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1 Klassische Verfahren

1.1 Einfiihrung

Kryptosysteme (Verschliisselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.

Physikalische MaBnahmen: Tresor etc.
Organisatorische MaBnahmen: einsamer Waldspaziergang etc.
Steganografische MaBnahmen: unsichtbare Tinte etc.

Andererseits konnen durch kryptografische Verfahren weitere Schutzziele realisiert
werden.

o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o [ntegritdt
— von Nachrichten und Daten
o Zurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.

Kryptografie: Lehre von der Geheimhaltung von Informationen durch die Verschliisse-
lung von Daten. Im weiteren Sinne: Wissenschaft von der Ubermittlung, Speiche-
rung und Verarbeitung von Daten in einer von potentiellen Gegnern bedrohten
Umgebung.

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stérken bzw. Schwéachen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).
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1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

— operieren auf semantischen Einheiten,

— starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemafl Funkbefehl testen
yde Frage

sLk Befehl

fin beendet

eom eigene Maschinen

Kryptosysteme

— operieren auf syntaktischen Einheiten,

— flexibler Mechanismus durch Schliisselvereinbarung

Definition 2 (Alphabet). Ein Alphabet A = {aq, ..., a, 1} ist eine geordnete endli-
che Menge von Zeichen a;. Eine Folge v = x1 ...z, € A" heifst Wort (der Linge n).
Die Menge aller Worter diber dem Alphabet A ist A* = 5o A".

Beispiel 3. Das lateinische Alphabet A, enthdilt die 26 Buchstaben A, ... ,Z. Bei
der Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Grof- und Kleinschreibung verzichtet (~ Verringerung der Redundanz
im Klartext). q

Definition 4 (Kryptosystem). Ein Kryptosystem wird durch folgende Komponenten
beschrieben.:

— A, das Klartextalphabet,

— B, das Kryptotextalphabet,

— K, der Schliisselraum (key space),

— M C A*, der Klartextraum (message space),

— C C B*, der Kryptotextraum (ciphertext space),

— E: K x M — C, die Verschliisselungsfunktion (encryption function),

— D: K xC — M, die Entschliisselungsfunktion (decryption function) und

— S C K x K, eine Menge von Schlisselpaaren (k, k") mit der Eigenschaft, dass fir
jeden Klartext x € M folgende Beziehung gilt:

DK, E(k,z)) =z (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k, k) | k € K}, weshalb wir in diesem Fall
auf die Angabe von S verzichten kénnen.
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Chiffrier- 4 Dechiffrier-
funktion F funktion D

Sender Empfianger

Zu jedem Schliissel k € K korrespondiert also eine Chiffrierfunktion Ej : x — E(k, x)
und eine Dechiffrierfunktion Dy : y — D(k,y). Die Gesamtheit dieser Abbildun-
gen wird auch Chiffre (englisch cipher) genannt. (Daneben wird der Begriff | Chiffre“
auch als Bezeichnung fiir einzelne Kryptotextzeichen oder kleinere Kryptotextsequenzen
verwendet. )

Lemma 5. Fir jedes Paar (k, k') € S ist die Chiffrierfunktion Ej. injektiv.

Beweis. Angenommen, fiir zwei unterschiedliche Klartexte xzy # x5 ist E(k,z) =
E(k,z2). Dann folgt

1.1
(:) Z2 # Ty,

D(K,E(k,z1)) = D(K, E(k,x2))

im Widerspruch zu (1.1). O

1.3 Die affine Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a,b,m ganze Zahlen
mit m > 1. Die Zahl a teilt b (kurz: alb), falls ein d € Z existiert mit b = ad. Teilt m
die Differenz a — b, so schreiben wir hierfir

a=,b
(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne
amod m =min{a —dm >0 |d € Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r€{0,..., m— 1}, fir die eine ganze Zahl d € 7 existiert mit a = dm + r.

Die auf Z definierten Operationen
a @y, b:=(a+0b) modm

und
a @ b := ab mod m.
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Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlissel k = 13).

z ABCDEFGHIJKLMNOPQRSTUVWXYZ
E(13,2) [INOPQRSTUVWXYZABCDEFGHIJKLM

sind abgeschlossen auf Z,, = {0,..., m — 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Fir
a P,, —b schreiben wir auch a &,, b.

Durch Identifikation der Buchstaben a; mit ihren Indizes konnen wir die auf Z,,, definierten
Rechenoperationen auf Buchstaben iibertragen.

Definition 7 (Buchstabenrechnung). Sei A = {ag,...,an_1} ein Alphabet. Fiir
Indizes i,j € {0,..., m — 1} und eine ganze Zahl z € 7 ist

a4 + a5 = Qigj, A — A5 = Qigy,j, G0 = Qio,,;,
A+ 2 = Qigpz, G — 2 = Qignz, 205 = 0x0,,;)-

Mit Hilfe dieser Notation lasst sich die Verschiebechiffre, die auch als additive Chiffre
bezeichnet wird, leicht beschreiben.

Definition 8 (additive Chiffre). Bei der additiven Chiffre ist A= B =M =C
ein beliebiges Alphabet mit m := ||Al| > 1 und K ={1,...,m—1}. Firke K, x € M
und y € C gilt

Ek,z)=x+4+k und D(c,y) =y —k.

Im Fall des lateinischen Alphabets fithrt der Schliissel £ = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.1). Natiirlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten geschiitzt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen — etwa von Rétsellosungen — verhindert werden.

ROT13 ist eine involutorische — also zu sich selbst inverse — Abbildung, d.h. fiir alle
x e A gilt

ROT13(ROT13(z)) = =.
Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar eine echt
involutorische Abbildung.

Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe: Anstatt auf
jeden Klartextbuchstaben den Schliisselwert £ zu addieren, konnen wir die Klartextbuch-
staben auch mit k£ multiplizieren. Allerdings erhalten wir hierbei nicht fiir jeden Wert
von k eine injektive Chiffrierfunktion. So bildet etwa die Funktion g : A;,; — Ajer mit
g(x) = 2x sowohl A als auch N auf den Buchstaben g(A) = g(N) = A ab. Um die vom
Schliisselwert k zu erfiillende Bedingung angeben zu konnen, fithren wir folgende Begriffe
ein.

Definition 9 (ggT, kgV, teilerfremd). Seien a,b € Z. Fir (a,b) # (0,0) st
ggT(a,b) = max{d € Z | d teilt die beiden Zahlen a und b}
der grofite gemeinsame Teiler von a und b. Fir a # 0,b # 0 ist

kgV(a,b) = min{d € Z | d > 1 und die beiden Zahlen a und b teilen d}
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das kleinste gemeinsame Vielfache von a und b. Ist ggT(a,b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.

Lemma 10. Seien a,b,c € Z mit (a,b) # (0,0). Dann gilt ggT(a,b) = ggT(b, a + bc)
und somit ggT(a,b) = ggT(b,a mod b), falls b > 1 ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a + bc und umgekehrt. O

Euklidscher Algorithmus: Der grofite gemeinsame Teiler zweier Zahlen a und b lasst
sich wie folgt bestimmen.

O.B.d. A. sei a > b > 0. Bestimme die natiirlichen Zahlen (durch Divsision mit Rest):
ro=a>r =b>ry>--->r;>r, 1 =0 und dy,ds,...dsi1
mit
Ti_lzdi+17‘i+r,~+1 far izl,...,S.*
Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(Tz‘—hTi) = ggT(n, Ti—1 — dz‘+17‘z‘)
————

Tit1
folgt ggT(a,b) = ggT(rs,rs11) = rs.
Beispiel 11. Fiir a = 693 und b = 147 erhalten wir
i Tic1 = dig1e T+ i
1 693 = 4 -147 + 105
2 147 = 1 -105 + 42
3 106 = 2 - 424+ 21
4 42 = 2 21+ 0
und damit ggT(693,147) = ry = 21. Q

Der Euklidsche Algorithmus ldsst sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklid;i(a,b) Prozedur Euklid,e(a,b)

| repeat 1 if b=0 then

2 r:=amod b 2 return(a)

3 a:=b>b 3 else

4 b:=r 4 return(Euklid ek (b, @ mod b))
5 until r=20

¢ return(a)

Zur Abschétzung von s verwenden wir die Folge der Fibonacci-Zahlen F},:

*Also: dl =Ti—2 div Ti—1 und Ty =Ti—2 mod Ti—1-
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0, falls n =0

F,=141, falls n = 1

F,_1+F,, fallsn>2
Durch Induktion iiber i = s,s —1,...,0 folgt r; > F, 1 _;; also a = rq > Fyy1. Weiterhin
lasst sich durch Induktion iiber n > 0 zeigen, dass Fj,41 > ¢™ ! ist, wobei ¢ = (14++/5)/2

der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da Fy = F} =
1 = ¢° > ¢! ist. Unter der Induktionsannahme Fj,; > ¢*~! fiir i < n — 1 folgt wegen

P =041
Fopn=Fo+ Foa 20" 249" =¢" (o +1) = ¢" "

Somit ist @ > ¢*~1, d.h. s < 1+ [log a).

Satz 12. Der Euklidsche Algorithmus fihrt O(n) Divisionsschritte zur Berechnung von
ggT(a,b) durch, wobei n die Linge der Eingabe a > b > 0 in Bindrdarstellung bezeichnet.
Dies fiihrt auf eine Zeitkomplezitit von O(n?), da jede Ganzzahldivision in Zeit O(n?)
durchfihrbar ist.

Erweiterter Euklidscher bzw. Berlekamp-Algorithmus: Der Euklidsche Algorith-
mus kann so modifiziert werden, dass er eine lineare Darstellung

geT(a,b) =AXa+pub mit N\ peZ

des ggT liefert (Zeitkomplexitit ebenfalls O(n?)). Hierzu werden neben r; und d; weitere
Zahlen
pi = pi—2 — dipi—1,  wobei pg=1 und p; =0,

und
¢ = ¢i—2 — d;gi—1, wobei ¢=0 und ¢ =1,

fir ¢ =0,...,n bestimmt. Dann gilt fiir i =0 und ¢ = 1,
ap; +bg; = 1i,
und durch Induktion iiber 7,
apiy1 +bgipn = a(pioy — digapi) +0(gi-1 — div1)
= api—1 +bgi_1 — diy1(ap; + bg;)

- (7"1'—1 - di+17"z')

Tit+1
zeigt man, dass dies auch fir ¢+ = 2, ..., s gilt. Insbesondere gilt also
aps + bgs = rs = ggT(a,b).

Korollar 13 (Lemma von Bezout). Der grofite gemeinsame Teiler von a und b ist in
der Form
geT(a,b) =Xa+pb mit A\ pu€Z

darstellbar.
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Beispiel 14. Fir a = 693 und b = 147 erhalten wir wegen

ioricr = digr T T Di i pi 693+ ¢;-147= 1,
0 1 0 1-693+ 0-147 =693
1 693 = 4 -147+ 105 O 1 0-693+ 1-147=147
2 147 = 1 105+ 42 1 —4 1-693 — 4-147=105
3 105 = 2 - 424 21 -1 5) —1-693+ 5-147= 42
4 42 = 2 -21+ 0 3 -—-14 3-693 —14-147= 21
die lineare Darstellung 3 - 693 — 14 - 147 = 21. N

Aus der linearen Darstellbarkeit des grofiten gemeinsamen Teilers ergeben sich eine Reihe
von niitzlichen Schlussfolgerungen.

Korollar 15. ggT(a,b) = min{Aa + ub > 1| A\, u € Z}.

Beweis. Sei M ={ a+pub> 1|\ p € Z}, m =min M und g = ggT(a,b). Dann folgt
g > m, da g in der Menge M enthalten ist, und g < m, da g jede Zahl in M teilt. O

Korollar 16. Der grifite gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

zla A zlb = z|ggT(a,b).

Beweis. Seien p, A € Z mit pa + A\b = ggT(a,b). Falls x sowohl a als auch b teilt, dann
teilt © auch die Produkte pa und A\b und somit auch deren Summe. O

Korollar 17 (Lemma von Euklid). Teilt a das Produkt bc und sind a, b teilerfremd, so
teilt a auch c,
albc A ggT(a,b) =1 = dalc

Beweis. Wegen ggT(a,b) = 1 existieren Zahlen pu, A € Z mit pa + A\b = 1. Falls a das
Produkt be teilt, muss a auch die Zahl cua 4+ cAb = c teilen. O

Korollar 18. Zwei Zahlen a und b sind genau dann zu einer Zahl m € Z teilerfremd,
wenn thr Produkt ab teilerfremd zu m ist,

ggT(a,m) =ggT(bym)=1 <« ggT(abm)=1.

Beweis. Da aund b teilerfremd zu m sind, existieren Zahlen p, A\, ¢/, ' € Z mit pa+im =
1'b+ N'm = 1. Somit ergibt sich aus der Darstellung

1= (ua+ Im)(@'b+ Nm) = up' ab+ (paX + p/'oOX + A\N'm)m
—~

l’[/” )\N

und Korollar 15, dass auch ab teilerfremd zu m ist.

Gilt umgekehrt ggT(ab,m) = 1, so existieren Zahlen p, A € Z mit pab + Am = 1. Mit
Korollar 15 folgt sofort ggT(a, m) = ggT(b,m) = 1. O

Damit nun eine Abbildung g : A — A von der Bauart g(z) = bx injektiv (oder gleichbe-
deutend, surjektiv) ist, muss es zu jedem Buchstaben y € A genau einen Buchstaben
xr € A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.
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Satz 19. Seien b,m ganze Zahlen mit m > 1. Die lineare Kongruenzgleichung bx =,, y
besitzt genau dann eine eindeutige Losung x € {0,..., m — 1}, wenn ggT(b,m) =1 ist.

Beweis. Angenommen, ggT(b,m) = ¢g > 1. Dann ist mit x auch 2’ = x + m/g eine
Losung von bxr =, y mit x %, «’. Gilt umgekehrt ggT(b,m) = 1, so folgt aus den
Kongruenzen

bxl =mY
und

bx2 =mY
sofort b(x; — z3) =,,, 0, also m|b(x1 — z2). Wegen ggT (b, m) = 1 folgt mit dem Lemma
von Euklid m|(x; — z3), also z1 =, x2.
Dies zeigt, dass die Abbildung f : Z,, — Z,, mit f(x) = bz mod m injektiv ist. Da jedoch
Definitions- und Wertebereich von f identisch sind, muss f dann auch surjektiv sein.
Dies impliziert, dass die Kongruenz bx =, y fir jedes y € Z,, losbar ist. O

Korollar 20. Im Fall ggT(b,m) =1 hat die Kongruenz bx =, 1 genau eine Losung, die
das multiplikative Inverse von b modulo m genannt und mit b=' mod m (oder einfach
mit b=1) bezeichnet wird. Die invertierbaren Elemente von Z,, werden in der Menge

Loy, = {b € L, | ggT(b,m) =1}
zusammengefasst.

Korollar 18 zeigt, dass Z;, unter der Operation ®,, abgeschlossen ist, und mit Korollar 20
folgt, dass (Zf,, ®,,) eine multiplikative Gruppe bildet. Allgemeiner zeigt man, dass fiir
einen beliebigen Ring (R, +, -, 0, 1) mit Eins die Multiplikation auf der Menge R* = {a €
R|3be R:ab=1=ba} aller Einheiten von R eine Gruppe (R*,-, 1) (die so genannte
Einheitengruppe von R) bildet.

Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
b+ pm = ggT(b,m) = 1 zu b~! = X mod m. Bei Kenntnis von b~! kann die Kongru-
enz bx =, y leicht zu z = yb~! mod m geldst werden. Die folgende Tabelle zeigt die
multiplikativen Inversen b~ fiir alle b € Zi.

b |1 3 5 7 9 11 15 17 19 21 23 25
b'(1 9 21 15 3 19 7 23 11 5 17 25

Nun lasst sich die additive Chiffre leicht zur affinen Chiffre erweitern.

Definition 21 (affine Chiffre). Bei der affinen Chiffre ist A= B = M = C ein
beliebiges Alphabet mit m := ||Al| > 1 und K = Z, X Z,. Fir k = (b,c) € K, z € M
und y € C gilt

E(k,z) =bx+c und D(k,y) =b""(y —c).

In diesem Fall liefert die Schliisselkomponente b = —1 fiir jeden Wert von ¢ eine invo-
lutorische Chiffrierfunktion = — E(b,¢;x) = ¢ — z (verschobenes komplementires
Alphabet). Wihlen wir fiir ¢ ebenfalls den Wert —1, so ergibt sich die Chiffrierfunk-
tion x — —x — 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

T ABCDEFGHIJKLMNOPQRSTUVWXYZ
—x AZYXWVUTSRQPONMLKJIHGFEDCB
—x—1| ZYXWVUTSRQPONMLKIJIHGFEDCBA
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Als néchstes illustrieren wir die Ver- und Entschliisselung mit der affinen Chiffre an einem
kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei A = {A,...,Z} = B, also m = 26. Weiter sei k = (9,2),

also b =9 und ¢ = 2. Um den Klartextbuchstaben x = F zu verschlisseln, berechnen wir
Ek,z)=br+c=9F+2=V,
da der Index von F gleich 5, der von V gleich 21 und 9 -5 + 2 = 47 =54 21 ist. Um einen

Kryptotextbuchstaben wieder entschlisseln zu konnen, bendtigen wir das multiplikative
Inverse von b =9, das sich wegen

toricr = dig1 i+ i pi-26+  ¢-9 = 1
0 1-26 + 0-9 = 26
1 26 = 2 -9+ 8 0-26 + 1-9= 9
2 9 = 1 -84 1  1.264(-2)-9= 8
3 8 = 8 -1+ 0 (-1)-26+ 3-9= 1

2u b~ = g3 = 3 ergibt. Damit erhalten wir fir den Kryptotextbuchstaben y = V den
urspringlichen Klartextbuchstaben

D(k,y) =b"'(y—c)=3(V—2)=F

zurick, da 3-19 = 57 =96 5 ist. N

Eine wichtige Rolle spielt die Funktion
p: N =N mit o) =[Z,| = [{a|0<a<n-1, ggT(a,n) = 1},

die sogenannte Fulersche p-Funktion.

n |1 2 3 4 5 6 7 8 9
Zr {0} {1} {1,2}{1,3} {1,2,3,4} {1,5}{1,---,6} {1,3,5,7} {1,2,4,5,7,8}
pen)] 1 1 2 2 4 2 6 4 6
Wegen

Lpe — Zoe =10,p,2p, ..., (p ! — 1)p}
folgt sofort
90(276) _ pe _pe—l — pe—l(p o 1)

Um hieraus fiir beliebige Zahlen m € N eine Formel fiir ¢(m) zu erhalten, gentigt es,
¢(ab) im Fall ggT(a,b) = 1 in Abhangigkeit von ¢(a) und ¢(b) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Z,,; — Z,, X Z; mit

f(x) := (z mod m,z mod I).
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Beispiel 23. Sei m =5 und | = 6. Dann erhalten wir die Funktion f : Zsy — Z5 X Zg
mit

x 0 1 2 3 4 5 6 7 8 9
f(x)] (0,0)(1,1)(2,2) (3,3) (4,4) (0,5) (1,0) (2,1) (3,2) (4,3)

¢ | 10 11 12 13 14 15 16 17 18 19
f(x)] (0,4) (1,5) (2,0)(3,1) (4,2) (0,3) (1,4) (2,5) (3,0) (4,1)

z | 20 21 22 23 24 25 26 27 28 29
f(x)] (0,2) (1,3) (2,4) (3,5) (4,0) (0,1) (1,2) (2,3) (3,4) (4,5)

Man beachte, dass f eine Bijektion zwischen Zsg und Zs X Zg ist. Zudem fdllt auf, dass
ein x-Wert genau dann in Z3, liegt, wenn der Funktionswert f(x) = (y,2) zu ZE X Z
gehort (die Werte x € 7%y, y € Z% und z € Z§ sind fett gedruckt). Folglich bildet f
die Argumente in Zj, bijektiv auf die Werte in Z% x Z ab. Fir f~! erhalten wir somit
folgende Tabelle:

o1 2 3 405

0 25 20 15 10 5
6 1 26 21 16 11
12 7 2 27 22 17
18 13 8 3 28 23
24 19 14 9 4 29

B W N = O

N

Der Chinesische Restsatz, den wir im néchsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m, ) = 1 bijektiv und damit invertierbar ist. Wegen

geT(x,ml) =1 < ggT(x,m)=ggT(x,1) =1
& ggT(x mod m,m) = ggT(z mod [,1) =1

ist daher die Einschrénkung f von f auf den Bereich Z*, eine Bijektion zwischen Z,,
und Z;, x Zj, d.h. es gilt

p(ml) = | Z5ll = (12, X Zi || = |2 | - 1271} = ¢ (m)e(l).
Satz 24. Die Fulersche p-Funktion ist multiplikativ, d. h. fiir teilerfremde Zahlen m und
L gilt p(ml) = o(m)e(l).
Korollar 25. Seim = [[¥_, pS* die Primfaktorzerlegung von m. Dann gilt
k ) k
p(m) = [Ip (i = 1) =m][(p: — 1)/ps.
i=1 i=1

Beweis. Es gilt

(T, p§) = Ty o(pf) =TI, (o5 — i~ Y) =TI, P (i — 1).
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Der Chinesische Restsatz

Die beiden linearen Kongruenzen

{L‘Ego

$E61

besitzen je eine Losung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfillt.
Der néchste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Losungen
existieren, und wie sie berechnet werden koénnen.

Satz 26 (Chinesischer Restsatz). Falls mq, ..., my paarweise teilerfremd sind, dann
hat das System

r =m bl

(1.2)

T =y, bk
genau eine Losung modulo m = [IF_, m;.
Beweis. Da die Zahl n; = m/,,. teilerfremd zu m; ist, existieren Zahlen y; und A; mit
wing + \m; = ggT(n;,m;) = 1.

Dann gilt

und
i1 Emj 0

fir j # 4. Folglich erfillt z = Z§:1 pin;b; die Kongruenzen
fur ¢ = 1,..., k. Dies zeigt, dass (1.2) 16sbar, also die Funktion

Fi Ty = Doy X v+ X Lo,

mit f(z) = (z mod my, ...,z mod my) surjektiv ist. Da der Definitions- und der Werte-
bereich von f die gleiche Méachtigkeit haben, muss f jedoch auch injektiv sein, d.h. (1.2)
ist sogar eindeutig losbar. O

Man beachte, dass der Beweis des Chinesischen Restsatzes konstruktiv ist und die Losung
x unter Verwendung des erweiterten Euklidschen Algorithmus’ effizient berechenbar ist.

1.4 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblocke, d.h. der Klartext wird nicht zeichenweise, sondern blockwei-
se verarbeitet. Sowohl der Klartext- als auch der Kryptotextraum enthélt alle Worter x
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tiber A einer festen Lénge [. Zur Chiffrierung wird eine (I x [)-Matrix k = (k;;) mit Koeffi-
zienten in Z,, benutzt, die einen Klartextblock z = z;...2; € A! in den Kryptotextblock
y1 ...y € Al transformiert, wobei

Yi = o1k + - Faky, i =1,

ist (hierbei machen wir von der Buchstabenrechnung Gebrauch). y entsteht also durch
Multiplikation von x mit der Schliisselmatrix k:

kll e kll

xk’:(iﬁl,,.fl?l) :(ylaayl)
]{711 kll

Wir bezeichnen die Menge aller (I x [)-Matrizen mit Koeffizienten in Z,, mit ZX!. Als
Schliissel konnen nur invertierbare Matrizen k benutzt werden, da sonst der Chiffrier-
vorgang nicht injektiv ist. £ ist genau dann invertierbar, wenn die Determinante von k
teilerfremd zu m ist (siche Ubungen).

Definition 27 (Determinante). Sei R ein kommutativer Ring mit Eins und sei A =
(aij) € R Fir 1 <i,j <1 sei A;; die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matriz. Die Determinante von A ist dann det(A) = a1y, falls
=1, und
!
d@t(A) = Z(—l)”jai,jdet(Aij),

j=1
wobei i € {1,--- |1} (beliebig wahlbar) ist.
Die Determinantenfunktion ist durch die drei Eigenschaften multilinear, alternierend und

normiert eindeutig festgelegt. Sei f : R**™ — R eine Funktion.

— f heiit multilinear, falls fir jede Matrix A = (ay,...,a,) € R™™ mit Spalten
ai,...,a, € (BT, jeden Spaltenvektor b € (R")T und jedes r € R

flay,...;ra;+0b,...,a,) =7rf(ar,...,aq;...,a,) + flay,...,b,... a,)

gilt.
— f heifit alternierend, falls im Fall a;, = a; fir i # j f(a1,...,a,) =0 ist.
— f heit normiert, falls f(E) = 1 ist, wobei E die Einheitsmatrix ist.
Fiir die Dechiffrierung wird die zu % inverse Matrix k! benotigt, wofiir effiziente Algo-
rithmen bekannt sind (siehe Ubungen).

Satz 28. Sei A ein Alphabet und sei k € ZU (1 > 1, m = ||A|). Die Abbildung
f: AL — Al mit
ist genau dann injektiv, wenn ggT(det(k), m) =1 ist.

Beweis. Siche Ubungen. O

Definition 29 (Hill-Chiffre). Sei A = {aq,...,a,_1} ein belicbiges Alphabet und fiir
eine natiirliche Zahl 1 > 2 sei M = C = A'. Bei der Hill-Chiffre ist K = {k € 2! |
geT(det(k),m) =1} und es gilt

E(k,x) = 2k und D(k,y) = yk™ "
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Beispiel 30 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klarteztblocken der Linge
[ = 4 diber dem lateinischen Alphabet Ay die Schlisselmatriz

11 13 8 21

b — 24 17 3 25
18 12 23 17 |’
6 15 2 15

so erhalten wir beispielsweise fiir den Klartext HILL wegen

11 13 8 21 11H4+24TI+4+18L+ 6L=N
(HILL) 24 17 3 25 _ (NERX) baw. 13H+17I+12L+15L=E
18 12 23 17 8H+4+ 3I+23L+ 2L=R
6 15 215 21H4+25T4+17L4+15L=X

den Kryptotext E(k,HILL) = NERX. Fiir die Entschliisselung wird die inverse Matriz k~!
benétigt. Diese wird in den Ubungen berechnet. <

1.5 Die Vigenere-Chiffre und andere Stromsysteme

Bei der nach dem Franzosen Blaise de Vigenere (1523-1596) benannten Chiffre werden
zwar nur einzelne Buchstaben chiffriert, aber je nach Position im Klartext unterschiedlich.

Definition 31 (Vigenére-Chiffre). Sei A = B ein belicbiges Alphabet. Die Vigenére-
Chiffre chiffriert unter einem Schlissel k = ko... kg1 € K = A* einen Klartext
r=2xq...T,_1 beliebiger Linge zu

E(k7 ZL') =Y .- -Yn-1, wobei Yi = T; + k(z mod d) iSt:
und dechiffriert einen Kryptotext y = 1yo...Yp_1 2u
D(k,y) =xo...0p—1, wobei x; =y — K(moda) ISt

Beispiel 32 (Vigenere-Chiffre). Verwenden wir das lateinische Alphabet Ay als Klar-
textalpabet und wahlen wir als Schliissel das Wort k = WIE, so ergibt sich fiir den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE,VIGENERE) = V+W I+I G+E E+WN+TI E+E R+WE+T
| W N W Wi Wy

R O K A v I N M

= RQKAVINM 4

Um einen Klartext x zu verschliisseln, wird also das Schliisselwort & = kg ...ks_1 so
oft wiederholt, bis der dabei entstehende Schliisselstrom k= ko, ki, ..., kqa_1,ko... die
Lange von x erreicht. Dann werden z und k zeichenweise addiert, um den zugehorigen
Kryptotext y zu bilden. Aus diesem kann der urspriingliche Klartext x zurtickgewonnen
werden, indem man den Schliisselstrom f; wieder subtrahiert.

Beispiel 33. Vigenére-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) ROKAVINM (Kryptotext y)

+ WIEWIEWI (Schlisselstrom k) — WIEWIEWI (Schliisselstrom k)
ROKAVINM (Kryptotext y) VIGENERE (Klartext x)
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Die Chiffrierarbeit lasst sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenére-Tableau bekannt).

NHHS<oHnTOTOZEZEN R~ HEUuQwE > |»

SO QEHEHUQWENK XIS IO UTOZECR| R
Ao~ IHOQHMEUQEENL X< CcHnIOTOZZ |
CR e~ IZQHEOQEENXK XIS << IO TOZE|Z
2R e~ DO HOIQE PN XIS <O IOoYO 2|2
220 R~ ZQHEO0QE PN XIS < TOTO|O
OZECEFRu—IZIQHEOUQAWEENK XS <l ®nIO | T
TOZECNRe—=ZNOQHEUQEEN XS <l RO|O
OUWOZECRu~IQHEHIQEENKXSEI<cHnI| =
NHOTOZEZEORu~IQHEHIUQWENK KIS <3|
HnTOTWOZEN R —~ODQHEUQEEN< XA <C|d
CHRBOTOZECN Ru—~TOQHEHUQWENK XS <| <
<P VTLOIOZEZC R —~IDOQHEUQIENAK XI|=

N HI<OHNIOUWOZECR—«—=ZIQHEOUQ® > |+
PNARKAXI<OHTOIOZECN R ~ODQOEHUQW| W
WENAAXRIE<CHIOIOZZO R~ IZQHEIA|A
AWEPNLIARSI <Ol TOIOZECN R —~IQHET|U
QW EPNK XIS <A IOTOZEZE Ru—~THQHE|d
HOUQ@B PN K <CcHLTOTOZE R ~OOm|™
HEHOUQWENL XS <3 nIOTOZZN R —~TIQ|Q
OHEHUAQABEPNK A S <RI OTOZEZ R —~MI|d
TOHEHIQWENKRXI <RI OTIOZZ DR w | —
~HOQTHEHUQWENKXSES <A IOTOZEZC H «| w
HOTWOZECNFRumIOQHEBUQWEN XS <a3n|»
S<OHVRIOUOZECD R« —~IQTUEHUIQE BN K| X
K2R ITOTWOZECN R =IO EHIOQWEE N |
XS dHNIOWOZECN R = DOQHEHOQE > N| N

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schliisselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.

Beispiel 34 (Beaufort-Chiffre). Verschliisseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlisselwort k = WIE, so erhalten wir den Kryptotext XMEQNSNB. Eine
erneute Verschlisselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schlisselstrom) WIEWIEWI (Schlisselstrom)
— BEAUFORT (Klartext) — VEECDQFP (Kryptotext)
VEECDQFP (Kryptotext) BEAUFORT (Klartext)

<

Bei den bisher betrachteten Chiffren wird aus einem Schliisselwort & = kg ... kys_1 ein
periodischer Schliisselstrom k=ky.. ko erzeugt, das heifit, es gilt k= I%Hd fir
alle i = 0,...,n —d — 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schliisselstrom mit sehr grofler Periode oder noch besser ein fortlau-
fender Schliisselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schliisselstrom lésst sich beispielsweise ohne groflien Aufwand erzeugen, indem man an
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das Schlisselwort den Klartext oder den Kryptotext anhéngt (sogenannte Autokey-
Chiffrierung).’

