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1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch 16sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

Schliefllich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollsténdigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adédquat?
(Automatentheorie)

o Welche Probleme sind 16sbar? (Berechenbarkeitstheorie)
o Welcher Aufwand ist zur Losung eines algorithmischen Problems
notig? (Komplexitatstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)
Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Fuklid benannte Algorithmus zur Berechnung
des grofiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben kénnen Zahlen, Formeln, Graphen etc. sein. Diese werden
iiber einem FEingabealphabet ¥ kodiert.

Definition 1.

a) Ein Alphabet ¥ ={ay,...,a,} ist eine geordnete Menge von
endlich vielen Zeichen.

b) Eine Folge x = x;...x, vonn Zeichen heiffit Wort (der Linge

c) Die Menge aller Worter diber ¥ ist

s =,
n>0
wobei X" = {xy...x, | n 20 undx; € ¥ firi=1,...,n} alle

Worter der Lange n enthdlt.

d) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen.

e) Jede Teilmenge L € ¥* heifst Sprache tber dem Alphabet .

Beispiel 2. Sei X ein Alphabet. Dann sind @, %*, % und {} Sprachen
tber X. Die Sprache @ enthdlt keine Worter und heifit leere Spra-
che. Die Sprache ¥* enthdlt dagegen alle Wérter diber ¥, wdhrend
die Sprache ¥ alle Wérter tiber ¥ der Linge 1 enthdlt. Die Sprache



2 Regulédre Sprachen

{e} enthalt nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singleton-Sprachen bezeichnet.

Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt
gc{e}cyr.
Wir kénnen Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen tiber ¥. Dann ist
e AnB={xeX*|xeA xeB} der Schnitt von A und B,

e AuB={xeX*|zeAvuze B} die Vereinigung von A und
B, und

o A={2ze¥"|2¢ A} das Komplement von A.

Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.

e Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B st
AB={zy|xzeAyeB}.

Ist A = {x} eine Singletonsprache, so schreiben wir fir {x}B
auch einfach xB.

e Die n-fache Potenz A™ ciner Sprache A ist induktiv definiert
durch
An = {e}, n =0,
APTA, n>0.

e Die Sternhiille A* von A ist A* = U, A™.
e Die Plushiille A* von A ist A* =U,s1 A" = AA*.

2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
féltige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Eingabe- N

Ein endlicher Automat fiihrt band
bei einer Eingabe der Lénge n

nur n Rechenschritte aus. Um / Lesekopf
die gesamte Eingabe lesen zu

kénnen, muss der Automat also Steuer-
in jedem Schritt ein Zeichen der einheit
Eingabe verarbeiten.

Definition 4. Fin endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E') beschrie-
ben, wobei

o 7/ + @ eine endliche Menge von Zustianden,
e Y das FEingabealphabet,

e 0:ZxY - Z die Uberfiihrungsfunktion,
e qo € Z der Startzustand und

o FcZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {a:l...a:nez*

es gibt q1,...,qn-1 € Z,q, € E mit
0(qi,iv1) = qiy1 firi=0,....n—-1]"
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0, Q1 - - -, qn heift Rechnung von M(xy...x,), falls 6(qi, Tiv1) = qina
firi=0,....,n—-1 gilt. Sie heifst akzeptierend, falls q, € E ist.

Beispiel 5. Betrachte den DFA M =
(Z,%,0,0,E) mit Z = {0,1,2}, X =
{a,b}, E = {1} und der Uberfiihrungs-
funktion

Graphische Darstellung:

slo 1 2

all 2 0
b2 01

Der Startzustand wird meist durch einen Pfeil und Endzustidnde
werden durch einen doppelten Kreis gekennzeichnet. N

Bezeichne 4 (¢, ) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion

0: 7 x> Z

induktiv wie folgt definieren. Fiir g€ Z, z € ¥* und a € ¥ sei

A

O(ge) = a
d(q,xa) 5(0(q, ), a).

Die von M erkannte Sprache lésst sich nun auch in der Form

L(M) ={ze>*|6(q,2) € E}

schreiben.
Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache
L(M) ={xeX* | #.(x) - #p(x) =3 1},

wobei #4(x) die Anzahl der Vorkommen des Zeichens a in x bezeichnet
und j =, k bedeutet, dass j —k durch m teilbar ist.

2.1 Endliche Automaten

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € X* |
6(0,2) =1}, d.h. wir miissen folgende Aquivalenz zeigen:

5(0,2) =1 & #4(x) - #(x) =5 1.
Hierzu reicht es, die Kongruenz
0(0,7) =5 #a(z) — #o().

zu beweisen, wofiir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n=0): klar, da 6(0,e) = #4(¢) = #,() = 0 ist.

Induktiorfsschritt (n~mn+1): Sei © = x1...7,,1 gegeben und sei
i=0(0,71...2,). Nach IV gilt dann

i =3 H#o(x1. . 20) —Ho(T1. .. T0).
Wegen 6(i,a) =37+ 1 und 6(i,b) =37 — 1 folgt daher

5(27 xn+1) =3 1+ #a($n+1) - #b(xn+1)
=3 #a(xl v xn) - #b(xl cee xn) + #a(xn+1) - #b(xn+1)
= #a(®) = #o(z).

und somit
5(0,2) = 6(6(0, 21 ... 2,), Zns1) = 6(i, Tns1) =3 #a(x) — #4().
| |

Eine von einem DFA akzeptierte Sprache wird als regulér bezeichnet.
Die zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}.

Beobachtung 7. Alle Singletonsprachen sind requldr.
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Beweis. Fir jedes Wort = = x7...x, existiert ein DFA M, mit
L(M,) ={z}:

€3 T,

Z1 P
OGO ®,

a* o a + T3

aey

a* I

Formal ist M, also das Tupel (Z,%,6,qo, F) mit Z = {qo, ..., qn, €},
E ={g,} und der Uberfiihrungsfunktion

Gi+1, q=¢ fireintmit 0<i<n-1und a; = 251
5(q7a’j) =

e, sonst.

Als nachstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. FEin k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen Ly, ..., Ly auf eine Sprache op(L1, ..., Ly) abbildet.

Beispiel 9. Der Schnittoperator n bildet zwei Sprachen Ly und Lo
auf die Sprache Ly n Ly ab. <

Definition 10. FEine Sprachklasse K heifit unter op abgeschlossen,
wenn gilt:
Li,....Lye K= o0p(Ly,..., L) € K.

Der Abschluss von IC unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K', die KC enthdlt und unter op abgeschlossen ist.

2.1 Endliche Automaten

Beispiel 11. Der Abschluss der Singletonsprachen unter n besteht
aus allen Singletonsprachen und der leeren Sprache.

Der Abschluss der Singletonsprachen unter U besteht aus allen nicht-
leeren endlichen Sprachen. <

Definition 12. Fir eine Sprachklasse C bezeichne co-C die Klasse
{L|LeC} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L, L, € REG sind auch die Sprachen Ly =
Y*N Ly, Lyn Ly und Ly U Ly requldar.

Beweis. Sind Mz = (Zi,z,éi,QmEi), 1= 1,2, DFAs mit L(Ml) = Li;
so akzeptiert der DFA

M, =(Z1,%,01,q0, Z1 ~ Ey)

das Komplement L, von L;. Der Schnitt L; n L, von Ly und Ly wird
dagegen von dem DFA

M =(Z1 x Z2,%,6,(q0, q0), E1 x E2)
mit
6((Qap)a CI,) = (51(Qa Cl), 52(p7 CL))
akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen

LU Ly = (L n Ly) ist dann aber auch die Vereinigung von L; und
Ly regular. (Wie sieht der zugehorige DFA aus?) [ |

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulér sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
reguldren Sprachen erfasst.
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Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhiille abgeschlossen ist. Im
iiberndchsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt
und Sternhiille charakterisierbar ist.

Beim Versuch, einen endlichen Automaten fiir das Produkt Lq L, zwei-
er regularer Sprachen zu konstruieren, stot man auf die Schwierigkeit,
den richtigen Zeitpunkt fiir den Ubergang von (der Simulation von)
My zu My zu finden. Unter Verwendung eines nichtdeterministischen
Automaten lasst sich dieses Problem jedoch leicht beheben, da dieser
den richtigen Zeitpunkt ,erraten“ kann.

Im néchsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur regulére Sprachen erkennen
konnen.

2.2 Nichtdeterministische endliche Automaten

Definition 14. FEin nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,3,A,Qo, F) ist dhnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustinde (zusammengefasst in der Menge Qo € Z) haben
kann und seine Uberfiihrungsfunktion die Form

A:Zx¥—>P(Z)

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2% bezeichnet. Die
von N akzeptierte Sprache ist

EIQOEQO7q17"'7Qn—1EZ:QnEE: }

L(N) = ...y €% .
() {xl n € Giv1 € A(Gi, xis1) firi=0,...,n-1

40,41, - - - »qn heifit Rechnung von N(xy...x,), falls qiv1 € A(q;, Tiv1)
firi=0,...,n-1 gilt.

2.2 Nichtdeterministische endliche Automaten

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren. Ein Wort x ge-
hort genau dann zu L(N), wenn N (x) mindestens eine akzeptierende
Rechnung hat.

Im Gegensatz zu einem DFA, dessen Uberfiihrungsfunktion auf der
gesamten Menge Z x Y definiert ist, kann ein NFA stecken bleiben®.
Das ist dann der Fall, wenn er in einen Zustand ¢ gelangt, in dem das
nichste Eingabezeichen x; wegen A(q,x;) = @ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,%,A,Qo, E) mit Zustands-
menge Z ={p,q,r,s}, Eingabealphabet 3 ={0,1,2}, Start- und End-
zustandsmenge Qo = {p} und E = {s} sowie der Uberfiihrungsfunktion

Graphische Darstellung:
A‘ P q r s

0{pqgy @ @ @ —’@—0'@—1’@—2’
Ll () (1} o o oY
%

2| {py @ {s}

Offensichtlich akzeptiert N die Sprache L(N) ={xz012 |z € ¥*} aller
Wérter, die mit dem Suffiz 012 enden. <

Beobachtung 16. Sind N; = (Z;,3,A,;,Q;, E;) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(Ny) und L(Ny)* von einem NFA
erkannt.

Beweis. Sei L; = L(N;). Wir konnen Z; n Z, = @ annehmen. Dann
akzeptiert der NFA

N = (Zl UZ2727A37Q17E>
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mit
Aq(p,a), peZiN By,
As(p,a) =< Ai(p,a)u Ugeq, D2(q,a), pe Ey,
As(p,a), sonst
und
E:{Eg, Q2N Er =@
EyuFE,, sonst

die Sprache L;Ls.

Beweis von LiLs € L(N): Seien x = x1---xy € L1,y = y1---y; € Lo und
seien qq,...,qe und po,...,p; akzeptierende Rechnungen von Ni(x)
und Ny (y). Dann gilt gy € Q1, qx € £y und po € Qo, p; € Es.

e Im Fall [ > 1 ist zudem p; € As(po,y1) und somit p; € A(gg, y1)-

e Im Fall [ =0 ist zudem p; € Y N E5 und somit ¢ € .

Also ist qo, ..., qk, p1,- - ., eine akzeptierende Rechnung von N (zy).

Beweis von L(N) ¢ LiLs: Sei x = x1---x, € L(N) und sei qo, ..., qn
eine akz. Rechnung von N (z). Dann gilt o € Q1, ¢u € E, qo,- .., € Z1
und @iy1, .-+, qGn € Zo fir ein 1 € {0,...,n}.

o Im Fall i =n ist g, € By (d.h. x € Ly) und Q2 n FEy # @ (d.h.

g€ Ls).
o Im Fall i < n impliziert der Ubergang ¢;,;1 € A(q;,xi1), dass
qi € By und ¢;11 € Ao(q, 2441) flir ein g € Q5 ist.
Also ist qq, . . ., ¢; eine akz. Rechnung von Ny (z1---x;) und ¢, Gis1, - - -, qn
eine akz. Rechnung von Ny(x;1-+2,), d.h. x € Ly L.

Ganz dhnlich lasst sich zeigen, dass der NFA
N* = (Zl U {qneu}7 27 A47 Ql U {Qneu}a El U {Qneu})
mit
Al(pva)v pEZl\Eb
A4(p7a) = Al(paa) U Uq€Q1 Al(qaa)a JS Eh

g, sonst

2.2 Nichtdeterministische endliche Automaten

die Sprache L} akzeptiert. [ ]

Satz 17 (Rabin und Scott).
REG = {L(N) | N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Fir die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,3, A, Qo, F) einen DFA M =
(P(Z2),%,0,Qo, E') mit L(M) = L(N). Wir definieren die Uberfiih-
rungsfunktion § : P(Z) x ¥ - P(Z) von M mittels

0(Q,a) = J A(g; a).

qeQ

Die Menge §(Q, a) enthélt also alle Zustande, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand ¢ € () das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand () die Information speichert,
in welchen Zustanden sich N momentan befinden kénnte. Fiir die
Erweiterung 6 : P(Z) x £* - P(Z) von § (siehe Seite 3) kénnen wir
nun folgende Behauptung zeigen.
Behauptung. §(Q, z) enthilt alle Zustinde, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.

Wir beweisen die Behauptung induktiv tiber die Lange n von z.
Induktionsanfang (n = 0): klar, da 6(Qp,e) = Qy ist.

Induktionsschritt (n—1~»n): Sei x = x; ... x, gegeben. Nach Induk-
tionsvoraussetzung enthalt

Qn—l = 8(@0,1’1 .. -xn—l)
alle Zusténde, die N(x) in genau n—1 Schritten erreichen kann.
Wegen A
0(Qo,7) =0(Qn-1,72) = U Alg,zn)

q€Qn-1

enthilt dann aber 6(Qo,x) alle Zustinde, die N(z) in genau n
Schritten erreichen kann.
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Deklarieren wir nun diejenigen Teilmengen @) € Z, die mindestens
einen Endzustand von N enthalten, als Endzustiande des Potenz-
mengenautomaten M, d.h.

E'={QcZ|QnE+gz},
so folgt fiir alle Worter z € X*:

reL(N) < N(z)kann in genau |z| Schritten einen Endzustand
erreichen

5(Qo,z)NE # 2

S(Qo,x) e’

xeL(M).

8

)

)

Beispiel 18. Fiir den NFA N = (Z,%,A,Qq, E) aus Beispiel 15

9@_0.@_%@_2»

ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach
Entfernen aller vom Startzustand Qo = {p} aus nicht erreichbaren
Zustdnde):

s | o 1 2

Q={p} |{pay {p} {p}
Qi=1{p.q} | {p,a} {p,v} A{p}
Q={p,r} | {p,a} {p} {p s}
Qs=A{p,s} |{p,a} {p} {p}

2.3 Regulire Ausdriicke

Im obigen Beispiel wurden fiir die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 214l = 16 Zustinde bendétigt, da die
tibrigen 12 Zustande in P(Z) nicht vom Startzustand Qg = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 221 Zustinde
in P(Z) fir die Konstruktion des Potenzmengenautomaten benotigt
werden (siehe Ubungen).

Korollar 19. Die Klasse REG der requldiren Sprachen ist unter fol-
genden Operationen abgeschlossen:

o Komplement, e Produkt,
e Schnitt, e Sternhiille.

e Vereinigung,

2.3 Regulare Ausdriicke

Wir haben uns im letzten Abschnitt davon iiberzeugt, dass auch NFAs
nur regulare Sprachen erkennen koénnen:

REG = {L(M) | M ist ein DFA} = {L(N) | N ist ein NFA}.

In diesem Abschnitt werden wir eine weitere Charakterisierung der
regularen Sprachen kennen lernen:

REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhiille aus der leeren Menge und den Singleton-
sprachen bilden lassen.
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Tatséchlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der reguldren Ausdriicke ~y (iber ei-
nem Alphabet ) und die durch ~ dargestellte Sprache L(7y) sind
induktiv wie folgt definiert. Die Symbole @, € und a (a € ¥) sind
requldre Ausdriicke, die

e die leere Sprache L(2) = @,

e die Sprache L(e) = {e} und

o fiir jedes Zeichen a € X die Sprache L(a) = {a}
beschreiben. Sind oo und 5 reguldre Ausdricke, die die Sprachen L(a)
und L(B) beschreiben, so sind auch a3, («|B) und («)* regulire Aus-
driicke, die die Sprachen

. L(aB) = L(a)L(P),

+ L(alB) = L(a) U L(B) und

. L((a)") = L(a)*
beschreiben.

Bemerkung 21.

e Um Klammern zu sparen, definieren wir folgende Prazedenz-
ordnung: Der Sternoperator * bindet stirker als der Produktope-
rator und dieser wiederum starker als der Vereinigungsoperator.
Fiir ((alb(c)*)|d) konnen wir also kurz albc*|d schreiben.

e Da der requlire Ausdruck yy* die Sprache L(~y)* beschreibt,
verwenden wir v+ als Abkiirzung fir den Ausdruck ~vy*.

Beispiel 22. Die requldaren Ausdricke %, @*, (0[1)*00 und €0|@1*
beschreiben folgende Sprachen:

v €* o* (0[1)*00 e0|z1*
L(v) [{e}* ={e} @ ={e} {z00]ze{0,1}*} {0}

2.3 Reguléire Ausdriicke

Beispiel 23. Betrachte nebenstehenden DFA M.
Um fiir die von M erkannte Sprache

L(M) ={x e{a,b}" | #a(x) - #u(2) =3 1}

einen requldren Ausdruck zu finden, betrachten
wir zundchst die Sprache Lo aller Worter x, die
den DFA M ausgehend vom Zustand 0 in den
Zustand 0 tiberfihren. Weiter sei L3} die Sprache aller solchen Wérter
w # ¢, die zwischendurch nicht den Zustand 0 besuchen. Dann setzt
sich jedes x € Loo aus beliebig vielen Teilwortern wy, ..., wy € LS%
zusammen, d.h. Log = (L))" '

Jedes w € L) beginnt entweder mit einem a (Ubergang von 0 nach 1)
oder mit einem b (Ubergang von 0 nach 2). Im ersten Fall folgt eine
beliebige Anzahl von Teilwortern ab (Wechsel zwischen 1 und 2), an
die sich entweder das Suffix aa (Rickkehr von 1 nach 0 dber 2) oder
das Suffix b (direkte Riickkehr von 1 nach 0) anschliefit. Analog folgt
im zweiten Fall eine beliebige Anzahl von Teilwértern ba (Wechsel
zwischen 2 und 1), an die sich entweder das Suffix a (direkte Riickkehr
von 2 nach 0) oder das Suffix bb (Rickkehr von 2 nach 0 dber 1)

anschlief$t. Daher ldsst sich LS% durch den requldren Ausdruck
6.0 = aab)*(aalb) | b(ba)* (albb)

beschreiben. Eine ahnliche Uberlegung zeigt, dass sich die die Sprache
L7’ aller Worter, die M ausgehend von 0 in den Zustand 1 iiber-
fithren, ohne dass zwischendurch der Zustand 0 nochmals besucht
wird, durch den reguliren Ausdruck 7 = (albb)(ab)* beschreibbar
ist. Somit erhalten wir fiir L(M) den reguliren Ausdruck

You = (349)"6% = (a(ab)* (aalb) | b(ba)*(alob))* (albb) (ab)*.

Satz 24. {L(v) | v ist ein reguldrer Ausdruck} = REG.
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Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdriicke @, € und a, a € ¥*, nur regulare Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist (siche Beobachtungen 13 und 16).

Fiir die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
laren Ausdruck v mit L(vy) = L(M). Sei also M = (Z,%,6,qo, F) ein
DFA, wobei wir annehmen kénnen, dass Z = {1,...,m} und ¢ = 1 ist.
Dann léasst sich L(M) als Vereinigung

L(M) = U Lig

qeE

von Sprachen der Form
Lpg={reX"| S(pux) =q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen L, , durch
reguldre Ausdriicke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

Lg,q:{xlu-xneg* 5(p7x1"'xn):qundfur }

i=1,....n-1gilt 6(p,a1...3) <r

Wegen Ly, = L, reicht es, reguldre Ausdriicke v; , fiir die Sprachen

Ly , anzugeben. Tm Fall 7 = 0 enthélt

o - JlaeX]dpa)=giufe}, p=q,
" Haex|6(p,a) = g}, sonst

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen reguldren Ausdruck ~y , beschreibbar. Wegen

r+l  _ r T T *TT
Lp7q - Lp,qULp,r+1(Lr+1,r+1) Lr+1,q

lassen sich aus den reguldren Ausdriicken ~; , fiir die Sprachen L7 ,

leicht reguldre Ausdriicke fiir die Sprachen Lj*! gewinnen:

r+l _ o7 r r * T
P)/p,q _’yp,q|7p,r+1(’yr+l,r+1) r)/r+1,q'

2.3 Regulire Ausdriicke

Beispiel 25. Betrachte den DFA

7

Da M insgesamt m =2 Zustinde und nur den Endzustand 2 besitzt,
15t
L(M) = Lig=Li2=Li, = L(7i ).
qeE
Um i, 2zu berechnen, benutzen wir die Rekursionsformel

r+l _ o7 r r * AT
Vp,q _Vp,q|’7p,r+1(7r+1,7‘+1) 77"+1,q

und erhalten
Vg =2l a(V22) V2.2,

%1,2 = V?QW?J(V?J)W%Qa
7%,2 = 73,2|’YS,1(7?,1)*7?,2-

Um den requldren Ausdruck 7%72 fir L(M) zu erhalten, gentigt es also,
die reguldren Ausdriicke 77 1, V)9, 791, Va.05 V1o Und Y35 2u berechnen:

. p,q
1,1 1,2 2.1 2,9

0 €lb a a €lb
al(e[b)(elb)*a (elb)|a(elb)*a

1 - — - ~—_—

b*a e[blab*a

5 b*alb*a(e|blab*a)* (e|blab*a)

b*a(blab*a)*
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Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

e L ist requldr,

e es gibt einen DFA M mit L = L(M),

e es gibt einen NFA N mit L = L(N),

o es gibt einen requldren Ausdruck v mit L = L(7),

e L ldsst sich mit den Operationen Vereinigung, Produkt und
Sternhiille aus endlichen Sprachen gewinnen,

e L ldsst sich mit den Operationen N, U, Komplement, Produkt
und Sternhiille aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, namlich durch reguldare Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Aquivalenzrelationen) eine wichtige Rolle.

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, R; eine k;-stellige Relation auf A, d.h.
R; ¢ Ak fir ¢ = 1,...,n. Dann heiit (A;Ry,...,R,) Relational-
struktur. Die Menge A heiflt Grundmenge, Triagermenge oder
Individuenbereich der Relationalstruktur.

Wir werden hier hauptsichlich den Fall n =1, k; = 2, also (A, R) mit
R ¢ A x A betrachten. Man nennt dann R eine (binire) Relation
auf A. Oft wird fir (a,b) € R auch die Infix-Schreibweise aRb
benutzt.

Beispiel 27.
o (F,M) mit F={f|f ist Fluss in Europa} und

M ={(f,g9) e FxF | f mindet in g}.
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e (U,B) mit U ={x |z ist Berliner} und
B ={(x,y) e U xU | x ist Bruder von y}.

e (P(M),<), wobei P(M) die Potenzmenge einer beliebigen Men-
ge M und ¢ die Inklusionsbeziehung auf den Teilmengen von M
15t.

e (A Idy), wobei Idy ={(x,x) |z e A} die Identitédt auf A ist.

e (R,<).

e (Z,]), wobei | die "teilt”-Relation bezeichnet (d.h. alb, falls ein
ceZ mit b= ac existiert). <

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt, Vereinigung, Komplement und Differenz
definiert. Seien R und S Relationen auf A, dann ist

RnS = {(x,y)e Ax A| xRy xSy},
RuS = {(x,y)e Ax A|zRyv xSy},
R-S = {(z,y)e Ax A| xRy -xSy},
R = (AxA)-R.

Sei allgemeiner M € P(A x A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt iiber M und die Vereinigung iiber
M folgende Relationen:

MM
UM

N R={(x.y)| VRe M: 2Ry},
ReM

U R={(z,y)| IR € M : zRy}.
ReM

Die transponierte (konverse) Relation zu R ist

R" = {(y,z) | zRy}.

RT wird oft auch mit R~! bezeichnet. Z.B. ist (R,<”) = (R,>).
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Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

RoS={(xz,2)e AxA|Jye A: xRy nySz}.

Beispiel 28. Ist B die Relation "ist Bruder von”, V' 7ist Vater von”,
M 7ist Mutter von” und E =V u M 7ist Elternteil von”, so ist Bo E
die Onkel-Relation. N

Ubliche Bezeichnungen fiir das Relationenprodukt sind auch R ;S und
R - S oder einfach RS. Das n-fache Relationenprodukt Ro---o R von
R wird mit R™ bezeichnet. Dabei ist RO = Id.

Vorsicht: Das n-fache Relationenprodukt R™ von R sollte nicht mit
dem n-fachen kartesischen Produkt R x--- x R der Menge R verwech-
selt werden. Wir vereinbaren, dass R™ das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heifit R

reflexiv, falls Vo € A: xRx (also Ids € R)
irreflexiv, falls Vx € A: -xRx (also Ida < E)
symmetrisch, falls Vo,y € A: xRy = yRx (also Rc RT)

)

asymmetrisch, falls Vz,ye A: xRy = -yRx (also Rc RT
antisymmetrisch, falls Vo, ye A:xRyryRx = x =1y
(also RN RT c Id)
konnex, falls Vo,y e A: xRy v yRx
(also Ax Ac RuRT)

semikonnex, falls Ve,ye A:x +y = xRy vyRx
(also Id € Ru RT)
transitiv, falls Vo,y,2€e A: xRy nyRz = xRz
(also R? ¢ R)
gilt.

2.4 Relationalstrukturen

Die nachfolgende Tabelle gibt einen Uberblick iiber die wichtigsten
Relationalstrukturen.

‘ refl. sym. trans. antisym. asym. konnex semikon.

Aquivalenzrelation | v- v v

(Halb-)Ordnung v v v

Striktordnung v v

lineare Ordnung e v v

lin. Striktord. v v v
Quasiordnung v v

In der Tabelle sind nur die definierenden Eigenschaften durch ein ”v”
gekennzeichnet. Das schliefit nicht aus, dass gleichzeitig auch noch
weitere Eigenschaften vorliegen konnen.

Beispiel 29.

e Die Relation 7ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.

e Die Relation 7ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Aquivalenzrelation.

e (R,<) st irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnunyg.

e (R,<) und (P(M),<) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

e (R,<) ist auch konnex und somit eine lineare Ordnung.

e (P(M),c) ist zwar im Fall |M| < 1 konnex, aber im Fall
|M| > 2 weder semikonnex noch konnezx. q

Graphische Darstellung von Relationen

Eine Relation R auf einer endlichen Menge A kann durch einen gerich-
teten Graphen (oder Digraphen) G = (V, E) mit Knotenmenge
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V = A und Kantenmenge F = R veranschaulicht werden. Hierzu
stellen wir jedes Element x € A als einen Knoten dar und verbin-
den jedes Knotenpaar (z,y) € R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heiflen benachbart oder
adjazent.

Beispiel 30. Fir die Relation (A,R) mit A = {a,b,c,d} und
R={(b,c),(b,d),(c,a),(c,d),(d,d)} erhalten wir folgende graphische

Darstellung.
4,
e

Der Ausgangsgrad eines Knotens x € V ist deg” (z) = | R[x]|, wobei
R[x] ={y €V | zRy} die Menge der Nachfolger von z ist. Entspre-
chend ist deg™(z) = |{y € V | yRz}| der Eingangsgrad von z und
R1[x] ={y € V | yRx} die Menge der Vorgdnger von x. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(z) = deg™(x) = deg”(x) der Grad von z und R[z] = R™'[z]
heilt die Nachbarschaft von x. Ist R zudem irreflexiv, so ist G
schleifenfrei und wir erhalten einen (ungerichteten) Graphen.

<

Darstellung durch eine Adjazenzmatrix

Eine Relation R auf einer endlichen (geordneten) Menge A =

{a1,...,a,} lasst sich durch eine boolesche n x n-Matrix Mg = (m;;)
mit
e 1, aZRaj,
Y71 0, sonst

darstellen. Beispielsweise hat die Relation

R= {(b> C)a (bv d)a (Ca a)> (Ca d)7 (d> d)}
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auf der Menge A = {a,b,c,d} die Matrixdarstellung

My =

o= O O
o O o O
o O = O
—_— = = O

Darstellung durch eine Adjazenzliste

Eine weitere Moglichkeit besteht darin, eine endliche Relation R
in Form einer Tabelle darzustellen, die jedem Element x € A seine
Nachfolgermenge R[x] in Form einer Liste zuordnet:

r R[z]
a/ -
b c¢d
c a,d
d d

Sind Mg = (7;) und Mg = (s;;) boolesche n x n-Matrizen fiir R und
S, so erhalten wir fiir T'= Ro S die Matrix My = (¢;;) mit

ii= V (ricAsi)

t

Die Nachfolgermenge T'[x] von x bzgl. der Relation 7" = RoS berechnet
sich zu

Tlx]=U{Slylly e Rlz]} = U Syl

yeR[z]

Beispiel 31. Betrachte die Relationen R = {(a,a), (a,c),(c,b), (¢, d)}
und S ={(a,b),(d,a),(d,c)} auf der Menge A ={a,b,c,d}.
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Relation R S RoS SoR
» 0 00 @ ®
Digraph
O~@D O @ O
1010 0100 0100 0000
Adjazenz- | 0000 0000 0000 0000
matriz 0101 0000 1010 0000
0000 1010 0000 1111
a:a,c a:b a:b a:-
Adjazenz- | b: - b:- b:- h:-
liste c:b,d c: - c:a,c c: -
d:- d:a,c d:- d:a,b,c,d

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht RoS =SS0 R.

Als nachstes zeigen wir, dass die Menge R = P(A x A) aller bindren
Relationen auf A mit dem Relationenprodukt o als bindrer Operation
ein Monoid) (also eine Halbgruppe mit neutralem Element) bildet.

Satz 32. Seien O, R, S Relationen auf A. Dann gilt
(i) (QoR)oS=Qo(RoS), d.h. o ist assoziativ,
(it) Ido R=Rold=R, d.h. Id ist neutrales Element.

Beweis.
(i) Es gilt:
x(QoR)oSy JueA:z (QoR)u A uSy
JueA: (veAd:2QuRu) AuSy

Ju,ve Az QuRuSy

FveA:zQu(RoS)y
Qo (ReoS)y

R O

FveA:xQu A (FueA:vRu A uSy)

2.4 Relationalstrukturen

(i1) Wegen x [doRy < 3z:x=2 A 2z Ry< x Ry folgt IdoR=R.
Die Gleichheit Ro Id = R folgt analog.

Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine moglichst kleine Modifikation in eine Relation R’ mit
vorgegebenen Eigenschaften zu tiberfithren. Will man dabei alle in R
enthaltenen Paare beibehalten, dann sollte R’ aus R durch Hinzufiigen
moglichst weniger Paare hervorgehen.

Es lasst sich leicht nachpriifen, dass der Schnitt iiber eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R’, die R enthélt.

Definition 33. Sei R eine Relation auf A.
o Die reflexive Hiille von R ist

hre(R) =({S <€ AxA|S ist reflexiv und R c S}.

Die symmetrische Hiille von R ist

hsym(R) =[S <€ AxA|S ist symmetrisch und R c S}.

Die transitive Hiille von R ist

R*=({ScAxA|S ist transitiv und R c S}.

Die reflexiv-transitive Hiille von R ist
R*=({S<cAxA|S ist reflexiv, transitiv und R < S}.

Die Aquivalenzhiille von R ist

ha(R) =({S| S ist eine Aquivalenzrelation auf A und R < S}.

Satz 34. Sei R eine Relation auf A.
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(i) hyea(R) = RUId,,
(it) hoym(R) = RU RT,
(iti) R* = U, RY,

(iv) R* =Upso R™,

(v) hag(R) = (RU RT)*"

Beweis. Siehe Ubungen. ]

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a,b) genau
dann in der reflexiv-transitiven Hiille R* von R ist, wenn es ein n >0
gibt mit aR"b, d.h. es gibt Elemente x,...,x, € A mit zo=a, x, =b
und

roRx1Rxs ... 2,1 Rx,,.

