L(γ) = L(M).
Wir nehmen an, dass Z = {1, . . . ,m} und q0 = 1 ist.
Dann lässt sich L(M) als Vereinigung

L(M) = ⋃
q∈E

L1,q

von Sprachen der Form Lp,q = {x ∈ Σ∗ ∣ δ̂(p, x) = q} darstellen.
Es reicht also, reguläre Ausdrücke für die Sprachen Lp,q mit
1 ≤ p,q ≤ m anzugeben.
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Satz
REG ⊆ {L(γ) ∣ γ ist ein regulärer Ausdruck}.

Beweis (Fortsetzung)
Es reicht also, reguläre Ausdrücke für die Sprachen Lp,q mit
1 ≤ p,q ≤ m anzugeben.
Hierzu betrachten wir für r = 0, . . . ,m die Sprachen

Lr
p,q = {x ∈ Lp,q für i = 1, . . . ,n − 1 ist δ̂(p, x1 . . . xi) ≤ r} .

Wegen Lp,q = Lm
p,q reicht es, reguläre Ausdrücke für die Sprachen Lr

p,q
mit 1 ≤ p,q ≤ m und 0 ≤ r ≤ m anzugeben.
Wir zeigen induktiv über r , dass die Sprachen Lr

p,q durch reguläre
Ausdrücke beschreibbar sind.
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Satz
REG ⊆ {L(γ) ∣ γ ist ein regulärer Ausdruck}.

Beweis (Schluss)
Wir zeigen induktiv über r , dass die Sprachen Lr

p,q durch reguläre
Ausdrücke beschreibbar sind.

r = 0: In diesem Fall sind die Sprachen

L0p,q =
⎧⎪⎪⎨⎪⎪⎩

{a ∈ Σ ∣ δ(p, a) = q}, p ≠ q,
{a ∈ Σ ∣ δ(p, a) = q} ∪ {ε}, sonst

endlich und somit durch reguläre Ausdrücke beschreibbar.
r ↝ r + 1: Wegen

Lr+1
p,q = Lr

p,q ∪ Lr
p,r+1(Lr

r+1,r+1)∗Lr
r+1,q

sind mit Lr
p,q, 1 ≤ p,q ≤ m, auch die Sprachen Lr+1

p,q ,
1 ≤ p,q ≤ m, durch reguläre Ausdrücke beschreibbar. ◻
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Beispiel
Betrachte den DFA M

1

b

2

b

a

a

Da M insgesamt m = 2 Zustände und nur den Endzustand 2 besitzt, ist

L(M) = ⋃
q∈E

L1,q = L1,2 = L21,2.
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Beispiel (Fortsetzung)
Um reguläre Ausdrücke γr

p,q für die Sprachen Lr
p,q zu bestimmen,

benutzen wir für r ≥ 0 die Rekursionsformel
γr+1

p,q = γr
p,q ∣γr

p,r+1(γr
r+1,r+1)∗γr

r+1,q.

Damit erhalten wir

γ21,2 = γ11,2∣γ11,2(γ12,2)∗γ12,2,
γ11,2 = γ01,2∣γ01,1(γ01,1)∗γ01,2,
γ12,2 = γ02,2∣γ02,1(γ01,1)∗γ01,2.

Es genügt also, die regulären Ausdrücke γ01,1, γ01,2, γ02,1, γ02,2, γ11,2, γ12,2
und γ21,2 zu berechnen.
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln
L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0

ε∣b a a ε∣b

1

- b∗a - ε∣b∣ab∗a

2

- b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b

a a ε∣b

1

- b∗a - ε∣b∣ab∗a

2

- b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a

a ε∣b

1

- b∗a - ε∣b∣ab∗a

2

- b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a

ε∣b

1

- b∗a - ε∣b∣ab∗a

2

- b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 -

b∗a - ε∣b∣ab∗a

2

- b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - b∗a

- ε∣b∣ab∗a

2

- b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - b∗a - ε∣b∣ab∗a
2 -

b∗a(b∣ab∗a)∗ - -

◁
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Beispiel (Fortsetzung)

DFA M

1

b

2

b

a

a

Rekursionsformeln

L0p,p ={a ∣ δ(p, a) = p} ∪ {ε},
L0p,q ={a ∣ δ(p, a) = q} für p ≠ q,
Lr+1

p,q =Lr
p,q ∪ Lr

p,r+1(Lr
r+1,r+1)∗Lr

r+1,q.

L01,1 ={a ∈ Σ ∣ δ(1, a) = 1} ∪ {ε} = {ε,b}

↝ γ01,1 = ε∣b

L01,2 ={a ∈ Σ ∣ δ(1, a) = 2} = {a}

↝ γ01,2 = a

L02,1 ={a ∈ Σ ∣ δ(2, a) = 1} = {a}

↝ γ02,1 = a

L02,2 ={a ∈ Σ ∣ δ(2, a) = 2} ∪ {ε} = {ε,b}

↝ γ02,2 = ε∣b

γ11,2 =γ01,2∣γ01,1(γ01,1)∗γ01,2
= a∣(ε∣b)(ε∣b)∗a
≡b∗a

γ12,2 =γ02,2∣γ02,1(γ01,1)∗γ01,2
=(ε∣b)∣a(ε∣b)∗a
≡ ε∣b∣ab∗a

γ21,2 =γ11,2∣γ11,2(γ12,2)∗γ12,2
=b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
≡b∗a(b∣ab∗a)∗

r p,q
1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b
1 - b∗a - ε∣b∣ab∗a
2 - b∗a(b∣ab∗a)∗ - -

◁
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Korollar
Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

L ist regulär,
es gibt einen DFA M mit L = L(M),
es gibt einen NFA N mit L = L(N),
es gibt einen regulären Ausdruck γ mit L = L(γ),
L lässt sich mit den Operationen Vereinigung, Produkt und Sternhülle
aus endlichen Sprachen gewinnen,
L lässt sich mit den Operationen Vereinigung, Schnitt, Komplement,
Produkt und Sternhülle aus endlichen Sprachen gewinnen.

Ausblick
Als nächstes wenden wir uns der Frage zu, wie sich die Anzahl der
Zustände eines DFA minimieren lässt.
Da hierbei Äquivalenzrelationen eine wichtige Rolle spielen, befassen
wir uns zunächst mit Relationalstrukturen.
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Definition
Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn
R ⊆ Ak = A ×⋯ ×A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k-mal

= {(a1, . . . , ak) ∣ ai ∈ A für i = 1, . . . , k} ist.

Für i = 1, . . . ,n sei Ri eine ki -stellige Relation auf A. Dann heißt
(A; R1, . . . ,Rn) Relationalstruktur.
Die Menge A heißt der Individuenbereich, die Trägermenge oder die
Grundmenge der Relationalstruktur.