Beispiel 35 (Autokey-Chiffre). Benutzen wir wieder das Schliisselwort WIE, um den
Schlisselstrom durch Anhdngen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
fiir den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schliisselstrom: Kryptotext-Schliisselstrom:
VIGENERE (Klartext ) VIGENERE (Klartext )

+ WIEVIGEN (Schlisselstrom) + WIERQKVD (Schlisselstrom)
ROKZVKVR (Kryptotext ) RQKVDOMH ( Kryptotext )

d

Auch die Dechiffrierung ist in beiden Féllen einfach. Bei der ersten Alternative kann der
Empfanger durch Subtraktion des Schliisselworts den Anfang des Klartextes bilden und
gleichzeitig den Schliisselstrom verlangern, so dass sich auf diese Weise Stiick fiir Stiick der
gesamte Kryptotext entschliisseln lasst. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schliisselstrom vom Kryptotext nur durch das vorangestelle
Schliisselwort unterscheidet.

1.6 Der One-Time-Pad

Es besteht auch die Moglichkeit, eine Textstelle in einem Buch als Schliissel zu vereinbaren
und den dort beginnenden Text als Schlisselstrom zu benutzen (Lauftextverschlisselung).
Besser ist es jedoch, aus einem relativ kurzen Schliissel einen moglichst zufallig erscheinen-
den Schliisselstrom zu erzeugen. Hierzu konnen beispielsweise Pseudozufallsgeneratoren
eingesetzt werden. Absolute Sicherheit wird dagegen erreicht, wenn der Schliisselstrom
rein zufillig erzeugt und nach einmaliger Benutzung wieder vernichtet wird.* Ein solcher
»Wegwerfschliissel“ (One-time-pad oder One-time-tape, im Deutschen auch als indivi-
dueller Schliissel bezeichnet) lasst sich allerdings nur mit grofem Aufwand generieren
und verteilen, weshalb diese Chiffre nur wenig praktikabel ist. Dennoch wurde diese
Methode beispielsweise beim ,heiflen Draht“, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weiflen Haus in Washington und dem Kreml in Moskau,
angewandt.

Beispiel 36 (One-time-pad). Sei A = {ag,...,a,_1} ein beliebiges Klartextalphabet.
Um einen Klartext x = xq...x,_1 zu verschlisseln, wird auf jeden Klartextbuchstaben x;
ein neuver, zufdllig generierter Schlisselbuchstabe k; addiert,
Y=Y Yn-1, wobeiy; =x; + k;.
<
Der Klartext wird also wie bei einer additiven Chiffre verschliisselt, nur dass der Schliissel
nach einmaligem Gebrauch gewechselt wird. Dies entspricht dem Gebrauch einer Vigenere-

Chiffre, falls als Schliissel ein zuféllig gewahltes Wort von der Lange des Klartextes benutzt
wird. Wie diese ist der One-time-pad im Binarfall also involutorisch.

tDie Idee, den Schliisselstrom durch Anhingen des Klartextes an ein Schliisselwort zu bilden, stammt
von Vigenere, wahrend er mit der Erfindung der nach ihm benannten Vigenere-Chiffre ,nichts zu
tun® hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

! Diese Art der Schliisselerzeugung schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918
vor, nachdem ihm ein von Gilbert S. Vernam fiir den Fernschreibverkehr entwickeltes Chiffriersystem
vorgestellt wurde.
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Klartext Kryptotext Klartext

Schliissel

Schliissel

1.7 Klassifikation von Kryptosystemen

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie erzeugen den Kryptotext aus dem Klartext, indem sie Klartextzeichen — einzeln oder
in Gruppen — durch Kryptotextzeichen ersetzen. Dagegen verandern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.

Beispiel 37 (Skytale-Chiffre). Die dlteste bekannte Verschlisselungstechnik stammt aus
der Antike und wurde tm 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralformig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Langsrichtung mit der Geheimbotschaft.

@E@@@:@)

UBERAUS GEHEIMNISVOLL ...
~» UGI...BES...EHV...REO...AIL...UML...SN...

Besitzt der Empfanger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. <

Als Schliissel fungiert hier also der Stabumfang bzw. die Anzahl k der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
betréigt seine Lénge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext
E(k,x1 xpm) =
T1Tm+1T2m+1 " " T(k—1)ym+1L2Tm42L2m+2 " L(k—1)m+2 * " TmL2mL3m * * * Lkm

iiber. Dasselbe Resultat stellt sich ein, wenn wir z zeilenweise in eine k£ X m-Matrix
schreiben und spaltenweise wieder auslesen (sogenannte Spaltentransposition):

1 To . e xm
Tm+1 Tm+2 s Tom
Toam+1 Tom+2 “rr T3m

T(k—1)m+1 L(k—1)m+2 °~°° Tkm

Ist die Klartextlange kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfiigen von sogenannten Blendern (Fiillzeichen) verlingert werden. Damit der Emp-
fanger diese Fiillzeichen nach der Entschliisselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.
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Von der Methode, die letzte Zeile nur zum Teil zu fiillen, ist dagegen abzuraten. In diesem
Fall wiirden namlich auf dem abgewickelten Papierstreifen Liicken entstehen, aus deren
Anordnung man Schliisse auf den benutzten Schliissel k ziehen konnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.

Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.

Beispiel 38. Bei Ausfiihrung einer Zick-Zack-Transposition wird der Klartext in
eine Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Hohe der Zick-
Zack-Linie kann als Schlissel vereinbart werden.

C C N [ZICKZACKLINIE ~ ZZLEIKAKIICCN]

N

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass fiir
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 39 (Blocktranspositionschiffre). Sei A = B ein beliebiges Alphabet und
fiir eine natiirliche Zahl 1 > 2 sei M = C' = Al. Bei einer Blocktranspositionschiffre
wird durch jeden Schlissel k € K eine Permutation m beschrieben, so dass fiir alle
Zeichenfolgen xy---x; € M und yy---y, € C

E(k) xl .« e xl) = :’Uﬂ'(l) LY xﬂ_(l)

und
D(k,yi-y1) = Yr101) - Yn1(0)
qgilt.

Eine Blocktransposition mit Blockldnge [ 14sst sich durch eine Permutation = € S; (also
auf der Menge {1,...,1}) beschreiben.

Beispiel 40. FEine Skytale, die mit 4 Zeilen der Ldnge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition:

t |12 3 4567 8910111213 14 15 16 17 18 19 20 21 22 23 24
m(i)|1 713192814203 9 1521 4 101622 5 11 1723 6 12 18 24

<

Fiir die Entschliisselung muss die zu 7 inverse Permutation 7! benutzt werden. Wird
7 durch Zyklen (iq 45 i3 ... i,) dargestellt, wobei i; auf iy, i auf i3 usw. und schliefllich
i3 auf i; abgebildet wird, so ist 7! sehr leicht zu bestimmen.

Beispiel 41.

i 123456 i 123456
m(i)[461352 a1 i)|364152
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Obiges m hat beispielsweise die Zyklendarstellung
T=1(143)(26)(5) oder m = (143)(26),

wenn, wie allgemein tiblich, Finerzklen weggelassen werden. Daraus erhalten wir unmit-
telbar =1 zu

71 =(341)(62) oder (134)(26),

wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Grifle dieser Elemente anordnen. <

Beispiel 42. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine
k x m-Matriz eingelesen und der Kryptotext spaltenweise gemdfS einer Spaltenpermutation
7, die als Schlissel dient, wieder ausgelesen. Fir m = (14 3) (2 6) wird also zuerst Spalte
(1) = 4, dann Spalte 7(2) = 6 und danach Spalte 7(3) = 1 usw. und zuletzt Spalte
7(6) = 2 ausgelesen.

w
D
~
—
ot
()

DIESER KLARTEXT IST NICHT SEHR LANG
~+ SRSTA RENEG DKXIH EAIHL ETTSN ILTCR

I H X X O
oo 4 H
r T HX>m
> n xoxW0n
=Zun 44 m
om=m>™

N

Beispiel 43. Bei der Weg-Transposition wird als Schlissel eine Hamiltonlinie in
einem Graphen mit den Knoten 1,... 1 benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock xy -- - x; wird gemaf§ der Knotennumerierung in den Graphen
eingelesen und der zugehorige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

1 2

[ HAMILTON ~» TIMLONAH ]

Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren ldsst. Der Vorteil, eine Hamiltonlinie als Schliissel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einprégen kann als eine Zahlenfolge.

Sehr beliebt ist auch die Methode, eine Permutationen in Form eines Schliisselworts
(oder einer aus mehreren Wortern bestehenden Schliisselphrase) im Gedéchtnis zu
behalten. Aus einem solchen Schliisselwort lisst sich die zugehorige Permutation o leicht
rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter fiir
jeden einzelnen Buchstaben seine Position 7 innerhalb des Wortes vermerkt.
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Schliisselwort fiiro |[CA ES AR

i 123456

o (i) 314625
Zyklendarstellung von o | (13465 2)

DIE BLOCKLAENGE IST SECHS ~»
EDBOIL LCANKE IGSSET EXCSYH

Die Werte (i), die o auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schliisselwort-Buchstaben in alphabetischer Reihenfolge durchzahlt. Dabei
werden mehrfach vorkommende Buchstaben geméafl ihrer Position im Schliisselwort
an die Reihe genommen. Alternativ kann man auch alle im Schliisselwort wiederholt
vorkommenden Buchstaben streichen, was im Fall des Schliisselworts CAESAR auf eine
Blocklange von 5 fithren wiirde.

Wir wenden uns nun der Klassifikation von Substitutionschiffren zu. Ein wichtiges
Unterscheidungsmerkmal ist z.B. die Lange der Klartexteinheiten, auf denen die Chiffre
operiert.

Monografische Substitutionen ersetzen Einzelbuchstaben.

Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-
textsegmente auf einmal.

Eine polygrafische Substitution, die auf Buchstabenpaaren operiert, wird digrafisch
genannt. Das dlteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta
im Jahr 1563 veroffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextbuchstaben
durch ein einzelnes Kryptotextzeichen ersetzt.

Beispiel 44. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Porta fir
diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer 20 x 20-Matrix
M = (yi;) angeordnet, deren Zeilen und Spalten mit den 20 Klartextbuchstaben
Ao I L, TV, Z indiziert sind. Zur Ersetzung des Buchstabenpaars a;a; wird das in
Zeile © und Spalte 7 befindliche Kryptotextzeichen

E(M, aiaj) = yij
benutzt. <
Eine Substitution heiit monopartit, falls sie die Klartextsegmente durch Einzelzeichen

ersetzt, sonst multipartit. Wird der Kryptotext aus Buchstabenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.

Ein frithes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200—120 v. Chr.) zuriick:

01234
o|A B CDE
1|FGHIJ
2|k LM N O [POLYBIOS ~ 3024214301132433]
3]PQRST
4|U VvV Wxyz

Bei der Polybios-Chiffre dient eine 5 x 5-Matrix, die aus samtlichen Klartextbuchstaben
gebildet wird, als Schliissel.5 Die Verschliisselung des Klartextes erfolgt buchstabenweise,

SDa nur 25 Plitze zur Verfiigung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein
Buchstabe weggelassen oder ein Platz mit zwei Buchstaben besetzt werden.
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indem man einen in Zeile ¢ und Spalte j eingetragenen Klartextbuchstaben durch das
Koordinatenpaar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren
{00,01,...,44}.

Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verdndert wird, fiithrt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.

Monoalphabetische Substitutionen ersetzen die einzelnen Klartextsegment unabhén-
gig von ihrer Position im Klartext.

Polyalphabetische Substitutionen verwenden dagegen eine variable Ersetzungsregel,
auf die sich auch die bereits verarbeiteten Klartextsegmente auswirken.

Die Bezeichnung ,,monoalphabetisch bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus auf einem einzelnen Alphabet beruht (sofern wir das Klartextalphabet als bekannt
voraussetzen). Die von Caesar benutzte Chiffriermethode kann beispielsweise vollstédndig
durch Angabe des Ersetzungsalphabets

{D,E,F,G,W,...,Y,2,A,B,C}

beschrieben werden. Auch im Fall, dass nicht einzelne Zeichen, sondern ganze Buch-
stabengruppen auf einmal ersetzt werden, gentiigt im Prinzip ein einzelnes Alphabet
zur Beschreibung. Hierzu sortiert man die Klartexteinheiten, auf denen der Ersetzungs-
mechanismus operiert, und bildet die Folge (sprich: das Alphabet) der zugeordneten
Kryptotextsegmente.

Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Lange
[ > 1 durch Kryptotextsegmente derselben Lénge.

Definition 45 (Blockchiffre). Sei A ein beliebiges Alphabet und es gelte M = C = A,
[ > 1. Eine Blockchiffre realisiert fiir jeden Schlissel k € K eine bijektive Abbildung g
auf A" und es gilt

E(k,x) = g(x) und D(k,y) =g (y)

fiir alle x € M und y € C. Im Fall | = 1 spricht man auch von einer einfachen
Substitutionschiffre.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zuriick, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden kénnen. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhédngigkeit von der Lange oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.

Fast alle polyalphabetischen Chiffrierverfahren operieren — genau wie monoalphabetische
Substitutionen — auf Klartextblocken einer festen Lange [, die sie in Kryptotextblocke einer
festen Lange [’ iiberfithren, wobei meist [ = [’ ist. Da diese Blocke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugefithrt werden. Man
nennt die einzelnen Klartextblocke in diesem Zusammenhang auch nicht ,Blocke® sondern
,Zeichen' und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 46 (Stromchiffre). Sei A ein belicbiges Alphabet und sei M = C = A fiir
eine natirliche Zahll > 1. Weiterhin seien K und K Schliisselriume. Eine Stromchiffre
wird durch eine Verschlisselungsfunktion E : K x M — C und einen Schliisselstrom-
generator g : K x A* — K beschrieben. Der Generator g erzeugt aus einem externen
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Schlissel k € K fiir einen Klartext x = xg...x,_1, x; € M, eine Folge l%o, oy k1 von
internen Schlisseln k; = g(k,xo...x;—1) € K, unter denen x in den Kryptotext

Eg(k', I’) = E(];](), .TZ'(]) e E(l%nfl, :Cn,l)
tberfihrt wird.

Der interne Schliisselraum kann also wie bei der Blockchiffre eine maximale Gréfle von
(m")! annehmen (im hiufigen Spezialfall [ = 1 also m!). Die Aufgabe des Schliisselstrom-
generators g besteht darin, aus dem externen Schliissel £ und dem bereits verarbeiteten
Klartext xg...x;_1 den aktuellen internen Schliissel IA@ zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schliisselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schliisselstromgenerator

Vigeneére E(l%, r)=2x+ k g(ko .. ka—1,%0 ... Ti—1) = k(i mod m)
Beaufort E(/%, v)=k—x g(ko...ki—1,20.. . %i-1) = k(i mod m)
Aytokey ) ) ki i<d
mit Klartext- E(k’,l‘) =x+k g(ko...k'd_l,l'g...xi_l) = S d
Schliisselstrom Li-a;t =
Autokey A A e e oy Yk i<
mit Kryptotext- E(k,x)=x+k g(ko -+ ka1, To - 7ia) Yi—agyt > d
Schliisselstrom — ki moa ) + ZJLZ?J Ti_ja

Bei der Vigenere- und Beaufortchiffre hingt der Schliisselstrom nicht vom Klartext,
sondern nur vom externen Schliissel k ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).

Gespreizte Substitutionen

Bei den bisher betrachteten Substitutionen haben die einzelnen Blocke, aus denen der
Kryptotext zusammengesetzt wird, eine einheitliche Lénge. Es liegt nahe, einem Gegner
die unbefugte Rekonstruktion des Klartextes dadurch zu erschweren, dass man Blo-
cke unterschiedlicher Lange verwendet. Man spricht hierbei auch von einer Spreizung
(straddling) des Kryptotextalphabets. Ein bekanntes Beispiel fir diese Technik ist die
sogenannte Spionage-Chiffre, die vorzugsweise von der ehemaligen sowjetischen Geheim-
polizei NKWD (Narédny Komissariat Wnutrennich Del; zu deutsch: Volkskommissariat
des Innern) benutzt wurde.

Beispiel 47. Bei der Spionage-Chiffre wird in die erste Zeile einer 3 x 10-Matrix
ein Schlisselwort w geschrieben, welches keinen Buchstaben mehrfach enthdlt und eine
Linge von 6 bis 8 Zeichen hat (also zum Beispiel SPTONAGE ). Danach werden die anderen
beiden Zeilen der Matriz mit den restlichen Klartextbuchstaben (etwa in alphabetischer
Reihenfolge) gefiillt.

\4196032758

SPIONAGE GESPREIZT

8/ BCDFHJKLMAQ ~ 274154795751
5/RTUVWXYZ
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N

Man iiberzeugt sich leicht davon, dass sich die von der Spionage-Chiffre generierten
Kryptotexte wieder eindeutig dechiffrieren lassen, da die Kryptotextsegmente 1, 2,..., 8,
01,02, ...,08,91,92, ..., 98, die fiir die Klartextbuchstaben eingesetzt werden, die Fano-
Bedingung erfiillen: Keines von ihnen bildet den Anfang eines anderen. Da die Nummern
5 und 8 der beiden letzten Spalten der Matrix auch als Zeilennummern verwendet werden,
liefert dies auch eine Erklarung dafiir, warum keine Schliisselwortbuchstaben in die beiden
letzten Spalten eingetragen werden diirfen.

Verwendung von Blendern und Homophonen

Die Verwendung von gespreizten Chiffren zielt offenbar darauf ab, die ,Fuge*“ zwischen
den einzelnen Kryptotextsegmenten, die von unterschiedlichen Klartextbuchstaben her-
rithren, zu verdecken, um dem Gegner eine unbefugte Dechiffrierung zu erschweren.
Dennoch bietet die Spionage-Chiffre noch gentigend Angriffsflache, da im Klartext héufig
vorkommende Wortmuster auch im Kryptotext zu Textwiederholungen fiihren.

Eine Moglichkeit, diese Muster aufzubrechen, besteht darin, Blender in den Klartext
einzustreuen. Abgesehen davon, dass das Entfernen der Blender auch fiir den rechtméafigen
Empfanger mit Miithe verbunden ist, muss fiir den Zugewinn an Sicherheit auch mit einer
Expansion des Kryptotextes bezahlt werden.

Ist man bereit, dies in Kauf zu nehmen, so gibt es auch noch eine wirksamere Methode,
die Ubertragung struktureller und statistischer Klartextmerkmale auf den Kryptotext
abzumildern. Die Idee dabei ist, zur Chiffrierung der einzelnen Klartextzeichen a nicht
nur jeweils eines, sondern eine Menge H (a) von Chiffrezeichen vorzusehen, und daraus
fir jedes Vorkommen von a im Klartext eines auszuwédhlen (am besten zuféllig). Da
alle Zeichen in H(a) fiir dasselbe Klartextzeichen stehen, werden sie auch Homophone
genannt.

Definition 48 (homophonen Substitutionschiffre). Sei A ein Klartestalphabet und
sei M = A. Weiter sei C' ein Kryptotextraum der Grofie ||C|| > ||Al| = m. In einer
(einfachen) homophonen Substitutionschiffre beschreibt jeder Schlissel k € K eine
Zerlegung von C in m disjunkte Mengen H(a), a € A.

Um ein Zeichen a € A unter k zu chiffrieren, wird nach einer bestimmten Methode ein
Homophon y aus der Menge H(a) gewdhlt und fiir a eingesetzt.

Durch den Einsatz einer homophonen Substitution wird also erreicht, dass verschiedene
Vorkommen eines Klartextzeichens auch auf unterschiedliche Weise ersetzt werden konnen.
Damit der Empféanger den Kryptotext auch wieder eindeutig dechiffrieren kann, diirfen
sich die Homophonmengen zweier verschiedener Klartextzeichen aber nicht tiberlappen.
Daher kann es nicht vorkommen, dass zwei verschiedene Klartextbuchstaben durch
dasselbe Geheimtextzeichen ersetzt werden. Man beachte, dass der Chiffriervorgang
x +— E(k,z) nicht durch eine Funktion beschreibbar ist, da derselbe Klartext x in
mehrere verschiedene Kryptotexte y iibergehen kann.

Durch eine geringfiigige Modifikation der Polybios-Chiffre lasst sich die folgende bipartite
homophone Chiffre erhalten.

Beispiel 49 (homophone Substitution). Sei A = {A,...,Z}, B=1{0,...,9} und C =
{00, ...,99}.
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11,02,93,84,75,6

1,6/ A F K P U
27/B G L Q V
38/ C H M R W [HOMOPHON ~ 8203885317320898]
49D I N S x4
500E 1 0 T Z

Genau wie bet Polybios wird eine 5 X 5-Matrix M als Schliissel benutzt. Die Zeilen und
Spalten von M sind jedoch nicht nur mit jeweils einer, sondern mit zwei Ziffern versehen,
so dass jeder Klartextbuchstabe x tiber vier verschiedene Koordinatenpaare ansprechbar ist.
Der Kryptotextraum wird durch M also in 25 Mengen H(a), a € A, mit je 4 Homophonen
partitioniert. N

Wie wir noch sehen werden, sind homophone Chiffrierungen auch deshalb schwerer zu
brechen, weil durch sie die charakteristische Haufigkeitsverteilung der Klartextbuchstaben
zerstort wird. Dieser Effekt kann dadurch noch verstarkt werden, dass man fiir haufig
vorkommende Klartextzeichen a eine entsprechend groBere Menge H(a) an Homophonen
vorsieht. Damit lasst sich erreichen, dass die Verteilung der im Geheimtext auftretenden
Zeichen weitgehend nivelliert wird.

Beispiel 50 (homophone Substitution, verbesserte Version). Ist p(a) die Wahrscheinlich-
keit, mit der ein Zeichen a € A in der Klartextsprache auftritt, so sollte ||H(a)|| =~ 100-p(a)
sein.

a pla) H(a)

A 0.06)7 {1526, 44,59, 70,79}
B 0.0195 {01,8/}

C 0.0268 {13, 28,75}

D 0.0485 {02, 17, 36, 60, 95}
E

0.1748 {04, 08, 12, 30, 43, 46, 47, 53, 61, 67, 69, 72, 80, 86, 90, 92, 97}

Da der Buchstabe A im Deutschen beispielsweise mit einer Wahrscheinlichkeit von p(A) =
0.0647 auftritt, sind fir ihn sechs verschiedene Homophone vorgesehen. <

Um den Suchaufwand bei der Dechiffrierung zu reduzieren, empfiehlt es sich, eine 10 x 10-
Matrix anzulegen, in der jeder Klartextbuchstabe a an allen Stellen vorkommt, deren
Koordinaten in H(a) enthalten sind.

[HOMOPHON ~ 5698633455291668]

W 4 T ZmM=ZIT X 2|k
omz=zmcHIrCrom|N
=ErrHXZZmMmmMmHAowo|Ww
mwwwmwTT >0 =0 |A
O U XmMOXXmMU=Z2Cc=Z2r W
H XM ImoX>»o|lo.
M MmMmCcCHMWMNC O | N
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3 Volt

A — —X— A
B = B
cC — —X— €
D —X— D
E S E
z o/ w2

\\\
{

Abbildung 1.1: Realisierung von einfachen Substitutionen mit einer Drehscheibe und mit
Hilfe von Steckverbindungen.

Offenbar kann man diese Matrix auch zur Chiffrierung benutzen, was sogar den positiven
Nebeneffekt hat, dass dadurch eine zuféllige Wahl der Homophone begiinstigt wird.

1.8 Realisierung von Blocktranspositionen und einfachen
Substitutionen

Abschliefend mochten wir eine einfache elektronische Realisierungsmoglichkeit von Block-
transpositionen erwiahnen, die auf binir kodierten Klartexten operieren (d.h. A = {0, 1}).
Um einen Binérblock xy - - - x; der Lange [ zu permutieren, miissen die einzelnen Bits ledig-
lich auf [ Leitungen gelegt und diese gemafl 7 in einer sogenannten Permutationsbox
(kurz P-Box) vertauscht werden.

Ty —o — Y1
T2 — — Y2
r3 — — U3
Ty — — Y4
Ts5 — — U5
e — — Yo

Die Implementierung einer solchen P-Box kann beispielsweise auf einem VLSI-Chip
erfolgen. Allerdings kann hierbei fiir groflere Werte von [ aufgrund der hohen Zahl von
Uberkreuzungspunkten ein hoher Flichenbedarf anfallen.

Blocktranspositionen konnen auch leicht durch Software als eine Folge von Zuweisungen
Y1:=X2; Y2:=X5; ... Y6 := X4,

implementiert werden. Bei grofler Blocklange und sequentieller Abarbeitung erfordert
diese Art der Implementierung jedoch einen relativ hohen Zeitaufwand.

Von Alberti stammt die Idee, das Klartext- und Kryptotextalphabet auf zwei konzentri-
schen Scheiben unterschiedlichen Durchmessers anzuordnen. In Abbildung 1.1 ist gezeigt,
wie sich mit einer solchen Drehscheibe beispielsweise die additive Chiffre realisieren lasst.
Zur Einstellung des Schliissels k£ missen die Scheiben so gegeneinander verdreht werden,
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dass der Schliisselbuchstabe a;, auf der inneren Scheibe mit dem Klartextzeichen ag = A
auf der duBeren Scheibe zur Deckung kommt. Auf der Drehscheibe in Abbildung 1.1 ist
beispielsweise der Schliissel £ = 3 eingestellt, das heifit, a, = D. Die Verschliisselung
geschieht nun durch blofles Ablesen der zugehorigen Kryptotextzeichen auf der inneren
Scheibe, so dass von der Drehfunktion der Scheiben nur bei einem Schliisselwechsel
Gebrauch gemacht wird.

Aufgrund ihrer engen Verwandtschaft mit der Klasse der Blocktranspositionen lassen sich
einfache Substitutionen auch mit Hilfe einer P-Box realisieren (vergleiche Abbildung).
Hierfiir konnen beispielsweise zwei Steckkontaktleisten verwendet werden. Der aktuelle
Schliissel wird in diesem Fall durch Verbinden der entsprechenden Kontakte mit elektri-
schen Kabeln eingestellt (siehe Abbildung 1.1). Um etwa den Klartextbuchstaben E zu
verschliisseln, driickt man auf die entsprechende Taste, und das zugehorige Kryptotext-
zeichen B wird im selben Moment durch ein aufleuchtendes Lampchen signalisiert.

SchlieBlich lassen sich Substitutionen auch leicht durch Software realisieren. Hierzu wird
ein Feld (array) deklariert, dessen Eintrége iiber die Klartextzeichen x € A adressierbar
sind. Das mit z indizierte Feldelemente enthalt das Kryptotextzeichen, durch welches x
beim Chiffriervorgang zu ersetzen ist.

Ein Nachteil hierbei ist, dass das Feld nach jedem Schliisselwechsel neu beschrieben
werden muss. Um dies zu umgehen, kann ein zweidimensionales Feld deklariert werden,
dessen Eintrage zuséatzlich iiber den aktuellen Schliisselwert k& adressierbar sind. Ist
geniigend Speicherplatz vorhanden, um fiir alle x € A und alle k € K die zugehorigen
Kryptotextzeichen F(k,z) abspeichern zu koénnen, so braucht das Feld nur einmal
initialisiert und danach nicht mehr geandert werden.

Schiliissel- Klartextbuchstabe

wert A B ... z
0 u H ... C

1 E H ... A

63 Y F ... W
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2 Kryptoanalyse der klassischen Verfahren

2.1 Klassifikation von Angriffen gegen Kryptosysteme

Die Erfolgsaussichten eines Angriffs gegen ein Kryptosystem hiangen sehr stark davon ab,
wie gut die Ausgangslage ist, in der sich der Gegner befindet. Prinzipiell sollte man die
Féahigkeiten des Gegners genauso wenig unterschétzen wie die Unvorsichtigkeit der Anwen-
der von Kryptosystemen. Bereits vor mehr als einem Jahrhundert postulierte Kerckhoffs,
dass die Frage der Sicherheit keinesfalls von irgendwelchen obskuren Annahmen tber
den Wissensstand des Gegners abhangig gemacht werden darf.

Goldene Regel fiir Kryptosystem-Designer (Kerckhoffs' Prinzip)
Unterschditze niemals den Kryptoanalytiker. Gehe insbesondere immer von der
Annahme aus, dass dem Gegner das angewandte System bekannt ist.*

In der folgenden Liste sind eine Reihe von Angriffsszenarien mit zunehmender Geféhrlich-
keit aufgefiihrt. Auch wenn nicht alle Eventualitiaten eines Angriffs vorhersehbar sind, so
vermittelt diese Aufstellung doch eine gute Vorstellung davon, welchen unterschiedlichen
Bedrohungen ein Kryptosystem im praktischen Einsatz ausgesetzt sein kann.

Angriff bei bekanntem Kryptotext (ciphertext-only attack)
Der Gegner fangt Kryptotexte ab und versucht, allein aus ihrer Kenntnis Riick-
schliisse auf die zugehorigen Klartexte oder auf die benutzten Schliissel zu ziehen.

Angriff bei bekanntem Klartext (known-plaintext attack)
Der Gegner ist im Besitz von einigen zusammengehorigen Klartext-Kryptotext-
Paaren. Hierdurch wird erfahrungsgemafl die Entschliisselung weiterer Kryptotexte
oder die Bestimmung der benutzten Schliissel wesentlich erleichtert.

Angriff bei frei wiahlbarem Klartext (chosen-plaintext attack)
Der Angriff des Gegners wird zusatzlich dadurch erleichtert, dass er in der Lage ist
(oder zumindest eine Zeit lang war), sich zu Klartexten seiner Wahl die zugehorigen
Kryptotexte zu besorgen. Kann hierbei die Wahl der Kryptotexte in Abhédngigkeit
von zuvor erhaltenen Verschliisselungsergebnissen getroffen werden, so spricht
man von einem Angriff bei adaptiv wiahlbarem Klartext (adaptive chosen-
plaintext attack).

Angriff bei frei wahlbarem Kryptotext (chosen-ciphertext attack)

Vor der Beobachtung des zu entschliisselnden Kryptotextes konnte sich der Gegner
zu Kryptotexten seiner Wahl die zugehorigen Klartexte besorgen, ohne dabei jedoch
in den Besitz des Dechiffrierschliissels zu kommen (Mitternachtsattacke). Das
dabei erworbene Wissen steht ihm nun bei der Durchfiihrung seines Angriffs zur
Verfiigung. Auch in diesem Fall konnen sich die Erfolgsaussichten des Gegners
erhohen, wenn ein Angriff bei adaptiv wiahlbarem Kryptotext (adaptive
chosen-ciphertext attack) moglich ist, also der Kryptotext in Abhéngigkeit von
den zuvor erzielten Entschliisselungsergebnissen wahlbar ist.

*Diese Annahme ergibt sich meist schon aus der Tatsache, dass die Prinzipien fast aller heute im
Einsatz befindlichen Kryptosysteme allgemein bekannt sind.
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Angriff bei frei (oder adaptiv) wahlbarem Text (chosen-text attack)
Sowohl Klartexte als auch Kryptotexte sind frei (oder sogar adaptiv) wahlbar.

