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1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschäftigen wir uns mit mathematischen Modellen
für Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch lösbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.
Schließlich untersuchen wir die Komplexität von algorithmischen Pro-
blemen, indem wir den benötigten Rechenaufwand möglichst gut nach
oben und unten abschätzen. Eine besondere Rolle spielen hierbei die
NP-vollständigen Probleme, deren Komplexität bis heute offen ist.

Themen der Vorlesung
• Welche Rechenmodelle sind für bestimmte Aufgaben adäquat?

(Automatentheorie)
• Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
• Welcher Aufwand ist zur Lösung eines algorithmischen Problems

nötig? (Komplexitätstheorie)
In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
• Wie lassen sich praktisch relevante Problemstellungen möglichst

effizient lösen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
• Mathematische Grundlagen der Informatik, Beweise führen,

Modellierung (Aussagenlogik, Prädikatenlogik)
Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale
Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung
des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten löst (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben können Zahlen, Formeln, Graphen etc. sein. Diese werden
über einem Eingabealphabet Σ kodiert.

Definition 1.
a) Ein Alphabet Σ = {a1, . . . , am} ist eine geordnete Menge von

endlich vielen Zeichen.
b) Eine Folge x = x1 . . . xn von n Zeichen heißt Wort (der Länge

n).
c) Die Menge aller Wörter über Σ ist

Σ∗ = ⋃
n≥0

Σn,

wobei Σn = {x1 . . . xn ∣ n ≥ 0 und xi ∈ Σ für i = 1, . . . , n} alle
Wörter der Länge n enthält.

d) Das (einzige) Wort der Länge n = 0 ist das leere Wort, welches
wir mit ε bezeichnen.

e) Jede Teilmenge L ⊆ Σ∗ heißt Sprache über dem Alphabet Σ.

Beispiel 2. Sei Σ ein Alphabet. Dann sind ∅,Σ∗,Σ und {ε} Sprachen
über Σ. Die Sprache ∅ enthält keine Wörter und heißt leere Spra-
che. Die Sprache Σ∗ enthält dagegen alle Wörter über Σ, während
die Sprache Σ alle Wörter über Σ der Länge 1 enthält. Die Sprache
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2 Reguläre Sprachen

{ε} enthält nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singleton-Sprachen bezeichnet.

Da Sprachen Mengen sind, können wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

∅ ⊆ {ε} ⊆ Σ∗.

Wir können Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen über Σ. Dann ist

• A ∩B = {x ∈ Σ∗ ∣ x ∈ A,x ∈ B} der Schnitt von A und B,
• A ∪B = {x ∈ Σ∗ ∣ x ∈ A ∨ x ∈ B} die Vereinigung von A und
B, und

• A = {x ∈ Σ∗ ∣ x /∈ A} das Komplement von A.
Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.
• Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B ist

AB = {xy ∣ x ∈ A,y ∈ B}.

Ist A = {x} eine Singletonsprache, so schreiben wir für {x}B
auch einfach xB.

• Die n-fache Potenz An einer Sprache A ist induktiv definiert
durch

An =
⎧⎪⎪⎨⎪⎪⎩

{ε}, n = 0,
An−1A, n > 0.

• Die Sternhülle A∗ von A ist A∗ = ⋃n≥0An.
• Die Plushülle A+ von A ist A+ = ⋃n≥1An = AA∗.

2 Reguläre Sprachen

Wir betrachten zunächst Einschränkungen des TM-Modells, die viel-
fältige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Ein endlicher Automat führt
bei einer Eingabe der Länge n
nur n Rechenschritte aus. Um
die gesamte Eingabe lesen zu
können, muss der Automat also
in jedem Schritt ein Zeichen der
Eingabe verarbeiten.

x1 ⋯ xi ⋯ xn

Eingabe-
band

Lesekopf

Steuer-
einheit

Ð→

Definition 4. Ein endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,Σ, δ, q0,E) beschrie-
ben, wobei

• Z ≠ ∅ eine endliche Menge von Zuständen,
• Σ das Eingabealphabet,
• δ ∶ Z ×Σ→ Z die Überführungsfunktion,
• q0 ∈ Z der Startzustand und
• E ⊆ Z die Menge der Endzustände ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x1 . . . xn ∈ Σ∗
es gibt q1, . . . , qn−1 ∈ Z, qn ∈ E mit
δ(qi, xi+1) = qi+1 für i = 0, . . . , n − 1} .
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2 Reguläre Sprachen 2.1 Endliche Automaten

q0, q1, . . . , qn heißt Rechnung von M(x1 . . . xn), falls δ(qi, xi+1) = qi+1
für i = 0, . . . , n − 1 gilt. Sie heißt akzeptierend, falls qn ∈ E ist.

Beispiel 5. Betrachte den DFA M =
(Z,Σ, δ,0,E) mit Z = {0,1,2}, Σ =
{a, b}, E = {1} und der Überführungs-
funktion

δ 0 1 2

a 1 2 0
b 2 0 1

Graphische Darstellung:

2

0

1

a
bb

a

a

b

Der Startzustand wird meist durch einen Pfeil und Endzustände
werden durch einen doppelten Kreis gekennzeichnet. ◁
Bezeichne δ̂(q, x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand q gestartet wird. Dann können wir
die Funktion

δ̂ ∶ Z ×Σ∗ → Z

induktiv wie folgt definieren. Für q ∈ Z, x ∈ Σ∗ und a ∈ Σ sei

δ̂(q, ε) = q,

δ̂(q, xa) = δ(δ̂(q, x), a).

Die von M erkannte Sprache lässt sich nun auch in der Form

L(M) = {x ∈ Σ∗ ∣ δ̂(q0, x) ∈ E}

schreiben.

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache

L(M) = {x ∈ Σ∗ ∣ #a(x) −#b(x) ≡3 1},

wobei #a(x) die Anzahl der Vorkommen des Zeichens a in x bezeichnet
und j ≡m k bedeutet, dass j − k durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {x ∈ Σ∗ ∣
δ̂(0, x) = 1}, d.h. wir müssen folgende Äquivalenz zeigen:

δ̂(0, x) = 1⇔#a(x) −#b(x) ≡3 1.

Hierzu reicht es, die Kongruenz

δ̂(0, x) ≡3 #a(x) −#b(x).

zu beweisen, wofür wir Induktion über die Länge n von x benutzen.
Induktionsanfang (n = 0): klar, da δ̂(0, ε) = #a(ε) = #b(ε) = 0 ist.
Induktionsschritt (n; n + 1): Sei x = x1 . . . xn+1 gegeben und sei

i = δ̂(0, x1 . . . xn). Nach IV gilt dann

i ≡3 #a(x1 . . . xn) −#b(x1 . . . xn).

Wegen δ(i, a) ≡3 i + 1 und δ(i, b) ≡3 i − 1 folgt daher

δ(i, xn+1) ≡3 i +#a(xn+1) −#b(xn+1)
≡3 #a(x1 . . . xn) −#b(x1 . . . xn) +#a(xn+1) −#b(xn+1)
= #a(x) −#b(x).

und somit

δ̂(0, x) = δ(δ̂(0, x1 . . . xn), xn+1) = δ(i, xn+1) ≡3 #a(x) −#b(x).

∎

Eine von einem DFA akzeptierte Sprache wird als regulär bezeichnet.
Die zugehörige Sprachklasse ist

REG = {L(M) ∣M ist ein DFA}.

Beobachtung 7. Alle Singletonsprachen sind regulär.
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2 Reguläre Sprachen 2.1 Endliche Automaten

Beweis. Für jedes Wort x = x1 . . . xn existiert ein DFA Mx mit
L(Mx) = {x}:

q0 q1 q2
⋯ qn

e

x3 xnx1 x2

a ≠ x1
a ≠ x2 a ≠ x3

a ∈ Σ

a ∈ Σ

Formal ist Mx also das Tupel (Z,Σ, δ, q0,E) mit Z = {q0, . . . , qn, e},
E = {qn} und der Überführungsfunktion

δ(q, aj) =
⎧⎪⎪⎨⎪⎪⎩

qi+1, q = qi für ein i mit 0 ≤ i ≤ n − 1 und aj = xi+1

e, sonst.

∎

Als nächstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. Ein k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen L1, . . . , Lk auf eine Sprache op(L1, . . . , Lk) abbildet.

Beispiel 9. Der Schnittoperator ∩ bildet zwei Sprachen L1 und L2
auf die Sprache L1 ∩L2 ab. ◁

Definition 10. Eine Sprachklasse K heißt unter op abgeschlossen,
wenn gilt:

L1, . . . , Lk ∈ K ⇒ op(L1, . . . , Lk) ∈ K.

Der Abschluss von K unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K′, die K enthält und unter op abgeschlossen ist.

Beispiel 11. Der Abschluss der Singletonsprachen unter ∩ besteht
aus allen Singletonsprachen und der leeren Sprache.
Der Abschluss der Singletonsprachen unter ∪ besteht aus allen nicht-
leeren endlichen Sprachen. ◁

Definition 12. Für eine Sprachklasse C bezeichne co-C die Klasse
{L̄ ∣ L ∈ C} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L1, L2 ∈ REG sind auch die Sprachen L1 =
Σ∗ ∖L1, L1 ∩L2 und L1 ∪L2 regulär.

Beweis. Sind Mi = (Zi,Σ, δi, q0,Ei), i = 1,2, DFAs mit L(Mi) = Li,
so akzeptiert der DFA

M1 = (Z1,Σ, δ1, q0, Z1 ∖E1)

das Komplement L1 von L1. Der Schnitt L1 ∩L2 von L1 und L2 wird
dagegen von dem DFA

M = (Z1 ×Z2,Σ, δ, (q0, q0),E1 ×E2)

mit
δ((q, p), a) = (δ1(q, a), δ2(p, a))

akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen
L1 ∪ L2 = (L1 ∩L2) ist dann aber auch die Vereinigung von L1 und
L2 regulär. (Wie sieht der zugehörige DFA aus?) ∎

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulär sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regulären Sprachen erfasst.
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2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhülle abgeschlossen ist. Im
übernächsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt
und Sternhülle charakterisierbar ist.
Beim Versuch, einen endlichen Automaten für das Produkt L1L2 zwei-
er regulärer Sprachen zu konstruieren, stößt man auf die Schwierigkeit,
den richtigen Zeitpunkt für den Übergang von (der Simulation von)
M1 zu M2 zu finden. Unter Verwendung eines nichtdeterministischen
Automaten lässt sich dieses Problem jedoch leicht beheben, da dieser
den richtigen Zeitpunkt „erraten“ kann.
Im nächsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur reguläre Sprachen erkennen
können.

2.2 Nichtdeterministische endliche Automaten

Definition 14. Ein nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,Σ,∆,Q0,E) ist ähnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustände (zusammengefasst in der Menge Q0 ⊆ Z) haben
kann und seine Überführungsfunktion die Form

∆ ∶ Z ×Σ→ P(Z)
hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2Z bezeichnet. Die
von N akzeptierte Sprache ist

L(N) = {x1 . . . xn ∈ Σ∗
∃ q0 ∈ Q0, q1, . . . , qn−1 ∈ Z, qn ∈ E ∶
qi+1 ∈ ∆(qi, xi+1) für i = 0, . . . , n − 1 } .

q0, q1, . . . , qn heißt Rechnung von N(x1 . . . xn), falls qi+1 ∈ ∆(qi, xi+1)
für i = 0, . . . , n − 1 gilt.

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausführen. Ein Wort x ge-
hört genau dann zu L(N), wenn N(x) mindestens eine akzeptierende
Rechnung hat.
Im Gegensatz zu einem DFA, dessen Überführungsfunktion auf der
gesamten Menge Z ×Σ definiert ist, kann ein NFA „stecken bleiben“.
Das ist dann der Fall, wenn er in einen Zustand q gelangt, in dem das
nächste Eingabezeichen xi wegen ∆(q, xi) = ∅ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,Σ,∆,Q0,E) mit Zustands-
menge Z = {p, q, r, s}, Eingabealphabet Σ = {0,1,2}, Start- und End-
zustandsmenge Q0 = {p} und E = {s} sowie der Überführungsfunktion

∆ p q r s

0 {p, q} ∅ ∅ ∅
1 {p} {r} ∅ ∅
2 {p} ∅ {s} ∅

Graphische Darstellung:

p q r s0 1 2

0, 1, 2

Offensichtlich akzeptiert N die Sprache L(N) = {x012 ∣ x ∈ Σ∗} aller
Wörter, die mit dem Suffix 012 enden. ◁

Beobachtung 16. Sind Ni = (Zi,Σ,∆i,Qi,Ei) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(N2) und L(N1)∗ von einem NFA
erkannt.

Beweis. Sei Li = L(Ni). Wir können Z1 ∩ Z2 = ∅ annehmen. Dann
akzeptiert der NFA

N = (Z1 ∪Z2,Σ,∆3,Q1,E)
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2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

mit

∆3(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), sonst
und

E =
⎧⎪⎪⎨⎪⎪⎩

E2, Q2 ∩E2 = ∅
E1 ∪E2, sonst

die Sprache L1L2.
Beweis von L1L2 ⊆ L(N): Seien x = x1⋯xk ∈ L1, y = y1⋯yl ∈ L2 und
seien q0, . . . , qk und p0, . . . , pl akzeptierende Rechnungen von N1(x)
und N2(y). Dann gilt q0 ∈ Q1, qk ∈ E1 und p0 ∈ Q2, pl ∈ E2.

• Im Fall l ≥ 1 ist zudem p1 ∈ ∆2(p0, y1) und somit p1 ∈ ∆(qk, y1).
• Im Fall l = 0 ist zudem pl ∈ Q2 ∩E2 und somit qk ∈ E.

Also ist q0, . . . , qk, p1, . . . , pl eine akzeptierende Rechnung von N(xy).
Beweis von L(N) ⊆ L1L2: Sei x = x1⋯xn ∈ L(N) und sei q0, . . . , qn
eine akz. Rechnung von N(x). Dann gilt q0 ∈ Q1, qn ∈ E, q0, . . . , qi ∈ Z1
und qi+1, . . . , qn ∈ Z2 für ein i ∈ {0, . . . , n}.

• Im Fall i = n ist qn ∈ E1 (d.h. x ∈ L1) und Q2 ∩ E2 ≠ ∅ (d.h.
ε ∈ L2).

• Im Fall i < n impliziert der Übergang qi+1 ∈ ∆(qi, xi+1), dass
qi ∈ E1 und qi+1 ∈ ∆2(q, xi+1) für ein q ∈ Q2 ist.

Also ist q0, . . . , qi eine akz. Rechnung von N1(x1⋯xi) und q, qi+1, . . . , qn
eine akz. Rechnung von N2(xi+1⋯xn), d.h. x ∈ L1L2.
Ganz ähnlich lässt sich zeigen, dass der NFA

N∗ = (Z1 ∪ {qneu},Σ,∆4,Q1 ∪ {qneu},E1 ∪ {qneu})

mit

∆4(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖E1,

∆1(p, a) ∪ ⋃q∈Q1 ∆1(q, a), p ∈ E1,

∅, sonst

die Sprache L∗1 akzeptiert. ∎

Satz 17 (Rabin und Scott).
REG = {L(N) ∣ N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Für die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,Σ,∆,Q0,E) einen DFA M =
(P(Z),Σ, δ,Q0,E′) mit L(M) = L(N). Wir definieren die Überfüh-
rungsfunktion δ ∶ P(Z) ×Σ→ P(Z) von M mittels

δ(Q,a) = ⋃
q∈Q

∆(q, a).

Die Menge δ(Q,a) enthält also alle Zustände, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand q ∈ Q das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand Q die Information speichert,
in welchen Zuständen sich N momentan befinden könnte. Für die
Erweiterung δ̂ ∶ P(Z) ×Σ∗ → P(Z) von δ (siehe Seite 3) können wir
nun folgende Behauptung zeigen.
Behauptung. δ̂(Q0, x) enthält alle Zustände, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.
Wir beweisen die Behauptung induktiv über die Länge n von x.
Induktionsanfang (n = 0): klar, da δ̂(Q0, ε) = Q0 ist.
Induktionsschritt (n − 1 ; n): Sei x = x1 . . . xn gegeben. Nach Induk-

tionsvoraussetzung enthält
Qn−1 = δ̂(Q0, x1 . . . xn−1)

alle Zustände, die N(x) in genau n− 1 Schritten erreichen kann.
Wegen

δ̂(Q0, x) = δ(Qn−1, xn) = ⋃
q∈Qn−1

∆(q, xn)

enthält dann aber δ̂(Q0, x) alle Zustände, die N(x) in genau n
Schritten erreichen kann.
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2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Deklarieren wir nun diejenigen Teilmengen Q ⊆ Z, die mindestens
einen Endzustand von N enthalten, als Endzustände des Potenz-
mengenautomaten M , d.h.

E′ = {Q ⊆ Z ∣ Q ∩E /= ∅},

so folgt für alle Wörter x ∈ Σ∗:

x ∈ L(N) ⇔ N(x) kann in genau ∣x∣ Schritten einen Endzustand
erreichen

⇔ δ̂(Q0, x) ∩E /= ∅
⇔ δ̂(Q0, x) ∈ E′

⇔ x ∈ L(M).

∎

Beispiel 18. Für den NFA N = (Z,Σ,∆,Q0,E) aus Beispiel 15

p q r s0 1 2

0, 1, 2

ergibt die Konstruktion des vorigen Satzes den folgenden DFAM (nach
Entfernen aller vom Startzustand Q0 = {p} aus nicht erreichbaren
Zustände):

δ 0 1 2

Q0 = {p} {p, q} {p} {p}
Q1 = {p, q} {p, q} {p, r} {p}
Q2 = {p, r} {p, q} {p} {p, s}
Q3 = {p, s} {p, q} {p} {p}

{p}

1, 2

{p, q}

0

{p, r} {p, s}

0 1
2

1 0

1, 2

0
2

◁

Im obigen Beispiel wurden für die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2∥Z∥ = 16 Zustände benötigt, da die
übrigen 12 Zustände in P(Z) nicht vom Startzustand Q0 = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 2∥Z∥ Zustände
in P(Z) für die Konstruktion des Potenzmengenautomaten benötigt
werden (siehe Übungen).

Korollar 19. Die Klasse REG der regulären Sprachen ist unter fol-
genden Operationen abgeschlossen:

• Komplement,
• Schnitt,
• Vereinigung,

• Produkt,
• Sternhülle.

2.3 Reguläre Ausdrücke

Wir haben uns im letzten Abschnitt davon überzeugt, dass auch NFAs
nur reguläre Sprachen erkennen können:

REG = {L(M) ∣M ist ein DFA} = {L(N) ∣ N ist ein NFA}.

In diesem Abschnitt werden wir eine weitere Charakterisierung der
regulären Sprachen kennen lernen:

REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhülle aus der leeren Menge und den Singleton-
sprachen bilden lassen.
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2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Tatsächlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der regulären Ausdrücke γ (über ei-
nem Alphabet Σ) und die durch γ dargestellte Sprache L(γ) sind
induktiv wie folgt definiert. Die Symbole ∅, ε und a (a ∈ Σ) sind
reguläre Ausdrücke, die

• die leere Sprache L(∅) = ∅,
• die Sprache L(ε) = {ε} und
• für jedes Zeichen a ∈ Σ die Sprache L(a) = {a}

beschreiben. Sind α und β reguläre Ausdrücke, die die Sprachen L(α)
und L(β) beschreiben, so sind auch αβ, (α∣β) und (α)∗ reguläre Aus-
drücke, die die Sprachen

• L(αβ) = L(α)L(β),
• L(α∣β) = L(α) ∪L(β) und
• L((α)∗) = L(α)∗

beschreiben.

Bemerkung 21.
• Um Klammern zu sparen, definieren wir folgende Präzedenz-
ordnung: Der Sternoperator ∗ bindet stärker als der Produktope-
rator und dieser wiederum stärker als der Vereinigungsoperator.
Für ((a∣b(c)∗)∣d) können wir also kurz a∣bc∗∣d schreiben.

• Da der reguläre Ausdruck γγ∗ die Sprache L(γ)+ beschreibt,
verwenden wir γ+ als Abkürzung für den Ausdruck γγ∗.

Beispiel 22. Die regulären Ausdrücke ε∗, ∅∗, (0∣1)∗00 und ε0∣∅1∗
beschreiben folgende Sprachen:

γ ε∗ ∅∗ (0∣1)∗00 ε0∣∅1∗
L(γ) {ε}∗ = {ε} ∅∗ = {ε} {x00 ∣ x ∈ {0,1}∗} {0}

◁

Beispiel 23. Betrachte nebenstehenden DFA M .
Um für die von M erkannte Sprache

L(M) = {x ∈ {a, b}∗ ∣ #a(x) −#b(x) ≡3 1}

einen regulären Ausdruck zu finden, betrachten
wir zunächst die Sprache L0,0 aller Wörter x, die
den DFA M ausgehend vom Zustand 0 in den

2

0

1

a
bb

a

a

b

Zustand 0 überführen. Weiter sei L≠0
0,0 die Sprache aller solchen Wörter

w ≠ ε, die zwischendurch nicht den Zustand 0 besuchen. Dann setzt
sich jedes x ∈ L0,0 aus beliebig vielen Teilwörtern w1, . . . ,wk ∈ L≠0

0,0
zusammen, d.h. L0,0 = (L≠0

0,0)∗.
Jedes w ∈ L≠0

0,0 beginnt entweder mit einem a (Übergang von 0 nach 1)
oder mit einem b (Übergang von 0 nach 2). Im ersten Fall folgt eine
beliebige Anzahl von Teilwörtern ab (Wechsel zwischen 1 und 2), an
die sich entweder das Suffix aa (Rückkehr von 1 nach 0 über 2) oder
das Suffix b (direkte Rückkehr von 1 nach 0) anschließt. Analog folgt
im zweiten Fall eine beliebige Anzahl von Teilwörtern ba (Wechsel
zwischen 2 und 1), an die sich entweder das Suffix a (direkte Rückkehr
von 2 nach 0) oder das Suffix bb (Rückkehr von 2 nach 0 über 1)
anschließt. Daher lässt sich L≠0

0,0 durch den regulären Ausdruck

γ≠0
0,0 = a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb)

beschreiben. Eine ähnliche Überlegung zeigt, dass sich die die Sprache
L≠0

0,1 aller Wörter, die M ausgehend von 0 in den Zustand 1 über-
führen, ohne dass zwischendurch der Zustand 0 nochmals besucht
wird, durch den regulären Ausdruck γ≠0

0,1 = (a∣bb)(ab)∗ beschreibbar
ist. Somit erhalten wir für L(M) den regulären Ausdruck

γ0,1 = (γ≠0
0,0)∗γ≠0

0,1 = (a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb))∗(a∣bb)(ab)∗.
◁

Satz 24. {L(γ) ∣ γ ist ein regulärer Ausdruck} = REG.
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2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdrücke ∅, ε und a, a ∈ Σ∗, nur reguläre Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle
abgeschlossen ist (siehe Beobachtungen 13 und 16).
Für die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
lären Ausdruck γ mit L(γ) = L(M). Sei also M = (Z,Σ, δ, q0,E) ein
DFA, wobei wir annehmen können, dass Z = {1, . . . ,m} und q0 = 1 ist.
Dann lässt sich L(M) als Vereinigung

L(M) = ⋃
q∈E

L1,q

von Sprachen der Form
Lp,q = {x ∈ Σ∗ ∣ δ̂(p, x) = q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen Lp,q durch
reguläre Ausdrücke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

Lrp,q = {x1 . . . xn ∈ Σ∗
δ̂(p, x1 . . . xn) = q und für

i = 1, . . . , n − 1 gilt δ̂(p, x1 . . . xi) ≤ r
} .

Wegen Lp,q = Lmp,q reicht es, reguläre Ausdrücke γrp,q für die Sprachen
Lrp,q anzugeben. Im Fall r = 0 enthält

L0
p,q =

⎧⎪⎪⎨⎪⎪⎩

{a ∈ Σ ∣ δ(p, a) = q} ∪ {ε}, p = q,
{a ∈ Σ ∣ δ(p, a) = q}, sonst

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen regulären Ausdruck γ0

p,q beschreibbar. Wegen
Lr+1
p,q = Lrp,q ∪Lrp,r+1(Lrr+1,r+1)∗Lrr+1,q

lassen sich aus den regulären Ausdrücken γrp,q für die Sprachen Lrp,q
leicht reguläre Ausdrücke für die Sprachen Lr+1

p,q gewinnen:
γr+1
p,q = γrp,q ∣γrp,r+1(γrr+1,r+1)∗γrr+1,q.

∎

Beispiel 25. Betrachte den DFA

1

b

2

b

a

a

Da M insgesamt m = 2 Zustände und nur den Endzustand 2 besitzt,
ist

L(M) = ⋃
q∈E

L1,q = L1,2 = L2
1,2 = L(γ2

1,2).

Um γ2
1,2 zu berechnen, benutzen wir die Rekursionsformel

γr+1
p,q = γrp,q ∣γrp,r+1(γrr+1,r+1)∗γrr+1,q

und erhalten

γ2
1,2 = γ1

1,2∣γ1
1,2(γ1

2,2)∗γ1
2,2,

γ1
1,2 = γ0

1,2∣γ0
1,1(γ0

1,1)∗γ0
1,2,

γ1
2,2 = γ0

2,2∣γ0
2,1(γ0

1,1)∗γ0
1,2.

Um den regulären Ausdruck γ2
1,2 für L(M) zu erhalten, genügt es also,

die regulären Ausdrücke γ0
1,1, γ0

1,2, γ0
2,1, γ0

2,2, γ1
1,2 und γ1

2,2 zu berechnen:

r
p, q

1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b

1 -
a∣(ε∣b)(ε∣b)∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b∗a
-

(ε∣b)∣a(ε∣b)∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ε∣b∣ab∗a

2 -
b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b∗a(b∣ab∗a)∗
- -

◁
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2 Reguläre Sprachen 2.4 Relationalstrukturen

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen äqui-
valent:

• L ist regulär,
• es gibt einen DFA M mit L = L(M),
• es gibt einen NFA N mit L = L(N),
• es gibt einen regulären Ausdruck γ mit L = L(γ),
• L lässt sich mit den Operationen Vereinigung, Produkt und

Sternhülle aus endlichen Sprachen gewinnen,
• L lässt sich mit den Operationen ∩, ∪, Komplement, Produkt

und Sternhülle aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, nämlich durch reguläre Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Äquivalenzrelationen) eine wichtige Rolle.

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, Ri eine ki-stellige Relation auf A, d.h.
Ri ⊆ Aki für i = 1, . . . , n. Dann heißt (A;R1, . . . ,Rn) Relational-
struktur. Die Menge A heißt Grundmenge, Trägermenge oder
Individuenbereich der Relationalstruktur.
Wir werden hier hauptsächlich den Fall n = 1, k1 = 2, also (A,R) mit
R ⊆ A ×A betrachten. Man nennt dann R eine (binäre) Relation
auf A. Oft wird für (a, b) ∈ R auch die Infix-Schreibweise aRb
benutzt.

Beispiel 27.
• (F,M) mit F = {f ∣ f ist Fluss in Europa} und

M = {(f, g) ∈ F × F ∣ f mündet in g}.

• (U,B) mit U = {x ∣ x ist Berliner} und

B = {(x, y) ∈ U ×U ∣ x ist Bruder von y}.

• (P(M),⊆), wobei P(M) die Potenzmenge einer beliebigen Men-
ge M und ⊆ die Inklusionsbeziehung auf den Teilmengen von M
ist.

• (A, IdA), wobei IdA = {(x,x) ∣ x ∈ A} die Identität auf A ist.
• (R,≤).
• (Z, ∣), wobei ∣ die ”teilt”-Relation bezeichnet (d.h. a∣b, falls ein
c ∈ Z mit b = ac existiert). ◁

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt,Vereinigung,Komplement undDifferenz
definiert. Seien R und S Relationen auf A, dann ist

R ∩ S = {(x, y) ∈ A ×A ∣ xRy ∧ xSy},
R ∪ S = {(x, y) ∈ A ×A ∣ xRy ∨ xSy},
R − S = {(x, y) ∈ A ×A ∣ xRy ∧ ¬xSy},
R = (A ×A) −R.

Sei allgemeinerM⊆ P(A ×A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt überM und die Vereinigung über
M folgende Relationen:

⋂M = ⋂
R∈M

R = {(x, y) ∣ ∀R ∈ M ∶ xRy},

⋃M = ⋃
R∈M

R = {(x, y) ∣ ∃R ∈ M ∶ xRy}.

Die transponierte (konverse) Relation zu R ist

RT = {(y, x) ∣ xRy}.