Bemerkung
Wir werden hier hauptsächlich den Fall n = 1, k1 = 2, also (A,R) mit
R ⊆ A ×A betrachten.
Man nennt dann R eine (binäre) Relation auf A.
Oft wird für (a,b) ∈ R auch die Infix-Schreibweise aRb benutzt.



Relationalstrukturen 62

Beispiel
(F ,M) mit F = {f ∣ f ist Fluss in Europa} und

M = {(f ,g) ∈ F × F ∣ f mündet in g},

(U,B) mit U = {x ∣ x ist Berliner } und
B = {(x , y) ∈ U ×U ∣ x ist Bruder von y},

(P(M),⊆), wobei M eine beliebige Menge und ⊆ die Inklusionsrelation
auf den Teilmengen von M ist,
(A, IdA) mit IdA = {(x , x) ∣ x ∈ A} (die Identität auf A),
(R,≤),
(Z, ∣), wobei ∣ die ”teilt”-Relation bezeichnet (d.h. a∣b, falls ein c ∈ Z
mit b = ac existiert).

◁
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Da Relationen Mengen sind, können wir den Schnitt, die Vereinigung,
die Differenz und das Komplement von Relationen bilden:

R ∩ S = {(x , y) ∈ A ×A ∣ xRy ∧ xSy},
R ∪ S = {(x , y) ∈ A ×A ∣ xRy ∨ xSy},
R − S = {(x , y) ∈ A ×A ∣ xRy ∧ ¬xSy},

R = (A ×A) − R.
SeiM⊆ P(A ×A) eine beliebige Menge von Relationen auf A. Dann
sind der Schnitt überM und die Vereinigung überM folgende
Relationen:

⋂M = ⋂R∈M R = {(x , y) ∣ ∀R ∈ M ∶ xRy},
⋃M = ⋃R∈M R = {(x , y) ∣ ∃R ∈ M ∶ xRy}.
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Definition
Die transponierte (konverse) Relation zu R ist

RT = {(y , x) ∣ xRy}.
RT wird oft auch mit R−1 bezeichnet.
Zum Beispiel ist (R,≤T ) = (R,≥).
Das Produkt (oder die Komposition) zweier Relationen R und S ist

R ○ S = {(x , z) ∈ A ×A ∣ ∃y ∈ A ∶ xRy ∧ ySz}.

Beispiel
Ist B die Relation ”ist Bruder von”, V ”ist Vater von”, M ”ist Mutter von”
und E = V ∪M ”ist Elternteil von”, so ist B ○ E die Onkel-Relation. ◁
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Notation
Für R ○ S wird auch R ;S, R ⋅ S oder einfach RS geschrieben.
Für R ○ ⋯ ○ R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-mal

schreiben wir auch Rn. Dabei ist R0 = Id .

Vorsicht!
Das Relationenprodukt Rn sollte nicht mit dem kartesischen Produkt

R ×⋯ × R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-mal

verwechselt werden.

Vereinbarung
Wir vereinbaren, dass Rn das n-fache Relationenprodukt bezeichnen soll,
falls R eine Relation ist.
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Definition
Sei R eine Relation auf A. Dann heißt R
reflexiv, falls ∀x ∈ A ∶ xRx (also IdA ⊆ R)

irreflexiv, falls ∀x ∈ A ∶ ¬xRx (also IdA ⊆ R)

symmetrisch, falls ∀x , y ∈ A ∶ xRy ⇒ yRx (also R ⊆ RT )

asymmetrisch, falls ∀x , y ∈ A ∶ xRy ⇒ ¬yRx (also R ⊆ RT )

antisymmetrisch, falls ∀x , y ∈ A ∶ xRy ∧ yRx ⇒ x = y (also R ∩ RT ⊆ Id)

konnex, falls ∀x , y ∈ A ∶ xRy ∨ yRx (also A ×A ⊆ R ∪ RT )

semikonnex, falls ∀x , y ∈ A ∶ x ≠ y ⇒ xRy ∨ yRx (also Id ⊆ R ∪ RT )

transitiv, falls ∀x , y , z ∈ A ∶ xRy ∧ yRz ⇒ xRz (also R2 ⊆ R)
gilt.
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Äquivalenz- und Ordnungsrelationen
refl. sym. trans. antisym. asym. konnex semikon.

Äquivalenzrelation ✓ ✓ ✓
(Halb-)Ordnung ✓ ✓ ✓
Striktordnung ✓ ✓
lineare Ordnung ✓ ✓ ✓
lin. Striktord. ✓ ✓ ✓
Quasiordnung ✓ ✓

Bemerkung
In der Tabelle sind nur die definierenden Eigenschaften durch ein ”✓”
gekennzeichnet. Das schließt nicht aus, dass noch weitere Eigenschaften
vorliegen.
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Beispiel
Die Relation ”ist Schwester von” ist zwar in einer reinen Damengesell-
schaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch
noch antisymmetrisch.

Die Relation ”ist Geschwister von” ist zwar symmetrisch, aber weder
reflexiv noch transitiv und somit keine Äquivalenzrelation.

(R,<) ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit
eine lineare Striktordnung.

(R,≤) und (P(M),⊆) sind reflexiv, antisymmetrisch und transitiv und
somit Ordnungen.

(R,≤) ist auch konnex und somit eine lineare Ordnung.

(P(M),⊆) ist zwar im Fall ∥M∥ ≤ 1 konnex, aber im Fall ∥M∥ ≥ 2
weder semikonnex noch konnex. ◁
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Graphische Darstellung

a b

dc
A={a,b, c,d}
R ={(b, c), (b,d), (c, a), (c,d), (d ,d)}

Eine Relation R auf einer (endlichen) Menge A kann durch einen
gerichteten Graphen (kurz Digraphen) G = (A,R) mit Knotenmenge A
und Kantenmenge R veranschaulicht werden.
Hierzu stellen wir jedes Element x ∈ A als einen Knoten dar und
verbinden jedes Knotenpaar (x , y) ∈ R durch eine gerichtete Kante
(Pfeil).
Zwei durch eine Kante verbundene Knoten heißen adjazent oder
benachbart.
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Definition
Sei R eine binäre Relation auf A.

Die Menge der Nachfolger bzw. Vorgänger von x ist
R[x] = {y ∈ A ∣ xRy} bzw. R−1[x] = {y ∈ A ∣ yRx}.