Ohne Frage ist ein Kryptosystem, das bereits bei einem Angriff mit bekanntem Kryp-
totext Schwéchen erkennen lésst, fiir den praktischen Einsatz vollkommen ungeeignet.
Tatséchlich miissen aber an ein praxistaugliches Kryptosystem noch weit hohere Anforde-
rungen gestellt werden. Denn héufig unterlaufen den Anwendern sogenannte Chiffrier-
fehler, die einen Gegner leicht in eine sehr viel giinstigere Ausgangsposition versetzen
als dies sonst der Fall wire. So ermoglicht beispielsweise das Auftreten stereotyper
Klartext-Formulierungen einen Angriff bei bekanntem Klartext, sofern der Gegner diese
Formulierungen kennt oder auch nur errat. Begiinstigt durch derartige Unvorsichtigkeiten,
die im praktischen Einsatz nicht vollstandig vermeidbar sind, konnen sich selbst winzige
Konstruktionsschwéachen eines Kryptosystems sehr schnell zu einer ernsthaften Bedrohung
der damit verfolgten Sicherheitsinteressen auswachsen. Die Geschichte der Kryptografie
belegt sehr eindrucksvoll, dass es haufig die Anwender eines Kryptosystems selbst sind,
die — im unerschiitterlichen Glauben an seine kryptografische Starke — dem Gegner zum
Erfolg verhelfen.

Zusammenfassend lédsst sich also festhalten, dass die Gefdhrlichkeit von Angriffen, denen
ein Kryptosystem im praktischen Einsatz ausgesetzt ist, kaum zu iiberschétzen ist.
Andererseits kann selbst das beste Kryptosystem keinen Schutz vor einer unbefugten
Dechiffrierung mehr bieten, wenn es dem Gegner etwa gelingt, in den Besitz des geheimen
Schliissels zu kommen — sei es aus Unachtsamkeit der Anwender oder infolge einer
Gewaltandrohung des Gegners (kompromittierte Schliissel).

2.2 Kryptoanalyse von einfachen Substitutionschiffren

Durch eine Haufigkeitsanalyse konnen insbesondere einfache Substitutionen g leicht
gebrochen werden, sofern die einzelnen Buchstaben a in der benutzten Klartextsprache
mit voneinander differierenden Héufigkeiten p(a) auftreten (vergleiche Tabelle 2.1).
Selbst wenn, was insbesondere bei kurzen Texten zu erwarten ist, die tatsédchliche
Haufigkeitsverteilung nur in etwa der vom Gegner angenommenen Verteilung entspricht,
reduziert sich dadurch die Zahl der in Frage kommenden einfachen Substitutionen ganz
erheblich. Berechnet man die relativen Haufigkeiten h der Kryptotextbuchstaben im
Kryptotext, so gilt p(a) ~ h(g(a)) (vorausgesetzt der Kryptotext ist geniigend lang). Fiir
die Schilderung einer nach dieser Methode durchgefiihrten Kryptoanalyse sei auf die
Erzéhlung . Der Goldkéfer von Edgar Allan Poe verwiesen.

Tabelle 2.1: Einteilung von Buchstaben in Cliquen mit vergleichbaren Haufigkeitswerten.

‘Deutsch Englisch Franzosisch
sehr hiufig E E E
héufig NI IRS AT TIAOIN|SRH N|JARSITU
durchschnittlich | DHU | LGO | CM LD | CUMF LD CMP
selten BFWKZ | PV PGWYB | VK V|IFBGQHX
sehr selten JYXQ XJQz JYZKW




28 2 Kryptoanalyse der klassischen Verfahren

Manche der bisher betrachteten Chiffrierverfahren verwenden einen so kleinen Schliis-
selraum, dass ohne groflen Aufwand eine vollstdndige Schliisselsuche ausgefiihrt werden
kann.

Beispiel 51 (vollstindige Schliisselsuche). Es sei bekannt, dass das Kryptotextstick y =
SAXP mit einer additiven Chiffre erzeugt wurde (K = A = B = Ay ). Entschlisseln wir
y probeweise mit allen maoglichen Schliisselwerten, so erhalten wir folgende Zeichenketten.

k B c D E F G H I J K L M
D(k,y)|RZWO QYVN PXUM OWTL NVSK MURJ LTQI KSPH JROG IQNF HPME GOLD

N 0 P Q R S T u v W X Y Z
FNKC EMJB DLIA CKHZ BJGY AIFX ZHEW YGDV XFCU WEBT VDAS UCZR TBYQ

Unter diesen springen vor allem die beiden Klartextkandidaten x = GOLD (Schlisselwert
k=M) und x = WEBT (k = W) ins Auge. N

Ist s = | K|| die GroBe des Schlisselraums, so kann der Gegner bei bekanntem Kryptotext
y die Suche nach dem zugehorigen Klartext z auf eine Menge von maximal s Texten
x1,...,Ts beschranken. Daneben hat der Gegner ein gewisses a priori Wissen iiber
den Klartext, wie zum Beispiel dass er in deutscher Sprache verfasst ist, das es ihm
gestattet, einen Grofiteil der Texte x; auszuschlieen. Ferner erscheinen aufgrund dieses
Hintergrundwissens manche der tibrig gebliebenen Klartextkandidaten plausibler als
andere (sofern nicht nur ein einziger tbrig bleibt). Mit jedem Text z;, der nicht als
Klartext in Frage kommt, kann auch mindestens ein Schliissel ausgeschlossen werden.
Sind noch mehrere Schliisselwerte moglich, so kann weiteres Kryptotextmaterial Klarheit
bringen. Manchmal hilft aber auch eine Inspektion der verbliebenen Schliisselwerte
weiter, etwa wenn der Schliissel nicht rein zuféllig erzeugt wurde, sondern aus einem
einpragsamen Schliisselwort ableitbar ist.

Meist kennt der Gegner zumindest die Sprache, in der der gesuchte Klartext abgefasst
ist. Mit zunehmender Lénge gleichen sich die Haufigkeitsverteilungen der Buchstaben
in natiirlichsprachigen Texten einer ,Grenzverteilung® an, die in erster Linie von der
benutzten Sprache und nur in geringem Umfang von der Art des Textes abhédngt. Diese
Verteilungen weisen typischerweise eine sehr starke Ungleichméfigkeit auf, was darauf
zuriickzufiithren ist, dass in natiirlichen Sprachen relativ viel Redundanz enthalten ist.

17.48

9.82

7.73 754 o
7 6.13
4.83 195 sio 4.17
2.68 3.06 P 2.98
1.93 H 1.65 1.46 0.96 0.94 1.48 1.14
0.27 ~ 0.02 ; 0.04 0.08
—

A B CDEFGHTIIJIKLMNUOPAOQRSTUVWIXYZ

6.47

Abbildung 2.1: Haufigkeitsverteilung der Einzelbuchstaben im Deutschen (in %).

Die Abbildungen 2.1, 2.2 und 2.3, zeigen typische Verteilungen von Einzelbuchstaben
in der deutschen, englischen und franzésischen Sprache (ohne Beriicksichtigung von
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Abbildung 2.2: Haufigkeitsverteilung der Buchstaben im Englischen (in %).
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Abbildung 2.3: Haufigkeitsverteilung der Buchstaben im Franzosischen (in %).

Interpunktions- und Leerzeichen). Ein typischer deutscher Text besteht demnach zu 62%
aus den sieben haufigsten Zeichen E, N, I, R, S, A, T (das sind nicht einmal 27% der
Klartextzeichen).

Bei additiven Chiffren reicht es oftmals, den héufigsten Buchstaben im Kryptotext zu
bestimmen, und davon den héufigsten Buchstaben der Klartextsprache zu subtrahieren,
um den Schliissel k£ zu erhalten. Bei affinen Chiffren miissen gewohnlich nur die beiden
haufigsten Buchstaben bestimmt werden; dadurch erhélt man zwei Verschliisselungsglei-
chungen. Dieses Gleichungssystem muss gelost werden, und man erhélt das gesuchte
Schliisselpaar.

Beispiel 52 (Analyse einer affinen Chiffre mittels Buchstabenhaufigkeiten). FEs sei
bekannt, dass sich hinter dem Kryptotext

laoea ehoap hwvae ixobg jcbho thlob lokhe ixope vbcix ockix qoppo boapo
mohqc euogk opeho jhkpl eappj seobe ixoap opmcu

ein deutscher Klartext verbirgt, der mit einer affinen Chiffre verschlisselt wurde. Berech-
nen wir fir jedes Chiffrezeichen b die (absolute) Haufigkeit H,(b) seines Auftretens in
obigem Kryptotext vy,

b | ABCDEFGHIJKLMNOUPOQRSTUVWXYZ
Hb)|7 6 50100 285344201911 2011221500

so liegt die Vermutung nahe, dass das am hdufigsten vorkommende Chiffrezeichen O fir
das Klartextzeichen E und das am zweithdufigsten vorkommende P fiir N steht. Unter
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dieser Annahme kann der gesuchte Schliissel k = (b, c¢) als Losung der beiden Gleichungen

b-E4+c = 0
b-N+c = P

bestimmt werden. Subtrahieren wir ndmlich die erste von der zweiten Gleichung, so
erhalten wir die Kongruenz 9 - b =96 1, woraus sich b = 3 und damit ¢ = 2 ergibt.
Tatsdchlich weist der Schliissel k = (3,2) nicht nur fir die beiden Paare (E,0) und
(N, P), sondern auch fiir alle iibrigen Paare (a,b) eine gute Ubereinstimmung zwischen
der Hdiufigkeit H,(b), mit der b= E(k,a) im Kryptotext vorkommt, und der erwarteten
Haufigkeit Hyoo(a) auf, mit der a in einem typischen deutschen Text der Lange 100
vorkommt (die Tabelle zeigt die Werte von Hypo(a) gerundet):

b |0 P EHABCXILKIUMGVQSTWRFNZYD
Hy(b) 191110 8 76 55 5 44 3222221110000 00
Hipo(a)[1710 7 6 8 8 6 43 54333111300221100

a« |ENSTIRAHCDULGMKPWOXYFBVZQ]J

2.3 Kryptoanalyse von Blocktranspositionen

Mit Hilfe von Bigrammbhéufigkeiten, die manchmal auch als Kontakthéufigkeiten be-
zeichnet werden, lassen sich Blocktranspositionen sehr leicht brechen, sofern geniigend
Kryptotext vorliegt. Ist die Blocklange [ bekannt, so tragt man hierzu den Kryptotext
zeilenweise in eine Matrix S = (s;;) mit [ Spalten Si,...,5; ein. Da jede Zeile dieser
Matrix aus dem zugehorigen Klartextblock mit derselben Permutation 7 erzeugt wurde,
miissen die Spalten S; jetzt nur noch in die ,richtige” Reihenfolge gebracht werden, um
den gesuchten Klartext zu erhalten. Der Nachfolger Sy von S; (bzw. der Vorgénger S;
von S) kann sehr gut anhand der Werte von p(S;, S) = >2; p(sij, six) bestimmt werden.

4.09 4.00

H ﬂ ZBOZE193 18T 185 168 163 147 140 1.22 119 1.16 1.12 1.02 1.02 1.01 0.99 0.94 0.93 0.89
R e e e e e e T e T e e
ER EN CH DE EI ND TE IN IE GE ES NE UN ST RE HE AN BE SE NG DI SC

Abbildung 2.4: Die hdufigsten Bigramme im Deutschen (Angaben in %).
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1 e e e e e e e e e e e s s B
TH HE AN IN ER RE ON ES TI AT ST EN OR ND TO NT ED IS AR OU OF TE

Abbildung 2.5: Die haufigsten Bigramme im Englischen (in %; nach O.P. Meaker, 1939).

Beispiel 53 (Haufigkeitsanalyse von Bigrammen). Fir den mit einer Blocktransposition
(mit vermuteter Blocklinge 5) erzeugten Kryptotext
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122 111 089 0.87 087 086 0.75 075 0.71 0.66 0.61 0.57 0.53 0.52 048 048 047 0.47 046
— — — — — — — —
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Abbildung 2.6: Die hiufigsten Trigramme im Deutschen (in %).
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Abbildung 2.7: Die haufigsten Trigramme im Englischen (in %).

IHEHR BWEAN RNEII NRKEU ELNZK RXTAE VLOTR ENGIE

erhalten wir eine Matrix S mit den folgenden finf Spalten.

Sy Sy S5 84 S5

M<XOM=ZX0WH
Z2rrXrrX=2=
ocooH4=Z=xXmmm
HEAX>NMHDX>I
MXMXCHZX

Um die richtige Vorgdinger- oder Nachfolgerspalte von S7 zu finden, bestimmen wir fiir
jede potentielle Spalte S;, j =2,...,5, wieviele der Bigramme s;;s;1 (bzw. s;18:;) zu den
20 haufigsten (aus Abbildung 2.4) gehéren.

oo
Sy S35 Sy S5]51|52 S5 Sy S5
HEHR[IHEHR R
W EANBWEAN
NEITIRINETITI
R KEU|{NRKEU
L NZKIE|[LNZK
X TAE/RXTAE
LOTR[VILOTR
NGIEEINGTIE
1422 [1421

Da die beiden Spaltenpaare (Ss,S1) und (Si,S3) jeweils vier haufige Bigramme bilden,
konnen wir annehmen, dass im Klartext S1 auf S3 oder Ss auf Sy folgen muss. Entscheiden
wir uns fir die zweite Moglichkeit, so sollten wir als ndchstes die Spaltenpaare (S;, S1)
und (Ss,S;), j = 2,4,5 betrachten.
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\ \
Sy Sy Ss|8; Ss|9, Sy Ss
HHR|I E|HHR
W ANBE[WAN
NITIREINTITI
R E U|N K|R E U
L Z K|E N|L Z K
X A ERT|X AE
L TRIVOLTR
NIE|EGNTIE
12 2] 115

Aufgrund des hohen Wertes von p(Ss, Ss) kénnen wir annehmen, dass auf Ss die Spalte
Sy folgt. Im ndchsten Schritt erhalten wir daher die folgende Tabelle.

A
Sy 54|51 S5 S5/, S,
HH|IER|HH
W A|B ENW A
N I/RETIINTI
R EIN K U|R E
L Z|E N K|L Z
X AR TE|X A
L T|VvORILT
NIEGE|NT
1 2] 2 1

Diese ldasst die Spaltenanordnung Sy, S1,S3, S5, So vermuten, welche tatsdchlich auf den
gesuchten Klartext fihrt:

Sy 51 53 55 5

H—-X>NMHDX>I
m<2OmMZ200H
Oo—H=22X"mmm
mXxXmXCHZ2X
Z2r-rXrr»lxX=2==I

2.4 Kryptoanalyse von polygrafischen Chiffren

Blocksysteme mit kleinem k (beispielsweise bigrafische Systeme) lassen sich dhnlich wie
einfache Substitutionen durch Haufigkeitsanalysen brechen. Wird bei Hill-Chiffren £ sehr
gro3 gewéhlt, so ist eine solche statistische Analyse nicht mehr moglich. Das Hill-System
kann dann zwar einem Kryptotextangriff widerstehen, jedoch kaum einem Angriff mit
bekanntem Klartext und schon gar nicht einem Angriff mit gewéhltem Klartext.
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Angriff mit gewdhltem Klartext O.B.d. A.sei A ={0,1,...,m—1}. Bei einem GK-Angriff
verschafft sich der Gegner den Kryptotext zu 100...0, 010...0, ..., 0...001 € A"

g(lOOO) = kllkIZ--'kll
9(0100) = lekQQ...le

g(OOOl) = ]{711/{?12...]{3”

und erhalt damit die Schliisselmatrix k.

BK-Angriff (bekannter Klartext). Sind bei einem BK-Angriff ausreichend geeignete
Klartext-Kryptotextpaare bekannt, so kann das Hill-System folgendermafien gebrochen
werden: Sind z;, y; (i = 1,..., ) Paare mit x;k = y; und gilt ggT(det X, m) = 1 fiir eine
aus [ Blocken z;, i € I, als Zeilen gebildete Matrix X, so lasst sich die Schliisselmatrix k
zu k =Y X! bestimmen (Y ist die aus den Blocken y;, i € I, gebildete Matrix).

2.5 Kryptoanalyse von polyalphabetischen Chiffren

Die Vigenere-Chiffre galt bis ins 19. Jahrhundert als sicher. Da der Schliisselstrom bei
der Vigenere-Chiffre periodisch ist, lassen sie sich mit statistischen Methoden ebenfalls
leicht brechen, insbesondere wenn der Kryptotext im Verhéltnis zur Periode d (Lénge
des Schliisselwortes) gentigend lang ist.

Bestimmung der Schliisselwortlange

Es gibt mehrere Methoden, eine Vigenere-Chiffre zu brechen, sobald die Lange des
Schliisselwortes bekannt ist. So kann man beispielsweise den Kryptotext zeilenweise in
eine d-spaltige Matrix schreiben. Verfahrensbedingt wurden dann die einzelnen Spalten
Y1,--.,yq durch eine monoalphabetische Substitution (genauer: durch eine Verschie-
bechiffre) verschliisselt. Sie kénnen daher einzeln wie eine additive Chiffre durch eine
Héaufigkeitsanalyse gebrochen werden. Hierbei liefert jede Spalte y; einen Buchstaben k;
des Schliisselwortes der Vigenere-Chiftre.

Zur Bestimmung der Schliisselwortlange betrachten wir zwei Vorgehensweisen: den
Kasiski-Test und die Koinzidenzindex-Untersuchung.

Der Kasiski-Test. Die fritheste generelle Methode zur Bestimmung der Periode bei der
Vigenere-Chiffre stammt von Friedrich W. Kasiski (1860). Kommt ein Wort an zwei
verschiedenen Stellen im Kryptotext vor, so kann es sein, dass die gleiche Klartextsequenz
zweimal auf die gleiche Weise, d.h. mit der gleichen Schliisselsequenz, verschliisselt
wurde. In diesem Fall ist die Entfernung 0 der beiden Vorkommen ein Vielfaches der
Periode d. Werden mehrere Paare mit verschiedenen Entfernungen ¢; gefunden, so liegt
die Vermutung nahe, dass d gemeinsamer Teiler aller (oder zumindest vieler) ¢; ist, was
die Anzahl der noch in Frage kommenden Werte fiir d stark einschrénkt.

Beispiel 54 (Kasiski-Test).
DERERSTEUNDLETZTEVERS. .. (Klartext x)

+ KASKASKASKASKASKASKAS. .. (Schliisselstrom k)
NEJORKDEMXDDOTRDENORK. .. (Kryptotext y)




34 2 Kryptoanalyse der klassischen Verfahren

Da die Textstiicke ORK, bzw. DE im Kryptotext in den Entfernungen 61 = 15 und d9 = 9
vorkommen, liegt die Vermutung nahe, dass die Periode d = ggT(9,15) = 3 ist. N

Koinzidenzindex- Untersuchungen. Zur Bestimmung der Periode d gibt es neben heuristi-
schen Methoden auch folgenden statistischen Ansatz, der erstmals von William Frederick
Friedman im Jahr 1920 beschrieben wurde. Er basiert auf der Beobachtung, dass eine
langere Periode eine zunehmende Gldttung der Buchstabenhaufigkeiten im Kryptotext
bewirkt.

Definition 55 (Koinzidenzindex). Der Koinzidenzindex (engl. index of coinci-
dence) eines Textes y der Lange n iber dem Alphabet B ist definiert als

> Hy(a (a) —1).

a€eB

1C(y) =

n-(n— 1
Hierbei ist Hy(a) die absolute Hdiufigkeit des Buchstabens a im Text y.

IC(y) gibt also die Wahrscheinlichkeit an, mit der man im Text y an zwei zuféllig gewahl-
ten Positionen den gleichen Buchstaben vorfindet. Er ist umso gréfer, je ungleichméafliger
die Héufigkeiten H,(a) sind (siehe unten).

Um die Periode d einer Vigenere-Chiffre zu bestimmen, schreibt man den Kryptotext y fiir
d=1,2,3,...in eine Matrix mit d Spalten und berechnet fiir jede Spalte y; den Koinzi-
denzindex IC(y;). Fur geniigend lange Kryptotexte ist dasjenige d, welches das maximale
arithmetische Mittel der Spaltenindizes IC(y;) liefert mit hoher Wahrscheinlichkeit die
gesuchte Periode. Enthélt eine Spalte namlich nur Kryptozeichen, die alle mit demselben
Schliisselbuchstaben k erzeugt wurden, so stimmt der Koinzidenzindex dieser Spalte
mit dem Koinzidenzindex des zugehorigen Klartextes iiberein, nimmt also einen relativ
groflen Wert an. Wurden dagegen die Kryptozeichen einer Spalte mit unterschiedlichen
Schliisselbuchstaben generiert, so wird hierdurch eine Glattung der Héaufigkeitsverteilung
bewirkt, weshalb der Spaltenindex kleiner ausfillt.

Ist die Einzelbuchstabenverteilung p : A — [0, 1] der Klartextsprache bekannt, so kann der
Suchraum fiir den Wert der Periode d erheblich eingeschrénkt werden. Hierzu berechnet
man den erwarteten Koinzidenzindex

Eqn(1C) = E(IC(Y)),

wobei Y ein mittels einer Vigenere-Chiffre mit einem zufalligen Schliisselwort der Lénge
d aus einem zufalligen Klartext der Lénge n generierter Kryptotext ist. Im Fall d = 1
gilt IC(y) = IC(z). Zudem koénnen wir bei lingeren Texten von den gegenseitigen
Abhéngigkeiten der Zeichen im Text absehen und erhalten

a€A

Dieser Wert wird auch als Koinzidenzindex der zugrunde liegenden Sprache bezeichnet.

Definition 56 (Koinzidenzindex einer Sprache). Der Koinzidenzindex IC, ei-
ner Sprache mit Buchstabenverteilung p : A — [0, 1] ist definiert als

ICp = Zp(a)Z

a€A

IC'p ist zudem ein MafB fiir die Rauheit der Verteilung p:
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Definition 57 (Rauheitsgrad; Measure of Roughness). Der Rauheitsgrad MR/
einer Sprache L mit Finzelbuchstabenverteilung p ist

MRL:Z( ( _1/m Zp _l/m:ICL_l/Tm

acA acA
wobei m = || Al| ist.

Beispiel 58. Fir die englische Sprache (m = 26) gilt beispielsweise ICgnglisch ~ 0.0687
und MREnglisch ~ 0.0302. <

Ubersteigt dagegen die Periode d die Klartextlinge n, so ist der Kryptotext bei zufilliger
Wahl des Schliisselswortes ebenfalls rein zuféllig, was auf einen erwarteten Koinzidenzindex
von

Ean(IC) =3 A7 = [AITY, d=2n=>2

acA

fithrt. Allgemein gilt fiir hinreichend grofles n,

n—d n-(d—1) )
Eg(IC)= ——— -1 — . ]|A 1<d<
an(1€) d-(n—1) CL+d-(n—1) 1417, T<d<n,

da von den (”) moglichen Positionspaaren ungeféhr d- (”/ d) n(n—d)/2d Paare nur eine

2
Spalte (was einem Anteil von (n — d)/d(n — 1) entspricht) und (g) (n/d)*> =n?*(d—1)/2d
Paare zwei unterschiedliche Spalten betreffen (was einem Anteil von n(d —1)/d(n — 1)
entspricht).

Untenstehende Tabelle gibt den Erwartungswert E;,(/C) des Koinzidenzindexes fiir
Kryptotexte der Linge n = 100 in Abhangigkeit von der Periodenlange d einer Vigenere-
Chiffre wieder (in Promille; Klartext ist ein zuféllig gewahlter Text der englischen Sprache
mit 100 Buchstaben).

d |1 2 3 4 5 6 8 10 100
Ei100({C) |69 54 48 46 44 43 42 41 39

Beispiel 59. Berechnet sich der Koinzidenzindex eines Vigenére-Kryptotextes der Linge
100 zu 0.045, so liegt die Vermutung nahe, dass das verwendete Schliisselwort die Linge
vier oder finf hat, falls y aus einem Klartext der englischen Sprache erzeugt wurde. <

Der Koinzidenzindex kann auch Hinweise daftir liefern, mit welchem Kryptoverfahren ein
vorliegender Kryptotext erzeugt wurde. Bei Transpositionschiffren sowie bei einfachen
Substitutionen bleibt namlich der Koinzidenzindex im Gegensatz zu polyalphabetischen
und polygrafischen Verfahren erhalten. Erstere lassen sich von letzteren zudem dadurch
unterscheiden, dass bei ihnen sogar die Buchstabenhéufigkeiten unverdndert bleiben.

Zur Bestimmung des Schliisselwortes bei bekannter Periode d kann auch wie folgt
vorgegangen werden. Man schreibt den Kryptotext y in Spalten y; auf und berechnet
fir a € Aund i = 1,...,d die relativen Haufigkeiten h;(a) von a in y;. Da y; aus dem
Klartext durch Addition von k; entstanden ist, kommt die Verteilung

hi(a+k‘),a €A
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fir k = k; der Klartextverteilung p(a),a € A néher als fur k # k;. Da

Zp hi(a+ k)

a€A

ein Maf fiir die Ahnlichkeit der beiden Verteilungen p(a) und h;(a+k) ist (siehe Ubungen),
wird der Wert von «;(k) wahrscheinlich fir £ = k; maximal werden.

Beispiel 60. Der folgende Kryptotext y

HUDS KUAE ZGXR AVTF PGWS WGWS ZHTP PBIL LRTZ PZHW LOIJ VFIC
VBTH LUGI LGPR KHWM YHTI UAXR BHTW UCGX OSPW AOCH IMCS YHWQ
HWCF YOCG 0GTZ LBIL SWBF LOHX ZWSI ZVDS ATGS THWI SSUX LMTS
MHWI KSPX OGWI HRPF LSAM USUV VAIL LHGI LHWV VIVL AVTW 0CIJ
PTIC MSTX VII

der Linge 203 wurde von einer Vigenére-Chiffre mit Schliissellinge d = 4 aus englischem
Klartext erzeugt. Schreiben wir den Kryptotext in vier Spalten vy, ...,ys der Linge
ly1] = |yo| = |ys| = 51 und |ys| = 50, so ergeben sich folgende Werte fir o;(k) (in
Promille):

k ‘0 1234567 891011121314 151617181920 2122232425

ap(k)|36 31 3145 38 26 42 73 44 26 36 47 30 32 36 29 28 39 48 42 42 39 42 42 35 31
as(k)|44 4140 51 41 31 37 43 34 28 36 26 28 43 68 45 35 27 4243 40 35 3024 31 45
as(k) |47 41 48 37 49 40 35 30 48 322542 31 26 43 76 37 31 39 45 35 34 37 26 30 25

(F)

ay(k)|38 402741 65 47 28 34 39 33 35 36 30 30 48 44 3542 47 38 39 34 27 38 36 37

Da oy (k) firk =7 =H, as(k) fir k =14 = 0, as(k) fir k = 15 = P und ay(k) fir
k = 4 = E einen Maximalwert annimmt, lautet das Schlisselwort HOPE. Damit ergibt
sich folgender Klartext (aus der Erzihlung , Der Goldkdfer® von Edgar Allan Poe).

A GOOD GLASS IN THE BISHOPS HOSTEL IN THE DEVILS SEAT

FORTYONE DEGREES AND THIRTEEN MINUTES NORTH EAST AND

BY NORTH MAIN BRANCH SEVENTH LIMB EAST SIDE SHOOT FROM

THE LEFT EYE OF THE DEATHS HEAD A BEE LINE FROM THE TREE

THROUGH THE SHOT FIFTY FEET OUT N

Zur Bestimmung des Schliisselwortes kann man auch die Methode des gegenseitigen
Koinzidenzindexes verwenden. Dabei ist die verwendete Klartextsprache (und somit deren
Haufigkeitsverteilung) irrelevant, da die Spalten — wie der Name schon sagt — gegenseitig
in Relation gesetzt werden. Aber zuerst die Definition.

Definition 61 (Gegenseitiger Koinzidenzindex). Der gegenseitge Koinzidenz-
index von zwei Texten y und y' mit den Ldangen n und n' dber dem Alphabet B ist

definiert als
;2 Hy( (a).

a€B

1IC(y,y')

IC(y,vy') ist also die Wahrscheinlichkeit, dass bei zufélliger Wahl einer Position in y und
einer Position in 3 der gleiche Buchstabe vorgefunden wird. IC(y, ') ist umso grofler, je
besser die Haufigkeitsverteilung von y und ' (d.h. H, und H,/) tibereinstimmen.
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Ist nun y ein Kryptotext, der mit einem Schliisselwort bekannter Lénge d erzeugt wurde,
und sind y;, ¢ = 1, ..., d die zugehorigen Spalten, so gibt der gegenseitige Koinzidenzindex
der Spalten y; und y; + ¢ (fiir 1 <17 < j < d) die Wahrscheinlichkeit an, dass man bei
zufalliger Wahl einer Position in y; und in y; 4+ 6 denselben Buchstaben vorfindet, wobei
9 eine Verschiebung von Spalte y; relativ zur Spalte y; ist (mit 0 < 6 < 25). Mit grofier
Wahrscheinlichkeit nimmt also IC(y; + 0, y;) fur § = 6;; = k; — k; einen relativ grofien
Wert an, wahrend fiir ¢ # 6;; mit kleinen Werten zu rechnen ist.

Beispiel 62. Betrachten wir den Kryptotext aus vorigem Beispiel, so ergeben sich fiir
IC(yi,y; + 6) die folgenden Werte (in Promille):

) ‘O 1234567 8 910111213141516171819202122 232425

y1 + 0,y2)|40 31 2538252146 74 50 3331444334 31 28 24 314445 3748 64 44 25 31
Y1 +0,y3) |26 47 2521473218 49 91 422751453129 32 23 2927394546 39 58 44 24
Y1+ 6,y4)|38 40 29313524 32 58 42 3244 5043 39 31 20 34 36 3040452442 78 47 22
)
)
)

Y2 +0,y3) 50854921 28 3524 34 46 2524 275950 50 53 51 24222643 36 35 32 24 34
Y2 +0,94) (46 53 40 37514229 23 24 32405538 3132 45 674925272929 34 37 38 35

10(
10(
10(
10(
10(
IC(y3 + 0, y4)|49 36 3860 36 2534 19 29 424133542736 78 47 252933272847 32 2754

Also ist (mit grofier Wahrscheinlichkeit)
012 =7, 013 =8, 014 =23, 23 =1, 024 =16, 34 = 15.

Wir konnen nun alle Spalten relativ zur ersten Spalte so verschieben, dass der ganze
Text eine einheitliche Verschiebung & hat, also die zweite Spalte um —7, die dritte um
—8 und die vierte um —23. Fiir die Bestimmung von 0, muss man nur den hdufigsten
Buchstaben in dem auf diese Weise erzeugten Text bestimmen (oder eine vollstindige
Suche durchfiihren). Dieserist L (16,3%). Also ist 0 = L—E = H = 7 und das Schlisselwort
lautet HOPE H+7=0,H+8 =P, H+ 23 =E). N

Analyse der Lauftextverschliisselung

Zum Brechen einer Stromchiffre mit Klartextschliisselstrom kann man so vorgehen:
Man geht zunéchst davon aus, dass jeder Kryptotextbuchstabe durch Summation eines
Klartext- und Schliisselstrombuchstabens mit jeweils mittlerer bis hoher Wahrscheinlich-
keit entstanden ist. Dies sind beispielsweise im Englischen die Buchstaben E, T, A, 0, I,
N, S, R, H. Zu einem Teilwort w des Kryptotextes bestimmt man dann alle Paare von
Wortern (wq, we) mit wy + wy = w und wy,wy € {E; T,A,;0,I,N,S,R H}. In der Regel
ergeben sich nur sehr wenige sinnvolle Paare, aus denen durch Kontextbetrachtungen
und Erweitern von w nach links und rechts der Kryptotext entschliisselt werden kann.
Wird die Analyse durch ein Computerprogramm durchgefithrt, kann an die Stelle der
Kontextbetrachtungen auch die Haufigkeitsverteilung von n-Grammen der Sprache treten.
Das Programm wéahlt dann solche Wortpaare (wy, ws), die eine hohe Wahrscheinlichkeit
haben.