RT wird oft auch mit R−1 bezeichnet. Z.B. ist (R,≤T ) = (R,≥).
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2 Reguläre Sprachen 2.4 Relationalstrukturen

Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

R ○ S = {(x, z) ∈ A ×A ∣ ∃y ∈ A ∶ xRy ∧ ySz}.

Beispiel 28. Ist B die Relation ”ist Bruder von”, V ”ist Vater von”,
M ”ist Mutter von” und E = V ∪M ”ist Elternteil von”, so ist B ○E
die Onkel-Relation. ◁

Übliche Bezeichnungen für das Relationenprodukt sind auch R ;S und
R ⋅ S oder einfach RS. Das n-fache Relationenprodukt R ○ ⋯ ○R von
R wird mit Rn bezeichnet. Dabei ist R0 = Id.
Vorsicht: Das n-fache Relationenprodukt Rn von R sollte nicht mit
dem n-fachen kartesischen Produkt R ×⋯ ×R der Menge R verwech-
selt werden. Wir vereinbaren, dass Rn das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heißt R
reflexiv, falls ∀x ∈ A ∶ xRx (also IdA ⊆ R)
irreflexiv, falls ∀x ∈ A ∶ ¬xRx (also IdA ⊆ R)
symmetrisch, falls ∀x, y ∈ A ∶ xRy⇒ yRx (also R ⊆ RT )
asymmetrisch, falls ∀x, y ∈ A ∶ xRy⇒ ¬yRx (also R ⊆ RT )
antisymmetrisch, falls ∀x, y ∈ A ∶ xRy ∧ yRx⇒ x = y

(also R ∩RT ⊆ Id)
konnex, falls ∀x, y ∈ A ∶ xRy ∨ yRx

(also A ×A ⊆ R ∪RT )
semikonnex, falls ∀x, y ∈ A ∶ x ≠ y⇒ xRy ∨ yRx

(also Id ⊆ R ∪RT )
transitiv, falls ∀x, y, z ∈ A ∶ xRy ∧ yRz ⇒ xRz

(also R2 ⊆ R)
gilt.

Die nachfolgende Tabelle gibt einen Überblick über die wichtigsten
Relationalstrukturen.

refl. sym. trans. antisym. asym. konnex semikon.

Äquivalenzrelation ✓ ✓ ✓

(Halb-)Ordnung ✓ ✓ ✓

Striktordnung ✓ ✓

lineare Ordnung ✓ ✓ ✓

lin. Striktord. ✓ ✓ ✓

Quasiordnung ✓ ✓

In der Tabelle sind nur die definierenden Eigenschaften durch ein ”✓”
gekennzeichnet. Das schließt nicht aus, dass gleichzeitig auch noch
weitere Eigenschaften vorliegen können.
Beispiel 29.

• Die Relation ”ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.

• Die Relation ”ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Äquivalenzrelation.

• (R,<) ist irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnung.

• (R,≤) und (P(M),⊆) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

• (R,≤) ist auch konnex und somit eine lineare Ordnung.
• (P(M),⊆) ist zwar im Fall ∥M∥ ≤ 1 konnex, aber im Fall

∥M∥ ≥ 2 weder semikonnex noch konnex. ◁

Graphische Darstellung von Relationen

Eine RelationR auf einer endlichen MengeA kann durch einen gerich-
teten Graphen (oderDigraphen) G = (V,E) mitKnotenmenge

11



2 Reguläre Sprachen 2.4 Relationalstrukturen

V = A und Kantenmenge E = R veranschaulicht werden. Hierzu
stellen wir jedes Element x ∈ A als einen Knoten dar und verbin-
den jedes Knotenpaar (x, y) ∈ R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heißen benachbart oder
adjazent.
Beispiel 30. Für die Relation (A,R) mit A = {a, b, c, d} und
R = {(b, c), (b, d), (c, a), (c, d), (d, d)} erhalten wir folgende graphische
Darstellung.

a b

dc

◁

Der Ausgangsgrad eines Knotens x ∈ V ist deg+(x) = ∥R[x]∥, wobei
R[x] = {y ∈ V ∣ xRy} die Menge der Nachfolger von x ist. Entspre-
chend ist deg−(x) = ∥{y ∈ V ∣ yRx}∥ der Eingangsgrad von x und
R−1[x] = {y ∈ V ∣ yRx} die Menge der Vorgänger von x. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(x) = deg−(x) = deg+(x) der Grad von x und R[x] = R−1[x]
heißt die Nachbarschaft von x. Ist R zudem irreflexiv, so ist G
schleifenfrei und wir erhalten einen (ungerichteten) Graphen.

Darstellung durch eine Adjazenzmatrix

Eine Relation R auf einer endlichen (geordneten) Menge A =
{a1, . . . , an} lässt sich durch eine boolesche n × n-Matrix MR = (mij)
mit

mij ∶= { 1, aiRaj,
0, sonst

darstellen. Beispielsweise hat die Relation
R = {(b, c), (b, d), (c, a), (c, d), (d, d)}

auf der Menge A = {a, b, c, d} die Matrixdarstellung

MR =

⎛
⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1 1
1 0 0 1
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

.

Darstellung durch eine Adjazenzliste

Eine weitere Möglichkeit besteht darin, eine endliche Relation R
in Form einer Tabelle darzustellen, die jedem Element x ∈ A seine
Nachfolgermenge R[x] in Form einer Liste zuordnet:

x R[x]

a -
b c, d

c a, d

d d

Sind MR = (rij) und MS = (sij) boolesche n × n-Matrizen für R und
S, so erhalten wir für T = R ○ S die Matrix MT = (tij) mit

tij = ⋁
k=1,...,n

(rik ∧ skj)

Die Nachfolgermenge T [x] von x bzgl. der Relation T = R○S berechnet
sich zu

T [x] = ⋃{S[y] ∣ y ∈ R[x]} = ⋃
y∈R[x]

S[y].

Beispiel 31. Betrachte die Relationen R = {(a, a), (a, c), (c, b), (c, d)}
und S = {(a, b), (d, a), (d, c)} auf der Menge A = {a, b, c, d}.
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Relation R S R ○ S S ○R

Digraph
a b

dc

a b

dc

a b

dc

a b

dc

Adjazenz-
matrix

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0

0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

Adjazenz-
liste

a ∶a, c
b ∶ -
c ∶ b, d
d ∶ -

a ∶ b
b ∶ -
c ∶ -
d ∶a, c

a ∶ b
b ∶ -
c ∶ a, c
d ∶ -

a ∶ -
b ∶ -
c ∶ -
d ∶a, b, c, d

◁

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht R ○ S = S ○R.
Als nächstes zeigen wir, dass die Menge R = P(A ×A) aller binären
Relationen auf A mit dem Relationenprodukt ○ als binärer Operation
ein Monoid) (also eine Halbgruppe mit neutralem Element) bildet.

Satz 32. Seien Q, R, S Relationen auf A. Dann gilt
(i) (Q ○R) ○ S = Q ○ (R ○ S), d.h. ○ ist assoziativ,
(ii) Id ○R = R ○ Id = R, d.h. Id ist neutrales Element.

Beweis.
(i) Es gilt:

x (Q ○R) ○ S y ⇔ ∃u ∈ A ∶ x (Q ○R) u ∧ u S y

⇔ ∃u ∈ A ∶ (∃v ∈ A ∶ x Q v R u) ∧ u S y

⇔ ∃u, v ∈ A ∶ x Q v R u S y

⇔ ∃v ∈ A ∶ x Q v ∧ (∃u ∈ A ∶ v R u ∧ u S y)
⇔ ∃v ∈ A ∶ x Q v (R ○ S) y
⇔ x Q ○ (R ○ S) y

(ii) Wegen x Id○R y⇔∃z ∶ x = z ∧ z R y⇔ x R y folgt Id○R = R.
Die Gleichheit R ○ Id = R folgt analog.

∎

Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine möglichst kleine Modifikation in eine Relation R′ mit
vorgegebenen Eigenschaften zu überführen. Will man dabei alle in R
enthaltenen Paare beibehalten, dann sollte R′ aus R durch Hinzufügen
möglichst weniger Paare hervorgehen.
Es lässt sich leicht nachprüfen, dass der Schnitt über eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R′, die R enthält.

Definition 33. Sei R eine Relation auf A.
• Die reflexive Hülle von R ist

hrefl(R) = ⋂{S ⊆ A ×A ∣ S ist reflexiv und R ⊆ S}.

• Die symmetrische Hülle von R ist

hsym(R) = ⋂{S ⊆ A ×A ∣ S ist symmetrisch und R ⊆ S}.

• Die transitive Hülle von R ist

R+ = ⋂{S ⊆ A ×A ∣ S ist transitiv und R ⊆ S}.

• Die reflexiv-transitive Hülle von R ist

R∗ = ⋂{S ⊆ A ×A ∣ S ist reflexiv, transitiv und R ⊆ S}.

• Die Äquivalenzhülle von R ist

häq(R) = ⋂{S ∣ S ist eine Äquivalenzrelation auf A und R ⊆ S}.

Satz 34. Sei R eine Relation auf A.

13



2 Reguläre Sprachen 2.4 Relationalstrukturen

(i) hrefl(R) = R ∪ IdA,
(ii) hsym(R) = R ∪RT ,
(iii) R+ = ⋃n≥1Rn,
(iv) R∗ = ⋃n≥0Rn,
(v) häq(R) = (R ∪RT )∗.

Beweis. Siehe Übungen. ∎

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a, b) genau
dann in der reflexiv-transitiven Hülle R∗ von R ist, wenn es ein n ≥ 0
gibt mit aRnb, d.h. es gibt Elemente x0, . . . , xn ∈ A mit x0 = a, xn = b
und

x0Rx1Rx2 . . . xn−1Rxn.

In der Graphentheorie nennt man x0, . . . , xn einen Weg der Länge n
von a nach b.

2.4.1 Ordnungs- und Äquivalenzrelationen

Wir betrachten zunächst Ordnungsrelationen, die durch die drei
Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 35.
• (P(M),⊆), (Z,≤), (R,≤) und (N, ∣) sind Ordnungen. (Z, ∣) ist

keine Ordnung, aber eine Quasiordnung.
• Für jede Menge M ist die relationale Struktur (P(M);⊆) eine

Ordnung. Diese ist nur im Fall ∥M∥ ≤ 1 linear.
• Ist R eine Relation auf A und B ⊆ A, so ist RB = R ∩ (B ×B)

die Einschränkung von R auf B.
• Einschränkungen von (linearen) Ordnungen sind ebenfalls (li-

neare) Ordnungen.
• Beispielsweise ist (Q,≤) die Einschränkung von (R,≤) auf Q

und (N, ∣) die Einschränkung von (Z, ∣) auf N. ◁

Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme dar-
stellen. Sei ≤ eine Ordnung auf A und sei < die Relation ≤ ∩ IdA. Um
die Ordnung ≤ in einem Hasse-Diagramm darzustellen, wird nur
der Graph der Relation

⋖= < ∖<2, d.h. x ⋖ y ⇔ x < y ∧ ¬∃z ∶ x < z < y

gezeichnet. Für x ⋖ y sagt man auch, y ist oberer Nachbar von x.
Weiterhin wird im Fall x ⋖ y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 36.

Die Inklusionsrelation auf der Po-
tenzmenge P(M) von M = {a, b, c}
lässt sich durch nebenstehendes
Hasse-Diagramm darstellen.

∅

{b}

{a, b} {a, c}

{a}

{b, c}

{c}

M

Schränken wir die ”teilt”-Relation
auf die Menge {1,2, . . . ,10} ein,
so erhalten wir folgendes Hasse-
Diagramm.

1

2 3 5 7

4 6 9 10

8

◁

Definition 37. Sei ≤ eine Ordnung auf A und sei b ein Element in
einer Teilmenge B ⊆ A.

• b heißt kleinstes Element oder Minimum von B (kurz
b = minB), falls gilt:

∀b′ ∈ B ∶ b ≤ b′.

14
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• b heißt größtes Element oder Maximum von B (kurz
b = maxB), falls gilt:

∀b′ ∈ B ∶ b′ ≤ b.

• b heißt minimal in B, falls es in B kein kleineres Element
gibt:

∀b′ ∈ B ∶ b′ ≤ b⇒ b′ = b.

• b heißt maximal in B, falls es in B kein größeres Element
gibt:

∀b′ ∈ B ∶ b ≤ b′⇒ b = b′.

Bemerkung 38. Da Ordnungen antisymmetrisch sind, kann es in
jeder Teilmenge B höchstens ein kleinstes und höchstens ein größtes
Element geben. Die Anzahl der minimalen und maximalen Elemente
in B kann dagegen beliebig groß sein.

Definition 39. Sei ≤ eine Ordnung auf A und sei B ⊆ A.
• Jedes Element u ∈ A mit u ≤ b für alle b ∈ B heißt untere und

jedes o ∈ A mit b ≤ o für alle b ∈ B heißt obere Schranke von
B.

• B heißt nach oben beschränkt, wenn B eine obere Schran-
ke hat, und nach unten beschränkt, wenn B eine untere
Schranke hat.

• B heißt beschränkt, wenn B nach oben und nach unten be-
schränkt ist.

• Besitzt B eine größte untere Schranke i, d.h. besitzt die Menge
U aller unteren Schranken von B ein größtes Element i, so
heißt i das Infimum von B (kurz i = infB):

(∀b ∈ B ∶ b ≥ i) ∧ [∀u ∈ A ∶ (∀b ∈ B ∶ b ≥ u) ⇒ u ≤ i].

• Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge
O aller oberen Schranken von B ein kleinstes Element s, so

heißt s das Supremum von B (s = supB):

(∀b ∈ B ∶ b ≤ s) ∧ [∀o ∈ A ∶ (∀b ∈ B ∶ b ≤ o) ⇒ s ≤ o]

Bemerkung 40. B kann nicht mehr als ein Supremum und ein
Infimum haben.

Beispiel 41. Betrachte nebenstehende Ordnung auf der Menge A =
{a, b, c, d, e}. Die folgende Tabelle zeigt für verschie-
dene Teilmengen B ⊆ A alle minimalen und maxi-
malen Elemente in B Minimum und Maximum, alle
unteren und oberen Schranken, sowie Infimum und
Supremum von B (falls existent).

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken inf sup

{a, b} a, b a, b - - c, d, e - - -
{c, d} c, d c, d - - e a, b e -

{a, b, c} c a, b c - c, e - c -
{a, b, c, e} e a, b e - e - e -
{a, c, d, e} e a e a e a e a

◁

Bemerkung 42.
• Auch in linearen Ordnungen muss nicht jede beschränkte Teil-

menge ein Supremum oder Infimum besitzen.
• So hat in der linear geordneten Menge (Q,≤) die Teilmenge

B = {x ∈ Q ∣ x2 ≤ 2} = {x ∈ Q ∣ x2 < 2}

weder ein Supremum noch ein Infimum.
• Dagegen hat in (R,≤) jede beschränkte Teilmenge B ein Supre-

mum und ein Infimum (aber möglicherweise kein Maximum oder
Minimum).
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Als nächstes betrachten wir Äquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.
Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E[x]
die von x repräsentierte Äquivalenzklasse und bezeichnet sie
mit [x]E oder einfach mit [x]. Eine Menge S ⊆ A heißt Repräsen-
tantensystem, falls sie genau ein Element aus jeder Äquivalenzklasse
enthält.

Beispiel 43.
• Auf der Menge aller Geraden im R2 die Parallelität. Offen-

bar bilden alle Geraden mit derselben Richtung (oder Steigung)
jeweils eine Äquivalenzklasse. Daher wird ein Repräsentanten-
system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

• Auf der Menge aller Menschen ”im gleichen Jahr geboren wie”.
Hier bildet jeder Jahrgang eine Äquivalenzklasse.

• Auf Z die Relation ”gleicher Rest bei Division durch m”. Die
zugehörigen Äquivalenzklassen sind

[r] = {a ∈ Z ∣ a ≡m r}, r = 0,1, . . . ,m − 1.

Ein Repräsentantensystem wird beispielsweise durch die Reste
0,1, . . . ,m − 1 gebildet. ◁

Definition 44. Eine Familie {Bi ∣ i ∈ I} von nichtleeren Teilmengen
Bi ⊆ A heißt Partition der Menge A, falls gilt:

a) die Mengen Bi überdecken A, d.h. A = ⋃i∈I Bi und
b) die Mengen Bi sind paarweise disjunkt, d.h. für je zwei ver-

schiedene Mengen Bi /= Bj gilt Bi ∩Bj = ∅.

Die Äquivalenzklassen einer Äquivalenzrelation E bilden eine Parti-
tion {[x] ∣ x ∈ A} von A (siehe Satz 45). Diese Partition wird auch
Quotienten- oder Faktormenge genannt und mit A/E bezeichnet.
Die Anzahl der Äquivalenzklassen von E wird auch als der Index

von E bezeichnet. Wie der nächste Satz zeigt, beschreiben Äquiva-
lenzrelationen auf A und Partitionen von A denselben Sachverhalt.
Satz 45. Sei E eine Relation auf A. Dann sind folgende Aussagen
äquivalent.
(i) E ist eine Äquivalenzrelation auf A.
(ii) Für alle x, y ∈ A gilt

xEy⇔ E[x] = E[y] (∗)

(iii) Es gibt eine Partition {Bi ∣ i ∈ I} von A mit
xEy⇔∃i ∈ I ∶ x, y ∈ Bi.

Beweis.
(i) ⇒ (ii) Sei E eine Äquivalenzrelation auf A. Da E transitiv ist,

impliziert xEy die Inklusion E[y] ⊆ E[x]:
z ∈ E[y] ⇒ yEz ⇒ xEz ⇒ z ∈ E[x].

Da E symmetrisch ist, folgt aus xEy aber auch E[x] ⊆ E[y].
Umgekehrt folgt aus E[x] = E[y] wegen der Reflexivität von E,
dass y ∈ E[y] = E[x] enthalten ist, und somit xEy. Dies zeigt,
dass E die Äquivalenz (∗) erfüllt.

(ii) ⇒ (iii) Wir zeigen, dass die Äquivalenzklassen E[x], x ∈ A, die
Menge A partitionieren, falls E die Bedingung (∗) erfüllt.
Wegen E[x] = E[x] folgt xEx und somit x ∈ E[x]. Folglich
überdecken die Mengen E[x] die Menge A.
Ist E[x] ∩E[y] ≠ ∅ und z ein Element in E[x] ∩E[y], so gilt
xEz und yEz und daher folgt E[x] = E[z] = E[y].

(iii) ⇒ (i) Existiert schließlich eine Partition {Bi ∣ i ∈ I} von A mit
xEy ⇔ ∃i ∈ I ∶ x, y ∈ Bi, so ist E reflexiv, da zu jedem x ∈ A
eine Menge Bi mit x ∈ Bi existiert. Zudem ist E symmetrisch,
da aus x, y ∈ Bi auch y, x ∈ Bi folgt. Und E ist transitiv, da aus
x, y ∈ Bi und y, z ∈ Bj wegen y ∈ Bi ∩Bj die Gleichheit Bi = Bj

und somit x, z ∈ Bi folgt.
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∎

Die kleinste Äquivalenzrelation auf A ist die Identität IdA, die größte
die Allrelation A×A. Die Äquivalenzklassen der Identität enthalten
jeweils nur ein Element, d.h. A/IdA = {{x} ∣ x ∈ A}, und die Allrelati-
on erzeugt nur eine Äquivalenzklasse, nämlich A/(A ×A) = {A}.
Für zwei Äquivalenzrelationen E ⊆ E′ sind auch die Äquivalenzklas-
sen [x]E von E in den Klassen [x]E′ von E′ enthalten. Folglich ist
jede Äquivalenzklasse von E′ die Vereinigung von (evtl. mehreren)
Äquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als E′. Demnach ist die Identität die feinste und die Allrelation die
gröbste Äquivalenzrelation.

Die feiner-Relation auf
der Menge aller Parti-
tionen von M = {a, b, c}
hat das folgende Hasse-
Diagramm:

{{a},{b},{c}}

{{a, b},{c}} {{a, c},{b}}
{{a},{b, c}}

{M}

2.4.2 Abbildungen

Definition 46. Sei R eine binäre Relation auf einer Menge M .
• R heißt rechtseindeutig, falls für alle x, y, z ∈M gilt:

xRy ∧ xRz ⇒ y = z.

• R heißt linkseindeutig, falls für alle x, y, z ∈M gilt:

xRz ∧ yRz ⇒ x = y.

• Der Nachbereich N(R) und der Vorbereich V (R) von R
sind

N(R) = ⋃
x∈M

R[x] und V (R) = ⋃
x∈M

RT [x].

• Eine rechtseindeutige Relation R mit V (R) = A und N(R) ⊆ B
heißt Abbildung oder Funktion von A nach B (kurz
R ∶ A→ B).

Bemerkung 47.
• Wie üblich werden wir Abbildungen meist mit kleinen Buchsta-

ben f, g, h, ... bezeichnen und für (x, y) ∈ f nicht xfy sondern
f(x) = y oder f ∶ x↦ y schreiben.

• Ist f ∶ A→ B eine Abbildung, so wird der Vorbereich V (f) = A
der Definitionsbereich und die Menge B der Wertebereich
oder Wertevorrat von f genannt.

• Der Nachbereich N(f) wird als Bild von f bezeichnet.

Definition 48.
• Im Fall N(f) = B heißt f surjektiv.
• Ist f linkseindeutig, so heißt f injektiv. In diesem Fall impli-

ziert f(x) = f(y) die Gleichheit x = y.
• Eine injektive und surjektive Abbildung heißt bijektiv.
• Ist f injektiv, so ist auch f−1 ∶ N(f) → A eine Abbildung, die

als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich V (f−1) = N(f) von f−1 nur
dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

Definition 49. Seien (A1,R1) und (A2,R2) Relationalstrukturen.

17



2 Reguläre Sprachen 2.4 Relationalstrukturen

• Eine Abbildung h ∶ A1 → A2 heißt Homomorphismus, falls
für alle a, b ∈ A1 gilt:

aR1b⇒ h(a)R2h(b).

• Sind (A1,R1) und (A2,R2) Ordnungen, so spricht man von
Ordnungshomomorphismen oder einfach von monotonen
Abbildungen.

• Injektive Ordnungshomomorphismen werden auch streng mo-
notone Abbildungen genannt.

Beispiel 50. Folgende Abbildung h ∶ A1 → A2 ist ein bijektiver Ord-
nungshomomorphismus.

b

d

a

c

1

2

3

4

(A,≤) (B,⊑)

h

Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h−1

kein Homomorphismus, da h−1 nicht monoton ist. Es gilt nämlich

2 ⊑ 3, aber h−1(2) = b /≤ c = h−1(3).
◁

Definition 51. Ein bijektiver Homomorphismus h ∶ A1 → A2, bei
dem auch h−1 ein Homomorphismus ist, d.h. es gilt

∀a, b ∈ A1 ∶ aR1b⇔ h(a)R2h(b).

heißt Isomorphismus. In diesem Fall heißen die Strukturen (A1,R1)
und (A2,R2) isomorph (kurz: (A1,R1) ≅ (A2,R2)).

Beispiel 52.
• Die Abbildung h ∶ R→ R+ mit

h ∶ x↦ ex

ist ein Ordnungsisomorphismus zwischen (R,≤) und (R+,≤).
• Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elemen-

ten:

Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen
zerfällt unter der Äquivalenzrelation ≅ in fünf Äquivalenzklassen,
die durch obige fünf Hasse-Diagramme repräsentiert werden.

• Für n ∈ N sei
Tn = {k ∈ N ∣ k teilt n}

die Menge aller Teiler von n und

Pn = {p ∈ Tn ∣ p ist prim}

die Menge aller Primteiler von n. Dann ist die Abbildung

h ∶ k ↦ Pk

ein (surjektiver) Ordnungshomomorphismus von (Tn, ∣) auf
(P(Pn),⊆). h ist sogar ein Isomorphismus, falls n quadratfrei
ist (d.h. es gibt kein k ≥ 2, so dass k2 die Zahl n teilt).

• Die beiden folgenden Graphen G und G′ sind isomorph. Zwei
Isomorphismen sind beispielsweise h1 und h2.
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1

5 2

4 3

1

5 2

4 3

G = (V,E)
v 1 2 3 4 5

h1(v) 1 3 5 2 4
h2(v) 1 4 2 5 3

G′ = (V,E′)

• Während auf der Knotenmenge V = [3] insgesamt 23 = 8 ver-
schiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

◁

Bemerkung 53. Auf der Knotenmenge V = {1, . . . , n} existieren ge-
nau 2(

n
2) verschiedene Graphen. Sei a(n) die Anzahl aller nichtisomor-

phen Graphen auf V . Da jede Isomorphieklasse mindestens einen und
höchstens n! verschiedene Graphen enthält, ist 2(

n
2)/n! ≤ a(n) ≤ 2(

n
2).

Tatsächlich ist a(n) asymptotisch gleich u(n) = 2(
n
2)/n! (in Zei-

chen: a(n) ∼ u(n)), d.h.

lim
n→∞

a(n)/u(n) = 1.

Also gibt es auf V = {1, . . . , n} nicht wesentlich mehr als u(n) nicht-
isomorphe Graphen.

2.5 Minimierung von DFAs

Wie können wir feststellen, ob ein DFA M = (Z,Σ, δ, q0,E) unnötige
Zustände enthält? Zunächst einmal können alle Zustände entfernt
werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden
gehen wir daher davon aus, dass M keine unerreichbaren Zustände
enthält. Offensichtlich können zwei Zustände q und p zu einem Zu-
stand verschmolzen werden (kurz: q ∼ p), wenn M von q und von p
ausgehend jeweils dieselben Wörter akzeptiert. Bezeichnen wir den
DFA (Z,Σ, δ, q,E) mitMq, so sind q und p genau dann verschmelzbar,
wenn L(Mq) = L(Mp) ist.
Fassen wir alle zu einem Zustand z äquivalenten Zustände in dem
neuen Zustand

[z]∼ = {z′ ∈ Z ∣ L(Mz′) = L(Mz)}

zusammen (wofür wir auch kurz [z] oder z̃ schreiben) und ersetzen
wir Z und E durch Z̃ = {z̃ ∣ z ∈ Z} und Ẽ = {z̃ ∣ z ∈ E}, so erhalten
wir den DFA M ′ = (Z̃,Σ, δ′, q̃0, Ẽ) mit

δ′(q̃, a) = δ̃(q, a).

Hierbei bezeichnet Q̃ für eine Teilmenge Q ⊆ Z die Menge {q̃ ∣ q ∈ Q}
aller Äquivalenzklassen q̃, die mindestens ein Element q ∈ Q enthalten.
Der nächste Satz zeigt, dass M ′ tatsächlich der gesuchte Minimalau-
tomat ist.

Satz 54. Sei M = (Z,Σ, δ, q0,E) ein DFA, der nur Zustände ent-
hält, die vom Startzustand q0 aus erreichbar sind. Dann ist M ′ =
(Z̃,Σ, δ′, q̃0, Ẽ) mit

δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis. Wir zeigen zuerst, dass δ′ wohldefiniert ist, also der Wert
von δ′(q̃, a) nicht von der Wahl des Repräsentanten q abhängt. Hierzu
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zeigen wir, dass im Fall p ∼ q auch δ(q, a) und δ(p, a) äquivalent sind:

L(Mq) = L(Mp) ⇒ ∀x ∈ Σ∗ ∶ x ∈ L(Mq) ↔ x ∈ L(Mp)
⇒ ∀x ∈ Σ∗ ∶ ax ∈ L(Mq) ↔ ax ∈ L(Mp)
⇒ ∀x ∈ Σ∗ ∶ x ∈ L(Mδ(q,a)) ↔ x ∈ L(Mδ(p,a))
⇒ L(Mδ(q,a)) = L(Mδ(p,a)).

Als nächstes zeigen wir, dass L(M ′) = L(M) ist. Sei x = x1 . . . xn eine
Eingabe und seien

qi = δ̂(q0, x1 . . . xi), i = 0, . . . , n

die von M beim Abarbeiten von x durchlaufenen Zustände. Wegen

δ′(q̃i−1, xi) = ̃δ(qi−1, xi) = q̃i

durchläuft M ′ dann die Zustände

q̃0, q̃1, . . . , q̃n.