In der Graphentheorie nennt man xy, ..., z, einen Weg der Lange n
von a nach b.

2.4.1 Ordnungs- und Aquivalenzrelationen

Wir betrachten zunéchst Ordnungsrelationen, die durch die drei
Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 35.
e (P(M),2), (Z,<), (R,<) und (N,|) sind Ordnungen. (Z,]) ist
keine Ordnung, aber eine Quasiordnung.

o Fir jede Menge M ist die relationale Struktur (P(M);<) eine
Ordnung. Diese ist nur im Fall |M| <1 linear.

e Ist R eine Relation auf A und B< A, so ist Rp=Rn (B x B)
die Finschrankung von R auf B.

e Einschrinkungen von (linearen) Ordnungen sind ebenfalls (li-
neare) Ordnungen.

e Beispielsweise ist (Q,<) die Finschrinkung von (R,<) auf Q
und (N,|) die Finschrinkung von (Z,|) auf N. N

2.4 Relationalstrukturen

Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme dar-
stellen. Sei < eine Ordnung auf A und sei < die Relation < nIdy. Um
die Ordnung < in einem Hasse-Diagramm darzustellen, wird nur
der Graph der Relation

<=< <2 dh z<y & z<yar-Izir<z<y

gezeichnet. Fiir x <y sagt man auch, y ist oberer Nachbar von x.
Weiterhin wird im Fall x <y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 36.

Die Inklusionsrelation auf der Po-
tenzmenge P(M) von M = {a,b,c}
lasst sich durch nebenstehendes
Hasse-Diagramm. darstellen.

1]

© 0
®

Schranken wir die “teilt”-Relation e @

auf die Menge {1,2,...,10} ein,

so erhalten wir folgendes Hasse-
<

e‘

Diagramm.

Definition 37. Sei < eine Ordnung auf A und sei b ein Element in
einer Teilmenge B € A.

e b heifit kleinstes Element oder Minimum von B (kurz
b=min B), falls gilt:

Ve B:b<U.
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e b heifit groBtes Element oder Maximum von B (kurz
b=max B), falls gilt:

Vb e B:b <b.

e b heifst minimal in B, falls es in B kein kleineres Element
qibt:
Vo' e B:b <b=10"=b.

e b heifft maximal in B, falls es in B kein gréfSeres Element
gibt:
Ve B:b<b =b=10"

Bemerkung 38. Da Ordnungen antisymmetrisch sind, kann es in
jeder Teilmenge B hdochstens ein kleinstes und hochstens ein gréfstes
Element geben. Die Anzahl der minimalen und mazimalen Elemente
in B kann dagegen beliebig grofs sein.

Definition 39. Sei < eine Ordnung auf A und sei B € A.

o Jedes Element uwe A mit uw < b fir alle be B heifit untere und
jedes o€ A mit b<o fiir alle be B heifst obere Schranke von
B.

e B heifit nach oben beschriankt, wenn B eine obere Schran-
ke hat, und nach unten beschrankt, wenn B eine untere
Schranke hat.

e B heifit beschrankt, wenn B nach oben und nach unten be-
schrankt ist.
e Besitzt B eine griofte untere Schranke i, d.h. besitzt die Menge

U aller unteren Schranken von B ein grofites Element i, so
heifit ¢ das Infimum von B (kurz i = inf B):

(VbeB:b>i)A[Vue A: (Vbe B:b>u) = u<i].

e Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge
O aller oberen Schranken von B ein kleinstes Element s, so

2.4 Relationalstrukturen

heifit s das Supremum von B (s =sup B):
(VbeB:b<s)A[Voe A: (Vbe B:b<o) = s<0]

Bemerkung 40. B kann nicht mehr als ein Supremum und ein
Infimum haben.

Beispiel 41. Betrachte nebenstehende Ordnung auf der Menge A =
{a,b,c,d,e}. Die folgende Tabelle zeigt fiir verschie- @ @
dene Teilmengen B ¢ A alle minimalen und maxi-

malen Elemente in B Minimum und Maximum, alle e.@
unteren und oberen Schranken, sowie Infimum und

Supremum von B (falls existent). ©

untere obere

B minimal mazximal min max inf sup
Schranken
{a,b} a,b a,b - - c¢de - - -
{c,d} c,d c,d - - e ab e -
{a,b,c} c a,b c - c,e - c -
{a,b,c,e} e a,b e - e - e -
{a,c,d, e} e a e a e a e a

Bemerkung 42.

e Auch in linearen Ordnungen muss nicht jede beschrinkte Teil-
menge ein Supremum oder Infimum besitzen.

e So hat in der linear geordneten Menge (Q,<) die Teilmenge
B={reQ|2*<2} = {zeQ|2?<2}

weder ein Supremum noch ein Infimum.

e Dagegen hat in (R, <) jede beschrinkte Teilmenge B ein Supre-
mum und ein Infimum (aber moglicherweise kein Mazimum oder

15
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Als néchstes betrachten wir Aquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.

Ist E eine Aquivalenzrelation, so nennt man die Nachbarschaft E[x]
die von = reprisentierte Aquivalenzklasse und bezeichnet sie
mit [z]g oder einfach mit [x]. Eine Menge S ¢ A heifit Repridsen-
tantensystem, falls sie genau ein Element aus jeder Aquivalenzklasse
enthélt.

Beispiel 43.
o Auf der Menge aller Geraden im R? die Parallelitit. Offen-
bar bilden alle Geraden mit derselben Richtung (oder Steigung)
jeweils eine Aquivalenzklasse. Daher wird ein Reprisentanten-

system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

e Auf der Menge aller Menschen “im gleichen Jahr geboren wie’.
Hier bildet jeder Jahrgang eine Aquivalenzklasse.

o Auf Z die Relation "gleicher Rest bei Division durch m” Die
zugehérigen Aquivalenzklassen sind

[r]:{an|aEmr}7 r=0,1,...,m-1.

Ein Reprdsentantensystem wird beispielsweise durch die Reste
0,1,...,m—1 gebildet. N

Definition 44. Fine Familie {B; |i € 1} von nichtleeren Teilmengen
B; ¢ A heifst Partition der Menge A, falls gilt:

a) die Mengen B; iiberdecken A, d.h. A= U B; und

b) die Mengen B; sind paarweise disjunkt, d.h. fir je zwei ver-
schiedene Mengen B; # B; gilt B;n B, = @.

Die Aquivalenzklassen einer Aquivalenzrelation E bilden eine Parti-
tion {[z] |z € A} von A (siehe Satz 45). Diese Partition wird auch
Quotienten- oder Faktormenge genannt und mit A/E bezeichnet.
Die Anzahl der Aquivalenzklassen von E wird auch als der Index
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von E bezeichnet. Wie der nichste Satz zeigt, beschreiben Aquiva-
lenzrelationen auf A und Partitionen von A denselben Sachverhalt.

Satz 45. Sei E eine Relation auf A. Dann sind folgende Aussagen
aquivalent.

(i) E ist eine Aquivalenzrelation auf A.

(it) Fir alle z,y € A gilt

rEy < Elz] = Ely] (*)
(iti) Es gibt eine Partition {B;|i €I} von A mit
rFEy < Jiel:x,ye B,
Beweis.
(i) = (ii) Sei E eine Aquivalenzrelation auf A. Da E transitiv ist,
impliziert zEy die Inklusion FE[y] ¢ E[z]:
ze Ely]l=>yFz=zEz= z¢ E[z].

Da E symmetrisch ist, folgt aus xFy aber auch E[x] ¢ E[y].

Umgekehrt folgt aus E[z] = E[y] wegen der Reflexivitat von E,
dass y € E[y] = E[z] enthalten ist, und somit zFEy. Dies zeigt,
dass F die Aquivalenz (*) erfiillt.

(ii) = (iii) Wir zeigen, dass die Aquivalenzklassen E[z], z € A, die
Menge A partitionieren, falls £ die Bedingung (*) erfillt.
Wegen E|[x] = E[z] folgt xEx und somit = € E[z]. Folglich
tiberdecken die Mengen E[z] die Menge A.

Ist E[z]n E[y] #+ @ und z ein Element in E[z]n E[y], so gilt
zEz und yEz und daher folgt E[z] = E[z] = E[y].

(i1i) = (i) Existiert schliefllich eine Partition {B; | i€ I} von A mit
xRy < Jiel:x,ye B; soist E reflexiv, da zu jedem x € A
eine Menge B; mit x € B; existiert. Zudem ist £ symmetrisch,
da aus x,y € B; auch y,x € B; folgt. Und E ist transitiv, da aus
x,y € B; und y, z € B; wegen y € B; n B; die Gleichheit B; = B;
und somit z, z € B; folgt.
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Die kleinste Aquivalenzrelation auf A ist die Identitét Id 4, die groBte
die Allrelation A x A. Die Aquivalenzklassen der Identitit enthalten
jeweils nur ein Element, d.h. A/Ids = {{z} |z € A}, und die Allrelati-
on erzeugt nur eine Aquivalenzklasse, namlich A/(Ax A) = {A}.

Fiir zwei Aquivalenzrelationen F ¢ E’ sind auch die Aquivalenzklas-
sen [x]g von E in den Klassen [x]g von E’ enthalten. Folglich ist
jede Aquivalenzklasse von E’ die Vereinigung von (evtl. mehreren)
Aquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als £’. Demnach ist die Identitét die feinste und die Allrelation die
grébste Aquivalenzrelation.

{M}

Die feiner-Relation auf
der Menge aller Parti-
tionen von M = {a,b,c}
hat das folgende Hasse-
Diagramm:

{Ha}, {b;c}}

{{a}, {0}, {c}}

2.4.2 Abbildungen

Definition 46. Sei R eine bindre Relation auf einer Menge M.
e R heifit rechtseindeutig, falls fir alle x,y,z € M gilt:

TRynrzRz =y =z.

e R heifit linkseindeutig, falls fiir alle x,y,z € M gilt:

TRz ANyRz =z =1y.
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e Der Nachbereich N(R) und der Vorbereich V(R) von R
sind
N(R) = | R[z] und V(R)=|J R"[z].

xeM xeM

e Eine rechtseindeutige Relation R mit V(R) = A und N(R) < B
heifst Abbildung oder Funktion von A nach B (kurz
R:A- B).

Bemerkung 47.

o Wie 1iblich werden wir Abbildungen meist mit kleinen Buchsta-
ben f,g,h,... bezeichnen und fir (x,y) € f nicht xfy sondern
f(x) =y oder f:xw~y schreiben.

o Ist f: A— B eine Abbildung, so wird der Vorbereich V(f) = A
der Definitionsbereich und die Menge B der Wertebereich
oder Wertevorrat von f genannt.

e Der Nachbereich N(f) wird als Bild von f bezeichnet.

Definition 48.
e Im Fall N(f) = B heifst f surjektiv.
o Ist f linkseindeutig, so heifst f injektiv. In diesem Fall impli-
ziert f(x) = f(y) die Gleichheit x =vy.
e Fine injektive und surjektive Abbildung heifit bijektiv.

o Ist f injektiv, so ist auch f~1: N(f) = A eine Abbildung, die
als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich V/(f~1) = N(f) von f~! nur
dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

Definition 49. Seien (Ay, R1) und (As, Ry) Relationalstrukturen.
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e Fine Abbildung h : Ay - Ay heifs$t Homomorphismus, falls
fur alle a,be Ay gilt:

aR1b = h(a)Rah(D).

e Sind (Ay, Ry) und (As, Ry) Ordnungen, so spricht man von
Ordnungshomomorphismen oder einfach von monotonen
Abbildungen.

e Injektive Ordnungshomomorphismen werden auch streng mo-
notone Abbildungen genannt.

Beispiel 50. Folgende Abbildung h: Ay - Ay ist ein bijektiver Ord-
nungshomomorphismus.

(4,<)

Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h="
kein Homomorphismus, da h™ nicht monoton ist. Es gilt ndamlich

2c3, aber h'(2)=b¢c=h"'(3).
<

Definition 51. Ein bijektiver Homomorphismus h : Ay — As, bei
dem auch h™' ein Homomorphismus ist, d.h. es gilt

Va,be Ay : aR1b < h(a)Ryh(b).

heifit Isomorphismus. In diesem Fall heiffen die Strukturen (A1, Ry)
und (Az, Ry) isomorph (kurz: (A1, Ry) = (As, Ry)).
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Beispiel 52.
e Die Abbildung h: R - R* mit
h:xwe”

ist ein Ordnungsisomorphismus zwischen (R, <) und (R*,<).

o Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elemen-
ten:

¢ oo l./\\/

Anders ausgedriickt: Die Klasse aller dreielementigen Ordnungen
zerfillt unter der Aquivalenzrelation = in fiinf Aquivalenzklassen,
die durch obige fiinf Hasse-Diagramme reprdasentiert werden.

e FirneN sei

T, = {keN|k teilt n}
die Menge aller Teiler von n und
P, = {peT,|p ist prim}
die Menge aller Primteiler von n. Dann ist die Abbildung
h:kw— P,

ein (surjektiver) Ordnungshomomorphismus von (T,,|) auf
(P(P,),<). h ist sogar ein Isomorphismus, falls n quadratfrei
ist (d.h. es gibt kein k > 2, so dass k? die Zahl n teilt).

e Die beiden folgenden Graphen G und G' sind isomorph. Zwei
Isomorphismen sind beispielsweise hy und hsy.
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G = (V,E")

v |12345
hi(v)[13524
ha(v)[14253

e Wihrend auf der Knotenmenge V = [3] insgesamt 23 = 8 ver-
schiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

VANVAN

*——0

d

Bemerkung 53. Auf der Knotenmenge V = {1,...,n} existieren ge-
nau 2) verschiedene Graphen. Sei a(n) die Anzahl aller nichtisomor-
phen Graphen auf V. Da jede Isomorphieklasse mindestens einen und
héchstens n! verschiedene Graphen enthdlt, ist 2(3)/n! <a(n) < 2(5).
Tatsdchlich ist a(n) asymptotisch gleich u(n) = 2G)/n! (in Zei-
chen: a(n) ~u(n)), d.h.

lim a(n)/u(n) = 1.

Also gibt es auf V ={1,...,n} nicht wesentlich mehr als u(n) nicht-
isomorphe Graphen.
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2.5 Minimierung von DFAs

Wie kénnen wir feststellen, ob ein DFA M = (Z,%, 4, qo, ) unnétige
Zusténde enthalt? Zunachst einmal konnen alle Zustdnde entfernt
werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden
gehen wir daher davon aus, dass M keine unerreichbaren Zustande
enthélt. Offensichtlich konnen zwei Zustédnde ¢ und p zu einem Zu-
stand verschmolzen werden (kurz: g ~ p), wenn M von ¢ und von p
ausgehend jeweils dieselben Worter akzeptiert. Bezeichnen wir den
DFA (Z,%,6,q, E) mit My, so sind ¢ und p genau dann verschmelzbar,
wenn L(M,) = L(M,) ist.

Fassen wir alle zu einem Zustand z dquivalenten Zustande in dem
neuen Zustand

[2]. ={<" e Z| L(M./) = L(M.)}

zusammen (wofiir wir auch kurz [2] oder Z schreiben) und ersetzen
wir Z und E durch Z ={Z |z € Z} und £ = {Z ]| z € '}, so erhalten
wir den DFA M’ =(Z,%,d, 4o, E') mit

§'(g,a) = 8(g, a).

Hierbei bezeichnet Q fiir eine Teilmenge Q € Z die Menge {G | ¢ € Q}
aller Aquivalenzklassen ¢, die mindestens ein Element ¢ €  enthalten.
Der nachste Satz zeigt, dass M’ tatséchlich der gesuchte Minimalau-
tomat ist.

Satz 54. Sei M = (Z,%,0,q0,E) ein DFA, der nur Zustinde ent-
hdlt, die vom Startzustand qo aus erreichbar sind. Dann ist M' =
(Z,E,é’,(jo,E) mit

6'(q,a) =6(q,a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustinden.

Beweis. Wir zeigen zuerst, dass ¢’ wohldefiniert ist, also der Wert
von ¢’(,a) nicht von der Wahl des Reprasentanten g abhangt. Hierzu
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zeigen wir, dass im Fall p ~ ¢ auch §(q,a) und d(p,a) aquivalent sind:

L(M,) = L(M,) VeeX :xeL(M,) < xeL(M,)
Vo eX* :ax e L(M,) < ax € L(M,)
Ve eX :xe L(Msga)) < € L(Msgpa))

L(Ms(g,0)) = L(Ms(p,a))-

bl

Als néchstes zeigen wir, dass L(M') = L(M) ist. Sei « =y ...z, eine
Eingabe und seien

q; = S(QO,ZEI...ZL’Z'), 1= 0,...771
die von M beim Abarbeiten von x durchlaufenen Zustinde. Wegen
6"(Gi-1, i) = 0(qi-1, 7)) = G

durchlauft M’ dann die Zustinde

Qanvla"'aQn'

Da aber ¢, genau dann zu E gehort, wenn g, € E ist, folgt
L(M'") = L(M) (man beachte, dass ¢, entweder nur Endzustinde
oder nur Nicht-Endzustdande enthélt, vgl. Beobachtung 55).

Es bleibt zu zeigen, dass M’ eine minimale Anzahl | Z| von Zustinden
hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es
reicht also zu zeigen, dass die Anzahl k = | Z| = |{L(M,) | z € Z}|| der

Zustéande von M’ nicht von M, sondern nur von L = L(M) abhéngt.

Far z € X7 sei
L,={yeX |zyeL}.

Dann gilt {L, [ x € ¥*} ¢ {L(M.) | z € Z}, da L, = L(M;, )
ist. Die umgekehrte Inklusion gilt ebenfalls, da nach Voraussetzung
jeder Zustand ¢ € Z iiber ein x € X* erreichbar ist. Also hingt
k=|{L(M,)|zeZ}| =|{Ls|2eX*}| nur von L ab. n
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Eine interessante Folgerung aus obigem Beweis ist, dass fiir eine re-
gulére Sprache L ¢ ¥* die Menge {L, | x € ¥*} nur endlich viele
verschiedene Sprachen enthélt, und somit die durch

rRry< L,=1L,

auf ¥* definierte Aquivalenzrelation R; endlichen Index hat.

Fiir die algorithmische Konstruktion von M’ aus M ist es notwendig
herauszufinden, ob zwei Zustande p und ¢ von M aquivalent sind oder
nicht.

Bezeichne AAB = (A~ B)u (B~ A) die symmetrische Differenz von
zwei Mengen A und B. Dann ist die Indquivalenz p ¢ q zweier Zustén-
de p und ¢ gleichbedeutend mit L(M,)AL(M,) + @. Wir nennen ein
Wort x € L(M,)AL(M,) einen Unterscheider zwischen p und q.

Beobachtung 55.

e FEndzustinde p € E sind nicht mit Zustinden q € Z\ E dquivalent
(da sie durch e unterschieden werden).

o Wenn §(p,a) und §(q,a) indquivalent sind, dann auch p und q
(da jeder Unterscheider x von 0(p,a) und 6(q,a) einen Unter-
scheider ax von p und q liefert).

Wenn also D nur Paare von inaquivalenten Zustanden enthélt, dann
trifft dies auch auf die Menge

D= {{p,q}[FaeX:{d(p,a),0(q,a)} € D}
zu. Wir kénnen somit ausgehend von der Menge

Do={{p,q} |peE,q¢ E}

eine Folge von Mengen
DocDycc{{z,z2}cZ|z+2}
mittels der Vorschrift
Dy = Div{{p,q} | Ja e X:{d(p,a),d(q,a)} € Di}
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berechnen, indem wir zu D; alle Paare {p, ¢} hinzufiigen, fiir die eines
der Paare {0(p,a),d(q,a)}, a € &, bereits zu D; gehort. Da Z endlich
ist, muss es ein j mit Dj;,; = D; geben. In diesem Fall gilt (siehe
Ubungen):

pta<{p,q}€D;

Folglich kann M’ durch Verschmelzen aller Zusténde p,q mit {p,q} ¢
D; gebildet werden. Der folgende Algorithmus berechnet fiir einen
beliebigen DFA M den zugehorigen Minimal-DFA M.

Algorithmus min-DFA(M)

1 Input: DFA M = (Z,%,6,q0, F)

> entferne alle nicht erreichbaren Zustaende

3 D'={{z,2}|zeE 2 ¢E}

1 repeat

5 D:=D

6 D':=Du{{p,q}|JaecX:{5(p,a),d(q,a)} € D}

7 until D'=D

s OQutput: M’ =(Z,%,0",G, E), wobei fiir jeden Zustand
zeZgilt: 2={2'eZ|{z,2'} ¢ D}

Beispiel 56. Betrachte den DFA M

ib

Dann enthdlt Dy die Paare

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.
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Die Paare in Dy sind in der folgenden Matriz durch den Unterscheider
€ markiert.

S T = W N

(LI RSS!
M| M

123 45
Wegen

{p,q} {1,4y {1,5} {2,4} {2,5}
{0(¢g,a),0(p,a)} | {2,3} {2,6} {1,3} {1,6}

enthdlt Dy zusdtzlich die Paare {1,4}, {1,5}, {2,4}, {2,5} (in obiger
Matriz durch den Unterscheider a markiert). Da die verbliebenen
Paare {1,2}, {3,6}, {4,5} wegen

{p,q}
{0(p,a),0(q,a)}
{6(p,b),6(q,b)}

{1,2} {3,6} {4,5}
{1,2} {4,5} {3,6}
{3,6} {1,2} {4,5}

nicht zu Dy hinzugefiigt werden kénnen, ist Dy = D1. Aus den unmar-
kierten Paaren {1,2}, {3,6} und {4,5} erhalten wir die Aquivalenz-
klassen

1={1,2}, 3={3,6} und 4={4,5},
die auf folgenden Minimal-DFA M’ fihren:

b a
OO
a b
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Es ist auch moglich, einen Minimalautomaten M; direkt aus einer
reguldren Sprache L zu gewinnen (also ohne einen DFA M fiir L zu
kennen). Da wegen

8((]07.1') = S(QO,Z/) Aad S(qu) ~ 8(Q07y)
< L(M; = L(M;

< L,=1,

(qo,z) (q0,v)

zwel Eingaben x und y den DFA M’ genau dann in denselben Zu-

stand (qo, ) = 0(qo,y) tiberfihren, wenn L, = L, ist, konnen wir

den von M’ bei Eingabe x erreichten Zustand 3(%,95) auch mit
der Sprache L, bezeichnen. Dies fithrt auf den zu M’ isomorphen
(also bis auf die Benennung der Zustédnde mit M’ identischen) DFA
ML = (ZL, E, 5L7 L€> EL) mit

Z, {L,|xzeX},
E; {L,|x €L} und
(5L(Lx,a) = L:m.

Notwendig und hinreichend fiir die Existenz von My, ist, dass Ry,
endlichen Index hat, also die Menge {L, | z € ¥*} endlich ist.

Beispiel 57. Fir L={zy...2,€{0,1}*|n>2 und x,1 =0} ist

L, x€{e, 1} oder x endet mit 11,
Lu{0,1}, x=0 oder x endet mit 10,
Lu{e 0,1}, x endet mit 00,

Lu{e}, x endet mit 01.

L, =

Somit erhalten wir den folgenden Minimalautomaten M.
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<

Im Fall, dass M bereits ein Minimalautomat ist, sind alle Zustande
von M' von der Form ¢ = {q}, so dass M isomorph zu M’ und damit
auch isomorph zu My, ist. Dies zeigt, dass alle Minimalautomaten fiir
eine Sprache L isomorph sind.

Satz 58 (Myhill und Nerode).
1. REG ={L| Ry hat endlichen Index}.

2. Sei L reguldr und sei index(Ry) der Index von Ryp. Dann gibt
es fiir L bis auf Isomorphie genau einen Minimal-DFA. Dieser
hat index(Ry) Zustinde.

Beispiel 59. Sei L ={ab! |i>0}. Wegen b € L,iALy; fiir i #j hat
R unendlichen Index, d.h. L ist nicht requldr. <

Die Zusténde von M; kénnen anstelle von L, auch mit den Aqui-
valenzklassen [z]g, (bzw. mit geeigneten Repriasentanten) benannt
werden. Der resultierende Minimal-DFA Mg, = (Z,%,4, [¢], E) mit

Z = Alzlg, [weX,
E {[]r, |z € L} und
6([$]RL7Q) = [xa]RL

wird auch als Aquivalenzklassenautomat bezeichnet.

Die Konstruktion von Mp, ist meist einfacher als die von M}, da die
Bestimmung der Sprachen L, entfillt. Um die Uberfithrungsfunktion
von Mp, aufzustellen, reicht es, ausgehend von r; = € eine Folge
ri,...,TE von paarweise bzgl. Ry indquivalenten Wortern zu bestim-
men, so dass zu jedem Wort 7;a, a € X, ein r; mit r,aRpr; existiert.
In diesem Fall ist §([r;],a) = [ria] = [r].

Beispiel 60. Fir die Sprache L ={xy... 2, €{0,1}* | 2,1 =0} lasst
sich Mg, wie folgt konstruieren:
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Wir beginnen mit ri = €.
Da r10 =0 ¢ [e] ist, wihlen wir ro =0 und setzen §([¢],0) = [0].
Da r1 =1¢€[e] ist, setzen wir §([¢],1) = [£].
Da r,0 = 00 ¢ [e] u[0] ist, ist r3 = 00 wund wir setzen
0([0],0) = [00].
5. Da rel =01 ¢ [e]u[0]u[00] ist, wihlen wir ry =01 und setzen
6([0],1) =[01].
6. Da die Worter r30 = 000 € [00], 731 =001 € [01], 740 =010¢€ [
und r41 = 011 € [¢] sind, setzen wir 5([00],0) = [00], ([00],1)
[01], 6([01],0) = [0] und 6([01],1) = [£].
Wir erhalten also folgenden Minimal-DFA Mg, :

e o~

0]

Wir fassen nochmals die wichtigsten Ergebnisse zusammen.
Korollar 61. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

o L ist requldr,

e es gibt einen DFA M mit L = L(M),

e es gibt einen NFA N mit L = L(N),

o es gibt einen requliren Ausdruck v mit L = L(7y),

e die Aquivalenzrelation Ry, hat endlichen Index.
Wir werden im néchsten Abschnitt noch eine weitere Methode kennen-

lernen, mit der man beweisen kann, dass eine Sprache nicht regulér
ist, namlich das Pumping-Lemma.
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2.6 Das Pumping-Lemma

Wie kann man von einer Sprache nachweisen, dass sie nicht regulér ist?
Eine Moglichkeit besteht darin, die Kontraposition folgender Aussage
anzuwenden.

Satz 62 (Pumping-Lemma fiir reguldre Sprachen).
Zu jeder reguldren Sprache L gibt es eine Zahl I, so dass sich alle
Worter x € L mit |x| > 1 in x = uwow zerlegen lassen mit

1. v#e,

2. |uv| <1 und

3. wv'w € L fir alle i > 0.

Fulls eine Zahl | mit diesen Eigenschaften existiert, wird das kleinste
solche | die Pumping-Zahl von L genannt.

Beweis. Sei M = (Z,%,9,q0, F) ein DFA fir L und sei | = | Z]
die Anzahl der Zustéinde von M. Setzen wir M auf eine Eingabe
x =x1...20, € L der Lange n > [ an, so muss M nach spatestens [
Schritten einen Zustand ¢ € Z zum zweiten Mal besuchen:

Hj,k;:OSj<k’£l/\3(qg,x1...x]~)=3(qo,x1...xk):q.

Wiéhlen wir nun u=x1...2;, V=21 ...2, Und W = Tpyq . .. Ty, SO ist
|v] =k —j>1und |uv| = k <. Ausserdem gilt uviw € L fir i > 0, da
wegen 0(q,v) =g

S(qo,uviw) = g(S(S(qg,u),vi),w) = S(S(Q,vi),w) = S(qg,x) eF
— ~——
q q

ist. [ ]
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Beispiel 63. Die Sprache

L={xe{a,b}" [ #a(x) - #u(x) =3 1}

hat die Pumping-Zahll = 3. Sei namlich x € L beliebig mit |x| > 3. Dann
lasst sich innerhalb des Prifixes von x der Linge drei ein nichtleeres
Teilwort v finden, das gepumpt werden kann:

1. Fall: x hat das Prifiz ab (oder ba).

Zerlege x = uvw mit u=¢ und v = ab (bzw. v ="ba).
2. Fall: x hat das Prifix aab (oder bba).

Zerlege © = uvw mit u=a (bzw. u=">) und v =ab (bzw. v ="ba).
3. Fall: x hat das Prifiz aaa (oder bbb).

Zerlege x = uvw mit u =¢ und v = aaa (bzw. v = bbb). <

Beispiel 64. FEine endliche Sprache L hat die Pumping-Zahl

- 0, L=g,
max{|z|+ 1|z e L},

sonst.

4

Tatsdchlich lasst sich jedes Wort x € L der Linge |z| > 1 ,pumpen’
(da solche Warter gar nicht existieren), weshalb die Pumping-Zahl
héchstens 1 ist. Zudem gibt es im Fall I >0 ein Wort x € L der Linge
|z| =1 -1, das sich nicht ,pumpen® lisst, weshalb die Pumping-Zahl
nicht kleiner als | sein kann. N

Wollen wir mit Hilfe des Pumping-Lemmas von einer Sprache L zeigen,
dass sie nicht regular ist, so geniigt es, fiir jede Zahl [ ein Wort x € L
der Lénge |z| > [ anzugeben, so dass fir jede Zerlegung von x in drei
Teilworter u, v, w mindestens eine der drei in Satz 62 aufgefiihrten
Eigenschaften verletzt ist.

Beispiel 65. Die Sprache

L={aib?|j>0}
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ist nicht reqular, da sich fiir jede Zahl 1 > 0 das Wort x = a'b' der
Lange |z| = 21 > 1 in der Sprache L befindet, welches offensichtlich
nicht in Teilworter u,v,w mit v # € und uwv?w € L zerlegbar ist. <

Beispiel 66. Die Sprache
L={a"|n>0}

ist ebenfalls nicht requldr. Andernfalls miisste es ndamlich eine Zahl
[ geben, so dass jede Quadratzahl n? > 1 als Summe von natirlichen
Zahlen u + v + w darstellbar ist mit der Eigenschaft, dass v>1 und
u+v <l ist, und fir jedes i >0 auch u+1v+w eine Quadratzahl ist.
Insbesondere miisste also u+ 2v +w =n?+v eine Quadratzahl sein,
was wegen

n?<n?+v<n®+l<n?+20+1=(n+1)?
ausgeschlossen ist. <
Beispiel 67. Auch die Sprache
L={a?|p prim }

ist nicht requldr, da sich sonst jede Primzahl p einer bestimmten Min-
destgriofie | als Summe von natiirlichen Zahlen u + v+ w darstellen
liefle, so dass v > 1 und fir alle i >0 auch u+iw+w=p+ (i—1)v
prim ist. Dies ist jedoch firi=p+1 wegen

p+(p+1-Dv=p(l+v)
nicht der Fall. <

Bemerkung 68. Mit Hilfe des Pumping-Lemmas kann nicht fiir jede
Sprache L ¢ REG gezeigt werden, dass L nicht requldr ist, da seine
Umkehrung falsch ist. So hat beispielsweise die Sprache

L={a'bic*|i=0 oder j =k}

die Pumping-Zahl 1 (d.h. jedes Wort x € L mit Ausnahme von € kann
»gepumpt“ werden). Dennoch ist L nicht requlir (siehe Ubungen,).
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2.7 Grammatiken

Eine beliebte Methode, Sprachen zu beschreiben, sind Grammatiken.
Implizit haben wir hiervon bei der Definition der reguldren Ausdriicke
bereits Gebrauch gemacht.