Beispiel 63. Gegeben ist der Kryptotext MOQKTHCBLMWXF . .. Wir beginnen die Untersu-
chung mit einer Wortlinge von vier Buchstaben, also w = MOQK. Der erste Buchstabe M
kann nur auf eine der folgenden Arten zustande gekommen sein:
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ABCDE...I...T...Z (Klartextzeichen)
+ MLKJI...E...T...N (Schlisselzeichen)
= MMMMM...M...M...

=

(Kryptotextzeichen)
Es ergeben sich folgende wahrscheinliche Paare fir die Einzelbuchstaben von w:

M: (EI) 0: (AO) Q: (LI) K: (RT)
(1,E) HH) (S.S)
(T7T) (O,A) (T’R)

Diese fiihren auf folgende 3 -3 -1 -3 = 27 Wortpaare (wy, ws):

wy; | EAIR EAIS EAIT EHIR ... THIS ... TOIT
we | IOIT I0IS IOIR IHIT ... THIS ... TAIR
Als sinnvoll stellt sich aber nur die Wahl w; = wy = THIS heraus. <

Autokey Chiffren

Kryptotextschliisselstrom. Diese Systeme bieten eigentlich keinen grofien kryptografischen
Schutz, da sie ohne Kenntnis des Schliisselwortes sehr leicht entschliisselt werden kénnen
(falls die Lange des Schliisselwortes im Verhéltnis zur Lange des Kryptotextes relativ kurz
ist). Man subtrahiert dazu den Kryptotext y fiir 6 = 1,2,... von dem um ¢ Positionen
verschobenen Kryptotext — also yois Y145 Y246 Y3+s - - . MiNUS Yo Y1 Y2 Y3 . . . —, bis sinnvoller
(Klar-) Text erscheint:

DUMSQMOZKFN. .. (Kryptotext y)
DUMSQMO. .. (,Kryptotextschliisselstrom®)
= ....NSCHUTZ... (Klartext x)

Klartextschlisselstrom. Neben der oben beschriebenen Analyse der Lauftextverschliisse-
lung kann das Brechen der Autokey-Systeme mit Klartextschliisselstrom auch analog
zur Kasiski-Methode erfolgen: Sei d die Lange des Schliisselwortes ky . .. kg_1. Falls im
Klartext die gleiche Buchstabenfolge x; ... x; ;1 im Abstand 2d auftritt (beispielsweise
d=3und !l =2),

1 14
ToX1X2X3 T4 Xy e L7TLE TY9L1QXL1) L1213 T14 - - - Klartext x
+ kokikezox1T2 X3 Ty x5 xeTTTs X9 1oyl --. Klartextschlisselstrom kz
= YoYLY2Y3VY4Ys Y6 Y1 Ys Yo Y10 Y11 Y12 Y13 Y14 ... Kryptotext y

so tritt im Kryptotext die gleiche Buchstabenfolge im Abstand d auf, d.h. d kann
auf diese Art unter Umstédnden leicht bestimmt werden. Ist d bekannt, so konnen die
Buchstaben ki ...ks des Schliisselwortes der Reihe nach bestimmt werden: Da durch
k; die Klartextzeichen an den Positionen i, d + i, 2d + ¢, ... eindeutig festgelegt sind,
kann jedes einzelne k; unabhéngig von den anderen Schliisselwortbuchstaben durch eine
statistische Analyse bestimmt werden.
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3 Sicherheit von Kryptosystemen

3.1 Informationstheoretische Sicherheit

Claude E. Shannon untersuchte die Sicherheit kryptografischer Systeme auf informations-
theoretischer Basis (1945, freigegeben 1949). Seinen Untersuchungen liegt das Modell einer
Nachrichtenquelle X zugrunde, die einzelne Klartextnachrichten x aus dem Klartextraum
M unter einer bestimmten Wahrscheinlichkeitsverteilung p(z) = Pr[X = x| generiert.

Zudem nehmen wir an, dass der zur Verschliisselung benutzte Schliissel £ € K von
einem Schliisselgenerator S unter einer bekannten Wahrscheinlichkeitsverteilung p(k) =
Pr[S = k| erzeugt wird. Da der Schliissel unabhéngig vom Klartext gewéhlt wird, ist
p(k,x) = p(k)p(x) die Wahrscheinlichkeit dafiir, dass X den Klartext = generiert und
dieser mit dem Schliissel & verschliisselt wird. Dabei gehen wir davon aus, dass fiir jede
Nachricht x € M ein neuer Schliissel gewéhlt wird. Dies bedeutet, dass wir beispielsweise
bei der additiven Chiffre den Klartextraum auf M = A" vergroéBern miissen, falls der
Schliissel nach jeweils n Zeichen gewechselt wird.

Die Zufallsvariablen X und S induzieren eine Verteilung auf dem Kryptotextraum, die
wir durch die Zufallsvariable Y beschreiben. Fiir einen Kryptotext y berechnet sich die
Wahrscheinlichkeit zu

ply)=PrY =yl = Y p(k )

k,x:E(k,x)=y
und fiir einen beobachteten Kryptotext y (mit p(y) > 0) ist

T k, x
p(z,y) 3 p(k, )

plaly) = pW) i, PO

die (bedingte) Wahrscheinlichkeit dafiir, dass sich hinter dem Kryptotext y der Klartext
x verbirgt.

Definition 64 (informationstheoretisch sicher). Ein Kryptosystem heifit unter ei-
nem Schlisselgenerator S absolut sicher (informationstheoretisch sicher), falls
X bei jeder Klartextverteilung stochastisch unabhdngig von Y ist, d.h. es gilt fir alle
r € X und alle y € Y mit p(y) > 0,

p(x) = p(zly).

Bei einem absolut sicheren Kryptosystem ist demnach die a posteriori Wahrscheinlichkeit
p(z|y) einer Klartextnachricht x gleich der a priori Wahrscheinlichkeit p(x), d.h. die
Wahrscheinlichkeit von z andert sich nicht, ob nun der Kryptotext y bekannt ist oder
nicht. Die Kenntnis von y erlaubt somit keinerlei Riickschliisse auf die gesendete Nachricht
x. Dies bedeutet, dass es dem Gegner nicht moglich ist — auch nicht mit unbegrenzten
Rechenressourcen — das System zu brechen. Wie wir sehen werden, lasst sich dieses Maf3
an Sicherheit nur mit einem sehr hohen Aufwand realisieren.
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Sind p(z),p(y) > 0, so gilt wegen p(z|y)p(y) = p(z,y) = p(y|z)p(x) die Gleichheit

p(ylz)p(x)

p(zly) = o)

(Satz von Bayes) und daher ist die Bedingung p(z) = p(z|y) gleichbedeutend mit
p(y) = p(ylz).

Beispiel 65. Sei (M,C,E,D,K) ein Kryptosystem mit M = {xy,...,24}, K =
{k1,..., ks}, C=A{y1,...,ys} und

E‘Il To T3 T4

kilyi va ys 4o
ky |y y1 s y3
ks |ys Y2 Y1 Ya
kylys ys y2 W

Weiter seip(ky) = 1/2, p(k2) = 1/4 und p(x3) = p(x4) = 1/8. Unter der Klartextverteilung
p(z1) = 1/2, p(x2) = p(xs) = p(ay) = 1/6 ergibt sich dann folgende Verteilung der
Kryptotexte:

pln) = 1/2-1/24(1/4+1/841/8)-1/6 =1/3
plya) = 1/4-1/24+(1/8+1/841/2)-1/6 =1/4
plys) = 1/8-1/2+ (1/8+1/2+1/4)-1/6 =5/24
ply) = 1/8-1/2+(1/2+1/4+1/8)-1/6=5/24

Die bedingten Wahrscheinlichkeiten p(x|y,) berechnen sich wie folgt:

pxalyr) = p(ky,21)/p(yr) = (1/2)(1/2)/(1/3) = 3/4
pxalyr) = plka,22)/p(yr) = (1/4)(1/6)/(1/3) = 1/8
p(zsly) = p(ks, x3)/p(yr) = (1/8)(1/6)/(1/3) = 1/16
pxalyr) = p(ks, 24)/p(y2) = (1/8)(1/6)/(1/3) = 1/16

Wegen p(x1) = 1/2 # 3/4 = p(x1|y1) ist das Kryptosystem nicht absolut sicher, zumindest
nicht unter der gegebenen Schliisselverteilung.

Die Bedingung p(x) = p(zl|y) ist nach dem Satz von Bayes genau dann erfillt, wenn
p(y) = p(y|z) ist. Da jedoch fir jedes Paar (x,y) genau ein Schlissel k = k,, € K
mit E(k,z) =y existiert, also p(y|z) = p(kyy) ist, ist dies dquivalent zu p(y) = p(ksy)-
Fiir y = y; bedeutet dies, dass alle Schliissel k; = k, ,, die gleiche Wahrscheinlichkeit
p(k;) = 1/4 haben miissen. Eine leichte Rechnung zeigt, dass dann auch p(y;) = 1/ fir
1=1,...,4 ist. Somit ist das betrachtete Kryptosystem genau dann absolut sicher, wenn
der Schlissel unter Gleichverteilung gewdhlt wird. <

Wie in diesem Beispiel lédsst sich allgemein folgende hinreichende Bedingung fiir die
absolute Sicherheit von Kryptosystemen zeigen.

Satz 66. Ein Kryptosystem mit | M|| = ||C|| = || K||, in dem es fir jeden Klartext x und
jeden Kryptotext y genau einen Schlissel k mit E(k,x) =y gibt, ist absolut sicher, wenn
die Schlissel unter Gleichverteilung gewdhlt werden.
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Beweis. Bezeichne k, , den eindeutig bestimmten Schliissel, der den Klartext « auf den
Kryptotext y abbildet. Wegen p(k,,) = || K|~ fiir alle z,y folgt zunéchst

plyle) = > plk) =plhey) = | K]

k:E(k,x)=y
und
ZP p(ylz) = | K| IZP ) = [IK[I7,
also p(zly) = p(x)p(y|z)/p(y) = p(v). O

In den Ubungen wird gezeigt, dass auch die Umkehrung dieses Satzes gilt.

Verwendet man beim One-time-pad nur Klartexte einer festen Lénge n, so ist dieser
nach obigem Satz absolut sicher (vorausgesetzt, der Schliissel wird rein zuféllig, also
unter Gleichverteilung gewéhlt). Variiert die Klartextlange, so kann ein Gegner aus y
nur die Lange des zugehorigen Klartextes x ableiten. Wird jedoch derselbe Schliissel %
zweimal verwendet, so kann aus den Kryptotexten die Differenz der zugehorigen Klartexte
ermittelt werden:

Yy = E(ﬂfl,/{?) = X + k

= E(xQ,k):xg—f—k }Myl—yzle—m

Sind die Klartexte natiirlichsprachig, so konnen aus y; — y» die beiden Nachrichten x;
und xo dhnlich wie bei der Analyse einer Lauftextverschliisselung (siehe Abschnitt 2.5)
rekonstruiert werden.

Da in einem absolut sicheren Kryptosystem der Schliisselraum K mindestens die Grofle
des Klartextraumes X haben muss (siehe Ubungen), ist der Aufwand extrem hoch.
Vor der Kommunikation muss ein Schliissel, dessen Léange der des zu iibertragenden
Klartextes entspricht, zuféllig generiert und zwischen den Partnern auf einem sicheren
Kanal ausgetauscht werden. Wird hingegen keine absolute Sicherheit angestrebt, so kann
der Schliisselstrom auch von einem Pseudo-Zufallsgenerator erzeugt werden. Dieser erhélt
als Eingabe eine Zufallsfolge sy (den sogenannten Keim) und erzeugt daraus eine lange
Folge vy vy ... von Pseudo-Zufallszahlen. Als Schliissel muss jetzt nur noch das Wort sq
ausgetauscht werden.

In der Informationstheorie wird die Unsicherheit, mit der eine durch X beschriebene Quelle
ihre Nachrichten aussendet, nach ihrer Entropie bemessen. Das heift, die Unsicherheit
iiber X entspricht genau dem Informationsgewinn, der sich aus der Beobachtung der
Quelle X ziehen lasst. Dabei wird die in einer einzelnen Nachricht x steckende Information
um so hoher bemessen, je seltener x auftritt. Tritt eine Nachricht z mit einer positiven
Wahrscheinlichkeit p(x) = Pr[X = z] > 0 auf, dann ist

Infx (x) = logy (1))

der Informationsgehalt von z. Ist dagegen p(x) = 0, so sei Infx(z) = 0. Dieser Wert
des Informationsgehalts ergibt sich zwangsldufig aus den beiden folgenden Forderungen:
— Der gemeinsame Informationsgehalt Infx y (z,y) von zwei Nachrichten = und y, die
aus stochastisch unabhingigen Quellen X und Y stammen, sollte gleich Infy(z) +
Infy (y) sein;
— der Informationsgehalt einer Nachricht, die mit Wahrscheinlichkeit 1/, auftritt, soll
genau 1 (bit) betragen.
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Die Einheit, in der der Informationsgehalt gemessen wird, ist bit (basic indissoluble
information unit). Die Entropie von X ist nun der erwartete Informationsgehalt einer
von X stammenden Nachricht.

Definition 67 (Entropie). Sei X eine Zufallsvariable mit Wertebereich W (X) =
{z1,...,2,} und sei p; = Pr[X = z;]. Dann ist die Entropie von X definiert als

H(X) = zn:pi Infx (z;) = ipi logy (1/p,)-

i=1

Beispiel 68. Sei X eine Zufallsvariable mit der Verteilung

x; | sonnig leicht bewolkt bewdlkt stark bewdlkt Regen Schnee Nebel

Di 1y 1y s s s /16 16

Dann ergibt sich die Entropie von X zu

HX)=1/1-(24+2)+ s- (3+3+3) + 15 (4+4) = 2.625.

Die Entropie nimmt im Fall p; = --- = p,, = 1/, den Wert log,(n) an. Fiir jede andere
Verteilung py,...,p, gilt dagegen H(X) < log,(n) (Beweis unten). Generell ist die
Unsicherheit iiber X um so kleiner, je ungleichméafiger X verteilt ist. Bringt X nur einen
einzigen Wert mit positiver Wahrscheinlichkeit hervor, dann (und nur dann) nimmt H(X)
den Wert 0 an. Fiir den Nachweis von oberen Schranken fiir die Entropie benutzen wir
folgende Hilfsmittel aus der Analysis.

Definition 69 (konkav). Eine reellwertige Funktion f ist konkav auf einem Intervall
I, falls fiir allex #y € I und 0 <t <1 gilt:

fltr + (1 —t)y) > tf(z)+(1—1)f(y).
Gilt sogar ,>“ anstelle von ,>“, so heifit f streng konkav auf I.

Beispiel 70. Die Funktion f(x) = log,(x) ist streng konkav auf (0,00). <

Fir den Beweis des nédchsten Satzes benotigen wir die Jensensche Ungleichung, die wir
ohne Beweis angeben.

Satz 71 (Jensensche Ungleichung). Sei f eine streng konkave Funktion auf I und seien
0<aq,...,a, <1 reelle Zahlen mit -7, a; = 1. Dann gilt fir alle z1,...,2, € 1,

/ (Z ai%‘) > Z a; f(z;).
i=1 i=1
Hierbei tritt Gleichheit genau dann ein, wenn alle x; den gleichen Wert haben.

Satz 72. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) = {x1,...,z,}
und Verteilung Pr[X =x;] = p;, i = 1,...,n. Dann ist H(X) < log,(n), wobei Gleichheit
genau im Fall p; = 1/n firi=1,... n eintritt.
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Beweis. Es gilt

H(X) = pilogy(1/p;) <logy > pi/pi =logyn.

i=1 i=1
Nach obigem Satz tritt Gleichheit genau im Fall 1/p; = --- = 1/p, ein, was mit p; = 1/n
fir i = 1,...,n gleichbedeutend ist. O

Eine wichtige Eigenschaft der Entropie ist, dass sie eine untere Schranke fiir die mittlere
Codewortlange von Bindrcodes bildet. Ein Bin&rcode fiir X ist eine (geordnete) Menge
C ={y1,...,yn} von bindren Codewortern y; fiir die Nachrichten z; mit der Eigenschaft,
dass die Abbildung ¢ : X* — {0,1}* mit c(x;, ---2;,) = Y4, -~ ¥i, injektiv ist. Die
Injektivitédt von c stellt sicher, dass jede Folge y;, - --v;, von Codewértern eindeutig
decodierbar ist.

Die mittlere Codewortliange von C unter X ist
L(C) = Zpi il
i=1

C heilt optimal, wenn kein anderer Binarcode fiir X eine kiirzere mittlere Codewortlange
besitzt. Fir einen optimalen Bindrcode C' fiir X gilt (ohne Beweis)

H(X) < L(C) < H(X) + 1.

Beispiel 73. Sei X die Zufallsvariable aus dem letzten Beispiel. Betrach-
ten wir die beiden Codes C; = {001,010,011,100,101,110,111} wund Cy =
{00,01,100,101,110,1110,1111}, so erhalten wir fir die mittlere Codewortlinge von
Cy den Wert L(Cy) = 3, wihrend Cy wegen |y;| = logy(1/,,) den Wert L(Cs) = H(X)
erreicht und somit optimal ist. N

Die Redundanz eines Codes fiir eine Zufallsvariable X ist um so hoher, je grofier seine
mittlere Codewortlange im Vergleich zur Entropie von X ist. Um auch Codes iiber
unterschiedlichen Alphabeten miteinander vergleichen zu kénnen, ist es notwendig, die
Codewortlédnge in einer festen Einheit anzugeben. Hierzu berechnet man die Bitlinge
eines Wortes = iiber einem Alphabet A mit m > 2 Buchstaben zu |z|y = |z|logy(m).
Beispielsweise ist die Bitlinge von GOLD (tiber dem lateinischen Alphabet) |GOLD|; =
4log,(26) = 18,8. Entsprechend berechnet sich fiir einen Code C' = {y1,...,y,} unter
einer Verteilung py, ..., p, die mittlere Codewortlinge (in bit) zu

n

Ly(C) = Zpi “|Yi2-

i=1

Damit konnen wir die Redundanz eines Codes als den mittleren Anteil der Codewort-
buchstaben definieren, die keine Information tragen.

Definition 74 (Redundanz). Die (relative) Redundanz eines Codes C fiir X ist
definiert als
Ly(C) — H(X)

RO ="
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Beispiel 75. Wihrend eine von X generierte Nachricht im Durchschnitt H(X) = 2.625
bit an Information enthdlt, haben die Codewdrter von Cy eine Bitlinge von 3. Der Anteil
an ,uberflissigen® Zeichen pro Codewort betrdgt also

3 —2.625

R(Cy) = 3

=12,5%,
wogegen Cy keine Redundanz besitzt. <

Auch Schriftsprachen wie Deutsch oder Englisch und Programmiersprachen wie C oder
PASCAL konnen als eine Art Code aufgefasst werden. Um die statistischen Eigenschaften
einer solchen Sprache L zu erforschen, erweist es sich als zweckmafBig, die Textstiicke der
Lange n (n-Gramme) von L fiir unterschiedliche n getrennt voneinander zu betrachten.
Sei also L, die Zufallsvariable, die die Verteilung aller n-Gramme in L beschreibt.
Interpretieren wir diese n-Gramme als Codeworter einer einheitlichen Codewortliange n,
SO ist

_ nlogym — H(L,)

B nlog, m

R(Ln)

die Redundanz dieses Codes. Es ist zu erwarten, dass eine Sprache umso mehr Redundanz
aufweist, je restriktiver die Gesetzméfigkeiten sind, unter denen in ihr Worte und Séatze
gebildet werden.

Definition 76 (Entropie einer Sprache). Fir eine Sprache L tiber einem Alphabet
A mit ||Al| = m ist H(L,)/n die n-Gramm-Entropie von L (pro Buchstabe). Falls
dieser Wert fiir n gegen oo gegen einen Grenzwert

H(L) = lim H(L,)/n

n—oo

konvergiert, so wird dieser Grenzwert als die Entropie von L bezeichnet. In diesem
Fall konvergiert R(L,,) gegen den Grenzwert

R(L) = lim R(L,) = 2&2m = H(L)

n—00 ]Og2 m ’

der als die (relative) Redundanz von L bezeichnet wird. Der Zihler Raps(L) = logy m—
H(L) in diesem Ausdruck wird auch als die absolute Redundanz der Klartextsprache
(gemessen in bit/Buchstabe) bezeichnet.

Fiir eine Reihe von natiirlichen Sprachen wurden die Redundanzen R(L,,) der n-Gramme
(fiir nicht allzu groBe Werte von n) empirisch bestimmt, woraus sich R(L) ndherungsweise
bestimmen lasst.

Beispiel 77. Im Deutschen hat die FEinzelbuchstabenverteilung eine Entropie von
H(L1) = 4,1 bit, wihrend eine auf Ay, gleichverteilte Zufallsvariable U einen Entro-
piewert von H(U) = log(26) = 4,7 hat. Fir die Bigramme ergibt sich ein Entropiewert
von H(Ls2)/2 = 3,5 bit pro Buchstabe. Mit wachsender Linge sinkt die Entropie von
deutschsprachigen Texten weiter ab und strebt gegen einen Grenzwert H(L) von 1,5 bit
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pro Buchstabe.

n H(L,) H(Ln)/n Ravs(Ly)/n R(L,)

1 4,1 4,1 0,6 13%
2 7,0 3,5 1,2 26%
39,6 3,2 1,5 32%
6 12,2 2,0 2,7 57%

15 27,6 1,8 2,9 62%

o oo HL)=1,5 Res(L)=3,2 R(L)=67%

Ein durchschnittlicher deutscher Text hinreichender Lange enthdlt also einen Redun-
danzanteil von ca. 67%, so dass er sich bei optimaler Kodierung auf circa 1/3 seiner
urspringlichen Linge komprimieren ldsst. <

Wir betrachten nun den Fall, dass mit einem Kryptosystem Klartexte der Lange n
verschliisselt werden, ohne dass dabei der Schliissel gewechselt wird. D. h. die Chiffrier-
funktion hat die Form

E, K x A" = C,,

wobei wir die Klartextlinge n variabel halten und der Einfachheit halber annehmen, dass
die Menge C,, der zugehérigen Kryptotexte die gleiche Kardinalitat ||C,| = ||A™]] = m”
wie der Klartextraum hat. Ist y ein abgefangener Kryptotext, so ist

Kly)={ke K|Jx e A": E,(k,x) =y Ap(x) > 0}

die Menge aller in Frage kommenden Schliissel fiir y. K (y) besteht aus einem ,echten*
(d.h. dem zur Generierung von y tatsichlich benutzten) und || K (y)|| — 1 so genannten
yunechten®“ Schlusseln. Aus informationstheoretischer Sicht ist das Kryptosystem desto
unsicherer, je kleiner die erwartete Anzahl

= > o) - (IIKWI-1)= > p) - [IKH)| -1
yeCn yely

der unechten Schliissel ist. Ist s,, gleich 0, so liefert der abgefangene Kryptotext y dem
Gegner geniigend Information, um den benutzten Schliissel und somit den zu y gehorigen
Klartext eindeutig bestimmen zu kénnen (sofern er tiber unbegrenzte Ressourcen an
Rechenkraft und Zeit verfugt).

Definition 78 (Eindeutigkeitsdistanz). Die Findeutigkeitsdistanz ny eines Kryp-
tosystems ist der kleinste Wert von n, fir den s, = 0 wird.

Als néchstes wollen wir eine untere Schranke fiir 5, (und damit fiir ng) herleiten. Hierzu
bendtigen wir den Begriff der bedingten Entropie H(X|Y') von X, wenn Y bereits bekannt
ist.

Definition 79 (bedingte Entropie). Seien X,Y Zufallsvariablen. Dann ist die be-
dingte Entropie von X unterY definiert als

HXIY)= > ply)- H(X]y),
yeW (Y)

wobei Xy die Zufallsvarz’able mit der Verteilung Pr[X|y = z] = p(zly) = Pr[X =z |
Y =yl ist (d-h H(X|y) = Xaewx) P(2ly) - 1085 (Vpapy)-
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Satz 80.
1. H(X,Y) =H(Y) + H(X]Y).
2. H(X,Y) <H(X) + H(Y), wobei Gleichheit genau dann eintritt, wenn X und Y
stochastisch unabhdangig sind.

Beweis. s. Ubungen. O

Korollar 81. H(X|Y) < H(X), wobei Gleichheit genau dann eintritt, wenn X und Y
stochastisch unabhdngig sind.

Satz 82. In jedem Kryptosystem gilt fir die Klartextentropie H(X), die Schliisselentropie
H(S) und die Kryptotextentropie H(Y')

H(S|Y) = H(S) + H(X) — H(Y).

Beweis. Zunéchst ist H(S|Y) = H(S,Y) — H(Y). Es reicht also zu zeigen, dass
H(S,Y) =H(S) + H(X)

ist. Da bei Kenntnis des Schliissels der Wert von X bereits eindeutig durch Y und der
Wert von Y eindeutig durch X festgelegt ist, folgt unter Beriicksichtigung der gemachten
Annahme, dass X und S unabhéngig sind,

H(S,Y) =H(S, X,Y) — H(X|S,Y) = H(S,X) + H(V|S, X) = H(S) + H(X).

=0 =0

Jetzt verfiigen wir iiber alle Hilfsmittel, um die erwartete Anzahl

=3 ply) - |1K(y)| -1

yelly

der unechten Schliissel nach unten abschétzen zu kénnen. Seien X,, und Y,, die Zufallsva-
riablen, die die Verteilungen der n-Gramme der Klartextsprache und der zugehoérigen
Kryptotexte beschreiben.

Lemma 83.

1. H(S|Y,) <logy(s, + 1),
2. H(S|Y,) > H(S) — nR(L) logym.
Beweis.

1. Unter Verwendung der Jensenschen Ungleichung folgt

H(SIY,) = > ply)-H(S|y)
yeCnp,
< Y ply) -logy |K (y)ll
yeCn
< log, Z p(y ||K ’
yeCh,
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2. Mit Satz 82 folgt
H(S|Yn) = H(S) + H(Xn) — H(Ya).

Die Klartextentropie H(X,,) ldsst sich durch
H(X,) =H(L,) > nH(L) =n(l —R(L))logym

abschéitzen, wobei m = ||A|| ist. Zudem ldsst sich die Kryptotextentropie H(Y},)
wegen W(Y,,) = C, und ||C,,|| = m" durch

H(Yn> S TLlOgg m
abschitzen. Somit ist

H(S|Y,) = H(S) + H(X,) — H(Yx) -

>—nR(L)logy m

Zusammen ergibt sich also
log, (5, + 1) > H(S) — nR(L) log, m.

Im Fall, dass der Schliissel unter Gleichverteilung gezogen wird, erreicht #H(S) den
maximalen Wert log, || K|, was auf die gesuchte Abschétzung fiir s, fithrt. Wir fassen
zusammen.

Satz 84. Werden mit einem Kryptosystem Klartexte x € A™ der Linge n mit einem unter
Gleichverteilung gezogenen Schlissel k € K wverschlisselt, und ist ||C,| = [|A"|| = m™
fiir den zugehérigen Kryptotextraum C, = {E(k,z) | k € K,x € A"}, so gilt fir die
erwartete Anzahl s,, der unechten Schliissel,

Iy
— mnrR(L)

— 1.

n

Setzen wir in obiger Abschatzung s, = 0, so erhalten wir folgende untere Schranke fiir
die Eindeutigkeitsdistanz ny des Kryptosystems.

Korollar 85. Unter den Bedingungen des obigen Satzes gilt

n 10g2||K|| _ log, HKH _ 10g2||K||
= R(L)log,m logym—H(L)  Ras(L)’

Man beachte, dass wir nur die Mindestmenge an Kryptotext zur eindeutigen Bestimmung
des Schliissels abgeschatzt haben. Nattrlich erlaubt die eindeutige Bestimmung des
Schliissels auch die eindeutige Bestimmung des Klartexts. Unter Umstdnden kann jedoch
der Klartext auch schon bei Kenntnis von wesentlich weniger Kryptotext eindeutig
bestimmbar sein.

Beispiel 86. Fir Substitutionen bei deutschsprachigem Klartext ergeben sich folgende
Werte log, || K||/Raps(L) als untere Schranke fir die Eindeutigkeitsdistanz ny (wobei wir
von einer absoluten Redundanz von Ras(L) = 3.2 bit/Zeichen ausgehen, was einer
relativen Redundanz von R(L) = 3,2/4,7 ~ 67% entspricht):
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Kryptosystem Schliisselanzahl || K| logy || K||  logy || K||/Rabs(L)
additive Chiffre 26 4.7 % ~ 1.5
affine Chiffre 1226 = 312 8.3 2.6
einfache Substitution 26! 88.4 27.6
Vigenére-Chiffre 264 4.7-d 1.5-d

Dagegen erhalten wir fiir Blocktranspositionen folgende unteren Schranken fiir die Min-
destmenge an Kryptotext, die zur eindeutigen Bestimmung des Schlissels bendtigt wird:

Analyse auf Ravs(L) Blocklinge 1

der Basis von 10 20 50 100 1000
Einzelzeichen 0,6 59 165 578 1415 22986
Bigrammen 1,2 40 111 390 954 15502
Trigrammen 1,5 24 65 226 558 9473

n-Grammen, n — oo 3,2 7 19 67 164 2665

Auch wenn die unteren Schranken fir ng bei der Analyse auf der Basis von Finzelzeichen
endlich sind, ist in diesem Fall ng = 0o, da eine solche Analyse nicht zum Ziel fihren
kann, unabhdngig davon, iber wie viel Kryptotext der Gegner verfiigt. <

3.2 Weitere Sicherheitsbegriffe

Wie wir gesehen haben, muss fiir die Benutzung eines informationstheoretisch sicheren
Kryptosystems ein immenser Aufwand betrieben werden. Daher begniigt man sich in der
Praxis meist mit schwécheren Sicherheitsanforderungen.

— Ein Kryptosystem gilt als komplexitatstheoretisch sicher oder als berech-
nungssicher (computationally secure), falls es dem Gegner nicht méglich ist,
das System mit einem fiir ihn lohnenswerten Aufwand zu brechen. Das heifit, der
Zeitaufwand und die Kosten fiir einen erfolgreichen Angriff (sofern er tiberhaupt
moglich ist) iibersteigen den potentiellen Nutzen bei weitem.

— Ein Kryptosystem gilt als nachweisbar sicher (provably secure), wenn seine
Sicherheit mit bekannten komplexitéitstheoretischen Hypothesen verkniipft werden
kann, deren Giltigkeit gemeinhin akzeptiert wird.

— Als praktisch sicher (practically secure) werden dagegen Kryptosysteme ein-
gestuft, die iber mehrere Jahre hinweg jedem Versuch einer erfolgreichen Krypto-
analyse widerstehen konnten, obwohl sie bereits eine weite Verbereitung gefunden
haben und allein schon deshalb ein lohnenswertes Ziel fiir einen Angriff darstellen.