Da aber qn genau dann zu E gehört, wenn q̃n ∈ Ẽ ist, folgt
L(M ′) = L(M) (man beachte, dass q̃n entweder nur Endzustände
oder nur Nicht-Endzustände enthält, vgl. Beobachtung 55).
Es bleibt zu zeigen, dassM ′ eine minimale Anzahl ∥Z̃∥ von Zuständen
hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es
reicht also zu zeigen, dass die Anzahl k = ∥Z̃∥ = ∥{L(Mz) ∣ z ∈ Z}∥ der
Zustände von M ′ nicht von M , sondern nur von L = L(M) abhängt.
Für x ∈ Σ∗ sei

Lx = {y ∈ Σ∗ ∣ xy ∈ L}.

Dann gilt {Lx ∣ x ∈ Σ∗} ⊆ {L(Mz) ∣ z ∈ Z}, da Lx = L(Mδ̂(q0,x)
)

ist. Die umgekehrte Inklusion gilt ebenfalls, da nach Voraussetzung
jeder Zustand q ∈ Z über ein x ∈ Σ∗ erreichbar ist. Also hängt
k = ∥{L(Mz) ∣ z ∈ Z}∥ = ∥{Lx ∣ x ∈ Σ∗}∥ nur von L ab. ∎

Eine interessante Folgerung aus obigem Beweis ist, dass für eine re-
guläre Sprache L ⊆ Σ∗ die Menge {Lx ∣ x ∈ Σ∗} nur endlich viele
verschiedene Sprachen enthält, und somit die durch

xRL y⇔ Lx = Ly
auf Σ∗ definierte Äquivalenzrelation RL endlichen Index hat.
Für die algorithmische Konstruktion von M ′ aus M ist es notwendig
herauszufinden, ob zwei Zustände p und q von M äquivalent sind oder
nicht.
Bezeichne A∆B = (A ∖B) ∪ (B ∖A) die symmetrische Differenz von
zwei Mengen A und B. Dann ist die Inäquivalenz p /∼ q zweier Zustän-
de p und q gleichbedeutend mit L(Mp)∆L(Mq) ≠ ∅. Wir nennen ein
Wort x ∈ L(Mp)∆L(Mq) einen Unterscheider zwischen p und q.
Beobachtung 55.

• Endzustände p ∈ E sind nicht mit Zuständen q ∈ Z∖E äquivalent
(da sie durch ε unterschieden werden).

• Wenn δ(p, a) und δ(q, a) inäquivalent sind, dann auch p und q
(da jeder Unterscheider x von δ(p, a) und δ(q, a) einen Unter-
scheider ax von p und q liefert).

Wenn also D nur Paare von inäquivalenten Zuständen enthält, dann
trifft dies auch auf die Menge

D′ = {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈D}

zu. Wir können somit ausgehend von der Menge

D0 = {{p, q} ∣ p ∈ E, q /∈ E}

eine Folge von Mengen

D0 ⊆D1 ⊆ ⋯ ⊆ {{z, z′} ⊆ Z ∣ z ≠ z′}

mittels der Vorschrift

Di+1 =Di ∪ {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈Di}
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berechnen, indem wir zu Di alle Paare {p, q} hinzufügen, für die eines
der Paare {δ(p, a), δ(q, a)}, a ∈ Σ, bereits zu Di gehört. Da Z endlich
ist, muss es ein j mit Dj+1 = Dj geben. In diesem Fall gilt (siehe
Übungen):

p /∼ q⇔ {p, q} ∈Dj.

Folglich kann M ′ durch Verschmelzen aller Zustände p, q mit {p, q} /∈
Dj gebildet werden. Der folgende Algorithmus berechnet für einen
beliebigen DFA M den zugehörigen Minimal-DFA M ′.

Algorithmus min-DFA(M)
1 Input: DFA M = (Z,Σ, δ, q0,E)
2 entferne alle nicht erreichbaren Zustaende
3 D′ ∶= {{z, z′} ∣ z ∈ E, z′ /∈ E}
4 repeat
5 D ∶=D′

6 D′ ∶=D ∪ {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈D}
7 until D′ =D
8 Output: M ′ = (Z̃,Σ, δ′, q̃0, Ẽ), wobei für jeden Zustand

z ∈ Z gilt: z̃ = {z′ ∈ Z ∣ {z, z′} /∈D}

Beispiel 56. Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a

a

a

a

aa bb

Dann enthält D0 die Paare

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.

Die Paare in D0 sind in der folgenden Matrix durch den Unterscheider
ε markiert.

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5
Wegen

{p, q} {1,4} {1,5} {2,4} {2,5}
{δ(q, a), δ(p, a)} {2,3} {2,6} {1,3} {1,6}

enthält D1 zusätzlich die Paare {1, 4}, {1, 5}, {2, 4}, {2, 5} (in obiger
Matrix durch den Unterscheider a markiert). Da die verbliebenen
Paare {1,2}, {3,6}, {4,5} wegen

{p, q} {1,2} {3,6} {4,5}
{δ(p, a), δ(q, a)} {1,2} {4,5} {3,6}
{δ(p, b), δ(q, b)} {3,6} {1,2} {4,5}

nicht zu D1 hinzugefügt werden können, ist D2 =D1. Aus den unmar-
kierten Paaren {1,2}, {3,6} und {4,5} erhalten wir die Äquivalenz-
klassen

1̃ = {1,2}, 3̃ = {3,6} und 4̃ = {4,5},

die auf folgenden Minimal-DFA M ′ führen:

1̃ 3̃ 4̃
b

b

a

a
a b

◁
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Es ist auch möglich, einen Minimalautomaten ML direkt aus einer
regulären Sprache L zu gewinnen (also ohne einen DFA M für L zu
kennen). Da wegen

ˆ̃δ(q0, x) = ˆ̃δ(q0, y) ⇔ δ̂(q0, x) ∼ δ̂(q0, y)
⇔ L(Mδ̂(q0,x)

= L(Mδ̂(q0,y)
⇔ Lx = Ly

zwei Eingaben x und y den DFA M ′ genau dann in denselben Zu-
stand ˆ̃δ(q0, x) = ˆ̃δ(q0, y) überführen, wenn Lx = Ly ist, können wir

den von M ′ bei Eingabe x erreichten Zustand ˆ̃δ(q0, x) auch mit
der Sprache Lx bezeichnen. Dies führt auf den zu M ′ isomorphen
(also bis auf die Benennung der Zustände mit M ′ identischen) DFA
ML = (ZL,Σ, δL, Lε,EL) mit

ZL = {Lx ∣ x ∈ Σ∗},
EL = {Lx ∣ x ∈ L} und

δL(Lx, a) = Lxa.

Notwendig und hinreichend für die Existenz von ML ist, dass RL

endlichen Index hat, also die Menge {Lx ∣ x ∈ Σ∗} endlich ist.
Beispiel 57. Für L = {x1 . . . xn ∈ {0,1}∗ ∣ n ≥ 2 und xn−1 = 0} ist

Lx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L, x ∈ {ε,1} oder x endet mit 11,
L ∪ {0,1}, x = 0 oder x endet mit 10,
L ∪ {ε,0,1}, x endet mit 00,
L ∪ {ε}, x endet mit 01.

Somit erhalten wir den folgenden Minimalautomaten ML.

Lε

L0

L00

L01

0 0

11
10

1 0

◁

Im Fall, dass M bereits ein Minimalautomat ist, sind alle Zustände
von M ′ von der Form q̃ = {q}, so dass M isomorph zu M ′ und damit
auch isomorph zu ML ist. Dies zeigt, dass alle Minimalautomaten für
eine Sprache L isomorph sind.

Satz 58 (Myhill und Nerode).
1. REG = {L ∣ RL hat endlichen Index}.
2. Sei L regulär und sei index(RL) der Index von RL. Dann gibt

es für L bis auf Isomorphie genau einen Minimal-DFA. Dieser
hat index(RL) Zustände.

Beispiel 59. Sei L = {aibi ∣ i ≥ 0}. Wegen bi ∈ Lai∆La j für i /= j hat
RL unendlichen Index, d.h. L ist nicht regulär. ◁

Die Zustände von ML können anstelle von Lx auch mit den Äqui-
valenzklassen [x]RL

(bzw. mit geeigneten Repräsentanten) benannt
werden. Der resultierende Minimal-DFA MRL

= (Z,Σ, δ, [ε],E) mit

Z = {[x]RL
∣ x ∈ Σ∗},

E = {[x]RL
∣ x ∈ L} und

δ([x]RL
, a) = [xa]RL

wird auch als Äquivalenzklassenautomat bezeichnet.
Die Konstruktion von MRL

ist meist einfacher als die von ML, da die
Bestimmung der Sprachen Lx entfällt. Um die Überführungsfunktion
von MRL

aufzustellen, reicht es, ausgehend von r1 = ε eine Folge
r1, . . . , rk von paarweise bzgl. RL inäquivalenten Wörtern zu bestim-
men, so dass zu jedem Wort ria, a ∈ Σ, ein rj mit riaRLrj existiert.
In diesem Fall ist δ([ri], a) = [ria] = [rj].

Beispiel 60. Für die Sprache L = {x1 . . . xn ∈ {0,1}∗ ∣ xn−1 = 0} lässt
sich MRL

wie folgt konstruieren:
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2 Reguläre Sprachen 2.6 Das Pumping-Lemma

1. Wir beginnen mit r1 = ε.
2. Da r10 = 0 /∈ [ε] ist, wählen wir r2 = 0 und setzen δ([ε], 0) = [0].
3. Da r11 = 1 ∈ [ε] ist, setzen wir δ([ε],1) = [ε].
4. Da r20 = 00 /∈ [ε] ∪ [0] ist, ist r3 = 00 und wir setzen

δ([0],0) = [00].
5. Da r21 = 01 /∈ [ε] ∪ [0] ∪ [00] ist, wählen wir r4 = 01 und setzen

δ([0],1) = [01].
6. Da die Wörter r30 = 000 ∈ [00], r31 = 001 ∈ [01], r40 = 010 ∈ [0]

und r41 = 011 ∈ [ε] sind, setzen wir δ([00], 0) = [00], δ([00], 1) =
[01], δ([01],0) = [0] und δ([01],1) = [ε].

Wir erhalten also folgenden Minimal-DFA MRL
:

r ε 0 00 01
[r0] [0] [00] [00] [0]
[r1] [ε] [01] [01] [ε]

[ε]

[0]
0

1

[00]
0

[01]

1

0
1

0
1

◁

Wir fassen nochmals die wichtigsten Ergebnisse zusammen.
Korollar 61. Sei L eine Sprache. Dann sind folgende Aussagen äqui-
valent:

• L ist regulär,
• es gibt einen DFA M mit L = L(M),
• es gibt einen NFA N mit L = L(N),
• es gibt einen regulären Ausdruck γ mit L = L(γ),
• die Äquivalenzrelation RL hat endlichen Index.

Wir werden im nächsten Abschnitt noch eine weitere Methode kennen-
lernen, mit der man beweisen kann, dass eine Sprache nicht regulär
ist, nämlich das Pumping-Lemma.

2.6 Das Pumping-Lemma

Wie kann man von einer Sprache nachweisen, dass sie nicht regulär ist?
Eine Möglichkeit besteht darin, die Kontraposition folgender Aussage
anzuwenden.

Satz 62 (Pumping-Lemma für reguläre Sprachen).
Zu jeder regulären Sprache L gibt es eine Zahl l, so dass sich alle
Wörter x ∈ L mit ∣x∣ ≥ l in x = uvw zerlegen lassen mit

1. v /= ε,
2. ∣uv∣ ≤ l und
3. uviw ∈ L für alle i ≥ 0.

Falls eine Zahl l mit diesen Eigenschaften existiert, wird das kleinste
solche l die Pumping-Zahl von L genannt.

Beweis. Sei M = (Z,Σ, δ, q0,E) ein DFA für L und sei l = ∥Z∥
die Anzahl der Zustände von M . Setzen wir M auf eine Eingabe
x = x1 . . . xn ∈ L der Länge n ≥ l an, so muss M nach spätestens l
Schritten einen Zustand q ∈ Z zum zweiten Mal besuchen:

∃j, k ∶ 0 ≤ j < k ≤ l ∧ δ̂(q0, x1 . . . xj) = δ̂(q0, x1 . . . xk) = q.

Wählen wir nun u = x1 . . . xj, v = xj+1 . . . xk und w = xk+1 . . . xn, so ist
∣v∣ = k − j ≥ 1 und ∣uv∣ = k ≤ l. Ausserdem gilt uviw ∈ L für i ≥ 0, da
wegen δ̂(q, v) = q

δ̂(q0, uv
iw) = δ̂(δ̂(δ̂(q0, u)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
q

, vi),w) = δ̂(δ̂(q, vi)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

q

,w) = δ̂(q0, x) ∈ E

ist. ∎
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Beispiel 63. Die Sprache

L = {x ∈ {a, b}∗ ∣ #a(x) −#b(x) ≡3 1}

hat die Pumping-Zahl l = 3. Sei nämlich x ∈ L beliebig mit ∣x∣ ≥ 3. Dann
lässt sich innerhalb des Präfixes von x der Länge drei ein nichtleeres
Teilwort v finden, das gepumpt werden kann:
1. Fall: x hat das Präfix ab (oder ba).

Zerlege x = uvw mit u = ε und v = ab (bzw. v = ba).
2. Fall: x hat das Präfix aab (oder bba).

Zerlege x = uvw mit u = a (bzw. u = b) und v = ab (bzw. v = ba).
3. Fall: x hat das Präfix aaa (oder bbb).

Zerlege x = uvw mit u = ε und v = aaa (bzw. v = bbb). ◁

Beispiel 64. Eine endliche Sprache L hat die Pumping-Zahl

l =
⎧⎪⎪⎨⎪⎪⎩

0, L = ∅,
max{∣x∣ + 1 ∣ x ∈ L}, sonst.

Tatsächlich lässt sich jedes Wort x ∈ L der Länge ∣x∣ ≥ l „pumpen“
(da solche Wörter gar nicht existieren), weshalb die Pumping-Zahl
höchstens l ist. Zudem gibt es im Fall l > 0 ein Wort x ∈ L der Länge
∣x∣ = l − 1, das sich nicht „pumpen“ lässt, weshalb die Pumping-Zahl
nicht kleiner als l sein kann. ◁

Wollen wir mit Hilfe des Pumping-Lemmas von einer Sprache L zeigen,
dass sie nicht regulär ist, so genügt es, für jede Zahl l ein Wort x ∈ L
der Länge ∣x∣ ≥ l anzugeben, so dass für jede Zerlegung von x in drei
Teilwörter u, v,w mindestens eine der drei in Satz 62 aufgeführten
Eigenschaften verletzt ist.

Beispiel 65. Die Sprache

L = {a jb j ∣ j ≥ 0}

ist nicht regulär, da sich für jede Zahl l ≥ 0 das Wort x = albl der
Länge ∣x∣ = 2l ≥ l in der Sprache L befindet, welches offensichtlich
nicht in Teilwörter u, v,w mit v /= ε und uv2w ∈ L zerlegbar ist. ◁

Beispiel 66. Die Sprache

L = {an2 ∣ n ≥ 0}

ist ebenfalls nicht regulär. Andernfalls müsste es nämlich eine Zahl
l geben, so dass jede Quadratzahl n2 ≥ l als Summe von natürlichen
Zahlen u + v +w darstellbar ist mit der Eigenschaft, dass v ≥ 1 und
u + v ≤ l ist, und für jedes i ≥ 0 auch u + iv +w eine Quadratzahl ist.
Insbesondere müsste also u + 2v + w = n2 + v eine Quadratzahl sein,
was wegen

n2 < n2 + v ≤ n2 + l < n2 + 2l + 1 = (n + 1)2

ausgeschlossen ist. ◁

Beispiel 67. Auch die Sprache

L = {ap ∣ p prim }

ist nicht regulär, da sich sonst jede Primzahl p einer bestimmten Min-
destgröße l als Summe von natürlichen Zahlen u + v + w darstellen
ließe, so dass v ≥ 1 und für alle i ≥ 0 auch u + iv + w = p + (i − 1)v
prim ist. Dies ist jedoch für i = p + 1 wegen

p + (p + 1 − 1)v = p(1 + v)

nicht der Fall. ◁

Bemerkung 68. Mit Hilfe des Pumping-Lemmas kann nicht für jede
Sprache L /∈ REG gezeigt werden, dass L nicht regulär ist, da seine
Umkehrung falsch ist. So hat beispielsweise die Sprache

L = {aib jck ∣ i = 0 oder j = k}

die Pumping-Zahl 1 (d.h. jedes Wort x ∈ L mit Ausnahme von ε kann
„gepumpt“ werden). Dennoch ist L nicht regulär (siehe Übungen).
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2.7 Grammatiken

Eine beliebte Methode, Sprachen zu beschreiben, sind Grammatiken.
Implizit haben wir hiervon bei der Definition der regulären Ausdrücke
bereits Gebrauch gemacht.

Beispiel 69. Die Sprache RA aller regulären Ausdrücke über ei-
nem Alphabet Σ = {a1, . . . , ak} lässt sich aus dem Symbol R durch
wiederholte Anwendung folgender Regeln erzeugen:

R → ∅,
R → ε,

R → ai, i = 1, . . . , k,

R → RR,

R → (R∣R),
R → (R)∗. ◁

Definition 70. Eine Grammatik ist ein 4-Tupel G = (V,Σ, P, S),
wobei

• V eine endliche Menge von Variablen (auch Nichtterminal-
symbole genannt),

• Σ das Terminalalphabet,
• P ⊆ (V ∪Σ)+ ×(V ∪Σ)∗ eine endliche Menge von Regeln (oder

Produktionen) und
• S ∈ V die Startvariable ist.

Für (u, v) ∈ P schreiben wir auch kurz u→G v bzw. u→ v, wenn die
benutzte Grammatik aus dem Kontext ersichtlich ist.

Definition 71. Seien α,β ∈ (V ∪Σ)∗.
a) Wir sagen, β ist aus α in einem Schritt ableitbar (kurz:

α ⇒G β), falls eine Regel u →G v und Wörter l, r ∈ (V ∪ Σ)∗
existieren mit

α = lur und β = lvr.
Hierfür schreiben wir auch lur ⇒G lvr. (Man beachte, dass
durch Unterstreichen von u in α sowohl die benutzte Regel als

auch die Stelle in α, an der u durch v ersetzt wird, eindeutig
erkennbar sind.)

b) Eine Folge σ = (l0, u0, r0), . . . , (lm, um, rm) von Tripeln (li, ui, ri)
heißt Ableitung von β aus α, falls gilt:

• l0u0r0 = α, lmumrm = β und
• liuiri⇒ li+1ui+1ri+1 für i = 0, . . . ,m − 1.

Die Länge von σ ist m und wir notieren σ auch in der Form

l0u0r0 ⇒ l1u1r1 ⇒⋯⇒ lm−1um−1rm−1 ⇒ lmumrm.

c) Die durch G erzeugte Sprache ist

L(G) = {x ∈ Σ∗ ∣ S ⇒∗
G x}.

d) Ein Wort α ∈ (V ∪Σ)∗ mit S ⇒∗
G α heißt Satzform von G.

Zur Erinnerung: Die Relation ⇒∗ bezeichnet die reflexive, transitive
Hülle der Relation⇒, d.h. α⇒∗ β bedeutet, dass es ein n ≥ 0 gibt mit
α⇒n β. Hierzu sagen wir auch, β ist aus α (in n Schritten) ableitbar.
Die Relation ⇒n bezeichnet das n-fache Produkt der Relation ⇒, d.h.
es gilt α⇒n β, falls Wörter α0, . . . , αn existieren mit

• α0 = α, αn = β und
• αi⇒ αi+1 für i = 0, . . . , n − 1.

Beispiel 72. Wir betrachten nochmals die Grammatik G = ({R},Σ∪
{∅, ε, (, ),∗ , ∣}, P,R), die die Menge der regulären Ausdrücke über dem
Alphabet Σ erzeugt, wobei P die oben angegebenen Regeln enthält. Ist
Σ = {0, 1}, so lässt sich der reguläre Ausdruck (01)∗(ε∣∅) beispielsweise
wie folgt ableiten:

R⇒ RR⇒ (R)∗R⇒ (RR)∗R⇒ (RR)∗(R∣R)
⇒ (0R)∗(R∣R) ⇒ (01)∗(R∣R) ⇒ (01)∗(ε∣R) ⇒ (01)∗(ε∣∅) ◁

Man unterscheidet vier verschiedene Typen von Grammatiken.
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Definition 73. Sei G = (V,Σ, P, S) eine Grammatik.
1. G heißt vom Typ 3 oder regulär, falls für alle Regeln u → v

gilt: u ∈ V und v ∈ ΣV ∪Σ ∪ {ε}.
2. G heißt vom Typ 2 oder kontextfrei, falls für alle Regeln

u→ v gilt: u ∈ V .
3. G heißt vom Typ 1 oder kontextsensitiv, falls für alle Regeln

u → v gilt: ∣v∣ ≥ ∣u∣ (mit Ausnahme der ε-Sonderregel, siehe
unten).

4. Jede Grammatik ist automatisch vom Typ 0.

ε-Sonderregel: In einer kontextsensitiven Grammatik G =
(V,Σ, P, S) kann auch die verkürzende Regel S → ε benutzt wer-
den. Aber nur, wenn das Startsymbol S nicht auf der rechten Seite
einer Regel in P vorkommt.
Die Sprechweisen „vom Typ i“ bzw. „regulär“, „kontextfrei“ und „kon-
textsensitiv“ werden auch auf die durch solche Grammatiken erzeugte
Sprachen angewandt. (Der folgende Satz rechtfertigt dies für die regu-
lären Sprachen, die wir bereits mit Hilfe von DFAs definiert haben.)
Die zugehörigen neuen Sprachklassen sind

CFL = {L(G) ∣ G ist eine kontextfreie Grammatik},

(context free languages) und

CSL = {L(G) ∣ G ist eine kontextsensitive Grammatik}

(context sensitive languages). Da die Klasse der Typ 0 Sprachen
mit der Klasse der rekursiv aufzählbaren (recursively enumerable)
Sprachen übereinstimmt, bezeichnen wir diese Sprachklasse mit

RE = {L(G) ∣ G ist eine Grammatik}.

Die Sprachklassen
REG ⊂ CFL ⊂ CSL ⊂ RE

bilden eine Hierarchie (d.h. alle Inklusionen sind echt), die so genannte
Chomsky-Hierarchie.
Als nächstes zeigen wir, dass sich mit regulären Grammatiken gerade
die regulären Sprachen erzeugen lassen. Hierbei erweist sich folgende
Beobachtung als nützlich.
Lemma 74. Zu jeder regulären Grammatik G = (V,Σ, P, S) gibt es
eine äquivalente reguläre Grammatik G′, die keine Produktionen der
Form A→ a hat.

Beweis. Betrachte die Grammatik G′ = (V ′,Σ, P ′, S) mit

V ′ = V ∪ {Xneu},
P ′ = {A→ aXneu ∣ A→G a} ∪ {Xneu → ε} ∪ P ∖ (V ×Σ).

Es ist leicht zu sehen, dass G′ die gleiche Sprache wie G erzeugt. ∎

Satz 75. REG = {L(G) ∣ G ist eine reguläre Grammatik}.

Beweis. Sei L ∈ REG und sei M = (Z,Σ, δ, q0,E) ein DFA mit
L(M) = L. Wir konstruieren eine reguläre Grammatik G = (V,Σ, P, S)
mit L(G) = L. Setzen wir

V = Z,

S = q0 und
P = {q → ap ∣ δ(q, a) = p} ∪ {q → ε ∣ q ∈ E},

so gilt für alle Wörter x = x1 . . . xn ∈ Σ∗:

x ∈ L(M) ⇔ ∃ q1, . . . , qn−1 ∈ Z ∃ qn ∈ E ∶
δ(qi−1, xi) = qi für i = 1, . . . , n

⇔ ∃ q1, . . . , qn ∈ V ∶
qi−1 →G xiqi für i = 1, . . . , n und qn →G ε

⇔ ∃ q1, . . . , qn ∈ V ∶
q0 ⇒i

G x1 . . . xiqi für i = 1, . . . , n und qn →G ε

⇔ x ∈ L(G)
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Für die entgegengesetzte Inklusion sei nun G = (V,Σ, P, S) eine re-
guläre Grammatik, die keine Produktionen der Form A→ a enthält.
Dann können wir die gerade beschriebene Konstruktion einer Gram-
matik aus einem DFA „umdrehen“, um ausgehend von G einen NFA
M = (Z,Σ, δ,{S},E) mit

Z = V,

E = {A ∣ A→G ε} und
δ(A,a) = {B ∣ A→G aB}

zu erhalten. Genau wie oben folgt nun L(M) = L(G). ∎

Beispiel 76. Der DFA

q0

q1

q2

q3

0 0

11
10

1 0

führt auf die Grammatik ({q0, q1, q2, q3},{0,1}, P, q0) mit

P ∶ q0 → 1q0,0q1,

q1 → 0q2,1q3,

q2 → 0q2,1q3, ε,

q3 → 0q1,1q0, ε.

Umgekehrt führt die Grammatik G = ({A,B,C},{a, b}, P,A) mit

P ∶ A→ aB, bC, ε,

B → aC, bA, b,

C → aA, bB, a

über die Grammatik G′ = ({A,B,C,D},{a, b}, P ′,A) mit

P ′ ∶ A→ aB, bC, ε,

B → aC, bA, bD,

C → aA, bB, aD,

D → ε

auf den NFA

A

B

D

C

a

b
b

a

b

a

ab

◁
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3 Kontextfreie Sprachen

Wie wir gesehen haben, ist die Sprache L = {anbn ∣ n ≥ 0} nicht regulär.
Es ist aber leicht, eine kontextfreie Grammatik für L zu finden:

G = ({S},{a, b},{S → aSb,S → ε}, S).

Damit ist klar, dass die Klasse der regulären Sprachen echt in der
Klasse der kontextfreien Sprachen enthalten ist. Als nächstes wollen
wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt
in der Klasse der kontextsensitiven Sprachen enthalten ist:

REG ⊊ CFL ⊊ CSL.

Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur
Regeln der Form A→ α haben. Dies lässt die Verwendung von belie-
bigen ε-Regeln der Form A→ ε zu. Eine kontextsensitive Grammatik
darf dagegen höchstens die ε-Regel S → ε haben. Voraussetzung
hierfür ist, dass S das Startsymbol ist und dieses nicht auf der rech-
ten Seite einer Regel vorkommt. Daher sind nicht alle kontextfrei-
en Grammatiken kontextsensitiv. Beispielsweise ist die Grammatik
G = ({S},{a, b},{S → aSb,S → ε}, S) nicht kontextsensitiv, da sie
die Regel S → ε enthält, obwohl S auf der rechten Seite der Regel
S → aSb vorkommt.
Es lässt sich jedoch zu jeder kontextfreien Grammatik eine äquivalen-
te kontextfreie Grammatik G′ konstruieren, die auch kontextsensitiv
ist. Hierzu zeigen wir zuerst, dass sich zu jeder kontextfreien Gram-
matik G, in der nicht das leere Wort ableitbar ist, eine äquivalente
kontextfreie Grammatik G′ ohne ε-Regeln konstruieren lässt.
Satz 77. Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie
Grammatik G′ ohne ε-Produktionen mit L(G′) = L(G) ∖ {ε}.

Beweis. Zuerst sammeln wir mit folgendem Algorithmus alle Varia-
blen A, aus denen das leere Wort ableitbar ist. Diese werden auch als
ε-ableitbar bezeichnet.

1 E′ ∶= {A ∈ V ∣ A→ ε}
2 repeat
3 E ∶= E′

4 E′ ∶= E ∪ {A ∈ V ∣ ∃B1, . . . ,Bk ∈ E ∶ A→ B1 . . .Bk}
5 until E = E′

Nun konstruieren wir G′ = (V,Σ, P ′, S) wie folgt:
Nehme zu P ′ alle Regeln A → α′ mit α′ ≠ ε hinzu, für
die P eine Regel A → α enthält, so dass α′ aus α durch
Entfernen von beliebig vielen Variablen A ∈ E hervorgeht.

∎

Beispiel 78. Betrachte die Grammatik G = (V,Σ, P, S) mit V =
{S,T,U,X,Y,Z}, Σ = {a, b, c} und den Regeln

P ∶ S → aY, bX,Z; Y → bS, aY Y ; T → U ;
X → aS, bXX; Z → ε,S, T, cZ; U → abc.