Beispiel 69. Die Sprache RA aller requldren Ausdricke iiber ei-
nem Alphabet 3 = {aq,...,a} ldsst sich aus dem Symbol R durch
wiederholte Anwendung folgender Regeln erzeugen:

R - @, R - RR,
R — €, R — (R|R),
R - ani=1.. .k R > (R)".

<
Definition 70. Eine Grammatik ist ein 4-Tupel G = (V, %, P,S),
wobei

e V eine endliche Menge von Variablen (auch Nichtterminal-
symbole genannt),

e Y das Terminalalphabet,

e Pc(VuX)*x(VuX)* eine endliche Menge von Regeln (oder
Produktionen) und

e SecV die Startvariable ist.

Fir (u,v) € P schreiben wir auch kurz u —¢ v bzw. v - v, wenn die
benutzte Grammatik aus dem Kontext ersichtlich ist.

Definition 71. Seien o, € (V uX)*.
a) Wir sagen, B ist aus « in einem Schritt ableitbar (kurz:
a =g (), falls eine Regel u »g v und Worter I,r € (V uX)*
existieren mit
a = lur und B = lor.

Hierfiir schreiben wir auch lur =g lvr. (Man beachte, dass
durch Unterstreichen von u in o sowohl die benutzte Regel als
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auch die Stelle in «, an der u durch v ersetzt wird, eindeutig
erkennbar sind.)

b) Eine Folge o = (o, u0,70), - - -, (L, Um, Tm) von Tripeln (1;,u;,r;)
heifst Ableitung von 5 aus «, falls gilt:
e lougrg =, lypumr, = und
o Liur; = i Uis1mi fliiri=0,...,m~-1.

Die Lange von o ist m und wir notieren o auch in der Form
lougro = Liuiry = = Ly 1 U 1Tm-1 = Iy U T
c¢) Die durch G erzeugte Sprache ist
L(G) ={z eX*| S =z}
d) Ein Wort cce (VuX)*® mit S =, a heifit Satzform von G.

Zur Erinnerung: Die Relation =* bezeichnet die reflexive, transitive
Hiille der Relation =, d.h. o =* [ bedeutet, dass es ein n > 0 gibt mit
a =" 3. Hierzu sagen wir auch, [ ist aus « (in n Schritten) ableitbar.
Die Relation =" bezeichnet das n-fache Produkt der Relation =, d.h.
es gilt a =" 3, falls Worter «y, ..., a, existieren mit

e ap=a, a, = und

o ;= firi=0,...,n—-1.

Beispiel 72. Wir betrachten nochmals die Grammatik G = ({R}, XU
{@,¢6,(,),",|}, P, R), die die Menge der requliaren Ausdricke tuber dem
Alphabet 35 erzeugt, wobei P die oben angegebenen Regeln enthdlt. Ist
Y. ={0,1}, so lasst sich der requlire Ausdruck (01)*(e|@) beispielsweise
wie folgt ableiten:

R=RR=(R)"R= (RR)'R= (RR)"(R|R)

= (0R)"(R|R) = (01)"(B|R) = (01)"(¢|B) = (01)*(e|]z)

Man unterscheidet vier verschiedene Typen von Grammatiken.
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Definition 73. Sei G = (V, %, P,S) eine Grammatik.

1. G heifit vom Typ 3 oder regular, falls fir alle Regeln u — v
gilt: weV und ve XV uX u {e}.

2. G heifst vom Typ 2 oder kontextfret, falls fiir alle Regeln
u—>v gilt: ueV.

3. G heifit vom Typ 1 oder kontextsensitiv, falls fiir alle Regeln
u — v gilt: |v| > |u| (mit Ausnahme der e-Sonderregel, siche
unten,).

4. Jede Grammatik ist automatisch vom Typ O.

e-Sonderregel: In einer kontextsensitiven Grammatik G =
(V,%, P,S) kann auch die verkiirzende Regel S — ¢ benutzt wer-
den. Aber nur, wenn das Startsymbol S nicht auf der rechten Seite
einer Regel in P vorkommt.

Die Sprechweisen ,vom Typ ¢“ bzw. ,regular”,  kontextfrei“ und ,kon-
textsensitiv® werden auch auf die durch solche Grammatiken erzeugte
Sprachen angewandt. (Der folgende Satz rechtfertigt dies fiir die regu-
laren Sprachen, die wir bereits mit Hilfe von DFAs definiert haben.)
Die zugehoérigen neuen Sprachklassen sind

CFL = {L(G) | G ist eine kontextfreie Grammatik},
(context free languages) und
CSL = {L(G) | G ist eine kontextsensitive Grammatik}

(context sensitive languages). Da die Klasse der Typ 0 Sprachen
mit der Klasse der rekursiv aufzdhlbaren (recursively enumerable)
Sprachen iibereinstimmt, bezeichnen wir diese Sprachklasse mit

RE = {L(G) | G ist eine Grammatik}.

Die Sprachklassen
REG c CFL c CSL c RE
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bilden eine Hierarchie (d.h. alle Inklusionen sind echt), die so genannte
Chomsky-Hierarchie.

Als néachstes zeigen wir, dass sich mit regularen Grammatiken gerade
die regularen Sprachen erzeugen lassen. Hierbei erweist sich folgende
Beobachtung als niitzlich.

Lemma 74. Zu jeder reguliren Grammatik G = (V,%, P,S) gibt es
eine dquivalente requlire Grammatik G', die keine Produktionen der
Form A — a hat.

Beweis. Betrachte die Grammatik G’ = (V/, X, P’,S) mit

1% Vu{Xet,
P = {A-aX,eu | A-gal U{Xpew >} UPN(V xY).

Es ist leicht zu sehen, dass G’ die gleiche Sprache wie GG erzeugt. =

Satz 75. REG = {L(G) | G ist eine requlire Grammatik}.

Beweis. Sei L € REG und sei M = (Z,%,6,qy, F) ein DFA mit
L(M) = L. Wir konstruieren eine reguldare Grammatik G = (V, X, P, S)
mit L(G) = L. Setzen wir

vV = Z,
S = qo und
P = {g—ap|i(q,a)=p}u{q—c|qeE},

so gilt fir alle Worter x = x1 ... 2, € X*:
xeL(M) < 3q,.
5(Qi—17'xi) =q; fir 7 = 1a R L

e Q1 €4 3que B

< dq,...,q,€V:

Gi1 ~¢ vig; firi=1,... . nund ¢, > €
< dq1,...,q, €V :

Qo =g 1. wiq; firi=1,...,nund g, »¢ ¢
< xel(Q)
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Fiir die entgegengesetzte Inklusion sei nun G = (V, 3, P,S) eine re- iber die Grammatik G' = ({A, B,C, D},{a,b}, P, A) mit
guldre Grammatik, die keine Produktionen der Form A — a enthélt.
Dann kénnen wir die gerade beschriebene Konstruktion einer Gram- P A—aB,bC\e,
matik aus einem DFA ,umdrehen“, um ausgehend von G einen NFA B — aC,bA,bD,
M =(Z,%,6,{S}, E) mit C - aA,bB,aD,
D —¢
Z =V,
E = {A|A-ge} und auf den NFA
d(A,a) = {B|A—-gaB}

zu erhalten. Genau wie oben folgt nun L(M) = L(G). |

Beispiel 76. Der DFA

fihrt auf die Grammatik ({qo, q1,42,q3},{0,1}, P, qo) mit

P qo— 1qo,0q1,
q1 —~ 0go, 13,
q2 ~> 0q2, 13, ¢,
g3 = 0q1, 1qo, €.

Umgekehrt fihrt die Grammatik G = ({A, B,C},{a,b}, P, A) mit

P: A-aB,bC e,
B — aC,bA,b,
C - aA,bB,a
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3 Kontextfreie Sprachen

Wie wir gesehen haben, ist die Sprache L = {a™b™ | n > 0} nicht regulér.
Es ist aber leicht, eine kontextfreie Grammatik fiir L zu finden:

G =({S},{a,b},{S = aSL,S - ¢},S).

Damit ist klar, dass die Klasse der reguldren Sprachen echt in der
Klasse der kontextfreien Sprachen enthalten ist. Als néchstes wollen
wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt
in der Klasse der kontextsensitiven Sprachen enthalten ist:

REG ¢ CFL ¢ CSL.

Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur
Regeln der Form A — o haben. Dies lasst die Verwendung von belie-
bigen e-Regeln der Form A — ¢ zu. Eine kontextsensitive Grammatik
darf dagegen hochstens die e-Regel S — ¢ haben. Voraussetzung
hierfiir ist, dass S das Startsymbol ist und dieses nicht auf der rech-
ten Seite einer Regel vorkommt. Daher sind nicht alle kontextfrei-
en Grammatiken kontextsensitiv. Beispielsweise ist die Grammatik
G = ({S},{a,b},{S - aSbh,S - ¢},5) nicht kontextsensitiv, da sie
die Regel S — ¢ enthélt, obwohl S auf der rechten Seite der Regel
S — aSbh vorkommt.

Es lasst sich jedoch zu jeder kontextfreien Grammatik eine aquivalen-
te kontextfreie Grammatik G’ konstruieren, die auch kontextsensitiv
ist. Hierzu zeigen wir zuerst, dass sich zu jeder kontextfreien Gram-
matik G, in der nicht das leere Wort ableitbar ist, eine aquivalente
kontextfreie Grammatik G’ ohne e-Regeln konstruieren lésst.

Satz 77. Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie
Grammatik G' ohne e-Produktionen mit L(G") = L(G) ~ {e}.
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Beweis. Zuerst sammeln wir mit folgendem Algorithmus alle Varia-
blen A, aus denen das leere Wort ableitbar ist. Diese werden auch als
e-ableitbar bezeichnet.

I B ={AeV|A->¢}

2 repeat

3 E=F

I E'=Fu{AeV|3By,....,Bye E:A— B;...By}
5 until F=FE'

Nun konstruieren wir G’ = (V, X, P’ S) wie folgt:
Nehme zu P’ alle Regeln A - o/ mit o/ # € hinzu, fir

die P eine Regel A — « enthalt, so dass o/ aus a durch
Entfernen von beliebig vielen Variablen A € E hervorgeht.

Beispiel 78. Betrachte die Grammatik G = (V,%,P,S) mit V =
{8, T,U,X,Y, Z}, ¥ ={a,b,c} und den Regeln

P: S->aY bX,Z;, Y ->bS,aYY;, T->U,;
X —>aS,bXX;, Z—-¢e ST, cZ; U-abc.

Bei der Berechnung von E = {AeV | A=*¢} ergeben sich der Reihe
nach folgende Belequngen fiir die Mengenvariablen E und E’:

B {2y 14,5}
E | {Z S} {Z, 5}

Um nun die Regelmenge P’ zu bilden, entfernen wir aus P die einzige
e-Regel Z — ¢ und figen die Regeln X — a (wegen X - aS), Y - b
(wegen Y — bS) und Z — ¢ (wegen Z — cZ) hinzu:

P S-aY bX, Z, Y - b,05,aYY; T-U,;
X >a,a5,bXX; Z ¢ ST, cz; U — abe. 4
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Als direkte Anwendung des obigen Satzes kénnen wir die Inklusion
der Klasse der Typ 2 Sprachen in der Klasse der Typ 1 Sprachen
zeigen.

Korollar 79. REG ¢ CFL c CSL ¢ RE.

Beweis. Die Inklusionen REG ¢ CFL und CSL ¢ RE sind klar. Wegen
{a™b"|n > 0} € CFL - REG ist die Inklusion REG < CFL auch echt. Also
ist nur noch die Inklusion CFL ¢ CSL zu zeigen. Nach obigem Satz
ex. zu L € CFL eine kontextfreie Grammatik G = (V. X, P, S) ohne
e-Produktionen mit L(G) = L ~ {¢}. Da G dann auch kontextsensitiv
ist, folgt hieraus im Fall € ¢ L unmittelbar L(G) = L € CSL. Im Fall
¢ € L erzeugt die kontextsensitive Grammatik
G'=(Vu{S}, 5, Pu{S - S,e},5)

die Sprache L(G") = L, d.h. L € CSL. [

Als néachstes zeigen wir folgende Abschlusseigenschaften der kontext-
freien Sprachen.
Satz 80. Die Klasse CFL ist abgeschlossen unter Vereinigung, Produkt
und Sternhiille.

Beweis. Seien G; = (V;, %, P;, S;), i = 1,2, kontextfreie Grammatiken
fiir die Sprachen L(G;) = L; mit V1 nV3 = @ und sei S eine neue
Variable. Dann erzeugt die kontextfreie Grammatik

Gy = (Viulau{S}, 5, PLuPU{S > 51,5}, 5)
die Vereinigung L(G3) = L1 U Ly. Die Grammatik
G4= (WU‘/QU{S},Z,PlUPQU{S—>5152},S)

erzeugt das Produkt L(G,) = Ly Ly und die Sternhiille (L;)* wird von
der Grammatik

G5 = (‘/1 U {S},E,Pl @) {S - 51575}75)

erzeugt. m
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Offen bleibt zunéchst, ob die kontextfreien Sprachen auch unter
Schnitt und Komplement abgeschlossen sind. Hierzu miissen wir flir
bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies
gelingt mit einem Pumping-Lemma fiir kontextfreie Sprachen, fiir
dessen Beweis wir Grammatiken in Chomsky-Normalform benotigen.

Satz (Pumping-Lemma fiir kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl [, so dass sich alle
Worter z € L mit |z| > in z = wvwzxy zerlegen lassen mit

1. vx #e,
2. Jvwz| <1 und

3. wvtwxty € L fir alle i > 0.

Beispiel 81. Betrachte die Sprache L = {a™b"|n > 0}. Dann lisst
sich jedes Wort z = a™b™ mit |z| > 2 pumpen: Zerlege z = vvwzxy mil
u=a"', v=a,w=e, x=0bundy=0""1. <

Beispiel 82. Die Sprache {a™b"c™ | n > 0} ist nicht kontextfrei. Fir
eine vorgegebene Zahl 1 > 0 hat namlich z = alb!c! die Lange |z| = 31 > 1.
Dieses Wort ldsst sich aber nicht pumpen, da fir jede Zerlequng
z = wvwzy mit vr # £ und jvwz| <1 das Wort 2’ = wo?wa?y nicht zu
L gehort:

o Wegen vz # ¢ ist |z| < |2/
o Wegen |vwz| <1 kann in vx nicht jedes der drei Zeichen a,b,c
vorkommen.

o Kommt aber in vx beispielsweise kein a vor, so ist

#a(2') = #a(2) = 1= |2|/3 <|2'|/3,

also kann 2’ nicht zu L gehdren. <
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Die Chomsky-Normalform ist auch Grundlage fiir einen effizienten
Algorithmus zur Losung des Wortproblems fiir kontextfreie Gramma-
tiken, das wie folgt definiert ist.

Wortproblem fiir kontextfreie Grammatiken:

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.
Gefragt: Ist v € L(G)?

Satz. Das Wortproblem fiir kontextfreie Grammatiken ist effizient
entscheidbar.

3.1 Chomsky-Normalform

Definition 83. Fine Grammatik (V,%,P,S) ist in Chomsky-
Normalform (CNF), falls P cV x (V2uX) ist, also alle Regeln
die Form A - BC' oder A — a haben.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen,
missen wir neben den e-Regeln A — £ auch sdmtliche Variablenumbe-
nennungen A — B loswerden.

Definition 84. Regeln der Form A — B heiflen Variablenumbe-
nennungen.

Satz 85. Zu jeder kontextfreien Grammatik G ex. eine kontextfreie
Grammatik G' ohne Variablenumbenennungen mit L(G") = L(G).

Beweis. Zuerst entfernen wir sukzessive alle Zyklen

A1—>A2—>"'—>Ak—>A1,

indem wir diese Regeln aus P entfernen und alle iibrigen Vorkommen
der Variablen A,,..., Ay durch A; ersetzen. Falls sich unter den ent-
fernten Variablen A,,..., Ay die Startvariable S befindet, sei A; die
neue Startvariable.
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Nun entfernen wir sukzessive die restlichen Variablenumbenennungen,
indem wir

« eine Regel A - B wihlen, so dass in P keine Variablenumbe-
nennung B — C' mit B auf der rechten Seite existiert,

o diese Regel A —» B aus P entfernen und
o fiir jede Regel B - « in P die Regel A - o zu P hinzunehmen.
|

Beispiel 86. Ausgehend von den Produktionen
P:S—-aY bX, Z, Y - b,bS5,aYY; T-U,;
X >a,a5,bXX; Z->¢ ST, cz; U—abc

entfernen wir den Zyklus S - Z — S, indem wir die Regeln S - Z
und Z — S entfernen und dafiir die Produktionen S — ¢, T, cS (wegen
Z = ¢, T,cZ) hinzunehmen:
S—>aY,bX,c,T,cS; Y - b,bS,aYY; T - U,
X —»a,a5,0XX; U — abc.
Nun entfernen wir die Regel T' — U wund fiigen die Regel T — abc
(wegen U — abc) hinzu:
S —aY,bX,c,T,cS; Y - b,b5,aYY; T — abc;
X > a,a5,bXX; U — abc.
Als ndchstes entfernen wir dann auch die Regel S — T und fiigen die
Regel S — abe (wegen T — abe) hinzu:
S = abc,aY,bX,c,cS; Y - b,0S,aYY; T— abe;
X = a,a5,bX X, U- abc.

Da T und U nun nirgends mehr auf der rechten Seite vorkommen,
kénnen wir die Regeln T — abc und U — abc weglassen:

S —abc,aY,bX,c,cS; Y - b,05,aYY; X - a,aS,bX X.
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Nach diesen Vorarbeiten ist es nun leicht, eine gegebene kontextfreie
Grammatik in Chomsky-Normalform umzuwandeln.

Satz 87. Zu jeder kontextfreien Sprache L € CFL gibt es eine CNF-
Grammatik G' mit L(G") = L~ {e}.

Beweis. Aufgrund der beiden vorigen Sétze hat L \ {¢} eine kon-
textfreie Grammatik G' = (V, X, P, S) ohne e-Produktionen und ohne
Variablenumbenennungen. Wir transformieren G wie folgt in eine
CNF-Grammatik.

o Fiige fiir jedes Terminalsymbol a € 3 eine neue Variable X, zu
V und eine neue Regel X, - a zu P hinzu.

e Ersetze alle Vorkommen von a durch X,, aufler wenn a alleine
auf der rechten Seite einer Regel steht.

o Ersetze jede Regel A - By ... By, k>3, durch die k-1 Regeln
A—B1Ay, Ai—> BoAg, ..., Ap-3— Br2Ag-2, Ar-2—> Bi-1Bx,

wobei Ay, ..., A,_o neue Variablen sind. [ ]

Beispiel 88. In der Produktionenmenge
P: S—abc,aY,bX,c,cS; X—a,aS,bXX; Y—>b0,bS,aYY

ersetzen wir die Terminalsymbole a, b und ¢ durch die Variablen A,
B und C' (aufer wenn sie alleine auf der rechten Seite einer Regel
vorkommen) und figen die Regeln A—a, B—b, C'—c hinzu:

S—c,ABC,AY,BX,CS; X—a,AS,BXX;
Y—>b,BS,AYY; A-a; B—-b; C—c.
Ersetze nun die Regeln S— ABC, X - BXX und Y - AYY durch
die Regeln S - AS', "> BC, X - BX', X' > XX und Y - AY’,
Y'-YY:
S—c, AS"AY, BX,CS; S'"- BC,
X—-a,AS,BX"; X'-XX; Y->b,BS,AY'", Y'->YY;

A—a; B-b; C'—c. 4
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Eine interessante Frage ist, ob in einer kontextfreien Grammatik G
jedes Wort = € L(G) “eindeutig” ableitbar ist. Es ist klar, dass in
diesem Kontext Ableitungen, die sich nur in der Reihenfolge der
Regelanwendungen unterscheiden, nicht als verschieden betrachtet
werden sollten. Dies erreichen wir dadurch, dass wir die Reihenfolge
der Regelanwendungen festlegen.

Definition 89. Sei G = (V, X, P, S) eine konteztfreie Grammatik.
a) Eine Ableitung

Qg = loA()TO = 51A17”1 = = lm_lAm_lrm_l = Oy

heifit Linksableitung von o (kurz ag =3 ), falls in jedem
Ableitungsschritt die am weitesten links stehende Variable ersetzt
wird, d.h. es gilt l; € ¥X* firt=0,...,m-1.

*

b) Rechtsableitungen oy =% o, sind analog definiert.

c) G heifst mehrdeutig, wenn es ein Wort x € L(G) gibt, das
zwei verschiedene Linksableitungen S =7 x hat. Andernfalls
heifst G eindeutig.

Offenbar gelten fiir alle Worter o € ¥* folgende Aquivalenzen:

rel(G) & S="r & S=>71 o S=%a.

Beispiel 90. Wir betrachten die Grammatik G = ({S},{a,b},{S -
aSbS,e},S). Offenbar hat das Wort aabb in G acht verschiedene
Ableitungen, die sich allerdings nur in der Reihenfolge der Regelan-
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wendungen unterscheiden:

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb
S = aSbhS = aaSbShS = aaSbbS = aaSbb = aabb
S = aSbS = aaSbSbS = aabSbS = aabbS = aabb
S = aSbS = aaSbSbS = aabSbS = aabSb = aabb
S = aSbhS = aaSbShS = aaSbSb = aabSb = aabb
S = aSbS = aaSbSbS = aaSbSb = aaSbb = aabb
S = aSbS = aSb = aaSbSb = aabSb = aabb

S = aSbS = aSb = aaSbSb = aaSbb = aabb.

Darunter sind genau eine Links- und genau eine Rechtsableitung:
S = aSbS = aaSbSbS =, aabSbS =1, aabbS = aabb
und
S =r aSbS =, aSb=r aaSbSb = aaSbb =pr aabb.

Die Grammatik G ist eindeutig. Dies liegt daran, dass in keiner Satz-
form von G die Variable S von einem a gefolgt wird. Daher muss
jede Linksableitung eines Wortes x € L(G) die am weitesten links
stehende Variable der aktuellen Satzform aS[ genau dann nach aSbS
expandieren, falls das Prifix o in x von einem a gefolgt wird.
Dagegen ist die Grammatik G' = ({S},{a,b},{S - aSbS,ab,c},S)
mehrdeutig, da das Wort x = ab zwei verschiedene Linksableitungen
hat:

S = ab und S = aSbS = abS =, ab. <

Wir gehen an dieser Stelle kurz der Frage nach, welche Sprache von
der Grammatik G = ({S},{a,b},{S = aSbS,c},S) erzeugt wird. Zu-
nichst einmal ist klar, dass L(G) nur Worter z € {a,b}* mit der
Eigenschaft #,(x) = #,(2) enthélt. Allerdings sind nicht alle Worter
mit dieser Eigenschaft in L(G) enthalten, da beispielsweise ba ¢ L(G)
ist. Damit ein Wort x in G ableitbar ist, muss zudem fiir jedes Préfix
u von x gelten, dass #,(u) > #4(u) ist.
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Wir zeigen durch Induktion iiber die Ableitungslange [, dass jede in
G ableitbare Satzform « € {a,b,S}* folgende Bedingungen erfiillt.

(%) #ala) =#i()
(%) #4(u) > #4(u) fir jedes Prafix u von a.
[ =0: Klar, da a = S beide Bedingungen erfillt.
[~ 1+1: Gelte S =l a=£.
o Falls § aus a durch Anwendung der Regel S — ¢ entsteht, ist
dies ebenfalls klar.
e Entsteht § aus « durch die Regel S — aSbS, so folgt
#.(B) = #o(a) +1 = #p(a) + 1 = #4(5), also (*). Zudem

entspricht jedem Préfix w von  ein Préfix «' von a mit

#Hao(u) — #p(u) > #4(u') = #p(u'), wodurch sich (**) von «
auf £ ubertragt.

Tatsachlich sind in G genau die Worter = € {a,b}* ableitbar, die die
Bedingungen (x, **) erfiillen.

Dazu zeigen wir durch Induktion tiber n folgende Behauptung.

Behauptung 91. Alle Worter x € {a,b}* der Linge < n, die die

Bedingungen (x, **) erfillen, sind in G ableitbar.

n =0: Klar, da x = aus S ableitbar ist.

n~ n+1: Sei x ein Wort der Lange n+1, das die Bedingungen (*, *x)
erfilllt und sei u das kiirzeste Prafix von z mit #,(u) = #4(u) > 1.

e Dann muss u die Form u = avb haben, wobei v die Bedingungen
(%, #x) erfiillt. Nach IV gilt daher S =* v.

e Zudem hat x die Form x = uw, wobei auch w die Bedingungen
(%, *+) erfiillt. Nach IV gilt daher S =* w.
e Nun ist x aus S wie folgt ableitbar: S = aSbS =* avbS =
uS =* uw = .
Ableitungen in einer kontextfreien Grammatik lassen sich graphisch

sehr gut durch einen Syntaxbaum (auch Ableitungsbaum genannt,
engl. parse tree) veranschaulichen.
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Definition 92. Sei G = (V, E) ein Digraph.
e Fin vo-vp-Weg in GG ist eine Folge von Knoten vy, ..
(vi,vi;1) € E firi=0,...,k-1. Seine Lange ist k.
e Ein Weg heifit einfach oder Pfad, falls alle seine Knoten paar-
weise verschieden sind.
e Fin u-v-Weg der Linge > 1 mit uw =v heifit Zyklus.
e G heifit azyklisch, wenn es in G keinen Zyklus gibt.

e G heifit gerichteter Wald, wenn G azyklisch ist und jeder
Knoten v € V' Eingangsgrad deg™ (v) <1 hat.

o Ein Knoten u eV vom Ausgangsgrad deg”(u) =0 heifst Blatt.

e Ein Knoten w eV heifst Wurzel von G, falls alle Knoten v eV
von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).

., U mat

e FEin gerichteter Wald, der eine Wurzel hat, heifit gerichte-
ter Baum.

e Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig
bestimmt sind, kann auf ihre Angabe verzichtet werden. Man
spricht dann auch von einem Wurzelbaum.

Definition 93. Wir ordnen einer Ableitung
& = llérl = = lm,lAm,le,1 = Oy

den Syntaxbaum T,, zu, wobei die Baume Ty, ..., T,, induktiv wie folgt

definiert sind:
o Ty besteht aus einem einzigen Knoten, der mit Ay markiert ist.
e Wird im (i + 1)-ten Ableitungsschritt die Regel A; — vy ... vy
mit v; e XUV fir j=1,...,k angewandt, so ensteht T;.1 aus
T;, indem wir das Blatt A; in T; durch folgenden Unterbaum

ersetzen:
k> 0: Az k= 0: Az

/N |

v et Uk €
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o Hierber stellen wir uns die Kanten von oben nach unten gerichtet
und die Kinder vy ...vg von links nach rechts geordnet vor.

Beispiel 94. Betrachte die Grammatik G = ({S},{a,b},{S -
aShS,e},S) und die Ableitung

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb.

Die zugehérigen Syntaxbiume sind dann

T()ZS Tli S TQZ S T31 S T4Z S T5Z S
/1N /N /I\ /I\ /I\
aSbS aSbSs aSbS aSbsS aSbs

AN /N N /IN
aSbsS aSbsS aSbs aSbs e

Die Satzform «; ergibt sich aus T;, indem wir die Bldtter von T; von
links nach rechts zu einem Wort zusammensetzen. <

Bemerkung 95.

e Aus einem Syntaxbaum ist die zugehirige Linksableitung eindeu-
tig rekonstruierbar. Daher fiihren unterschiedliche Linksableitun-
gen auch auf unterschiedliche Syntarbdume. Linksableitungen
und Syntaxbdume entsprechen sich also eineindeutig. Ebenso
Rechtsableitungen und Syntaxbiume.

e Ist T Syntazbaum einer CNF-Grammatik, so hat jeder Knoten
in T héchstens zwei Kinder (d.h. T ist ein Bindrbaum,).

3.2 Das Pumping-Lemma fiir kontextfreie
Sprachen

In diesem Abschnitt beweisen wir das Pumping-Lemma fir kontext-
freie Sprachen. Dabei nutzen wir die Tatsache aus, dass die Syntax-
baume einer CNF-Grammatik Bindrbaume sind.
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Definition 96. Die Tiefe eines Baumes mit Wurzel w ist die mazi-
male Pfadldnge von w zu einem Blatt.

Lemma 97. Fin Bindrbaum B der Tiefe k hat hochstens 2% Blitter.

Beweis. Wir fuhren den Beweis durch Induktion uber k.
k =0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

k~> k+1: Sei B ein Binarbaum der Tiefe k + 1. Dann héngen an B’s
Wurzel maximal zwei Teilbdume. Da deren Tiefe < k ist, haben sie

nach IV hochstens 2% Blatter. Also hat B < 2k+1 Blatter. n

Korollar 98. Ein Bindrbaum B mit mehr als 2¥=1 Bldattern hat min-
destens Tiefe k.

Beweis. Wiirde B mehr als 25-! Blétter und eine Tiefe < k-1 besitzen,
so wiirde dies im Widerspruch zu Lemma 97 stehen. [

Satz 99 (Pumping-Lemma fiir kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle
Worter z € L mit |z| > | in z = uvowzy zerlegen lassen mit

1. vx #e,

2. lvwx| <1 und

3. wv'waty € L fir alle i > 0.

Beweis. Sei G = (V, %, P,S) eine CNF-Grammatik fir L \ {¢}. Dann
gibt es in G fiir jedes Wort z = 27...2, € L mit n > 1, eine Ablei-
g tung
Tgn_l S:OéoﬁOél"‘ﬁOémZZ.
Da G in CNF ist, werden hierbei n — 1 Regeln
der Form A - BC und n Regeln der Form
A — a angewandt, d.h. m = 2n — 1 und z hat
den Syntaxbaum 75, ;. Wir kénnen annehmen,

3.2 Das Pumping-Lemma fiir kontextfreie Sprachen

dass zuerst alle Regeln der Form A - BC und
danach die Regeln der Form A — a zur An-
wendung kommen. Dann besteht die Satzform
a1 aus n Variablen und der Syntaxbaum 7},
hat ebenfalls n Blatter. Setzen wir [ = 2%, wobei
k= ||V ist, so hat T,,; im Fall n > [ mindestens
[ =2k > 2k-1 Blatter und daher mindestens die
Tiefe k. Sei 7 ein von der Wurzel ausgehender
Pfad maximaler Lange in 7;,_;. Dann hat 7 die
Lange > k und unter den letzten k + 1 Knoten
von 7 miissen zwei mit derselben Variablen A
markiert sein.
Seien U und [/’ die von diesen Knoten ausge-
henden Unterbdume des vollstandigen Syntax-
baums 75,_;. Nun zerlegen wir z wie folgt. w’
ist das Teilwort von 2z = uw’y, das von U erzeugt
wird und w ist das Teilwort von w’ = vwz, das
von [/ erzeugt wird. Jetzt bleibt nur noch zu
zeigen, dass diese Zerlegung die geforderten 3
Eigenschaften erfillt.

« Da U mehr Blétter hat als U’, ist vz # ¢ (Bedingung 1).

e Da der Baum U* = U nT,_; die Tiefe < k hat (andernfalls wére
7 nicht maximal), hat U* hochstens 2% = [ Blétter. Da U* genau
lvwz| Blatter hat, folgt |[vwz| <1 (Bedingung 2).

o Fiir den Nachweis von Bedingung 3 lassen sich schliefSlich Syntax-
baume B’ fiir die Worter uviwaty, i > 0, wie folgt konstruieren:

Bo By Bo
A ¢ _;; \
w u
uw Y v v X Y U U X Y
w
v X
w
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BO entsteht also aus B! = Ty,,_1, indem wir U durch U’ ersetzen,
und Bi*! entsteht aus Bf, indem wir U’ durch U ersetzen. ™

Satz 100. Die Klasse CFL ist nicht abgeschlossen unter Schnitt und
Komplement.

Beweis. Die beiden Sprachen
Ly ={a"b"c™ |n,m >0} und Lg = {a"b"c™ | n,m >0}

sind kontextfrei. Nicht jedoch Ly n Ly =
nicht unter Schnitt abgeschlossen.