Der Ausgangsgrad eines Knotens x ist deg+(x) = ∥R[x]∥.
Der Eingangsgrad von x ist deg−(x) = ∥R−1[x]∥.
Ist R symmetrisch, so können wir die Pfeilspitzen auch weglassen.
In diesem Fall heißt deg(x) = deg−(x) = deg+(x) der Grad von x und
R[x] = R−1[x] die Nachbarschaft von x in G .
G ist schleifenfrei, falls R irreflexiv ist.
Ist R irreflexiv und symmetrisch, so nennen wir G = (A,R) einen
(ungerichteten) Graphen.
Eine irreflexive und symmetrische Relation R wird meist als Menge der
ungeordneten Paare E = {{a,b} ∣ aRb} notiert.
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Matrixdarstellung (Adjazenzmatrix)
Eine Relation R auf A = {a1, . . . , an} lässt sich auch durch die boolesche
(n × n)-Matrix MR = (mij) darstellen mit

mij = { 1, aiRaj ,

0, sonst.

Beispiel
Die Relation R = {(b, c), (b,d), (c, a), (c,d), (d ,d)} auf A = {a,b, c,d}
hat beispielsweise die Matrixdarstellung

MR =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 1
1 0 0 1
0 0 0 1

⎞
⎟⎟⎟
⎠
.

◁
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Listendarstellung (Adjazenzlisten)
R lässt sich auch durch eine Tabelle darstellen, die jedem Element x ∈ A
seine Nachfolger in Form einer Liste zuordnet.

Beispiel
Die Relation R = {(b, c), (b,d), (c, a), (c,d), (d ,d)} auf A = {a,b, c,d}
lässt sich beispielsweise durch folgende Adjazenzlisten darstellen:

x : R[x]

a: -
b: c,d
c: a,d
d : d

◁
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Berechnung von R ○ S
Sind MR = (rij) und MS = (sij) boolesche n × n-Matrizen für R und S,
so erhalten wir für T = R ○ S die Matrix MT = (tij) mit

tij = ⋁
k=1,...,n

(rik ∧ skj).

Die Nachfolgermenge T [x] von x bzgl. der Relation T = R ○ S
berechnet sich zu

T [x] = ⋃
y∈R[x]

S[y].
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Beispiel
Betrachte die Relationen R = {(a, a), (a, c), (c,b), (c,d)} und
S = {(a,b), (d , a), (d , c)} auf der Menge A = {a,b, c,d}.

Relation R S R ○ S S ○ R

Digraph
a b

dc

a b

dc

a b

dc

a b

dc

Adjazenz-
matrix

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0

0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

Adjazenz-
listen

a: a, c
b: -
c: b,d
d : -

a: b
b: -
c: -
d : a, c

a: b
b: -
c: a, c
d : -

a: -
b: -
c: -
d : a,b, c,d

◁
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Frage
Welche Paare muss man zu einer Relation R mindestens hinzufügen, damit
R transitiv wird?

Antwort
Es ist leicht zu sehen, dass der Schnitt von transitiven Relationen
wieder transitiv ist.
Die transitive Hülle von R ist

R+ = ⋂{S ⊆ A ×A ∣ S ist transitiv und R ⊆ S}.
R+ ist also eine transitive Relation, die R enthält.
Da R+ zudem in jeder Relation mit diesen Eigenschaften enthalten ist,
gibt es keine transitive Relation mit weniger Paaren, die R enthält.
Da auch die Reflexivität und die Symmetrie bei der Schnittbildung
erhalten bleiben, lassen sich nach demselben Muster weitere Hüllen-
operatoren definieren.
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Definition
Sei R eine Relation auf A.

Die reflexive Hülle von R ist
hrefl(R) = ⋂{S ⊆ A ×A ∣ S ist reflexiv und R ⊆ S}.

Die symmetrische Hülle von R ist
hsym(R) = ⋂{S ⊆ A ×A ∣ S ist symmetrisch und R ⊆ S}.

Die reflexiv-transitive Hülle von R ist
R∗ = ⋂{S ⊆ A ×A ∣ S ist reflexiv, transitiv und R ⊆ S}.

Die Äquivalenzhülle von R ist
häq(R) = ⋂{E ⊆ A ×A ∣ E ist eine Äquivalenzrelation mit R ⊆ E}.
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Satz
hrefl(R) = R ∪ IdA, hsym(R) = R ∪ RT , R+ = ⋃n≥1 Rn, R∗ = ⋃n≥0 Rn.

Beweis
Siehe Übungen. ◻

Bemerkung
Ein Paar (a,b) ist also genau dann in der reflexiv-transitiven Hülle R∗

von R enthalten, wenn es ein n ≥ 0 gibt mit aRnb.
Dies bedeutet, dass es Elemente x0, . . . , xn ∈ A gibt mit

x0 = a, xn = b und x0Rx1Rx2 . . . xn−1Rxn.

x0, . . . , xn heißt Weg der Länge n von a nach b.
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Definition
(A,R) heißt Äquivalenzrelation, wenn R eine reflexive, symmetrische und
transitive Relation auf A ist.

Beispiel
Auf der Menge aller Geraden im R2 die Parallelität.
Auf der Menge aller Menschen ”im gleichen Jahr geboren wie”.
Auf Z die Relation ”gleicher Rest bei Division durch m”. ◁
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Definition
Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E [x] die
von x repräsentierte Äquivalenzklasse und bezeichnet sie auch mit [x]E
(oder einfach mit [x], falls E aus dem Kontext ersichtlich ist):

[x]E = [x] = E [x] = {y ∣ xEy}.

Eine Menge S ⊆ A heißt Repräsentantensystem, falls sie genau ein
Element aus jeder Äquivalenzklasse enthält.
Die Menge aller Äquivalenzklassen von E wird Quotienten- oder
Faktormenge von A bzgl. E genannt und mit A/E bezeichnet:

A/E = {[x]E ∣ x ∈ A}.

Die Anzahl ∥A/E∥ der Äquivalenzklassen von E wird auch als der Index
von E bezeichnet.
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Beispiel
Für die weiter oben betrachteten Äquivalenzrelationen erhalten wir
folgende Klasseneinteilungen:

Für die Parallelität auf der Menge aller Geraden im R2:
alle Geraden mit derselben Richtung (oder Steigung) bilden jeweils eine
Äquivalenzklasse.
Ein Repräsentantensystem wird beispielsweise durch die Menge aller
Ursprungsgeraden gebildet.
Für die Relation ”im gleichen Jahr geboren wie” auf der Menge aller
Menschen: jeder Jahrgang bildet eine Äquivalenzklasse.
Für die Relation ”gleicher Rest bei Division durch m” auf Z:
jede der m Restklassen [0], [1], . . . , [m − 1] mit

[r] = {a ∈ Z ∣ a mod m = r}
bildet eine Äquivalenzklasse.
Repräsentantensystem: {0,1, . . . ,m − 1}. ◁
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Bemerkungen
Die kleinste Äquivalenzrelation auf A ist die Identität IdA, die größte ist
die Allrelation A ×A.
Die Äquivalenzklassen der Identität enthalten jeweils nur ein Element,
d.h. [x]IdA = {x} für alle x ∈ A.
Die Allrelation erzeugt dagegen nur eine Äquivalenzklasse, nämlich
[x]A×A = A für alle x ∈ A.
Die Identität IdA hat nur ein Repräsentantensystem, nämlich A.
Dagegen kann jede Singletonmenge {x} mit x ∈ A als
Repräsentantensystem für die Allrelation A ×A fungieren.
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Wie wir sehen werden, bilden die Äquivalenzklassen eine Zerlegung von A.