Bei der Berechnung von E = {A ∈ V ∣ A⇒∗ ε} ergeben sich der Reihe
nach folgende Belegungen für die Mengenvariablen E und E′:

E′ {Z} {Z,S}
E {Z,S} {Z,S}

Um nun die Regelmenge P ′ zu bilden, entfernen wir aus P die einzige
ε-Regel Z → ε und fügen die Regeln X → a (wegen X → aS), Y → b
(wegen Y → bS) und Z → c (wegen Z → cZ) hinzu:

P ′ ∶ S → aY, bX,Z; Y → b, bS, aY Y ; T → U ;
X → a, aS, bXX; Z → c, S, T, cZ; U → abc. ◁
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Als direkte Anwendung des obigen Satzes können wir die Inklusion
der Klasse der Typ 2 Sprachen in der Klasse der Typ 1 Sprachen
zeigen.
Korollar 79. REG ⊊ CFL ⊆ CSL ⊆ RE.

Beweis. Die Inklusionen REG ⊆ CFL und CSL ⊆ RE sind klar. Wegen
{anbn∣n ≥ 0} ∈ CFL−REG ist die Inklusion REG ⊆ CFL auch echt. Also
ist nur noch die Inklusion CFL ⊆ CSL zu zeigen. Nach obigem Satz
ex. zu L ∈ CFL eine kontextfreie Grammatik G = (V,Σ, P, S) ohne
ε-Produktionen mit L(G) = L ∖ {ε}. Da G dann auch kontextsensitiv
ist, folgt hieraus im Fall ε /∈ L unmittelbar L(G) = L ∈ CSL. Im Fall
ε ∈ L erzeugt die kontextsensitive Grammatik

G′ = (V ∪ {S′},Σ, P ∪ {S′ → S, ε}, S′)

die Sprache L(G′) = L, d.h. L ∈ CSL. ∎

Als nächstes zeigen wir folgende Abschlusseigenschaften der kontext-
freien Sprachen.
Satz 80. Die Klasse CFL ist abgeschlossen unter Vereinigung, Produkt
und Sternhülle.

Beweis. Seien Gi = (Vi,Σ, Pi, Si), i = 1,2, kontextfreie Grammatiken
für die Sprachen L(Gi) = Li mit V1 ∩ V2 = ∅ und sei S eine neue
Variable. Dann erzeugt die kontextfreie Grammatik

G3 = (V1 ∪ V2 ∪ {S},Σ, P1 ∪ P2 ∪ {S → S1, S2}, S)

die Vereinigung L(G3) = L1 ∪L2. Die Grammatik

G4 = (V1 ∪ V2 ∪ {S},Σ, P1 ∪ P2 ∪ {S → S1S2}, S)

erzeugt das Produkt L(G4) = L1L2 und die Sternhülle (L1)∗ wird von
der Grammatik

G5 = (V1 ∪ {S},Σ, P1 ∪ {S → S1S, ε}, S)

erzeugt. ∎

Offen bleibt zunächst, ob die kontextfreien Sprachen auch unter
Schnitt und Komplement abgeschlossen sind. Hierzu müssen wir für
bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies
gelingt mit einem Pumping-Lemma für kontextfreie Sprachen, für
dessen Beweis wir Grammatiken in Chomsky-Normalform benötigen.

Satz (Pumping-Lemma für kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle
Wörter z ∈ L mit ∣z∣ ≥ l in z = uvwxy zerlegen lassen mit

1. vx /= ε,
2. ∣vwx∣ ≤ l und
3. uviwxiy ∈ L für alle i ≥ 0.

Beispiel 81. Betrachte die Sprache L = {anbn∣n ≥ 0}. Dann lässt
sich jedes Wort z = anbn mit ∣z∣ ≥ 2 pumpen: Zerlege z = uvwxy mit
u = an−1, v = a, w = ε, x = b und y = bn−1. ◁

Beispiel 82. Die Sprache {anbncn ∣ n ≥ 0} ist nicht kontextfrei. Für
eine vorgegebene Zahl l ≥ 0 hat nämlich z = alblcl die Länge ∣z∣ = 3l ≥ l.
Dieses Wort lässt sich aber nicht pumpen, da für jede Zerlegung
z = uvwxy mit vx /= ε und ∣vwx∣ ≤ l das Wort z′ = uv2wx2y nicht zu
L gehört:

• Wegen vx /= ε ist ∣z∣ < ∣z′∣.
• Wegen ∣vwx∣ ≤ l kann in vx nicht jedes der drei Zeichen a, b, c

vorkommen.
• Kommt aber in vx beispielsweise kein a vor, so ist

#a(z′) = #a(z) = l = ∣z∣/3 < ∣z′∣/3,

also kann z′ nicht zu L gehören. ◁
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3 Kontextfreie Sprachen 3.1 Chomsky-Normalform

Die Chomsky-Normalform ist auch Grundlage für einen effizienten
Algorithmus zur Lösung des Wortproblems für kontextfreie Gramma-
tiken, das wie folgt definiert ist.

Wortproblem für kontextfreie Grammatiken:
Gegeben: Eine kontextfreie Grammatik G und ein Wort x.
Gefragt: Ist x ∈ L(G)?

Satz. Das Wortproblem für kontextfreie Grammatiken ist effizient
entscheidbar.

3.1 Chomsky-Normalform

Definition 83. Eine Grammatik (V,Σ, P, S) ist in Chomsky-
Normalform (CNF), falls P ⊆ V × (V 2 ∪ Σ) ist, also alle Regeln
die Form A→ BC oder A→ a haben.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen,
müssen wir neben den ε-Regeln A→ ε auch sämtliche Variablenumbe-
nennungen A→ B loswerden.

Definition 84. Regeln der Form A → B heißen Variablenumbe-
nennungen.

Satz 85. Zu jeder kontextfreien Grammatik G ex. eine kontextfreie
Grammatik G′ ohne Variablenumbenennungen mit L(G′) = L(G).

Beweis. Zuerst entfernen wir sukzessive alle Zyklen

A1 → A2 → ⋯→ Ak → A1,

indem wir diese Regeln aus P entfernen und alle übrigen Vorkommen
der Variablen A2, . . . ,Ak durch A1 ersetzen. Falls sich unter den ent-
fernten Variablen A2, . . . ,Ak die Startvariable S befindet, sei A1 die
neue Startvariable.

Nun entfernen wir sukzessive die restlichen Variablenumbenennungen,
indem wir

• eine Regel A → B wählen, so dass in P keine Variablenumbe-
nennung B → C mit B auf der rechten Seite existiert,

• diese Regel A→ B aus P entfernen und
• für jede Regel B → α in P die Regel A→ α zu P hinzunehmen.

∎

Beispiel 86. Ausgehend von den Produktionen

P ∶ S → aY, bX,Z; Y → b, bS, aY Y ; T → U ;
X → a, aS, bXX; Z → c, S, T, cZ; U → abc

entfernen wir den Zyklus S → Z → S, indem wir die Regeln S → Z
und Z → S entfernen und dafür die Produktionen S → c, T, cS (wegen
Z → c, T, cZ) hinzunehmen:

S → aY, bX, c, T, cS; Y → b, bS, aY Y ; T → U ;
X → a, aS, bXX; U → abc.

Nun entfernen wir die Regel T → U und fügen die Regel T → abc
(wegen U → abc) hinzu:

S → aY, bX, c, T, cS; Y → b, bS, aY Y ; T → abc;
X → a, aS, bXX; U → abc.

Als nächstes entfernen wir dann auch die Regel S → T und fügen die
Regel S → abc (wegen T → abc) hinzu:

S → abc, aY, bX, c, cS; Y → b, bS, aY Y ; T→ abc;
X → a, aS, bXX; U→ abc.

Da T und U nun nirgends mehr auf der rechten Seite vorkommen,
können wir die Regeln T → abc und U → abc weglassen:

S → abc, aY, bX, c, cS; Y → b, bS, aY Y ; X → a, aS, bXX. ◁
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3 Kontextfreie Sprachen 3.1 Chomsky-Normalform

Nach diesen Vorarbeiten ist es nun leicht, eine gegebene kontextfreie
Grammatik in Chomsky-Normalform umzuwandeln.
Satz 87. Zu jeder kontextfreien Sprache L ∈ CFL gibt es eine CNF-
Grammatik G′ mit L(G′) = L ∖ {ε}.

Beweis. Aufgrund der beiden vorigen Sätze hat L ∖ {ε} eine kon-
textfreie Grammatik G = (V,Σ, P, S) ohne ε-Produktionen und ohne
Variablenumbenennungen. Wir transformieren G wie folgt in eine
CNF-Grammatik.

• Füge für jedes Terminalsymbol a ∈ Σ eine neue Variable Xa zu
V und eine neue Regel Xa → a zu P hinzu.

• Ersetze alle Vorkommen von a durch Xa, außer wenn a alleine
auf der rechten Seite einer Regel steht.

• Ersetze jede Regel A→ B1 . . .Bk, k ≥ 3, durch die k − 1 Regeln
A→B1A1, A1→B2A2, . . . , Ak−3→Bk−2Ak−2, Ak−2→Bk−1Bk,

wobei A1, . . . ,Ak−2 neue Variablen sind. ∎

Beispiel 88. In der Produktionenmenge
P ∶ S→abc, aY, bX, c, cS; X→a, aS, bXX; Y →b, bS, aY Y

ersetzen wir die Terminalsymbole a, b und c durch die Variablen A,
B und C (außer wenn sie alleine auf der rechten Seite einer Regel
vorkommen) und fügen die Regeln A→a, B→b, C→c hinzu:

S→ c,ABC,AY,BX,CS; X→a,AS,BXX;
Y → b,BS,AY Y ; A→a; B→b; C→c.

Ersetze nun die Regeln S→ABC, X→BXX und Y →AY Y durch
die Regeln S → AS′, S′ → BC, X → BX ′, X ′ →XX und Y → AY ′,
Y ′→Y Y :

S→c,AS′,AY,BX,CS; S′→BC;
X→a,AS,BX ′; X ′→XX; Y → b,BS,AY ′; Y ′→Y Y ;
A→a; B→b; C→c. ◁

Eine interessante Frage ist, ob in einer kontextfreien Grammatik G
jedes Wort x ∈ L(G) “eindeutig” ableitbar ist. Es ist klar, dass in
diesem Kontext Ableitungen, die sich nur in der Reihenfolge der
Regelanwendungen unterscheiden, nicht als verschieden betrachtet
werden sollten. Dies erreichen wir dadurch, dass wir die Reihenfolge
der Regelanwendungen festlegen.

Definition 89. Sei G = (V,Σ, P, S) eine kontextfreie Grammatik.
a) Eine Ableitung

α0 = l0A0r0 ⇒ l1A1r1 ⇒⋯⇒ lm−1Am−1rm−1 ⇒ αm.

heißt Linksableitung von α (kurz α0 ⇒∗
L αm), falls in jedem

Ableitungsschritt die am weitesten links stehende Variable ersetzt
wird, d.h. es gilt li ∈ Σ∗ für i = 0, . . . ,m − 1.

b) Rechtsableitungen α0 ⇒∗
R αm sind analog definiert.

c) G heißt mehrdeutig, wenn es ein Wort x ∈ L(G) gibt, das
zwei verschiedene Linksableitungen S ⇒∗

L x hat. Andernfalls
heißt G eindeutig.

Offenbar gelten für alle Wörter x ∈ Σ∗ folgende Äquivalenzen:

x ∈ L(G) ⇔ S ⇒∗ x ⇔ S ⇒∗
L x ⇔ S ⇒∗

R x.

Beispiel 90. Wir betrachten die Grammatik G = ({S},{a, b},{S →
aSbS, ε}, S). Offenbar hat das Wort aabb in G acht verschiedene
Ableitungen, die sich allerdings nur in der Reihenfolge der Regelan-
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wendungen unterscheiden:

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aabbS ⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aaSbb⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aabSbS ⇒ aabbS ⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aabSbS ⇒ aabSb⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbSb⇒ aabSb⇒ aabb

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbSb⇒ aaSbb⇒ aabb

S ⇒ aSbS ⇒ aSb⇒ aaSbSb⇒ aabSb⇒ aabb

S ⇒ aSbS ⇒ aSb⇒ aaSbSb⇒ aaSbb⇒ aabb.

Darunter sind genau eine Links- und genau eine Rechtsableitung:
S ⇒L aSbS ⇒L aaSbSbS ⇒L aabSbS ⇒L aabbS ⇒L aabb

und
S ⇒R aSbS ⇒R aSb⇒R aaSbSb⇒R aaSbb⇒R aabb.

Die Grammatik G ist eindeutig. Dies liegt daran, dass in keiner Satz-
form von G die Variable S von einem a gefolgt wird. Daher muss
jede Linksableitung eines Wortes x ∈ L(G) die am weitesten links
stehende Variable der aktuellen Satzform αSβ genau dann nach aSbS
expandieren, falls das Präfix α in x von einem a gefolgt wird.
Dagegen ist die Grammatik G′ = ({S},{a, b},{S → aSbS, ab, ε}, S)
mehrdeutig, da das Wort x = ab zwei verschiedene Linksableitungen
hat:

S ⇒L ab und S ⇒L aSbS ⇒L abS ⇒L ab. ◁

Wir gehen an dieser Stelle kurz der Frage nach, welche Sprache von
der Grammatik G = ({S},{a, b},{S → aSbS, ε}, S) erzeugt wird. Zu-
nächst einmal ist klar, dass L(G) nur Wörter x ∈ {a, b}∗ mit der
Eigenschaft #a(x) = #b(x) enthält. Allerdings sind nicht alle Wörter
mit dieser Eigenschaft in L(G) enthalten, da beispielsweise ba /∈ L(G)
ist. Damit ein Wort x in G ableitbar ist, muss zudem für jedes Präfix
u von x gelten, dass #a(u) ≥ #b(u) ist.

Wir zeigen durch Induktion über die Ableitungslänge l, dass jede in
G ableitbare Satzform α ∈ {a, b, S}∗ folgende Bedingungen erfüllt.
(∗) #a(α) = #b(α)
(∗∗) #a(u) ≥ #b(u) für jedes Präfix u von α.
l = 0: Klar, da α = S beide Bedingungen erfüllt.
l ; l + 1: Gelte S ⇒l α⇒ β.

• Falls β aus α durch Anwendung der Regel S → ε entsteht, ist
dies ebenfalls klar.

• Entsteht β aus α durch die Regel S → aSbS, so folgt
#a(β) = #a(α) + 1 = #b(α) + 1 = #b(β), also (∗). Zudem
entspricht jedem Präfix u von β ein Präfix u′ von α mit
#a(u) − #b(u) ≥ #a(u′) − #b(u′), wodurch sich (∗∗) von α
auf β überträgt.

Tatsächlich sind in G genau die Wörter x ∈ {a, b}∗ ableitbar, die die
Bedingungen (∗,∗∗) erfüllen.
Dazu zeigen wir durch Induktion über n folgende Behauptung.
Behauptung 91. Alle Wörter x ∈ {a, b}∗ der Länge ≤ n, die die
Bedingungen (∗,∗∗) erfüllen, sind in G ableitbar.
n = 0: Klar, da x = ε aus S ableitbar ist.
n; n+1: Sei x ein Wort der Länge n+1, das die Bedingungen (∗,∗∗)
erfüllt und sei u das kürzeste Präfix von x mit #a(u) = #b(u) > 1.

• Dann muss u die Form u = avb haben, wobei v die Bedingungen
(∗,∗∗) erfüllt. Nach IV gilt daher S ⇒∗ v.

• Zudem hat x die Form x = uw, wobei auch w die Bedingungen
(∗,∗∗) erfüllt. Nach IV gilt daher S ⇒∗ w.

• Nun ist x aus S wie folgt ableitbar: S ⇒ aSbS ⇒∗ avbS =
uS ⇒∗ uw = x.

Ableitungen in einer kontextfreien Grammatik lassen sich graphisch
sehr gut durch einen Syntaxbaum (auch Ableitungsbaum genannt,
engl. parse tree) veranschaulichen.
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Definition 92. Sei G = (V,E) ein Digraph.
• Ein v0-vk-Weg in G ist eine Folge von Knoten v0, . . . , vk mit

(vi, vi+1) ∈ E für i = 0, . . . , k − 1. Seine Länge ist k.
• Ein Weg heißt einfach oder Pfad, falls alle seine Knoten paar-

weise verschieden sind.
• Ein u-v-Weg der Länge ≥ 1 mit u = v heißt Zyklus.
• G heißt azyklisch, wenn es in G keinen Zyklus gibt.
• G heißt gerichteter Wald, wenn G azyklisch ist und jeder

Knoten v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
• Ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0 heißt Blatt.
• Ein Knoten w ∈ V heißt Wurzel von G, falls alle Knoten v ∈ V

von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).
• Ein gerichteter Wald, der eine Wurzel hat, heißt gerichte-
ter Baum.

• Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig
bestimmt sind, kann auf ihre Angabe verzichtet werden. Man
spricht dann auch von einem Wurzelbaum.

Definition 93. Wir ordnen einer Ableitung

A0 ⇒ l1A1r1 ⇒⋯⇒ lm−1Am−1rm−1 ⇒ αm.

den Syntaxbaum Tm zu, wobei die Bäume T0, . . . , Tm induktiv wie folgt
definiert sind:

• T0 besteht aus einem einzigen Knoten, der mit A0 markiert ist.
• Wird im (i + 1)-ten Ableitungsschritt die Regel Ai → v1 . . . vk

mit vj ∈ Σ ∪ V für j = 1, . . . , k angewandt, so ensteht Ti+1 aus
Ti, indem wir das Blatt Ai in Ti durch folgenden Unterbaum
ersetzen:

k > 0 ∶ k = 0 ∶Ai

v1 ⋯ vk

Ai

ε

• Hierbei stellen wir uns die Kanten von oben nach unten gerichtet
und die Kinder v1 . . . vk von links nach rechts geordnet vor.

Beispiel 94. Betrachte die Grammatik G = ({S},{a, b},{S →
aSbS, ε}, S) und die Ableitung

S ⇒ aSbS ⇒ aaSbSbS ⇒ aaSbbS ⇒ aabbS ⇒ aabb.

Die zugehörigen Syntaxbäume sind dann
T0: S T1: S

aS b S

T2: S

aS b S

aS b S

T3: S

aS b S

aS b S

ε

T4: S

aS b S

aS b S

ε ε

T5: S

aS b S

aS b S ε

ε ε

Die Satzform αi ergibt sich aus Ti, indem wir die Blätter von Ti von
links nach rechts zu einem Wort zusammensetzen. ◁

Bemerkung 95.
• Aus einem Syntaxbaum ist die zugehörige Linksableitung eindeu-

tig rekonstruierbar. Daher führen unterschiedliche Linksableitun-
gen auch auf unterschiedliche Syntaxbäume. Linksableitungen
und Syntaxbäume entsprechen sich also eineindeutig. Ebenso
Rechtsableitungen und Syntaxbäume.

• Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten
in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

3.2 Das Pumping-Lemma für kontextfreie
Sprachen

In diesem Abschnitt beweisen wir das Pumping-Lemma für kontext-
freie Sprachen. Dabei nutzen wir die Tatsache aus, dass die Syntax-
bäume einer CNF-Grammatik Binärbäume sind.
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Definition 96. Die Tiefe eines Baumes mit Wurzel w ist die maxi-
male Pfadlänge von w zu einem Blatt.

Lemma 97. Ein Binärbaum B der Tiefe k hat höchstens 2k Blätter.

Beweis. Wir führen den Beweis durch Induktion über k.
k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.
k ; k + 1: Sei B ein Binärbaum der Tiefe k + 1. Dann hängen an B’s
Wurzel maximal zwei Teilbäume. Da deren Tiefe ≤ k ist, haben sie
nach IV höchstens 2k Blätter. Also hat B ≤ 2k+1 Blätter. ∎

Korollar 98. Ein Binärbaum B mit mehr als 2k−1 Blättern hat min-
destens Tiefe k.

Beweis. Würde B mehr als 2k−1 Blätter und eine Tiefe ≤ k−1 besitzen,
so würde dies im Widerspruch zu Lemma 97 stehen. ∎

Satz 99 (Pumping-Lemma für kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle
Wörter z ∈ L mit ∣z∣ ≥ l in z = uvwxy zerlegen lassen mit

1. vx /= ε,
2. ∣vwx∣ ≤ l und
3. uviwxiy ∈ L für alle i ≥ 0.

Beweis. Sei G = (V,Σ, P, S) eine CNF-Grammatik für L ∖ {ε}. Dann
gibt es in G für jedes Wort z = z1 . . . zn ∈ L mit n ≥ 1, eine Ablei-

T2n−1
S

tung
S = α0 ⇒ α1⋯⇒ αm = z.

Da G in CNF ist, werden hierbei n − 1 Regeln
der Form A → BC und n Regeln der Form
A → a angewandt, d.h. m = 2n − 1 und z hat
den Syntaxbaum T2n−1. Wir können annehmen,

dass zuerst alle Regeln der Form A→ BC und
danach die Regeln der Form A → a zur An-
wendung kommen. Dann besteht die Satzform
αn−1 aus n Variablen und der Syntaxbaum Tn−1
hat ebenfalls n Blätter. Setzen wir l = 2k, wobei
k = ∥V ∥ ist, so hat Tn−1 im Fall n ≥ l mindestens

Tn−1

π

A
A

l = 2k > 2k−1 Blätter und daher mindestens die
Tiefe k. Sei π ein von der Wurzel ausgehender
Pfad maximaler Länge in Tn−1. Dann hat π die
Länge ≥ k und unter den letzten k + 1 Knoten
von π müssen zwei mit derselben Variablen A
markiert sein.

Seien U und U ′ die von diesen Knoten ausge-
henden Unterbäume des vollständigen Syntax-
baums T2n−1. Nun zerlegen wir z wie folgt. w′

ist das Teilwort von z = uw′y, das von U erzeugt
wird und w ist das Teilwort von w′ = vwx, das
von U ′ erzeugt wird. Jetzt bleibt nur noch zu
zeigen, dass diese Zerlegung die geforderten 3
Eigenschaften erfüllt.

U
U ′u

v
w

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w′

x
y

• Da U mehr Blätter hat als U ′, ist vx ≠ ε (Bedingung 1).
• Da der Baum U∗ = U ∩ Tn−1 die Tiefe ≤ k hat (andernfalls wäre
π nicht maximal), hat U∗ höchstens 2k = l Blätter. Da U∗ genau
∣vwx∣ Blätter hat, folgt ∣vwx∣ ≤ l (Bedingung 2).

• Für den Nachweis von Bedingung 3 lassen sich schließlich Syntax-
bäume Bi für die Wörter uviwxiy, i ≥ 0, wie folgt konstruieren:

U

B1

u
v
w
U ′

x
y

B0

u w
U ′

y
U

B2

u
v

v
w
U ′

x

x

y
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B0 entsteht also aus B1 = T2n−1, indem wir U durch U ′ ersetzen,
und Bi+1 entsteht aus Bi, indem wir U ′ durch U ersetzen. ∎

Satz 100. Die Klasse CFL ist nicht abgeschlossen unter Schnitt und
Komplement.

Beweis. Die beiden Sprachen

L1 = {anbmcm ∣ n,m ≥ 0} und L2 = {anbncm ∣ n,m ≥ 0}

sind kontextfrei. Nicht jedoch L1 ∩L2 = {anbncn ∣ n ≥ 0}. Also ist CFL
nicht unter Schnitt abgeschlossen.
Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlos-
sen ist, kann CFL wegen de Morgan nicht unter Komplementbildung
abgeschlossen sein. ∎

3.3 Der CYK-Algorithmus

In diesem Abschnitt stellen wir den bereits angekündigten effizienten
Algorithmus zur Lösung des Wortproblems für kontextfreie Gramma-
tiken vor.

Wortproblem für kontextfreie Grammatiken:
Gegeben: Eine kontextfreie Grammatik G und ein Wort x.
Gefragt: Ist x ∈ L(G)?

Wir lösen das Wortproblem, indem wir G zunächst in Chomsky-
Normalform bringen und dann den nach seinen Autoren Cocke,
Younger und Kasami benannten CYK-Algorithmus anwenden, welcher
auf dem Prinzip der Dynamischen Programmierung beruht.

Satz 101. Das Wortproblem für kontextfreie Grammatiken ist effizi-
ent entscheidbar.

Beweis. Seien eine Grammatik G = (V,Σ, P, S) und ein Wort x =
x1 . . . xn gegeben. Falls x = ε ist, können wir effizient prüfen, ob S ⇒∗ ε
gilt. Andernfalls transformieren wir G in eine CNF-Grammatik G′ für
die Sprache L(G) ∖ {ε}. Chomsky-Normalform. Es lässt sich leicht
verifizieren, dass die nötigen Umformungsschritte effizient ausführbar
sind. Nun setzen wir den CYK-Algorithmus auf das Paar (G′, x) an,
der die Zugehörigkeit von x zu L(G′) wie folgt entscheidet.
Bestimme für l = 1, . . . , n und k = 1, . . . , n − l + 1 die Menge

Vl,k(x) = {A ∈ V ∣ A⇒∗ xk . . . xk+l−1}

aller Variablen, aus denen das mit xk beginnende Teilwort xk . . . xk+l−1
von x der Länge l ableitbar ist. Dann gilt offensichtlich x ∈ L(G′) ⇔
S ∈ Vn,1(x).
Für l = 1 ist

V1,k(x) = {A ∈ V ∣ A→ xk}
und für l = 2, . . . , n ist
Vl,k(x) = {A ∈ V ∣ ∃l′ < l ∃B ∈ Vl′,k(x) ∃C ∈ Vl−l′,k+l′(x):A→ BC}.

A

B

xk ⋯ xk+l′−1

C

xk+l′ ⋯ xk+l

Eine Variable A gehört also ge-
nau dann zu Vl,k(x), l ≥ 2, falls
eine Zahl l′ ∈ {1, . . . , l − 1} und
eine Regel A → BC existieren,
so dass B ∈ Vl′,k(x) und C ∈
Vl−l′,k+l′(x) sind. ∎

Algorithmus CYK(G,x)
1 Input: CNF−Grammatik G = (V,Σ, P, S) und ein Wort x = x1 . . . xn
2 for k ∶= 1 to n do
3 V1,k ∶= {A ∈ V ∣ A→ xk ∈ P}
4 for l ∶= 2 to n do
5 for k ∶= 1 to n − l + 1 do
6 Vl,k ∶= ∅
7 for l′ ∶= 1 to l − 1 do
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8 for all A→ BC ∈ P do
9 if B ∈ Vl′,k and C ∈ Vl−l′,k+l′ then

10 Vl,k ∶= Vl,k ∪ {A}
11 if S ∈ Vn,1 then accept else reject

Der CYK-Algorithmus lässt sich leicht dahingehend modifizieren, dass
er im Fall x ∈ L(G) auch einen Syntaxbaum T von x ausgibt. Hierzu
genügt es, zu jeder Variablen A in Vl,k den Wert von l′ und die Regel
A→ BC zu speichern, die zur Aufnahme von A in Vl,k geführt haben.
Im Fall S ∈ Vn,1(x) lässt sich dann mithilfe dieser Information leicht
ein Syntaxbaum T von x konstruieren.

Beispiel 102. Betrachte die CNF-Grammatik mit den Produktionen

S→AS′,AY,BX,CS, c; S′→BC; X→AS,BX ′, a; X ′→XX;
Y →BS,AY ′, b; Y ′→Y Y ; A→a; B→b; C→c.

Dann erhalten wir für das Wort x = abb folgende Mengen Vl,k:

xk: a b b

l:1 {X,A} {Y,B} {Y,B}
2 {S} {Y ′}
3 {Y }

Wegen S /∈ V3,1(abb) ist x /∈ L(G). Dagegen gehört das Wort y = aababb
wegen S ∈ V6,1(aababb) zu L(G):

a a b a b b

{X,A} {X,A} {Y,B} {X,A} {Y,B} {Y,B}
{X ′} {S} {S} {S} {Y ′}
{X} {X} {Y } {Y }
{X ′} {S} {Y ′}
{X} {Y }
{S} ◁

3.4 Kellerautomaten

Wie müssen wir das Maschinenmodell des DFA erweitern, damit die
Sprache L = {anbn ∣ n ≥ 0} und alle anderen kontextfreien Sprachen
erkannt werden können? Dass ein DFA die Sprache L = {anbn ∣ n ≥ 0}
nicht erkennen kann, liegt an seinem beschränkten Speichervermögen,
das zwar von L aber nicht von der Eingabe abhängen darf.
Um L erkennen zu können, reicht bereits ein so genannter Kellerspei-
cher (Stapel, engl. stack, pushdown memory) aus. Dieser erlaubt nur
den Zugriff auf die höchste belegte Speicheradresse. Ein Kellerautomat

• verfügt über einen Kellerspeicher,

• kann ε-Übergänge machen,

• liest in jedem Schritt das aktuelle
Eingabezeichen und das oberste
Kellersymbol,

• kann das oberste Kellersymbol
entfernen (durch eine pop-Ope-
ration) und

x1 ⋯ xi ⋯ xn

A

B

C

#

Eingabe-
band

Lesekopf

Keller-
speicher

Steuer-
einheit

Ð→

• durch beliebig viele Symbole ersetzen (durch eine push-Opera-
tion).