Die komplexitatstheoretische Analyse eines Kryptosystems ist d&uflerst schwierig. Dies
héngt damit zusammen, dafl der Aufwand eines erfolgreichen Angriffs unabhéngig von
der vom Gegner angewandten Strategie abgeschétzt werden muss. Das heif3t, es miissen
nicht nur alle derzeit bekannten kryptoanalytischen Ansétze, sondern alle mdglichen in
Betracht gezogen werden. Dabei darf sich die Aufwandsanalyse nicht ausschliellich an
einer vollstdndigen Rekonstruktion des Klartextes orientieren, da bereits ein geringfiigiger
Unterschied zwischen dem a posteriori und dem a priori Wissen fiir den Gegner einen
Vorteil bedeuten kann.
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Aus den genannten Griinden ist es bis heute noch fiir kein praktikables Kryptosystem
gelungen, seine komplexitéitstheoretische Sicherheit mathematisch zu beweisen. Damit
ist auch nicht so schnell zu rechnen, zumindest nicht solange der Status fundamentaler
komplexitatstheoretischer Fragen wie etwa des berithmten PZNP-Problems offen ist.
Dagegen gibt es eine ganze Reihe praktikabler Kryptosysteme, die als nachweisbar sicher
oder praktisch sicher gelten.

Wir schlieBen diesen Abschnitt mit einer Préazisierung des komplexitéitstheoretischen
Sicherheitsbegriffs, die unter dem Namen IND-CPA (indistinguishability under a chosen-
plaintext attack) bekannt ist. Hierzu ist es erforderlich, die Verletzung der Vertraulichkeit
als ein algorithmisches Problem fiir den Gegner zu formulieren.

Definition 87 (Vorteil eines Gegners). Sei (M,C,E, D, K) ein Kryptosystem mit
Schliisselgenerator S. Ein Gegner ist ein Paar G = (X,V') von probabilistischen Algo-
rithmen, wobei X = (Xo, X1) zwei Klartexte xo # x1 € M generiert und V bei Eingabe
zweier Klartexte xg,x1 € M und eines Kryptotextes y € C' ein Bit ausgibt. Der Vorteil
von G ist

ag = Pr[V(Xo, X1, E(S,Xp)) = B] — 1/2,

wobei B eine auf {0,1} gleichverteilte Zufallsvariable ist (d.h. Pr[B = 0] = Pr[B = 1] =
1/2), die von X und V' stochastisch unabhdingig ist.

Wird bspw. eine Blockchiffre zur Verschliisselung von Klartextblocken z[1], z[2],. ..
benutzt, indem die einzelnen Blocke unabhéngig voneinander mit demselben Schliissel k
zu einer Folge y[1],y[2],... von Kryptotextblocken y[i] = E(k, z[i]) verschliisselt werden
(so genannter ECB-Mode; electronic code book mode), so kann ein Gegner ohne grofien
Aufwand einen Vorteil von 1/2 erzielen. Hierzu wahlt er (deterministisch) zwei beliebige
Klartexte xg = z[1]oz[2]o... und 2y = z[1];2[2]; ... mit der Eigenschaft z[1], = z[2]o
und z[1]; # z[2];. Dann kann er bei Vorlage eines Kryptotextes y = y[1|y[2]... leicht
erkennen, aus welchem der beiden Klartexte sie generiert wurde:

0, y[1] = y[2]
1, sonst.

V(5U07$1,y> = {

Satz 88. Bei einem absolut sicheren Kryptosystem kann kein Gegner einen Vorteil grofSer
als 0 erzielen.

Beweis. Bei einem absolut sicheren Kryptosystem sind der Kryptotext Y = FE(S, X)
und der Klartext X stochastisch unabhéngig. Daher sind auch die Zufallsvariablen
V(Xo, X1, E(S, Xp)) und B stochastisch unabhéngig und es folgt

PI‘[V(Xo,Xl,E(S, XB)) =B

= Pr[V(Xo, X1, E(S, Xp)) = B = 0] + Pr[V(Xo, X1, E(S, Xp)) = B =1]
= Pr[V(Xo, X1, E(S,Xp)) =0] - Pr[B=0|V(Xo, X1, E(S, Xp)) = 0]
=Pr[B=0]=1/2
+ Pr[V(Xo, X1, E(S, X)) = 1] - Pr[B = 1| V(Xo, X1, E(S, X)) = 1]
=Pr[B=1]=1/2

= 1/2.
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In den Ubungen wird auch die umgekehrte Implikation bewiesen. Ein Kryptosystem ist
somit genau dann absolut sicher, wenn kein Gegner einen Vorteil grofier 0 erzielt. Fiir
die Prézisierung des komplexitédtstheoretischen Sicherheitsbegriffs sind nun die beiden
folgenden Fragen von entscheidender Bedeutung:

— Uber welche Rechenressourcen verfiigt ein Gegner realistischerweise?

— Wie grof} darf der vom Gegner erzielte Vorteil hochstens sein, damit die Vertrau-
lichkeit der Nachricht noch gewahrt bleibt?

Eine Antwort auf diese Fragen liefert Definition 89. Dabei gehen wir davon aus, dass
das gewtlinschte Mafl an Sicherheit durch einen Parameter s € N regulierbar ist. Aus
Praktikabilitatsgriinden sollten dann alle legalen Operationen (wie die Chiffrierung oder
die Schliisselgenerierung) effizient (d.h. in Zeit s°*)) durchfiihrbar sein. Natiirlich hingt
dann auch der Gegner G* vom Parameterwert s ab. Typischerweise werden Kryptosysteme
nach ihrer Schliissellange s = |k| parameterisiert.

Definition 89 (komplexitatstheoretisch sicher). Sei S ein Kryptosystem mit varia-
blem Sicherheitsparameter s € N.
— FEine Funktion € : N — R heifst vernachldssigbar, wenn fiir jedes Polynom p eine
Zahl ng € N ezistiert, so dass e(n) < 1/p(n) fir alle n > ng ist.
— FEin Gegner G° = (X*,V?), s € N, heifit effizient, wenn sowohl das Klarteztpaar
X als auch V* durch probabilistische Schaltkreise der Grofie s berechenbar sind.
— Das Kryptosystem S heifit komplexitdtstheoretisch sicher, wenn jeder effiziente
Gegner G* nur einen vernachldssigbaren Vorteil erzielen kann (d.h. die Funktion
s+ ags ist vernachldssigbar).
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4 Moderne symmetrische Kryptosysteme & ihre
Analyse

4.1 Produktchiffren

Produktchiffren erhdlt man durch die sequentielle Anwendung mehrerer Verschliisse-
lungsverfahren. Sie konnen extrem schwer zu brechen sein, auch wenn die einzelnen
Komponenten leicht zu brechen sind.

Definition 90 (Produktkryptosystem). Seien S; = (M;,Cy, Ey, D1, K;y) und Sy =
(My, Cy, Es, Dy, Ky) Kryptosysteme mit Cy = My. Dann ist das Produktkryptosystem
von Sy und Sy definiert als S; X Sy = (M,Cy, E, D, Ky x Ky) mit

E(ky, ko; x) = Ea(ko, E1(k1, ) und D(ky, ka;y) = Di(ky, Da(k2,y))
fiir alle x € My, y € Cy und (ky, ko) € Ky X K.

Der Schliisselraum von S; x Sy umfasst also alle Paare (kq, ko) von Schlisseln ky € K,
und ky € K,, wobei wir voraussetzen, dass die Schliissel unabhéngig gewahlt werden (d.h.

es gilt p(ky, k2) = p(k1)p(k2)).

Beispiel 91. Sei A = {ag,...,am_1}. Man sieht leicht, dass die affine Chiffre
S=(M,C,K,E,D) mit M =C = A und K = Z}, X Ly, das Produkt S = S; x S,
der multiplikativen Chiffre S; = (M,C, Ky, E1, D1) mit der additiven Chiffre Sy =
(M, C, Ky, Ey, Dy) ist, da fiir jeden Schlissel k = (ki, ko) € K = Ky X Ko = Z}, X Ty
gilt:
E(l{?,l’) = kll’ + /{32 = EQ(kQ, El(k:l,x)).

Fir 8" = Sy x Sy erhalten wir das Kryptosystem S' = (M,C,K',E',D") mit K' =
KQXKlzZmXZ:n und

E,(kg, kl,l’) = ]{?1(1' + ]{?2) = k?ll‘ —+ ]Clkfg = E(k’l, k’lk’z; ZL‘)
fir jeden Schlissel (ko, k1) € K'. Da die Abbildung
(Ko, k1) — (Ko, k1k2)

eine Bijektion zwischen den Schlisselriumen K' und K ist und der Schlissel (ko k1) im
System S’ die gleiche Chiffrierfunktion realisiert wie der Schlissel (kq, k1ks) in S, sind
die Kryptosysteme S = Sy X Sy und S" = Sy x Sy als gleich (genauer: dquivalent, siehe
Ubungen) anzusehen, d.h. S und Sy kommutieren. N

Definition 92 (endomorph, idempotent). Ein Kryptosystem S = (M,C, K, D, E)
mit M = C heifit endomorph. Fin endomorphes Kryptosystem S heifit idempotent,
falls S x S =S ist.

Beispiel 93. Fine leichte Rechnung zeigt, dass die additive, die multiplikative und die
affine Chiffre idempotent sind. Ebenso die Blocktransposition sowie die Vigenére- und

Hill-Chiffre. <
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Will man durch mehrmalige Anwendung (Iteration) derselben Chiffriermethode eine
hohere Sicherheit erreichen, so darf diese nicht idempotent sein. Man kann beispielsweise
versuchen, ein nicht idempotentes System S durch die Kombination S = S} x Sy zweier
idempotenter Verfahren S7 und Sy zu erhalten. Da S im Fall S; x Sy = S5 x S; wegen

(S1 X S3) x (S1 xS3) = Spx(S2xS57) xS,
= 51 % (S X S3) X Sy
= (51 x S1) x (Sg x S)
= 5 x5

idempotent ist, diirfen hierbei S; und Ss jedoch nicht kommutieren.

Im Rest dieses Kapitels werden wir nur noch das Binaralphabet A = {0, 1} als Klar- und
Kryptotextalphabet benutzen und auch der Schliisselraum wird von der Form {0, 1}*
sein, wobei k die Schliissellinge bezeichnet.

Eine iterierte Blockchiffre wird typischerweise durch eine Rundenfunktion (round
function) g und einen Schliisselgenerator (key schedule algorithm) f beschrieben.
Ist N die Rundenzahl, so erzeugt f bei Eingabe eines Schliissels K eine Folge
f(K)=(K',...,K") von N Rundenschliisseln K fiir g. Mit diesen wird ein Klartext
x = w° durch N-malige Anwendung der Rundenfunktion g zu einem Kryptotext y = w®
verschliisselt:

w? = g(KN, wN™1)
Um y wieder zu entschliisseln, muss die inverse Rundenfunktion ¢g~! mit umgekehrter
Rundenschliisselfolge KV, ..., K benutzt werden:

wN1 = g (KN, wh)

w = g (K, wh)
Beispiele fiir iterierte Chiffren sind der aus 16 Runden bestehende DES-Algorithmus und
der AES mit einer variablen Rundenzahl N € {10, 12, 14}, die wir in spateren Abschnitten
behandeln werden.

4.2 Substitutions-Permutations-Netzwerke

In diesem Abschnitt betrachten wir den prinzipiellen Aufbau von iterierten Blockchiffren.
Als Basisbausteine fiir die Rundenfunktion eignen sich Substitutionen und Transpositionen
besonders gut. Aus Effizienzgriinden sollten die Substitutionen nur eine relativ kleine
Blocklange [ haben.

Definition 94 (Teilwort). Fir ein Wort u = uy---u, € {0,1}" und Indizes 1 < i <
J < n bezeichne uli,j| das Teilwort u;---u; von w. Im Fall n = Ilm bezeichnen wir
das Teilwort u[(i — 1)l 4 1,4l] auch einfach mit ugy, d.h. es gilt uw = @) - - - Uy, wobel
lu| = 1.

Sei ag : {0,1} — {0, 1}" eine Substitution, die Bindrblocke u der Lange [ in Bindrblocke
v = ag(u) der Lange I’ iiberfithrt (engl. auch als S-Box bezeichnet).
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Uy Uz U3z Ug

/ S-Box \

V1 V2 V3 Vg4 Vs Vg

Durch parallele Anwendung von m dieser S-Boxen erhalten wir folgende Substitution
S {0,1}™ — {0,1}'™,

Suy - um) = as(uy) - as(Ugm))-

Fiir die Speicherung einer S-Box ag : {0, 1} — {0,1}" auf einem Speicherchip werden
I'2! Bit Speicherplatz bendtigt (im Fall [ = I’ also 12! Bit). Fiir [ = I’ = 16 wéren dies
beispielsweise 2%° Bit, was Smartcard-Anwendungen bereits ausschlieen wiirde.

Fiir eine Transposition P auf {0, 1}™ bezeichnen wir die zugehérige Permutation auf
{1,...,Im} mit 7p, d.h.

P(ui - tm) = Urp(1) -+ Unp(m)-

Definition 95 (Substitutions-Permutations-Netzwerk). Sei M = C = {0, 1}'™ fiir
natirliche Zahlen [,m > 1. Ein Substitutions- Permutations-Netzwerk (SPN) wird
durch Permutationen mg : {0, 1} — {0, 1} und 7p : {1,...,Im} — {1,...,Im} sowie
durch einen Schliisselgenerator f : {0, 1}* — {0, 1}™N+1) beschrieben. Der Generator f
erzeugt aus einem (externen) Schliissel K € {0,1}* eine Folge f(K) = (K*',..., KN
von N +1 Rundenschliisseln K", unter denen ein Klartext x € {0, 1}'™ gemdp folgendem
Algorithmus in einen Kryptotext y = Ef o »p (K, x) € {0, 1}'™ dberfihrt wird.

Chiffrierfunktion E ., ..(K, )
0

Low? =
2> for r:=1to N—1 do
3 ui=w e KT

4 v = S(u")

5 w” = P(v")

o ulN =wNte KN

- oV = S)

sy i=oN @ KN

Zu Beginn jeder Runde r € {1,..., N} wird w"~! zunéchst einer XOR-Operation mit dem
Rundenschliissel K" unterworfen (dies wird round key mixing genannt), deren Resultat
u” den S-Boxen zugefiihrt wird. Auf die Ausgabe v" der S-Boxen wird in jeder Runde
r < N — 1 die Transposition P angewendet, was die Eingabe w" fiir die nachste Runde
r + 1 liefert.

Am Ende der letzten Runde » = N wird nicht die Transposition P angewandt, sondern der
Rundenschliissel KV +1 auf vV addiert. Durch diese (whitening genannte) Vorgehensweise
wird einerseits erreicht, dass auch fiir den letzten Chiffrierschritt der Schlissel ben6tigt
und somit der Gegner von einer partiellen Entschliisselung des Kryptotexts abgehalten
wird. Zum Zweiten ermoglicht dies eine (legale) Entschliisselung nach fast demselben
Verfahren (siehe Ubungen).
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Abbildung 4.1: Ein Substitutions-Permutations-Netzwerk.

Beispiel 96. Seil =m = N =4 und sei k = 32. Fir f wdihlen wir die Funktion f(K) =
(K',...,K®) mit K" = K[4(r — 1)+ 1,4(r — 1) + 16]. Weiter seien g : {0,1}* — {0,1}*
und mp : {1,...,16} — {1,...,16} die folgenden Permutationen (wobei die Argumente
und Werte von g hexadezimal dargestellt sind; siehe auch Abbildung /.1):

z 01 2 345 6 789 ABCCDFEF
ms(z)|E 4 D1 2 F B8 3 A6 C 5 9 0 7
und
1 1 23 4 56 7 8 9 10 11 12 13 14 15 16
mp(i)|1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Fiir den Schlissel K = 0011101010010100110101100011 1111 liefert f beispiclsweise



4.3 Lineare Approximationen B}

die Rundenschlissel f(K) = (K',..., K°) mit

K' = 001110101001 0100,
K? =10101001 01001101,
K3 =1001010011010110,
K*=0100110101100011,
K®=110101100011 1111,

unter denen der Klartext x = 001001101011 0111 die folgenden Chiffrierschritte durch-
lauft:
x = 0010011010110111 = w®

w® @ K' = 0001110000100011 = u!
S(u') = 010001011101 0001 = v!
P(v') = 0010111000000111 = w?

P(v3) = 1110010001101110 = w?®
w? @ K* = 10101001 00001101 = u*
S(u*) = 011010101110 1001 = v*
u* @ K° =101111001101 0110 = y.

4.3 Lineare Approximationen

Sei f:{0,1}' = {0,1}" eine Abbildung. Wihlen wir fiir f eine zufillige Eingabe U =
Uy - - - U; unter Gleichverteilung, so gilt fir die zugehorige Ausgabe V = f(U) =V; -V,
1 mg(u) =,

0 sonst

Pr[V:v|U:u]:{

fiir alle u € {0,1}' und v € {0, 1}". Wegen Pr[U = u] = 27! folgt

Pr[V=v,U=u]= {Q_Z ms(u) = v,

0 sonst.
Ist f linear, so sind die Zufallsvariablen V; in der Form
‘/}:Uh@”'@Uik

fiir geeignete Indizes 1 < iy < --- < i3 < [ darstellbar. Die Idee hinter der linearen
Kryptoanalyse ist nun, Gleichungen der Form

V@@V, =U, @ U,

mit 1 <4 << <, 1<j; < <jw<IU'undc € {0,1} zu finden, die mit
groBer WK gelten oder nicht gelten. Definieren wir fiir a € {0,1} und b € {0,1}" die
Zufallsvariablen
I v
Ua = @(IzUl und % = @bl‘/;,
i=1

=1
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so sind wir also an solchen Werten fiir a und b interessiert, fiir die das Ereignis V,, =
U, (oder gleichbedeutend: U, &V}, = 0) eine moglichst grofie oder moglichst kleine
Wahrscheinlichkeit besitzt. In beiden Féllen lasst sich ndmlich der Wert von V, in
Abhéngigkeit von U, relativ gut vorhersagen. Die durch a und b beschriebene lineare
Approximation U, @V ist also um so besser, je starker die Wahrscheinlichkeit Pr[U, ®
V, = 0] von 1/, abweicht.

Definition 97. Fir eine Zufallsvariable X mit Wertebereich W (X) = {0,1} bezeichne
e(X) den Wert e(X) = Pr[X = 0] — 1/, (auch Bias von X genannt).

Unter Benutzung dieser Notation lésst sich also die Giite einer linearen Approximation
U, &V}, durch den Absolutbetrag |e(U, & V;)| ihres Bias-Wertes bemessen.

Beispiel 98. Wir betrachten die S-Boz s : {0,1}* — {0,1}* aus Beispiel 96. Dann
nimmt die Zufallsvariable (Uy, ..., Uy, Vi,..., V) die folgenden 16 Werte jeweils mit
Wahrscheinlichkeit 2=% = 1/ an.

Uy Uy Us Up Vi Vo V3 Vy Us@Us® Vi@V,

o 0 0 o 1 1 1 0 1
o 0 0 1 0 1 0 0 1
o 0 1 0 1 1 0 1 1
o 0 1 1 0 0 0 1 1
o 1 0 0 0 0 1 0 0
o 1 o0 1 1 1 1 1 1
o 1 1 0 1 0 1 1 1
o 1 1 1 1 0 0 O 1
1 0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 O 0
1 0 1 0 0 1 1 O 1
1 0 1 1 1 1 0 O 1
11 0 0 O 1 0 1 1
11 0 1 1 0 0 1 1
11 1 0 0 0 0 O 1
11 1 1 0 1 1 1 1

Um nun (U, & V4) zu berechnen, gentigt es, die Anzahl L(a,b) der Zeilen zu bestimmen,
fir die U, =V}, ist. Dann gilt Pr[U, &V, = 0] = Pr[U, = V| = L(a,b)/16 und somit

(U, ® V) = L(a,b)/16 — 1/2 = (L(a,b) — 8)/16.

Fiir a = 0011 und b = 1001 g¢ibt es z.B. L(a,b) = 2 Zeilen (Zeile 5 und Zeile 10) mit
Ua = U3@U4 == VE; = V1 @‘/47 d.h. €(U3@U4@‘/1 @‘/4) = (L(a,b) —8)/16 = —3/8. Die
folgende Tabelle zeigt fiir alle Werte von a und b (hezadezimal dargestellt) die Anzahlen
L(a,b).
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b
a 0 123 45 6 7 8 9A B C D E F
016 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 86 6 8 8 6 14 10 10 8 8 10 10 8 8
2 8 86 6 88 6 6 8 81010 8 8 210
3 8 888 8 8 8 810 2 6 6 10 10 6 6
4 810 8 6 6 4 6

8§ & 6 8 10 10 4 10 8
B 812 8 412 812 8 8 8 8 & & 8 & 8

F 8 6 46 6 810 8 8 612 6 6 8 10 8

4.4 Lineare Kryptoanalyse eines SPN

Wir betrachten nun das SPN aus Beispiel 96 und fithren eine lineare Kryptoanalyse
durch. Dabei handelt es sich um einen Angriff bei bekanntem Klartext, d.h. es steht
eine Menge M von t Klartext-Kryptotext-Paaren (z,y) zur Verfiigung, die alle mit dem
gleichen unbekannten Schliissel K erzeugt wurden.

Seien K1, ..., K® die zu K gehorigen Rundenschliissel. Das Ziel besteht zunéchst einmal
darin, eine lineare Approximation fiir die Abbildung z + u* zu finden, bei der die
Rundenschliissel K, ..., K* benutzt werden (sieche Abbildung 4.2). Hierzu benutzen wir
die beiden folgenden linearen Approximationen an die S-Box S:

T=UoUsdUs @ Vs

mit einem Bias von ¢(T') = (L(B,4) — 8)/16 = (12 — 8)/16 = 1/, und

T'=UyoVa@V,

mit einem Bias von e(T") = (L(4,5) — 8)/16 = (4 — 8)/16 = ~1/,.

Konkret benutzen wir die lineare Approximation 7" fiir die S-Box S3,
Li=U;0U;0U; & Vg

und die lineare Approximation 7" fiir die S-Boxen S3, S35, S2,

L=UieVgeVy, Thi=UieViaeVd T.=UjeVie Vi

Indem wir nun die linearen Approximationen 71, ..., T, der S-Boxen S3, S%, S5 und S
yzusammen schalten“, erhalten wir fiir ein ¢ € {0, 1} die gesuchte lineare Approximation

Xs0X:0Xs0UsoUioULoUy = TIohoThoT, e (4.1)

von x — u*. An dieser Stelle ergeben sich folgende drei Fragen.
1. Warum gilt (4.1)7
2. Wie gut ist die lineare Approximation X5 & X7 @ Xg @ U ¢ Ug & U}, & Uly?

3. Wie kénnen wir mit ihrer Hilfe den Schliissel bestimmen?
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Abbildung 4.2: Eine lineare Approximation an ein Substitutions-Permutations-Netzwerk.

Wir gehen zunachst auf Frage 1 ein. Seien ¢y, ..., ¢4 die Schliisselbitsummen

a=KioKI ®Kg, co=K; c3=K, DK}y, cy=K;®Kg @K}, ® K.

Dann gilt
X508 X7 Xs

Ui oUr ®Us ®c;

TeVi®a

T1@W61€Bcl

Ty®UZ®cr D ey

TeTLhoViaoVEidce ® e
TeT,eWEeWE el &

TeT,oUSBUS ®cr®cy®es
ohohohhaoVieVioVieVidadandc
TehehhoTyoaWeeaWseaWoW der @ cdcs

= ToehohholyoUioUidUL,oUk®c ®cdcdcay.

Nun zu Frage 2: Wéren die Zufallsvariablen T, ..., Ty unabhéingig, so wiirde uns das
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folgende Piling-up-Lemma den Bias-Wert 23(1/4)(—1/4)% = —1/32 fir Ty - - -&T} liefern.
Sind namlich X, X, unabhdngige Zufallsvariablen mit Wertebereich W (X;) = {0, 1}
und Bias ¢; = (X;), dann ist

PI‘[Xl D XQ = 0] = PI"[Xl = X2 = O] + PI‘[XI = X2 = 1]
= (t+e)(ater)+ (1o—e1)(l2—e)
= 1+ 2e169

und Pr[X; & Xy = 1] = 1/ — 2e169, d.h. es gilt e(X; & X3) = 2e165. Diese Beobachtung
lasst sich leicht verallgemeinern.

Lemma 99 (Piling-up Lemma).
Seien X1, ..., X, unabhdingige {0, 1}-wertige Zufallsvariablen mit Bias €; = £(X;). Dann
qgilt
8<X1 @ s @ Xn) = 2”71 Hefi.
i=1
Beweis. Wir fiihren den Beweis durch Induktion iiber n.
Induktionsanfang (n = 1): Klar.

Induktionsschritt (n ~ n + 1): Nach Induktionsvoraussetzung hat die Zufallsvariable
Z=X,® - ®X, den Bias ¢(Z) = 2" (X)) - - - £(X,,) und daher folgt

X1 @ @ X)) =e(Z @ Xpy1) = 26(Z)enr = 2"+ €nya

O

Beispiel 100. Seien X, Xo, X3 Zufallsvariablen mit e(X;) = 1/, firi = 1,2,3. Dann
gilt nach obigem Lemma €;; = e(X; ® X;) = s fir 1 < i < j < 3. Man beachte,
dass die Zufallsvariablen X1 & Xo und X9 @& X3 nicht unabhdngig sind, und daher das
Piling-up-Lemma nicht anwendbar ist. Dieses wirde namlich fir die Zufallsvariable

(X190 X0)® (Xod X3) =X, 8 X5

ein Bias von € = 2(1/3)? = /35 ergeben, was dem tatsichlichen Wert (X, & X3) =13 =
1/ widersprechen wiirde. <

Obwohl die Zufallsvariablen T}, ..., T, nicht unabhangig sind, stellt sich in der Praxis
heraus, dass sich der tatsachliche Wert ¢ = (T} & - - - & T}) nicht zu sehr von diesem
“hypothetischen” Wert unterscheidet, d.h.

(X5 @ X7 © Xz ® U © Ug @ Ujy ® Uyg)| = Vs

Und schliellich zu Frage 3: Wir wissen bereits, dass ein zufalliger Klartext X entweder
mit hoher oder mit niedriger Wahrscheinlichkeit auf ein Zwischenresultat U* mit

Xs0X:0Xs0Us @U@ UL UL =0 (4.2)

fithrt. Gehen wir also davon aus, dass M eine reprasentative Auswahl von Klartext-
Kryptotext-Paaren (x,y) darstellt, so wird die Anzahl der Paare (z,y) in M, die (4.2)
erfiillen, ebenfalls eine Mehrheit oder eine Minderheit in M bilden. Man beachte, dass
sich fiir jeden Subschlissel-Kandidaten (engl. candidate subkey) (L, Ls) fiir (K (52), K 5’4))
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die zu einem Kryptotext y gehorigen Werte ug, ug, ui, und uis leicht berechnen lassen,
da 75! bekannt ist.

Die Idee besteht nun darin, fir jeden Kandidaten (L, Ls) die Anzahl a(Ly, Ly) aller
Paare (z,y) in M zu bestimmen, die bei Beniitzung von (Ly, Ly) Gleichung (4.2) erfiillen.
Fiir den richtigen Kandidaten wird diese Anzahl ungefahr bei t/, & t/5, liegen, wogegen
bei Benutzung eines falschen Subschliissels mit einer Anzahl von circa t/, zu rechnen ist.
Fiir geniigend groBe Werte von ¢ lassen sich auf diese Weise 8 Bit von K° (und damit
von K) bestimmen.

Algorithmus LINEARATTACK

for (L, Ls) :=(0,0) to (F,F) do
Oz(Ll, LQ) =0

for each (z,y) € M do
for (L, L) :=(0,0) to (F,F) do

U?g) =L Dy

6 Ua) = Ly P Y(a)

7 uj(?) = W§1<U§2)>

8 Uy 1= Tg (v(4))

9 if 25 ® 27 ® xs ® ug & ug ®uiy Duls =0 then

10 a(Ly, Ly) = a(Ly, Ly) + 1

11 max = —1

12 for (Ly,Ls):=(0,0) to (F,F) do

5 B(Ly, La) = |a(Ly, L) — )

14 if 5(Lq,Ly) > maxr then

15 max = (L1, Ls)

16 maxkey := (L1, Ls)

17 output (maxkey)

3L SO SO O R

Im allgemeinen werden fiir eine erfolgreiche lineare Attacke circa t ~ cz~? Klartext-
Kryptotext-Paare benotigt, wobei ¢ eine ,kleine“ Konstante ist (im Beispielfall reichen
t ~ 8000 Paare, d.h. c ~ 8, da e 72 = 1024 ist).

4.5 Differentielle Kryptoanalyse von SPNs

Bei der differentiellen Kryptoanalyse handelt es sich um einen Angriff bei frei wahlba-
rem Klartext. Genauer gesagt, basiert der Angriff auf einer Menge M von t Klartext-
Kryptotext-Doppelpaaren (z,z*,y,y*) mit der Eigenschaft, dass alle Klartext-Paare
(x,2*) die gleiche Differenz =’ = = @ x* bilden.

Definition 101 (Eingabe- und Ausgabedifferenz). Seien x,z* € {0,1}' zwei Ein-
gaben fiir eine S-Box mg : {0, 1} — {0, 1} und seien y = ws(x) und y* = ws(x*) die
zugehorigen Ausgaben. Dann wird ' = x ® «* die Eingabedifferenz (engl. input-zor)
und y' = ws(x) ® ws(x*) die Ausgabedifferenz (engl. output-ror) des Paares (x,x*)
genannt. Fiir eine vorgegebene Eingabedifferenz a' € {0,1}'} sei weiter

Ald) ={(z,2*) |z,2* € {0, 1}, 2@ a* =d'} = {(z,2® d) | 2 € {0,1}}}

die Menge aller Eingabepaare, die die Differenz a' realisieren.



4.5 Differentielle Kryptoanalyse von SPNs 61

Berechnen wir fiir alle Eingabepaare (z,2*) € A(a’) die zugehorigen Ausgabedifferenzen,
so verteilen sich diese mehr oder weniger gleichmaBig auf die 2° moglichen Werte in
{0,1}". Man beachte, dass im Fall einer affinen S-Box nur die Ausgabedifferenz 75(a’)
auftritt, da dann 7g(z) @ mg(x*) = mg(x @ z*) ist. Ist dagegen g nicht linear, so kann die
Eingabedifferenz o’ auf unterschiedliche Ausgabedifferenzen fiithren, je nachdem, durch
welches Eingabepaar (z,2*) € A(a’) die Differenz a’ realisiert wird. Im Allgemeinen lasst
sich eine differentielle Kryptoanalyse um so leichter durchfithren, je ungleichmafiger die
auftretenden Ausgabedifferenzen verteilt sind.

Definition 102 (Differential, Weitergabequotient). Sei a’ € {0,1} eine Eingabe-
und sei /€ {0,1} eine Ausgabedifferenz fiir eine S-Box mg. Dann heifit (a/,V) Diffe-
rential. Die Anzahl der Eingabepaare (x,x*), die die Fingabedifferenz a' in die Ausgabe-
differenz b' iberfihren, bezeichnen wir mit D(a’,b'), d.h.