{a"b"c™ | n > 0}. Also ist CFL

Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlos-
sen ist, kann CFL wegen de Morgan nicht unter Komplementbildung
abgeschlossen sein. ]

3.3 Der CYK-Algorithmus

In diesem Abschnitt stellen wir den bereits angekiindigten effizienten
Algorithmus zur Losung des Wortproblems fiir kontextfreie Gramma-
tiken vor.

Wortproblem fiir kontextfreie Grammatiken:

Gegeben: Eine kontextfreie Grammatik G und ein Wort .
Gefragt: Ist v € L(G)?

Wir 16sen das Wortproblem, indem wir G zunéchst in Chomsky-
Normalform bringen und dann den nach seinen Autoren Cocke,

ounger und [<asami benannten -Algorithmus anwenden, welcher
auf dem Prinzip der Dynamischen Programmierung beruht.

Satz 101. Das Wortproblem fiir kontextfreie Grammatiken ist effizi-
ent entscheidbar.
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Beweis. Seien eine Grammatik G = (V, 3, P,S) und ein Wort z =
x1 ... T, gegeben. Falls x = ¢ ist, konnen wir effizient priifen, ob S =* ¢
gilt. Andernfalls transformieren wir G in eine CNF-Grammatik G’ fir
die Sprache L(G) \ {e}. Chomsky-Normalform. Es lasst sich leicht
verifizieren, dass die notigen Umformungsschritte effizient ausfithrbar
sind. Nun setzen wir den CYK-Algorithmus auf das Paar (G’,z) an,
der die Zugehorigkeit von x zu L(G") wie folgt entscheidet.

Bestimme fir [=1,...,nund k=1,...,n
Vig(z)={AeV|A=>"1;..

aller Variablen, aus denen das mit x; beginnende Teilwort xy ... xg 1
von z der Lange [ ableitbar ist. Dann gilt offensichtlich x € L(G") <

-1+ 1 die Menge

. $k+l—1}

SeVui(x).
Fir [ =1 ist
Vik(z)={AeV|A-ux}
und fir [ =2,...,n ist
Vik(x)={AeV |3'<l3IBeVy4(z)3C € Vi jrr(z): A—> BC}.

Eine Variable A gehort also ge-
nau dann zu Vjx(x), [ > 2, falls
eine Zahl I" € {1,...,1 -1} und
eine Regel A - BC(C' existieren,
so dass B € Vyy(x) und C e
‘/l,l/’]ﬁll(x) sind.

N
A A

* Thtl'-1 Lhrtr =+ Thel

Algorithmus CYK(G,x)

1 Input: CNF-Grammatik G = (V, %, P,S) und ein Wort z =z ...x,
> for k:=1ton do

3 VLk::{AGV|A—>xk€P}

, for [:=2 ton do

5 for k:=1ton-[0+1do

6 Vik=2

7 for ':=1tol-1do
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8 for all A— BC¢eP do

9 if BeVyy and CeVi_y then
10 Vik=Vixu{A4}

11 if S eV, then accept else reject

Der CYK-Algorithmus lésst sich leicht dahingehend modifizieren, dass
er im Fall z € L(G) auch einen Syntaxbaum 7" von x ausgibt. Hierzu
gentigt es, zu jeder Variablen A in V;; den Wert von I’ und die Regel
A — BC' zu speichern, die zur Aufnahme von A in Vj;, gefithrt haben.
Im Fall S €V, 1(x) lasst sich dann mithilfe dieser Information leicht
ein Syntaxbaum 7' von x konstruieren.

Beispiel 102. Betrachte die CNF-Grammatik mit den Produktionen

S—-AS"AY,BX,CS,c; S">BC; X—-AS,BX" a; X'->XX;
Y—>BS AY'b; Y'->YY; A-a; B-b; C—c.

Dann erhalten wir fir das Wort x = abb folgende Mengen V), :

Ty a b b
1) {X, A} [{V,B} | {v,B} |
2 {s} | {Y"}

30 {vY}

Wegen S ¢ Vs 1(abb) ist x ¢ L(G). Dagegen gehirt das Wort y = aababb
wegen S € Vg 1(aababb) zu L(G):
a a b a b b
(XA} [{X, A} [{v.B} [ (X, 4} | (Y. B} | {Y, B} |
(X3 0 {sy | {sy | {sh | Y
Xy Xy vy | Y
(X3 {5y | {1}
Xy | V3
{15} S
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3.4 Kellerautomaten

Wie miissen wir das Maschinenmodell des DFA erweitern, damit die
Sprache L = {a™" | n >0} und alle anderen kontextfreien Sprachen
erkannt werden kénnen? Dass ein DFA die Sprache L = {a"b" | n > 0}
nicht erkennen kann, liegt an seinem beschriankten Speichervermogen,
das zwar von L aber nicht von der Eingabe abhangen darf.

Um L erkennen zu kénnen, reicht bereits ein so genannter Kellerspei-
cher (Stapel, engl. stack, pushdown memory) aus. Dieser erlaubt nur
den Zugriff auf die hochste belegte Speicheradresse. Ein Kellerautomat

 verfiligt iiber einen Kellerspeicher,
Eingabe-

band —

/ Lesekopf
A
Steuer- /

einheit
Keller-
speicher

o kann e-Uberginge machen,

o liest in jedem Schritt das aktuelle
Eingabezeichen und das oberste
Kellersymbol,

o kann das oberste Kellersymbol
entfernen (durch eine pop-Ope-
ration) und

o durch beliebig viele Symbole ersetzen (durch eine push-Opera-
tion).

Fiir eine Menge M bezeichne P.(M) die Menge aller endlichen Teil-
mengen von M, d.h.

P(M)={Ac M| A ist endlich}.

Definition 103. Ein Kellerautomat (kurz: PDA; pushdown au-
tomaton) wird durch ein 6-Tupel M = (Z,%,1,6,qo,#) beschrieben,
wobei

o 7 + & eine endliche Menge von Zustianden,
e Y das Eingabealphabet,
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I' das Kelleralphabet,
§: Zx(Bu{e})xI' - P.(ZxI*) die Uberfiihrungsfunktion,
qo € Z der Startzustand und

# €' das Kelleranfangszeichen ist.

Wenn ¢ der momentane Zustand, A das oberste Kellerzeichen und

u € ¥ das néchste Eingabezeichen (bzw. u = ¢) ist, so kann M im Fall
(p,B1...By)€d(q,u, A)

e in den Zustand p wechseln,

o den Lesekopf auf dem Eingabeband um |u| Positionen vorriicken
und

e das Zeichen A im Keller durch die Zeichenfolge B; ... By erset-
zen.

Hierfiir sagen wir auch, M fithrt die Anweisung quA — pB; ... By
aus. Da im Fall u = ¢ kein Eingabezeichen gelesen wird, spricht man
auch von einem spontanen Ubergang (oder e-Ubergang). Eine
Konfiguration wird durch ein Tripel

K=(q,x;...xn,A1... A)) € Zx 5" xT*

beschrieben und besagt, dass
e ¢ der momentane Zustand,
e x;...x, der ungelesene Rest der Eingabe und
o Aj...A; der aktuelle Kellerinhalt ist (A; steht oben).

Eine Anweisung quA; — pB;... By (mit u € {¢,2;}) uberfihrt die
Konfiguration K in die Folgekonfiguration

K'=(p,xj...xp,By...BpAsy... A)) mit j =i+ |ul.

Hierfiir schreiben wir auch kurz K - K’. Eine Rechnung von M
bei Eingabe z ist eine Folge von Konfigurationen Ky, K1, K5... mit
Ko = (qo,x,#) und Ko+ K + K- Ky heifit Startkonfiguration
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von M bei Eingabe z. Die reflexive, transitive Hiille von + bezeich-
nen wir wie tiblich mit +*. Die von M akzeptierte oder erkannte
Sprache ist

L(M) = {zeXr[IpeZ:(q,z,#) " (p.c.e)}.

Ein Wort z wird also genau dann von M akzeptiert, wenn es eine
Rechnung gibt, bei der M das gesamte Eingabewort bis zum Ende
liest und den Keller leert. Man beachte, dass bei leerem Keller kein
weiterer Ubergang mehr moglich ist.

Beispiel 104. Sei M = (Z,%,T,6,q,#) ein PDA mit Z = {q,p},
¥ ={a,b}, ' = {A,#} und den Anweisungen

e#,e (1)
6:qet>q (1) qa# —qA (2) a#, A (2)
quA - qAA (3) qA-p (4) aA,AA(3) bA,e(5)
pAd=p(5) \%bA,s(él)
Dann akzeptiert M die Eingabe aabb:

, aabb, F (q,abb, A) + (q,bb,AA) + (p,b,A) + (p,e,¢).
(¢, aa #)(2)(61@ )(3)(61 )(4)(10 )(5)(19 )

Allgemeiner akzeptiert M das Wort x = a™b™ mit folgender Rechnung:
n=0: (Q7€a #) ('I) (p7€75)‘

n>1: (q,a™b", - (g, a™ b, A) =" (g, b, An
(g #) 5 A )

F o (p, bl A1) L (poee).
o (p )(5) (p,€,¢€)

Dies zeigt {a™b™ | n >0} € L(M). Als ndchstes zeigen wir, dass jede
von M akzeptierte Fingabe x = x1...x, die Form x =a™b™ hat.
Ausgehend von der Startkonfiguration (q,xz,#) sind nur die Anwei-
sungen (1) oder (2) ausfihrbar. Falls M Anweisung (1) wahit, wird
der Keller geleert. Daher kann M in diesem Fall nur das leere Wort
x=¢c=a%" akzeptieren.
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Falls die akzeptierende Rechnung mit Anweisung (2) beginnt, muss
x1 = a sein. Danach ist nur Anweisung (3) ausfihrbar, bis M das
erste b liest:

(Q7x1 - Ty, #) (;) (Qa L2 .. Tp, A) (g)m—l (Qa Tm+l - - - xnvAm)

a2 - Ty, A1
(Z) (p,flf +2 L, )

mit £1 =T9g = =Ty =a und Ty, =b. Damit M den Keller leeren
kann, miissen jetzt noch genau m —1 b’s kommen, weshalb x auch in
diesem Fuall die Form a™b™ hat. <

Als néchstes zeigen wir, dass PDAs genau die kontextfreien Sprachen
erkennen.

Satz 105. CFL={L(M) | M ist ein PDA}.

Beweis. Wir zeigen zuerst die Inklusion von links nach rechts.

Idee: Konstruiere zu einer kontextfreien Grammatik G = (V, %, P, S)
einen PDA M = ({¢},%,T,4, g, S) mit I' =V uX, so dass gilt:

S=7x1...0, gdw. (q,x1...2,,5) " (q,¢,€).

Hierzu fligen wir fiir jede Regel A -4 « in P die Anweisung ge A — qa
und fiir jedes a € X die Anweisung gaa — ge zu ¢ hinzu.

M berechnet also nichtdeterministisch eine Linksableitung fiir die
Eingabe x. Da M hierbei den Syntaxbaum von oben nach unten
aufbaut, wird M als Top-Down Parser bezeichnet. Nun ist leicht zu
sehen, dass sogar folgende Aquivalenz gilt:

S=b .z, gdw. (g, z1...2,,5) " (q,¢,¢).
Daher folgt

rel(G) & S=pz < (¢,2,9)r" (¢,6,6) < veL(M).
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Als néchstes zeigen wir die Inklusion von rechts nach links.

Idee: Konstruiere zu einem PDA M = (Z,%,1,0,qo, #) eine kontext-
freie Grammatik G = (V, X, P, S) mit Variablen X4, A€, p,p' € Z,
so dass folgende Aquivalenz gilt:

(pyz, A) =" (p,e,¢e) gdw. Xpay =" . (%)

Ein Wort z soll also genau dann in G' aus X4, ableitbar sein, wenn
M ausgehend vom Zustand p bei Lesen von z in den Zustand p’
gelangen kann und dabei das Zeichen A aus dem Keller entfernt. Um
dies zu erreichen, fligen wir fiir jede Anweisung puA — poA; ... A,
k >0, die folgenden |Z|* Regeln zu P hinzu:

Fir jede Zustandsfolge p1, ..., pe: Xpap, = UXpoaipr - - - Xpooy Appr-

Um damit alle Worter x € L(M) aus S ableiten zu kénnen, benétigen
wir jetzt nur noch fir jeden Zustand p € Z die Regel S' - X, 4,. Die
Variablenmenge von G ist also

V={Stu{Xpap |p,p € Z, AT}

und P enthélt neben den Regeln S - X 4,, p € Z, fiir jede Anweisung
puA - poAi... A, k>0, von M und jede Zustandsfolge p1, ..., px
die Regel X,4p, = uXpoa1ps - - - Xppy Aupr-

Unter der Voraussetzung, dass die Aquivalenz (*) gilt, lidsst sich nun
leicht die Korrektheit von G zeigen. Es gilt

reL(M) < (q,z,#)r" (p,e,e) firein p e Z
= S=> X uy=>"xfireinp eZ
< reL(G).

Wir miissen also nur noch die Giiltigkeit von () zeigen. Hierzu zeigen
wir durch Induktion tber m fir alle p,p’ € Z, A €' und z € ¥*
folgende starkere Behauptung:

()

(p,fﬂ,A) = (p,,€,€) gdW XpAp’ =M 7.
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m =0: Da sowohl (p,z,A) % (p',¢,¢) als auch X4, =0 2 falsch Wegen X, 4, —¢ « gibt es eine Anweisung puA — poA; ... Ag,
sind, ist die Aquivalenz (**) fiir m = 0 erfiillt. k >0, und Zustdnde py,...,py € Z mit

m~~>m + 1: Wir zeigen zuerst die Implikation von links nach rechts.

. a=uX X
Fiir eine gegebene Rechnung poA1p1 Pr-1AkPk >

(poa, A) - (po, 2", Ar ... Ag) F™ (9, ,€) wobei p;, = p' ist. Wegen @ =™ x ex. eine Zerlegung = = uuy . .. ug
und Zahlen m; > 1 mit my + -+ +mg =m und

der Lange m + 1 sei puA — poAy... A, k > 0, die im ersten
Rechenschritt ausgefiihrte Anweisung (d.h. = = uz’). Zudem
sei p; fiir ¢ = 1,...,k der Zustand, in den M mit Kellerinhalt
Aiy1 .. Ay gelangt (d.h. p, = p'). Dann enthdlt P die Regel
Xpap, = UXpoArps - - Xpoy App- Weiter sei u; firi=1,... &k das
Teilwort von 2/, das M zwischen den Besuchen von p;_; und p;

Xpi—lAiPi =" U; (Z = 1, ey k)
Nach IV gibt es somit Rechnungen

(pic1, ui, Ay) F™ (piye,e), i=1,... k,

liest. aus denen sich die gesuchte Rechnung der Lange m + 1 zusam-
Dann gibt es Zahlen m; > 1 mit my + -+ my = m und mensetzen lasst:
(pic1, i, Ay) F™ (pi, e, €) (p,uuy ... up, A)+ (po,uy . ug, Ay ... Ag)

=T (plauQ---Uk,AQ...Ak)
fir i =1,...,k. Nach IV gibt es daher Ableitungen :
ME-1 A
Xpi—lAipi =" Ui, L= 17"'7k7 = (pk;—l,uk, k)
=k (pka g, 8) . [ |
die wir zu der gesuchten Ableitung zusammensetzen konnen:

Beispiel 106. Sei G = ({S},{a,b}, P,S) mit

XPAPk = UXpoAlm x 'ka—2Ak—1pk—1ka—1Akpk
=" uulXP1A2p2 .- 'ka—2Ak—1Pk—1ka—1Akpk P: S~ aSbSa (1) S = a. (2)
:'>mk,1 wtty - U1 Xy Ao Der zugehérige PDA besitzt dann die Anweisungen
mg =
- e tem 0: qaa—>ge,  (0)  qbb>qe, (0)
Zuletzt zeigen wir den Induktionsschritt fiir die Implikation von qeS = qaSbs, (1') ¢S —qa. (2)

rechts nach links von (*x). Gelte also umgekehrt X, 4,y =™ 2

und sei « die im ersten Schritt abgeleitete Satzform, d.h. Der Linksableitung

S = aSbS = aabS = aaba
A @)

pAp = @ =>""T. 0 @
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in G entspricht beispielsweise die akzeptierende Rechnung

(q,aaba, S) ('1_') (q,aaba,aSbs) ('8) (g, aba, SbS)
- ,aba,abS) + (q,ba,bS
& (g ) I (g )

F (q,a,5) F sa,a) + (q,¢e,¢
(0,)(q ) & (¢,a,a) o (¢,€,¢)

von M und umgekehrt. <

Beispiel 107. Sei M der PDA ({p,q},{a,b},{A,#},6,p,#) mit

0 :pe# —qe, (1) paA—pAA, (3) gbA—qe. (5)
pa#t >pA, (2) pbA—qe, (4)

Dann erhalten wir die Grammatik G = (V, %3, P,.S) mit der Variablen-
menge

vV ={5, Xpstps Xpttqr Xattps Xatqr Xpaps Xpag, XqAp, Xqu}-
Die Regelmenge P enthdlt neben den beiden Startregeln
S Xppp, Xprq (0,0)

die folgenden Produktionen:

Anweisung zugehorige Regel

puA = poAy ... Ay R Xpap,™ UXpgarp, - -Xpy s Ay
pe#t — g (1) 0 - Xpgq—€ (1)
pa#t >pA  (2) 1 Xppp =~ aXpa (2)
Xppg=>aXpa (2")
paA—pAA (3) 2 0 Xpap—=>aXpa, X4,  (3)
0 Xpag=aXpa, Xpoag o (37)
D Xpap—=aXpa, X, ap (3")
0 Xpag=aXpaXoag  (3")
pbA — qe (4) 0 - Xpaq—b (47)
qbA - qe (5) 0 - Xgaq—b (5)
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Der akzeptierenden Rechnung
, aabb, F (p,abb, A) + (p,bb,AA) + (¢.b,A) + (q,¢,¢
(p #) 5 @ ) &5 @ ) & (@0, A4) = (g.2)

von M entspricht dann die Ableitung

S=X X XX b "
(?) p#q (3) Qa pAq (?j?/) aa pAq qu (j/}) aa qu g/}) aa

in G und umgekehrt. <

3.5 Deterministisch kontextfreie Sprachen

Von besonderem Interesse sind kontextfreie Sprachen, die von einem
deterministischen Kellerautomaten erkannt werden konnen.

Definition 108. Ein Kellerautomat heifit deterministisch, falls +
eine rechtseindeutige Relation ist:

KrKinKr Ky, = K, =K,.

Aquivalent hierzu ist, dass die Uberfithrungsfunktion § fiir alle
(q,a,A) € Zx ¥ xT folgende Bedingung erfiillt (siche Ubungen):

16(g, a, A)][ +16(q,e, A)| < 1.

Beispiel 109. Der PDA M = ({qo, 1,92}, {a,b,c},{A, B,#},6, qo, #)
mit der Uberfihrungsfunktion

0 qoa# = qoA#H  qb# = qB# qaA—>qAA qbA—qBA
qaB - qAB qbB—»qBB qcA—->qA
qaA—q @bB - q QEHF — 2

qocB—-q B
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erkennt die Sprache L(M) = {xcx® | x € {a,b}*}. Um auf einen Blick
erkennen zu kénnen, ob M deterministisch ist, empfiehlt es sich, d in
Form einer Tabelle darzustellen:

0| a.# 4. A @B |a,# a.A 0,8 | @2.# @A ¢, B

el - - - Je - -|- - -
a | @A# @AA @AB| - ¢ - - - -
b | @B# qBA qBB | - - q - - -
c - A @B - - - - - -

Man beachte, dass jedes Tabellenfeld hichstens eine Anweisung enthdlt
und jede Spalte, die einen e-Fintrag in der ersten Zeile hat, sonst
keine weiteren Eintrage enthdlt. Daher ist fir alle (q,a,A) € Z x X xT'
die Bedingung

[6(q,a, A)| +]6(g, e, A)| <1

erfullt. <

Verlangen wir von einem deterministischen Kellerautomaten, dass er
seine Kingabe durch Leeren des Kellers akzeptiert, so konnen nicht
alle regularen Sprachen von deterministischen Kellerautomaten er-
kannt werden. Um beispielsweise die Sprache L = {a, aa} zu erkennen,
muss der Keller von M nach Lesen von a geleert werden. Daher ist
es M nicht mehr moglich, die Eingabe aa zu akzeptieren. Determi-
nistische Kellerautomaten kénnen also durch Leeren des Kellers nur
préfixfreie Sprachen L akzeptieren (d.h. kein Wort = € L ist Prafix
eines anderen Wortes in L).

Wir kénnen das Problem aber einfach dadurch losen, dass wir deter-
ministischen Kellerautomaten erlauben, ihre Eingabe durch Erreichen
eines Endzustands zu akzeptieren.

Definition 110.
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e Fin Kellerautomat mit Endzustianden wird durch ein 7-
Tupel M = (Z,%,1,6, qo, #, E) beschrieben. Dabei sind die Kom-
ponenten Z,%,1',0,qo, # dieselben wie bei einem PDA und zu-
satzlich ist B2 € Z eine Menge von Endzustanden.

e Die von M akzeptierte oder erkannte Sprache ist
L(M)={xeX*|Ipe E,aecl™: (qo,z,#) " (p,e,)}.

o M ist ein deterministischer Kellerautomat mit Endzu-
stianden (kurz: DPDA), falls M zusdtzlich fir alle (q,a,A) €
Z x % x I folgende Bedingung erfillt:

16(g,a, A)| +]d(q,e, A)[ <1.

e Die Klasse der deterministisch kontextfreien Sprachen ist defi-
niert durch

DCFL = {L(M)|M ist ein DPDA}.

Die Klasse der deterministisch kontextfreien Sprachen ldsst sich auch
mit Hilfe von speziellen kontextfreien Grammatiken charakterisieren,
den so genannten L R(k)-Grammatiken.

Der erste Buchstabe L steht fiir die Leserichtung bei der Syntaxana-
lyse, d.h. das Eingabewort x wird von links (nach rechts) gelesen.
Der zweite Buchstabe R bedeutet, dass bei der Syntaxanalyse eine
Rechtsableitung entsteht. Schliellich gibt der Parameter k an, wieviele
Zeichen man iiber das aktuelle Eingabezeichen hinauslesen muss, da-
mit der niachste Schritt eindeutig feststeht (k wird auch als Lookahead
bezeichnet).

Durch LR(0)-Grammatiken lassen sich nur die préfixfreien Sprachen
in DCFL erzeugen. Dagegen erzeugen die LR(k)-Grammatiken fiir
jedes k > 1 genau die Sprachen in DCFL.

Daneben gibt es noch LL(k)-Grammatiken, die fiir wachsendes k
immer mehr deterministisch kontextfreie Sprachen erzeugen.
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Als néachstes zeigen wir, dass DCFL unter Komplementbildung abge-
schlossen ist. Versuchen wir, die End- und Nichtendzustéande eines

DPDA M einfach zu vertauschen, um einen DPDA M fiir L(M) zu
erhalten, so ergeben sich folgende Schwierigkeiten:

1. Falls M eine Eingabe x nicht zu Ende liest, wird = weder von
M noch von M akzeptiert.

2. Falls M nach dem Lesen von x noch e-Uberginge ausfiihrt und
dabei End- und Nichtendzustande besucht, wird x von M und
von M akzeptiert.

Der néchste Satz zeigt, wie sich Problem 1 beheben lésst.

Satz 111. Jede Sprache L € DCFL wird von einem DPDA M’ erkannt,
der alle Fingaben zu Ende liest.

Beweis. Sei M = (Z,3,T,0,qo,#, E) ein DPDA mit L(M) = L. Falls
M eine Eingabe x = xy...x, nicht zu Ende liest, muss einer der
folgenden drei Griinde vorliegen:

1. M gerét in eine Konfiguration (q, z; ... x,,€), i <n, mit leerem
Keller.

2. M gerat in eine Konfiguration (q,x;...x,, AYy), ¢ < n, in der
wegen 0(q,z;, A) = 6(q,e,A) = @ keine Anweisung ausfithrbar
ist.

3. M gerat in eine Konfiguration (¢, z;...x,, Av), i <n, so dass
M ausgehend von der Konfiguration (g¢,e, A) eine unendliche
Folge von e-Anweisungen ausfiihrt.

Die erste Ursache schliefen wir aus, indem wir ein neues Zeichen O
auf dem Kellerboden platzieren:

(a) se# — qo#0O
Die zweite Ursache schlieflen wir durch Hinzunahme eines Fehlerzu-

stands r sowie folgender Anweisungen aus (hierbei ist [V =T'u {O}):

(b) qaA—rA, fur alle (q,a,A) € Z x ¥ xI" mit A =0 oder
5(q7 a’ A) = 6(q’ 67 A) = 67

(dabei sei s der neue Startzustand).
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fiir alle a € X und Ael”.

Als néchstes verhindern wir die Ausfiihrung einer unendlichen Folge
von e-Ubergingen. Dabei unterscheiden wir die beiden Fille, ob M
hierbei auch Endzustéinde besucht oder nicht. Falls ja, sehen wir einen
Umweg tiber den neuen Endzustand ¢ vor.

(d) gsA—>rA, firallegeZ und A €T, so dass M ausge-
hend von der Konfiguration (¢,e, A) unend-
lich viele e-Uberginge ausfithrt ohne dabei
einen Endzustand zu besuchen.

(e) qeA—tA
teA —>rA,

fur alle g € Z und A € I', so dass M ausge-
hend von der Konfiguration (g,¢, A) unend-
lich viele e-Ubergiange ausfiihrt und dabei
auch Endzustdnde besucht.

SchlieBlich iibernehmen wir von M die folgenden Anweisungen:

(f) alle Anweisungen aus d, soweit sie nicht durch Anweisungen
vom Typ (d) oder (e) iiberschrieben wurden.

Zusammenfassend transformieren wir M in den DPDA
M =(Zu{rs,t}, 5176 s, #, Eu{t})

mit IV = T'u{O}, wobei ¢’ die unter (a) bis (f) genannten Anweisungen
enthalt. [ ]

Beispiel 112. Wenden wir diese Konstruktion auf den DPDA

M = ({q0a q1, Q2}, {Cl, b, C}a {Aa Ba #}7 57 qo, #7 {q2})

mit der Uberfihrungsfunktion
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0 ‘ QO7# QO7A quB ‘ q17# Q17A q17B ‘ q27# C]2,A q2aB

€ - - - 42 - - QF - -
a | @A# @AA @AB| - @ - - - -
b | qB# q@BA qBB - - q1 - - -
¢l - @A @B | - - - | - - -

an, so erhalten wir den DPDA

M’ = ({q07 q1,92,7, S, t}a {(Z, ba C}, {Aa B7 #7 D}a 5,a S, #7 {C]27 t})
mit folgender Uberfiihrungsfunktion 6':

o ‘%a# QOaA qO>B qo,0

Q17# Q17A q1aB q1,0 Q27# QQaAQZ;BQ%D

el - - - -lae - - -|# - - -
a |QA# @AA AB ro| - ¢ rB ro| - rA rB rO
b |qB# @BA BB ro| - rA ¢ ro| - rA rB ro
c |l r# @A @B ro| - rA rB ro| - rA rB ro

Typ| (£,0) (F) (F) )| (F) (£:0)(£,0) (0) | () (b) (b) (D)
‘3,# s,A s,B s,alr,# r,A r,B r,.O|t,# t,A t,B t,O0
Q#0 - - |- - - —|r# - - -

o ST M

Typ| (a) | (e)

<

Satz 113. Die Klasse DCFL ist unter Komplement abgeschlossen, d.h.
es gilt DCFL = co-DCFL.

Beweis. Sei M = (Z,%,T,6,q0,#, F) ein DPDA, der alle Eingaben
zu Ende liest, und sei L(M) = L. Wir konstruieren einen DPDA M
fiir L.

3.5 Deterministisch kontextfreie Sprachen

Die Idee dabei ist, dass sich M in seinem Zustand (q,7) neben dem
aktuellen Zustand ¢ von M in der Komponente ¢ merkt, ob M nach
Lesen des letzten Zeichens (bzw. seit Rechnungsbeginn) einen Endzu-
stand besucht hat (i = 2) oder nicht (i = 1). Mochte M das néchste
Zeichen lesen und befindet sich M im Zustand (g,1), so macht M
noch einen Umweg tiber den Endzustand (g, 3).

Konkret erhalten wir M = (Zx{1,2,3},%,I",8, s, #, Zx{3}) mit

5:{(%,1), G ¢ E,

(q0,2), sonst,

indem wir zu ¢’ fiir jede Anweisung ge A -, py die Anweisungen

(. 1)eA—~ (p, 1)y, fallsp¢ E,
(¢,1)eA - (p,2)y, fallspe E und

(¢,2)eA — (p,2)7,

sowie fir jede Anweisung gaA —); py die Anweisungen

(q,1)eA ~ (q,3)A,

(¢,2)aAd - (p,1)y, fallspfFE,
(¢,2)aA - (p,2)y, fallspekFE,
(¢,3)aA - (p,1)y, falls p¢ E und
(¢,3)aA - (p,2)y, fallspeFE.

hinzufiigen. [

Eine niitzliche Eigenschaft von M ist, dass M in einem Endzustand
keine e-Ubergéinge macht.

Beispiel 114. Angenommen, ein DPDA M = (Z,%,1,0,q0,#, E)
fiihrt bei der Eingabe x = a folgende Rechnung aus:

(6107(%#) = (fha&’h) = (q275772)-
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Dann wiirde M im Fall E = {qo, ¢} (d.h. v € L(M)) die Rechnung

((q0,2),a,#) = ((Ch’ 1)75771) = ((Q272)75,’72)

ausfiihren. Da (q1,1),(q2,2) ¢ Zx{3} sind, verwirft also M das Wort
a. Dagegen wiirde M im Fall E = {qo} (d.h. x ¢ L(M)) die Rechnung

(((]0,2),(1,#) = ((CIIa 1)75771) = ((Q2> 1)75772) = ((QQ73)75772)

ausfiihren. Da (q2,3) € Zx{3} ein Endzustand von M ist, wiirde M
nun also das Wort a akzeptieren. <

Satz 115. Die Klasse DCFL ist nicht abgeschlossen unter Schnitt,
Vereinigung, Produkt und Sternhiille.

Beweis. Die beiden Sprachen
Ly ={a"b"c™ | n,m >0} und Lg = {a"b"c™ |n,m >0}

sind deterministisch kontextfrei (siche Ubungen). Da der Schnitt
Ly n Ly = {a™"c™ | n > 0} nicht kontextfrei ist, liegt er auch nicht in
DCFL, also ist DCFL nicht unter Schnitt abgeschlossen.

Da DCFL unter Komplementbildung abgeschlossen ist, kann DCFL
wegen de Morgan dann auch nicht unter Vereinigung abgeschlossen
sein. Beispielsweise sind folgende Sprachen deterministisch kontextfrei:

Ly ={a'b’c*|i#j} und Ly = {a'bic"|j#k}.

Thre Vereinigung L3 U Ly = {a’bick | i # j oder j # k} gehort aber nicht
zu DCFL, d.h. Ly u L, € CFL ~ DCFL. DCFL ist ndmlich unter Schnitt
mit reguliren Sprachen abgeschlossen (siche Ubungen). Daher wire
mit L3 u L, auch die Sprache

(Lsu Ly)n L(a*b*c*) = {a"b"c" | n >0}

(deterministisch) kontextfrei.
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Als néachstes zeigen wir, dass DCFL nicht unter Produktbildung abge-
schlossen ist. Wir wissen bereits, dass L = Ly u L, ¢ DCFL ist. Dann
ist auch die Sprache

0L =0L3u0Ly ¢ DCFL,

da sich ein DPDA M = (Z,%,T,6,qo,#, E) fur 0L leicht zu einem
DPDA fiir L umbauen liefle. Sei ndmlich (p,e,7) die Konfiguration,
die M nach Lesen der Eingabe 0 erreicht. Dann erkennt der DP-
DA M'"=(Zu{s}, X, 1,0, s,#, FE) die Sprache L, wobei §’ wie folgt
definiert ist:

o - o7

(q,u,A) =(s,e,#),
(q,u,A) e Zx (X u{e}) xT.