Definition
Eine Familie {Bi ∣ i ∈ I} von nichtleeren Teilmengen Bi ⊆ A heißt Partition
(oder Zerlegung) der Menge A, falls gilt:

die Mengen Bi überdecken A, d.h. A = ⋃i∈I Bi und
die Mengen Bi sind paarweise disjunkt, d.h. für je zwei verschiedene
Mengen Bi /= Bj gilt Bi ∩Bj = ∅.
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Bemerkungen
Für zwei Äquivalenzrelationen E ⊆ E ′ sind auch die Äquivalenzklassen
[x]E von E in den Klassen [x]E ′ von E ′ enthalten.
Folglich ist jede Äquivalenzklasse von E ′ die Vereinigung von (evtl.
mehreren) Äquivalenzklassen von E .
Im Fall E ⊆ E ′ sagt man auch, E bewirkt eine feinere Zerlegung von A
als E ′.
Demnach ist die Identität die feinste und die Allrelation die gröbste
Äquivalenzrelation.
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Satz
Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:
1 E ist eine Äquivalenzrelation auf A,
2 Für alle x , y ∈ A gilt xEy ⇔ E [x] = E [y],
3 Es gibt eine Partition {Bi ∣ i ∈ I} von A mit xEy ⇔∃i ∈ I ∶ x , y ∈ Bi .

Beweis.
1 impliziert 2 : Sei E eine Äquivalenzrelation auf A.
Da E transitiv ist, impliziert xEy die Inklusion E [y] ⊆ E [x]:

z ∈ E [y] ⇒ yEz
xEy
⇒ xEz ⇒ z ∈ E [x].

Da E symmetrisch ist, folgt aus xEy aber auch E [x] ⊆ E [y].
Umgekehrt folgt aus E [x] = E [y] wegen der Reflexivität von E , dass
y ∈ E [y] = E [x] enthalten ist, und somit xEy .
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Satz
Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:
1 E ist eine Äquivalenzrelation auf A,
2 Für alle x , y ∈ A gilt xEy ⇔ E [x] = E [y],
3 Es gibt eine Partition {Bi ∣ i ∈ I} von A mit xEy ⇔∃i ∈ I ∶ x , y ∈ Bi .

Beweis.
2 impliziert 3 : Gelte xEy ⇔ E [x] = E [y] für alle x , y ∈ A.

Wegen E [x] = E [x] folgt xEx und somit x ∈ E [x], d.h. A = ⋃x∈A E [x].
Ist E [x] ∩ E [y] ≠ ∅ und z ein Element in E [x] ∩ E [y], so folgt
xEz und yEz und somit E [x] = E [z] = E [y].
Folglich bildet {E [x] ∣ x ∈ A} eine Partition von A.
Zudem gilt

xEy ⇔ E [x] = E [y] ⇔ ∃z ∶ E [x] = E [z] = E [y] ⇔ ∃z ∶ x , y ∈ E [z].
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Satz
Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:
1 E ist eine Äquivalenzrelation auf A,
2 Für alle x , y ∈ A gilt xEy ⇔ E [x] = E [y],
3 Es gibt eine Partition {Bi ∣ i ∈ I} von A mit xEy ⇔∃i ∈ I ∶ x , y ∈ Bi .

Beweis.
3 impliziert 1 : Existiert schließlich eine Partition {Bi ∣ i ∈ I} von A mit

xEy ⇔∃i ∈ I ∶ x , y ∈ Bi , so ist E
reflexiv, da zu jedem x ∈ A eine Menge Bi mit x ∈ Bi existiert,
symmetrisch, da aus x , y ∈ Bi auch y , x ∈ Bi folgt, und
transitiv, da aus x , y ∈ Bi und y , z ∈ Bj wegen y ∈ Bi ∩Bj die Gleichheit
Bi = Bj und somit x , z ∈ Bi folgt. ◻
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Definition
(A,R) heißt Ordnung (auch Halbordnung oder partielle Ordnung), wenn R
eine reflexive, antisymmetrische und transitive Relation auf A ist.

Beispiel
(P(M),⊆), (Z,≤), (R,≤), (N, ∣), sind Ordnungen. (Z, ∣) ist keine
Ordnung, aber eine Quasiordnung.
Ist R eine Relation auf A und B ⊆ A, so ist RB = R ∩ (B ×B) die
Einschränkung von R auf B.
Einschränkungen von (linearen) Ordnungen sind ebenfalls (lineare)
Ordnungen.
Beispielsweise ist (Q,≤) die Einschränkung von (R,≤) auf Q und (N, ∣)
die Einschränkung von (Z, ∣) auf N. ◁
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Sei ≤ eine Ordnung auf A und sei < die Relation ≤ / IdA, d.h.
x < y ⇔ x ≤ y ∧ x ≠ y

Ein Element x ∈ A heißt unterer Nachbar von y (kurz: x ⋖ y), falls x < y
gilt und kein z ∈ A existiert mit x < z < y .
⋖ ist also die Relation < / <2.
Um die Ordnung (A,≤) in einem Hasse-Diagramm darzustellen, wird
nur der Digraph der Relation (A,⋖) gezeichnet.
Weiterhin wird im Fall x ⋖ y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf die Pfeilspitzen verzichtet werden kann.
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Beispiel
Die Inklusion ⊆ auf P(M) mit M = {a,b, c} lässt sich durch folgendes
Hasse-Diagramm darstellen:

∅

{b}

{a,b} {a, c}

{a}

{b, c}

{c}

M

◁



Das Hasse-Diagramm der Feiner-Relation 90

Beispiel
Die ”feiner als” Relation auf der Menge aller Partitionen von M = {a,b, c}
ist durch folgendes Hasse-Diagramm darstellbar:

{{a},{b},{c}}

{{a,b},{c}} {{a, c},{b}} {{a},{b, c}}

{M}

◁
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Beispiel
Die Einschränkung der ”teilt”-Relation auf die Menge {1,2, . . . ,10} ist
durch folgendes Hasse-Diagramm darstellbar:

1

2 3 5 7

4 6 9 10

8

◁
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Definition
Sei ≤ eine Ordnung auf A und sei b ein Element in einer Teilmenge B ⊆ A.

b heißt kleinstes Element oder Minimum von B, falls gilt:
∀b′ ∈ B ∶ b ≤ b′.

b heißt größtes Element oder Maximum von B, falls gilt:
∀b′ ∈ B ∶ b′ ≤ b.

b heißt minimal in B, falls es in B kein kleineres Element gibt:
∀b′ ∈ B ∶ b′ ≤ b ⇒ b′ = b.

b heißt maximal in B, falls es in B kein größeres Element gibt:
∀b′ ∈ B ∶ b ≤ b′ ⇒ b = b′.