Für eine Menge M bezeichne Pe(M) die Menge aller endlichen Teil-
mengen von M , d.h.

Pe(M) = {A ⊆M ∣ A ist endlich}.

Definition 103. Ein Kellerautomat (kurz: PDA; pushdown au-
tomaton) wird durch ein 6-Tupel M = (Z,Σ,Γ, δ, q0,#) beschrieben,
wobei

• Z ≠ ∅ eine endliche Menge von Zuständen,
• Σ das Eingabealphabet,
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• Γ das Kelleralphabet,
• δ ∶ Z×(Σ∪{ε})×Γ→ Pe(Z×Γ∗) die Überführungsfunktion,
• q0 ∈ Z der Startzustand und
• # ∈ Γ das Kelleranfangszeichen ist.

Wenn q der momentane Zustand, A das oberste Kellerzeichen und
u ∈ Σ das nächste Eingabezeichen (bzw. u = ε) ist, so kann M im Fall
(p,B1 . . .Bk) ∈ δ(q, u,A)

• in den Zustand p wechseln,
• den Lesekopf auf dem Eingabeband um ∣u∣ Positionen vorrücken

und
• das Zeichen A im Keller durch die Zeichenfolge B1 . . .Bk erset-

zen.
Hierfür sagen wir auch, M führt die Anweisung quA → pB1 . . .Bk

aus. Da im Fall u = ε kein Eingabezeichen gelesen wird, spricht man
auch von einem spontanen Übergang (oder ε-Übergang). Eine
Konfiguration wird durch ein Tripel

K = (q, xi . . . xn,A1 . . .Al) ∈ Z ×Σ∗ × Γ∗

beschrieben und besagt, dass
• q der momentane Zustand,
• xi . . . xn der ungelesene Rest der Eingabe und
• A1 . . .Al der aktuelle Kellerinhalt ist (A1 steht oben).

Eine Anweisung quA1 → pB1 . . .Bk (mit u ∈ {ε, xi}) überführt die
Konfiguration K in die Folgekonfiguration

K ′ = (p, xj . . . xn,B1 . . .BkA2 . . .Al) mit j = i + ∣u∣.

Hierfür schreiben wir auch kurz K ⊢ K ′. Eine Rechnung von M
bei Eingabe x ist eine Folge von Konfigurationen K0,K1,K2 . . . mit
K0 = (q0, x,#) und K0 ⊢ K1 ⊢ K2⋯. K0 heißt Startkonfiguration

von M bei Eingabe x. Die reflexive, transitive Hülle von ⊢ bezeich-
nen wir wie üblich mit ⊢∗. Die von M akzeptierte oder erkannte
Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃p ∈ Z ∶ (q0, x,#) ⊢∗ (p, ε, ε)}.

Ein Wort x wird also genau dann von M akzeptiert, wenn es eine
Rechnung gibt, bei der M das gesamte Eingabewort bis zum Ende
liest und den Keller leert. Man beachte, dass bei leerem Keller kein
weiterer Übergang mehr möglich ist.

Beispiel 104. Sei M = (Z,Σ,Γ, δ, q,#) ein PDA mit Z = {q, p},
Σ = {a, b}, Γ = {A,#} und den Anweisungen

δ ∶ qε#→ q (1) qa#→ qA (2)
qaA→ qAA (3) qbA → p (4)
pbA→ p (5)

q p

ε#, ε (1)
a#,A (2)
aA,AA (3)

bA, ε (4)

bA, ε (5)

Dann akzeptiert M die Eingabe aabb:

(q, aabb,#) ⊢
(2)

(q, abb,A) ⊢
(3)

(q, bb,AA) ⊢
(4)

(p, b,A) ⊢
(5)

(p, ε, ε).

Allgemeiner akzeptiert M das Wort x = anbn mit folgender Rechnung:
n = 0: (q, ε,#) ⊢

(1)
(p, ε, ε).

n ≥ 1: (q, anbn,#) ⊢
(2)

(q, an−1bn,A) ⊢
(3)
n−1 (q, bn,An)

⊢
(4)

(p, bn−1,An−1) ⊢
(5)
n−1 (p, ε, ε).

Dies zeigt {anbn ∣ n ≥ 0} ⊆ L(M). Als nächstes zeigen wir, dass jede
von M akzeptierte Eingabe x = x1 . . . xn die Form x = ambm hat.
Ausgehend von der Startkonfiguration (q, x,#) sind nur die Anwei-
sungen (1) oder (2) ausführbar. Falls M Anweisung (1) wählt, wird
der Keller geleert. Daher kann M in diesem Fall nur das leere Wort
x = ε = a0b0 akzeptieren.
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Falls die akzeptierende Rechnung mit Anweisung (2) beginnt, muss
x1 = a sein. Danach ist nur Anweisung (3) ausführbar, bis M das
erste b liest:

(q, x1 . . . xn,#) ⊢
(2)

(q, x2 . . . xn,A) ⊢
(3)

m−1 (q, xm+1 . . . xn,Am)

⊢
(4)

(p, xm+2 . . . xn,Am−1)

mit x1 = x2 = ⋯ = xm = a und xm+1 = b. Damit M den Keller leeren
kann, müssen jetzt noch genau m − 1 b’s kommen, weshalb x auch in
diesem Fall die Form ambm hat. ◁

Als nächstes zeigen wir, dass PDAs genau die kontextfreien Sprachen
erkennen.

Satz 105. CFL = {L(M) ∣M ist ein PDA}.

Beweis. Wir zeigen zuerst die Inklusion von links nach rechts.
Idee: Konstruiere zu einer kontextfreien Grammatik G = (V,Σ, P, S)
einen PDA M = ({q},Σ,Γ, δ, q0, S) mit Γ = V ∪Σ, so dass gilt:

S ⇒∗
L x1 . . . xn gdw. (q, x1 . . . xn, S) ⊢∗ (q, ε, ε).

Hierzu fügen wir für jede Regel A→G α in P die Anweisung qεA→ qα
und für jedes a ∈ Σ die Anweisung qaa→ qε zu δ hinzu.
M berechnet also nichtdeterministisch eine Linksableitung für die
Eingabe x. Da M hierbei den Syntaxbaum von oben nach unten
aufbaut, wird M als Top-Down Parser bezeichnet. Nun ist leicht zu
sehen, dass sogar folgende Äquivalenz gilt:

S ⇒l
L x1 . . . xn gdw. (q, x1 . . . xn, S) ⊢l+n (q, ε, ε).

Daher folgt

x ∈ L(G) ⇔ S ⇒∗
L x ⇔ (q, x, S) ⊢∗ (q, ε, ε) ⇔ x ∈ L(M).

Als nächstes zeigen wir die Inklusion von rechts nach links.
Idee: Konstruiere zu einem PDA M = (Z,Σ,Γ, δ, q0,#) eine kontext-
freie Grammatik G = (V,Σ, P, S) mit Variablen XpAp′ , A ∈ Γ, p, p′ ∈ Z,
so dass folgende Äquivalenz gilt:

(p, x,A) ⊢∗ (p′, ε, ε) gdw. XpAp′ ⇒∗ x. (∗)

Ein Wort x soll also genau dann in G aus XpAp′ ableitbar sein, wenn
M ausgehend vom Zustand p bei Lesen von x in den Zustand p′

gelangen kann und dabei das Zeichen A aus dem Keller entfernt. Um
dies zu erreichen, fügen wir für jede Anweisung puA → p0A1 . . .Ak,
k ≥ 0, die folgenden ∥Z∥k Regeln zu P hinzu:

Für jede Zustandsfolge p1, . . . , pk: XpApk
→ uXp0A1p1 . . .Xpk−1Akpk

.

Um damit alle Wörter x ∈ L(M) aus S ableiten zu können, benötigen
wir jetzt nur noch für jeden Zustand p ∈ Z die Regel S →Xq0#p. Die
Variablenmenge von G ist also

V = {S} ∪ {XpAp′ ∣ p, p′ ∈ Z,A ∈ Γ}

und P enthält neben den Regeln S →Xq0#p, p ∈ Z, für jede Anweisung
puA → p0A1 . . .Ak, k ≥ 0, von M und jede Zustandsfolge p1, . . . , pk
die Regel XpApk

→ uXp0A1p1 . . .Xpk−1Akpk
.

Unter der Voraussetzung, dass die Äquivalenz (∗) gilt, lässt sich nun
leicht die Korrektheit von G zeigen. Es gilt

x ∈ L(M) ⇔ (q0, x,#) ⊢∗ (p′, ε, ε) für ein p′ ∈ Z

⇔ S ⇒Xq0#p′ ⇒∗ x für ein p′ ∈ Z

⇔ x ∈ L(G).

Wir müssen also nur noch die Gültigkeit von (∗) zeigen. Hierzu zeigen
wir durch Induktion über m für alle p, p′ ∈ Z, A ∈ Γ und x ∈ Σ∗

folgende stärkere Behauptung:

(p, x,A) ⊢m (p′, ε, ε) gdw. XpAp′ ⇒m x. (∗∗)
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m = 0: Da sowohl (p, x,A) ⊢0 (p′, ε, ε) als auch XpAp′ ⇒0 x falsch
sind, ist die Äquivalenz (∗∗) für m = 0 erfüllt.

m;m + 1: Wir zeigen zuerst die Implikation von links nach rechts.
Für eine gegebene Rechnung

(p, x,A) ⊢ (p0, x
′,A1 . . .Ak) ⊢m (p′, ε, ε)

der Länge m + 1 sei puA → p0A1 . . .Ak, k ≥ 0, die im ersten
Rechenschritt ausgeführte Anweisung (d.h. x = ux′). Zudem
sei pi für i = 1, . . . , k der Zustand, in den M mit Kellerinhalt
Ai+1 . . .Ak gelangt (d.h. pk = p′). Dann enthält P die Regel
XpApk

→ uXp0A1p1 . . .Xpk−1Akpk
. Weiter sei ui für i = 1, . . . , k das

Teilwort von x′, das M zwischen den Besuchen von pi−1 und pi
liest.
Dann gibt es Zahlen mi ≥ 1 mit m1 +⋯ +mk =m und

(pi−1, ui,Ai) ⊢mi (pi, ε, ε)

für i = 1, . . . , k. Nach IV gibt es daher Ableitungen

Xpi−1Aipi
⇒mi ui, i = 1, . . . , k,

die wir zu der gesuchten Ableitung zusammensetzen können:

XpApk
⇒ uXp0A1p1 . . .Xpk−2Ak−1pk−1Xpk−1Akpk

⇒m1 uu1Xp1A2p2 . . .Xpk−2Ak−1pk−1Xpk−1Akpk

⋮
⇒mk−1 uu1 . . . uk−1Xpk−1Akpk

⇒mk uu1 . . . uk = x.

Zuletzt zeigen wir den Induktionsschritt für die Implikation von
rechts nach links von (∗∗). Gelte also umgekehrt XpAp′ ⇒m+1 x
und sei α die im ersten Schritt abgeleitete Satzform, d.h.

XpAp′ ⇒ α⇒m x.

Wegen XpAp′ →G α gibt es eine Anweisung puA → p0A1 . . .Ak,
k ≥ 0, und Zustände p1, . . . , pk ∈ Z mit

α = uXp0A1p1 . . .Xpk−1Akpk
,

wobei pk = p′ ist. Wegen α⇒m x ex. eine Zerlegung x = uu1 . . . uk
und Zahlen mi ≥ 1 mit m1 +⋯ +mk =m und

Xpi−1Aipi
⇒mi ui (i = 1, . . . , k).

Nach IV gibt es somit Rechnungen

(pi−1, ui,Ai) ⊢mi (pi, ε, ε), i = 1, . . . , k,

aus denen sich die gesuchte Rechnung der Länge m + 1 zusam-
mensetzen lässt:

(p, uu1 . . . uk,A) ⊢ (p0, u1 . . . uk,A1 . . .Ak)
⊢m1 (p1, u2 . . . uk,A2 . . .Ak)
⋮
⊢mk−1 (pk−1, uk,Ak)
⊢mk (pk, ε, ε). ∎

Beispiel 106. Sei G = ({S},{a, b}, P, S) mit

P ∶ S → aSbS, (1) S → a. (2)

Der zugehörige PDA besitzt dann die Anweisungen

δ: qaa→ qε, (0) qbb → qε, (0′)
qεS → qaSbS, (1′) qεS → qa. (2′)

Der Linksableitung

S ⇒
(1)
aSbS ⇒

(2)
aabS ⇒

(2)
aaba

39



3 Kontextfreie Sprachen 3.5 Deterministisch kontextfreie Sprachen

in G entspricht beispielsweise die akzeptierende Rechnung

(q, aaba,S) ⊢
(1′)

(q, aaba, aSbS) ⊢
(0)

(q, aba,SbS)

⊢
(2′)

(q, aba, abS) ⊢
(0)

(q, ba, bS)

⊢
(0′)

(q, a, S) ⊢
(2′)

(q, a, a) ⊢
(0)

(q, ε, ε)

von M und umgekehrt. ◁
Beispiel 107. Sei M der PDA ({p, q},{a, b},{A,#}, δ, p,#) mit

δ ∶ pε#→ qε, (1) paA→pAA, (3) qbA→ qε. (5)
pa#→pA, (2) pbA→ qε, (4)

Dann erhalten wir die Grammatik G = (V,Σ, P, S) mit der Variablen-
menge

V = {S,Xp#p,Xp#q,Xq#p,Xq#q,XpAp,XpAq,XqAp,XqAq}.

Die Regelmenge P enthält neben den beiden Startregeln

S→Xp#p,Xp#q (0,0′)

die folgenden Produktionen:

Anweisung
puA→ p0A1 . . .Ak

k p1, . . . , pk
zugehörige Regel

XpApk
→ uXp0A1p1 . . .Xpk−1Akpk

pε#→ qε (1) 0 - Xp#q→ε (1′)
pa#→ pA (2) 1 p Xp#p→aXpAp (2′)

q Xp#q→aXpAq (2′′)
paA→ pAA (3) 2 p, p XpAp→aXpApXpAp (3′)

p, q XpAq→aXpApXpAq (3′′)
q, p XpAp→aXpAqXqAp (3′′′)
q, q XpAq→aXpAqXqAq (3′′′′)

pbA→ qε (4) 0 - XpAq→b (4′)
qbA→ qε (5) 0 - XqAq→b (5′)

Der akzeptierenden Rechnung

(p, aabb,#) ⊢
(2)

(p, abb,A) ⊢
(3)

(p, bb,AA) ⊢
(4)

(q, b,A) ⊢
(5)

(q, ε, ε)

von M entspricht dann die Ableitung

S ⇒
(0′)

Xp#q ⇒
(2′′)

aXpAq ⇒
(3′′′′)

aaXpAqXqAq ⇒
(4′)

aabXqAq ⇒
(5′)

aabb

in G und umgekehrt. ◁

3.5 Deterministisch kontextfreie Sprachen

Von besonderem Interesse sind kontextfreie Sprachen, die von einem
deterministischen Kellerautomaten erkannt werden können.

Definition 108. Ein Kellerautomat heißt deterministisch, falls ⊢
eine rechtseindeutige Relation ist:

K ⊢K1 ∧K ⊢K2 ⇒K1 =K2.

Äquivalent hierzu ist, dass die Überführungsfunktion δ für alle
(q, a,A) ∈ Z ×Σ × Γ folgende Bedingung erfüllt (siehe Übungen):

∥δ(q, a,A)∥ + ∥δ(q, ε,A)∥ ≤ 1.

Beispiel 109. Der PDAM = ({q0, q1, q2},{a, b, c},{A,B,#}, δ, q0,#)
mit der Überführungsfunktion

δ∶ q0a#→ q0A# q0b#→ q0B# q0aA→ q0AA q0bA→ q0BA

q0aB→ q0AB q0bB→ q0BB q0cA→ q1A q0cB→ q1B

q1aA→ q1 q1bB→ q1 q1ε#→ q2
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erkennt die Sprache L(M) = {xcxR ∣ x ∈ {a, b}+}. Um auf einen Blick
erkennen zu können, ob M deterministisch ist, empfiehlt es sich, δ in
Form einer Tabelle darzustellen:

δ q0,# q0,A q0,B q1,# q1,A q1,B q2,# q2,A q2,B

ε − − − q2 − − − − −
a q0A# q0AA q0AB − q1 − − − −
b q0B# q0BA q0BB − − q1 − − −
c − q1A q1B − − − − − −

Man beachte, dass jedes Tabellenfeld höchstens eine Anweisung enthält
und jede Spalte, die einen ε-Eintrag in der ersten Zeile hat, sonst
keine weiteren Einträge enthält. Daher ist für alle (q, a,A) ∈ Z ×Σ×Γ
die Bedingung

∥δ(q, a,A)∥ + ∥δ(q, ε,A)∥ ≤ 1

erfüllt. ◁

Verlangen wir von einem deterministischen Kellerautomaten, dass er
seine Eingabe durch Leeren des Kellers akzeptiert, so können nicht
alle regulären Sprachen von deterministischen Kellerautomaten er-
kannt werden. Um beispielsweise die Sprache L = {a, aa} zu erkennen,
muss der Keller von M nach Lesen von a geleert werden. Daher ist
es M nicht mehr möglich, die Eingabe aa zu akzeptieren. Determi-
nistische Kellerautomaten können also durch Leeren des Kellers nur
präfixfreie Sprachen L akzeptieren (d.h. kein Wort x ∈ L ist Präfix
eines anderen Wortes in L).
Wir können das Problem aber einfach dadurch lösen, dass wir deter-
ministischen Kellerautomaten erlauben, ihre Eingabe durch Erreichen
eines Endzustands zu akzeptieren.

Definition 110.

• Ein Kellerautomat mit Endzuständen wird durch ein 7-
Tupel M = (Z,Σ,Γ, δ, q0,#,E) beschrieben. Dabei sind die Kom-
ponenten Z,Σ,Γ, δ, q0,# dieselben wie bei einem PDA und zu-
sätzlich ist E ⊆ Z eine Menge von Endzuständen.

• Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃p ∈ E,α ∈ Γ∗ ∶ (q0, x,#) ⊢∗ (p, ε,α)}.

• M ist ein deterministischer Kellerautomat mit Endzu-
ständen (kurz: DPDA), falls M zusätzlich für alle (q, a,A) ∈
Z ×Σ × Γ folgende Bedingung erfüllt:

∥δ(q, a,A)∥ + ∥δ(q, ε,A)∥ ≤ 1.

• Die Klasse der deterministisch kontextfreien Sprachen ist defi-
niert durch

DCFL = {L(M)∣M ist ein DPDA}.

Die Klasse der deterministisch kontextfreien Sprachen lässt sich auch
mit Hilfe von speziellen kontextfreien Grammatiken charakterisieren,
den so genannten LR(k)-Grammatiken.
Der erste Buchstabe L steht für die Leserichtung bei der Syntaxana-
lyse, d.h. das Eingabewort x wird von links (nach rechts) gelesen.
Der zweite Buchstabe R bedeutet, dass bei der Syntaxanalyse eine
Rechtsableitung entsteht. Schließlich gibt der Parameter k an, wieviele
Zeichen man über das aktuelle Eingabezeichen hinauslesen muss, da-
mit der nächste Schritt eindeutig feststeht (k wird auch als Lookahead
bezeichnet).
Durch LR(0)-Grammatiken lassen sich nur die präfixfreien Sprachen
in DCFL erzeugen. Dagegen erzeugen die LR(k)-Grammatiken für
jedes k ≥ 1 genau die Sprachen in DCFL.
Daneben gibt es noch LL(k)-Grammatiken, die für wachsendes k
immer mehr deterministisch kontextfreie Sprachen erzeugen.
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Als nächstes zeigen wir, dass DCFL unter Komplementbildung abge-
schlossen ist. Versuchen wir, die End- und Nichtendzustände eines
DPDA M einfach zu vertauschen, um einen DPDA M für L(M) zu
erhalten, so ergeben sich folgende Schwierigkeiten:

1. Falls M eine Eingabe x nicht zu Ende liest, wird x weder von
M noch von M akzeptiert.

2. Falls M nach dem Lesen von x noch ε-Übergänge ausführt und
dabei End- und Nichtendzustände besucht, wird x von M und
von M akzeptiert.

Der nächste Satz zeigt, wie sich Problem 1 beheben lässt.
Satz 111. Jede Sprache L ∈ DCFL wird von einem DPDAM ′ erkannt,
der alle Eingaben zu Ende liest.

Beweis. Sei M = (Z,Σ,Γ, δ, q0,#,E) ein DPDA mit L(M) = L. Falls
M eine Eingabe x = x1 . . . xn nicht zu Ende liest, muss einer der
folgenden drei Gründe vorliegen:

1. M gerät in eine Konfiguration (q, xi . . . xn, ε), i ≤ n, mit leerem
Keller.

2. M gerät in eine Konfiguration (q, xi . . . xn,Aγ), i ≤ n, in der
wegen δ(q, xi,A) = δ(q, ε,A) = ∅ keine Anweisung ausführbar
ist.

3. M gerät in eine Konfiguration (q, xi . . . xn,Aγ), i ≤ n, so dass
M ausgehend von der Konfiguration (q, ε,A) eine unendliche
Folge von ε-Anweisungen ausführt.

Die erste Ursache schließen wir aus, indem wir ein neues Zeichen ◻
auf dem Kellerboden platzieren:

(a) sε#→ q0#◻ (dabei sei s der neue Startzustand).
Die zweite Ursache schließen wir durch Hinzunahme eines Fehlerzu-
stands r sowie folgender Anweisungen aus (hierbei ist Γ′ = Γ ∪ {◻}):

(b) qaA→ rA, für alle (q, a,A) ∈ Z ×Σ × Γ′ mit A = ◻ oder
δ(q, a,A) = δ(q, ε,A) = ∅,

(c) raA→ rA, für alle a ∈ Σ und A ∈ Γ′.

Als nächstes verhindern wir die Ausführung einer unendlichen Folge
von ε-Übergängen. Dabei unterscheiden wir die beiden Fälle, ob M
hierbei auch Endzustände besucht oder nicht. Falls ja, sehen wir einen
Umweg über den neuen Endzustand t vor.

(d) qεA→ rA, für alle q ∈ Z und A ∈ Γ, so dass M ausge-
hend von der Konfiguration (q, ε,A) unend-
lich viele ε-Übergänge ausführt ohne dabei
einen Endzustand zu besuchen.

(e) qεA→ tA
tεA→ rA,

für alle q ∈ Z und A ∈ Γ, so dass M ausge-
hend von der Konfiguration (q, ε,A) unend-
lich viele ε-Übergänge ausführt und dabei
auch Endzustände besucht.

Schließlich übernehmen wir von M die folgenden Anweisungen:

(f) alle Anweisungen aus δ, soweit sie nicht durch Anweisungen
vom Typ (d) oder (e) überschrieben wurden.

Zusammenfassend transformieren wir M in den DPDA

M ′ = (Z ∪ {r, s, t},Σ,Γ′, δ′, s,#,E ∪ {t})

mit Γ′ = Γ∪{◻}, wobei δ′ die unter (a) bis (f) genannten Anweisungen
enthält. ∎

Beispiel 112. Wenden wir diese Konstruktion auf den DPDA

M = ({q0, q1, q2},{a, b, c},{A,B,#}, δ, q0,#,{q2})

mit der Überführungsfunktion
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δ q0,# q0,A q0,B q1,# q1,A q1,B q2,# q2,A q2,B

ε − − − q2 − − q2# − −
a q0A# q0AA q0AB − q1 − − − −
b q0B# q0BA q0BB − − q1 − − −
c − q1A q1B − − − − − −

an, so erhalten wir den DPDA

M ′ = ({q0, q1, q2, r, s, t},{a, b, c},{A,B,#,◻}, δ′, s,#,{q2, t})

mit folgender Überführungsfunktion δ′:

δ′ q0,# q0,A q0,B q0,◻ q1,# q1,A q1,B q1,◻ q2,# q2,A q2,B q2,◻

ε − − − − q2 − − − t# − − −
a q0A# q0AA q0AB r◻ − q1 rB r◻ − rA rB r◻
b q0B# q0BA q0BB r◻ − rA q1 r◻ − rA rB r◻
c r# q1A q1B r◻ − rA rB r◻ − rA rB r◻

Typ (f, b) (f) (f) (b) (f) (f, b)(f, b) (b) (e) (b) (b) (b)

s,# s,A s,B s,◻ r,# r,A r,B r,◻ t,# t,A t,B t,◻

ε q0#◻ − − − − − − − r# − − −
a − − − − r# rA rB r◻ − − − −
b − − − − r# rA rB r◻ − − − −
c − − − − r# rA rB r◻ − − − −

Typ (a) (c) (c) (c) (c) (e)
◁

Satz 113. Die Klasse DCFL ist unter Komplement abgeschlossen, d.h.
es gilt DCFL = co-DCFL.

Beweis. Sei M = (Z,Σ,Γ, δ, q0,#,E) ein DPDA, der alle Eingaben
zu Ende liest, und sei L(M) = L. Wir konstruieren einen DPDA M
für L.

Die Idee dabei ist, dass sich M in seinem Zustand (q, i) neben dem
aktuellen Zustand q von M in der Komponente i merkt, ob M nach
Lesen des letzten Zeichens (bzw. seit Rechnungsbeginn) einen Endzu-
stand besucht hat (i = 2) oder nicht (i = 1). Möchte M das nächste
Zeichen lesen und befindet sich M im Zustand (q,1), so macht M
noch einen Umweg über den Endzustand (q,3).
Konkret erhalten wir M = (Z×{1,2,3},Σ,Γ, δ′, s,#, Z×{3}) mit

s =
⎧⎪⎪⎨⎪⎪⎩

(q0,1), q0 /∈ E,
(q0,2), sonst,

indem wir zu δ′ für jede Anweisung qεA→M pγ die Anweisungen

(q,1)εA→ (p,1)γ, falls p /∈ E,
(q,1)εA→ (p,2)γ, falls p ∈ E und
(q,2)εA→ (p,2)γ,

sowie für jede Anweisung qaA→M pγ die Anweisungen

(q,1)εA→ (q,3)A,
(q,2)aA→ (p,1)γ, falls p /∈ E,
(q,2)aA→ (p,2)γ, falls p ∈ E,
(q,3)aA→ (p,1)γ, falls p /∈ E und
(q,3)aA→ (p,2)γ, falls p ∈ E.

hinzufügen. ∎

Eine nützliche Eigenschaft von M ist, dass M in einem Endzustand
keine ε-Übergänge macht.

Beispiel 114. Angenommen, ein DPDA M = (Z,Σ,Γ, δ, q0,#,E)
führt bei der Eingabe x = a folgende Rechnung aus:

(q0, a,#) ⊢ (q1, ε, γ1) ⊢ (q2, ε, γ2).
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Dann würde M im Fall E = {q0, q2} (d.h. x ∈ L(M)) die Rechnung

((q0,2), a,#) ⊢ ((q1,1), ε, γ1) ⊢ ((q2,2), ε, γ2)

ausführen. Da (q1, 1), (q2, 2) /∈ Z×{3} sind, verwirft also M das Wort
a. Dagegen würde M im Fall E = {q0} (d.h. x /∈ L(M)) die Rechnung

((q0,2), a,#) ⊢ ((q1,1), ε, γ1) ⊢ ((q2,1), ε, γ2) ⊢ ((q2,3), ε, γ2)

ausführen. Da (q2,3) ∈ Z×{3} ein Endzustand von M ist, würde M
nun also das Wort a akzeptieren. ◁

Satz 115. Die Klasse DCFL ist nicht abgeschlossen unter Schnitt,
Vereinigung, Produkt und Sternhülle.

Beweis. Die beiden Sprachen

L1 = {anbmcm ∣ n,m ≥ 0} und L2 = {anbncm ∣ n,m ≥ 0}

sind deterministisch kontextfrei (siehe Übungen). Da der Schnitt
L1 ∩L2 = {anbncn ∣ n ≥ 0} nicht kontextfrei ist, liegt er auch nicht in
DCFL, also ist DCFL nicht unter Schnitt abgeschlossen.
Da DCFL unter Komplementbildung abgeschlossen ist, kann DCFL
wegen de Morgan dann auch nicht unter Vereinigung abgeschlossen
sein. Beispielsweise sind folgende Sprachen deterministisch kontextfrei:

L3 = {aib jck ∣ i /= j} und L4 = {aib jck ∣ j /= k}.