Es ist leicht zu sehen, dass die beiden Sprachen {e¢,0} und Ls = L3U0L,
in DCFL sind (siehe Ubungen). Thr Produkt {&,0}Ls = Ls u0L; =
L3u0Lsu0L3u00Ly gehort aber nicht zu DCFL. Da DCFL unter
Schnitt mit reguliren Sprachen abgeschlossen ist (sieche Ubungen),
ware andernfalls auch

{,0}Lsn L(0a*b*c*) = 0L3 U 0Ly
in DCFL, was wir bereits ausgeschlossen haben. [ ]

Dass DCFL auch nicht unter Sternhiillenbildung abgeschlossen ist,
ldsst sich ganz dhnlich zeigen (siehe Ubungen). Wir fassen die be-
wiesenen Abschlusseigenschaften der Klassen REG, DCFL und CFL in
folgender Tabelle zusammen:

Vereinigung Schnitt Komplement Produkt Sternhiille

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja
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In diesem Kapitel fithren wir das Maschinenmodell des linear be-
schréankten Automaten (LBA) ein und zeigen, dass LBAs genau die
kontextsensitiven Sprachen erkennen. Die Klasse CSL ist unter Kom-
plementbildung abgeschlossen. Es ist jedoch offen, ob die Klasse DCSL
der von einem deterministischen LBA erkannten Sprachen eine echte
Teilklasse von CSL ist (diese Frage ist als LBA-Problem bekannt).

4.1 Kontextsensitive Grammatiken

Zur Erinnerung: Eine Grammatik G = (V) 3, P, S) heifit kontextsen-
sitiv, falls fur alle Regeln a — 3 gilt: |5] > |o|. Als einzige Ausnahme
hiervon ist die Regel S — ¢ erlaubt. Allerdings nur dann, wenn das
Startsymbol S nicht auf der rechten Seite einer Regel vorkommt.

Das néchste Beispiel zeigt, dass die Sprache L = {a"b"c™ | n > 0} von ei-
ner kontextsensitiven Grammatik erzeugt wird. Da L nicht kontextfrei
ist, ist also die Klasse CFL echt in der Klasse CSL enthalten.

Beispiel 116. Betrachte die kontextsensitive Grammatik G =
(V,X,P,S) mit V={S, B}, ¥={a,b,c} und den Regeln

P:S—aSBc,abc (1,2) ¢B—-Bc(3) bB—0bb(4)
In G laf$t sich beispielsweise das Wort w = aabbee ableiten:

S = aSBc = aabcBc = aabBcc = aabbee
(1) (2) (3) (4)

Allgemein gilt fiir alle n > 1:

S —n-1 anfls(Bc)n—l - anbc(BC)n—l :>(3) abBn-1cn —n-1 anben
(1) (2) (3) (4)
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Also gilt ambnc™ € L(Q) fir alle n > 1. Umgekehrt folgt durch Induktion
tber die Ableitungslinge m, dass jede Satzform u mit S =™ « die
folgenden Bedingungen erfillt:

o #a(a) =#p(a) + #p(a) = #.(a),
e links von S und links von einem a kommen nur a’s vor,
o links von einem b kommen nur a’s oder b’s vor.

Daraus ergibt sich, dass in G nur Worter der Form w = a™b"c" ableit-
bar sind. <

4.2 Turingmaschinen

Um ein geeignetes Maschinenmodell fiir die kontextsensitiven Sprachen
zu finden, fithren wir zunéchst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein. Eine NTM erhélt ihre Eingabe

auf einem nach links und rechts

. Schreib-
unbegrenzten Band. Wahrend Lese-Kopf Arbeitsband
ihrer Rechnung kann sie den «— mit Eingabe
Schreib-Lese-Kopf auf dem o Tufe e T ] e JeaJu]

Band in beide Richtungen be-
wegen und dabei die besuch-
ten Bandfelder lesen sowie ge-
lesenen Zeichen gegebenenfalls
iiberschreiben.

—

Steuer-
einheit

Es gibt mehrere Arten von Turingmaschinen (u.a. mit einseitig unend-
lichem Band oder mit mehreren Schreib-Lese-Képfen auf dem Band).
Wir verwenden folgende Variante der Mehrband-Turingmaschine.

Definition 117. Sei k> 1.

a) Fine nichtdeterministische k-Band-Turingmaschine
(kurz k-NTM oder einfach NTM) wird durch ein 6-Tupel
M= (Z,%,T,0,q0, E) beschrieben, wobei
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Z eine endliche Menge von Zustinden,

Y das Fingabealphabet (wobei L ¢ ),

[' das Arbeitsalphabet (wobei L u{u} cT'),

§: ZxTk - P(ZxTkx{L,R,N}*) die Uberfihrungsfunk-
tion,

qo der Startzustand und
o FcZ die Menge der Endzustinde ist.

b) Eine k-NTM M heifst deterministisch (kurz: M ist eine k-
DTM oder einfach DTM), falls fir alle (q,aq,...a) € Z x Tk
die Ungleichung ||0(q, a1, ... a)| <1 gilt.

Fiar (¢, al,...,al,D1,...,Dy) €(q,a1,...a;) schreiben wir auch

(g,a1,...,ax) = (¢',ay,...,a,, D1,...,Dg).

Eine solche Anweisung ist ausfithrbar, falls
e ¢ der aktuelle Zustand von M ist und

e sich fiir=1,...,k der Lesekopf des i-ten Bandes auf einem mit
a; beschrifteten Feld befindet.

Ihre Ausfithrung bewirkt, dass M
e vom Zustand ¢ in den Zustand ¢’ iibergeht,

« auf Band i das Symbol a; durch a ersetzt und

o den Kopf geméafi D; bewegt (L: ein Feld nach links, R: ein Feld
nach rechts, N: keine Bewegung).

Definition 118. Sei M = (Z,%,T,0,qo, E) eine k-NTM.
a) Fine Konfiguration von M ist ein (3k + 1)-Tupel

K: (q,ul,al,vl,...,uk,akwk) EZX (I“* XFXF*)k

und besagt, dass

e ¢ der momentane Zustand ist und
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b)
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e dasi-te Band mit ... .Uu;a;v;U. .. beschriftet ist, wobei sich
der Kopf auf dem Zeichen a; befindet.

Im Fall k = 1 schreiben wir fir eine Konfiguration (q,u,a,v)
auch kurz uqav.

Die Startkonfiguration von M bei Fingabe v =xy...x, € X*
15t

T #e,

Tr=c€.

P (qo,8,21,To ... Ty, U8, ... €, LL,E),
xX
(QO7€7 L, &,...,¢, U,g),
y y /I _ !/ ! ! ! !/ / ;
Eine Konfiguration K' = (q,u},a},vy,...,u},a,v;) heifst Fol-

gekonfiguration von K = (p,uy,a,vy,..., Uk, ag,v) (kurz
K+ K'), falls eine Anweisung

(q,a1,...,ax) = (¢’ b1, ..., bg, D1,...,Dy)
existiert, so dass firi=1,...,k gilt:
im Fall D; = N: | D; = R: D;=L:
K: Uz‘a—z’w K: uia—i U K: Uia—ivi
K" uz?TZUz K" ;b CT;UZ’ K’ u;aT b; v;

I — .h-
ul = u;, u; = u;b; und Lo us uife,
ulal =
I _
a; = b; und L, v, uite, U, sonst
. av) =
Ui = Vi u, sonst. | und v} = bv;.

Man beachte, dass sich die Linge der Bandinschrift u;a;v; beim
Ubergang von K zu K' genau dann um 1 erhéht, wenn in K’
zum, ersten Mal ein neues Feld auf dem i-ten Band besucht wird.
Andernfalls bleibt die Liange von u;a;v; unverdndert. Die Linge
von u;a;v; entspricht also genaw der Anzahl der auf dem i-ten
Band besuchten Felder (inkl. Eingabezeichen im Fall i=1).
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d) Eine Rechnung von M bei Fingabe x ist eine Folge von Kon-
figurationen Ko, K1, Ky... mit Kog= K, und Ko+ Ki + Ky---.

e) Die von M akzeptierte oder erkannte Sprache ist
L(M):{xez*|E|K€EX(F*XI‘XI‘*)’“;K$ - K}

M akzeptiert also eine Eingabe = (hierfiir sagen wir kurz M (z) ak-
zeptiert), falls es eine Rechnung K, = Ko+ K; + K-+ + K; von M(x)
gibt, bei der ein Endzustand erreicht wird.

Beispiel 119. Betrachte die 1-DTM M = (Z,%,1,6,q0, E) mit
Z ={q,---qu}, X = {a,b}, T = Xu{A B,u}, E = {q}, wobei ¢
folgende Anweisungen emthdlt:

goa — AR (1) Anfang der Schleife: Ersetze das erste a durch A.

(2) Bewege den Kopf nach rechts bis zum ersten b
(3) und ersetze dies durch ein B (falls kein b mehr
(4) vorhanden ist, dann halte ohne zu akzeptieren).

qa > qaR
aB-qBR
@b > @BL
(5) Bewege den Kopf zuriick nach links bis ein A

(6) kommt, gehe wieder ein Feld nach rechts und wie-

(7) derhole die Schieife.

20 — qaaL
2B — g2 BL
@A - qAR

qoB—qBR (8) Fualls kein a am Anfang der Schleife, dann teste,
@3B —q3BR (9) ob noch ein b vorhanden ist. Wenn ja, dann halte
qsu = quUN (10) ohne zu akzeptieren. Andernfalls akzeptiere.

Dann fiihrt M bei Fingabe aabb folgende Rechnung aus:
goaabb + Agqrabb + Aagqibb + AgsaBb
(1) (2) (4)
F ¢AaBb + AqaBb + AAqBb
(5) (7) (1)
— AABqlb — AAQQBB = AQQABB
(3) (4) (6)

+ AAqBB + AAB@B + AABBgsu ~ AABBquu
(7 (8) (9) (10)
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Ahnlich lift sich amb™ € L(M) fiir ein belicbiges n > 1 zeigen. Ande-
rerseits fihrt die Eingabe abb auf die Rechnung

qgoabb - Aqbb - ¢ ABb + AqyBb + ABgsb,
(1) (4) (M) (8)

die nicht weiter fortsetzbar ist. Da M deterministisch ist, kann M (abb)
auch nicht durch eine andere Rechnung den Endzustand q4 erreichen.
D.h. abb gehort nicht zu L(M). Tatsdchlich lisst sich durch Betrach-
tung der tibrigen Fdlle (x =a™™, n>m, x =a"bma*, m,k > 1, etc.)
zetgen, dass M nur Fingaben der Form a™b™ akzeptiert, und somit
L(M) ={a"b" |n=>1} ist. N

Es ist leicht zu sehen, dass jede Typ-0 Sprache von einer NTM M
akzeptiert wird, die ausgehend von x eine Riickwértsableitung (Re-
duktion) auf das Startsymbol sucht. Ist  # ¢ und markieren wir das
letzte Zeichen von z, so kann M das Ende der Eingabe erkennen, ohne
dariiber hinaus lesen zu miissen. Zudem ist im Fall einer Typ-1 Spra-
che die linke Seite einer Regel hochstens so lang wie die rechte Seite.
Deshalb muss M beim Erkennen von kontextsensitiven Sprachen den
Bereich der Eingabe wahrend der Rechnung nicht verlassen.

4.3 Linear beschrankte Automaten

Eine 1-NTM M, die bei keiner Eingabe x # ¢, deren letztes Zeichen
markiert ist, den Bereich der Eingabe verléasst, wird als LBA (linear
beschriankter Automat) bezeichnet. Ein LBA

darf also bei Eingaben der Lange n > 0
wahrend der Rechnung nur die n mit der Ein-

gabe beschrifteten Bandfelder besuchen und Rv
iiberschreiben. Tatséachlich lésst sich zeigen, Steuer-
dass jede k-NTM, die bei Eingaben der Lén- einheit
ge n hochstens linear viele (also cn+c fiir eine
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Konstante ¢) Bandfelder besucht, von einem LBA simuliert werden
kann.

In diesem Abschnitt zeigen wir, dass LBAs genau die kontextsensitiven
Sprachen erkennen.
Definition 120.

a) Fir ein Alphabet ¥ und ein Wort =y ...x, € ¥* bezeichne &

das Wort
A x?
I‘ =
T1...Tp1Tp,

iiber dem Alphabet 3 =Y u{a|aeX}.

b) Bine 1-NTM M = (Z,3.,T,0,q, E) heift linear beschréinkt
(kurz: M ist ein LBA), falls M bei jeder Eingabe & der Linge
n hochstens max{n,1} Bandfelder besucht:

T =¢,

r#e

VeeX*: K; " ugav = |uav| < max{|z|,1}.

¢) Die von einem LBA akzeptierte oder erkannte Sprache ist
L(M)={xeX*| M(Z) akzeptiert}.

d) FEin deterministischer LBA wird auch als DLBA bezeichnet.

e) Die Klasse der deterministisch kontextsensitiven Spra-
chen ist definiert als

DCSL = {L(M) | M st ein DLBA}.

Beispiel 121. Es ist nicht schwer, die 1-DTM M = (Z,%,1',6,q, E)
aus Beispiel 119 mit der Uberfiihrungsfunktion

d: qoa > AR (1

) @a —>gal (5) qB-gsBR (9)
qa —»qalk (2)

)

)

@B—q@BL (6) gsu—>quUN (10)
qA—=>qAR (7)

qlBﬁqlBR (3
qlb —>(JQBL (4
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in einen DLBA M’ fir die Sprache {a"b™ | n > 1} umzuwandeln.
Ersetze hierzu

e X durch 3 = {a,b,a,b},

e T durchT'=3u {A,B,E,u} sowie

o die Anweisung gsu — quUN (10) durch 3B - BN (10")
und fige die Anweisungen q1b - g BL (4a) upd qB - BN (8a)
hinzu. Dann erhalten wir den DLBA M' = (Z, 3,17, qo, E) mit der
Uberfiihrungsfunktion

qllA) —>q2§L (4a)
20 —~ qaal (5)
@B—q@BL (6)
@A~ qAR (7)

0 qga - AR (1

) @B —qBR (8)
qna —>qaR  (2)

)

)

QOE —>Q4EN (SCL)
C]sBi —>€13BiR 9)
@b > @BL (4 @B—qBN (10")

Das Wort aabb wird nun von M’ ber Eingabe aabb durch folgende
Rechnung akzeptiert:

goaabb - Agiabb  + Aaqibb + AgaBb + gyAaBb
() @ ® e )
F AgquaBb + AAq@Bb - AABgp1b +~ AAq.BB
R (T R R

- ApABB + AAqBB + AABiB +~ AABqB
(6) (7) (®) (10')

<

Der DLBA M’ fir die Sprache A = {a™b" | n > 1} aus dem letzten
Beispiel lésst sich leicht in einen DLBA fiir die Sprache B = {a"™b"c" |
n > 1} transformieren (siehe Ubungen), d.h. B € DCSL \ CFL. Die
Inklusion von CFL in DCSL wird in den Ubungen gezeigt.

Als nachstes beweisen wir, dass LBAs genau die kontextsensitiven
Sprachen erkennen.

Satz 122. CSL={L(M) | M ist ein LBA}.
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Beweis. Wir zeigen zuerst die Inklusion von links nach rechts. Sei
G = (V,X, P,S) eine kontextsensitive Grammatik. Dann wird L(G)
von folgendem LBA M akzeptiert (0.B.d.A. sei € ¢ L(G)):

Arbeitsweise von M bei Eingabe x =y ...x,1Z, mit n > 0:

I Markiere das erste Eingabezeichen z;

2> Wahle eine beliebige Regel v - [ aus P

3 Wahle ein beliebiges Vorkommen von /3 auf dem Band (falls
nicht vorkommt, halte ohne zu akzeptieren)

Ersetze die ersten |a| Zeichen von (3 durch «

Falls das erste (oder letzte ) Zeichen von (5 markiert war,
markiere auch das erste ( letzte ) Zeichen von «

6 Verschiebe die Zeichen rechts von 3 um || - |a| Positionen nach
links und Uberschreibe die frei werdenden Bandfelder mit Blanks

Enthalt das Band auBer Blanks nur das (markierte) Startsymbol,
so halte in einem Endzustand

s Gehe zuriick zu Schritt 2

W~

wt

-

Nun ist leicht zu sehen, dass M wegen |3| > |a| tatséchlich ein LBA
ist. M akzeptiert eine Eingabe z, falls es gelingt, eine Ableitung fir
x in G zu finden (in umgekehrter Reihenfolge, d.h. M ist ein nichtde-
terministischer Bottom-Up Parser). Da sich genau fir die Worter in
L(G) eine Ableitung finden lasst, folgt L(M) = L(G).

Fir den Beweis der umgekehrten Inklusion sei ein LBA M =
(2, 3T, 0, qo, F) gegeben (0.B.d.A. sei e ¢ L(M)). Betrachte die kon-
textsensitive Grammatik G = (V, %, P,.S) mit

V = {S,A} u (ZT uT)xX,
die fiir alle a,b e X und ¢, d € I" folgende Regeln enthalt:

P: S — A(a,a), (qoa,a) (S) ,Startregeln®
A - A(a,a), (qoa,a) (A) ,A-Regeln®
(c,a)—>a (F) ,Finale Regeln®
(ge,a) = a, fallsge E (E) ,E-Regeln“
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(ge,a) = (4’ a), falls g¢ =y ¢/N (N) ,N-Regeln*
(qc,a)(d,b) » (c,a)(qd,b), falls gc >y ¢¢R  (R) ,R-Regeln®
(d.a)(ge.b) > (¢, a) (). falls ge >5 L (L) L-Regeln*

Durch Induktion iiber m ldsst sich nun leicht fur alle aq,...,a, €T’

und ¢ € Z die folgende Aquivalenz beweisen:

A m
qQox1 ... Tp-1Typ = Q1...0;-19G;...0n <

(goz1,71) ... (Zpyxy) =" (ag,21)...(qa;,x;) ... (an, x,)

(N,R,L)

Ist also qox1 ... 20 12, F™ay...a;.1qa;...a, mit g € E eine akzeptie-
rende Rechnung von M(z;...x,12,), so folgt

5 (S:ZT)L (qoxb 331)(1'2, $2) T (xn—b xn—l)(i'na wn)
(NLE) (a1,21) ... (@1, 2i-1)(qas, 75) . . . (Qn, Tn)
=" T1...Tp
(FLE)
Die Inklusion L(G) ¢ L(M) folgt analog. .

Eine einfache Modifikation des Beweises zeigt, dass 1-NTMs genau
die Sprachen vom Typ 0 akzeptieren (siehe Ubungen).

Beispiel 123. Betrachte den LBA M =A(Z,XA],F,(5, qo, E) mit Z =
{qo,---qs}, ¥ ={a,b}, I'={a,b,a,b, A, B, B,u} und E = {q}, sowie

d: qoa - AR ¢1b = q@BL qoB—qBR
qa >qaR  @a >gal  @B->quBN
@B —-qBR ¢2B = qBL @3B —q3BR
@b >@BL  @A->g@AR  @B->quBN
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Die zugehdrige kontextsensitive Grammatik G = (V,%, P,S) enthdlt Vereinigung Schnitt Komplement Produkt Sternhiille
dann neben den Start- und A-Regeln
REG ja ja ja ja ja
S — A(a,a), A(b,b), (goa,a), (qob,b)  (S1-S4) DCFL nein nein ja nein nein
A > A(a,a), A(b,b), (goa,a), (qob,b) (A;-Ag) CFL ja nein nein ja ja
DCSL ja ja ja ja ja
fir jedes Zeichen c € I folgende F- und E-Regeln (wegen E ={qs}): CSL ja ja ja ja ja
RE ja ja nein ja ja

(c,a) > a und (c,b) > b (F1-Fig)
(qac,a) > a und (quc,b) > b (E1-Eg)

Daneben enthdlt P beispielsweise fiir die Anweisung q;;B - q4BN
folgende zwei N-Regeln:

(q3B7 a) g (Q4E7 a’)7 (Q3E, b) - (q4B7 b)

Fiir die Anweisung q1b - ¢ BL kommen fiir jedes d € I' die vier
L-Regeln

(da a)(qlba a) - (Q2d7 a)(Bv a)v (d’ b)(qlbv a) e (qua b)(B> a)
(d> a)(lea b) - (QZd, a)(Ba b)7 (d7 b)(lea b) - (q2d7 b)(B> b)

zu P hinzu und die Anweisung qoa — q1 AR bewirkt fir jedes d € I' die
Hinzunahme folgender vier R-Regeln:

(qoa> a)(dv CL) - (Av a')((hdv a)? (qoa7 a)(d7 b) - (A, a)(QId7 b)
(qoa, b)(d7 a) - (A7 b)(Qlda a)v (QOa7 b)(dv b) - (A’ b)(Q1d> b)
<

Folgende Tabelle gibt einen Uberblick iber die Abschlusseigenschaften
der Klassen REG, DCFL, CFL, DCSL, CSL und RE. In der Vorlesung
Komplexitatstheorie wird gezeigt, dass die Klasse CSL unter Komple-
mentbildung abgeschlossen ist. Im nédchsten Kapitel werden wir sehen,
dass die Klasse RE nicht unter Komplementbildung abgeschlossen ist.
Die iibrigen Abschlusseigenschaften in folgender Tabelle werden in
den Ubungen bewiesen.
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5 Entscheidbare und semi-entscheidbare
Sprachen

In diesem Kapitel beschaftigen wir uns mit der Klasse RE der re-
kursiv aufzahlbaren Sprachen, die identisch mit den Typ-0 Sprachen
sind. Wir werden eine Reihe von Charakterisierungen fiir diese Klasse
mittels Turingmaschinen beweisen, wodurch auch die Namensgebung
(rekursiv aufzahlbar) verstandlich wird. Eine wichtige Teilklasse von
RE bildet die Klasse REC der entscheidbaren (oder rekursiven) Spra-
chen, in der bereits alle kontextsensitiven Sprachen enthalten sind.

Definition 124.

a) Eine NTM M halt bei Fingabe x, falls alle Rechnungen von
M (x) eine endliche Linge haben. Falls M (x) nicht halt, schrei-
ben wir auch kurz M(x) =1.

b) Eine NTM M entscheidet eine Eingabe x, falls M(x) hdlt

oder eine Konfiguration mit einem Endzustand erreichen kann.
c) Eine Sprache L € ¥* heif$st entscheidbar, falls eine DTM M
mit L(M) = L existiert, die jede Fingabe x € ¥2* entscheidet.

d) Jede wvon einer DTM M erkannte Sprache heifst semi-
entscheidbar.

Bemerkung 125.

e Die von einer DTM M akzeptierte Sprache L(M) wird als semi-
entscheidbar bezeichnet, da M zwar alle (positiven) Eingaben
x € L entscheidet, aber mdglicherweise nicht alle (negativen)
Eingaben x € L.

o Wir werden spdter sehen, dass genau die Typ-0 Sprachen semi-
entscheidbar sind.

o1

Wir wenden uns nun der Berechnung von Funktionen zu.

Definition 126.  FEine k-DTM M = (Z,%,T,6, qo, ) berechnet
eine Funktion f:3* - T'*, falls M bei jeder Fingabe x € ¥* in einer
Konfiguration

K =(q,u1,a1,v1,... U, ag,vy) € Z x (I* x T x T*)*

mit ug, = f(x) hdlt (d.h. K, +* K und K hat keine Folgekonfiguration).
Hierfir sagen wir auch, M gibt bei Fingabe x das Wort f(x) aus und
schreiben M (x) = f(x). f heifit Turing-berechenbar (oder einfach
berechenbar), falls es eine k-DTM M mit M(x) = f(zx) fir alle
T € X qubt.

Um eine Funktion f:3* — I'* zu berechnen, muss M also bei jeder
Eingabe z den Funktionswert f(x) auf das k-te Band schreiben und
danach halten. Falls M nicht bei allen Eingaben hélt, berechnet M
keine totale, sondern eine partielle Funktion.

Definition 127.
a) Eine partielle Funktion hat die Form f:3* - T'* u{t}.
b) Fir f(x) =1 sagen wir auch f(x) ist undefiniert.
¢) Der Definitionsbereich (engl. domain) von f ist

dom(f)={xeX*| f(x)#1}.
d) Das Bild (engl. image) von f ist
img(f) = {f(x) [z € dom(f)}.

e) [ heifit total, falls dom(f) =X~ ist.

f) Eine DTM M = (Z,%,1,0,q0, E) berechnet eine partielle
Funktion f : X% - I u {1}, falls M(x) fir alle x € dom(f)
das Wort f(x) ausgibt und fir alle x ¢ dom(f) keine Ausgabe
berechnet (d.h. M(xz) =1).
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Aus historischen Griinden werden die berechenbaren Funktionen und
die entscheidbaren Sprachen auch rekursiv (engl. recursive) genannt.
Wir fassen die entscheidbaren Sprachen und die (partiellen) berechen-
baren Funktionen in folgenden Klassen zusammen:

REC = {L(M) | M ist eine DTM, die jede Eingabe entscheidet},
FREC = {f | f ist eine berechenbare (totale) Funktion},
FREC, = {f | f ist eine berechenbare partielle Funktion}.

Dann gilt FREC ¢ FREC, und
REG ¢ DCFL ¢ CFL ¢ DCSL ¢ CSL ¢ REC ¢ RE.

Wir wissen bereits, dass die Inklusionen REG ¢ DCFL ¢ CFL ¢ DCSL
echt sind. In diesem Abschnitt werden wir die Echtheit der Inklusion
REC ¢ RE zeigen. Dass CSL eine echte Teilklasse von REC ist, wird in
den Ubungen gezeigt.

Beispiel 128. Bezeichne x* den lexikografischen Nachfolger von
xeX*. Fir X ={0,1} ergeben sich beispielsweise folgende Werte:

x| 0 1 00 01 10 11 000
zt*(0 1 00 01 10 11 000 001

Betrachte die auf X* definierten partiellen Funktionen fi, fa, fs, f4 mit
fi(z) =0,
fo(x) =,
fa(x) =a*

Da diese vier partiellen Funktionen alle berechenbar sind, gehdren die
totalen Funktionen fi, f2, f3 zu FREC, wdhrend fy zu FREC, gehdrt.<

T, w=e,

Yy, x=y*.

und  fa(z) :{

Wie der néchste Satz zeigt, lasst sich jedes Entscheidungsproblem auf
ein funktionales Problem zurtickfiihren.
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Satz 129.

(i) Eine Sprache A € ¥* ist genau dann entscheidbar, wenn ihre
charakteristische Funktion y 4 : X* - {0,1} berechenbar ist.
Diese ist wie folgt definiert:

1, zeA,

xale) = {O, x ¢ A

(i) Eine Sprache A € ¥* ist genau dann semi-entscheidbar, falls
die partielle charakteristische Funktion {4 : 3* - {1,1}
berechenbar ist. Letztere ist wie folgt definiert:

1, xeA,

fale) = {T, x¢ A

Beweis. Siehe Ubungen. [

Definition 130. Eine Sprache A € ¥* heifit rekursiv aufzahlbar,
falls A entweder leer oder das Bild img(f) einer berechenbaren Funk-
tion f:T'* = X* fiir ein beliebiges Alphabet T" ist.

Satz 131. Folgende Eigenschaften sind dquivalent:
1. A ist semi-entscheidbar (d.h. A wird von einer DTM akzeptiert),
2. A wird von einer 1-DTM akzeptiert,
3. A wird von einer 1-NTM akzeptiert,
4. A ist vom Typ 0,
5. A wird von einer NTM akzeptiert,
6

. A ist rekursiv aufzdihlbar.

Beweis. 1) = 2): Sei M = (Z,%,1,,q, E') eine k-DTM, die A ak-
zeptiert. Wir konstruieren eine 1-DTM M’ = (Z', X, T, ¢', z, F)
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mit L(M") = A. M’ simuliert M, indem sie jede Konfiguration
K von M der Form

durch eine Konfiguration K’ folgender Form nachbildet:

BIRIGIGIE

Das heifit, M’ arbeitet mit dem Alphabet

I"=Tuu{alaeT})"

und erzeugt bei Eingabe x =z ...x, € ¥* zuerst die der Start-
konfiguration K, = (qo,&,%1,%2...%,,&,U,6,...,6,U,e) von M
bei Eingabe x entsprechende Konfiguration

il X2 Tn

ro_ l:l L L
Kx—% : A
O U U

Dann simuliert M’ jeweils einen Schritt von M durch folgende
Sequenz von Rechenschritten:

Zuerst geht M’ solange nach rechts, bis sie alle mit
" markierten Zeichen (z.B. ay,...,a;) gefunden hat.
Diese Zeichen speichert M’ zusammen mit dem aktuel-
len Zustand ¢ von M in ihrem Zustand. AnschlieBend
geht M’ wieder nach links und realisiert dabei die
durch 6(q,aq,...,a;) vorgegebene Anweisung von M.

Sobald M in einen Endzustand tibergeht, wechselt M’ ebenfalls
in einen Endzustand und hélt. Nun ist leicht zu sehen, dass
L(M")=L(M) ist.

2) = 3): Klar.

3) = 4) = 5): Diese beiden Implikationen lassen sich ganz dhnlich wie
die Charakterisierung der Typ-1 Sprachen durch LBAs zeigen
(siehe Ubungen).

5)=6): Sei M = (Z,%,1',0,q0,F) eine k-NTM, die eine Spra-
che A # @ akzeptiert. Kodieren wir eine Konfiguration K =
(q,u1,ay, vy, ..., ug, ax,vx) von M durch das Wort

code(K) = #q#uiFtar#v1# . .. FuFarFoe#

iitber dem Alphabet I' = Z uT U {#} und eine Rechnung
Ky + - + K; durch code(K)y)...code(K), so lassen sich die
Wérter von A durch folgende Funktion f:T* - X* aufzihlen
(dabei ist g ein beliebiges Wort in A):

y, « kodiert eine Rechnung Kj + - + K; von M
mit Ky = K, und K; € Ex (I xT'xT'*)k

Tg, sonst.

flx) =

Da f berechenbar ist, ist A = img(f) rekursiv aufzahlbar.
6) = 1): Sei f:['* > ¥* eine Funktion mit A = img(f) und sei M eine
k-DTM, die f berechnet. Dann akzeptiert folgende (k+1)-DTM
M'" die Sprache A.
M’ berechnet bei Eingabe x auf dem 2. Band der Rei-

he nach fiir alle Worter y € I'* den Wert f(y) durch
Simulation von M (y) und akzeptiert, sobald sie ein

y mit f(y) =z findet. -

Satz 132. A ist genau dann entscheidbar, wenn A und A semi-
entscheidbar sind, d.h. REC = RE n co-RE.
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Beweis. Sei A entscheidbar. Es ist leicht zu sehen, dass dann auch A
entscheidbar ist. Also sind dann A und A auch semi-entscheidbar. Fiir
die Riickrichtung seien fi, fo : I'* - 3* Turing-berechenbare Funk-
tionen mit img(f,) = A und img(f,) = A. Wir betrachten folgende
k-DTM M, die bei Eingabe x fiir jedes y € I'* die beiden Werte f(y)
und fo(y) bestimmt und im Fall

e fi(y) =z in einem Endzustand
e f2(y) = x in einem Nichtendzustand

hilt. Da jede Eingabe = entweder in img(f1) = A oder in img(f;) = A
enthalten ist, halt M bei allen Eingaben. ]

5.1 Unentscheidbarkeit des Halteproblems

Eine fiir die Programmuverifikation sehr wichtige Fragestellung ist,
ob ein gegebenes Programm bei allen Eingaben nach endlich vielen
Rechenschritten stoppt. In diesem Abschnitt werden wir zeigen, dass
es zur Losung dieses Problems keinen Algorithmus gibt, nicht einmal
dann, wenn wir die Eingabe fixieren. Damit wir einer Turingmaschine
eine andere Turingmaschine als Eingabe vorlegen konnen, miissen wir
eine geeignete Kodierung von Turingmaschinen vereinbaren (diese
wird auch Godelisierung genannt).