Bemerkung
Wegen der Antisymmetrie kann es in B höchstens ein kleinstes und
höchstens ein größtes Element geben.
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Beispiel
Betrachte folgende Ordnung.

a b

c d

e

B minimal
in B

maximal
in B

Minimum
von B

Maximum
von B

{a,b} a,b a,b - -
{c,d} c,d c,d - -

{a,b, c} c a,b c -
{a,b, c, e} e a,b e -
{a, c,d , e} e a e a
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Definition
Sei ≤ eine Ordnung auf A und sei B ⊆ A.

Ein Element u ∈ A mit u ≤ b für alle b ∈ B heißt untere Schranke von B.
Ein Element o ∈ A mit b ≤ o für alle b ∈ B heißt obere Schranke von B.
B heißt nach oben beschränkt, wenn B eine obere Schranke hat.
B heißt nach unten beschränkt, wenn B eine untere Schranke hat.
B heißt beschränkt, wenn B nach oben und nach unten beschränkt ist.



Obere und untere Schranken 95

Beispiel (Fortsetzung)

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken

{a,b} a,b a,b - - c,d , e -
{c,d} c,d c,d - - e a,b

{a,b, c} c a,b c - c, e -
{a,b, c, e} e a,b e - e -
{a, c,d , e} e a e a e a
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Definition
Sei ≤ eine Ordnung auf A und sei B ⊆ A.

Besitzt B eine größte untere Schranke i , d.h. besitzt die Menge U aller
unteren Schranken von B ein größtes Element i , so heißt i das Infimum
von B (i = inf B):

(∀b ∈ B ∶ b ≥ i) ∧ [∀u ∈ A ∶ (∀b ∈ B ∶ b ≥ u) ⇒ u ≤ i].
Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge O aller
oberen Schranken von B ein kleinstes Element s, so heißt s das
Supremum von B (s = supB):

(∀b ∈ B ∶ b ≤ s) ∧ [∀o ∈ A ∶ (∀b ∈ B ∶ b ≤ o) ⇒ s ≤ o]

Bemerkung
B kann nicht mehr als ein Supremum und ein Infimum haben.
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Beispiel (Schluss)

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken

inf sup

{a,b} a,b a,b - - c,d , e - - -
{c,d} c,d c,d - - e a,b e -

{a,b, c} c a,b c - c, e - c -
{a,b, c, e} e a,b e - e - e -
{a, c,d , e} e a e a e a e a

◁
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Bemerkung
Auch in linearen Ordnungen muss nicht jede beschränkte Teilmenge ein
Supremum oder Infimum besitzen.
So hat in der linear geordneten Menge (Q,≤) die Teilmenge

B = {x ∈ Q ∣ x2 ≤ 2} = {x ∈ Q ∣ x2 < 2}
weder ein Supremum noch ein Infimum.
Dagegen hat in (R,≤) jede beschränkte Teilmenge B ein Supremum
und ein Infimum (aber möglicherweise kein Maximum oder Minimum).
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Definition
Sei R eine binäre Relation auf einer Menge M.

R heißt rechtseindeutig, falls für alle x , y , z ∈ M gilt:
xRy ∧ xRz ⇒ y = z .

R heißt linkseindeutig, falls für alle x , y , z ∈ M gilt:
xRz ∧ yRz ⇒ x = y .

Der Nachbereich N(R) und der Vorbereich V (R) von R sind
N(R) = ⋃

x∈M
R[x] und V (R) = ⋃

x∈M
RT [x].
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Abbildungen ordnen jedem Element ihres Definitionsbereichs genau ein
Element zu.

Definition
Eine rechtseindeutige Relation R mit V (R) = A und N(R) ⊆ B heißt
Abbildung oder Funktion von A nach B (kurz R ∶ A→ B).

Bemerkung
Wie üblich werden wir Abbildungen meist mit kleinen Buchstaben
f ,g ,h, ... bezeichnen und für (x , y) ∈ f nicht xfy sondern f (x) = y oder
f ∶ x ↦ y schreiben.
Ist f ∶ A→ B eine Abbildung, so wird der Vorbereich V (f ) = A der
Definitionsbereich und die Menge B der Wertebereich oder Wertevorrat
von f genannt.
Der Nachbereich N(f ) wird als Bild von f bezeichnet.
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Definition
Sei f ∶ A→ B eine Abbildung.

Im Fall N(f ) = B heißt f surjektiv.
Ist f linkseindeutig, so heißt f injektiv.
In diesem Fall impliziert f (x) = f (y) die Gleichheit x = y .
Eine injektive und surjektive Abbildung heißt bijektiv.
Ist f injektiv, so ist auch f −1 ∶ N(f ) → A eine Abbildung, die als die zu
f inverse Abbildung bezeichnet wird.

Bemerkung
Man beachte, dass der Definitionsbereich V (f −1) = N(f ) von f −1 nur dann
gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.
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Definition
Seien (A1,R1) und (A2,R2) Relationalstrukturen.

Eine Abbildung h ∶ A1 → A2 heißt Homomorphismus, falls für alle
a,b ∈ A1 gilt:

aR1b ⇒ h(a)R2h(b).

Sind (A1,R1) und (A2,R2) Ordnungen, so spricht man auch von
Ordnungshomomorphismen oder einfach von monotonen Abbildungen.
Injektive Ordnungshomomorphismen werden auch streng monotone
Abbildungen genannt.
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Beispiel

b

d

a

c

1

2

3

4

(A,≤) (B,⊑)
h

Die Abbildung h ∶ A→ B ist ein bijektiver Ordnungshomomorphismus.
Die Umkehrabbildung h−1 ist jedoch kein Homomorphismus, da h−1
nicht monoton ist.
Es gilt nämlich 2 ⊑ 3, aber h−1(2) = b /≤ c = h−1(3). ◁
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Definition
Seien (A1,R1) und (A2,R2) Relationalstrukturen.
Ein bijektiver Homomorphismus h ∶ A1 → A2, bei dem auch h−1 ein
Homomorphismus ist, d.h. es gilt für alle a,b ∈ A1,

aR1b ⇔ h(a)R2h(b).
heißt Isomorphismus.
In diesem Fall heißen die Strukturen (A1,R1) und (A2,R2) isomorph
(kurz: (A1,R1) ≅ (A2,R2)).

