EINFÜHRUNG IN DIE KRYPTOLOGIE PROF. DR. J. KÖBLER Wintersemester 2015/16 28. Januar 2016

Übungsblatt 13

Aufgabe 71 mündlich

Seien p und q ungerade Primzahlen und n = pq.

- (a) Zeigen Sie, dass $\operatorname{ord}_n(\alpha) = \operatorname{kgV}(\operatorname{ord}_p(\alpha), \operatorname{ord}_q(\alpha))$ für alle $\alpha \in \mathbb{Z}_n^*$.
- (b) Zeigen Sie, dass es ein $\alpha \in \mathbb{Z}_n^*$ gibt mit $\operatorname{ord}_n(\alpha) = \frac{\varphi(n)}{\operatorname{ggT}(p-1,q-1)}$
- (c) Sei nun ggT(p-1,q-1)=2 und p,q>3. Angenommen, wir haben ein Orakel, das für ein $\alpha\in Z_n^*$ mit $\mathrm{ord}_n(\alpha)=\varphi(n)/2$ den diskreten Logarithmus in der Untergruppe $[\alpha]$ berechnet. Das Orakel berechnet also für beliebige $\beta\in [\alpha]$ den diskreten Logarithmus $a=\log_{n,\alpha}\beta$ mit $0\leq a\leq \varphi(n)/2-1$. (Der Wert $\varphi(n)/2$ bleibt dabei geheim.)
 - Zeigen Sie, dass für das vom Orakel bei Eingabe $\beta = \alpha^n$ berechnete a gilt: $n a = \varphi(n)$.
- (d) Geben Sie einen effizienten Algorithmus an, der n unter Benutzung des Orakels aus (c) faktorisiert.

Aufgabe 72

Retrachten Sie des Rabin-System mit dem Schlüssel n = 100, a = 211, n = na und

Betrachten Sie das Rabin-System mit dem Schlüssel p=199, q=211, n=pq und e=1357.

- (a) Berechnen Sie den Kryptotext y des Klartextes x=32767.
- (b) Bestimmen Sie die vier möglichen Entschlüsselungen von y.

Aufgabe 73 mündlich

Sei p prim mit $p \equiv_8 5$, und sei a ein quadratischer Rest modulo p. Weiterhin bezeichne $L_i(\beta)$ für $\beta \in \mathbb{Z}_p^*$ das Bit mit Wertigkeit 2^i in der Binärdarstellung von $\log_{n,\alpha} \beta$, wobei α ein Erzeuger von \mathbb{Z}_p^* ist. Zeigen Sie:

- (a) $a^{(p-1)/4} \equiv_p \pm 1$.
- (b) Wenn $a^{(p-1)/4} \equiv_p 1$, dann ist $a^{(p+3)/8} \mod p$ eine Quadratwurzel von a modulo p.

(c) Wenn $a^{(p-1)/4} \equiv_p -1$, dann ist $2^{-1}(4a)^{(p+3)/8} \mod p$ eine Quadratwurzel von a modulo p.

Hinweis: Verwenden Sie die Tatsache, dass im Fall $p \equiv_8 5 \left(\frac{2}{p}\right) = -1$ ist.

(d) Bei Kenntnis von α kann $L_1(\beta)$ effizient berechnet werden.

Hinweis: Machen Sie davon Gebrauch, dass im Fall $p \equiv_8 5$ Quadratwurzeln modulo p effizient berechnet werden können und für alle $\beta \in \mathbb{Z}_p^*$ die Gleichheit $L_0(\beta) = L_1(p-\beta)$ gilt.

Aufgabe 74 mündlich

Seien $m_1, \ldots, m_{n+1} \in \mathbb{N}$. Sei $g_i = \operatorname{ggT}(m_i, m_{n+1}), i = 1, \ldots, n$. Zeigen Sie

$$kgV(g_1,\ldots,g_n) = ggT(kgV(m_1,\ldots,m_n),m_{n+1}).$$

Aufgabe 75 mündlich

Betrachten Sie für $a_1, \ldots, a_n \in \mathbb{Z}$ und $m_1, \ldots, m_n \in \mathbb{N}$ folgendes System von linearen Kongruenzen:

$$x \equiv_{m_i} a_i, \quad i = 1, \dots, n \quad (*)$$

- (a) Zeigen Sie, dass das Kongruenzgleichungssystem (*) höchstens eine Lösung modulo $kgV(m_1, ..., m_n)$ hat.
- (b) Zeigen Sie, dass das System (*) genau dann lösbar ist, wenn für alle $1 \le i < j \le n$ die Zahl ggT (m_i, m_j) ein Teiler von $(a_i a_j)$ ist.

Hinweis: Führen Sie einen Induktionsbeweis und verwenden Sie Aufgabe 74.

Aufgabe 76 mündlich

Wir betrachten das ElGamal-System über der Gruppe \mathbb{F}_{27}^* , wobei wir zur Konstruktion des Körpers \mathbb{F}_{27} das irreduzible Polynom $m(x)=x^3+2x^2+1$ benutzen. Angenommen, wir wählen als Erzeuger das Element $\alpha=x$ und als privaten Schlüssel a=11. Wie lässt sich damit der Kryptotext

$$y = (K, H)(P, X)(N, K)(H, R)(T, F)(V, Y)(E, H)(F, A)(T, W)(J, D)(U, J)$$

entschlüsseln, wenn wir die 25 Zeichen A, \ldots, Z der Reihe nach mit den Körperelementen $1, 2, x, x+1, x+2, 2x, \ldots, 2x^2+2x+2$ kodieren?