Ihre Vereinigung L3 ∪L4 = {aib jck ∣ i /= j oder j /= k} gehört aber nicht
zu DCFL, d.h. L3 ∪L4 ∈ CFL ∖DCFL. DCFL ist nämlich unter Schnitt
mit regulären Sprachen abgeschlossen (siehe Übungen). Daher wäre
mit L3 ∪L4 auch die Sprache

(L3 ∪L4) ∩L(a∗b∗c∗) = {anbncn ∣ n ≥ 0}

(deterministisch) kontextfrei.

Als nächstes zeigen wir, dass DCFL nicht unter Produktbildung abge-
schlossen ist. Wir wissen bereits, dass L = L3 ∪L4 /∈ DCFL ist. Dann
ist auch die Sprache

0L = 0L3 ∪ 0L4 /∈ DCFL,

da sich ein DPDA M = (Z,Σ,Γ, δ, q0,#,E) für 0L leicht zu einem
DPDA für L umbauen ließe. Sei nämlich (p, ε, γ) die Konfiguration,
die M nach Lesen der Eingabe 0 erreicht. Dann erkennt der DP-
DA M ′ = (Z ∪ {s},Σ,Γ, δ′, s,#,E) die Sprache L, wobei δ′ wie folgt
definiert ist:

δ′(q, u,A) =
⎧⎪⎪⎨⎪⎪⎩

(p, γ), (q, u,A) = (s, ε,#),
δ(q, u,A), (q, u,A) ∈ Z × (Σ ∪ {ε}) × Γ.

Es ist leicht zu sehen, dass die beiden Sprachen {ε,0} und L5 = L3∪0L4
in DCFL sind (siehe Übungen). Ihr Produkt {ε,0}L5 = L5 ∪ 0L5 =
L3 ∪ 0L4 ∪ 0L3 ∪ 00L4 gehört aber nicht zu DCFL. Da DCFL unter
Schnitt mit regulären Sprachen abgeschlossen ist (siehe Übungen),
wäre andernfalls auch

{ε,0}L5 ∩L(0a∗b∗c∗) = 0L3 ∪ 0L4

in DCFL, was wir bereits ausgeschlossen haben. ∎

Dass DCFL auch nicht unter Sternhüllenbildung abgeschlossen ist,
lässt sich ganz ähnlich zeigen (siehe Übungen). Wir fassen die be-
wiesenen Abschlusseigenschaften der Klassen REG, DCFL und CFL in
folgender Tabelle zusammen:

Vereinigung Schnitt Komplement Produkt Sternhülle

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja
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4 Kontextsensitive Sprachen

In diesem Kapitel führen wir das Maschinenmodell des linear be-
schränkten Automaten (LBA) ein und zeigen, dass LBAs genau die
kontextsensitiven Sprachen erkennen. Die Klasse CSL ist unter Kom-
plementbildung abgeschlossen. Es ist jedoch offen, ob die Klasse DCSL
der von einem deterministischen LBA erkannten Sprachen eine echte
Teilklasse von CSL ist (diese Frage ist als LBA-Problem bekannt).

4.1 Kontextsensitive Grammatiken

Zur Erinnerung: Eine Grammatik G = (V,Σ, P, S) heißt kontextsen-
sitiv, falls für alle Regeln α → β gilt: ∣β∣ ≥ ∣α∣. Als einzige Ausnahme
hiervon ist die Regel S → ε erlaubt. Allerdings nur dann, wenn das
Startsymbol S nicht auf der rechten Seite einer Regel vorkommt.
Das nächste Beispiel zeigt, dass die Sprache L = {anbncn ∣ n ≥ 0} von ei-
ner kontextsensitiven Grammatik erzeugt wird. Da L nicht kontextfrei
ist, ist also die Klasse CFL echt in der Klasse CSL enthalten.
Beispiel 116. Betrachte die kontextsensitive Grammatik G =
(V,Σ, P, S) mit V = {S,B}, Σ = {a, b, c} und den Regeln

P :S→aSBc, abc (1,2) cB→Bc (3) bB→ bb (4)

In G läßt sich beispielsweise das Wort w = aabbcc ableiten:

S ⇒
(1)

aSBc ⇒
(2)

aabcBc ⇒
(3)

aabBcc ⇒
(4)

aabbcc

Allgemein gilt für alle n ≥ 1:

S ⇒
(1)
n−1 an−1S(Bc)n−1 ⇒

(2)
anbc(Bc)n−1 ⇒

(3)
(n2) anbBn−1cn ⇒

(4)
n−1 anbncn

Also gilt anbncn ∈ L(G) für alle n ≥ 1. Umgekehrt folgt durch Induktion
über die Ableitungslänge m, dass jede Satzform u mit S ⇒m α die
folgenden Bedingungen erfüllt:

• #a(α) = #b(α) +#B(α) = #c(α),
• links von S und links von einem a kommen nur a’s vor,
• links von einem b kommen nur a’s oder b’s vor.

Daraus ergibt sich, dass in G nur Wörter der Form w = anbncn ableit-
bar sind. ◁

4.2 Turingmaschinen

Um ein geeignetes Maschinenmodell für die kontextsensitiven Sprachen
zu finden, führen wir zunächst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein. Eine NTM erhält ihre Eingabe
auf einem nach links und rechts
unbegrenzten Band. Während
ihrer Rechnung kann sie den
Schreib-Lese-Kopf auf dem
Band in beide Richtungen be-
wegen und dabei die besuch-
ten Bandfelder lesen sowie ge-
lesenen Zeichen gegebenenfalls
überschreiben.

⋯ ⊔ x1 ⋯ xi ⋯ xn ⊔ ⋯

Arbeitsband
mit Eingabe

Schreib-
Lese-Kopf

Steuer-
einheit

←→

Es gibt mehrere Arten von Turingmaschinen (u.a. mit einseitig unend-
lichem Band oder mit mehreren Schreib-Lese-Köpfen auf dem Band).
Wir verwenden folgende Variante der Mehrband-Turingmaschine.

Definition 117. Sei k ≥ 1.
a) Eine nichtdeterministische k-Band-Turingmaschine

(kurz k-NTM oder einfach NTM) wird durch ein 6-Tupel
M = (Z,Σ,Γ, δ, q0,E) beschrieben, wobei
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• Z eine endliche Menge von Zuständen,
• Σ das Eingabealphabet (wobei ⊔ ∉ Σ),
• Γ das Arbeitsalphabet (wobei Σ ∪ {⊔} ⊆ Γ),
• δ: Z × Γk → P(Z × Γk × {L,R,N}k) die Überführungsfunk-

tion,
• q0 der Startzustand und
• E ⊆ Z die Menge der Endzustände ist.

b) Eine k-NTM M heißt deterministisch (kurz: M ist eine k-
DTM oder einfach DTM), falls für alle (q, a1, . . . ak) ∈ Z × Γk
die Ungleichung ∥δ(q, a1, . . . ak)∥ ≤ 1 gilt.

Für (q′, a′1, . . . , a′k,D1, . . . ,Dk) ∈ δ(q, a1, . . . ak) schreiben wir auch

(q, a1, . . . , ak) → (q′, a′1, . . . , a′k,D1, . . . ,Dk).

Eine solche Anweisung ist ausführbar, falls
• q der aktuelle Zustand von M ist und
• sich für i = 1, . . . , k der Lesekopf des i-ten Bandes auf einem mit
ai beschrifteten Feld befindet.

Ihre Ausführung bewirkt, dass M
• vom Zustand q in den Zustand q′ übergeht,
• auf Band i das Symbol ai durch a′i ersetzt und
• den Kopf gemäß Di bewegt (L: ein Feld nach links, R: ein Feld

nach rechts, N: keine Bewegung).

Definition 118. Sei M = (Z,Σ,Γ, δ, q0,E) eine k-NTM.
a) Eine Konfiguration von M ist ein (3k + 1)-Tupel

K = (q, u1, a1, v1, . . . , uk, ak, vk) ∈ Z × (Γ∗ × Γ × Γ∗)k

und besagt, dass
• q der momentane Zustand ist und

• das i-te Band mit . . .⊔uiaivi⊔ . . . beschriftet ist, wobei sich
der Kopf auf dem Zeichen ai befindet.

Im Fall k = 1 schreiben wir für eine Konfiguration (q, u, a, v)
auch kurz uqav.

b) Die Startkonfiguration von M bei Eingabe x = x1 . . . xn ∈ Σ∗

ist

Kx =
⎧⎪⎪⎨⎪⎪⎩

(q0, ε, x1, x2 . . . xn, ε,⊔, ε, . . . , ε,⊔, ε), x /= ε,
(q0, ε,⊔, ε, . . . , ε,⊔, ε), x = ε.

c) Eine Konfiguration K ′ = (q, u′1, a′1, v′1, . . . , u′k, a′k, v′k) heißt Fol-
gekonfiguration von K = (p, u1, a1, v1, . . . , uk, ak, vk) (kurz
K ⊢K ′), falls eine Anweisung

(q, a1, . . . , ak) → (q′, b1, . . . , bk,D1, . . . ,Dk)

existiert, so dass für i = 1, . . . , k gilt:

im Fall Di = N: Di = R: Di = L:

K∶ ui ai vi

K ′∶ ui bi vi

K∶ ui ai vi

K ′∶ ui bi a′i v
′
i

K∶ ui ai vi

K ′∶ u′i a
′
i bi vi

u′i = ui,
a′i = bi und
v′i = vi.

u′i = uibi und

a′iv
′
i =

⎧⎪⎪⎨⎪⎪⎩

vi, vi /= ε,
⊔, sonst.

u′ia
′
i =

⎧⎪⎪⎨⎪⎪⎩

ui, ui /= ε,
⊔, sonst

und v′i = bivi.

Man beachte, dass sich die Länge der Bandinschrift uiaivi beim
Übergang von K zu K ′ genau dann um 1 erhöht, wenn in K ′

zum ersten Mal ein neues Feld auf dem i-ten Band besucht wird.
Andernfalls bleibt die Länge von uiaivi unverändert. Die Länge
von uiaivi entspricht also genau der Anzahl der auf dem i-ten
Band besuchten Felder (inkl. Eingabezeichen im Fall i = 1).
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d) Eine Rechnung von M bei Eingabe x ist eine Folge von Kon-
figurationen K0,K1,K2 . . . mit K0 =Kx und K0 ⊢K1 ⊢K2⋯.

e) Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x ∈ Σ∗ ∣ ∃K ∈ E × (Γ∗ × Γ × Γ∗)k ∶Kx ⊢∗ K}.

M akzeptiert also eine Eingabe x (hierfür sagen wir kurz M(x) ak-
zeptiert), falls es eine Rechnung Kx =K0 ⊢K1 ⊢K2⋯ ⊢Kl von M(x)
gibt, bei der ein Endzustand erreicht wird.

Beispiel 119. Betrachte die 1-DTM M = (Z,Σ,Γ, δ, q0,E) mit
Z = {q0, . . . q4}, Σ = {a, b}, Γ = Σ ∪ {A,B,⊔}, E = {q4}, wobei δ
folgende Anweisungen emthält:

q0a → q1AR (1) Anfang der Schleife: Ersetze das erste a durch A.

q1a

q1B

q1b

→
→
→

q1aR

q1BR

q2BL

(2)
(3)
(4)

Bewege den Kopf nach rechts bis zum ersten b
und ersetze dies durch ein B (falls kein b mehr
vorhanden ist, dann halte ohne zu akzeptieren).

q2a

q2B

q2A

→
→
→

q2aL

q2BL

q0AR

(5)
(6)
(7)

Bewege den Kopf zurück nach links bis ein A
kommt, gehe wieder ein Feld nach rechts und wie-
derhole die Schleife.

q0B

q3B

q3⊔

→
→
→

q3BR

q3BR

q4⊔N

(8)
(9)

(10)

Falls kein a am Anfang der Schleife, dann teste,
ob noch ein b vorhanden ist. Wenn ja, dann halte
ohne zu akzeptieren. Andernfalls akzeptiere.

Dann führt M bei Eingabe aabb folgende Rechnung aus:

q0aabb ⊢
(1)
Aq1abb ⊢

(2)
Aaq1bb ⊢

(4)
Aq2aBb

⊢
(5)
q2AaBb ⊢

(7)
Aq0aBb ⊢

(1)
AAq1Bb

⊢
(3)
AABq1b ⊢

(4)
AAq2BB ⊢

(6)
Aq2ABB

⊢
(7)
AAq0BB ⊢

(8)
AABq3B ⊢

(9)
AABBq3⊔ ⊢

(10)
AABBq4⊔

Ähnlich läßt sich anbn ∈ L(M) für ein beliebiges n ≥ 1 zeigen. Ande-
rerseits führt die Eingabe abb auf die Rechnung

q0abb ⊢
(1)
Aq1bb ⊢

(4)
q2ABb ⊢

(7)
Aq0Bb ⊢

(8)
ABq3b,

die nicht weiter fortsetzbar ist. DaM deterministisch ist, kannM(abb)
auch nicht durch eine andere Rechnung den Endzustand q4 erreichen.
D.h. abb gehört nicht zu L(M). Tatsächlich lässt sich durch Betrach-
tung der übrigen Fälle (x = anbm, n > m, x = anbmak, m,k ≥ 1, etc.)
zeigen, dass M nur Eingaben der Form anbn akzeptiert, und somit
L(M) = {anbn ∣ n ≥ 1} ist. ◁

Es ist leicht zu sehen, dass jede Typ-0 Sprache von einer NTM M
akzeptiert wird, die ausgehend von x eine Rückwärtsableitung (Re-
duktion) auf das Startsymbol sucht. Ist x ≠ ε und markieren wir das
letzte Zeichen von x, so kannM das Ende der Eingabe erkennen, ohne
darüber hinaus lesen zu müssen. Zudem ist im Fall einer Typ-1 Spra-
che die linke Seite einer Regel höchstens so lang wie die rechte Seite.
Deshalb muss M beim Erkennen von kontextsensitiven Sprachen den
Bereich der Eingabe während der Rechnung nicht verlassen.

4.3 Linear beschränkte Automaten

Eine 1-NTM M , die bei keiner Eingabe x ≠ ε, deren letztes Zeichen
markiert ist, den Bereich der Eingabe verlässt, wird als LBA (linear
beschränkter Automat) bezeichnet. Ein LBA
darf also bei Eingaben der Länge n > 0
während der Rechnung nur die n mit der Ein-
gabe beschrifteten Bandfelder besuchen und
überschreiben. Tatsächlich lässt sich zeigen,
dass jede k-NTM, die bei Eingaben der Län-
ge n höchstens linear viele (also cn+c für eine

x1 ⋯ x̂n

Steuer-
einheit
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4 Kontextsensitive Sprachen 4.3 Linear beschränkte Automaten

Konstante c) Bandfelder besucht, von einem LBA simuliert werden
kann.
In diesem Abschnitt zeigen wir, dass LBAs genau die kontextsensitiven
Sprachen erkennen.

Definition 120.
a) Für ein Alphabet Σ und ein Wort x = x1 . . . xn ∈ Σ∗ bezeichne x̂

das Wort

x̂ =
⎧⎪⎪⎨⎪⎪⎩

x, x = ε,
x1 . . . xn−1x̂n, x /= ε

über dem Alphabet Σ̂ = Σ ∪ {â ∣ a ∈ Σ}.
b) Eine 1-NTM M = (Z, Σ̂,Γ, δ, q0,E) heißt linear beschränkt

(kurz: M ist ein LBA), falls M bei jeder Eingabe x̂ der Länge
n höchstens max{n,1} Bandfelder besucht:

∀x ∈ Σ∗ ∶Kx̂ ⊢∗ uqav ⇒ ∣uav∣ ≤ max{∣x∣,1}.

c) Die von einem LBA akzeptierte oder erkannte Sprache ist

L(M) = {x ∈ Σ∗ ∣M(x̂) akzeptiert}.

d) Ein deterministischer LBA wird auch als DLBA bezeichnet.
e) Die Klasse der deterministisch kontextsensitiven Spra-

chen ist definiert als

DCSL = {L(M) ∣M ist ein DLBA}.

Beispiel 121. Es ist nicht schwer, die 1-DTM M = (Z,Σ,Γ, δ, q0,E)
aus Beispiel 119 mit der Überführungsfunktion

δ: q0a →q1AR (1)
q1a →q1aR (2)
q1B→q1BR (3)
q1b →q2BL (4)

q2a →q2aL (5)
q2B→q2BL (6)
q2A→q0AR (7)
q0B→q3BR (8)

q3B→q3BR (9)
q3⊔→q4⊔N (10)

in einen DLBA M ′ für die Sprache {anbn ∣ n ≥ 1} umzuwandeln.
Ersetze hierzu

• Σ durch Σ̂ = {a, b, â, b̂},
• Γ durch Γ′ = Σ̂ ∪ {A,B, B̂,⊔} sowie
• die Anweisung q3⊔ → q4⊔N (10) durch q3B̂ → q4B̂N (10′)

und füge die Anweisungen q1b̂ → q2B̂L (4a) und q0B̂ → q4B̂N (8a)
hinzu. Dann erhalten wir den DLBA M ′ = (Z, Σ̂,Γ′, δ′, q0,E) mit der
Überführungsfunktion

δ′: q0a → q1AR (1) q1b̂ → q2B̂L (4a) q0B→ q3BR (8)
q1a → q1aR (2) q2a → q2aL (5) q0B̂→ q4B̂N (8a)
q1B→ q1BR (3) q2B→ q2BL (6) q3B→ q3BR (9)
q1b → q2BL (4) q2A→ q0AR (7) q3B̂→ q4B̂N (10′)

Das Wort aabb wird nun von M ′ bei Eingabe aabb̂ durch folgende
Rechnung akzeptiert:

q0aabb̂ ⊢
(1)
Aq1abb̂ ⊢

(2)
Aaq1bb̂ ⊢

(4)
Aq2aBb̂ ⊢

(5)
q2AaBb̂

⊢
(7)
Aq0aBb̂ ⊢

(1)
AAq1Bb̂ ⊢

(3)
AABq1b̂ ⊢

(4a)
AAq2BB̂

⊢
(6)
Aq2ABB̂ ⊢

(7)
AAq0BB̂ ⊢

(8)
AABq3B̂ ⊢

(10′)
AABq4B̂

◁

Der DLBA M ′ für die Sprache A = {anbn ∣ n ≥ 1} aus dem letzten
Beispiel lässt sich leicht in einen DLBA für die Sprache B = {anbncn ∣
n ≥ 1} transformieren (siehe Übungen), d.h. B ∈ DCSL ∖ CFL. Die
Inklusion von CFL in DCSL wird in den Übungen gezeigt.
Als nächstes beweisen wir, dass LBAs genau die kontextsensitiven
Sprachen erkennen.

Satz 122. CSL = {L(M) ∣M ist ein LBA}.
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Beweis. Wir zeigen zuerst die Inklusion von links nach rechts. Sei
G = (V,Σ, P, S) eine kontextsensitive Grammatik. Dann wird L(G)
von folgendem LBA M akzeptiert (o.B.d.A. sei ε /∈ L(G)):

Arbeitsweise von M bei Eingabe x = x1 . . . xn−1x̂n mit n > 0:
1 Markiere das erste Eingabezeichen x1
2 Wähle eine beliebige Regel α → β aus P
3 Wähle ein beliebiges Vorkommen von β auf dem Band (falls β

nicht vorkommt, halte ohne zu akzeptieren)
4 Ersetze die ersten ∣α∣ Zeichen von β durch α
5 Falls das erste (oder letzte ) Zeichen von β markiert war,

markiere auch das erste ( letzte ) Zeichen von α
6 Verschiebe die Zeichen rechts von β um ∣β∣ − ∣α∣ Positionen nach

links und überschreibe die frei werdenden Bandfelder mit Blanks
7 Enthält das Band außer Blanks nur das (markierte) Startsymbol,

so halte in einem Endzustand
8 Gehe zurück zu Schritt 2

Nun ist leicht zu sehen, dass M wegen ∣β∣ ≥ ∣α∣ tatsächlich ein LBA
ist. M akzeptiert eine Eingabe x, falls es gelingt, eine Ableitung für
x in G zu finden (in umgekehrter Reihenfolge, d.h. M ist ein nichtde-
terministischer Bottom-Up Parser). Da sich genau für die Wörter in
L(G) eine Ableitung finden lässt, folgt L(M) = L(G).
Für den Beweis der umgekehrten Inklusion sei ein LBA M =
(Z, Σ̂,Γ, δ, q0,E) gegeben (o.B.d.A. sei ε /∈ L(M)). Betrachte die kon-
textsensitive Grammatik G = (V,Σ, P, S) mit

V = {S,A} ∪ (ZΓ ∪ Γ)×Σ,
die für alle a, b ∈ Σ und c, d ∈ Γ folgende Regeln enthält:

P ∶ S →A(â, a), (q0â, a) (S) „Startregeln“
A→A(a, a), (q0a, a) (A) „A-Regeln“

(c, a) → a (F) „Finale Regeln“
(qc, a) → a, falls q ∈ E (E) „E-Regeln“

(qc, a) → (q′c′, a), falls qc→M q′c′N (N) „N-Regeln“
(qc, a)(d, b) → (c′, a)(q′d, b), falls qc→M q′c′R (R) „R-Regeln“
(d, a)(qc, b) → (q′d, a)(c′, b), falls qc→M q′c′L (L) „L-Regeln“

Durch Induktion über m lässt sich nun leicht für alle a1, . . . , an ∈ Γ
und q ∈ Z die folgende Äquivalenz beweisen:

q0x1 . . . xn−1x̂n ⊢m a1 . . . ai−1qai . . . an ⇐⇒
(q0x1, x1) . . . (x̂n, xn) ⇒

(N,R,L)

m (a1, x1) . . . (qai, xi) . . . (an, xn)

Ist also q0x1 . . . xn−1x̂n ⊢m a1 . . . ai−1qai . . . an mit q ∈ E eine akzeptie-
rende Rechnung von M(x1 . . . xn−1x̂n), so folgt

S ⇒
(S,A)

n (q0x1, x1)(x2, x2) . . . (xn−1, xn−1)(x̂n, xn)

⇒
(N,L,R)

m (a1, x1) . . . (ai−1, xi−1)(qai, xi) . . . (an, xn)

⇒
(F,E)

n x1 . . . xn

Die Inklusion L(G) ⊆ L(M) folgt analog. ∎

Eine einfache Modifikation des Beweises zeigt, dass 1-NTMs genau
die Sprachen vom Typ 0 akzeptieren (siehe Übungen).

Beispiel 123. Betrachte den LBA M = (Z, Σ̂,Γ, δ, q0,E) mit Z =
{q0, . . . q4}, Σ = {a, b}, Γ = {a, b, â, b̂,A,B, B̂,⊔} und E = {q4}, sowie

δ: q0a → q1AR q1b̂ → q2B̂L q0B→ q3BR

q1a → q1aR q2a → q2aL q0B̂→ q4B̂N

q1B→ q1BR q2B→ q2BL q3B→ q3BR

q1b → q2BL q2A→ q0AR q3B̂→ q4B̂N
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4 Kontextsensitive Sprachen 4.3 Linear beschränkte Automaten

Die zugehörige kontextsensitive Grammatik G = (V,Σ, P, S) enthält
dann neben den Start- und A-Regeln

S → A(â, a), A(b̂, b), (q0â, a), (q0b̂, b) (S1-S4)
A→ A(a, a), A(b, b), (q0a, a), (q0b, b) (A1-A4)

für jedes Zeichen c ∈ Γ folgende F- und E-Regeln (wegen E = {q4}):

(c, a) → a und (c, b) → b (F1-F16)
(q4c, a) → a und (q4c, b) → b (E1-E16)

Daneben enthält P beispielsweise für die Anweisung q3B̂ → q4B̂N
folgende zwei N-Regeln:

(q3B̂, a) → (q4B̂, a), (q3B̂, b) → (q4B̂, b).

Für die Anweisung q1b → q2BL kommen für jedes d ∈ Γ die vier
L-Regeln

(d, a)(q1b, a) → (q2d, a)(B,a), (d, b)(q1b, a) → (q2d, b)(B,a)
(d, a)(q1b, b) → (q2d, a)(B, b), (d, b)(q1b, b) → (q2d, b)(B, b)

zu P hinzu und die Anweisung q0a→ q1AR bewirkt für jedes d ∈ Γ die
Hinzunahme folgender vier R-Regeln:

(q0a, a)(d, a) → (A,a)(q1d, a), (q0a, a)(d, b) → (A,a)(q1d, b)
(q0a, b)(d, a) → (A, b)(q1d, a), (q0a, b)(d, b) → (A, b)(q1d, b)

◁

Folgende Tabelle gibt einen Überblick über die Abschlusseigenschaften
der Klassen REG, DCFL, CFL, DCSL, CSL und RE. In der Vorlesung
Komplexitätstheorie wird gezeigt, dass die Klasse CSL unter Komple-
mentbildung abgeschlossen ist. Im nächsten Kapitel werden wir sehen,
dass die Klasse RE nicht unter Komplementbildung abgeschlossen ist.
Die übrigen Abschlusseigenschaften in folgender Tabelle werden in
den Übungen bewiesen.

Vereinigung Schnitt Komplement Produkt Sternhülle

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja

DCSL ja ja ja ja ja
CSL ja ja ja ja ja
RE ja ja nein ja ja
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5 Entscheidbare und semi-entscheidbare
Sprachen

In diesem Kapitel beschäftigen wir uns mit der Klasse RE der re-
kursiv aufzählbaren Sprachen, die identisch mit den Typ-0 Sprachen
sind. Wir werden eine Reihe von Charakterisierungen für diese Klasse
mittels Turingmaschinen beweisen, wodurch auch die Namensgebung
(rekursiv aufzählbar) verständlich wird. Eine wichtige Teilklasse von
RE bildet die Klasse REC der entscheidbaren (oder rekursiven) Spra-
chen, in der bereits alle kontextsensitiven Sprachen enthalten sind.
Definition 124.

a) Eine NTM M hält bei Eingabe x, falls alle Rechnungen von
M(x) eine endliche Länge haben. Falls M(x) nicht hält, schrei-
ben wir auch kurz M(x) = ↑.

b) Eine NTM M entscheidet eine Eingabe x, falls M(x) hält
oder eine Konfiguration mit einem Endzustand erreichen kann.

c) Eine Sprache L ⊆ Σ∗ heißt entscheidbar, falls eine DTM M
mit L(M) = L existiert, die jede Eingabe x ∈ Σ∗ entscheidet.

d) Jede von einer DTM M erkannte Sprache heißt semi-
entscheidbar.

Bemerkung 125.
• Die von einer DTM M akzeptierte Sprache L(M) wird als semi-

entscheidbar bezeichnet, da M zwar alle (positiven) Eingaben
x ∈ L entscheidet, aber möglicherweise nicht alle (negativen)
Eingaben x ∈ L̄.

• Wir werden später sehen, dass genau die Typ-0 Sprachen semi-
entscheidbar sind.

Wir wenden uns nun der Berechnung von Funktionen zu.

Definition 126. Eine k-DTM M = (Z,Σ,Γ, δ, q0,E) berechnet
eine Funktion f ∶ Σ∗ → Γ∗, falls M bei jeder Eingabe x ∈ Σ∗ in einer
Konfiguration

K = (q, u1, a1, v1, . . . , uk, ak, vk) ∈ Z × (Γ∗ × Γ × Γ∗)k

mit uk = f(x) hält (d.h. Kx ⊢∗ K und K hat keine Folgekonfiguration).
Hierfür sagen wir auch, M gibt bei Eingabe x das Wort f(x) aus und
schreiben M(x) = f(x). f heißt Turing-berechenbar (oder einfach
berechenbar), falls es eine k-DTM M mit M(x) = f(x) für alle
x ∈ Σ∗ gibt.

Um eine Funktion f ∶ Σ∗ → Γ∗ zu berechnen, muss M also bei jeder
Eingabe x den Funktionswert f(x) auf das k-te Band schreiben und
danach halten. Falls M nicht bei allen Eingaben hält, berechnet M
keine totale, sondern eine partielle Funktion.

Definition 127.
a) Eine partielle Funktion hat die Form f ∶ Σ∗ → Γ∗ ∪ {↑}.
b) Für f(x) = ↑ sagen wir auch f(x) ist undefiniert.
c) Der Definitionsbereich (engl. domain) von f ist

dom(f) = {x ∈ Σ∗ ∣ f(x) ≠ ↑}.

d) Das Bild (engl. image) von f ist

img(f) = {f(x) ∣ x ∈ dom(f)}.

e) f heißt total, falls dom(f) = Σ∗ ist.
f) Eine DTM M = (Z,Σ,Γ, δ, q0,E) berechnet eine partielle

Funktion f ∶ Σ∗ → Γ∗ ∪ {↑}, falls M(x) für alle x ∈ dom(f)
das Wort f(x) ausgibt und für alle x /∈ dom(f) keine Ausgabe
berechnet (d.h. M(x) = ↑).