D(a",b) = |[{(z,2") € Ald') | ms(z) & ms(2”) = V'}].
Der Weitergabequotient (engl. propagation ratio) von wg fir ein Differential (o', V') ist

O 1) = D(c;?b)

Q(a’,b') ist also die (bedingte) Wahrscheinlichkeit

Prirg(z) ® mg(x*) =V | 2 x* = d]
dass zwei zufillig gewahlte Eingaben die Ausgabedifferenz ' erzeugen, wenn sie die

Eingabedifferenz o’ bilden.

Beispiel 103. Betrachten wir die S-Box ws : {0,1}* — {0,1}* aus Beispiel 96, so
erhalten wir fir die Eingabedifferenz a’ = 1011 die Menge

A(a') = {(0000,1011),...,(1111,0100)}

von méglichen Eingabepaaren, die auf folgende Ausgabedifferenzen vy’ =y @ y* = nwg(z) @
ws(x*) fihren:

* * /

Z z Y ) )

0000 1011 1110 1100 0010
0001 1010 0100 0110 0010
0010 1001 1101 1010 0111
0011 1000 0001 0011 0010
0100 1111 0010 0111 0101
0101 1110 1111 0000 1111
0110 1101 1011 1001 0010
0111 1100 1000 0101 1101
1000 0011 0011 0001 0010
1001 0010 1010 1101 O111
1010 0001 0110 0100 0010
1011 0000 1100 1110 0010
1100 0111 0101 1000 1101
1101 0110 1001 1011 0010
1110 0101 0000 1111 1111
1111 0100 0111 0010 0101
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Die Ausgabedifferenz b = 0010 kommt also D(a’,0010) = 8 Mal vor, wihrend die
Differenzen 0101, 0111, 1101 und 1111 je zwei Mal und die tibrigen Werte tiberhaupt nicht
vorkommen (siehe Zeile B in nachfolgender Tabelle). Fihren wir diese Berechnungen fir
jede der 2* = 16 Eingabedifferenzen o’ € {0,1}* aus, so erhalten wir die folgenden Werte
fiir die Hdaufigkeiten D(a’,b") der Ausgabedifferenz b/ bei Fingabedifferenz a' (a' und V/
sind hexadezimal dargestellt):

a v
0123456789 A BCDFEF
O 16 0 0O00O0OOO0OO0O0OO0OO0OO0OO0 O 0O
1 0 00200020240 4 2 00
2 0 00206220200 0 0 20
3 0 0202000O042 0 2 0 0 4

B 0 080020200000 2 0 2

F 0 2006000040 2 00 20

N

Kénnen wir nun in einem SPN fiir bestimmte S-Boxen S; Differentiale (a}, b)) finden, so

1) 71

dass die Eingabedifferenz dieser Differentiale mit der (permutierten) Ausgabedifferenz der
Differentiale in der jeweils vorhergehenden Runde iibereinstimmt (siehe Abbildung 4.3), so
kénnen wir diese Differentiale zu einer so genannten Differentialspur (engl. differential
trail) zusammen setzen. Unter der Annahme, dass die beteiligten S-Boxen S; (diese werden
auch als aktiv bezeichnet) unabhéngig voneinander den zugeordneten Differentialen
(a, b)) folgen (bzw. nicht folgen), berechnet sich der Weitergabequotient der Spur als das

(2]

Produkt der Weitergabequotienten der beteiligten Differentiale. Obwohl diese Annahme
i.a. nicht zutrifft, treten in praktischen Anwendungen kaum grofie Abweichungen von
diesem hypothetischen Wert auf.

Beispiel 104. Betrachten wir das SPN aus Beispiel 96, so lassen sich folgende Differen-
tiale zu einer Spur fir die Abbildung x — u* kombinieren (siche auch Abbildung 4.5):

Fiir S3: das Differential (1011,0010) = (B, 2) mit Q(B,2) = 1/,

fiir S2: das Differential (0100,0110) = (4, 6) mit Q(4,6) = 3/s und

fiir S3 und S3: das Differential (0010,0101) = (2,5) mit Q(2,5) = 3/s.
Gemdf dieser Spur fihrt also die Klartextdifferenz

2/ = 00001011 0000 0000
mit hypothetischer Wahrscheinlichkeit 1/5(3/3)> = 27/004 & 0,026 auf die Differenz
(v*)" = 00000101 0101 0000,
welche wiederum mit Wahrscheinlichkeit 1 auf die Differenz
(u*) = 00000110 00000110
fuhrt. Das Differential
(a’,b") = (00001011 0000 0000, 000001100000 0110)
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Abbildung 4.3: Eine Differentialspur fiir ein Substitutions-Permutations-Netzwerk.

fiir die Abbildung x — u* hat also einen hypothetischen Weitergabequotienten von & =
Q(a',b') = 27/1094. q

Sei nun (a/,¥) ein Differential fiir die Abbildung 2 ~ u* mit einem hypothetischen
Weitergabequotienten € = Q(a’, b"). Weiter sei M eine Menge von ¢t Klartext-Kryptotext-
Doppelpaaren (z,z*,y, y*), die alle mit dem gleichen unbekannten Schliissel K erzeugt
wurden und zusétzlich die Eigenschaft haben, dass die Klartextdifferenz ' = x ® 2* = o’
ist. Dann wird ca. ein e-Anteil dieser Doppelpaare der vorgegebenen Differentialspur
folgen und daher bei Verschliisselung mit K Zwischenergebnisse u* und (u*)* liefern, die
die Differenz
(u4)/ — u4 D (u4)* — b/

aufweisen. Doppelpaare mit dieser Eigenschaft werden richtige Doppelpaare (fir das
Differential (a’,0')) genannt. Ein Grofiteil der falschen Doppelpaare lasst sich daran
erkennen, dass die Kryptotext-Differenzen nicht die erwarteten 0'-Blécke aufweisen (im
aktuellen Beispiel sind dies die Blocke 921) und yzg)). Es empfiehlt sich, diese Doppelpaare
auszufiltern, da sie (wie alle falschen Doppelpaare) nur ,Hintergrundrauschen® erzeugen
und somit die Bestimmung des Schliissels eher behindern.
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Beobachtung 105. Fir die Ausgabe vg) der S-Box SN in Runde N gilt

N N+1
vy = Yo © K"

und die Eingabe ué\if) der S-Box SN in Runde N ist

Ué\lf) = 7T§1<Ué[)) = Fgl(y(z) @ K(J,\L]»)Jrl)

N
Ui
gN
N
V(i
N+1
K
Y(i)

Falls die S-Box S nicht affin ist, hingt die aus den Kryptoteztblocken yuy und (yu)*
zuriickgerechnete Eingabedifferenz

(ugp)" = ugy @ (ug))” = 75" (yo ® K™ @ w5 ((yw)" @ Kiy'H)

von dem Schliisselblock K(];f)“ ab. Ist also (x,z*,y,y*) ein richtiges Doppelpaar, so sind
neben den Kryptotextblicken yg) und yf;) auch die Eingabedifferenzen b’(i) = (ué\i[))’ von
SN bekannt. Folglich kommen nur solche Subkey-Werte L fiir K(]iV)Jrl infrage, fir die

s (Yo ® L) & g (yfy & L) = bl (4.3)

ist. Erfallt L Gleichung (4.3), so sagen wir auch, L ist mit dem Doppelpaar (x,z*,y,y*)
konsistent.

Geméafl Beobachtung 105 kann jedes richtige Doppelpaar dazu benutzt werden, einige
Kandidaten fiir den Rundenschliisselblock K (]2])+1 auszuschliefen. Ist M hinreichend grof3,
so wird sich schliefSlich der richtige Schliisselblock als derjenige herausstellen, der mit
den meisten Doppelpaaren konsistent ist. Wir benutzen nun die Spur aus Beispiel 104
fir einen Angriff mittels differentieller Analyse.

Beispiel 106. Der Algorithmus DIFFERENTIALATTACK bestimmdt fir jeden Subschliissel-
Kandidaten (L, Lo) fir (K(E’Q), K(54)) die Anzahl ~(L1, Ly) aller Doppelpaare (x,z*,y, y*)
in M, die mit (Ly, Ly) konsistent sind und (in Zeile 4) nicht als falsch erkannt werden.
Ausgegeben wird der Kandidat (Ly, L) mit dem grofiten - Wert. <

Algorithmus DIFFERENTIALATTACK
1 for (Li,Ls):=(0,0) to (F,F) do
2 '7([/17 LQ) =0

3 for each (z,z*,y,y*) € M do

1

if yq) = Yy und ya) =y, then
for (Ly,Ls):=(0,0) to (F,F) do
6 UEIQ) = Ll D y(z)
7 11214) = Ly ® Yy
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8 Uy = 7751(“?2))

9 u‘(l4) =mg (0?4))

10 (vé))* = L1 Dy

11 (Ua))* = Lo 1@ Ya

12 (ufy)* = 7751(@(2))*)

’ ()" 1= 75" (v)")

14 (ugy)) = uy) @ (ufy)*

19 (uzl4)>, = UL(L4) ® (UZ(L4))

16 if (ufy) = 0110 und (u(y)" = 0110 then
17 P)/(Lh L?) = ’}/(Lla LQ) +1
18 maxr—1

19 for (Ly, Ls):=(0,0) to (F,F) do
20 if v(L1, Ly) > maz then

21 maz = vy(Lq, Lo)

22 mazkey = (Ly, Lo)

23 output (maxkey)

Im allgemeinen werden fiir eine erfolgreiche differentielle Attacke circa t ~ ce~! Klartext-

Kryptotext-Doppelpaare bendtigt, wobei € der Weitergabequotient der benutzten Spur

und ¢ eine ,kleine“ Konstante ist (im Beispielfall reichen ¢ ~ 80 Doppelpaare, wobei
—1 .

e~ ~ 38 ist).
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5 DES und AES

5.1 Der Data Encryption Standard (DES)

Der DES wurde von IBM im Zuge einer im Mai 1973 veroffentlichten Ausschreibung
des NBS (National Bureau of Standards; heute National Institute of Standards and
Technology, NIST') als ein Nachfolger von Lucifer entwickelt, im Mérz 1975 veroffentlicht,
und im Januar 1977 als Verschliisselungsstandard der US-Regierung fiir nicht geheime
Nachrichten genormt. Obwohl DES urspriinglich nur fiir einen Zeitraum von 10 bis 15
Jahren als Standard dienen sollte, wurde er circa alle 5 Jahre (zuletzt im Januar 1999)
iiberprift und als Standard fortgeschrieben.

Bereits im September 1997 veroffentlichte das NIST eine Ausschreibung fiir den AES
(Advanced Encryption Standard) genannten Nachfolger des DES. Nach einer mehrjahrigen
Auswahlprozedur wurde im November 2001 der Rijndael-Algorithmus als AES genormt
und im Mai 2002 wurde DES von AES als Standard abgelost. Allerdings wurde Triple
DES (auch TDES oder 3DES genannt) vom NIST als Standard bis 2030 fortgeschrieben.

Der DES ist eine Feistel-Chiffre mit 16 Runden. Die Rundenfunktion g einer Feistel-
Chiffre berechnet das Zwischenergebnis w’ aus den beiden Hélften L~ und R*! von
w~! geméafB der Vorschrift - .
g(KZ, szlefl) — LlRZ,
wobei sich w® = L'R! zusammensetzt aus
Li—l Ri—l
32 32 K

L' = R~!und
Ri — Lifl@f(Rifl’Ki)'

32 32
Der DES chiffriert Binarblocke der Lénge 64 und benutzt hierzu einen Schliissel mit
56 Bit. Der Schlissel ergibt zusammen mit 8 Paritétsbits (die Bits 8, 16,..., 64) einen

ebenfalls 64 Bit langen Schliisselblock K. Es gibt somit 2°¢ ~ 7.2 - 10'® verschiedene
Schliissel. Im Einzelnen werden folgende Chiffrierschritte ausgefiihrt:

— Zuerst wird der Klartextblock x einer Initialpermutation I P unterzogen:

1T " Tea — IP(J}) — I58%50 " " 7.

58 50 42 34 26 18 10 2 321 2 3 45 16 7 20 21
60 52 44 36 28 20 12 4 456 789 2912 28 17
62 54 46 38 3022 14 6 8 9 10111213 1 1523 26
64 56 48 40 32 24 16 8 1213 14 15 16 17 5 183110
574941332517 9 1 16 17 18 19 20 21 2 82414
09 514335271911 3 20 21 22 23 24 25 3227 3 9
61 534537292113 5 24 25 26 27 28 29 191330 6
63 554739312315 7 28293031321 2211 4 25

Initialpermutation I P Expansion F Permutation P
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— Danach wird 16 Mal die Rundenfunktion ¢ mit den Rundenschliisseln K*, ..., K16
angewendet, wobei die Funktion f : {0,1}%?x{0,1}*® — {0, 1}3* wie folgt berechnet
wird:

f(RKY)

Berechnung der Funktion f

Bei Eingabe (R*!, K') wird R*"! durch die Expansionsabbildung E auf einen
48-Bit Block E(R"!) erweitert. Dieser wird mit K* bitweise addiert (x-or); als
Ergebnis erhélt man den Vektor B = E(R'™!) @ K'. Danach wird B in acht 6-Bit
Blocke By, ..., Bg aufgeteilt, die mittels 8 S-Boxen Sy, ...,Ss auf 4-Bit Blocke
C; = Si(B;) reduziert werden. Die S-Boxen sind in Form einer Tabelle dargestellt,
die wie folgt ausgewertet wird:
Ist Bz = bl s b(j, so findet man SZ(BJ in Zeile b1b6 und Spalte b2b3b4b5
(jeweils aufgefasst als Bindrzahl) der Tabelle fir S;. Zum Beispiel ist
S1(011010) = 1001, da in Zeile (00); = 0 und Spalte (1101); = 13 die
Zahl 9 = (1001), steht.
Die Konkatenation der von den acht S-Boxen gelieferten Bitblocke C ... Cy ergibt
einen 32-Bit Vektor C', welcher noch der Permutation P unterworfen wird.

Aus dem nach der 16. Iteration erhaltenen Bitvektor w!® = L®R'6 wird durch
Vertauschen der beiden Hélften und Anwendung der inversen Initialpermutation
der Kryptotext y gebildet:

144131 215118 3106125 90 7 S5:2124 1 710116 8 5 315130149
0157 4142131106 12119 5 3 8 14112124 7131 5 015103 9 8 6
4 1148136 21115129 7 3105 0 4 2 11110137 8159125 6 3 014
15128 2 491 7 511314100 6 13 118127 1142136150 9104 5 3
151 8146113 49 7 213120 510 S4:12110159 2 6 8 0133 4147 511
3134 7152 814120 1106 9115 10154 2 7129 5 6 113140113 8
014711104131 5 8126 9 3 215 914155 2 8123 7 0 4101 13116
138101 3154 2116 7120 5149 4 3 2129 5151011141 7 6 0 8 13
100 9146 3155 113127114 2 8 S7;: 411214150 8133129 7 5106 1
13709 346102 8 5141211151 130117 4 9 110143 5122158 6
136 4 9 8153 0111 21251014 7 1 41113123 71410156 8 0 5 9 2
110130 6 9 8 7 415143115 212 611138 1 4107 9 5 015142 3 12
713143 0 6 9101 2 8 51112415 Sx:132 8 4 615111109 3145 0127
138115 6150 3 4 7 212110149 115138103 7 4125 6110149 2
106 9 01211 713151 3145 2 8 4 7114 1 912142 0 6 1013153 5 8
31506101138 94 511127 214 21147 41081315129 0 3 5 611
Die acht Substitutionsboxen



68 5 DES und AES

Die Schliisselgenerierung. Zuerst wéhlt die Funktion PC'1 (permuted choice 1) aus
dem Schliissel K die kryptografisch relevanten Bits aus und permutiert sie. Das erhaltene
Ergebnis wird in zwei 28-Bit Blocke unterteilt. Diese beiden Blocke werden dann in 16
Runden jeweils zyklisch um ein oder zwei Bit verschoben (siche dazu Tabelle LS(7)).

57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 328 15 6 21 10
K 10 2 59 51 43 35 27 23 19 12 4 26 8
64 19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55
PC1 7 62 54 46 38 30 22 30 40 51 45 33 48
14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32
permuted choice 1 permuted choice 2
28 28
LS(1) LS(1)
Anzahl der
Iteration  Links-Shifts
PC?2 i LS(3)
1
LS(2) LS(2) K : :
48 2 :
3 2
4 2
PC2 5 9
: K? 6 2
; 7 2
J J g 2
LS(16) LS(16) 9 1
10 2
11 2
12 2
PC?2 13 5
K16 14 2
15 2
16 1

Aus den beiden Blécken nach Runde ¢ bestimmt die Funktion PC'2 (permuted choice 2)
jeweils den Rundenschliissel K* durch Entfernen der 8 Bits an den Stellen 9, 18, 22, 25,
35, 38, 43 und 56 sowie einer Permutation der verbleibenden 48 Bits.

Eigenschaften von DES Der DES hat sich zwar weitgehend durchgesetzt, jedoch
wurde er anfangs von manchen US-Behorden und -Banken nicht verwendet. Der Grund
dafiir liegt in folgenden Sicherheitsbedenken, die nach seiner Veroffentlichung im Jahre
1975 geduflert wurden:

— Die 56-Bit Schliissellinge bietet eventuell eine zu geringe Sicherheit gegen Auspro-
bieren aller Schliissel bei einem Angriff mit bekanntem oder gewéhltem Klartext.

— Die Entwurfskriterien fiir die einzelnen Bestandteile, insbesondere fiir die S-Boxen,
sind nicht veréffentlicht worden. Es wurde der Verdacht geauflert, dass der DES
mit Hilfe von Falltiirinformationen leicht zu brechen sei.

— Kryptoanalytische Untersuchungen, die von IBM und der US National Securi-
ty Agency (NSA) durchgefithrt wurden, sind nicht veréffentlicht worden. Als jedoch
Biham und Shamir Anfang der 90er Jahre das Konzept der differentiellen Kryp-
toanalyse veroffentlichten, gaben die Entwickler von DES bekannt, dass sie diese
Angriffsmoglichkeit beim Entwurf von DES bereits kannten und speziell die S-Boxen
entsprechend konzipiert hatten.
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Im Fall von DES ist die lineare Kryptoanalyse effizienter als die differentielle Krypto-
analyse. Da hierzu jedoch circa 2 Klartext-Kryptotext-Paare notwendig sind (deren
Generierung bei einem von Matsui, dem Erfinder der linearen Kryptoanalyse, unternom-
menen Angriff bereits 40 Tage in Anspruch nahm), stellen diese Angriffe keine realistische
Bedrohung dar.

Dagegen wurde im Juli 1998 mit einer von der Electronic Frontier Foundation (EFF) fiir
250 000 Dollar gebauten Maschine namens “DES Cracker” eine vollstandige Schliisselsuche
in circa 56 Stunden durchgefithrt (was den Gewinn der von RSA Laboratory ausgeschrie-
benen “DES Challenge 11-2” bedeutete). Und im Januar 1999 gewann Distributed.Net,
eine weltweite Vereinigung von Computerfans, den mit 10 000 Dollar dotierten “DES
Challenge IIT”. Durch den kombinierten Einsatz eines Supercomputer namens “Deep
Crack” von EFF und 100 000 PCs, die weltweit iiber das Internet kommunizierten,
wurden nur 22 Stunden und 15 Minuten benétigt, um den Schliissel fiir ein Klartext-
Kryptotextpaar mit dem Klartext ,,See you in Rome (second AES Conference, March
22-23, 1999)“ zu finden.

Definition 107 (schwache Schliissel). Fin DES-Schlissel K heifst schwach, falls
alle durch ihn erzeugten Rundenschliissel gleich sind (d.h. es gilt |[{K',..., K'%}||=1).

Es gibt vier schwache Schliissel (siche Ubungen):

0101010101010101
FEFEFEFEFEFEFEFE
1F1FIFIFOEOGEQEOE
EOEOEOEOFIFIFIF1

und fiir sie gilt DES(K, DES(K, z)) = «.
Neben diesen schwachen Schliisseln existieren noch sechs weitere sogenannte ,,semischwa-
che* Schliisselpaare (K, K'), fiir die DES(K’, DES(K, z)) = z gilt (siehe Ubungen).

5.2 Endliche Korper

Wie wir bereits wissen, bildet Z,, fiir primes p einen endlichen Kérper der Grofie p. Dieser
Korper lasst sich fir jede Zahl n > 1 zu einem Korper der Grofle p™ erweitern. Da bis
auf Isomorphie nur ein Kérper dieser Grofe existiert, wird er einfach mit F(p") oder Fyn
bezeichnet. Um diesen Korper zu konstruieren, betrachten wir zunachst den Polynomring
Z,|x] Gber Z,.

Definition 108 (Polynomring). Sei p prim. Dann enthdlt Z,[x] alle Polynome
p(x) = apx” + - a1 + ag

in der Variablen x mit Koeffizienten a; € Z,, a, # 0. n heifit Grad von p (kurz:
deg(p) = n). Zy|x] bildet mit der iblichen Polynomaddition und Polynommultiplikation
einen Ring.

FEin Polynom m(x) teilt ein Polynom g(x) (kurz: m(z)|g(x)), falls ein Polynom d(z) €
Zy|x] existiert mit g(x) = d(x)m(z). Teilt m(x) die Differenz f(x)—g(x) zweier Polynome,
so schreiben wir hierfiir
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und sagen, f(x) ist kongruent zu g(x) modulo m(x). Weiterhin bezeichne
f(z) mod m(x)

den bei der Polynomdivision von f(x) durch m(x) auftretenden Rest, also dasjenige
Polynom r(z) vom Grad deg(r) < deg(m), fir das ein Polynom d(x) € Zy|z| existiert
mit f(x) = d(x)m(z)+r(x).

Ahnlich wie beim Ubergang von Z zu Z,, kénnen wir fiir ein fest gewihltes Polynom
m(x) vom Grad deg(m) = n jedem Polynom p(z) € Z,[z]| mittels

p(z) = p(x) mod m(z)

eindeutig ein Polynom vom Grad héchstens n — 1 zuordnen. Auf diese Weise erhalten
wir den Restklassenpolynomring Z,[z]/m(x) aller Polynome vom Grad héchstens n — 1,
wobei die Addition und Multiplikation wie in Z,[z], gefolgt von einer Reduktion modulo
m(z), definiert ist. Und wie Z,, ist Z,[z]/m(z) genau dann ein Korper, wenn m(x) nur
triviale Teiler besitzt.

Definition 109 (irreduzibel). Ein Polynom m(x) € Z,[z| heifit irreduzibel, falls
keine Polynome p(x),q(z) € Z,|x] vom Grad deg(p),deg(q) > 1 existieren mit

m(z) = p(x)q(z).
Satz 110. Der Restklassenpolynomring Zy[z]/m(x) ist genau dann ein Kérper, wenn
m(z) in Zy|x] irreduzibel ist.

Beweis. sieche Ubungen. O

Da fiir jede Zahl n > 1 ein irreduzibles Polynom m(z) = z" + Y1) ma’ € Z,[1]
vom Grad n existiert, lasst sich auf diese Weise fiir jede Primzahlpotenz p™ ein Koérper
Zp|z]/m(z) der GroBe p™ konstruieren. Tatsdchlich gibt es bis auf Isomorphie nur einen
Korper mit p" Elementen, den wir mit F,» bezeichnen. Die Elemente

a(x) = HZ_: a;x’ € Zy[x]/m(z)

konnen wir durch den Koeffizientenvektor (a,_1,...,ap) € (F,)" darstellen. Die Addition
zweier Polynome a(z) = Y74 a;2' und b(z) = Y1) bz’ in Fan entspricht dann der

iiblichen Vektoraddition (komponentenweisen Addition modulo p):
(an,l,...,ao) + (bnfl,...,bo) = (Cnfl,...,Co) mit C; :al—l—bl fir ¢ = O,...,n— 1.

Im Fall p = 2 ist dies also die bitweise Addition modulo 2 (x-or). Die Multiplikation in
Zy|x]/m(z) lasst sich wegen

a(x)b(x) = 3:0 a;x'b(x)

auf die Addition und (wiederholte) Multiplikation mit dem Polynom p(z) = x zuriickfiih-
ren. Dabei ist

n—1
2b(x) ) 2b(x) — bpoim(x) Sy Y (bim1 — bp_amy)a’,
i=0
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wobei wir b_; = 0 setzen. Die Multiplikation von b(z) mit x entspricht somit einem
Linksshift um eine Stelle, dem sich im Fall b,,_; # 0 noch die Subtraktion des Koeffizien-

tenvektors (bp—1Mn—1,...,by—1mg) anschlieft. Im Fall p = 2 erhalten wir also
xb(m) _ 21_11 1T, 4 1 ,
?;0 (bi—l ©® mi)l‘l, bn—l =1

bzw. in Vektorschreibweise:

by, ..., bo,0), byt =0,
(0,...,0,1,0)-(bn_l,...,bo):{( 2 0,0) !

(bn—27"'7b070)@(mn—ly"'amO)a bn—l =1

Es ist leicht zu sehen, dass die Multiplikation mit einem festen Korperelement
(@p-1,...,a0) € Fpn, also die Abbildung (b,—1,...,by) = (an-1,-.. ao) (bp—1,---,bo)
linear iiber I, ist. Folglich ist jede lineare Abbildung f : (F, ) (Fpn)! iber dem
Kérper Fy» auch linear tiber F,, falls wir f als Abbildung von (F ) nach (F,)™ auffassen
(siehe Ubungen)

Beispiel 111. Sei p = 2 und n = 3. Zundchst bendtigen wir ein irreduzibles Polynom
m(z) € Zs[x] vom Grad 3,

m(z) = asz® + a’x? + a1z + ao.

Da m(z) im Fall ag = 0 den nichttrivialen Teiler p(x) = x hat und im Fall ag = 0 nicht
den Grad 3 hat, geniigt es, die 4 Kandidaten

mi(z) = 2°+1

me(x) = 2+ +1
ms(z) = 2°+22+1
my(z) = 2°+2°+2+1

zu betrachten. Da nun aber
P4 1l=(x+1)(2*+x+1)

und
P tr+l=(z+1)(2*+1)

ist, gibt es in Zs|x] nur zwei irreduzible Polynome vom Grad 3: 3 +x +1 und 23+ 2% + 1.
Nehmen wir bspw. m(z) = 23+ x + 1, so ist

(2+ D+ +)=a+z

und
(@*+ D) (z+1) =

in Zslz]/ (2 + x4+ 1), da
2+ D+ =2+ +o+1=24+ (2®+ 2+ 1) =504 27

15t. <
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Wie das folgende Beispiel zeigt, lasst sich das multiplikative Inverse eines Polynoms
p(x) # 0 in Fyn mit dem erweiterten Euklidschen Algorithmus berechnen.

Beispiel 112. Seip = 2 und seien m(z) = 2+ 2+ 23 +2+1 und a(x) = 25+ 2t + 2+ 1
zwei Polynome. Dann kénnen wir mit dem Euklidschen Algorithmus den (in Bezug auf
den Grad) gréfiten gemeinsamen Teiler g(x) von m(x) und a(x) berechnen:

1 T’ifl(.’ﬂ) = dz+1($)’l"l($) +7’Z’+1(.’E)
1 2B8+at+23+2+1 = (22+1)- (6+x4+x+1)

2 S+ at+ar+1 = (2t +2?)-2? +z+1
3 2 = (z+1)-(x+1) +1

4 r+1 = (z+1)-1 +0

FEs ist also g(x) = r4(x) = 1. Der erweiterte Euklidsche Algorithmus berechnet nun
Polynome p;(x) und q;(x) gemdf der Vorschrift

pi(x) = pi_o(z) — di(z) - pica(x), wobei po(z) =1 wund pi(z) =0,
und

¢i(x) = qi—a(x) — di(x) - qi—1(x), wobei qo(x) =0 wund q(x)=1,
welche firi=0,1,2,3,4 die Gleichung p;(x)m(z) + ¢;(x)a(z) = r;i(x) erfillen:

i pi(x)-m(z) + gi(x)-a(z) = riz)
0 1-m(x) + 0-a(x) = m(x)
1 0-m(z) + l-a(z) = a(x)
2 1-m(x) + (22 4+1)-a(z) = 2?

3 (z* +1‘) m(z) + (25 +22+1)-a(z) = z+1
4 (P +at+3+22+1)-m(x) + (2" +2°+ 22 +2)-a(z) = 1

Aus der letzten Zeile kénnen wir das multiplikative Inverse q4(z) = 27 + 2% + 23 + 2 von
a(x) modulo m(z) ablesen. N

5.3 Der Advanced Encryption Standard (AES)

5.3.1 Geschichte des AES

— Im September 1997 veroffentlichte das NIST eine Ausschreibung fiir den AES, in
der eine Blocklénge von 128 Bit und variable Schliissellangen von 128, 192 und 256
Bit gefordert wurden. Einreichungsschluss war der 15. Juni 1998.

— Von den 21 Einreichungen erfiillten 15 die geforderten Kriterien. Diese stammten
aus den Landern Australien, Belgien, Costa Rica, Deutschland, Frankreich, Grof3-
britannien, Israel, Japan, Korea, Norwegen sowie den USA und wurden auf der 1.
AES-Konferenz am 20. August 1998 als AES-Kandidaten akzeptiert.

— Im August 1999 wihlte NIST auf der 2. AES-Konferenz in Rom die Finalisten
MARS, RC6, Rijndael, Serpent und Twofish aus.

— Im April 2000 wurde der Rijndael-Algorithmus auf der 3. AES-Konferenz zum
Sieger erklart und im November 2001 als AES genormt.
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Die wichtigsten Entscheidungskriterien waren
— Sicherheit,
— Kosten (Effizienz bei Software-, Hardware- und Smartcard-Implementationen) sowie

— Algorithmen- und Implementations-Charakeristika (unter anderem Flexibilitat und
Einfachheit des Designs).
Die Blocklédnge und die Schliissellinge konnen beim Rijndael unabhéngig voneinander im
Bereich 128, 160, 192, 224 oder 256 Bit gewahlt werden. Die Rundenzahl N des Rijndael
hangt wie folgt von der Blockldnge [ und der gewahlten Schliissellinge k ab:

l k
128 160 192 224 256

128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Beim AES-Standard wurde die Blocklange auf 128 Bit fixiert und die Schliisselldnge auf die
Werte 128, 192 oder 256 Bit beschrankt. Wir beschranken uns hier auf die Beschreibung
des 10-Runden AES mit [ = 128 Bit Blocklange und k = 128 Bit Schliissellange.
Die Elemente a(z) = S _,a;x' des Korpers F(28) = Zy[a]/(2® + 2* + 2% + 2 + 1)
konnen jeweils durch ein Byte (a7, ..., ao) dargestellt werden. Hierzu verwenden wir die
Funktionen FIELDTOBINARY und BINARYTOFIELD, die wie folgt definiert sind:

— BINARYTOFIELD: {0, 1}® — F(2®) berechnet aus der Byte-Darstellung das zugeho-
rige Korperelement.

— FIELDTOBINARY: F(2%) — {0,1}® berechnet die Inverse der Funktion BINARYTO-
FIELD.