Sei M = (Z,%,1,0,q0, F) eine 1-DTM mit Zustandsmenge Z =
{q0,---,qm} (0.B.d.A. sei E = {q,,}) und Eingabealphabet ¥ =
{0,1,#}. Das Arbeitsalphabet sei I = {aq, ..., q;}, wobei wir 0.B.d.A.
ap = 0, a; = 1, ay = #, ag = U annehmen. Dann kénnen wir jede
Anweisung der Form ¢;a; — gya; D durch das Wort

Hhin(§)#bin(f)#bin (i) #bin(j ) #bp#

kodieren. Dabei ist bin(n) die Bindrdarstellung von n und by = 0,
by, = 1, sowie br = 10. M lésst sich nun als ein Wort iiber dem Alphabet
{0,1,#} kodieren, indem wir die Anweisungen von M in kodierter

o4

5.1 Unentscheidbarkeit des Halteproblems

Form auflisten. Kodieren wir die Zeichen 0,1, # binér (z.B. 0 ~ 00,
1~ 11, # ~ 10), so gelangen wir zu einer Bindrkodierung wy; von M.

Die Binarzahl w); wird auch die Godel-Nummer von M genannt
(tatsdchlich kodierte Kurt Godel Turingmaschinen durch natiirliche
Zahlen und nicht durch Binarstrings). Die Maschine M,, ist durch die
Angabe von w bis auf die Benennung ihrer Zustande und Arbeitszei-
chen eindeutig bestimmt. Ganz analog lassen sich auch DTMs mit
einer beliebigen Anzahl von Bandern (sowie NTMs, Konfigurationen
oder Rechnungen von TMs) kodieren.

Umgekehrt kénnen wir jedem Binérstring w € {0,1}* eine DTM M,,
wie folgt zuordnen:

M, =

M, falls eine DTM M mit wy; = w existiert,
My, sonst.

Hierbei ist M eine beliebige DTM.

Definition 133.

a) Das Halteproblem ist die Sprache wy|O0 0 1 -
wy|1 1 1 -
w,x €{0,1}* und die DTM : Do
H — ) )
{w#xMw hdlt bei Eingabe x }
. ) XK‘
b) Das spezielle Halteproblem ist
w1 1
die DTM M Wa 0
K= 0,1}~ v
{w 10,1} hdlt bei Eingabe w} ws 1

Der Werteverlauf der charakteristischen Funktion yx von K stimmt
also mit der Diagonalen der als Matrix dargestellten charakteristischen
Funktion xy von H tberein.

Satz 134. K € RE \ co-RE.
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Beweis. Wir zeigen zuerst K € RE. Sei wy die Kodierung einer DTM,
die bei jeder Eingabe (sofort) hélt und betrachte die Funktion

w, x ist Kodierung einer haltenden Berechnung einer
DTM M, bei Eingabe w,

wo, sonst.

fx) =

Da f berechenbar und img(f) = K ist, folgt K € RE. Um zu zeigen,
dass K nicht semi-entscheidbar ist, fiihren wir die Annahme K € RE
auf einen Widerspruch.

Wir erkldren zuerst die Beweisidee. Da K € RE ist, gibt es in der
Matrixdarstellung von xp eine Zeile w (bzw. eine DTM M = M,,),
die mit der Diagonalen der Matrix tibereinstimmt. Beispielsweise kon-
nen wir fiir M eine DTM wahlen, die die partielle charakteristische
Funktion yx von K berechnet. Wére auch K € RE, so wiirde eine
DTM M" existieren, so dass die zugehorige Zeile in der Matrix invers
zur Zeile von M und damit zur Diagonalen ist. Beispielsweise konnen
wir fiir M’ eine DTM wiéhlen, die die partielle charakteristische Funk-
tion ¥z von K berechnet. Da in keiner Matrix eine Zeile existieren
kann, die invers zur Diagonalen ist, fithrt dies auf den gewiinschten
Widerspruch.

Nehmen wir also an, die Sprache

K = {w | M,(w) hélt nicht} (%) XH |71 T2 X3 -
w1l 1 0 -
ware semi-entscheidbar. Dann existiert eine wl0 0 1 -
DTM M, die die _partielle charakteristische will 11
Funktion Y j; von K berechnet, d.h. es gilt S B
My (w) hillt = weK (%)
w0 1 0 -

Fir die Kodierung w’ von M, folgt dann
aber

5.1 Unentscheidbarkeit des Halteproblems

() (+%) N
w' e K < M, (w") hdlt nicht < w’'¢ K 4 (Widerspruch!) g

Die Methode in obigem Beweis wird als Diagonalisierung bezeich-
net. Mit dieser Beweistechnik lasst sich auch eine entscheidbare Spra-
che definieren, die sich von jeder kontextsensitiven Sprache unterschei-
det (sieche Ubungen).

Korollar 135. REC ¢ RE.

Beweis. Klar da K € RE \ REC. [

Definition 136.

a) Fine Sprache A ¢ ¥* heifit auf B ¢ I'* reduzierbar (kurz:
A < B), falls eine berechenbare Funktion f :3* - I'* ex., so
dass gilt:

VeeX*:xe A< f(xr)eB.

b) Eine Sprachklasse C heifit unter < abgeschlossen, wenn fir
alle Sprachen A, B gilt:

A<BABeC= AcCC.

c) Eine Sprache B heifst hart fir eine Sprachklasse C (kurz: C-
hart oder C-schwer), falls jede Sprache A € C auf B reduzierbar
1st:

VAeC: A< B.
d) FEine C-harte Sprache B, die zu C gehort, heifst C-vollstandig.

Beispiel 137. Es gilt K < H mittels [ : w » w#w, da fir alle
we{0,1}* gilt:

we K < M, ist eine DTM, die bei Eingabe w halt
< wH#Hw e H.

%)
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Das Halteproblem H ist sogar RE-hart, da sich jede semi-entscheidbare
Sprache A auf H reduzieren lisst. Die Reduktion A < H leistet bei-
spielsweise die Funktion x — w#x, wobei w die Kodierung einer
DTM M, ist, die die partielle charakteristische Funktion X4 von A
berechnet. <

Satz 138. Die Klasse REC ist unter < abgeschlossen.

Beweis. Gelte A < B mittels f und sei M eine DTM, die x g berechnet.
Betrachte folgende DTM M’:

o M’ berechnet bei Eingabe z zuerst den Wert f(z) und
o simuliert dann M bei Eingabe f(x).

Wegen
reA< f(r)eB
folgt
M'(x) = M(f(x)) = xB(f(2)) = xa(z).
Also berechnet M’ die Funktion y 4, d.h. A € REC. ]

Der Abschluss von RE unter < folgt analog (siehe Ubungen).

Korollar 139.

1. A<BAA¢REC= B¢REC,
2. A<BAA¢RE= B{¢RE.

Beweis. Aus der Annahme, dass B entscheidbar (bzw. semi-
entscheidbar) ist, folgt wegen A < B, dass dies auch auf A zutrifft
(Widerspruch). m

Wegen K < H iibertragt sich die Unentscheidbarkeit von K auf H.

Korollar 140. H ¢ REC.

o6

5.2 Der Satz von Rice

Definition 141. Das Halteproblem

bei leerem Band ist die Sprache Xy ‘ n (=¢)
w1 1
die DTM M., hdlt 1
Hy = 1} v W2
0 {w 10,1} bei Eingabe & }

ws 0

Satz 142. Hg ist RE-vollstindig.

Beweis. Da die Funktion w ~ w+#¢ die Sprache Hy auf H reduziert
und da H € RE ist, folgt Hy € RE.

Fir den Beweis, dass Hy RE-hart ist sei A € RE beliebig und sei w die
Kodierung einer DTM, die x4 berechnet. Um A auf H, zu reduzieren,
transformieren wir x € {0,1}* in die Kodierung w, einer DTM M,
die zunéchst ihre Eingabe durch x ersetzt und dann M, (z) simuliert.
Dann gilt

reAe w, € Hy

und somit A < Hy mittels der Reduktionsfunktion x — w,. [

Insbesondere folgt also K < Hy, d.h. Hy ist unentscheidbar.

5.2 Der Satz von Rice

Frage. Kann man einer beliebig vorgegebenen T'M ansehen, ob die
von ihr berechnete Funktion (bzw. die von ihr akzeptierte Sprache)
eine gewisse Figenschaft hat? Kann man beispielsweise entscheiden,
ob eine gegebene DTM eine totale Funktion berechnet?

Antwort. Nur dann, wenn die fragliche Eigenschaft trivial ist (d.h.
keine oder jede berechenbare Funktion hat diese Eigenschaft).
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Definition 143. Zu einer Klasse F von Funktionen definieren wir
die Sprache

Ly = {w €{0,1}* |die DTM M,, berechnet eine Funktion in ]:}.
Die Eigenschaft F heif$t trivial, wenn Ly = @ oder Ly ={0,1}* ist.

Der Satz von Rice besagt, dass Lz nur fir triviale Eigenschaften
entscheidbar ist:

Lf¢®ALf¢{0,1}*=>Lf¢REC.

Satz 144 (Satz von Rice).
Fiir jede nicht triviale Eigenschaft F ist Lx unentscheidbar.

Beweis. Wir reduzieren Hy auf Lz (oder auf Lz). Die Idee besteht
darin, fiir eine gegebene DTM M,, eine DTM M, zu konstruieren
mit

w € Hy < M, berechnet (k)eine Funktion in F.

Hierzu lassen wir M, bei Eingabe z zunachst einmal die DTM M,
bei Eingabe e simulieren. Falls w ¢ Hy ist, berechnet M, also die
iberall undefinierte Funktion u mit u(x) =1 fir alle x € X*.

Fiir das Folgende nehmen wir 0.B.d.A. an, dass u ¢ F ist. (Andernfalls
konnen wir F durch die komplementére Eigenschaft —F ersetzen.
Wegen L_z = Ly ist Ly genau dann unentscheidbar, wenn L_z un-
entscheidbar ist.)

Damit die Reduktion gelingt, miissen wir nur noch dafiir sorgen, dass
M, im Fall w e Hy eine Funktion f € F berechnet.

Da F nicht trivial ist, gibt es eine DTM My, die eine partiel-
le Funktion f € F berechnet. Betrachte die Reduktionsfunktion
h:{0,1}* - {0,1}* mit

h(w) = w', wobeiw’ die Kodierung einer DTM ist, die bei
Eingabe z zunichst die DTM M, (¢) simuliert
und im Fall, dass M,, halt, mit der Simulation
von My (x) fortféhrt.
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5.2 Der Satz von Rice

Dann ist h:w ~ w’ eine totale berechenbare Funktion und es gilt

w e Hy = M, berechnet [ = w' e Lg,
w ¢ Hy = M, berechnet u = w' ¢ L.

Dies zeigt, dass h das Problem H, auf Lz reduziert, und da H
unentscheidbar ist, muss auch L unentscheidbar sein. [ |

Beispiel 145. Die Sprache
L={we{0,1}*| M,(0") =0"*" fiir alle n >0}

ist unentscheidbar. Dies folgt aus dem Satz von Rice, da die Eigen-
schaft
F={f1f(0")=0""" fiir alle n > 0}

nicht trivial und L = L ist. F ist nicht trivial, da z.B. die berechenbare
partielle Funktion

f(x) = {0

1, sonst

x=0" fiir einn >0

in F und die konstante Funktion g(x) =0 auf {0}* nicht in F enthal-
ten ist. <

In den Ubungen wird folgende Variante des Satzes von Rice fiir
Spracheigenschaften bewiesen, wonach wir einer gegebenen TM nicht
ansehen konnen, ob die von ihr akzeptierte Sprache eine gewisse
Eigenschaft hat oder nicht.

Satz 146. Fir eine beliebige Sprachklasse S sei
Ls={we{0,1}* | L(M,) €S}.

Dann ist Ls unentscheidbar, aufer wenn Lg € {@,{0,1}*} ist.
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5.3 Das Postsche Korrespondenzproblem

Definition 147. Sei ¥ ein beliebiges Alphabet mit # ¢ 3. Das Post-

sche Korrespondenzproblem tiber Y. (kurz PCPs) ist wie folgt

definiert.

Gegeben: k Paare (x1,y1),...,(Tk, yx) von Wortern iber .

Gefragt: Gibt es eine Folge a = (iy,...,i,), n > 1, von Indizes
iy e{l, ...k} mit xiy . oox, = Yiy o Y !

Das modifizierte PCP iiber ¥ (kurz MPCPs ) fragt nach einer

Losung o = (i, ... ,0,) mit iy = 1.

xlxk)

Wir notieren eine PCP-Instanz meist in Form einer Matrix (y1 "

und kodieren sie durch das Wort z1#y1# . . . #x#yx.
Beispiel 148. Die Instanz I = (7”1 2 x3) = ( o ab Caa) besitzt wegen

Y1 Y2 Y3 aca be aa

T1T3T2x3 = acaaabcaa
Y1Y3Yays = acaaabcaa

die PCP-Losung o = (1,3,2,3), die auch eine MPCP-Lésung ist. <
Lemma 149. Fir jedes Alphabet 3 gilt PCPy < PCP 4.

Beweis. Sei ¥ ={ay,...,a,}. Fir ein Zeichen a; € 3 sei ¢(a;) = 01!
und fir ein Wort w = wy...w, € X* mit w; € 3 sei c(w) =
c(wy)...c(wy,). Dann folgt PCPy < PCPy,; mittels der Reduk-
tionsfunktion

Iy (xl .. xk) . (c(xl) . c(mk))

Y1 Yk c(y1) - c(yr) -

020 12 00
lente PCP{a,b}—Instanz f(I) - (aa%ba (Z)Zl;)b ab(i):a)'

Im Folgenden lassen wir im Fall ¥ = {a,b} den Index weg und schrei-
ben einfach PCP (bzw. MPCP).

[ reduziert z.B. die PCP g 2)-Instanz I = ( 0 o1 200) auf die dquiva-

o8

5.3 Das Postsche Korrespondenzproblem

Satz 150. MPCP < PCP.

Beweis. Wir zeigen MPCP < PCPy, fir ¥ = {a,b,(,|,)}. Wegen
PCPy < PCP folgt hieraus MPCP < PCP. Fiir ein Wort w =
Wy ... W, Sei

<~ «— — —
w w w w

(wr. . Jwn|  (wi]. . Jw, | w, wr] . wy

Wir reduzieren MPCP mittels folgender Funktion f auf PCPy:
Ty T Ty Ty Ty )
f: = «— — *
Yi---Yn YLy Uk |)
Dabei nehmen wir an, dass (z;,;) # (£,¢) ist, da wir diese Paare im

Fall i > 1 einfach weglassen und im Fall i =1 f(I) = (%) setzen konnen.
Folglich enthélt auch f(7) nicht das Paar (e,¢). Beispielsweise ist

aa b babbb) ( (ala| ala| b| blalb| bJb] )
aabbb a b)) \(alalb |alalb |60 |a |b ]))

Da jede MPCP-Losung « = (1,4a, .. .,14,) fir I auf eine PCP-Losung
o =(1ia+1,... 0, + 1,k +2) fur f(I) fithrt, folgt

[ e MPCP = f(I) e PCPs.

Fiir die umgekehrte Implikation sei o/ = (i1, ... ,4,) eine PCP-Losung
T1 XTq - Tk
pay=(2 e,
Yi YUk |)
Dann muss i¢; = 1 und 4, = k + 2 sein, da das Losungswort mit (

beginnen und mit ) enden muss (und f(7) nicht das Paar (e,¢) ent-

hélt). Wahlen wir o/ von minimaler Lange, so ist 7; € {2,...,k + 1}
fir y=2,...,n—1. Dann ist aber

a = (il,ig - 1,. .. ain—l - 1)
eine MPCP-Losung fiir 1. [ |
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Satz 151. PCP ist RE-vollstindig und damit unentscheidbar.

Beweis. Es ist leicht zu sehen, dass PCP € RE ist. Um zu zeigen,
dass PCP RE-hart ist, sei A eine beliebige Sprache in RE und sei
G =(V,%,P,S) eine Typ-0 Grammatik fiir A. Sei '=V uXu{(,|,)}.
Dann konnen wir eine Eingabe w € X* in eine MPCPr-Instanz f(w) =
(:‘;’:) transformieren, so dass « = (iy, . .., 4,) genau dann eine Losung
fur f(w) ist, wenn das zugehorige Losungswort x, ...x; =Yi, ---VYi,
eine Ableitung von w in G kodiert. Dies erreichen wir, indem wir

f(w) aus folgenden Wortpaaren bilden:

L ((,(]9), sotartpaar”
2. fur jede Regel | - r in P: (I,7), ,Ableitungspaare*
3. fur alle a e Vu X u{|}: (¢,a),

4. sowie das Paar (w]),)) »Abschlusspaar*

Nun lasst sich leicht aus einer Ableitung S = ag = - = «a,, = w von
w in G eine MPCP-Losung mit dem Loésungswort

(laolar]. . .[om])

angeben. Zudem lasst sich auch umgekehrt aus jeder MPCP-Loésung
eine Ableitung von w in G gewinnen, womit

weL(M) < f(w) e MPCPr

gezeigt ist. [

Beispiel 152. Betrachte die Grammatik G = ({S},{a,b},{S -
aSbS,e},S) und die Ableitung

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb
Die MPCP-Instanz f(aabb) enthdlt dann die acht Wortpaare

( S S aabb|) )

f(aabb)z( (1S aShs e )

99

5.4 Weitere Unentscheidbarkeitsresultate

Obiger Ableitung entspricht dann folgendes Losungswort fir f(aabb):

(|S]aS S S S|aabb|)
(1S]aSbS|aaSbs )

Das kiirzeste MPCP-Losungswort fiir f(aabb) ist

(| S]aSbS|aaSbSh|aabdbl|)
(1S]aSbS|aaSbsS )

Dieses entspricht der ,parallelisierten® Ableitung

S = aSbS =2 aaSbSb =2 aabb

5.4 Weitere Unentscheidbarkeitsresultate

In diesem Abschnitt leiten wir aus der Unentscheidbarkeit des Post-
schen Korrespondenzproblems eine Reihe von weiteren Unentscheid-
barkeitsresultaten her. Wir zeigen zuerst, dass das Schnittproblem
fiir kontextfreie Grammatiken unentscheidbar ist.

Schnittproblem fiir kontextfreie Grammatiken

Gegeben: Zwei kontextfreie Grammatiken G und Gs.
Gefragt: Ist L(Gh) n L(Gs) # @7

Satz 153. Das Schnittproblem fiir kontextfreie Grammatiken ist RE-
vollstandig.

Beweis. Es ist leicht zu sehen, dass das Problem semi-entscheidbar
ist. Um PCP auf dieses Problem zu reduzieren, betrachten wir fir
eine Folge s = (x1,...,x) von Strings z; € {a,b}* die Sprache

Ls = {znzl#xhxln | 1 Sn,l Sil,-.-,in Sk‘}
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Ly wird von der Grammatik G, = ({A},{1,...,k, #,a,b}, Ps, A) er-
zeugt mit

P, A—> 1Az, ... kAx,, 1#xq, ... k#xy

Zu einer PCP-Instanz I = (’“'::"”:) bilden wir das Paar (G, G;), wobei

Y1y

s=(z1,...,x,) und t = (yl,... ., Y) ist. Dann ist L(Gg) n L(Gy) die
Sprache

{in . iiHay o, | L<n, 2y oo 2, = Yiy - Y, -
Folglich ist « = (iy,...,4,) genau dann eine Losung fir I, wenn
In . 012y ...y, € L(Gy) 0 L(Gy) ist. Also vermittelt f: 1+~ (Gg,Gy)
eine Reduktion von PCP auf das Schnittproblem fiir CFL. ]

Beispiel 154. Die PCP-Instanz

7o ($1 T x3) _ ( a  aab abbaa)
\yroys)  \aabba ababb  aa
wird auf das Grammatikpaar (Gs, Gy) mit folgenden Regeln reduziert:

P,: A— 1Aa, 2Aaab, 3Aabbaa,
1#a, 24#aab, 3#abbaa,

P,: A - 1Aaabba, 2Aababb, 3Aaa,
1#aabba, 24ababb, 3#aa.

Der PCP-Losung o = (1,3,2,3) entspricht dann das Wort

3231#x1x30003 = 3231#aabbaaaababbaa

3231#aabbaaaababbaa = 3231#y1y3y2Ys

in L(G) n L(G,). 4
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5.4 Weitere Unentscheidbarkeitsresultate

Des weiteren erhalten wir die Unentscheidbarkeit des Schnitt- und
des Inklusionsproblems fiir DPDAs.

Inklusionsproblem fiir DPDAs

Gegeben: Zwei DPDAs M; und Ms.
Gefragt: Ist L(M;) c L(Ms)?

Korollar 155.
(i) Das Schnittproblem fiir DPDAs ist RE-vollstindig.
(i1) Das Inklusionsproblem fiir DPDAs ist co-RE-vollstindig.

Korollar 155 wird in den Ubungen bewiesen. Die Idee dabei ist, die
kontextfreie Grammatik G, im Beweis von Satz 153 in DPDAs M,
und M, zu iiberfithren mit L(M,) = L(G,) und L(M,) = L(G,).
Schliellich ergeben sich fiir CFL noch folgende Unentscheidbarkeitsre-
sultate.

Korollar 156. Fiir kontextfreie Grammatiken sind folgende Frage-
stellungen unentscheidbar:

(i) Ist L(G) = %*?
(iii) Ist G mehrdeutig?

(Ausschopfungsproblem,)
(Aquivalenzproblem,)
(Mehrdeutigkeitsproblem,)

Beweis.

(i) Wir reduzieren das Komplement von PCP auf das Ausschép-
fungsproblem fiir CFL. Es gilt

I¢PCP <= LynL;=@ < L,uL,=%",

wobei L, und L; die im Beweis von Satz 153 definierten Spra-
chen sind. Diese sind sogar in DCFL und in den Ubungen wird
gezeigt, dass sich DLBAs (und damit auch kontextfreie Gram-
matiken) fiir L, und L, aus I berechnen lassen. Daher vermittelt
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die Funktion f: I~ G, wobei G eine kontextfreie Grammatik
mit

L(G) = Es @] Zt
ist, die gewlinschte Reduktion.

(ii) Wir zeigen, dass das Aquivalenzproblem fiir CFL ebenfalls co-RE-
vollstandig ist, indem wir das Ausschopfungsproblem fur CFL
darauf reduzieren. Dies leistet beispielsweise die Funktion

[:G (G,Gau),

wobei G eine kontextfreie Grammatik mit L(Gyy) = X* ist.

(iii) Schliefflich zeigen wir, dass das Mehrdeutigkeitsproblem RE-
vollstandig ist, indem wir PCP darauf reduzieren. Betrachte die
Funktion f: (mlx’“) ~ G mit

Y1.--Yk
G={SAB}{1,....k,#,a,b},Pu{S— A S — B},S9)
und den Regeln

P: A—1Axy, ... kAxy, 142, ... k#xy,
B~ 1Bys,...,kByy, 14, ... k.

Da alle von A oder B ausgehenden Ableitungen eindeutig sind,
ist G genau dann mehrdeutig, wenn es ein Wort w € L(G) gibt
mit

S=A="w und S= B="w.

Wie wir im Beweis der Unentscheidbarkeit des Schnittproblems
fiir CFL gesehen haben, ist dies genau dann der Fall, wenn die
PCP-Instanz I = (') eine PCP-Losung hat.

Y1
|

Als weitere Folgerung erhalten wir die Unentscheidbarkeit des Leer-
heitsproblems fiir DLBAs.
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5.4 Weitere Unentscheidbarkeitsresultate

Leerheitsproblem fiir DLBAs

Gegeben: Ein DLBA M.
Gefragt: Ist L(M) = @7

Satz 157. Das Leerheitsproblem fiir DLBAs ist co-RE-vollstindig.

Beweis. Wir reduzieren PCP auf das Leerheitsproblem fiir DLBAs.

Hierzu transformieren wir eine PCP-Instanz [ = (2;’:) in einen
DLBA M fiur die Sprache L, n Ly, wobei s = (z1,...,7;) und
t=(y1,...,ys) ist (sieche Ubungen). Dann gilt [ ¢ PCP < L(M) = @.

]

Dagegen ist es nicht schwer, fiir eine kontextfreie Grammatik G zu
entscheiden, ob mindestens ein Wort in GG ableitbar ist. Ebenso ist es
moglich, fiir eine kontextsensitive Grammatik G' und ein Wort = zu
entscheiden, ob x in G ableitbar ist.

Satz 158.
(i) Das Leerheitsproblem fiir kfr. Grammatiken ist entscheidbar.

(it) Das Wortproblem fiir kontextsensitive Grammatiken ist ent-
scheidbar.

Beweis. Siehe Ubungen. [

Die folgende Tabelle gibt an, welche Probleme fiir Sprachen in den
verschiedenen Stufen der Chomsky-Hierarchie entscheidbar sind.
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Wort- Leerheits- Aus-  Aquivalenz- Inklusions- Schnitt-
problem problem schépfung problem  problem  problem

xel? L=@? L=%*7 L1=Ly7 LicLy LinLe#@7?
REG ja ja ja ja ja ja
DCFL ja ja ja ja® nein nein
CFL ja ja nein nein nein nein
DCSL ja nein nein nein nein nein
CSL ja nein nein nein nein nein
RE nein nein nein nein nein nein

“Bewiesen in 1997 von Géraud Sénizergues (Univ. Bordeaux).

5.5 GOTO-Berechenbarkeit

In diesem Abschnitt fiihren wir das Rechenmodell der Registerma-
schine (random access machine, RAM) ein und zeigen, dass es die
gleiche Rechenstérke wie das Modell der Turingmaschine besitzt. Das
Modell der RAM ist an die realen Rechenmaschinen angelehnt, die
iiber einen Prozessor mit einem vorgegebenen Befehlssatz verfiigen.

O:I()

Programm
1: II
2: Ig
: ro
m: I,
&
v Speicher
I
Steuereinheit E‘
Die Registermaschine
o fiihrt ein Programm P = I, ..., [, aus, das aus einer endlichen

Folge von Befehlen (instructions) I; besteht,
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5.5 GOTO-Berechenbarkeit

o hat einen Befehlszahler (instruction counter) IC, der die Num-
mer des néachsten Befehls angibt (zu Beginn ist /C' = 0),

o verfiigt tiber einen frei adressierbaren Speicher (random access
memory) mit unendlich vielen Speicherzellen (Registern) r;, die
beliebig grofle natiirliche Zahlen aufnehmen koénnen.

Auf Registermaschinen lassen sich GOTO-Programme ausfiihren,
die tiber folgenden Befehlssatz verfiigen (i, j,c € N):

Befehl Semantik

Tii=Tj+C setzt Register r; auf den Wert r; + ¢
ri=Ty e C setzt Register r; auf max(0,r; —¢)
GOTO ; setzt den Befehlszahler /C' auf j

IF r;,=c THEN GOTO ;j setzt IC auf j, falls r; = ¢ ist

HALT beendet die Programmausfiithrung

Falls nichts anderes angegeben ist, wird zudem IC' auf den Wert 1C'+1
gesetzt.

Eine partielle Funktion f : N* > Nu{t} heifit GOTO-berechenbar,
falls es ein GOTO-Programm P = (I, ..., I, ) mit folgender Eigen-
schaft gibt:

Wird P auf einer RAM mit den Werten r; =n; furi=1,...,k, sowie

IC=0undr;=0firi=0,k+1,k+2,... gestartet, so gilt:

., ng) € dom(f) ist, und

o falls P halt, hat ry, nach Beendigung von P den Wert
flny,....ng).

Beispiel 159. Folgendes GOTO-Programm berechnet die Funktion
f(xy) =zy:

o P hilt genau dann, wenn (ng, ..

o IFr;=0THEN GOTO 4

1 orp=rp =1
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2 Toi=TotTy
3 GOTOO
1+ HALT

Dabei ist der Befehl rq := ro+ry in Zeile 2 zwar unzuldssig. Wir kénnen
ihn jedoch durch den Befehl GOTO 5 ersetzen und folgende Befehle

hinzufigen.

5 Tr3i=To

¢ IFrs=0THEN GOTO 3
7 rgi=rg=1

8 roi=ro+1

9 GOTOG6

d

Um mit einem GOTO-Programm auch Wortfunktionen berechnen zu
konnen, miissen wir Worter numerisch repréasentieren.

Sei 3 = {ag,...,am_1} ein Alphabet. Dann kénnen wir jedes Wort
T =ay...a; €X* durch eine nattrliche Zahl numy(w) kodieren:

mt -1

n-1 n
nums(z) =Y, m! + Y i;m"7 = + (i - .
= m-1

Cin)m.

Da die Abbildung numsy, : 3* — N bijektiv ist, konnen wir umgekehrt
jede natiirliche Zahl n durch das Wort strs(n) = numy '(n) kodieren.

Fiir das Alphabet X = {a,b,c} erhalten wir beispielsweise folgende
Kodierung;:

W eabcaa ab ac ba bb be ca ¢b cc aaa ...
numg(w)|0 123 4 5 6 7 8 9 10 11 12 13

Ist ¥ = {0,1}, so lassen wir den Index weg und schreiben einfach
num und str anstelle von nums, und strs. Zudem erweitern wir die
Kodierungsfunktion str : N — {0,1} zu einer Kodierungsfunktion
stry, : NF > {0, 1, #} wie folgt:

) = str(ny) ... #str(ng).

stre(ng, ...
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Nun koénnen wir eine partielle Funktion f : N* - Nu{t} durch folgende
partielle Wortfunktion f:{0,1,#}* - {0,1}* u {1} reprasentieren:

Fw) = {Str(n),

T, sonst.

w = stri(ny,...,ng) und f(nq,...,n,) =neN,

Es ist klar, dass f durch f eindeutig bestimmt ist. Wir nennen f die
numerische Reprdsentation von f.

Satz 160. Sei f die numerische Reprdisentation einer partiellen Funk-
tion f Dann ist f genau dann GOTO-berechenbar, wenn f berechenbar
15t.

Beweis. Wir zeigen zuerst die Simulation eines GOTO-Programms
durch eine DTM. Sei f eine partielle Funktion, deren numerische
Reprasentation f von einem GOTO-Programm P auf einer RAM R
berechnet wird. Dann existiert eine Zahl k', so dass P nur Register r;
mit ¢ < k" benutzt. Daher lasst sich eine Konfiguration von R durch
Angabe der Inhalte des Befehlszahlers IC' und der Register rg, ..., 7w
beschreiben. Wir konstruieren eine (k' +2)-DTM M, die

e den Inhalt von IC' in ihrem Zustand,
k" und

o den Wert von 7y auf dem Ausgabeband k' + 2 speichert.

o die Registerwerte 71, ..., auf den Bandern 1, ...

Ein Registerwert r; wird hierbei in der Form str(r;) gespeichert. Band
k' +1 wird zur Ausfithrung von Hilfsberechnungen benutzt.

) das Wort
,ny) € dom(f) ist, und

Die Aufgabe von M ist es, bei Eingabe w = stry(nq, ..., ny
str(f(ny,...,ng)) auszugeben, wenn (ng, ...
andernfalls nicht zu halten.

Zuerst kopiert M die Teilworter str(n;) fir i = 2,... k auf das i-te
Band und l6scht auf dem 1. Band alle Eingabezeichen bis auf str(n;).
Da das leere Wort den Wert num(e) = 0 kodiert, sind nun auf den
Béndern 1,..., k" und auf Band k’'+2 die der Startkonfiguration von R
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bei Eingabe (nq,...,n;) entsprechenden Registerinhalte gespeichert.
Danach fithrt M das Programm P Befehl fiir Befehl aus.

Es ist leicht zu sehen, dass sich jeder Befehl I in P durch eine Folge
von Anweisungen realisieren lasst, die die auf den Béndern gespei-
cherten Registerinhalte bzw. den im Zustand von M gespeicherten
Wert von IC' entsprechend modifizieren. Sobald P stoppt, hélt auch
M und gibt das Wort str(rg) = str(f(ni,...,nx)) aus.