51



5 Entscheidbare und semi-entscheidbare Sprachen

Aus historischen Gründen werden die berechenbaren Funktionen und
die entscheidbaren Sprachen auch rekursiv (engl. recursive) genannt.
Wir fassen die entscheidbaren Sprachen und die (partiellen) berechen-
baren Funktionen in folgenden Klassen zusammen:

REC = {L(M) ∣M ist eine DTM, die jede Eingabe entscheidet},
FREC = {f ∣ f ist eine berechenbare (totale) Funktion},

FRECp = {f ∣ f ist eine berechenbare partielle Funktion}.

Dann gilt FREC ⊊ FRECp und

REG ⊊ DCFL ⊊ CFL ⊊ DCSL ⊆ CSL ⊊ REC ⊊ RE.

Wir wissen bereits, dass die Inklusionen REG ⊊ DCFL ⊊ CFL ⊊ DCSL
echt sind. In diesem Abschnitt werden wir die Echtheit der Inklusion
REC ⊊ RE zeigen. Dass CSL eine echte Teilklasse von REC ist, wird in
den Übungen gezeigt.

Beispiel 128. Bezeichne x+ den lexikografischen Nachfolger von
x ∈ Σ∗. Für Σ = {0,1} ergeben sich beispielsweise folgende Werte:

x ε 0 1 00 01 10 11 000 . . .

x+ 0 1 00 01 10 11 000 001 . . .

Betrachte die auf Σ∗ definierten partiellen Funktionen f1, f2, f3, f4 mit
f1(x) = 0,

f2(x) = x,

f3(x) = x+
und f4(x) =

⎧⎪⎪⎨⎪⎪⎩

↑, x = ε,
y, x = y+.

Da diese vier partiellen Funktionen alle berechenbar sind, gehören die
totalen Funktionen f1, f2, f3 zu FREC, während f4 zu FRECp gehört.◁

Wie der nächste Satz zeigt, lässt sich jedes Entscheidungsproblem auf
ein funktionales Problem zurückführen.

Satz 129.
(i) Eine Sprache A ⊆ Σ∗ ist genau dann entscheidbar, wenn ihre

charakteristische Funktion χA ∶ Σ∗ → {0, 1} berechenbar ist.
Diese ist wie folgt definiert:

χA(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ A,
0, x /∈ A.

(ii) Eine Sprache A ⊆ Σ∗ ist genau dann semi-entscheidbar, falls
die partielle charakteristische Funktion χ̂A ∶ Σ∗ → {1, ↑}
berechenbar ist. Letztere ist wie folgt definiert:

χ̂A(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ A,
↑, x /∈ A.

Beweis. Siehe Übungen. ∎

Definition 130. Eine Sprache A ⊆ Σ∗ heißt rekursiv aufzählbar,
falls A entweder leer oder das Bild img(f) einer berechenbaren Funk-
tion f ∶ Γ∗ → Σ∗ für ein beliebiges Alphabet Γ ist.

Satz 131. Folgende Eigenschaften sind äquivalent:
1. A ist semi-entscheidbar (d.h. A wird von einer DTM akzeptiert),
2. A wird von einer 1-DTM akzeptiert,
3. A wird von einer 1-NTM akzeptiert,
4. A ist vom Typ 0,
5. A wird von einer NTM akzeptiert,
6. A ist rekursiv aufzählbar.

Beweis. 1) ⇒ 2): Sei M = (Z,Σ,Γ, δ, q0,E) eine k-DTM, die A ak-
zeptiert. Wir konstruieren eine 1-DTM M ′ = (Z ′,Σ,Γ′, δ′, z0,E)
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mit L(M ′) = A. M ′ simuliert M , indem sie jede Konfiguration
K von M der Form

⋯ a b c d ⋯
↑

⋮
⋯ e f g h ⋯

↑

durch eine Konfiguration K ′ folgender Form nachbildet:

⋯ ( a⋮
ê
) (

b
⋮

f
) (

ĉ
⋮

g
) (

d
⋮

h
) ⋯

Das heißt, M ′ arbeitet mit dem Alphabet

Γ′ = Γ ∪ (Γ ∪ {â ∣ a ∈ Γ})k

und erzeugt bei Eingabe x = x1 . . . xn ∈ Σ∗ zuerst die der Start-
konfiguration Kx = (q0, ε, x1, x2 . . . xn, ε,⊔, ε, . . . , ε,⊔, ε) von M
bei Eingabe x entsprechende Konfiguration

K ′
x = q′0

⎛
⎜⎜⎜
⎝

x̂1
⊔̂
⋮
⊔̂

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

x2
⊔
⋮
⊔

⎞
⎟⎟⎟
⎠
⋯

⎛
⎜⎜⎜
⎝

xn
⊔
⋮
⊔

⎞
⎟⎟⎟
⎠
.

Dann simuliert M ′ jeweils einen Schritt von M durch folgende
Sequenz von Rechenschritten:

Zuerst geht M ′ solange nach rechts, bis sie alle mit
ˆ markierten Zeichen (z.B. â1, . . . , âk) gefunden hat.
Diese Zeichen speichertM ′ zusammen mit dem aktuel-
len Zustand q von M in ihrem Zustand. Anschließend
geht M ′ wieder nach links und realisiert dabei die
durch δ(q, a1, . . . , ak) vorgegebene Anweisung von M .

Sobald M in einen Endzustand übergeht, wechselt M ′ ebenfalls
in einen Endzustand und hält. Nun ist leicht zu sehen, dass
L(M ′) = L(M) ist.

2) ⇒ 3): Klar.
3) ⇒ 4) ⇒ 5): Diese beiden Implikationen lassen sich ganz ähnlich wie

die Charakterisierung der Typ-1 Sprachen durch LBAs zeigen
(siehe Übungen).

5) ⇒ 6): Sei M = (Z,Σ,Γ, δ, q0,E) eine k-NTM, die eine Spra-
che A /= ∅ akzeptiert. Kodieren wir eine Konfiguration K =
(q, u1, a1, v1, . . . , uk, ak, vk) von M durch das Wort

code(K) = #q#u1#a1#v1# . . .#uk#ak#vk#

über dem Alphabet Γ̃ = Z ∪ Γ ∪ {#} und eine Rechnung
K0 ⊢ ⋯ ⊢ Kt durch code(K0) . . . code(Kt), so lassen sich die
Wörter von A durch folgende Funktion f ∶ Γ̃∗ → Σ∗ aufzählen
(dabei ist x0 ein beliebiges Wort in A):

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y, x kodiert eine Rechnung K0 ⊢ ⋯ ⊢Kt von M
mit K0 =Ky und Kt ∈ E × (Γ∗ × Γ × Γ∗)k

x0, sonst.

Da f berechenbar ist, ist A = img(f) rekursiv aufzählbar.
6) ⇒ 1): Sei f ∶ Γ∗ → Σ∗ eine Funktion mit A = img(f) und seiM eine

k-DTM, die f berechnet. Dann akzeptiert folgende (k+1)-DTM
M ′ die Sprache A.

M ′ berechnet bei Eingabe x auf dem 2. Band der Rei-
he nach für alle Wörter y ∈ Γ∗ den Wert f(y) durch
Simulation von M(y) und akzeptiert, sobald sie ein
y mit f(y) = x findet. ∎

Satz 132. A ist genau dann entscheidbar, wenn A und Ā semi-
entscheidbar sind, d.h. REC = RE ∩ co-RE.
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Beweis. Sei A entscheidbar. Es ist leicht zu sehen, dass dann auch Ā
entscheidbar ist. Also sind dann A und Ā auch semi-entscheidbar. Für
die Rückrichtung seien f1, f2 ∶ Γ∗ → Σ∗ Turing-berechenbare Funk-
tionen mit img(f1) = A und img(f2) = Ā. Wir betrachten folgende
k-DTM M , die bei Eingabe x für jedes y ∈ Γ∗ die beiden Werte f1(y)
und f2(y) bestimmt und im Fall

• f1(y) = x in einem Endzustand
• f2(y) = x in einem Nichtendzustand

hält. Da jede Eingabe x entweder in img(f1) = A oder in img(f2) = Ā
enthalten ist, hält M bei allen Eingaben. ∎

5.1 Unentscheidbarkeit des Halteproblems

Eine für die Programmverifikation sehr wichtige Fragestellung ist,
ob ein gegebenes Programm bei allen Eingaben nach endlich vielen
Rechenschritten stoppt. In diesem Abschnitt werden wir zeigen, dass
es zur Lösung dieses Problems keinen Algorithmus gibt, nicht einmal
dann, wenn wir die Eingabe fixieren. Damit wir einer Turingmaschine
eine andere Turingmaschine als Eingabe vorlegen können, müssen wir
eine geeignete Kodierung von Turingmaschinen vereinbaren (diese
wird auch Gödelisierung genannt).
Sei M = (Z,Σ,Γ, δ, q0,E) eine 1-DTM mit Zustandsmenge Z =
{q0, . . . , qm} (o.B.d.A. sei E = {qm}) und Eingabealphabet Σ =
{0, 1,#}. Das Arbeitsalphabet sei Γ = {a0, . . . , al}, wobei wir o.B.d.A.
a0 = 0, a1 = 1, a2 = #, a3 = ⊔ annehmen. Dann können wir jede
Anweisung der Form qiaj → qi′aj′D durch das Wort

#bin(i)#bin(j)#bin(i′)#bin(j′)#bD#

kodieren. Dabei ist bin(n) die Binärdarstellung von n und bN = 0,
bL = 1, sowie bR = 10.M lässt sich nun als ein Wort über dem Alphabet
{0,1,#} kodieren, indem wir die Anweisungen von M in kodierter

Form auflisten. Kodieren wir die Zeichen 0,1,# binär (z.B. 0 ↦ 00,
1↦ 11, #↦ 10), so gelangen wir zu einer Binärkodierung wM von M .
Die Binärzahl wM wird auch die Gödel-Nummer von M genannt
(tatsächlich kodierte Kurt Gödel Turingmaschinen durch natürliche
Zahlen und nicht durch Binärstrings). Die Maschine Mw ist durch die
Angabe von w bis auf die Benennung ihrer Zustände und Arbeitszei-
chen eindeutig bestimmt. Ganz analog lassen sich auch DTMs mit
einer beliebigen Anzahl von Bändern (sowie NTMs, Konfigurationen
oder Rechnungen von TMs) kodieren.
Umgekehrt können wir jedem Binärstring w ∈ {0,1}∗ eine DTM Mw

wie folgt zuordnen:

Mw =
⎧⎪⎪⎨⎪⎪⎩

M, falls eine DTM M mit wM = w existiert,
M0, sonst.

Hierbei ist M0 eine beliebige DTM.

Definition 133.

a) Das Halteproblem ist die Sprache

H = {w#x w,x ∈ {0,1}∗ und die DTM
Mw hält bei Eingabe x }

b) Das spezielle Halteproblem ist

K = {w ∈ {0,1}∗ die DTM Mw

hält bei Eingabe w}

χH x1 x2 x3 ⋯

w1 1 1 0 ⋯
w2 0 0 1 ⋯
w3 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

χK

w1 1
w2 0
w3 1
⋮ ⋱

Der Werteverlauf der charakteristischen Funktion χK von K stimmt
also mit der Diagonalen der als Matrix dargestellten charakteristischen
Funktion χH von H überein.
Satz 134. K ∈ RE ∖ co-RE.
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Beweis. Wir zeigen zuerst K ∈ RE. Sei w0 die Kodierung einer DTM,
die bei jeder Eingabe (sofort) hält und betrachte die Funktion

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w, x ist Kodierung einer haltenden Berechnung einer
DTM Mw bei Eingabe w,

w0, sonst.

Da f berechenbar und img(f) = K ist, folgt K ∈ RE. Um zu zeigen,
dass K̄ nicht semi-entscheidbar ist, führen wir die Annahme K̄ ∈ RE
auf einen Widerspruch.
Wir erklären zuerst die Beweisidee. Da K ∈ RE ist, gibt es in der
Matrixdarstellung von χH eine Zeile w (bzw. eine DTM M = Mw),
die mit der Diagonalen der Matrix übereinstimmt. Beispielsweise kön-
nen wir für M eine DTM wählen, die die partielle charakteristische
Funktion χ̂K von K berechnet. Wäre auch K̄ ∈ RE, so würde eine
DTM M ′ existieren, so dass die zugehörige Zeile in der Matrix invers
zur Zeile von M und damit zur Diagonalen ist. Beispielsweise können
wir für M ′ eine DTM wählen, die die partielle charakteristische Funk-
tion χ̂K̄ von K̄ berechnet. Da in keiner Matrix eine Zeile existieren
kann, die invers zur Diagonalen ist, führt dies auf den gewünschten
Widerspruch.
Nehmen wir also an, die Sprache

K̄ = {w ∣Mw(w) hält nicht} (∗)

wäre semi-entscheidbar. Dann existiert eine
DTM Mw′ , die die partielle charakteristische
Funktion χ̂K̄ von K̄ berechnet, d.h. es gilt

Mw′(w) hält ⇔ w ∈ K̄ (∗∗)

Für die Kodierung w′ von Mw′ folgt dann
aber

χH x1 x2 x3 ⋯

w1 1 1 0 ⋯
w2 0 0 1 ⋯
w3 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

w′ 0 1 0 ⋯

w′ ∈ K̄
(∗)

⇔ Mw′(w′) hält nicht
(∗∗)

⇔ w′ /∈ K̄  (Widerspruch!) ∎

Die Methode in obigem Beweis wird als Diagonalisierung bezeich-
net. Mit dieser Beweistechnik lässt sich auch eine entscheidbare Spra-
che definieren, die sich von jeder kontextsensitiven Sprache unterschei-
det (siehe Übungen).

Korollar 135. REC ⊊ RE.

Beweis. Klar da K ∈ RE ∖ REC. ∎

Definition 136.
a) Eine Sprache A ⊆ Σ∗ heißt auf B ⊆ Γ∗ reduzierbar (kurz:

A ≤ B), falls eine berechenbare Funktion f ∶ Σ∗ → Γ∗ ex., so
dass gilt:

∀x ∈ Σ∗ ∶ x ∈ A⇔ f(x) ∈ B.

b) Eine Sprachklasse C heißt unter ≤ abgeschlossen, wenn für
alle Sprachen A,B gilt:

A ≤ B ∧B ∈ C ⇒ A ∈ C.

c) Eine Sprache B heißt hart für eine Sprachklasse C (kurz: C-
hart oder C-schwer), falls jede Sprache A ∈ C auf B reduzierbar
ist:

∀A ∈ C ∶ A ≤ B.

d) Eine C-harte Sprache B, die zu C gehört, heißt C-vollständig.

Beispiel 137. Es gilt K ≤ H mittels f ∶ w ↦ w#w, da für alle
w ∈ {0,1}∗ gilt:

w ∈K⇔Mw ist eine DTM, die bei Eingabe w hält
⇔ w#w ∈H.
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Das Halteproblem H ist sogar RE-hart, da sich jede semi-entscheidbare
Sprache A auf H reduzieren lässt. Die Reduktion A ≤ H leistet bei-
spielsweise die Funktion x ↦ w#x, wobei w die Kodierung einer
DTM Mw ist, die die partielle charakteristische Funktion χ̂A von A
berechnet. ◁

Satz 138. Die Klasse REC ist unter ≤ abgeschlossen.

Beweis. Gelte A ≤ B mittels f und seiM eine DTM, die χB berechnet.
Betrachte folgende DTM M ′:

• M ′ berechnet bei Eingabe x zuerst den Wert f(x) und
• simuliert dann M bei Eingabe f(x).

Wegen
x ∈ A⇔ f(x) ∈ B

folgt
M ′(x) =M(f(x)) = χB(f(x)) = χA(x).

Also berechnet M ′ die Funktion χA, d.h. A ∈ REC. ∎

Der Abschluss von RE unter ≤ folgt analog (siehe Übungen).

Korollar 139.

1. A ≤ B ∧A /∈ REC⇒ B /∈ REC,
2. A ≤ B ∧A /∈ RE⇒ B /∈ RE.

Beweis. Aus der Annahme, dass B entscheidbar (bzw. semi-
entscheidbar) ist, folgt wegen A ≤ B, dass dies auch auf A zutrifft
(Widerspruch). ∎

Wegen K ≤ H überträgt sich die Unentscheidbarkeit von K auf H.

Korollar 140. H /∈ REC.

Definition 141. Das Halteproblem
bei leerem Band ist die Sprache

H0 = {w ∈ {0,1}∗ ∣die DTM Mw hält
bei Eingabe ε }

χH0 x1 (= ε)

w1 1
w2 1
w3 0
⋮ ⋮

Satz 142. H0 ist RE-vollständig.

Beweis. Da die Funktion w ↦ w#ε die Sprache H0 auf H reduziert
und da H ∈ RE ist, folgt H0 ∈ RE.
Für den Beweis, dass H0 RE-hart ist sei A ∈ RE beliebig und sei w die
Kodierung einer DTM, die χ̂A berechnet. Um A auf H0 zu reduzieren,
transformieren wir x ∈ {0,1}∗ in die Kodierung wx einer DTM M ,
die zunächst ihre Eingabe durch x ersetzt und dann Mw(x) simuliert.
Dann gilt

x ∈ A⇔ wx ∈H0

und somit A ≤H0 mittels der Reduktionsfunktion x↦ wx. ∎

Insbesondere folgt also K ≤ H0, d.h. H0 ist unentscheidbar.

5.2 Der Satz von Rice

Frage. Kann man einer beliebig vorgegebenen TM ansehen, ob die
von ihr berechnete Funktion (bzw. die von ihr akzeptierte Sprache)
eine gewisse Eigenschaft hat? Kann man beispielsweise entscheiden,
ob eine gegebene DTM eine totale Funktion berechnet?

Antwort. Nur dann, wenn die fragliche Eigenschaft trivial ist (d.h.
keine oder jede berechenbare Funktion hat diese Eigenschaft).

56



5 Entscheidbare und semi-entscheidbare Sprachen 5.2 Der Satz von Rice

Definition 143. Zu einer Klasse F von Funktionen definieren wir
die Sprache

LF = {w ∈ {0,1}∗ ∣die DTM Mw berechnet eine Funktion in F } .

Die Eigenschaft F heißt trivial, wenn LF = ∅ oder LF = {0,1}∗ ist.

Der Satz von Rice besagt, dass LF nur für triviale Eigenschaften
entscheidbar ist:

LF ≠ ∅ ∧LF ≠ {0,1}∗⇒ LF /∈ REC.

Satz 144 (Satz von Rice).
Für jede nicht triviale Eigenschaft F ist LF unentscheidbar.

Beweis. Wir reduzieren H0 auf LF (oder auf LF). Die Idee besteht
darin, für eine gegebene DTM Mw eine DTM Mw′ zu konstruieren
mit

w ∈ H0 ⇔Mw′ berechnet (k)eine Funktion in F .
Hierzu lassen wir Mw′ bei Eingabe x zunächst einmal die DTM Mw

bei Eingabe ε simulieren. Falls w ∉ H0 ist, berechnet Mw′ also die
überall undefinierte Funktion u mit u(x) = ↑ für alle x ∈ Σ∗.
Für das Folgende nehmen wir o.B.d.A. an, dass u ∉ F ist. (Andernfalls
können wir F durch die komplementäre Eigenschaft ¬F ersetzen.
Wegen L¬F = LF ist LF genau dann unentscheidbar, wenn L¬F un-
entscheidbar ist.)
Damit die Reduktion gelingt, müssen wir nur noch dafür sorgen, dass
Mw′ im Fall w ∈H0 eine Funktion f ∈ F berechnet.
Da F nicht trivial ist, gibt es eine DTM Mf , die eine partiel-
le Funktion f ∈ F berechnet. Betrachte die Reduktionsfunktion
h ∶ {0,1}∗ → {0,1}∗ mit

h(w) = w′, wobei w′ die Kodierung einer DTM ist, die bei
Eingabe x zunächst die DTM Mw(ε) simuliert
und im Fall, dass Mw hält, mit der Simulation
von Mf(x) fortfährt.

Dann ist h ∶ w ↦ w′ eine totale berechenbare Funktion und es gilt

w ∈H0 ⇒ Mw′ berechnet f ⇒ w′ ∈ LF ,
w ∉H0 ⇒ Mw′ berechnet u ⇒ w′ /∈ LF .

Dies zeigt, dass h das Problem H0 auf LF reduziert, und da H0
unentscheidbar ist, muss auch LF unentscheidbar sein. ∎

Beispiel 145. Die Sprache

L = {w ∈ {0,1}∗ ∣Mw(0n) = 0n+1 für alle n ≥ 0}

ist unentscheidbar. Dies folgt aus dem Satz von Rice, da die Eigen-
schaft

F = {f ∣ f(0n) = 0n+1 für alle n ≥ 0}
nicht trivial und L = LF ist. F ist nicht trivial, da z.B. die berechenbare
partielle Funktion

f(x) =
⎧⎪⎪⎨⎪⎪⎩

0n+1, x = 0n für ein n ≥ 0
↑, sonst

in F und die konstante Funktion g(x) = 0 auf {0}∗ nicht in F enthal-
ten ist. ◁

In den Übungen wird folgende Variante des Satzes von Rice für
Spracheigenschaften bewiesen, wonach wir einer gegebenen TM nicht
ansehen können, ob die von ihr akzeptierte Sprache eine gewisse
Eigenschaft hat oder nicht.

Satz 146. Für eine beliebige Sprachklasse S sei

LS = {w ∈ {0,1}∗ ∣ L(Mw) ∈ S}.

Dann ist LS unentscheidbar, außer wenn LS ∈ {∅,{0,1}∗} ist.
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5.3 Das Postsche Korrespondenzproblem

Definition 147. Sei Σ ein beliebiges Alphabet mit # ∉ Σ. Das Post-
sche Korrespondenzproblem über Σ (kurz PCPΣ) ist wie folgt
definiert.
Gegeben: k Paare (x1, y1), . . . , (xk, yk) von Wörtern über Σ.
Gefragt: Gibt es eine Folge α = (i1, . . . , in), n ≥ 1, von Indizes

ij ∈ {1, . . . , k} mit xi1 . . . xin = yi1 . . . yin?
Das modifizierte PCP über Σ (kurz MPCPΣ) fragt nach einer
Lösung α = (i1, . . . , in) mit i1 = 1.

Wir notieren eine PCP-Instanz meist in Form einer Matrix (x1...xk

y1...yk
)

und kodieren sie durch das Wort x1#y1# . . .#xk#yk.

Beispiel 148. Die Instanz I = (x1 x2 x3
y1 y2 y3

) = ( a ab caa
aca bc aa

) besitzt wegen

x1x3x2x3 = acaaabcaa
y1y3y2y3 = acaaabcaa

die PCP-Lösung α = (1,3,2,3), die auch eine MPCP-Lösung ist. ◁

Lemma 149. Für jedes Alphabet Σ gilt PCPΣ ≤ PCP{a,b}.

Beweis. Sei Σ = {a1, . . . , am}. Für ein Zeichen ai ∈ Σ sei c(ai) = 01i−1

und für ein Wort w = w1 . . .wn ∈ Σ∗ mit wi ∈ Σ sei c(w) =
c(w1) . . . c(wn). Dann folgt PCPΣ ≤ PCP{a,b} mittels der Reduk-
tionsfunktion

f ∶ (x1 . . . xk
y1 . . . yk

) ↦ (c(x1) . . . c(xk)
c(y1) . . . c(yk)

).
∎

f reduziert z.B. die PCP{0,1,2}-Instanz I = ( 0 01 200
020 12 00 ) auf die äquiva-

lente PCP{a,b}-Instanz f(I) = ( a aab abbaa
aabba ababb aa

).
Im Folgenden lassen wir im Fall Σ = {a, b} den Index weg und schrei-
ben einfach PCP (bzw. MPCP).

Satz 150. MPCP ≤ PCP.

Beweis. Wir zeigen MPCP ≤ PCPΣ für Σ = {a, b, ⟨, ∣, ⟩}. Wegen
PCPΣ ≤ PCP folgt hieraus MPCP ≤ PCP. Für ein Wort w =
w1 . . .wn sei

w w w w

⟨w1∣ . . . ∣wn∣ ⟨w1∣ . . . ∣wn ∣w1∣ . . . ∣wn w1∣ . . . ∣wn∣

Wir reduzieren MPCP mittels folgender Funktion f auf PCPΣ:

f ∶ (x1 . . . xk
y1 . . . yk

) ↦ (
x1 x1 ⋯ xk ⟩
y1 y1 ⋯ yk ∣⟩

) .

Dabei nehmen wir an, dass (xi, yi) ≠ (ε, ε) ist, da wir diese Paare im
Fall i > 1 einfach weglassen und im Fall i = 1 f(I) = (a

a
) setzen können.

Folglich enthält auch f(I) nicht das Paar (ε, ε). Beispielsweise ist

f ( aa b bab bb

aab bb a b
) = ( ⟨a∣a∣ a∣a∣ b∣ b∣a∣b∣ b∣b∣ ⟩

⟨a∣a∣b ∣a∣a∣b ∣b∣b ∣a ∣b ∣⟩) .

Da jede MPCP-Lösung α = (1, i2, . . . , in) für I auf eine PCP-Lösung
α′ = (1, i2 + 1, . . . , in + 1, k + 2) für f(I) führt, folgt

I ∈ MPCP⇒ f(I) ∈ PCPΣ.

Für die umgekehrte Implikation sei α′ = (i1, . . . , in) eine PCP-Lösung
für

f(I) = (x1 x1 ⋯ xk ⟩
y1 y1 ⋯ yk ∣⟩

).

Dann muss i1 = 1 und in = k + 2 sein, da das Lösungswort mit ⟨
beginnen und mit ⟩ enden muss (und f(I) nicht das Paar (ε, ε) ent-
hält). Wählen wir α′ von minimaler Länge, so ist ij ∈ {2, . . . , k + 1}
für j = 2, . . . , n − 1. Dann ist aber

α = (i1, i2 − 1, . . . , in−1 − 1)
eine MPCP-Lösung für I. ∎
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Satz 151. PCP ist RE-vollständig und damit unentscheidbar.

Beweis. Es ist leicht zu sehen, dass PCP ∈ RE ist. Um zu zeigen,
dass PCP RE-hart ist, sei A eine beliebige Sprache in RE und sei
G = (V,Σ, P, S) eine Typ-0 Grammatik für A. Sei Γ = V ∪Σ ∪ {⟨, ∣, ⟩}.
Dann können wir eine Eingabe w ∈ Σ∗ in eine MPCPΓ-Instanz f(w) =
(x1...xk

y1...yk
) transformieren, so dass α = (i1, . . . , in) genau dann eine Lösung

für f(w) ist, wenn das zugehörige Lösungswort xi1 . . . xin = yi1 . . . yin
eine Ableitung von w in G kodiert. Dies erreichen wir, indem wir
f(w) aus folgenden Wortpaaren bilden:

1. ( ⟨ , ⟨ ∣S), „Startpaar“
2. für jede Regel l → r in P : (l, r), „Ableitungspaare“
3. für alle a ∈ V ∪Σ ∪ {∣}: (a, a), „Kopierpaare“
4. sowie das Paar (w ∣ ⟩, ⟩) „Abschlusspaar“

Nun lässt sich leicht aus einer Ableitung S = α0 ⇒⋯⇒ αm = w von
w in G eine MPCP-Lösung mit dem Lösungswort

⟨ ∣α0 ∣α1 ∣ . . . ∣αm ∣ ⟩

angeben. Zudem lässt sich auch umgekehrt aus jeder MPCP-Lösung
eine Ableitung von w in G gewinnen, womit

w ∈ L(M) ⇔ f(w) ∈ MPCPΓ

gezeigt ist. ∎

Beispiel 152. Betrachte die Grammatik G = ({S},{a, b},{S →
aSbS, ε}, S) und die Ableitung

S⇒ aSbS⇒ aaSbSbS⇒ aaSbbS⇒ aabbS⇒ aabb

Die MPCP-Instanz f(aabb) enthält dann die acht Wortpaare

f(aabb) = (
⟨ S S S a b ∣ aabb ∣ ⟩

⟨ ∣S aSbS ε S a b ∣ ⟩
) .