5.3.2 Die AES S-Box.

Sowohl bei der Schliisselgenerierung als auch bei der Chiffrierung wird eine Substitution
SUBBYTES verwendet, die auf einer 8-Bit S-Box mqyppyrrs basiert. Diese S-Box benutzt als
nicht-linearen Bestandteil die Funktion FIELDINV: F(2%) — F(2%), die das multiplikative
Inverse im Korper F(2®) berechnet. Konkret wird die S-Box 7guspyres durch folgenden
Algorithmus berechnet (die Indexrechnung in Zeile 7 erfolgt modulo 8).

7T'SUBBYTIES(CL? ce aO)

I input a7---ag

> z:=BinaryToField(a;---ao)

3 if 2#0 then z:=FieldInv(z)

1 ar---ap:= FieldToBinary(z)

5 c¢7---cg:= 01100011

¢ for ::=0 to 7 do

7 bi == a; D Aiys D Aiy5 D Ajts D g7 D ¢
s output b;---by
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Beispiel 113. Wir berechnen wsuspyres(01010011). Die Funktion BINARY TOFIELD liefert
das zugehorige Polynom

z = BINARYTOFIELD(01010011) = 2% + 2* + 2 + 1.
Das multiplikative Inverse von z in F(28) ist
'+ 2%+t o
(siehe Beispiel 112). Die Funktion FIELDTOBINARY liefert die zugehorige Koeffizienten-

Darstellung
FIELDTOBINARY (2" + 2° + 2° + x) = 11001010.

Es folgt die Berechnung der Ausgabe by --- by = 11101101 mittels

by = a7 PasPasDasPag®e; = 11001 H0 =1
be = agDasPazsPasDasDecg = 101D 0R0D1 =1

blza1®a5@a6€9a7@ag@q = 1@0@1@1@0@1:0
bo = apy@asPasDagPa;®cy = 0p0P0P1D1B1 =1

Somit ist Tsyspyres(01010011) = 11101101 oder heradezimal: wsyppyres(53) = ED. <

Wir kénnen die AES S-Box in Form einer 16 x 16-Matrix angeben, wobei der Eintrag in
Zeile X und Spalte Y den Wert mgyppyres(XY') enthélt:

X Y
© 123456789 ABCDTEF

63 7C77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
CA 82 C9 7D FA59 47 FO AD D4 A2 AF 9C A4 72 CO
B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
04 C7 23 C3 1896 059A 07 12 80 E2 EB 27 B2 75
09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

o s~ WNRFEO

F 8C A1 89 0D BF E6 42 68 41 99 2D OF BO 54 BB 16

5.3.3 Die Schliisselgenerierung.

Beim 10-Runden AES mit Block- und Schliissellange [ = £ = 128 werden 11 Rundenschliis-
sel K, ..., K% der Liange 128 benutzt. Jedes K* besteht also aus 16 Bytes bzw. 4 Worten
mit jeweils 4 Bytes. Bei der Berechnung der Rundenschliissel werden (Wort-)Konstanten
RConl1],..., RCon[10] mit RCon[i] = FIELDTOBINARY(z"~1)0?* € {0, 1}3? benutzt. In
Hexadezimal-Darstellung ergeben sich folgende Werte:

l 1 2 3 4 5
RConli] | 01000000 02000000 04000000 08000000 10000000

{ 6 7 8 9 10
RConli] | 20000000 40000000 80000000 13000000 36000000
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Reihen wir die 11 Rundenschliissel aneinander, so entsteht ein Array w0}, ..., w[43] von
44 Worten, die geméf folgendem Algorithmus aus dem 128-Bit Schliissel K berechnet
werden.

KEYEXPANSION(K)

input K = K|0]--- K[15]
for ::=0 to 3 do
wli] == (K[41], K[4i + 1], K41 + 2], K[41 + 3))
for ::=4 to 43 do
5 temp 1= w(i — 1]
6 if i =,0 then temp := SubWord(RotWord(temp)) & RCon[i/4]
7 wli] == wli — 4] & temp
s output w0]...w[43]

S S

Die hierbei benutzten Funktionen sind wie folgt definiert:
— ROTWORD : F(2)® x F(2)® x F(2)® x F(2)® — F(2)® x F(2)® x F(2)® x F(2)? fiihrt
eine zyklische Verschiebung der 4 Eingabebytes um ein Byte nach links durch:

ROTWORD(BO, Bl, BQ, Bg) = (Bl, BQ, B3, BO),
— SUBWORD : F(2)® x F(2)® x F(2)* x F(2)* — F(2)* x F(2)® x F(2)* x F(2)" ersetzt
jedes Eingabebyte B; durch msyspyres(B;):

SUBWORD(B(), By, Bs, Bg)
= SUB]_D)Y'TES(BO7 Bh BQ, Bg)

= (WSUBBYTES (BO> » TSUBBYTES (Bl ) ; TSUBBYTES (BQ) » TSUBBYTES (BS))

5.3.4 Der AES-Chiffrieralgorithmus

Unter Benutzung der 11 Rundenschliissel K°, ..., K1 wird der 128 Bit Klartextblock
wie folgt chiffriert:

AES-VERSCHLUSSELUNG

i AddRoundKey(K?")

2> for i:=1 to 9 do
3 SubBytes

4 ShiftRows

5 MixColumns

6 AddRoundKey(K")
7 SubBytes

s ShiftRows

9 AddRoundKey(K'%)

Im einzelnen werden also die folgenden Chiffrierschritte ausgefiihrt:

— Zuerst wird der Klartextblock x einer Addition mit dem 128-Bit Rundenschliissel
K9 unterworfen. Diese Operation wird mit ADDROUNDKEY bezeichnet.

— Danach werden 9 Runden ausgefiihrt, wobei in jeder Runde 7 eine Substitution na-
mens SUBBYTES, eine Permutation namens SHIFTROWS, eine lineare Substitution
namens MIXCOLUMNS und eine ADDROUNDKEY Operation mit dem Runden-
schliissel K* durchgefiihrt werden.
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— Es folgt Runde 10 mit den Operationen SUBBYTES, SHIFTROWS und
ADDROUNDKEY(K ™).

Der Klartext x = xg - - - 115, ; € {0,1}®, (und alle daraus berechneten Zwischenergebnisse)
werden in Form eines Arrays

50,0 So0,1 S0,2 503
510 S1,1 S1,2 S1.3
S2,0 S2,1 S22 S23
53,0 531 S32 8533

dargestellt, das wie folgt initialisiert wird:

To T4 Tg T12
r1 Ts X9 13
Ty T Ti0 L14
I3 Ty Ti1 15

SHIFTROWS ist eine 128-Bit Permutation, die wie folgt definiert ist:

50,0 S0,1 S0,2 503 50,0 So0,1 S0,2 S0,3
510 S1,1 S1,2 S1.3 s S11 S12 51,3 S10
$20 S21 S22 S23 S22 S23 S20 S21
530 53,1 532 9533 533 830 53,1 S32

MixCOLUMNS ist eine lineare 32-Bit Substitution, die auf den Spalten der Zwischener-
gebnisse operiert. Zu ihrer Berechnung wird folgende Funktion benutzt:

— FIELDMULT: F(2%) x F(2%) — F(2®) fithrt die Multiplikation im Koérper F(28) aus.

MixCOLUMNS(cy, ¢1, Ca, €3)

1 input (C(), C1,Co, 63)

> for i:=0 to 3 do t; :=BinaryToField(¢)

3 wug = FieldMult(z,ty) + FieldMult(x + 1,¢1) + to + t3
4wy = FieldMult(z,¢;) + FieldMult(x + 1,t9) + t5 + 1o
5 ug:= FieldMult(z,ty) + FieldMult(z + 1,¢3) +to +
6 Uz .= FleldMUlt(l‘, tg) —+ Fle-l.dMU-l.t(I + ]_,to) + tl + tg
7 for i:=0 to 3 do ¢; := FieldToBinary(u;)

s output (co,c,c,03)

MixCOLUMNS fiihrt eine lineare Transformation in dem Vektorraum (FFys)* aus, die sich
auch wie folgt beschreiben ldsst (hierbei stellen wir die 8 Bit Koeffizientenvektoren der
Polynome in Fys hexadezimal dar, also 03 fiir x 4 1):

Co 02 03 01 01 Co
c1 s 01 02 03 01 1
Co 01 01 02 03 Co
c3 03 01 01 02 C3

Besonders elegant lasst sich die Operation MIXCOLUMNS im Polynom-Restklassenring
Fos[y]/(y* + 1) beschreiben. Sei c(y) = 37 ,ciy’ das durch die Spalte (cg, ey, ca,c3)
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repriasentierte Polynom in diesem Ring und sei a(y) das Polynom a(y) = 03y> + 01y* +
0ly + 02. Dann ist leicht zu sehen, dass

MixCoLuMNs(c(y)) = a(y)c(y)

ist, d.h. bei MIxCOLUMNS handelt es sich um eine multiplikative Chiffre mit festem
Schliissel a(y) im Ring Fas[y]/(y* + 1). Da das Polynom y* + 1 nicht irreduzibel in
Fos[y] ist, ist Fos[y]/(y* + 1) zwar kein Korper. Da jedoch a(y) invertierbar im Ring
Fas[y]/(y* + 1) ist, kann die Inverse zu MIXCOLUMNS mittels

MixCoLUMNS *(c(y)) = a*(y)c(y)

berechnet werden, wobei a~!(y) = 0By + 0Dy? + 09y + OF ist.

5.3.5 Kryptoanalytische Betrachtungen

Bis heute konnten keine Schwachstellen gefunden werden, d.h. alle bekannten Angriffe
sind mindestens so aufwéndig wie eine vollstandige Schliisselsuche. Die Tatsache, dass
fiir die S-Box die Inversen-Operation in einem endlichen Koérper gewahlt wurde, hat
zur Folge, dass die Tabellen fiir die Giite der linearen Approximationen und fiir die
Weitergabequotienten der Differenzenpaare einen hohen Grad an Uniformitéit aufweisen.
Dadurch wird die S-Box resistent gegen lineare und differentielle Analysen. Zudem
verhindert die lineare Transformation MIiXCOLUMNS lineare und differentielle Angriffe
mit nur wenigen aktiven S-Boxen (diese Technik wird von den AES-Entwicklern als wide
trail strategy bezeichnet).

5.4 Betriebsarten von Blockchiffren

Fir den DES wurden vier verschiedene Betriebsarten vorgeschlagen, in denen grundsétz-
lich jede Blockchiffre £ mit beliebiger Blocklédnge [ betrieben werden kann. Bei den ersten
beiden Betriebsarten (ECB und CBC) werden Kryptotextblocke der Lange [ iibertragen.
Mit einer Blockchiffre kann aber auch ein Stromsystem realisiert werden, mit dem sich
Kryptotextblocke einer beliebigen Lange ¢, 1 <t <[, ubertragen lassen (OFB und CFB).

T €2 T

Sender

L L S

ECB-Mode (electronic code book; elektronisches Codebuch): Die Binér-Nachricht
x wird in Klartextblocke x; zerlegt. Der letzte Block z, wird, falls notig, mit
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einer vorher vereinbarten Bitfolge aufgefiillt. Die Blocke werden nacheinander mit
demselben Schliissel K einzeln verschliisselt, iibertragen und auf Empfingerseite
mittels der zu F gehorigen Dechiffrierfunktion D wieder entschliisselt.

Um zu verhindern, dass ein Eindringling den Kryptotext verdndert, ohne dass der
Empfanger dies bemerkt, wird beim CBC-Mode jeder Kryptotextblock nicht nur von dem
zugehorigen Klartextblock, sondern auch von allen vorausgehenden Blocken abhangig
gemacht. Dies hat auch zur Folge, dass gleiche Klartextblocke auf unterschiedliche
Kryptotextblocke abgebildet werden.

w T T2 T3

P e Ly m—

17
==

CBC-Mode (cipher block chaining; Blockverkettung des Schliisseltextes): Jeder
Klartextblock z; wird mit dem Kryptotextblock Ex(x;_1) bitweise (modulo
2) addiert, bevor er verschliisselt wird (zur Verschliisselung von z; wird ein
Initialisierungsvektor v verwendet.

OFB-Mode (output feedback; Riickfiihrung der Ausgabe): Die Binér-Nachricht x
wird in ¢-Bit Blocke (fir festes ¢: 1 <t <) zerlegt. Die Chiffrierfunktion Fx dient
zur Erzeugung einer pseudozufilligen Folge von ¢-Bit Blocken, die bitweise (modulo
2) zu den entsprechenden Klartextblocken addiert werden. Als Eingabe fir die
Chiffrierfunktion Fx dient ein Schieberegister, das anfangs mit einem Initialisie-
rungsvektor v geladen ist. Bei jeder Ubertragung eines ¢t-Bit Klartextblockes z;
erzeugt die Chiffrierfunktion Ex zunéchst einen Ausgabevektor, von dem nur die
ersten ¢ Bits verwendet werden. Diese dienen sowohl zur Verschliisselung von z;,
als auch zur Modifikation des Eingaberegisters, in das sie von rechts geschoben
werden.

CFB-Mode (cipher feedback; Riickfiihrung des Kryptotextes): Ahnlich zum OFB-
Mode, nur dass zur Erneuerung des Eingaberegisters nicht die ersten ¢ Bits der
Ex-Ausgabe, sondern der daraus gewonnene t-Bit Kryptotextblock verwendet wird.

Eine weitere Variante des OFB-Modes ist der Counter-Mode, bei dem die Pseudo-
zufallsfolge mit Hilfe von FEx aus einer fortlaufenden Binérblockfolge Ty, T, ... mit
Ty = T; + 1 mod 2! erzeugt wird. Dies hat den Vorteil, dass spéitere Blocke der Pseu-
dozufallsfolge nicht von den vorhergehenden abhidngen, und daher die Blocke E(T;)
parallel berechnet werden konnen.
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6 Zahlentheoretische Grundlagen

In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum
Verstindnis der Public-Key Verfahren, die im néchsten Abschnitt vorgestellt werden,
benotigen.

Satz 114. Sei G eine endliche Gruppe der Ordnung ||G|| = m. Dann gilt a™ =1 fiir
alle a € G.

Beweis. Wir betrachten hier nur den Fall, dass G kommutativ ist. Der allgemeine Fall
wird in den Ubungen bewiesen.

Sei also G = {by, ..., by} abelsch und sei a € G beliebig. Wegen ab; # ab; fiir i # j folgt
G = {aby,...,ab,}. Dies impliziert [[/", b; = [[/~; ab; = a™ [[I%, b;. Also muss a™ = 1
sein. O

Korollar 115 (Kleiner Satz von Fermat). Ist p eine Primzahl und a eine nicht durch p
teilbare Zahl (d.h. a € Zy), dann ist aP~! — 1 durch p teilbar:

Va € Z; s P! =, 1.

6.1 Diskrete Logarithmen

Nehmen wir ein beliebiges Element a aus G und betrachten die Folge a” = 1, a! = a, a?,

a®, ..., so wissen wir nach obigem Satz, dass spitestens fir e = |G| wieder a® = 1 gilt.

Definition 116 (Ordnung). Die Ordnung von a in G ist
ordg(a) = min{e > 1 | a® = 1}.

Die von a in G erzeugte Untergruppe {a® | e >0} = {a°, ..., a®4¢@=1} bezeichnen wir
mit [alg oder mit [a], wenn G aus dem Kontext ersichtlich ist.

Im Fall G = Z7, schreiben wir auch einfach ord,,(a). Fiir das folgende besonders interessant
sind Elemente a aus G, die die gesamte Gruppe erzeugen.

Definition 117 (Primitivwurzel/Erzeuger). Sei G eine endliche Gruppe der Ord-
nung |G| = m. Ein Element g € G der Ordnung ords(g) = ||G|| = m heifit Erzeuger
von G.

Ein Element a € G ist also genau dann ein Erzeuger, wenn die von a erzeugte Untergruppe
[a] gleich G ist. Falls G einen Erzeuger besitzt, wird G auch zyklisch genannt. Da
ordg(a) = ||[a]]| ist und [a] eine Untergruppe von G ist, ist ordg(a) fir alle a € G ein
Teiler von ||G|| = m. Zudem gilt fiir beliebige ganze Zahlen i, j (siche Ubungen)

a'=a & =ord(a) ]
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Satz 118 (GauBl). Genau fir m € {1,2,4,p% 2p" | 2 < p prim} ist die Gruppe Z7,
zyklisch (ohne Beweis).

Fiir ein beliebiges Gruppenelement b € G ist die Exponentiation e +— b° eine bijektive Ab-
bildung von der Menge {0, 1,..., ord,(b) — 1} auf [b]¢. Die zugehérige Umkehrabbildung
spielt in der Kryptografie eine wichtige Rolle.

Definition 119 (Index/diskreter Logarithmus). Seien b € G und a € [b]. Dann
heifit der eindeutig bestimmte Exponent e € {0,1,...,ordg(b) — 1} mit

b°=a

Index oder diskreter Logarithmus von a zur Basis b in G (kurz: e = logg 4(a)). Im
Fall G = 7Z;, schreiben wir auch einfach e = log,, ,(a).

Wiéhrend die diskrete Exponentialfunktion e — b° durch wiederholtes Quadrieren
und Multiplizieren (siche niachsten Abschnitt) effizient berechenbar ist, sind bis heute
keine effizienten Verfahren zur Berechnung des diskreten Logarithmus bekannt.

Beispiel 120. Betrachte die Gruppe G = 7Z3,. Dann ist g = 2 ein Erzeuger von G, d.h.
OI‘dH(Q) = 10.

e 0123456789 a 12345678910
2¢ 112485109736 logy(a) |018249736 5
q
Das folgende Lemma bendtigen wir fiir den Beweis des nédchsten Satzes.
Lemma 121 (Euler). Sei m > 1, dann gilt
>_w(d) =m,
dlm
wobei die Summe tber alle Teiler d > 1 von m lduft.
Beweis. Es gilt
d_eld) =) p(m)
dlm dlm
= _{b € Zumy, | ggT(b, m/s) = 1}]|
am o geT(bd,m) = d
=>_I{a € Zn | ggT(a,m) = d}||
dlm
=1m. O

Wir zeigen nun, dass G genau dann zyklisch ist, wenn jede Gleichung der Form z¢ =1
héchstens e verschiedene Losungen in G hat.

Satz 122. Eine endliche Gruppe G der Ordnung |G| = m ist genau dann zyklisch, falls
jede Gleichung der Form x¢ =1, e > 1, hochstens e verschiedene Losungen a € G hat.
In diesem Fall hat G genau p(m) Erzeuger.
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Beweis. Falls G zyklisch und ¢ ein Erzeuger von G ist, so ist ¢*, i > 0, genau dann eine
Losung von z¢ = 1, wenn ¢*° = 1 also ie =,, 0 ist. Daher hat z¢ = 1 genau ggT(e,m) < e
verschiedene Losungen.
Fiir die Riickrichtung sei

Sq={a € G |ord(a) =d}
die Menge aller Elemente der Ordnung d. Wir zeigen, dass Sy entweder 0 oder ¢(d) Ele-
mente enthalt. Jedes Element a € S, erfiillt die Gleichung 2 = 1, die nach Voraussetzung
héchstens d verschiedene Losungen hat. Da mit a auch a2, . .., a? paarweise verschiedene
Losungen dieser Gleichung sind, folgt Sq C {a, a2, ..., a®}. Zudem hat a’ genau dann
die Ordnung d, wenn ggT(i,d) = 1 ist (siche Ubungen), d.h. S; C {a’ | i € Z}}.
Da die Mengen S eine Partition von G bilden, folgt mit Lemma 121

D 18l =m =2 ¢(d).

dlm dlm
Da aber, wie gerade gezeigt, ||Sq|| € {0, ¢(d)} ist, muss ||S4]| = ¢(d) und insbesondere
[Sml = (m) gelten. O

Da die Gleichung ¢ = 1 in einem Korper hochstens d verschiedene Losungen hat (siehe
Ubungen), hat die multiplikative Gruppe 5. genau ©(p" — 1) Erzeuger. Insbesondere
hat die Gruppe [, = Z» genau o(p — 1) Erzeuger.

Falls die Primfaktorzerlegung von der Gruppenordnung m bekannt ist, lasst sich effizient
iiberpriifen, ob ein gegebenes Element a € G ein Erzeuger ist oder nicht.

Satz 123. Sei G eine endliche Gruppe der Ordnung ||G|| = m. Ein Element a € G st
genau dann ein Erzeuger, wenn fiir jeden Primteiler ¢ von m gilt:

a1,

Beweis. Falls a ein Erzeuger von G ist, so gilt a® # 1 fir alle Exponenten e € {1,...,m—1}
und somit auch fiir alle Exponenten e der Form m/q, ¢ prim.

Ist dagegen a € G kein Erzeuger, so ist ord(a) < m, und da ord(a) ein Teiler von m ist,
existiert eine Zahl d > 2 mit d - ord(a) = m. Sei ¢ ein beliebiger Primteiler von d. Dann
gilt

am/q _ adord(a)/q _ (aord(a))d/q - 1. .
Der folgende probabilistische Algorithmus COMPUTEGENERATOR berechnet einen Er-
zeuger a fiir eine zyklische Gruppe G, falls alle Primteiler ¢ von m = ||G|| bekannt sind
und sich die Elemente von G zufallig generieren lassen.

COMPUTEGENERATOR(G, q1, . . ., qx)
I input zyklische Gruppe G und alle Primteiler ¢i,...,qx von m = ||G]|
2> repeat
3 guess randomly a € G
oountil @™ £ 1 fur i=1,...,k
5 output a

Da ¢(m) > m/(2Inlnm) fir hinreichend grofie m gilt, findet der Algorithmus in jedem
Schleifendurchlauf mit Wahrscheinlichkeit ¢(m)/m > 1/(2Inlnm) einen Erzeuger. Die
erwartete Anzahl der Schleifendurchlaufe ist also O(Inlnm).
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6.2 Effiziente Berechnung von Potenzen

Falls sich in einer Gruppe G das Produkt zweier Elemente effizient berechnen lasst,
sind auch Potenzen a® durch wiederholtes Quadrieren und Multiplizieren effizient
berechenbar. Hierzu sind maximal 2[log e] Multiplikationen erforderlich.

Sei e = Yi_ge; - 2" mit r = [log, e] die Binardarstellung von e. Dann konnen wir den

Exponenten e sukzessive mittels by = eg und b; = b;_; +¢,2° = i—0€j° Vfiri=1,...,r
zu b, = e berechnen. Der Algorithmus POT berechnet nach diesem Schema in der
Variablen y die Potenzen a% fir i =0,...,r.
Alternativ kénnen wir auch das Horner-Schema zur Berechnung von e benutzen. Sei
¢, =e.=1und sei ¢;_1 =2¢; +e,_q furi=r,...,1. Dann ist ¢; = Z;Zi ej - 277 also
Co=2j-0€j" 2/ = e. Dies fithrt auf den Algorithmus HORNERPOT, der in der Variablen
z die Potenzen a“ fir i = r,...,0 berechnet.
Por(a,e) HORNERPOT(a, €)

1 ri=a; y:i=a® 1 zi=a

> for i:=1 to r do > for i:=r—1 downto 0 do

3 ri=a% yi=y- a4 3 2= 2% q%

. return(y) . return(z)

Beispiel 124. Sei a = 1920, e = 19 und G = Z}, fiir m = 2773. Dann berechnen die
Algorithmen PoT und HORNERPOT die modulare Potenz 1920'° mod 2773 = 1868 wie
folgt.

i e b z; = a? y; = ab ‘ ioe ¢ 2 = a%

0 1 1 1920" =1920 1920' = 1920 4 1 1 1920' = 1920

1 1 3 1920°=1083 1920-1083'=2383(3 0 2 1920%-1920° = 1083
2 0 3 10832=2683 2383-2683°=2383|2 0 4 1083%-1920° = 2683
3 0 3 26832=2554 2383-2554°=2383|1 1 9 2683%-1920' = 1016
4 1 19 25542 =820 2383-820'=1868 |0 1 19 10162 1920' = 1868

6.3 Primzahlen

Sei m: N — Ny mit
mm)={2<p<n|peP}

die Anzahl der Primzahlen kleiner gleich n. Mit 7, ,,,(n) bezeichnen wir die Anzahl der
Primzahlen kleiner gleich n, die von der Form p = m - k + a fiir ein k¥ € N sind.

Satz 125. (Primzahlsatz, Hadamard, de la Vallée Poussin 1896)

Ist ggT(a,m) =1, so gilt*
“m w(m)-Inn

*f(n) ~ g(n) bedeutet lim,_,o f(n)/g(n) = 1.
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Eine bessere Abschétzung liefert die Funktion Li(n) = [;'(Inz)~'dz, wie folgende Tabelle
zeigt.

n m(n) m(n) —n/lnn Li(n) — n(n)

10 4 —-0.3 2.2
100 25 3.3 5.1
1000 168 23 10
10000 1229 143 17
10100 1240 144 18
10° 78 498 6116 130
10° 50847534 2592592 1701
1012 37607912018 1416 705193 38263
101 29844 570422 669 891604 962 452 1052619

108 24739954 287 740 860 612483070893 536 21949555
101 21127269486 018731928 446579871578 168 707 597 394 254

Beispiel 126. Die Anzahl der Primzahlen in einem Intervall [n, m] ist ungefihr " — .

Fiir das Intervall I = [10000, 10100] ergibt sich z. B. ein Ndherungswert von

10100 10* 10100 10*

In ~ — ~ —
H Pl In10100 In104 9.22 9.21

~ 1095.4 — 1085.7 = 9.7 =~ 10,

wahrend der tatsdchliche Wert gleich 11 ist.

Fiir die Anzahl aller 100-stelligen Primzahlen (in Dezimaldarstellung), also aller Prim-

zahlen im Intervall I' = [10%,10%° — 1] erhalten wir z. B. den Ndiherungswert
10100 10% 100\ 10°7 890 - 10%7
I1I' NP ~ — = ( 0—) = ~3.9-10".
100In10  991n 10 99 / In10 991n 10

Vergleicht man diese Zahl mit der Anzahl 101 — 10%° = 9. 10% = 900 - 1097 aller 100-
stelligen Dezimalzahlen, so sehen wir, dass ungefihr jede 900/3.90 = 231-te 100-stellige
Dezimalzahl prim ist.

Fiir die Anzahl aller 1000-stelligen Primzahlen (in Dezimaldarstellung), also aller Prim-

zahlen im Intervall I' = [10%99,1019°° — 1] erhalten wir dagegen den Niherungswert
101000 10999 1000\ 10996 8990 - 10
I'NP| ~ — = (10 — ) = ~ 3.91 - 107,
H Pl 1000In10  9991n 10 999 / In10 9991n 10

Hier sehen wir, dass ungefihr jede 9000/3.91 ~ 2301-te der 10190 — 1099 = 9. 1099 =
9000 - 109 1000-stelligen Dezimalzahlen prim ist. <

Der Beweis des Primzahlsatzes ist sehr aufwéndig. Mit elementaren Mitteln lasst sich
jedoch folgender Satz beweisen, der fiir die meisten Anwendungen vollkommen ausreicht.

Satz 127 (Tschebyscheff). Fir alle n > 200 gilt w(n) > 352
(Ohne Beweis)
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6.4 Pseudo-Primzahlen und der Fermat-Test

Bei der Konstruktion eines probabilistischen Monte-Carlo Primzahltests geht man iibli-
cherweise so vor, dass man eine Folge von Teilmengen P,, C Z; wahlt, die die folgenden
drei Eigenschaften fiir alle n > ng erfiillen:

1. Fiir ein gegebenes a € Z; kann effizient, d. h. in Polynomialzeit getestet werden,
ob a € P, ist.

2. Fir primes n ist P, = Z,.

3. Fiir zusammengesetztes n ist ein konstanter Anteil aller Elemente von Z; nicht in
P, enthalten, d.h. ||P,|| < ep(n) fir eine Konstante ¢ < 1.

Typischerweise wahlt man fiir P,, daher eine Eigenschaft, die fiir alle Elemente a € Z
gilt, falls n prim ist. Der zugehorige generische Primzahltest GT arbeitet dann wie folgt.

GT(n,k), k>1

for j:=1 to k£ do

1

2 guess randomly a € {1,...,n —1}

3 if a € P, then return(zusammengesetzt)
4 return(prim)

Hierbei steuert der Parameter k£ die maximale Fehlerwahrscheinlichkeit von GT'(n, k).
Gilt namlich [|P,|| < ep(n) fur zusammengesetztes n und eine Konstante e < 1, so gibt
GT(n, k) fir primes n immer ,prim* aus und fiir zusammengesetztes n hochstens mit

Wahrscheinlichkeit £*.

Da der Algorithmus (mit beliebig kleiner Wahrscheinlichkeit) eine falsche Ausgabe pro-
duzieren kann, handelt es sich um einen sogenannten Monte-Carlo-Algorithmus (mit
einseitigem Fehler, da es nur im Fall n zusammengesetzt zu einer falschen Ausgabe
kommen kann). Im Gegensatz hierzu gibt ein sogenannter Las-Vegas-Algorithmus nie
eine falsche Antwort. Allerdings darf ein Las-Vegas-Algorithmus (mit kleiner Wahrschein-
lichkeit) die Antwort schuldig bleiben, also ein ,,7“ ausgeben.

Es liegt nahe, den Satz von Fermat zur Konstruktion einer , Testmengensequenz*
P —lacZ|a" ' =, 1}
zu verwenden. Dies fithrt auf folgenden Fermat-Test (FT).

FT(n,k), n > 3 ungerade und %k > 1

i berechne die Bindrdarstellung >/ _,e; -2/, e, =1, von n—1
> for j:=1 to k do
3
1

guess randomly a € {1,...,n — 1}
z:i=a
for i:=r—1 downto 0 do

6 2=z mod n

7 if ¢, =1 then

8 z:=z-amodn

9 if z#, 1 then

10 return(zusammengesetzt)

11 return(prim)
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Der Fermat-Test berechnet also die Potenz a® ! = 2, genau wie der Algorithmus HORNER-

PoT iiber eine Folge 2,, ...,z mit 2z, = a und z;_; = z2a%* mod n firi=r —1,...,0.
Er erkennt n als zusammengesetzt, falls zy # 1 ist. Man nennt eine zusammengesetzte
Zahl n, die den Fermat-Test bei Wahl von a € Z? besteht (d.h. es gilt a"™! =, 1) eine
Fermat-Pseudo-Primzahl oder einfach Pseudo-Primzahl zur Basis a. Man sagt auch, a ist
ein (falscher) Primzahlzeuge fir n. Zum Beispiel ist die Zahl 91 pseudo-prim zur Basis
3. Es gibt sogar Zahlen n (z.B. n = 561) die pseudo-prim zu jeder Basis a € Z} sind
(sogenannte Carmichael-Zahlen). Fir diese Zahlen ist Bedingung c¢) in obiger Aufziahlung
nicht erfiillt, weshalb der Fermat-Test als Pseudo-Primzahltest bezeichnet wird. In den
Ubungen wird gezeigt, dass Bedingung c) fiir jede zusammengesetzte Zahl, die keine
Carmichael-Zahl ist, mit ¢ = 1/, erfiillt ist. Carmichael-Zahlen kommen nur sehr selten
vor (erst 1992 konnte die Existenz unendlich vieler Carmichael-Zahlen nachgewiesen
werden).