Nun betrachten wir die Simulation einer DTM durch ein GOTO-
Programm. Sei f : N¥ - Nu {1} eine partielle Funktion und sei
M =(Z,%,T,6,q0, F) eine DTM mit Eingabealphabet ¥ = {0, 1, #},
die die zugehorige Wortfunktion f: 2* — {0,1}* U {1} berechnet. M
gibt also bei Eingabe stri(ni,...,nx) das Wort str(f(ny,...,ng))
aus, falls f(ni,...,n;) definiert ist, und héalt andernfalls nicht.

Wir konstruieren ein GOTO-Programm P, das bei Eingabe
(n1,...,n;) die DTM M bei Eingabe w = stri(ny,...,n;) simuliert
und im Fall, dass M (w) hilt, den Wert num(M (w)) = f(ny,...,ng)
berechnet. Wir konnen annehmen, dass M eine 1-DTM ist. Sei
Z ={q0,---,q} und T = {aqg,...,an_1}, wobei wir annehmen, dass
ap=U, a; =0, as =1 und az = # ist.
Eine Konfiguration K = ugv von M wird wie folgt in den Registern
70,71, 72 gespeichert. Sei u =a;, ...q;, und v =aj, .. Laj .

o 70="(i1---Tn)m,

e "= ia

* T2 = (]n’ . jl)m
P besteht aus 3 Programmteilen P = P, P», P;. P, berechnet in Re-
gister ro die Zahl (4, ...j1)m, wobei (ji,...,7,) die Indexfolge der
Zeichen von stri(nq,...,n) = aj, ...a;, ist. Die iibrigen Register setzt
Py auf den Wert 0. P; stellt also die Startkonfiguration K, = gow von
M bei Eingabe w = stry(ny,...,n;) in den Registern rg, ry, 5 her.
AnschlieBlend fiithrt P, eine schrittweise Simulation von M aus. Hier-
zu iberfiihrt P, solange die in rg,ry,ry gespeicherte Konfiguration
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von M in die zugehorige Nachfolgekonfiguration, bis M halt. Das
Programmstiick P, hat die Form

My T3 =19 MOD m
IF r1=0A7r3=0 THEN GOTO MO,O

IFry=rars=m-1THEN GOTO M, ,,_;

Die Befehle ab Position M; ; hdngen von §(g¢;,a;) ab. Wir betrachten
exemplarisch den Fall 6(¢;,a;) = {(gir,aj,L)}:

M Ty =4

r9 =79 DIV m
roi=rom+7j’

ro :=1r9m + (rg MOD m)
ro:=19 DIVm

GOTO M,

Die hierbei benutzten Makrobefehle r3 := ro MOD m, ry := 79 DIV
m etc. konnen leicht durch GOTO-Programmstiicke ersetzt werden
(siche Ubungen).

Im Fall §(¢;,a;) = @ erfolgt ein Sprung an den Beginn von P;. P;
transformiert den Inhalt rg = (j; ... j,)m von Register rq in die Zahl
num(aj, ...a;, ) und halt. [ |

5.6 WHILE- und LOOP-Berechenbarkeit

Die Syntax von WHILE-Programmen ist induktiv wie folgt defi-
niert (7, j,c € N):
o Jede Wertzuweisung der Form z; := z; + ¢ oder x; := x; =~ ¢ ist
ein WHILE-Programm.
o Falls P und (Q WHILE-Programme sind, so auch
— P;@Q und
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— IF z; =c THEN P ELSE Q END

— WHILE z; + c DO P END
Die Syntax von LOOP-Programmen ist genauso definiert, nur
dass Schleifen der Form LOOP x; DO P END an die Stelle von
WHILE-Schleifen treten. Die Semantik von WHILE-Programmen ist
selbsterkldarend. Eine LOOP-Schleife LOOP z; DO P END wird sooft

ausgefiithrt, wie der Wert von x; zu Beginn der Schleife angibt.

Eine partielle Funktion f : N¢ — N u {t} heiit WHILE-
berechenbar, falls es ein WHILE-Programm P mit folgender Eigen-
schaft gibt: Wird P mit den Werten x; =n; fir i =1,... k gestartet,
so gilt:
o P hilt genau dann, wenn (nq,...,ng) € dom(f) ist, und
o falls P hélt, hat xy; nach Beendigung von P den Wert
flng, ... ng).

Die LOOP-Berechenbarkeit von f ist entsprechend definiert.

Beispiel 161. Die Funktion f(x1,22) = x129 wird von dem WHILE-
Programm

WHILE z; + 0 DO

X = Xg + Ta;

ryi=x1 =1
END
sowie von folgendem LOQOP-Programm berechnet:
LOOP z; DO
To:=Tog+ To
END

<

Als néchstes beweisen wir die Aquivalenz von WHILE- und GOTO-
Berechenbarkeit.

Satz 162. FEine partielle Funktion f:NF - Nu {1} ist genau dann
GOTO-berechenbar, wenn sie WHILE-berechenbar ist.
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Beweis. Sei P ein WHILE-Programm, das f berechnet. Wir iiberset-
zen P wie folgt in ein dquivalentes GOTO-Programm P’. P’ speichert
den Variablenwert x; im Register r;. Damit lassen sich alle Wertzuwei-
sungen von P direkt in entsprechende Befehle von P’ transformieren.
Eine Schleife der Form WHILE z; #+ ¢ DO @@ END simulieren wir
durch folgendes GOTO-Programmstiick:

v, IF r;=c THEN GOTO M,
Ql
GOTO M,

Mo

Ahnlich lisst sich die Verzweigung IF x; = ¢ THEN @, ELSE Q,
END in ein GOTO-Programmstiick transformieren. Zudem fiigen wir
ans Ende von P’ den HALT-Befehl an.

Fiir die umgekehrte Implikation sei nun P = (I, ..., I,,) ein GOTO-
Programm, das f berechnet, und sei r,, z > k, ein Register, das in P
nicht benutzt wird. Dann kénnen wir P wie folgt in ein dquivalentes
WHILE-Programm P’ iibersetzen:

x, =0;
WHILE 2, +m+1 DO
IF 2, =0 THEN F] END;

IF z,=m THEN P/ END
END
Dabei ist P; abhangig vom Befehl J; folgendes WHILE-Programm:

o TiISTLHC X =T+ C T, =X, + ],

o TIISTLEC X=X SC X, = X, + ],

e GOTO k: z, =k,

e IFr;,=c THEN GOTO k:

IF z;=c THEN 2, := %k ELSE 2, :=2z,+1 END
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e HALT: z,:=m+1.
Man beachte, dass P’ nur eine WHILE-Schleife enthélt. [

Es ist leicht zu sehen, dass sich jedes LOOP-Programm durch ein
WHILE-Programm simulieren lasst. Offensichtlich konnen LOOP-
Programme nur totale Funktionen berechnen. Daher kann nicht jedes
WHILE-Programm durch ein LOOP-Programm simuliert werden.
Mittels Diagonalisierung lasst sich eine totale WHILE-berechenbare
Funktion f angeben, die nicht LOOP-berechenbar ist. Ein bekann-
tes Beispiel einer totalen WHILE-berechenbaren Funktion, die nicht
LOOP-berechenbar ist, ist die Ackermannfunktion a(x,y), die
induktiv wie folgt definiert ist:

y+1, x =0,
a(x,y) =1a(xr-1,1), x>1,y=0,
a(x—l,a(x,y—l)), xuyz]-
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6.1 Zeitkomplexitiat

Die Laufzeit timeys(x) einer NTM M bei Eingabe z ist die maximale
Anzahl an Rechenschritten, die M (z) ausfiihrt.

Definition 163.
a) Die Laufzeit einer NTM M bei Eingabe x ist definiert als

timey(z) =sup{t>0| 3K : K, +' K},

wobei sup N = oo ist.
b) Seit:N - N eine monoton wachsende Funktion. Dann ist M
t(n)-zeitbeschrankt, falls fir alle Eingaben x gilt:

timep () < t(|z]).

Die Zeitschranke ¢(n) beschréankt also die Laufzeit bei allen Eingaben
der Lénge n (worst-case Komplexitét).

Wir fassen alle Sprachen und Funktionen, die in einer vorgegebenen
Zeitschranke t(n) entscheidbar bzw. berechenbar sind, in folgenden
Komplexititsklassen zusammen.

Definition 164.

a) Die in deterministischer Zeit t(n) entscheidbaren Sprachen bil-
den die Sprachklasse

DTIME(t(n))={L(M)|M ist eine t(n)-zeitbeschrinkte DTM}.
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b) Die in nichtdeterministischer Zeit t(n) entscheidbaren Sprachen
bilden die Sprachklasse

NTIME(t(n))={L(M)|M ist eine t(n)-zeitbeschrankte NTM}.

c¢) Die in deterministischer Zeit t(n) berechenbaren Funktionen
bilden die Funktionenklasse

FTIME(t(n)) ={f|3 t(n)-zeitb. DTM M, die f berechnet}.

Die wichtigsten deterministischen Zeitkomplexitatsklassen sind

LINTIME = Ul DTIME(cn + c) ,Linearzeit"
P = L_Jl DTIME(n® + ¢) ,Polynomialzeit*
E = UIDTII\/IE(QC’”C) ,Lineare Exponentialzeit*
EXP = L_J DTIME(2"*¢) ,Exponentialzeit®
=1

Die nichtdeterministischen Klassen NLINTIME, NP, NE, NEXP und die
Funktionenklassen FP,FE, FEXP sind analog definiert.

Fiir eine Funktionenklasse F sei DTIME(F) = User DTIME(#(n)) (die
Klassen NTIME(F) und FTIME(F) seien analog definiert).

Asymptotische Laufzeit und Landau-Notation

Definition 165. Seien f und g Funktionen von N nach RY. Wir
schreiben f(n) = O(g(n)), falls es Zahlen ng und ¢ gibt mit

Vn2ng: f(n) <c-g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f ,nicht wesent-
lich schneller” als g wéchst. Formal bezeichnet der Term O(g(n)) die
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Klasse aller Funktionen f, die obige Bedingung erfiillen. Die Gleichung
f(n) = O(g(n)) drickt also in Wahrheit eine Element-Beziehung
f€0(g(n)) aus. O-Terme konnen auch auf der linken Seite vorkom-
men. In diesem Fall wird eine Inklusionsbeziehung ausgedriickt. So

steht n? + O(n) = O(n?) fir die Aussage {n>+ f | f € O(n)} c O(n?).

Beispiel 166.
e Tlog(n)+n=0(n3) ist richtig.
e Tlog(n)n®=0(n?) ist falsch.
o 20+0() = O(27) ist richtig.
o 20(m) = O(2") ist falsch (siehe Ubungen). g

Unter Benutzung der O-Notation lassen sich die wichtigsten Komple-
xitatsklassen wie folgt definieren: L = DSPACE(O(logn)), LINTIME =
DTIME(O(n)), P = DTIME(n°®M), E = DTIME(2°(™) und EXP =
DTIME(27°") etc.

6.2 Das P-NP-Problem

Wie wir im letzten Kapitel gesehen haben (siehe Satz 131), sind NTMs
nicht machtiger als DTMs, d.h. jede NTM kann von einer DTM si-
muliert werden. Die Frage, wieviel Zeit eine DTM zur Simulation
einer NTM benotigt, ist eines der wichtigsten offenen Probleme der
Informatik. Wegen NTIME(¢) ¢ DTIME(29()) erhoht sich die Lauf-
zeit im schlimmsten Fall exponentiell. Insbesondere die Klasse NP
enthalt viele fiir die Praxis iberaus wichtige Probleme, fiir die kein
Polynomialzeitalgorithmus bekannt ist. Da jedoch nur Probleme in P
als effizient 16sbar gelten, hat das so genannte P-NP-Problem, also
die Frage, ob alle NP-Probleme effizient 16sbar sind, eine immense
praktische Bedeutung.

Definition 167. Seien A c ¥* und B € I'* Sprachen.
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a) A ist auf B in Polynomialzeit reduzierbar (A <P B), falls
eine Funktion f:3* - T'* in FP existiert mait

VreX':xe A< f(x)eB.

b) A heiffit <P-hart fir eine Sprachklasse C (kurz: C-hart oder
C-schwer), falls gilt:

VLeC:L<PA.

c) Eine C-harte Sprache, die zu C gehort, heifit C-vollstdndig.
Die Klasse aller NP-vollstandigen Sprachen bezeichnen wir mit
NPC.

Aus A <P B folgt offenbar A < B und wie die Relation < ist auch <P
reflexiv und transitiv (s. Ubungen). In diesem Kapitel verlangen wir
also von einer C-vollstandigen Sprache A, dass jede Sprache L € C auf
A in Polynomialzeit reduzierbar ist. Es ist leicht zu sehen, dass alle

im letzten Kapitel als RE-vollstandig nachgewiesenen Sprachen (wie
z.B. K, H, Hy, PCP etc.) sogar <P-vollsténdig fiir RE sind.

Satz 168. Die Klassen P und NP sind unter <P abgeschlossen.

Beweis. Sei B € P und gelte A <P B mittels einer Funktion f € FP.

Seien M und 7" DTMs mit L(M) = B und T'(z) = f(z). Weiter seien
p und g polynomielle Zeitschranken fiir M und T'. Betrachte die DTM
M’ die bei Eingabe  zuerst T simuliert, um f(x) zu berechnen, und
danach M bei Eingabe f(z) simuliert. Dann gilt

reA<e f(x)eB< f(r)e L(M) < xe L(M").
Also ist L(M') = A und wegen
timey () < timer(x) + timepn (f (2)) < q(Jz]) + p(a(|x]))

ist M’ polynomiell zeitbeschrankt und somit A in P. Den Abschluss
von NP unter <P zeigt man vollkommen analog. ]
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Satz 169.
(i) A<P B und A ist NP-schwer = B ist NP-schwer.
(ii) A<P B, A ist NP-schwer und B e NP = B eNPC.
(iii)) NPCAP 4@ = P=NP.

Bewets.
(i) Sei L € NP beliebig. Da A NP-schwer ist, folgt L <P A. Da zudem
A <P B gilt und <P transitiv ist, folgt L <P B.
(it) Klar, da mit (i) folgt, dass B NP-schwer und B nach Voraus-
setzung in NP ist.
(iii) Sei A € P eine NP-vollstdandige Sprache und sei L € NP beliebig.
Dann folgt L < A und da P unter <P abgeschlossen ist, folgt
LeP. [ ]

Eine einfache Moglichkeit, ein vollstdndiges Problem fiir NP und
andere Komplexitéatsklassen zu erhalten, besteht darin, als Eingabe
beliebige TMs M zuzulassen, und zu fragen, ob M ein gegebenes
Wort in einer vorgegebenen Zeit- oder Platzschranke akzeptiert.

Um die Komplexitét einer solchen Sprache nach oben abschétzen zu
konnen, miissen wir eine Schranke fiir die Laufzeit einer universellen
TM herleiten.

Lemma 170. Es gibt eine NTM U fir die Sprache

{w#x

mit der Laufzeit

we{0,1}*, 2 €{0,1,#}* und M,
ist eine NTM, die x akzeptiert

timey (w#x) = O(Jw| - timey, ()?).
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Beweis. Betrachte die 3-NTM U die bei Eingabe w#x zunachst den
Binérstring w auf das 2. Band verschiebt und anschliefend die Binar-
kodierung des Startzustands von M, auf das 3. Band schreibt. Sodann
ersetzt U jedes Zeichen a; des auf dem Eingabeband verbliebenen
Strings = durch bin(i) und trennt diese durch #. Hierbei benutzt
U Binarzahlen einer festen Lénge, die ausreicht, alle Arbeitszeichen
von M, darstellen zu kénnen. Schliellich erginzt U das 1. Band
um k — 1 Bandinschriften (getrennt durch ##), die jeweils nur das
Zeichen U enthalten. Die aktuellen Kopfpositionen speichert U durch
Markierung des vorangehenden #-Zeichens.

Nun simuliert U jeden einzelnen Rechenschritt von M, in jeweils
O(|w| - timeyps, (2)) Schritten, was auf die gewtlinschte Gesamtlaufzeit
fithrt. ]

Satz 171. Folgende Sprache ist NP-vollstindig:

L= {w#x#Om

w,x €{0,1}* und M, ist eine NTM,
die x in <m Schritten akzeptiert

Beweis. Wir modifizieren die NTM U im Beweis von Lemma 170
wie folgt zu einer NTM U’ mit L(U") = L. U’ simuliert bei Eingabe
wH#x#0™ die NTM M,,(z) und zahlt dabei die simulierten Schritte.
U’ verwirft, falls der Zahler den Wert m iiberschreitet und akzeptiert
nur dann, wenn M, (z) nach hochstens m Schritten akzeptiert. Da U’
hierzu O(|w|(|z| + m)?) Zeit bendtigt, ist entscheidet U’ die Sprache
L in Polynomialzeit.

Sei nun A eine beliebige NP-Sprache. Dann ist A in Polynomialzeit
auf eine Sprache B ¢ {0,1}* in NP reduzierbar (siche Ubungen). Sei
M,, eine durch ein Polynom p zeitbeschrankte NTM fiir B. Dann
reduziert folgende FP-Funktion f die Sprache B auf L:

f x> waorlD. -
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6.3 Platzkomplexitat

Als néchstes definieren wir den Platzverbrauch von NTMs. Intuitiv
ist dies die Anzahl aller wihrend einer Rechnung benutzten Bandfel-
der. Wollen wir auch sublinearen Platz sinnvoll definieren, so diirfen
wir hierbei das Eingabeband offensichtlich nicht berticksichtigen. Um
sicherzustellen, dass eine NTM M das Eingabeband nicht als Speicher
benutzt, verlangen wir, dass M die Felder auf dem Eingabeband nicht
verandert und sich nicht mehr als ein Feld von der Eingabe entfernt.

Definition 172. Fine NTM M heifit Offline-NTM (oder NTM
mit Eingabeband), falls fir jede von M bei Eingabe x erreichbare
Konfiguration

K =(q,u1,a1,v1,. .., U, g, Ug)
qilt, dass uia,vy ein Teilwort von UxU ist.

Definition 173. Der Platzverbrauch einer Offline-NTM M bei
Fingabe x ist definiert als

1K = (Q7u17a17vl7 s ,Uk,CLk,Uk)

spacer(x) =supis>1 k
pacey (7) P mit K, +* K und s =Y, |u;a;v4
i=2

Sei s : N — N eine monoton wachsende Funktion. Dann ist M s(n)-
platzbeschrankt, falls fir alle Eingaben x gilt:

spacey () < s(|x]) und timep(x) < oo.

Wir fassen alle Sprachen, die in einer vorgegebenen Platzschranke
s(n) entscheidbar sind, in folgenden Platzkomplexititsklassen
zusammen.

Definition 174. Die auf deterministischem Platz s(n) entscheidbaren
Sprachen bilden die Klasse

DSPACE(s(n))={L(M)|M ist eine s(n)-platzb. Offline-DTM}.
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Die auf nichtdeterministischem Platz s(n) entscheidbaren Sprachen
bilden die Klasse

NSPACE(s(n)) ={L(M)|M ist eine s(n)-platzb. Offline-NTM}.

Die wichtigsten deterministischen Platzkomplexitéitsklassen sind

L = DSPACE(O(logn))
LINSPACE = DSPACE(O(n))
PSPACE = DSPACE(n0()

,Logarithmischer Platz*
,Linearer Platz*

,Polynomieller Platz*

Die nichtdeterministischen Klassen NL, NLINSPACE und NPSPACE
sind analog definiert.

Dass nichtdeterministische Berechnungen nicht sehr viel Platz gegen-
iiber deterministischen Berechnungen einsparen konnen, wurde von
Savitch 1970 bewiesen (siche Vorlesung Komplexitétstheorie).

Satz 175. Jede s(n)-platzbeschrinkte NTM kann von einer s*(n)-
platzbeschrinkten DTM simuliert werden (ohne Beweis).

Als Konsequenz hiervon fallen die Klassen NPSPACE und PSPACE zu-
sammen. Zwischen den verschiedenen Zeit- und Platzklassen bestehen
die folgenden elementaren Inklusionsbeziehungen. Fiir jede Funktion
s(n) >logn gilt

DSPACE(s) € NSPACE(s) ¢ DTIME(29()
und fiir jede Funktion ¢(n) > n + 2 gilt
DTIME(t) € NTIME(t) < DSPACE(t).
Eine unmittelbare Konsequenz hiervon sind folgende Inklusionen:

L c NL c P c NP c PSPACE c EXP c EXPSPACE.

6.3 Platzkomplexitat

Die Klassen der Chomsky-Hierarchie lassen sich wie folgt einordnen
(eine dicke Linie deutet an, dass die Inklusion als echt nachgewiesen
werden konnte):

REG =DSPACE(O(1)) = NSPACE(O(1)) ¢ L,
DCFLgLINTIME n CFL g LINTIME ¢ P,
CFLgNLINTIME n DTIME(n?) ¢ P,
DCSL = LINSPACE ¢ CSL,
CSL =NLINSPACE < PSPACE n E,

PSPACE

REC=|_JDSPACE(f(n)) DCSL
= JNSPACE(f(n)) | ‘
=\UDTIME(f(n)) DCFL \/
=UNTIME(f(n)).

wobei f alle berechenbaren (oder dquivalent: alle) Funktionen f: N —

N durchlauft.

Die Klasse L ist nicht in CFL enthalten, da beispielsweise die Sprache
{a™bnc™|n > 0} in logarithmischem Platz (und linearer Zeit) entscheid-
bar ist. Ob P in CSL enthalten ist, ist nicht bekannt. Auch nicht ob
DCSL c P gilt. Man kann jedoch zeigen, dass CSL # P # DCSL ist.
Ahnlich verhélt es sich mit den Klassen E und PSPACE: Man kann
zwar zeigen, dass sie verschieden sind, aber ob eine in der anderen
enthalten ist, ist nicht bekannt.
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7 NP-vollstandige Probleme

7.1 Aussagenlogische Erfiillbarkeitsprobleme

Definition 176.

a) Die Menge der booleschen (oder aussagenlogischen) For-
meln dber den Variablen x1,..., z, ist induktiv wie folgt defi-
niert:

e Jede Variable x; ist eine boolesche Formel.
e Mit G und H sind auch die Negation -G von G und die
Konjunktion (G A H) von G und H boolesche Formeln.
b) Eine Belegung von xi,...,x, ist ein Wort a = ay...a, €
{0,1}". Der Wert F(a) von F unter a ist induktiv iber den
Aufbau von F definiert:

F | -G (GAH)
F(a) |a; 1-G(a) G(a)H(a)

c¢) Durch eine boolesche Formel F' wird also eine n-stellige boole-
sche Funktion F :{0,1}" - {0,1} definiert, die wir ebenfalls
mit F' bezeichnen.

d) F heifst erfiillbar, falls es eine Belegung a mit F(a) =1 gibt.

e) Gilt dagegen fir alle Belegungen a, dass F'(a) =1 ist, so heifst
I Tautologie.

Beispiel 177 (Erfiillbarkeitstest mittels Wahrheitswerttabelle).
Da die Formel F = ((x1 Vv x2) = (22 A 23)) fiir die Belegungen
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a € {000,001,101} den Wert F(a) =1 animmt, ist sie erfillbar:

a (ryvmz) (~wonxs) ((x1Vay)—> (-r2A23))

000 0 0 1
001 0 1 1
010 1 0 0
011 1 0 0
100 1 0 0
101 1 1 1
110 1 0 0
111 1 0 0

<

Notation. Wir verwenden die Disjunktion (G v H) und die Im-
plikation (G - H) als Abkirzungen fir die Formeln =(-G A —H)
bzw. (-G v H).

Um Klammern zu sparen, vereinbaren wir folgende Prazedenzregeln:
e Der Junktor A bindet starker als der Junktor v und dieser
wiederum starker als der Junktor —.
o Formeln der Form (x1 0 (zg0 (z30:-0x,)))), o € {A,V,>}
kiirzen wir durch (z0--0x,) ab.

Beispiel 178. Die Formel

G(x1,..oxn) =(zrveva) A N\ =(z Axy)
1<i<j<n
nimmt unter einer Beleqgung a = ay ...a, genau dann den Wert 1 an,
wenn Yirqa; =1 ist. D.h. es gilt genau dann G(a) = 1, wenn genau
eine Variable x; mit dem Wert a; =1 belegt ist. Diese Formel wird im
Beweis des ndchsten Satzes bendtigt. <

Bei vielen praktischen Anwendungen ist es erforderlich, eine erfillende
Belegung fiir eine vorliegende boolesche Formel zu finden (sofern es ei-
ne gibt). Die Bestimmung der Komplexitat des Erfiillbarkeitsproblems
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(engl. satisfiability) fiir boolesche Formeln hat also grofie praktische
Bedeutung.

Aussagenlogisches Erfiillbarkeitsproblem (SAT):

Gegeben: Eine boolesche Formel F' in den Variablen x4, ..., z,.
Gefragt: Ist F' erfiillbar?

Dabei kodieren wir boolesche Formeln F' durch Binérstrings wr und
ordnen umgekehrt jedem Binarstring w eine Formel F, zu. Um die
Notation zu vereinfachen, werden wir jedoch meist F' anstelle von wg
schreiben.

Satz 179 (Cook, Karp, Levin). SAT ist NP-vollstindig.

Beweis. Es ist leicht zu sehen, dass SAT € NP ist, da eine NTM
zunichst eine Belegung a fiir eine gegebene booleschen Formel F
nichtdeterministisch raten und dann in Polynomialzeit testen kann,
ob F(a) =1 ist (guess and verify Strategie).

Es bleibt zu zeigen, dass SAT NP-hart ist. Sei L eine beliebige NP-
Sprache und sei M = (Z,%,T,4,qy) eine durch ein Polynom p zeitbe-
schriankte k-NTM mit L(M) = L. Da sich eine t(n)-zeitbeschrankte
kE-NTM in Zeit t?(n) durch eine 1-NTM simulieren lasst, konnen wir
k =1 annehmen. Unsere Aufgabe besteht nun darin, in Polynomi-
alzeit zu einer gegebenen Eingabe w = w; ... w, eine Formel F,, zu
konstruieren, die genau dann erfiillbar ist, wenn w € L ist,

we L < F, € SAT.

Wir kénnen 0.B.d.A. annehmen, dass Z = {qo,...,qm}, £ ={q¢n} und
I'={ai,...,q} ist. Zudem koénnen wir annehmen, dass 0 fir jedes
Zeichen a € I' die Anweisung ¢,,a = ¢,,alN enthalt.

Die Idee besteht nun darin, die Formel F,, so zu konstruieren, dass
sie unter einer Belegung a genau dann wahr wird, wenn a eine akzep-
tierende Rechnung von M (w) beschreibt. Hierzu bilden wir F, iiber
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den Variablen

Tyq, fir0<t<p(n),qeZ,

Yri, fir 0<t<p(n),-p(n) <i<p(n),
Ztia, fur 0<t<p(n),-p(n) <i<p(n),acel,

die fiir folgende Aussagen stehen:

T4 zum Zeitpunkt ¢ befindet sich M im Zustand ¢,
yeit zur Zeit t besucht M das Feld mit der Nummer ¢,

Ziia: zur Zeit t steht das Zeichen a auf dem i-ten Feld.

Konkret sei nun F,, = RAS A Uy A Uy A E. Dabei stellt die Formel
R = /\fjg )R, (Randbedingungen) sicher, dass wir jeder erfiillenden
Belegung eindeutig eine Folge von Konfigurationen Ky, ..., K@) zu-
ordnen konnen:

Rt = G(.’L’t,qo, Ce ,[Et7qm) A G(yt,—p(n)y Ce 7yt,p(n))
p(n)
NN Griay o Ztia)-

i==p(n)
Die Teilformel R; sorgt also dafiir, dass zum Zeitpunkt ¢
., qm} eingenommen wird,

,p(n)} besucht wird und

e genau ein Zustand q € {qo, . .
« genau ein Bandfeld i € {-p(n),...

o auf jedem Feld ¢ genau ein Zeichen a € I" steht.

Die Formel S (wie Startbedingung) stellt sicher, dass zum Zeitpunkt
0 tatséchlich die Startkonfiguration

-p(n) -1 0 n-1 n p(n)
L cee LI wl cen wn LI cee L
1
4o

vorliegt:
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-1 n-1 p(n)
S=20g AY00A N\ 2050 A I\ 20000 A /\ 2040
i=—p(n) =0 i=n

Die Formel U, sorgt dafiir, dass der Inhalt von nicht besuchten Feldern
beim Ubergang von K, zu K;,; unverindert bleibt:

p(n)-1  p(n)

U, = /\ /\ /\ (_‘yt,i A Zia = Zt+1,i,a)

t=0 i:—p(n) ael

Die Formel U, achtet darauf, dass sich bei jedem Ubergang der Zu-
stand, die Kopfposition und das gerade gelesene Zeichen gemaf einer
Anweisung in § verdndern:

(n)-1 p(n)

)
/\ /\ /\ /\ (xt,p ANYti N Ztia =

t=0 i:—p(n) ael’ peZ

.o p
U2 =

\/ Ti+1,g NYt+1,5+D N Zt+1,i,b)a
(g,,D)eé(p,a)

wobei
i—-1, D=L
i+ D =11, D=N
t+1, D=R

ist. Schliefllich tiberprift £, ob M zur Zeit p(n) den Endzustand g,
erreicht hat:

E = zpn) g

Da der Aufbau der Formel f(w) = F,, einem einfachen Bildungsgesetz
folgt und ihre Lange polynomiell in n ist, folgt f € FP. Es ist klar,
dass F,, im Fall w e L(M) erfiillbar ist, indem wir die Variablen von
F,, gemaf einer akz. Rechnung von M (w) belegen. Umgekehrt fiihrt
eine Belegung a mit F,(a) = 1 wegen R(a) = 1 eindeutig auf eine
Konfigurationenfolge Ky, ..., Kpy), so dass gilt:
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» Ky ist Startkonfiguration von M (w) (wegen S(a) =1),
o Kir Ky firi=0,...,p(n) -1 (wegen Uj(a) = Uy(a) = 1),
o M nimmt spatestensin der Konfiguration K, ,) den Endzustand

¢m an (wegen E(a) =1).

Also gilt fiir alle w € ¥* die Aquivalenz w € L(M) < F,, € SAT, d.h.
die FP-Funktion f:w ~ F, reduziert L(M) auf SAT. [ |

Korollar 180. SAT ¢ P < P = NP.

Gelingt es also, einen Polynomialzeit-Algorithmus fiir SAT zu fin-
den, so lasst sich daraus leicht ein effizienter Algorithmus fiir jedes
NP-Problem ableiten. Als nichstes betrachten wir das Erfiillbarkeits-
problem fiir boolesche Schaltkreise.

Definition 181.

a) Ein boolescher Schaltkreis tber den Variablen x1, ..
eine Folge S = (g1,...,9m) von Gattern

., Tp 15t

gl € {07 17‘1:17‘ A 7‘/1:7147 (_|7.j)7 (/\7j7k)7 (V7j7 k)}

mit 1< g,k <.

b) Die am Gatter g, berechnete n-stellige boolesche Funktion ist
induktiv wie folgt definiert:

(_'7j) (/\7j7k) (V,j,]{?)
9i(a)|0 1 a; 1-g;(a) gi(a)gr(a) gj(a)+gr(a)-g;(a)gr(a)

g |01z

c) S berechnet die boolesche Funktion S(a) = gn(a).
d) S heifst erfiillbar, wenn eine Fingabe a € {0,1}™ mit S(a) =1
existiert.
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Beispiel 182. Der Schaltkreis

S = (1'175C2,1'3,$4, (/\7 172)7 (/\7273)7

(\/, 37 4)7 (_'7 5)7 (_‘7 6)7 (_‘7 7)7
(v,6,8),(v,9,10), (A, 11,12))

ist nebenstehend graphisch dargestellt. ry  ry T3 Ty 4

Bemerkung 183.

e Die Anzahl der Fingdinge eines Gatters g wird als Fanin von g
bezeichnet, die Anzahl der Ausginge von g (d.h. die Anzahl der
Gatter, die g als Fingabe benutzen) als Fanout.

e Boolesche Formeln entsprechen also booleschen Schaltkreisen
mit Fanout <1 und umgekehrt.