Sind (A1,R1) und (A2,R2) isomorph, so bedeutet dies, dass sich die
beiden Strukturen nur in der Benennung ihrer Elemente unterscheiden.
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Beispiel

Die Bijektion h ∶ x ↦ ex ist ein Ordnungsisomorphismus zwischen (R,≤)
und (R+,≤).
Für n ∈ N sei

Tn = {k ∈ N ∣ k teilt n}
und

Pn = {p ∈ Tn ∣ p ist prim}.
Dann ist die Abbildung

h ∶ k ↦ Pk

ein Ordnungshomomorphismus von (Tn, ∣) auf (P(Pn),⊆).
h ist sogar ein Isomorphismus, falls n quadratfrei ist (d.h. es gibt keine
Primzahl p, so dass p2 die Zahl n teilt). ◁
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Beispiel

1

5 2

4 3

1

5 2

4 3

G = (V ,E)
v 1 2 3 4 5

h1(v) 1 3 5 2 4
h2(v) 1 4 2 5 3

G ′ = (V ,E ′)

Die beiden Graphen G und G ′ sind isomorph.
Zwei Isomorphismen sind beispielsweise h1 und h2. ◁
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Beispiel

Während auf der Knotenmenge V = {1,2,3} insgesamt 2(
3
2) = 23 = 8

verschiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

◁
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Beispiel

Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elementen:

Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen
zerfällt unter der Isomorphierelation ≅ in fünf Äquivalenzklassen, die
durch obige fünf Hasse-Diagramme repräsentiert werden. ◁
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Frage
Wie können wir feststellen, ob ein DFA M = (Z ,Σ, δ,q0,E) eine minimale
Anzahl von Zuständen besitzt (und Z evtl. verkleinern)?

Beispiel
Betrachte den DFA M

1

5

2

6

3

7

4

8

b

b

b

b

a

a

a

a

aa bb

4

8

b

a

a

b

Zunächst können alle vom Startzustand aus unerreichbaren Zustände
entfernt werden. ◁
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Frage
Wie können wir feststellen, ob ein DFA M = (Z ,Σ, δ,q0,E) eine minimale
Anzahl von Zuständen besitzt (und Z evtl. verkleinern)?

Antwort
Zunächst können alle vom Startzustand aus unerreichbaren Zustände
entfernt werden.
Zudem lassen sich zwei Zustände p und q verschmelzen, wenn
M von p und q aus jeweils dieselben Wörter akzeptiert.
Für z ∈ Z sei

Mz = (Z ,Σ, δ, z ,E).
Dann können wir p und q verschmelzen (in Zeichen: p ∼ q), wenn
L(Mp) = L(Mq) ist.
Offensichtlich ist ∼ eine Äquivalenzrelation auf Z .
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Idee
Verschmelze jeden Zustand z mit allen äquivalenten Zuständen z ′ ∼ z zu
einem neuen Zustand.

Notation
Für die durch z repräsentierte Äquivalenzklasse

[z]∼ = {z ′ ∈ Z ∣ z ′ ∼ z} = {z ′ ∈ Z ∣ L(Mz ′) = L(Mz)}

schreiben wir auch einfach [z] oder z̃ .
Für eine Teilmenge Q ⊆ Z bezeichne

Q̃ = {q̃ ∣ q ∈ Q}

die Menge aller Äquivalenzklassen q̃, die mind. ein q ∈ Q enthalten.
Dann führt obige Idee auf folgenden DFA:

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a).
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Es genügt, alle Paare p /∼ q von inäquivalenten Zuständen zu finden.
Sei A∆B = (A ∖B) ∪ (B ∖A) die symmetrische Differenz von A und B.
Dann gilt p /∼ q ⇔ L(Mp)∆L(Mq) ≠ ∅.
Wörter x ∈ L(Mp)∆L(Mq) heißen Unterscheider zwischen p und q.
Für i ≥ 0 sei Di die Menge aller Paare {p,q}, die einen Unterscheider x
der Länge ∣x ∣ ≤ i haben.
Dann enthält D = ⋃i≥0 Di alle inäquivalenten Paare {p,q}, d.h.

p ∼ q ⇔ {p,q} /∈ D.

.
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Offenbar unterscheidet ε Endzustände und Nichtendzustände, d.h.

D0 = {{p,q} ⊆ Z ∣ p ∈ E ,q /∈ E}.
Zudem haben p und q genau dann einen Unterscheider ax der Länge
i + 1, wenn x die Zustände δ(p, a) und δ(q, a) unterscheidet, d.h.

Di+1 = Di ∪ {{p,q} ⊆ Z ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈ Di}.
Da es nur endlich viele Zustandspaare gibt, muss es ein k geben mit

D = Dk .

Offensichtlich gilt
D = Dk ⇔ Dk+1 = Dk .
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Algorithmus min-DFA(M)
1 Input: DFA M = (Z ,Σ, δ,q0,E)
2 entferne alle nicht erreichbaren Zustände
3 D′ ∶= {{z , z ′} ⊆ Z ∣ z ∈ E , z ′ /∈ E}
4 repeat
5 D ∶= D′

6 D′ ∶= D ∪ {{p,q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈ D}
7 until D′ = D
8 Output: M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ), wobei für jeden Zustand

z ∈ Z gilt: z̃ = {z ′ ∈ Z ∣ {z , z ′} /∈ D}
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 ε

5 ε

6 ε ε ε ε

1 2 3 4 5

Dann enthält D0 die Paare
{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

Wegen

{p,q} {1,4} {1,5} {2,4} {2,5}
{δ(q, a), δ(p, a)} {2,3} {2,6} {1,3} {1,6}

enthält D1 zusätzlich die Paare {1,4}, {1,5}, {2,4}, {2,5}.
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

Da nun jedoch keines der verbliebenen Paare {1,2}, {3,6}, {4,5} wegen

{p,q} {1,2} {3,6} {4,5}
{δ(p, a), δ(q, a)} {1,2} {4,5} {3,6}
{δ(p,b), δ(q,b)} {3,6} {1,2} {4,5}

zu D2 hinzugefügt werden kann, gilt D2 = D1 und somit D = D1.
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Beispiel
Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a
a

a
a

aa bb

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5

Da die Paare {1,2}, {3,6} und {4,5} nicht in D enthalten sind, können
die Zustände 1 und 2, 3 und 6, sowie 4 und 5 verschmolzen werden.
Demnach hat M ′ die Zustände 1̃ = {1,2}, 3̃ = {3,6} und 4̃ = {4,5}:

1̃ 3̃ 4̃
b

b

a

a
a b ◁
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Satz
Sei M = (Z ,Σ, δ,q0,E) ein DFA ohne unerreichbare Zustände. Dann ist

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis
Zuerst müssen wir zeigen, dass δ′ wohldefiniert ist, also δ′(q̃, a) nicht
von der Wahl des Repräsentanten q für die Äquivalenzklasse q̃ abhängt.
Hierzu ist die Implikation p ∼ q ⇒ δ(p, a) ∼ δ(q, a) zu zeigen.
Diese ist wiederum äquivalent zur Kontraposition
δ(p, a) /∼ δ(q, a) ⇒ p /∼ q, die wir bereits gezeigt haben.
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Satz
Sei M = (Z ,Σ, δ,q0,E) ein DFA ohne unerreichbare Zustände. Dann ist

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis (Fortsetzung)
Als nächstes zeigen wir, dass L(M ′) = L(M) ist.
Sei x = x1 . . . xn ∈ Σ∗ eine Eingabe und seien q0,q1, . . . ,qn die von M(x)
durchlaufenen Zustände, d.h. es gilt δ(qi−1, xi) = qi für i = 1, . . . ,n.
Nach Definition von δ′ folgt daher δ′(q̃i−1, xi) = q̃i für i = 1, . . . ,n,
d.h. M ′ durchläuft bei Eingabe x die Zustände q̃0, q̃1, . . . , q̃n.
Da aber q̃n entweder nur End- oder nur Nicht-Endzustände enthält,
gehört qn genau dann zu E , wenn q̃n ∈ Ẽ , d.h. es gilt

x ∈ L(M) ⇔ x ∈ L(M ′).



Minimierung von DFAs 121

Satz
Sei M = (Z ,Σ, δ,q0,E) ein DFA ohne unerreichbare Zustände. Dann ist

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis (Schluss)
Noch z.z.: die Anzahl ∥Z̃∥ der Zustände von M ′ ist minimal.
Wegen ∥Z̃∥ ≤ ∥Z∥ ist M ′ sicher dann minimal, wenn M minimal ist.
Es reicht also zu zeigen, dass ∥Z̃∥ nur von der Sprache L(M) abhängt.
Wegen p ∼ q ⇔ L(Mp) = L(Mq) gilt ∥Z̃∥ = ∥{L(Mz) ∣ z ∈ Z}∥.
Sei L = L(M) und für x ∈ Σ∗ sei Lx die Sprache {y ∈ Σ∗ ∣ xy ∈ L}.
Dann gilt {Lx ∣ x ∈ Σ∗} = {L(Mz) ∣ z ∈ Z}:

⊆: Klar, da Lx = L(Mz) für z = δ̂(q0, x) ist.
⊇: Auch klar, da jedes z ∈ Z über ein x ∈ Σ∗ erreichbar ist.

Also hängt ∥Z̃∥ = ∥{Lx ∣ x ∈ Σ∗}∥ nur von L ab. ◻
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Satz
Sei M = (Z ,Σ, δ,q0,E) ein DFA ohne unerreichbare Zustände. Dann ist

M ′ = (Z̃ ,Σ, δ′, q̃0, Ẽ) mit δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Bemerkung

M ′ erreicht nach Lesen von x den Zustand ˆ̃δ(q0, x). Wegen

ˆ̃δ(q0, x) = ˆ̃δ(q0, y) ⇔ δ̂(q0, x) ∼ δ̂(q0, y)
⇔ L(Mδ̂(q0,x)) = L(Mδ̂(q0,y)) ⇔ Lx = Ly

können wir den Zustand ˆ̃δ(q0, x) von M ′ auch mit Lx bezeichnen.
Dies führt auf den zu M ′ isomorphen DFA ML = (ZL,Σ, δL,Lε,EL) mit

ZL = {Lx ∣ x ∈ Σ∗}, EL = {Lx ∣ x ∈ L} und δL(Lx , a) = Lxa,

der sich direkt aus der Sprache L gewinnen lässt.
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Beispiel
Betrachte die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ xn−1 = 0}.
Dann hat ML die folgenden Sprachen als Zustände:

Lx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L, x ∈ {ε,1} oder x endet mit 11,
L ∪ {0,1}, x = 0 oder x endet mit 10,
L ∪ {ε,0,1}, x endet mit 00,
L ∪ {ε}, x endet mit 01.

Graphische Darstellung von ML:

Lε

L0

L00

L01

0 0

11

10

1 0
◁
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Notwendig und hinreichend für die Existenz von ML ist, dass die Menge
ZL = {Lx ∣ x ∈ Σ∗} endlich ist.
L ist also genau dann regulär, wenn folgende Äquivalenzrelation RL
einen endlichen Index hat:

x RL y ∶⇔ Lx = Ly

Ist M ein DFA mit einer minimalen Anzahl von Zuständen, so haben
die Zustände von M ′ die Form q̃ = {q}, d.h. M ist isomorph zu M ′.
Da M ′ wiederum isomorph zu ML ist, ist jeder minimale DFA M mit
L(M) = L isomorph zu ML, d.h. für jede reguläre Sprache L gibt es bis
auf Isomorphie nur einen Minimal-DFA.
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Satz (Myhill und Nerode)
1 REG = {L ∣ index(RL) < ∞}.
2 Sei L regulär und sei index(RL) der Index von RL. Dann gibt es für L

bis auf Isomorphie genau einen Minimal-DFA. Dieser hat index(RL)
Zustände.
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Zwei Eingaben x und y überführen den DFA ML genau dann in
denselben Zustand, wenn Lx = Ly ist (also xRLy gilt).
Die Zustände von ML können daher anstelle von Lx auch mit den
Äquivalenzklassen [x] von RL (bzw. mit geeigneten Repräsentanten)
benannt werden.
Der resultierende Minimal-DFA MRL wird auch als Äquivalenzklassen-
automat bezeichnet:

MRL = (Z ,Σ, δ, [ε],E) mit Z = {[x] ∣ x ∈ Σ∗} und E = {[x] ∣ x ∈ L}.
Für die Konstruktion von δ genügt es, ausgehend von r1 = ε eine Folge
von Wörtern r1, . . . , rk mit [ri] ≠ [rj] zu bestimmen, so dass zu jedem ri
und jedem Zeichen a ∈ Σ ein rj existiert mit ria ∈ [rj].
In diesem Fall ist dann δ([ri], a) = [ria] = [rj].
Die Konstruktion von MRL erfordert meist weniger Aufwand als die von
ML, da die Bestimmung der Sprachen Lx entfällt.
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Beispiel
Für die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ xn−1 = 0} lässt sich der
Äquivalenzklassen-DFA MRL ausgehend von r1 = ε wie folgt konstruieren:
1 Wegen r10 = 0 /∈ [ε] ist r2 = 0 und δ([ε],0) = [0].
2 Wegen r11 = 1 ∈ [ε] ist δ([ε],1) = [ε].
3 Wegen r20 = 00 /∈ [ε] ∪ [0] ist r3 = 00 und δ([0],0) = [00].
4 Wegen r21 = 01 /∈ [ε] ∪ [0] ∪ [00] ist r4 = 01 und δ([0],1) = [01].
5 Wegen r30 = 000 ∈ [00] ist δ([00],0) = [00].
6 Wegen r31 = 001 ∈ [01] ist δ([00],1) = [01].
7 Wegen r40 = 010 ∈ [0] ist δ([01],0) = [0].
8 Wegen r41 = 011 ∈ [ε] ist δ([01],1) = [ε].

r ε 0 00 01
[r0] [0] [00] [00] [0]
[r1] [ε] [01] [01] [ε]

[ε][ε]

[0][0]
00

11

[00][00]

00

[01][01]

11

00
11

00

11
◁
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Korollar
Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

L ist regulär,
es gibt einen DFA M mit L = L(M),
es gibt einen NFA N mit L = L(N),
es gibt einen regulären Ausdruck γ mit L = L(γ),
die Äquivalenzrelation RL hat endlichen Index.

Wir können also beweisen, dass eine Sprache L nicht regulär ist, indem wir
unendlich viele Wörter finden, die paarweise inäquivalent bzgl. RL sind.



Nachweis von L /∈ REG mittels Myhill und Nerode 129

Satz
Die Sprache L = {anbn ∣ n ≥ 0} ist nicht regulär.

Beweis
Die Wörter ai , i ≥ 0, sind bzgl. RL paarweise inäquivalent.
Für i ≠ j gilt nämlich ¬aiRLa j , da

bi ∈ Lai ∆La j

enthalten ist. ◻
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Frage
Wie lässt sich möglichst einfach zeigen, dass eine Sprache nicht regulär ist?

Antwort
Oft führt die Kontraposition folgender Aussage zum Ziel.

Satz (Pumping-Lemma für reguläre Sprachen)
Zu jeder regulären Sprache L gibt es eine Zahl l ≥ 0, so dass sich alle
Wörter x ∈ L mit ∣x ∣ ≥ l in x = uvw zerlegen lassen mit
1 v /= ε,
2 ∣uv ∣ ≤ l und
3 uv iw ∈ L für alle i ≥ 0.
Das kleinste solche l wird auch die Pumping-Zahl von L genannt.
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Beispiel
Die Sprache

L = {x ∈ {a,b}∗ ∣ #a(x) −#b(x) ≡3 1}
lässt sich „pumpen“ (mit Pumping-Zahl l = 3).
Sei x ∈ L beliebig mit ∣x ∣ ≥ 3.

1. Fall: x hat das Präfix ab.
Zerlege x = uvw mit u = ε und v = ab.

2. Fall: x hat das Präfix aab.
Zerlege x = uvw mit u = a und v = ab.

3. Fall: x hat das Präfix aaa.
Zerlege x = uvw mit u = ε und v = aaa.

Restliche Fälle (Präfixe ba, bba und bbb): analog.
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Beispiel
Sei L eine endliche Sprache.
Offenbar lässt sich kein Wort x ∈ L „pumpen“.
Sei

l =
⎧⎪⎪⎨⎪⎪⎩

1 +maxx∈L ∣x ∣, L ≠ ∅,
0, sonst.

Dann lässt sich jedes Wort x ∈ L der Länge ≥ l „pumpen“, da solche
Wörter gar nicht existieren. Also hat L eine Pumping-Zahl ≤ l .
Zudem gibt es im Fall l > 0 ein Wort x ∈ L der Länge l − 1, das sich
nicht „pumpen“ lässt.
Somit ist die Pumping-Zahl von L gleich l .
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Satz (Pumping-Lemma für reguläre Sprachen)
Zu jeder regulären Sprache L gibt es eine Zahl l , so dass sich alle Wörter
x ∈ L mit ∣x ∣ ≥ l in x = uvw zerlegen lassen mit
1 v /= ε,
2 ∣uv ∣ ≤ l und
3 uv iw ∈ L für alle i ≥ 0.
Das kleinste solche l wird auch die Pumping-Zahl von L genannt.
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Beweis
Sei M = (Z ,Σ, δ,q0,E) ein DFA mit l Zuständen und sei
x = x1 . . . xn ∈ L mit n = ∣x ∣ ≥ l .
Dann muss M(x) nach spätestens l Schritten einen Zustand zum
zweiten Mal annehmen, d.h. es ex. 0 ≤ j < k ≤ l und z ∈ Z mit

δ̂(q0, x1 . . . xj) = z und
δ̂(q0, x1 . . . xjxj+1 . . . xk) = z .

Setze u = x1 . . . xj , v = xj+1 . . . xk und w = xk+1 . . . xn.
Dann gilt ∣v ∣ = k − j ≥ 1 (d.h. v /= ε), k = ∣uv ∣ ≤ l .
Zudem gehört für alle i ≥ 0 das Wort uv iw zu L, da wegen δ̂(z , v i) = z

δ̂(q0,uv iw) = δ̂(δ̂(δ̂(q0,u)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

z

, v i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
z

,w) = δ̂(δ̂(δ̂(q0,u), v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z

,w) = δ̂(q0, x)

in E ist. ◻
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Um also L /∈ REG zu
zeigen, genügt es,

für jede Zahl l ≥ 0 ein
Wort x ∈ L der Länge
∣x ∣ ≥ l zu finden, so dass
für jede Zerlegung
x = uvw mindestens
eine der folgenden drei
Bedingungen verletzt
ist:
1 v /= ε,
2 ∣uv ∣ ≤ l oder
3 uv iw ∈ L für alle

i ≥ 0.

Beispiel: L = {anbn ∣ n ≥ 0} /∈ REG
Für jede Zahl l ≥ 0 enthält L das
Wort x = albl mit ∣x ∣ = 2l ≥ l .
Für jede Zerlegung x = uvw von
x = albl mit
1 v /= ε
ist die Bedingung
3 uv iw ∈ L
für alle i ≥ 2 verletzt.
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