6.5 Der Miller-Rabin Test

Der Fermat-Pseudoprimzahltest kann zu einem Monte-Carlo Primzahltest (dem sogenann-
ten Miller-Rabin Test, kurz MRT) erweitert werden. Wie wir gesehen haben, berechnet
der Fermat-Test die Potenz a"~! = z;, iiber eine Folge z,,. .., zy von Potenzen mit z, = a
und z_; = z7a®* mod n = a% mod n fir i =r —1,...,0, wobei ¢; = >.7_; e; - 207" ist.
Er erkennt n als zusammengesetzt, falls zg # 1 ist. Der Miller-Rabin Test iiberpriift nun
zusitzlich bei jeder Quadrierung, ob 27 =, 1 und z; #,, +1 ist. Ist dies der Fall, so muss
n ebenfalls zusammengesetzt sein, da z; eine nichttriviale Losung der Kongruenz 2% =, 1

in Z; ist. Die MRT-Testmenge ist also
PMET — 4 € Z | zo=p lund Vi=7,...,1: 22 =, 1 = 2 =, £1}.

Es ist klar, dass diese Testmengen die Bedingungen a) und b) erfiillen. Mit etwas
zahlentheoretischem Aufwand lésst sich zeigen, dass sie auch Bedingung c) fir ¢ = 1/,
erfiillen. Weiter unten werden wir dies fir ¢ = 1/, zeigen.

Der Miller-Rabin Test lasst sich in Pseudocode wie folgt implementieren.

MRT(n, k), n > 3 ungerade und &k >1

I berechne die Bindrdarstellung ' ,e;-2° von n—1, wobei e, =1 ist
> for 7:=1 to k do
guess randomly a € {1,...,n—1}

| zi=a

5 for i:=7r—1 downto 0 do

6 Y=z

7 z:=2z>mod n

8 if z=,1Ay#, +1 then

9 return(zusammengesetzt)
10 if ¢, =1 then
11 z:=z-amodn

12 if 2#, 1 then
13 return(zusammengesetzt)
14 return(prim)
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Beispiel 128. Sei n = 221. Dann berechnet der Miller-Rabin Test fir a = 174, o’ = 137
und o = 18 die folgenden Werte z;, z bzw. 2! (die dinn gedruckten Werte werden nur
vom Fermat-Test berechnet, da der Miller-Rabin Test vorher abbricht).

e o la=r @R lE=)r @l =) @)
7 1 1 |174 220 | 137 205 | 18 103
6 1 220-174 =47 220|205-137=18 103 |103-18=86 103
5 0 6 |220 1|103 1|103 1
4 1 13 (1-174=174 220 |1-137=137 2051 1-18 =18 103
3 1 27 (220-174=47 220 |205-137=18 103 | 103 - 18 = 86 103
2 1 55 1220-174 =47 220 |103-137=188 205|103 -18 =86 103
1 0 110|220 1| 205 351103 1
0 0 2201 35 1

Der Miller-Rabin Test erkennt also die Zahl n = 221 bei Wahl von a = 174 nicht als
zusammengesetzt, wohl aber bei Wahl von a = 137 und a = 18. Dagegen wiirde dies der
Fermat-Test bei Wahl von a = 18 ebenfalls nicht erkennen. N

Die Zahlen a € PMRT werden starke Primzahlzeugen fiir n genannt. Falls n zusam-
mengesetzt ist, sagt man auch, n ist eine starke Pseudo-Primzahl zur Basis a. Es gibt
nur eine Zahl n < 2,5 - 10'Y, die stark pseudo-prim zu den Basen 2, 3, 5 und 7 ist:
n = 3215031751 = 151 - 751 - 28 351.

Wir zeigen nun, dass jede ungerade zusammengesetzte Zahl n > 2 héchstens p(n)/2
starke Primzahlzeugen hat. Sei n — 1 = 2™y mit u ungerade und sei

U,={acZ |a”" =, +1}, wobei j = max{0 <i<m|Ja€Z :a** =, —1}.
Behauptung 129. U, ist eine Untergruppe von Z,.

Es geniigt zu zeigen, dass U,, unter Multiplikation abgeschlossen ist. Seien hierzu a,b € U,.
Dann gilt

(ab)?* = a®"b?" =, (£1)(£1) = +1.
Behauptung 130. PMRT C U,,.
Sei a € PMRT. Dann gilt
T )

Vie{l,...,m}:a®"=,1—ad* *=, +1 (**)

Aus (*) folgt unmittelbar a®>"* =,, 1. Daraus folgt mit (**) und der Definition von j:
Vie{j+1,....m}:a®" =, 1

Mit (**) folgt schlieBlich a?* =, +1, und damit a € U,,.

Behauptung 131. Falls n zusammengesetzt ist, ist U, eine echte Untergruppe von Z;,
und daher

[P < ol < 5 Izl
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Falls n = p* eine Primzahlpotenz ist, gilt (p"~'+1)?"~! #,x +1 (siche Ubungen) und somit
a=p* 1 41 ¢ U,. Andernfalls kénnen wir n = nin, in teilerfremde Faktoren ny,ng > 2
zerlegen. Zudem existiert nach Definition von j eine Zahl b € Z* mit b** =,, —1. Dann
ist aber die Zahl a € Z; mit

a =n, b,

a=p, 1

nicht in U,, enthalten:

20w _ 20w _ 2wy
a“ =, v =, 1= a7 £,

@t =, 17" =1=ad""#, -1

Unter Verwendung der verallgemeinerten Riemannschen Hypothese kann man sogar
zeigen, dass es keine Zahl n gibt, die stark pseudo-prim zu allen Basen a mit a <
2 - (Inn)? ist. Unter dieser Hypothese kann der Miller-Rabin Test daher zu einem
deterministischen Polynomialzeit-Algorithmus derandomisiert werden (mit der Folge,
dass das Primzahlproblem in P lésbar ist). Erst 2002 fanden Agrawal, Kayal und Saxena
einen Algorithmus, der das Primzahlproblem auch ohne diese Voraussetzung in P 16st.
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7 Asymmetrische Kryptosysteme

Diffie und Hellman kamen 1976 auf die Idee, dass die Geheimhaltung des Chiffrierschliis-
sels keine notwendige Voraussetzung fiir die Sicherheit eines Kryptosystems sein muss.
Natiirlich setzt dies voraus, dass die vom Sender und Empfénger benutzten Schliissel &
und £’ voneinander verschieden sind und dass insbesondere der Dechiffrierschliissel &’
nur sehr schwer aus dem Chiffrierschliissel £ berechenbar ist. Ist dies gewéhrleistet, so
kann jedem Kommunikationsteilnehmer X ein Paar von zusammengehorigen Schliisseln
kx, k' zugeteilt werden. X kann nun den Chiffrierschliissel kx offentlich bekannt geben,
muss aber den Dechiffrierschliissel £y unter Verschluss halten. Die Tatsache, dass sich
mit kx die Nachrichten nicht wieder entschliisseln lassen, hat den entscheidenden Vorteil,
dass ky tber einen authentisierten Kanal zum Sender gelangen kann (d.h. es ist zwar
nicht notwendig, kx geheim zu halten, aber die Herkunft von ky muss verifizierbar sein).

— Von einem symmetrischen Kryptosystem spricht man, wenn die Kenntnis des
Chiffrierschliissels gleichbedeutend mit der Kenntnis des Dechiffrierschliissels ist,
der eine also leicht aus dem anderen berechnet werden kann.

— Dagegen sind bei einem asymmetrischen Kryptosystem nur die Dechiffrier-
schliissel geheimzuhalten, wahrend die Chiffrierschliissel offentlich bekanntgegeben
werden konnen.

Fir symmetrische Kryptosysteme sind auch die Bezeichnungen konventionelles
Kryptosystem, Kryptosystem mit geheimen Schliisseln oder Secret-Key-
Kryptosystem iiblich, wogegen asymmetrische Kryptosysteme auch héufig auch als
Kryptosysteme mit 6ffentlichen Schliisseln oder Public-Key-Kryptosysteme
bezeichnet werden.

Bei einem symmetrischen Kryptosystem sind die Rollen von Sender und Empfinger
untereinander austauschbar (beziehungsweise symmetrisch), da die Vertraulichkeit der
Nachrichten auf einem gemeinsamen Geheimnis beruht, welches sich die beiden Kommu-
nikationspartner in Form des zwischen ihnen vereinbarten Schliissels verschaffen.

Der prinzipielle Unterschied zwischen symmetrischer und asymmetrischer Verschliisselung
kann sehr schon am Beispiel eines Tresors veranschaulicht werden, den Alice dazu
verwendet, Bob geheime Dokumente zukommen zu lassen.

Symmetrische Verschliisselung: Alice und Bob besitzen beide den gleichen Schliissel k.
Alice schliet mit ihrem Schliissel die Nachricht in den Tresor ein und Bob 6ffnet
ihn spater wieder mit seinem Schliissel. Das Tresorschloss lasst sich also mit &
sowohl auf- als auch zuschlieen.

Asymmetrische Verschliisselung: Alice schlieft die Nachricht mit dem Schliissel kg
in den Tresor ein. Danach lasst sich das Tresorschloss mit diesem Schliissel nicht
mehr 6ffnen. Dies ist nur mit dem in Bobs Besitz befindlichen Schliissel k% moglich.
Obwohl also beide Schliissel in das Schloss passen, kénnen kg und k5 jeweils nur
in eine von beiden Richtungen gedreht werden.

Da Alice nicht im Besitz von Bobs privatem Schliissel £ ist, kann sie im Gegensatz

zu Bob nicht alle mit kg verschliisselten Nachrichten entschliisseln, insbesondere keine

Kryptotexte, die Bob von anderen Teilnehmern zugeschickt werden. Dies hat zur Folge,
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dass fiir jeden Teilnehmer nur ein asymmetrisches Schliisselpaar generiert werden muss,
wahrend fiir die Kommunikation zwischen n Teilnehmern bis zu g) symmetrische

2
Schliissel bendtigt werden. Zu beachten ist auch, dass mit den beiden Schliisseln kg und

ks von Bob nur eine Nachrichteniibermittlung von Alice an Bob moglich ist. Fiir die
umgekehrte Richtung miissen dagegen die beiden Schliissel k4 und £/, von Alice benutzt
werden.

7.1 Das RSA-System

Das RSA-Kryptosystem basiert auf dem Faktorisierungsproblem und wurde 1978 von
seinen Erfindern Rivest, Shamir und Adleman vertffentlicht. Wahrend beim Primzahl-
problem nur eine Ja-Nein-Antwort auf die Frage ,Ist n prim?“ gesucht wird, muss ein
Algorithmus fiir das Faktorisierungsproblem im Falle einer zusammengesetzten Zahl
mindestens einen nicht-trivialen Faktor berechnen.

Fiir jeden Teilnehmer des RSA-Kryptosystems werden zwei groie Primzahlen p, ¢ und
Exponenten e, d mit ed =,y 1 bestimmt, wobei n = pq und ¢(n) = (p — 1)(¢ — 1) ist.

Offentlicher Schliissel: & = (e, n),
Geheimer Schliissel: k' = (d,n).

Jede Nachricht x wird durch eine Folge x1, x5, ... von natiirlichen Zahlen z; < n darge-
stellt, die einzeln wie folgt ver- und entschliisselt werden.

E((e,n),z) = z°modn,
D((d,n)y) = 4@ modn.

Die Chiffrierfunktionen £ und D kénnen durch ,Wiederholtes Quadrieren und Multipli-
zieren“ effizient berechnet werden.

Der Schliisselraum ist also
K ={(c,n) | esex. Primzahlen p und ¢ mit n = pg und ¢ € Z,,}
und S enthalt alle Schliisselpaare ((e,n),(d,n)) € K x K mit ed =, 1.

Satz 132. Fir jedes Schlisselpaar ((e,n),(d,n)) € S und alle x € Z,, gilt

¢ =, .

Beweis. Sei ed = z¢(n)+1 fiir eine natiirliche Zahl z. Wir zeigen z°¢ =, z. Die Kongruenz

2t =, x folgt analog und beide Kongruenzen zusammen implizieren 2°¢ =, .

Wegen ¢(n) = (p —1)(¢ — 1) und wegen

o1 - {O, x=,0,
1, 2#,0

folgt
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Zur praktischen Durchfiihrung

Bestimmung von p und ¢: Man beginnt mit einer Zahl x der Form 30z (mit z € Z)
und der verlangten GroSenordnung (z. B. 10'%) und fiithrt einen Primzahltest fiir
x + 1 durch. Ist die Antwort negativ, testet man der Reihe nach die Zahlen x + 7,
r+1L, 2+ 13, 2+ 17, 2+19, 2+ 23, .+ 29, 2+ 30+ 1, x4+ 3047, ... bis eine
Primzahl gefunden ist. Wegen % >3 lin) und da nur 8 von 30 Zahlen getestet
werden, sind hierzu ungefédhr % = 2/sInx Primzahltests durchzufithren (bei
100-stelligen Dezimalzahlen sind das um die 92 Tests).

Bestimmung von d: d soll teilerfremd zu ¢(n) = (p — 1)(¢ — 1) sein. Diese Bedingung
wird z. B. von jeder Primzahl groBer als max{p, ¢} erfiillt.

Bestimmung von e: Da ggT(d, p(n)) = 1 ist, liefert der erweiterte Euklidsche Algorith-
mus das multiplikative Inverse e von d modulo ¢(n).

Ver- und Entschliisselung: Modulares Exponentieren durch wiederholtes Quadrieren
und Multiplizieren. Es gibt auch Hardware-Implementierungen, die (unter Verwen-
dung des Chinesischen Restsatzes) mit Geschwindigkeiten von bis zu 225 Kbits/sec
arbeiten und somit circa 1500 mal langsamer als der DES sind.

Kryptoanalytische Betrachtungen

1. Es ist klar, dass das RSA-Verfahren gebrochen ist, falls es dem Gegner gelingt, den
Modul n zu faktorisieren. In diesem Fall kann er ¢(n) und damit auch den privaten
Dechiffrierexponenten aus dem offentlichen Exponenten e berechnen. Es ist auch
moglich, die Primfaktoren p, ¢ bei Kenntnis von ¢(n) zu berechnen. Sei n = pq
(mit p,q € P; p > q). Wegen

pn)=@-D@-)=@p-D()p—1)=—p+tnt+l-m,
erhalten wir die Gleichung

p—(n+1—pn))+n,=0,

[

die auf die quadratische Gleichung p* — ¢p +n = 0 fiihrt, aus der sich p und ¢ zu
chve—n VQCQ_” bestimmen lassen.

2. Die Primfaktoren p und ¢ sollten nicht zu nahe beieinander liegen, da n sonst leicht

faktorisiert werden kann. Sei p > ¢. Dann gilt ¢ < v/n < a < p, wobei a = @

das arithmetische Mittel von p und ¢ ist. Sei b = @2;‘7) die Entfernung zwischen a
und ¢. Ist nun p — ¢ klein, so ist auch [\/n]| — ¢ < a — ¢ = b klein und daher kann
q ausgehend von |y/n] nach hochstens b Schritten gefunden werden. Um dies zu
verhindern, gentigt es, p > 2¢ zu wéhlen, da dann /n—q = /pg—q > V2q—q > q/3
ist.

Mit dem Verfahren der Differenz der Quadrate lasst sich ¢ sogar in a — [v/n]
Schritten finden. Wegen

n=pq=(a+b)(a—>b)=a®—b.

geniigt es ndmlich, eine Zahl a > y/n zu finden, so dass a® —n = b? eine Quadratzahl
ist. Fiir n = 124711 ist zum Beispiel [/n] = 353. Bereits fiir a = 356 ist
a? —n =126736 — 124711 = 2025 = 45 eine Quadratzahl, woraus wir die beiden
Faktoren p = a + 45 = 401 und ¢ = a — 45 = 311 erhalten.
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Der Aufwand fiir die Suche ist proportional zur Differenz a — \/n, die sich wegen
Vrty < r+ % wie folgt nach unten abschétzen lasst:

b2
a—+vn=a—+Va2—-b>_—.
2a

Im Fall p > 2q gilt jedoch wegen b = (p—q)/2 = (p+q)/6+(p—2q)/3 > (p+q)/6 =
a/3 (also 3b/a > 1),

b? b
a—\/ﬁ>—:3 >

4

> —.
- 12

| >

3b b
— 2a a 6

Daher bringt dieser Angriff in diesem Fall keinen nennenswerten Vorteil gegeniiber
obiger Faktorisierungsmethode.

3. Fiir unterschiedliche Teilnehmer sollten verschiedene Module n = pq gewéhlt werden.
Wie wir spater sehen werden, erlaubt ndmlich die Kenntnis eines Schliisselpaares
(e,n), (d,n) mit ed =,y 1 die effiziente Faktorisierung von n (siche unten).

Wie wir gesehen haben, ist das RSA-System gebrochen, falls die Faktorisierung des
Moduls n bekannt ist. Das Brechen von RSA ist daher hochstens so schwer wie das
Faktorisieren von n.

Dagegen ist nicht bekannt, ob auch umgekehrt aus einem effizienten Algorithmus, der
bei Eingabe von e, n,y ein x mit x° =, y berechnet, ein effizienter Faktorisierungsalgo-
rithmus fiir n gewonnen werden kann. Es ist also nach heutigem Kenntnisstand nicht
ausgeschlossen, dass RSA leichter zu brechen ist als n zu faktorisieren.

Wie der folgende Satz zeigt, erfordert die Bestimmung des geheimen Schliissels dagegen
den gleichen Aufwand wie das Faktorisieren von n. Bei Kenntnis von d kann ndmlich
leicht ein Vielfaches v = ed — 1 von k = kgV(p — 1, ¢ — 1) bestimmt und somit n
faktorisiert werden. Die Faktorisierung von n beruht auf folgendem Lemma.

Lemma 133. Sei m > 1 und seien vy, z zwei Losungen der Kongruenz x* =,, a mit

Y Zm £2. Dann ist ggT(y + z, m) ein nicht-trivialer Faktor von m.

Beweis. Wegen y? =,, 2% existiert ein t € Z mit
(y+2)y—2) =y* =2 =tm.

Da jedoch wegen y #,, £z weder y + z noch y — z durch m teilbar ist, folgt 1 <
geT(y+ 2z, m) < m. O

Betrachte folgenden Las-Vegas Algorithmus RSA-FACTORIZE, der durch eine leichte
Modifikation aus dem Miller-Rabin Primzahltest hervorgeht.
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MRT(n), n ungerade RSA-FACTORIZE(n, v)
1 osei Y ge-2, e, =1, die 1osei YT ge-2, e, =1, die
Binardarstellung von n—1 Binardarstellung von v
guess randomly a € {1,...,n—1} > guess randomly a € {1,...,n—1}

if ggT(a, n) > 1 then

2
3 if ggT(a, n) > 1 then
A return(zusammengesetzt)

return(ggT(a,n))

A~ ow

b:=a 5 b:=a
6 for i:=r—1 downto 0 do 6 for i:=7r—1 downto 0 do
7 c:=b 7 c:=b
8 b :=b%> mod m 8 b :=b%> mod m
9 if b=, 1Ac#, £l then 9 if b=, 1Ac#, £1 then
10 return(zusammengesetzt) 10 return(ggT(c+ 1, n))
11 if e, =1 then b:=b-amodn 11 if e,=1 then b:=b-amodn
12 if b#, 1 then return(zus.gesetzt) 12 return(?)

13 else return(prim)

Beispiel 134. Sei n = 221 = 13- 17. Dann ist p(221) = 12-16 = 192 und k =
kgV(12,16) = kgV(223,2%) = 3 -2 = 48. Angenommen, der Gegner kinnte zu dem
offentlichen Schlissel (e,n) = (25,221) den zugehorigen privaten Schlissel (d,n) =
(169, 221) bestimmen. Dann ergibt sich v = ed — 1 zu v = 4224 und RSA-FACTORIZE
berechnet fir a =174, o' = 137 und o” = 111 die folgenden Werte z;, z, bzw. z!.

ioei ¢ |zi=174% (2)?] 2L =137 (2)? | 2 = 111° ()2
12 1 1 174 220 | 137 205 | 111 166
11 0 2 |22 11205 35 | 166 152
10 0 4 1 1135 120 | 152 120
9 0 8 120 35 | 120 35
8§ 0 16 |1 1135 120 | 35 120
7 1 33 |174 220 1120-137 =86 103 |120-111=60 64
6 0 66 |220 1103 1|64 118
5 0 132 |1 1 118 1
4 0 2064 |1 1

3 0 528 |1 1

2 0 1056 |1 1

1 0 21121 1

0 0 422411

RSA-FACTORIZE gelingt also die Faktorisierung von n = 221 bei Wahl von a = 174 nicht,
wohl aber ber Wahl von a = 137 und a = 111. Im ersten Fall findet RSA-FACTORIZE
den Faktor ggT (103 + 1,221) = 13 und im zweiten den Faktor ggT(118 + 1,221) = 17.<

Satz 135. Sein = pq (p,q prim) und v > 0 ein Vielfaches von k =kgV(p — 1,q — 1).
Dann gibt RSA-FACTORIZE(n, v) mit Wahrscheinlichkeit > 1/, einen Primfaktor von n
aus.

Beweis. Mit Lemma 133 folgt
b#, £1,0°=,1 = ggT(b+1, n)€{p, ¢},
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womit die Korrektheit der Ausgabe von RSA-FACTORIZE in Zeile 10 gezeigt ist. Wir
schatzen nun die Wahrscheinlichkeit ab, dass die Faktorisierung von n nicht gelingt.
Wir nennen eine Zahl a € Z* gut, falls a* %, 1 und a** %, —1 fiir alle t > 0 gilt. Da
RSA-FACTORIZE bei Wahl jeder Zahl a € {1,...,n — 1} \ Z! und jeder guten Zahl
a € Z; einen Primfaktor von n ausgibt, ist

Pr[RSA-FACTORIZE(n,v) = 7] < s(n)/(n — 1),
wobei s(n) = ||{a € Z* | a* =, 1 V 3t > 0 : a** =,, —1}|| die Anzahl aller Zahlen a € Z*
ist, die nicht gut sind.
Sei v = 2™u, p — 1 = 2%u; und ¢ — 1 = 2uy mit u, u;, us ungerade und sei 0. B.d. A.
i<
Behauptung 136. ggT(2'u, p — 1) = 2200y, und ggT(2%u, ¢ — 1) = 2™ty
Wegen k = kgV(p —1,q — 1) = 2709 kgV (uy, ug)|v = 2™u folgt u;|u und uy|u. Da nun

u ungerade ist, folgt ggT(2tu, p — 1) = ggT(2tu, 2'u;) = 2™y, und geT(2u,q — 1) =
geT(2bu, 2uy) = 2mn(td)y,,

Behauptung 137. |{a € Z; | a" =, 1}|| = wius.

=x

Mit dem Chinesischen Restsatz folgt nadmlich

a={aeZ;[a" =1} [{a € Z; [ a® =, 1}
= =y

Sei nun g ein Erzeuger von Z;. Dann gilt

g™ =1 & ku=,,0.

Dies zeigt § = ggT(u, p— 1) Bl 14, Analog folgt v = uy. Fiir t > 0 sei a; = II{a €

7k | a®* =, —1}.
Behauptung 138. Firt > 1 ist oy = 0.
Es gilt namlich fur alle a € Z;:
t>i=2u=,,0=ad""=,1=a*"#%, -1=a*" %, —1.
Behauptung 139. Firt=0,...,i — 1 ist ay = 2% u us.
Mit dem Chinesischen Restsatz folgt zunéchst

a={aezZy|a® = 1} [{a € Z;| a® =, ~1}] .

:;,Bt =Yt

Sei nun g ein Erzeuger von Z;. Dann gilt

gk = -1 & kRu=,,

p—1
5

Wegen ¢ < 7 ist ggT(2'u, p — 1) Bl 1 gty ein Teiler von 251 = 211y und daher ist

2
B = ggT(2'u, p—1) = 2uy (7 = 2'uy folgt analog).
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Nun gilt
s(n) = |Ha€Zila*=,1V 3Ht>0:a*" =, —1}|=a+ Ym0
i—1 i—1 2
27 — ,
= Ujug + Z 22t'LL1UQ = u1u2(1 + Z 22t) = u1u2(1 + 3 ) = U1U2<221 + 2)/3
t=0 t=0

< wgug(27 + 27H71) /3 = o(n)(1 + 271) /3 = ¢(n)/2

ist. Da p(n) < n — 1 ist, folgt s(n)/(n —1) < p(n)/2(n — 1) < 1/2 und damit ist der
Satz bewiesen. O

Als nachstes gehen wir der Frage nach, wie sicher einzelne Bits der Klartextnachricht
sind. Falls es moglich wére, aus n, e, y = x° mod n die Paritiat von x in Polynomialzeit
zu bestimmen, so konnte auch der gesamte Klartext x in Polynomialzeit aus n, e und y
berechnet werden. Das letzte Bit des Klartextes ist also genau so sicher wie der gesamte
Klartext. Falls RSA nicht total gebrochen werden kann, kann auch nicht das letzte Bit
des Klartextes ermittelt werden.

Sei nédmlich
1 falls x ungerade,

klartext-parity(y) = parity(z) =
) (=) 0 falls x gerade.

und
falls0 <z < (n—1)/2
klartext-half(y) = half(z) = 0 falls 0 <z < (n—1)/2,
1 falls(n+1)/2<z<n-1
Wegen
2 half(z) =
2x mod n = . alf(z) =0,
2r —n  sonst

gilt dann half(z) = parity(2z mod n). Daher ldsst sich die Berechnung von klartext-half(y)
auf die Berechnung von klartext-parity(y) reduzieren:

klartext-half(y) = half(x) = parity(2z mod n) = klartext-parity(2°y mod n).

Stellen wir x/n als Bindrzahl

x/n = i b2~
i=1
dar, so berechnet sich die Bitfolge b;, 2 = 1,2,... wegen
27y = (2% b b2 4 b JA ) = (b2 + b JA )
zu
b; = half(2" 'z mod n) = parity(2'z mod n) = klartext-parity(2“y mod n).
Daher lésst sich x mit Orakelfragen an klartext-parity durch folgenden Algorithmus unter

Berechnung der Bits b; fiir i = 1,2, ..., [log, n] bestimmen (da fiir z; := n3}_, b;277 die
Differenz @ — 2fiog, n] = 7 35 [10g, n1+1 027 S N fog, mi41 27 = n/2Me2nl < 1 ist):
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rz:=0
for i:=1 to [logyn]| do
y = 2° mod n
if klartext-parity(y) then
5 ri=1z+n2""
¢ output [z]

=~ w no =

Beispiel 140. Sein = 1457, e =779 und y = 722. Angenommen, das Orakel klartext-
parity liefert die in folgender Tabelle angegebenen Werte b; = klartext-parity(y;) fir y; =

2y mod n. Dann berechnet obiger Algorithmus die zugehorigen Werte z; = nZ;'-:l b;27"
(siehe Tabelle).

l 1 2 3 4 ) 6 7 8 9 10 11
y; | 1136 847 1369 1258 1156 826 444 408 1320 71 144
b; 1 0 1 0 1 1 1 1 1 0 0

n2-i728,5 364,3 182,1 91,1 455 22,8 11,4 57 2,8 1,4 0,7
z [728,5 728,5 910,6 910,6 956,2 978,9 990,3 996 998,8 998,8 998,8
z; | 541 1082 707 1414 1371 1285 1113 769 81 162 324

Der gesuchte Klartext ist also x = [998,8] = 999. Dass dieser tatsichlich die vorgegebene
Paritdtsbitfolge generiert, kann anhand der den Kryptotexten y; entsprechenden Klartexte
x; = 2z mod n in der letzten Tabellenzeile tiberpriift werden. <

7.2 Quadratische Reste

In diesem Abschnitt beschaftigen wir uns mit dem Problem, Losungen fiir eine quadrati-
sche Kongruenzgleichung

2=, a (7.1)

zu bestimmen. Zunéchst gehen wir der Frage nach, wie sich feststellen lasst, ob tiberhaupt
Losungen existieren.

Definition 141. FEin Element a € Z;, heifit quadratischer Rest modulo m (kurz:
a € QR,,), falls ein x € Z*, existiert mit x* =, a. QNR,,, := Z* \ QR,, ist die Menge
der quadratischen Nichtreste modulo m.

Sei p > 2 eine Primzahl und a € Z,. Dann heifit

a 1, a€QR,
L(a,p) = () =4¢ —1, a€QNR,
p 0, sonst

das Legendre-Symbol von a modulo p.

Die Kongruenzgleichung (7.1) besitzt also fiir ein a € Z, genau dann eine Losung, wenn
a € QR,, ist. Wie das folgende Lemma zeigt, kann die Losbarkeit von (7.1) fir primes m
effizient entschieden werden. Am Ende dieses Abschnitts werden wir noch eine andere
Methode zur effizienten Berechnung des Legendre-Symbols kennenlernen.



96 7 Asymmetrische Kryptosysteme

Lemma 142. Seia € Z;, p > 2 prim, und sei k = log, ,(a) fiir einen beliebigen Erzeuger
g von Z,. Dann sind die folgenden drei Bedingungen dquivalent:

1. aP V2= 1,
2. k ist gerade,
3. a € QR,.

Beweis.
1 = 2: Angenommen, a =, g* fiir ein ungerades k = 2 - j + 1. Dann ist
a®P—1D/2 =, g7 P g(p=1)/2 =, gP= /2 2, 1.
—

=1

2= 3: Ist a =, ¢" fiir k = 2j gerade, so folgt a =, (¢)?, also a € QR,.
3=1: Seia e QR,, d.h.b*=,afireinbe Z,,. Dann folgt mit dem Satz von Fermat,

aP~1)/2 =, bl = 1.

P
|

Somit zerféllt Z, in die drei Teilmengen QR,, QNR, und Z, \ Z = {0}, wobei die ersten
beiden jeweils (p — 1)/2 Elemente enthalten. Als weitere Folgerung erhalten wir folgende
Formel zur effizienten Berechnung des Legendre-Symbols.

Satz 143 (Eulers Kriterium). Fir alle a und p > 2 prim gilt

(r-1)/2 — a)
a — .
, (p

Beweis. Nach obigem Lemma reicht es zu zeigen, dass fir alle a € Z; die Kongruenz
aP=1/2 =, 41 gelten muss. Da jedoch die Kongruenz z?> =, 1 nach dem Satz von
Lagrange nur die beiden Losungen +1 hat, folgt dies aus der Tatsache, dass a®~1/?2
Losung dieser Kongruenz ist. O

Korollar 144. Fir alle a,b € Z;, p > 2 prim, gilt
O Bl
2 (5)=0)-G)

Als weiteres Korollar aus Eulers Kriterium erhalten wir eine Methode, quadratische Kon-
gruenzgleichungen im Fall p =4 3 zu 16sen. Fiir beliebige Primzahlen p ist kein effizienter,

deterministischer Algorithmus bekannt. Es gibt jedoch einen probabilistischen Algorith-
mus von Adleman, Manders und Miller (1977).

Korollar 145. Seip > 2 prim, dann besitzt die quadratische Kongruenzgleichung = =, a
fiir jedes a € QR, genau zwei Lisungen. Im Fall p =4 3 sind dies +a* mod p (fiir
k= (p+1)/4), wovon nur a* mod p ein quadratischer Rest ist.
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