Erfiillbarkeitsproblem fiir boolesche Schaltkreise (CIRSAT):
Gegeben: Ein boolescher Schaltkreis S.
Gefragt: Ist S erfiillbar?

Da eine boolesche Formel F' leicht in einen aquivalenten Schaltkreis
S mit s(a) = F(a) fir alle Belegungen a transformiert werden kann,
folgt SAT <P CIRSAT.

Korollar 184. CIRSAT ist NP-vollstindig.

Bemerkung 185. Da SAT NP-vollstindig ist, ist CIRSAT in Polyno-
mialzeit auf SAT reduzierbar. Dies bedeutet, dass sich jeder Schaltkreis
S in Polynomialzeit in eine dquivalente Formel Fs tberfihren ldsst.
Fg und S miissen aber nicht logisch dquivalent sein.

CIRSAT ist sogar auf eine ganz spezielle SAT-Variante reduzierbar.

Definition 186.

a) Ein Literal ist eine Variable x; oder eine negierte Variable ~x;,
die wir auch kurz mit x; bezeichnen.
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b) Eine Klausel ist eine Disjunktion C = \/;‘?=1 l; von Literalen.
Hierbei ist auch k =0 zulassig, d.h. die leere Klausel reprasen-
tiert die Konstante 0 und wird ublicherweise mit O bezeichnet.

c) Eine Formel F ist in konjunktiver Normalform (kurz
KNF), falls F' eine Konjunktion

F=N\G
i=1

von m > 0 Klauseln ist. Im Fall m = 0 reprdsentiert F die
Konstante 1.

d) Enthalt jede Klausel hochstens k Literale, so heifit F' in k-KNF.
Notation. Klauseln werden oft als Menge C' = {ly,... 1} ihrer Li-
terale und KNF-Formeln als Menge F = {C4,...,Cy,} ihrer Klauseln

dargestellt. Enthdlt F' die leere Klausel, so ist F' unerfillbar, wogegen
die leere KNF-Formel immer wahr (also eine Tautologie) ist.

Erfiillbarkeitsproblem fiir k-KNF Formeln (k-SAT):
Gegeben: Eine boolesche Formel F' in k-KNF.
Gefragt: Ist F erfiillbar?

Folgende Variante von 3-SAT ist fiir den Nachweis weiterer NP-
Vollstandigkeitsresultate sehr niitzlich.

Not-All-Equal-SAT (NAESAT):

Gegeben: Eine Formel F' in 3-KNF.
Gefragt: Hat F eine (erfiillende) Belegung, unter der in keiner

Klausel alle Literale denselben Wahrheitswert haben?

Beispiel 187. Die 3-KNF Formel F = (x1vZ2)A(T1Vaz)A(1aVTzva,)
ist alternativ durch folgende Klauselmenge darstellbar:
F={{x1,22},{71, 03}, {12, T3, 24} }

Offenbar ist F/(1111) =1, d.h. F € 3-SAT. Da unter dieser Belegung in
jeder Klausel von F' nicht nur mindestens ein Literal wahr, sondern
auch mindestens ein Literal falsch wird, ist F' auch in NAESAT. <
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Satz 188. 3-SAT st NP-vollstindig.

Beweis. Es ist nicht schwer zu sehen, dass 3-SAT in NP entscheid-
bar ist. Wir zeigen, dass 3-SAT NP-hart ist, indem wir CIRSAT
auf 3-SAT reduzieren. Hierzu transformieren wir einen Schaltkreis
S=(g1,--,9m) mit n Eingdngen in eine 3-KNF Formel Fjs tiber den
Variablen z1,...,2,,y1,...,Ym. Fs enthélt neben der Klausel {y,,}
fir jedes Gatter g; die Klauseln folgender Formel F; enthalt:

Gatter g; Semantik von F; Klauseln von F;

0 yi=0 {9:}

1 yi=1 {y:}

oy Yi = X, (Ui 2} A7, 0}

(=) Yi =Yj {vi,yi} (v, v}

(NG K) Y=y Ak RTIRR RTINS
(V;3, k) vi=v; VU {955 vi}s Yk v} {00, Y5 un

Nun ist leicht zu sehen, dass fiir alle a € {0,1}" folgende Aquivalenz
gilt:
S(a)=1<3be{0,1}™: Fs(ab) = 1.

Ist ndmlich a € {0,1}" eine Eingabe mit S(a) = 1. Dann erhalten wir
mit

by=g(a) firl=1,...,m

eine erfiillende Belegung ab .. . b, fiir Fg. Ist umgekehrt ab, ... b, eine
erfilllende Belegung fiir F, so folgt durch Induktion tiber i =1,...,m,
dass

gi(a) =b;

ist. Insbesondere muss also g¢,,(a) = b,, gelten, und da {y,,} eine
Klausel in Fg ist, folgt S(a) = gn(a) = b, = 1. Damit haben wir ge-
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zeigt, dass der Schaltkreis S und die 3-KNF-Formel Fg erfiillbarkeits-
aquivalent sind, d.h.

S € CIRSAT < Fg € 3-SAT.

Zudem ist leicht zu sehen, dass die Reduktionsfunktion S ~ Fg in FP
berechenbar ist, womit CIRSAT <P 3-SAT folgt. [ ]

7.2 Entscheidungsprobleme fiir regulire
Sprachen

In diesem Abschnitt betrachten wir verschiedene Entscheidungspro-
bleme fiir reguldre Sprachen, die als DFA, NFA oder als regulérer
Ausdruck (RA) gegeben sind. Wir werden sehen, dass das Wortpro-
blem sowohl fiir NFAs als auch fiir regulare Ausdriicke effizient 16sbar
ist. Dagegen wird sich das Aquivalenzproblem fiir regulire Ausdriicke
als co-NP-hart herausstellen. Dies gilt sogar fiir sternfreie regulére
Ausdriicke (kurz SFRAs), also fiir reguldre Ausdriicke, die keinen
Stern enthalten und daher nur endliche Sprachen beschreiben kénnen.

Satz 189. Das Wortproblem fiir NFAs,
WPypa = {N#ax | N ist ein NFA und z € L(N)},

ist in P entscheidbar.

Beweis. Um die Zugehorigkeit von = zu L(N) zu testen, simulieren
wir den Potenzmengen-DFA bei Eingabe z:

P-Algorithmus fiir WP ypa
I Input: NFA N = (Z,%,6,Qo, E) und ein Wort = =27 ...,
2 Q=0
|

for i:=1ton do

Q = quQ 5(q7 CBz)
5 if Qn FE + @ then accept else reject




7 NP-vollstindige Probleme

Es ist klar, dass dieser Algorithmus korrekt arbeitet und auch in eine
polynomiell zeitbeschrankte DTM fiir die Sprache WPyga transfor-
miert werden kann. [

Korollar 190. Das Wortproblem fiir requlire Ausdricke ist in P
entscheidbar:

WPRra = {aftz |« ist ein requldarer Ausdruck und x € L(a)} € P.

Beweis. Ein regularer Ausdruck « lasst sich in Polynomialzeit in einen
dquivalenten NFA N, transformieren. Daher gilt WPgra <P WPyxpa
mittels f: (aftx) » (Ny#x). Da nach vorigem Satz WPypa € P ist,
und da P unter <P abgeschlossen ist, folgt WPgr € P. ]

Ganz ahnlich folgt auch, dass das Leerheits- und das Schnittproblem
fiir NFAs in Polynomialzeit 16sbar sind (siehe Ubungen). Als néchstes
zeigen wir, dass die Probleme APgpra und IPgpra co-NP-vollstindig
sind.

Satz 191. Das Aquivalenzproblem fiir sternfreie reguldre Ausdriicke
APgpra = {a#8 | a, B sind SFRAs mit L(a) = L(3)}
ist co-NP-vollstindig.

Beweis. Wir zeigen, dass das Indquivalenzproblem fiir SFRAs NP-
vollstdndig ist. Sei « ein sternfreier regularer Ausdruck der Lange m
tiber einem Alphabet X. Es ist leicht zu zeigen (durch Induktion iiber
den Aufbau von «), dass L(«) € 3™ gilt, wobei

ist. Daher entscheidet folgender NP-Algorithmus das Indquivalenzpro-
blem fiir SFRAs:
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NP-Algorithmus fiir das Indquivalenzproblem fiir SFRAs
Input: SFRAs o und 8

1

> m=max{lal, |5]}

5 guess z€{0,1}=m

i if x e L(a)AL(S) then accept else reject

Als néichstes reduzieren wir 3-SAT auf das Indquivalenzproblem fiir
SFRAs. Sei eine 3-KNF Formel F = {C4,...,C,,} gegeben. Betrachte

den reguléren Ausdruck ap = (aq]...|a,) mit a; = f;1... B, und
0, Z; € Cj,
Bz'j =141 T; € Cj,

(Of1),

sonst.

Dann ist L(a;) = {a € {0,1}" | C;(a) = 0} und daher folgt

Fe3-SAT < Jaec{0,1}":F(a)=1
< Jdae{0,1}"Vj=1,....m:Cj(a)=1
< 3Jae{0,1}"Vj=1,.... m:a¢ L(c;)
< Jae{0,1}":a¢ L(ar)
< L(ap)#{0,1}"
Also folgt 3-SAT <P APgpra mittels F — ap# (0]1)...(0[1). ]
n-mal

Ganz dhnlich lasst sich 3-SAT auf das Komplement des Inklusions-
problems fiir sternfreie regulare Ausdriicke reduzieren, d.h. IPspra
ist ebenfalls co-NP-vollstindig (siche Ubungen). Daher sind das
Aquivalenz- und Inklusionsproblem fiir regulire Ausdriicke (und somit

auch fiir NFAs) co-NP-hart. Diese Probleme sind sogar PSPACE-
vollstédndig (ohne Beweis).



Wort- Leerheits- Schnitt- Aquivalenz- Inklusions-
problem problem  problem problem problem
zel? L=g? LlﬁLQ#@? Li=Ly7 Licly

DFA P P P P P
SFRA P P P co-NP-vollstéandig
RA P P P PSPACE-vollstandig
NFA P P P PSPACE-vollstédndig

Die Tabelle gibt die Komplexitiaten der wichtigsten Entscheidungs-
probleme fiir durch DFAs, NFAs oder (sternfreie) regulire Ausdriicke
gegebene reguldare Sprachen an.

7.3 Graphprobleme

Definition 192. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei

V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EBc(y)={{uv}cV]uzv}.
a) Die Knotenzahl von G ist n(G) = ||V|.
b) Die Kantenzahl von G ist m(G) = | E||.
¢) Die Nachbarschaft von v eV ist

Ne() ={ueV |{u,v} e E}

und die Nachbarschaft von U €V ist Ng(U) = Uyer Na(u).
d) Der Grad von v ist deg.(v) = | Ng(v)|.

e) Der Minimalgrad von G ist 6(G) = min,ey deg(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

7

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach n,
m, N(v), N(U), deg(v), ¢ usw.

Beispiel 193.

e Der vollstindige Graph (V, E) auf n Knoten, d.h. |V| =n
und E = (‘2/), wird mit K, und der leere Graph (V,@) auf n
Knoten wird mit E,, bezeichnet.

Ky Koy, Koo A Ku Ks.-@

e Der vollstindige bipartite Graph (A, B, E) auf a+b Kno-
ten, d.h. AnB=g, |A| =a, |B| =bund E = {{u,v} |ue Ajve
B} wird mit K, bezeichnet.

Kl’l:o—o K172.'<: K2’2.'>_< Kg’g.' g K373.' %

e Der Pfad der Linge m wird mit P,, bezeichnet.

Pi: o—e Py: e—eo—e Py: e—e—eo—e Py: e—e—e—e—e

e Der Kreis der Linge n wird mit C,, bezeichnet.
Cg.’ f C4.' 05.' < 1 06-' O

7.3.1 Cliquen, Stabilitdt und Kanteniiberdeckungen

Definition 194. Sei G = (V, E) ein Graph.

a) Ein Graph G' = (V', E") heifit Sub-/Teil-/Untergraph von
G, falls V' ¢V und E' € E ist. Ein Subgraph G' = (V' E") heifit
(durch V') induziert, falls E' = E n (‘;,) ist. Hierfir schreiben
wir auch H = G[V'].

b) Ein Weg ist eine Folge von (nicht notwendig verschiedenen)
Knoten vg, ..., v, mit {v;,vi1} € E firi=0,....,0-1. Sind alle
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Knoten auf dem Weg paarweise verschieden, so heifst der Weg
einfach oder Pfad. Die Lange des Weges ist die Anzahl der
Kanten, also {. Im Fall { =0 heifit der Weqg trivial. Fin Weg
Vo, - - -, Vg heif$t auch vy-ve- Weyg.

c) Ein Zyklus ist ein u-v-Weg der Linge € >2 mit u=v.

d) Ein Kreis ist ein Zyklus vg, vy ...,ve1,v9 der Linge € >3, fir
den vg,v1,...,v_1 paarweise verschieden sind.

e) G heifit zusammenhéngend, wenn es von jedem Knoten u in
G zu jedem Knoten v in G einen Weg gibt.

f) Eine Knotenmenge U < V heift stabil oder unabhingig,
wenn keine Kante in G beide Endpunkte in U hat, d.h. es gilt
En (%) =@. Die Stabilitiitszahl ist

a(G) =max{|U| | U ist stabile Menge in G}.

g) FEine Knotenmenge U €'V heifst Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt ([2]) c E. Die
Cliquenzahl ist

w(G) =max{|U| | U ist Clique in G}.

h) Eine Knotenmenge U €V heifit Kanteniiberdeckung (engl.

vertex cover), wenn jede Kante e € E mindestens einen End-
punkt in U hat, d.h. es gill enU # @ fir alle Kanten e € E. Die
Uberdeckungszahl ist

B(G) =min{|U| | U ist eine Kanteniberdeckung in G}.

Fiir einen gegebenen Graphen G und eine Zahl k > 1 betrachten wir
die folgenden Fragestellungen:

Clique: Hat G eine Clique der Grofle k7
Matching: Hat G ein Matching der Grofe k7
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Independent Set (IS): Hat G eine stabile Menge der Grole k7
Vertex Cover (VC): Hat G eine Kanteniiberdeckung der Grofie k?

Satz 195.
e CLIQUE, IS und VC sind NP-vollstdindig.
e MATCHING ist in P entscheidbar (ohne Beweis).

Beweis. Wir zeigen zuerst, dass IS NP-hart ist. Hierzu reduzieren
wir 3-SAT auf IS. Sei F' = {C4,...,Cp} mit C; = {l;1,... L} furi=
1,...,m eine 3-KNF-Formel iiber den Variablen x1,...,x,. Betrachte
den Graphen G = (V, E') mit

V={v;j|1<i<m,1<j<k;} und

E= {{v&t,vu,v} € (‘2/) ‘ s =u oder [y ist komplementar zu luv}.

Dabei heiflen zwei Literale komplementéir, wenn das eine die Nega-
tion des anderen ist. Nun gilt

F e€3-SAT < es gibt eine Belegung, die in jeder Klausel C;

mindestens ein Literal wahr macht

< es gibt m Literale [y j,,...,ln,,, die paarwei-
se nicht komplementéar sind

< es gibt m Knoten vy j,,...,vm,, die nicht
durch Kanten verbunden sind

< (@ besitzt eine stabile Knotenmenge der Gro-
Be m.

Als néchstes reduzieren wir IS auf CLIQUE. Es ist leicht zu sehen,
dass jede Clique in einem Graphen G = (V| E') eine stabile Menge in
dem zu G komplementéiren Graphen G = (V, E) mit E = (g) \ F ist
und umgekehrt. Daher lasst sich IS mittels

f:(G k)~ (G’,k)
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auf CLIQUE reduzieren. Schlieflich ist eine Menge I offenbar genau
dann stabil, wenn ihr Komplement V' \ I eine Kanteniiberdeckung ist.
Daher lédsst sich IS mittels

f:(G k) = (Gn(G) - k)

auf VC reduzieren. ]

7.3.2 Farbung von Graphen

Definition 196. Sei G = (V, E) ein Graph und sei k € N.
a) Eine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.
b) G heif$t k-farbbar, falls eine Farbung f:V - {1,...,k} exis-
tiert.
¢) Die chromatische Zahl ist

X(G) =min{k e N| G ist k-farbbar}.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Um zu zeigen, dass 3-COLORING NP-vollstandig ist, reduzieren wir
NAESAT auf 3-COLORING. Die Reduktion von CIRSAT auf 3-SAT
lasst sich namlich leicht zu einer Reduktion von CIRSAT auf NAESAT
modifizieren, weshalb NAESAT (wie 3-SAT) NP-vollsténdig ist.

Satz 197. NAESAT ist NP-vollstindig.

Beweis. Es ist klar, dass NAESAT € NP liegt. Die Reduktion s+ Fj
von CIRSAT auf 3-SAT aus vorigem Beweis erfiillt bereits die folgen-
den Bedingungen:
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o Ist s(a) =1, so kénnen wir a zu einer erfiillenden Belegung ab
von Fs erweitern, d.h. unter ab wird in jeder Klausel von Fj ein
Literal wahr.

o Tatsdchlich wird unter der Belegung ab in jeder Dreierklausel
von F, auch bereits ein Literal falsch.

Letzteres ist leicht zu sehen, da ab fiir jedes Und-Gatter g; nicht nur
die Dreierklausel {v;,y;,yx}, sondern auch die Klauseln {y;,y;} und
{Yr,y;} erfillt. Diese verhindern ndmlich, dass ab alle Literale der
Dreierklausel {¥;, y;, yx } erfiillt. Entsprechend verhindern die zu einem
Oder-Gatter g; gehorigen Klauseln {y;,7;} und {yx,y;}, dass ab alle
Literale der Dreierklausel {v;,y;,yx} erfullt.

Um zu erreichen, dass auch in den iibrigen Klauseln C' mit |C] < 3
ein Literal falsch wird, konnen wir einfach eine neue Variable z zu
diesen Klauseln hinzufiigen und z mit dem Wert 0 belegen. Sei also
F7 die 3-KNF Formel iiber den Variablen zq,..., 20, y1,- .., Ym, 2, die
die Klausel {y,,,z} und fir jedes Gatter g; die Klauseln folgender
Formel F} enthalt:

Gatter g; Klauseln von F

0 {givz}
1 {yiv’z}
.Z'] {gi7‘rj7z}7{jj7yiaz}

(_'7 .7)

(A d, k)

(V.4 k)
Wie wir gesehen haben, lasst sich dann jede Belegung a € {0,1}" der
x-Variablen mit s(a) = 1 zu einer Belegung abc € {0, 1} ™+ fir F!

erweitern, unter der in jeder Klausel von F! mindestens ein Literal
wahr und mindestens ein Literal falsch wird, d.h. es gilt

{givgj7 2}7 {yj7yi7 Z}
{gi,yj7 Z}v {givylm 2}7 {gjvgkvyi}
{gjvyh Z}v {ijyyi, 2}7 {gi,yj7yk}

s € CIRSAT = F! e NAESAT.
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Fiir den Nachweis der umgekehrten Implikation sei nun F, € NAESAT
angenommen. Dann existiert eine Belegung abc € {0, 1}7*m+! fir F!,
unter der in jeder Klausel ein wahres und ein falsches Literal vorkom-
men. Da dies auch unter der komplementiren Belegung abe der Fall
ist, konnen wir ¢ = 0 annehmen. Dann erfiillt aber die Belegung ab
die Formel F; und damit folgt s(a) =1, also s € CIRSAT. ]

Satz 198.
(i) 1-COLORING und 2-COLORING sind in P entscheidbar.
(i) 3-COLORING ist NP-vollstindig.

Beweis. Es ist leicht zu sehen, dass 1-COLORING und 2-COLORING
in P und 3-COLORING in NP entscheidbar sind. Zum Nachweis, dass
3-COLORING NP-hart ist, reduzieren wir NAESAT auf 3-COLORING.

Sei eine 3-KNF-Formel F' = {Cy,...,C,,} iber den Variablen

x1,...,r, mit Klauseln

Cj = {lj71, ‘e 7lj,k:j}7 kj < 3
gegeben. Wir konnen annehmen, dass F' keine Einerklauseln ent-
halt. Wir konstruieren einen Graphen G = (V, E), der genau dann
3-farbbar ist, wenn F' € NAESAT ist. Wir setzen

V:{S,Il,...,xn,f17...7fi’n}U{Ujk|1 Sjém,lékék]}

und

E={{s,z:},{s,2:} (w2} | 1 i snp o {{s, v} | By =2} 0
{{wgmovid [k = 1} o {{op 2} | n = 2 o {{ogw, 23} | Un = 2.

Sei a = ay...a, eine Belegung fir F', unter der in jeder Klausel
Cj=1{lj1,...,ljk,} ein Literal wahr und eines falsch wird. Wir kénnen
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annehmen, dass [;1(a) =0 und /;2(a) = 1 ist. Dann lédsst sich Gy wie
folgt mit den 3 Farben 0, 1,2 férben:

Knoten v |s x; & vj vje wvjs(falls k;=3)
Farbe ¢(v) |2 a; a; 0 1 2

Ist umgekehrt ¢ : V' — {0,1,2} eine 3-Farbung von G, dann koén-
nen wir annehmen, dass c¢(v) = 2 ist. Dies hat zur Folge, dass
{c(z),c(x;)} = {0,1} fir s = 1,...,n ist. Zudem miissen die Kno-
ten vj1,...,vj; im Fall £ = 2 mit 0 und 1 und im Fall k; = 3 mit
allen drei Farben 0, 1 und 2 gefarbt sein. Wir kénnen annehmen, dass
c(vj1) =0 und c(vjp) = 1 ist. Wegen {v;x, lj1.} € E muss c(vjy,) # c(Ljx)
fir k = 1,...,k; und daher c(vj;) = ¢(l;) fir k = 1,2 gelten. Also
macht die Belegung a = ¢(z1)...c¢(z,) die Literale ;1, j =1,...,m,
falsch und die Literale l;5, j = 1,...,m, wahr. Insgesamt gilt also

F e NAESAT < G € 3-COLORING.

7.3.3 Euler- und Hamiltonkreise

Definition 199. Sei G = (V, E) ein Graph und sei s = (vo,v1,...,v;)
eine Folge von Knoten mit {v;,v;;1} € E firi=0,...,1-1.

a) s heifit Eulerlinie (auch Eulerzug oder Eulerweg) in G,
falls s jede Kante in E genau einmal durchlduft, d.h. es gilt
{{vi,vi1}]i=0,...,l-1} = E und | = | E|.

b) Gilt zudem v; = vy, so heifft s Eulerkreis (auch Eulerzyklus
oder Eulertour).

c) s heifst Hamiltonpfad in G, falls s jeden Knoten in V genau
einmal durchlauft, d.h. es gilt {vg,...,v;} =V und = |V| -1.

d) Ist zudem {vg,v;} € E, d.h. s" = (vg,v1,...,v;,0) ist ein Kreis,
so heifit s Hamiltonkreis.
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Die angegebenen Definitionen lassen sich unmittelbar auf Digraphen
tbertragen, indem wir jede darin vorkommende ungerichtete Kante
{u,v} durch die gerichtete Kante (u,v) ersetzen.

Beispiel 200 (Das Konigsberger Briickenproblem).

Gibt es einen Spaziergang tber alle 7 a

Briicken, bei dem keine Briicke mehrmals O e
tiberquert wird und der zum Ausgangs- .-I-“. d
punkt zurickfihrt? c

Diese Frage wurde von Euler (1707 — 1783)
durch Betrachtung des nebenstehenden Gra-
phen beantwortet. Dieser Graph hat offenbar
genau dann einen Fulerkreis, wenn die Ant-
wort ,ja“ ist. (Wir werden gleich sehen, dass

Beispiel 201.

Der nebenstehende Graph besitzt die Fulerlinie
(4,1,2,3,5,7,6,4,5,2,4,7), aber keinen Euler-
kreis.

Der nebenstehende Digraph besitzt den Euler-
kreis s = (1,4,5,2,3,5,7,4,7,6,4,2,1).

Es folgen ein Hamiltonkreis in einem Graphen
sowie ein a-d-Hamiltonpfad in einem Graphen
und ein m-p-Hamiltonpfad in einem Digraphen:

die Antwort ,nein“ ist.) <
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Wir betrachten fir einen gegebenen Graphen (bzw. Digraphen) G
und zwei Knoten s und t folgende Entscheidungsprobleme:

Das Eulerlinienproblem (EULERPATH bzw. DIEULERPATH)
Hat G eine Eulerlinie von s nach ¢7

Das Hamiltonpfadproblem (HAMPATH bzw. DIHAMPATH)
Hat G einen Hamiltonpfad von s nach ¢?

Zudem betrachten wir fir einen gegebenen Graphen (bzw. Digraphen)
G die folgenden Probleme:

Das Eulerkreisproblem (EULERCYCLE bzw. DIEULERCYCLE)
Hat G einen Eulerkreis?

Das Hamiltonkreisproblem (HAMCYCLE bzw. DIHAMCYCLE)
Hat G einen Hamiltonkreis?

Satz 202 (Euler, 1736). Sei G ein zusammenhdngender Graph.

(i) G besitzt genau dann einen Eulerkreis, wenn alle seine Knoten
geraden Grad haben.

(i) G besitzt im Fall s #t genau dann eine FEulerlinie von s nach t,

wenn s und t ungeraden Grad und alle ibrigen Knoten geraden
Grad haben.

Beweis.

(i) Falls G einen Eulerkreis s besitzt, existiert zu jeder Kante, auf
der s einen Knoten erreicht, eine weitere Kante, auf der s den
Knoten wieder verlasst. Daher hat jeder Knoten geraden Grad.

Ist umgekehrt G zusammenhéngend und hat jeder Knoten gera-
den Grad, so konnen wir wie folgt einen Eulerkreis s konstruie-
ren:

Berechnung eines Eulerkreises in G = (V, E)

1 Wahle u € V' beliebig und initialisiere s zu s = (u)
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> Wabhle einen beliebigen Knoten u auf dem Weg s, der mit
einer unmarkierten Kante verbunden ist.

3 Folge ausgehend von u den unmarkierten Kanten auf einem
beliebigen Weg 2 solange wie moglich und markiere
dabei jede durchlaufene Kante. (Da von jedem
erreichten Knoten v # u ungerade viele markierte Kanten
ausgehen, muss der Weg 2 zum Ausgangspunkt
zuriickfihren.)

1 Fiige den Zyklus z an der Stelle w in s ein.

5 Wenn noch nicht alle Kanten markiert sind, gehe zu 2.

¢ Output: s

(i1) Da G im Fall s # t genau dann eine Eulerlinie von s nach ¢
hat, wenn der Graph G’ = (V U{tpnew }, EU{{t, Unew}, {Uneu, S} })
einen Eulerkreis hat, folgt dies aus Teil (i) des Satzes.

Ganz ahnlich lasst sich ein entsprechender Satz fiir Digraphen bewei-
sen. Zuvor iibertragen wir die Begriffe Weg, Pfad usw. von Graphen
auf Digraphen.

Definition 203. Sei G = (V,E) ein Digraph, d.h. E ¢ V xV =
{(u,v) |u,v eV}, wobei E auch Schlingen (u,u) enthalten kann, und
set v €V ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={ueV | (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) ={ueV | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) u N=(v).

d) Der Ausgangsgrad von v ist deg’ (v) = |[N*(v)].

e) Der Eingangsgrad von v ist deg” (v) = ||[N~(v)].

f) Der Grad von v ist deg(v) = deg”(v) + deg™ (v).

g) Ein (gerichteter) vo-v;-Weg in G ist eine Folge von Knoten
(vo, ..., v;) mit (v;,v41) € E firi=0,...,5-1.
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h) Ein (gerichteter) Zyklus in G ist ein gerichteter u-v-Weg
der Linge 7>1 mit u = v.

i) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad,
falls alle durchlaufenen Knoten paarweise verschieden sind.

j) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
(vo, ..., vj_1,0), fiir den vy, ... ,v;_1 paarweise verschieden sind.

k) G heifit stark zusammenhingend, wenn es von jedem Kno-
ten u in G zu jedem Knoten v in G einen Weg gibt.

Satz 204 (Euler, 1736). Sei G = (V, E) ein stark zusammenhdngender
Digraph.
(i) G besitzt genau dann einen Fulerkreis, wenn fir jeden Knoten
w in 'V der Ein- und Ausgangsgrad tbereinstimmen.

(ii) G besitzt genau dann eine FEulerlinie von s nach t, wenn fir
jeden Knoten uweV ~{s,t} der Ein- und Ausgangsgrad tiberein-
stimmen und deg(s) — deg (s) = deg™ (t) —deg™ (t) =1 ist.

Korollar 205. Die Probleme EULERPATH, EULERCYCLE, DI-
EULERPATH und DIEULERCYCLE sind alle in P entscheidbar.

Beim Problem des Handlungsreisenden sind die Entfernungen d;;
zwischen n Stadten i,j € {1,...,n} gegeben. Gesucht ist eine Rund-
reise (i1,...,7,) mit minimaler Lange d;, ;, + -+ d;, ., +d die
jede Stadt genau einmal besucht. Die Entscheidungsvariante dieses
Optimierungsproblems ist wie folgt definiert.

in,i1 9

Problem des Handlungsreisenden (TSP; traveling-salesman-
problem)

Gegeben: Eine n xn Matrix D = (d; ;) € N*" und eine Zahl k.

Gefragt: Existiert eine Permutation 7 : {1,...,n} - {1,...,n},
so dass die Rundreise (7(1),...,m(n)) die Lénge < k
hat?

Wir zeigen nun, dass die Probleme DIHAMPATH, HAMPATH, D1I-
HaMCycrLE, HAMCYCLE und TSP alle NP-vollstandig sind. Es ist
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leicht zu sehen, dass diese Probleme in NP entscheidbar sind. Zum
Nachweis der NP-Hérte zeigen wir folgende Reduktionen:

HAMPATH,

<P <P .
DIHAMCYCLE S HaMCyCLE <P TSP

3-SAT < DIHAMPATH <P

Wir reduzieren zuerst HAMCYCLE auf TSP.

Satz 206. HAMCYCLE <P TSP.

Beweis. Sei ein Graph G = (V, E) gegeben. Wir kénnen annehmen,
dass V ={1,...,n} ist. Dann ldsst sich G in Polynomialzeit auf die
TSP Instanz (D,n) mit D = (d; ;) und

falls {7,7} € E,

sonst,

transformieren. Diese Reduktion ist korrekt, da G genau dann einen
Hamiltonkreis hat, wenn es in dem Distanzgraphen D eine Rundreise
(7(1),...,7(n)) der Lange L(7) < n gibt. m

Als nachstes reduzieren wir DIHAMCYCLE auf HAMCYCLE.
Satz 207. DIHAMCYCLE < HAMCYCLE.

Beweis. Wir transformieren wir einen Digraphen G auf einen Graphen
G’, indem wir lokal fiir jeden Knoten u € V' die folgende Ersetzung
durchfiihren:

e >

Dann ist klar, dass die Funktion G — G’ in FP berechenbar ist, und

(W)~

G genau dann einen Hamiltonkreis enthélt, wenn dies auf G’ zutrifft.

Ahnlich ldsst sich auch DIHAMPATH auf HAMPATH reduzieren. m
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Satz 208. DiIHAMPATH <» DIHAMCYCLE.

Beweis. Um DIHAMPATH auf DIHAMCYCLE zu reduzieren, trans-
formieren wir einen gegebenen Digraphen G = (V, E') mit zwei ausge-
zeichneten Knoten s,t € V' in den Digraphen G’ = (V/, E’) mit

V' =V U {tpe,} und
E, = E U {(t7 uneu)7 (uneu7 S)}’
Offenbar ist G’ in Polynomialzeit aus G berechenbar und besitzt genau

dann einen Hamiltonkreis, wenn G einen s-t-Hamiltonpfad besitzt.
Ahnlich lisst sich auch HAMPATH auf HAMCYCLE reduzieren. [ |
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