Obiger Ableitung entspricht dann folgendes Lösungswort für f(aabb):

⟨ ∣S ∣aSbS ∣aaSbSbS ∣aaSbbS ∣aabbS ∣aabb ∣ ⟩
⟨ ∣S ∣aSbS ∣aaSbSbS ∣aaSbbS ∣aabbS ∣aabb ∣ ⟩

Das kürzeste MPCP-Lösungswort für f(aabb) ist

⟨ ∣S ∣aSbS ∣aaSbSb ∣aabb ∣ ⟩
⟨ ∣S ∣aSbS ∣aaSbSb ∣aabb ∣ ⟩

Dieses entspricht der „parallelisierten“ Ableitung

S⇒ aSbS⇒2 aaSbSb⇒2 aabb

◁

5.4 Weitere Unentscheidbarkeitsresultate

In diesem Abschnitt leiten wir aus der Unentscheidbarkeit des Post-
schen Korrespondenzproblems eine Reihe von weiteren Unentscheid-
barkeitsresultaten her. Wir zeigen zuerst, dass das Schnittproblem
für kontextfreie Grammatiken unentscheidbar ist.

Schnittproblem für kontextfreie Grammatiken
Gegeben: Zwei kontextfreie Grammatiken G1 und G2.
Gefragt: Ist L(G1) ∩L(G2) /= ∅?

Satz 153. Das Schnittproblem für kontextfreie Grammatiken ist RE-
vollständig.

Beweis. Es ist leicht zu sehen, dass das Problem semi-entscheidbar
ist. Um PCP auf dieses Problem zu reduzieren, betrachten wir für
eine Folge s = (x1, . . . , xk) von Strings xi ∈ {a, b}∗ die Sprache

Ls = {in . . . i1#xi1⋯xin ∣ 1 ≤ n,1 ≤ i1, . . . , in ≤ k}.
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Ls wird von der Grammatik Gs = ({A},{1, . . . , k,#, a, b}, Ps,A) er-
zeugt mit

Ps: A→ 1Ax1, . . . , kAxk,1#x1, . . . , k#xk

Zu einer PCP-Instanz I = (x1...xk

y1...yk
) bilden wir das Paar (Gs,Gt), wobei

s = (x1, . . . , xk) und t = (y1, . . . , yk) ist. Dann ist L(Gs) ∩ L(Gt) die
Sprache

{in . . . i1#xi1 . . . xin ∣ 1 ≤ n, xi1 . . . xin = yi1 . . . yin}.

Folglich ist α = (i1, . . . , in) genau dann eine Lösung für I, wenn
in . . . i1xi1 . . . xin ∈ L(Gs) ∩L(Gt) ist. Also vermittelt f ∶ I ↦ (Gs,Gt)
eine Reduktion von PCP auf das Schnittproblem für CFL. ∎

Beispiel 154. Die PCP-Instanz

I = (x1 x2 x3

y1 y2 y3
) = ( a aab abbaa

aabba ababb aa
)

wird auf das Grammatikpaar (Gs,Gt) mit folgenden Regeln reduziert:

Ps: A→ 1Aa, 2Aaab, 3Aabbaa,
1#a, 2#aab, 3#abbaa,

Pt: A→ 1Aaabba, 2Aababb, 3Aaa,
1#aabba, 2#ababb, 3#aa.

Der PCP-Lösung α = (1,3,2,3) entspricht dann das Wort

3231#x1x3x2x3 = 3231#aabbaaaababbaa
= 3231#aabbaaaababbaa = 3231#y1y3y2y3

in L(Gs) ∩L(Gt). ◁

Des weiteren erhalten wir die Unentscheidbarkeit des Schnitt- und
des Inklusionsproblems für DPDAs.

Inklusionsproblem für DPDAs
Gegeben: Zwei DPDAs M1 und M2.
Gefragt: Ist L(M1) ⊆ L(M2)?

Korollar 155.
(i) Das Schnittproblem für DPDAs ist RE-vollständig.
(ii) Das Inklusionsproblem für DPDAs ist co-RE-vollständig.

Korollar 155 wird in den Übungen bewiesen. Die Idee dabei ist, die
kontextfreie Grammatik Gs im Beweis von Satz 153 in DPDAs Ms

und M s zu überführen mit L(Ms) = L(Gs) und L(M s) = L(Gs).
Schließlich ergeben sich für CFL noch folgende Unentscheidbarkeitsre-
sultate.

Korollar 156. Für kontextfreie Grammatiken sind folgende Frage-
stellungen unentscheidbar:
(i) Ist L(G) = Σ∗? (Ausschöpfungsproblem)
(ii) Ist L(G1) = L(G2)? (Äquivalenzproblem)
(iii) Ist G mehrdeutig? (Mehrdeutigkeitsproblem)

Beweis.
(i) Wir reduzieren das Komplement von PCP auf das Ausschöp-

fungsproblem für CFL. Es gilt

I /∈ PCP⇔ Ls ∩Lt = ∅⇔ Ls ∪Lt = Σ∗,

wobei Ls und Lt die im Beweis von Satz 153 definierten Spra-
chen sind. Diese sind sogar in DCFL und in den Übungen wird
gezeigt, dass sich DLBAs (und damit auch kontextfreie Gram-
matiken) für Ls und Lt aus I berechnen lassen. Daher vermittelt
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die Funktion f ∶ I ↦ G, wobei G eine kontextfreie Grammatik
mit

L(G) = Ls ∪Lt
ist, die gewünschte Reduktion.

(ii) Wir zeigen, dass das Äquivalenzproblem für CFL ebenfalls co-RE-
vollständig ist, indem wir das Ausschöpfungsproblem für CFL
darauf reduzieren. Dies leistet beispielsweise die Funktion

f ∶ G↦ (G,Gall),

wobei Gall eine kontextfreie Grammatik mit L(Gall) = Σ∗ ist.
(iii) Schließlich zeigen wir, dass das Mehrdeutigkeitsproblem RE-

vollständig ist, indem wir PCP darauf reduzieren. Betrachte die
Funktion f ∶ (x1...xk

y1...yk
) ↦ G mit

G = ({S,A,B},{1, . . . , k,#, a, b}, P ∪ {S → A,S → B}, S)

und den Regeln

P : A→ 1Ax1, . . . , kAxk,1#x1, . . . , k#xk,
B → 1By1, . . . , kByk,1#y1, . . . , k#yk.

Da alle von A oder B ausgehenden Ableitungen eindeutig sind,
ist G genau dann mehrdeutig, wenn es ein Wort w ∈ L(G) gibt
mit

S ⇒ A⇒∗ w und S ⇒ B ⇒∗ w.

Wie wir im Beweis der Unentscheidbarkeit des Schnittproblems
für CFL gesehen haben, ist dies genau dann der Fall, wenn die
PCP-Instanz I = (x1...xk

y1...yk
) eine PCP-Lösung hat.

∎

Als weitere Folgerung erhalten wir die Unentscheidbarkeit des Leer-
heitsproblems für DLBAs.

Leerheitsproblem für DLBAs
Gegeben: Ein DLBA M .
Gefragt: Ist L(M) = ∅?

Satz 157. Das Leerheitsproblem für DLBAs ist co-RE-vollständig.

Beweis. Wir reduzieren PCP auf das Leerheitsproblem für DLBAs.
Hierzu transformieren wir eine PCP-Instanz I = (x1...xk

y1...yk
) in einen

DLBA M für die Sprache Ls ∩ Lt, wobei s = (x1, . . . , xk) und
t = (y1, . . . , yk) ist (siehe Übungen). Dann gilt I /∈ PCP⇔ L(M) = ∅.

∎

Dagegen ist es nicht schwer, für eine kontextfreie Grammatik G zu
entscheiden, ob mindestens ein Wort in G ableitbar ist. Ebenso ist es
möglich, für eine kontextsensitive Grammatik G und ein Wort x zu
entscheiden, ob x in G ableitbar ist.

Satz 158.
(i) Das Leerheitsproblem für kfr. Grammatiken ist entscheidbar.
(ii) Das Wortproblem für kontextsensitive Grammatiken ist ent-

scheidbar.

Beweis. Siehe Übungen. ∎

Die folgende Tabelle gibt an, welche Probleme für Sprachen in den
verschiedenen Stufen der Chomsky-Hierarchie entscheidbar sind.
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Wort- Leerheits- Aus- Äquivalenz- Inklusions- Schnitt-
problem problem schöpfung problem problem problem
x∈L ? L=∅ ? L=Σ∗ ? L1=L2 ? L1⊆L2 L1∩L2 /=∅ ?

REG ja ja ja ja ja ja
DCFL ja ja ja jaa nein nein
CFL ja ja nein nein nein nein
DCSL ja nein nein nein nein nein
CSL ja nein nein nein nein nein
RE nein nein nein nein nein nein

aBewiesen in 1997 von Géraud Sénizergues (Univ. Bordeaux).

5.5 GOTO-Berechenbarkeit

In diesem Abschnitt führen wir das Rechenmodell der Registerma-
schine (random access machine, RAM ) ein und zeigen, dass es die
gleiche Rechenstärke wie das Modell der Turingmaschine besitzt. Das
Modell der RAM ist an die realen Rechenmaschinen angelehnt, die
über einen Prozessor mit einem vorgegebenen Befehlssatz verfügen.

0 ∶ I0
1 ∶ I1
2 ∶ I2
⋮

m ∶ Im

⋮

r2
r1
r0

Programm

Speicher

Steuereinheit IC

Die Registermaschine
• führt ein Programm P = I0, . . . , Im aus, das aus einer endlichen

Folge von Befehlen (instructions) Ii besteht,

• hat einen Befehlszähler (instruction counter) IC, der die Num-
mer des nächsten Befehls angibt (zu Beginn ist IC = 0),

• verfügt über einen frei adressierbaren Speicher (random access
memory) mit unendlich vielen Speicherzellen (Registern) ri, die
beliebig große natürliche Zahlen aufnehmen können.

Auf Registermaschinen lassen sich GOTO-Programme ausführen,
die über folgenden Befehlssatz verfügen (i, j, c ∈ N):

Befehl Semantik

ri ∶= rj + c setzt Register ri auf den Wert rj + c
ri ∶= rj � c setzt Register ri auf max(0, rj − c)
GOTO j setzt den Befehlszähler IC auf j
IF ri = c THEN GOTO j setzt IC auf j, falls ri = c ist
HALT beendet die Programmausführung

Falls nichts anderes angegeben ist, wird zudem IC auf den Wert IC+1
gesetzt.
Eine partielle Funktion f ∶ Nk → N∪{↑} heißt GOTO-berechenbar,
falls es ein GOTO-Programm P = (I0, . . . , Im) mit folgender Eigen-
schaft gibt:
Wird P auf einer RAM mit den Werten ri = ni für i = 1, . . . , k, sowie
IC = 0 und ri = 0 für i = 0, k + 1, k + 2, . . . gestartet, so gilt:

• P hält genau dann, wenn (n1, . . . , nk) ∈ dom(f) ist, und
• falls P hält, hat r0 nach Beendigung von P den Wert
f(n1, . . . , nk).

Beispiel 159. Folgendes GOTO-Programm berechnet die Funktion
f(x, y) = xy:

0 IF r1 = 0 THEN GOTO 4
1 r1 ∶= r1 � 1
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2 r0 ∶= r0 + r2
3 GOTO 0
4 HALT

Dabei ist der Befehl r0 ∶= r0+r2 in Zeile 2 zwar unzulässig. Wir können
ihn jedoch durch den Befehl GOTO 5 ersetzen und folgende Befehle
hinzufügen.

5 r3 ∶= r2
6 IF r3 = 0 THEN GOTO 3
7 r3 ∶= r3 � 1
8 r0 ∶= r0 + 1
9 GOTO 6

◁

Um mit einem GOTO-Programm auch Wortfunktionen berechnen zu
können, müssen wir Wörter numerisch repräsentieren.
Sei Σ = {a0, . . . , am−1} ein Alphabet. Dann können wir jedes Wort
x = ai1 . . . ain ∈ Σ∗ durch eine natürliche Zahl numΣ(w) kodieren:

numΣ(x) =
n−1
∑
j=0

mj +
n

∑
j=1
ijm

n−j = m
n − 1
m − 1 + (i1 . . . in)m.

Da die Abbildung numΣ ∶ Σ∗ → N bijektiv ist, können wir umgekehrt
jede natürliche Zahl n durch das Wort strΣ(n) = num −1

Σ (n) kodieren.
Für das Alphabet Σ = {a, b, c} erhalten wir beispielsweise folgende
Kodierung:

w ε a b c aa ab ac ba bb bc ca cb cc aaa . . .

numΣ(w) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

Ist Σ = {0,1}, so lassen wir den Index weg und schreiben einfach
num und str anstelle von numΣ und strΣ. Zudem erweitern wir die
Kodierungsfunktion str ∶ N → {0,1} zu einer Kodierungsfunktion
strk ∶ Nk → {0,1,#} wie folgt:

strk(n1, . . . , nk) = str(n1)# . . .#str(nk).

Nun können wir eine partielle Funktion f ∶ Nk → N∪{↑} durch folgende
partielle Wortfunktion f̂ ∶ {0,1,#}∗ → {0,1}∗ ∪ {↑} repräsentieren:

f̂(w) =
⎧⎪⎪⎨⎪⎪⎩

str(n), w = strk(n1, . . . , nk) und f(n1, . . . , nk) = n ∈ N,
↑, sonst.

Es ist klar, dass f durch f̂ eindeutig bestimmt ist. Wir nennen f die
numerische Repräsentation von f̂ .

Satz 160. Sei f die numerische Repräsentation einer partiellen Funk-
tion f̂ . Dann ist f genau dann GOTO-berechenbar, wenn f̂ berechenbar
ist.

Beweis. Wir zeigen zuerst die Simulation eines GOTO-Programms
durch eine DTM. Sei f̂ eine partielle Funktion, deren numerische
Repräsentation f von einem GOTO-Programm P auf einer RAM R
berechnet wird. Dann existiert eine Zahl k′, so dass P nur Register ri
mit i ≤ k′ benutzt. Daher lässt sich eine Konfiguration von R durch
Angabe der Inhalte des Befehlszählers IC und der Register r0, . . . , rk′
beschreiben. Wir konstruieren eine (k′ + 2)-DTM M , die

• den Inhalt von IC in ihrem Zustand,
• die Registerwerte r1, . . . , rk′ auf den Bändern 1, . . . , k′ und
• den Wert von r0 auf dem Ausgabeband k′ + 2 speichert.

Ein Registerwert ri wird hierbei in der Form str(ri) gespeichert. Band
k′ + 1 wird zur Ausführung von Hilfsberechnungen benutzt.
Die Aufgabe von M ist es, bei Eingabe w = strk(n1, . . . , nk) das Wort
str(f(n1, . . . , nk)) auszugeben, wenn (n1, . . . , nk) ∈ dom(f) ist, und
andernfalls nicht zu halten.
Zuerst kopiert M die Teilwörter str(ni) für i = 2, . . . , k auf das i-te
Band und löscht auf dem 1. Band alle Eingabezeichen bis auf str(n1).
Da das leere Wort den Wert num(ε) = 0 kodiert, sind nun auf den
Bändern 1, . . . , k′ und auf Band k′+2 die der Startkonfiguration von R
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bei Eingabe (n1, . . . , nk) entsprechenden Registerinhalte gespeichert.
Danach führt M das Programm P Befehl für Befehl aus.
Es ist leicht zu sehen, dass sich jeder Befehl I in P durch eine Folge
von Anweisungen realisieren lässt, die die auf den Bändern gespei-
cherten Registerinhalte bzw. den im Zustand von M gespeicherten
Wert von IC entsprechend modifizieren. Sobald P stoppt, hält auch
M und gibt das Wort str(r0) = str(f(n1, . . . , nk)) aus.
Nun betrachten wir die Simulation einer DTM durch ein GOTO-
Programm. Sei f ∶ Nk → N ∪ {↑} eine partielle Funktion und sei
M = (Z,Σ,Γ, δ, q0,E) eine DTM mit Eingabealphabet Σ = {0,1,#},
die die zugehörige Wortfunktion f̂ ∶ Σ∗ → {0,1}∗ ∪ {↑} berechnet. M
gibt also bei Eingabe strk(n1, . . . , nk) das Wort str(f(n1, . . . , nk))
aus, falls f(n1, . . . , nk) definiert ist, und hält andernfalls nicht.
Wir konstruieren ein GOTO-Programm P , das bei Eingabe
(n1, . . . , nk) die DTM M bei Eingabe w = strk(n1, . . . , nk) simuliert
und im Fall, dass M(w) hält, den Wert num(M(w)) = f(n1, . . . , nk)
berechnet. Wir können annehmen, dass M eine 1-DTM ist. Sei
Z = {q0, . . . , qr} und Γ = {a0, . . . , am−1}, wobei wir annehmen, dass
a0 = ⊔, a1 = 0, a2 = 1 und a3 = # ist.
Eine Konfiguration K = uqiv von M wird wie folgt in den Registern
r0, r1, r2 gespeichert. Sei u = ai1 . . . ain und v = aj1 . . . ajn′ .

• r0 = (i1 . . . in)m,
• r1 = i,
• r2 = (jn′ . . . j1)m.

P besteht aus 3 Programmteilen P = P1, P2, P3. P1 berechnet in Re-
gister r2 die Zahl (jn . . . j1)m, wobei (j1, . . . , jn) die Indexfolge der
Zeichen von strk(n1, . . . , nk) = aj1 . . . ajn ist. Die übrigen Register setzt
P1 auf den Wert 0. P1 stellt also die Startkonfiguration Kw = q0w von
M bei Eingabe w = strk(n1, . . . , nk) in den Registern r0, r1, r2 her.
Anschließend führt P2 eine schrittweise Simulation von M aus. Hier-
zu überführt P2 solange die in r0, r1, r2 gespeicherte Konfiguration

von M in die zugehörige Nachfolgekonfiguration, bis M hält. Das
Programmstück P2 hat die Form

M2 r3 ∶= r2 MOD m
IF r1 = 0 ∧ r3 = 0 THEN GOTO M0,0
⋮

IF r1 = r ∧ r3 =m − 1 THEN GOTO Mr,m−1

Die Befehle ab Position Mi,j hängen von δ(qi, aj) ab. Wir betrachten
exemplarisch den Fall δ(qi, aj) = {(qi′ , aj′ , L)}:

Mi,j r1 ∶= i′
r2 ∶= r2 DIV m
r2 ∶= r2m + j′
r2 ∶= r2m + (r0 MOD m)
r0 ∶= r0 DIV m
GOTO M2

Die hierbei benutzten Makrobefehle r3 ∶= r2 MOD m, r2 ∶= r2 DIV
m etc. können leicht durch GOTO-Programmstücke ersetzt werden
(siehe Übungen).
Im Fall δ(qi, aj) = ∅ erfolgt ein Sprung an den Beginn von P3. P3
transformiert den Inhalt r0 = (j1 . . . jn)m von Register r0 in die Zahl
num(aj1 . . . ajn) und hält. ∎

5.6 WHILE- und LOOP-Berechenbarkeit

Die Syntax von WHILE-Programmen ist induktiv wie folgt defi-
niert (i, j, c ∈ N):

• Jede Wertzuweisung der Form xi ∶= xj + c oder xi ∶= xj � c ist
ein WHILE-Programm.

• Falls P und Q WHILE-Programme sind, so auch
– P ;Q und
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– IF xi = c THEN P ELSE Q END
– WHILE xi ≠ c DO P END

Die Syntax von LOOP-Programmen ist genauso definiert, nur
dass Schleifen der Form LOOP xi DO P END an die Stelle von
WHILE-Schleifen treten. Die Semantik von WHILE-Programmen ist
selbsterklärend. Eine LOOP-Schleife LOOP xi DO P END wird sooft
ausgeführt, wie der Wert von xi zu Beginn der Schleife angibt.
Eine partielle Funktion f ∶ Nk → N ∪ {↑} heißt WHILE-
berechenbar, falls es ein WHILE-Programm P mit folgender Eigen-
schaft gibt: Wird P mit den Werten xi = ni für i = 1, . . . , k gestartet,
so gilt:

• P hält genau dann, wenn (n1, . . . , nk) ∈ dom(f) ist, und
• falls P hält, hat x0 nach Beendigung von P den Wert
f(n1, . . . , nk).

Die LOOP-Berechenbarkeit von f ist entsprechend definiert.
Beispiel 161. Die Funktion f(x1, x2) = x1x2 wird von dem WHILE-
Programm

WHILE x1 ≠ 0 DO
x0 ∶= x0 + x2;
x1 ∶= x1 � 1

END

sowie von folgendem LOOP-Programm berechnet:
LOOP x1 DO
x0 ∶= x0 + x2

END
◁

Als nächstes beweisen wir die Äquivalenz von WHILE- und GOTO-
Berechenbarkeit.
Satz 162. Eine partielle Funktion f ∶ Nk → N ∪ {↑} ist genau dann
GOTO-berechenbar, wenn sie WHILE-berechenbar ist.

Beweis. Sei P ein WHILE-Programm, das f berechnet. Wir überset-
zen P wie folgt in ein äquivalentes GOTO-Programm P ′. P ′ speichert
den Variablenwert xi im Register ri. Damit lassen sich alle Wertzuwei-
sungen von P direkt in entsprechende Befehle von P ′ transformieren.
Eine Schleife der Form WHILE xi ≠ c DO Q END simulieren wir
durch folgendes GOTO-Programmstück:
M1 IF ri = c THEN GOTO M2

Q′

GOTO M1
M2 ⋮

Ähnlich lässt sich die Verzweigung IF xi = c THEN Q1 ELSE Q2
END in ein GOTO-Programmstück transformieren. Zudem fügen wir
ans Ende von P ′ den HALT-Befehl an.
Für die umgekehrte Implikation sei nun P = (I0, . . . , Im) ein GOTO-
Programm, das f berechnet, und sei rz, z > k, ein Register, das in P
nicht benutzt wird. Dann können wir P wie folgt in ein äquivalentes
WHILE-Programm P ′ übersetzen:

xz ∶= 0;
WHILE xz ≠m + 1 DO

IF xz = 0 THEN P ′
0 END;

⋮
IF xz =m THEN P ′

m END
END

Dabei ist P ′
j abhängig vom Befehl Ij folgendes WHILE-Programm:

• ri ∶= rk + c: xi ∶= xk + c; xz ∶= xz + 1,
• ri ∶= rk � c: xi ∶= xk � c; xz ∶= xz + 1,
• GOTO k: xz ∶= k,
• IF ri = c THEN GOTO k:

IF xi = c THEN xz ∶= k ELSE xz ∶= xz + 1 END
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• HALT: xz ∶=m + 1.
Man beachte, dass P ′ nur eine WHILE-Schleife enthält. ∎

Es ist leicht zu sehen, dass sich jedes LOOP-Programm durch ein
WHILE-Programm simulieren lässt. Offensichtlich können LOOP-
Programme nur totale Funktionen berechnen. Daher kann nicht jedes
WHILE-Programm durch ein LOOP-Programm simuliert werden.
Mittels Diagonalisierung lässt sich eine totale WHILE-berechenbare
Funktion f angeben, die nicht LOOP-berechenbar ist. Ein bekann-
tes Beispiel einer totalen WHILE-berechenbaren Funktion, die nicht
LOOP-berechenbar ist, ist die Ackermannfunktion a(x,y), die
induktiv wie folgt definiert ist:

a(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y + 1, x = 0,
a(x − 1,1), x ≥ 1, y = 0,
a(x − 1, a(x, y − 1)), x, y ≥ 1.

6 Komplexitätsklassen

6.1 Zeitkomplexität

Die Laufzeit timeM(x) einer NTM M bei Eingabe x ist die maximale
Anzahl an Rechenschritten, die M(x) ausführt.

Definition 163.
a) Die Laufzeit einer NTM M bei Eingabe x ist definiert als

timeM(x) = sup{t ≥ 0 ∣ ∃K ∶Kx ⊢t K},

wobei supN = ∞ ist.
b) Sei t ∶ N → N eine monoton wachsende Funktion. Dann ist M
t(n)-zeitbeschränkt, falls für alle Eingaben x gilt:

timeM(x) ≤ t(∣x∣).

Die Zeitschranke t(n) beschränkt also die Laufzeit bei allen Eingaben
der Länge n (worst-case Komplexität).
Wir fassen alle Sprachen und Funktionen, die in einer vorgegebenen
Zeitschranke t(n) entscheidbar bzw. berechenbar sind, in folgenden
Komplexitätsklassen zusammen.

Definition 164.
a) Die in deterministischer Zeit t(n) entscheidbaren Sprachen bil-

den die Sprachklasse

DTIME(t(n)) = {L(M)∣M ist eine t(n)-zeitbeschränkte DTM}.
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b) Die in nichtdeterministischer Zeit t(n) entscheidbaren Sprachen
bilden die Sprachklasse

NTIME(t(n)) = {L(M)∣M ist eine t(n)-zeitbeschränkte NTM}.

c) Die in deterministischer Zeit t(n) berechenbaren Funktionen
bilden die Funktionenklasse

FTIME(t(n)) = {f ∣ ∃ t(n)-zeitb. DTM M , die f berechnet}.

Die wichtigsten deterministischen Zeitkomplexitätsklassen sind

LINTIME = ⋃
c≥1

DTIME(cn + c) „Linearzeit“

P = ⋃
c≥1

DTIME(nc + c) „Polynomialzeit“

E = ⋃
c≥1

DTIME(2cn+c) „Lineare Exponentialzeit“

EXP = ⋃
c≥1

DTIME(2nc+c) „Exponentialzeit“

Die nichtdeterministischen Klassen NLINTIME, NP,NE,NEXP und die
Funktionenklassen FP,FE,FEXP sind analog definiert.
Für eine Funktionenklasse F sei DTIME(F) = ⋃t∈F DTIME(t(n)) (die
Klassen NTIME(F) und FTIME(F) seien analog definiert).

Asymptotische Laufzeit und Landau-Notation

Definition 165. Seien f und g Funktionen von N nach R+. Wir
schreiben f(n) = O(g(n)), falls es Zahlen n0 und c gibt mit

∀n ≥ n0 ∶ f(n) ≤ c ⋅ g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f „nicht wesent-
lich schneller“ als g wächst. Formal bezeichnet der Term O(g(n)) die

Klasse aller Funktionen f , die obige Bedingung erfüllen. Die Gleichung
f(n) = O(g(n)) drückt also in Wahrheit eine Element-Beziehung
f ∈ O(g(n)) aus. O-Terme können auch auf der linken Seite vorkom-
men. In diesem Fall wird eine Inklusionsbeziehung ausgedrückt. So
steht n2 +O(n) = O(n2) für die Aussage {n2 + f ∣ f ∈ O(n)} ⊆ O(n2).

Beispiel 166.
• 7 log(n) + n3 = O(n3) ist richtig.
• 7 log(n)n3 = O(n3) ist falsch.
• 2n+O(1) = O(2n) ist richtig.
• 2O(n) = O(2n) ist falsch (siehe Übungen). ◁

Unter Benutzung der O-Notation lassen sich die wichtigsten Komple-
xitätsklassen wie folgt definieren: L = DSPACE(O(logn)), LINTIME =
DTIME(O(n)), P = DTIME(nO(1)), E = DTIME(2O(n)) und EXP =
DTIME(2nO(1)) etc.

6.2 Das P-NP-Problem

Wie wir im letzten Kapitel gesehen haben (siehe Satz 131), sind NTMs
nicht mächtiger als DTMs, d.h. jede NTM kann von einer DTM si-
muliert werden. Die Frage, wieviel Zeit eine DTM zur Simulation
einer NTM benötigt, ist eines der wichtigsten offenen Probleme der
Informatik. Wegen NTIME(t) ⊆ DTIME(2O(t)) erhöht sich die Lauf-
zeit im schlimmsten Fall exponentiell. Insbesondere die Klasse NP
enthält viele für die Praxis überaus wichtige Probleme, für die kein
Polynomialzeitalgorithmus bekannt ist. Da jedoch nur Probleme in P
als effizient lösbar gelten, hat das so genannte P-NP-Problem, also
die Frage, ob alle NP-Probleme effizient lösbar sind, eine immense
praktische Bedeutung.

Definition 167. Seien A ⊆ Σ∗ und B ⊆ Γ∗ Sprachen.
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a) A ist auf B in Polynomialzeit reduzierbar (A ≤p B), falls
eine Funktion f ∶ Σ∗ → Γ∗ in FP existiert mit

∀x ∈ Σ∗ ∶ x ∈ A⇔ f(x) ∈ B.

b) A heißt ≤p-hart für eine Sprachklasse C (kurz: C-hart oder
C-schwer), falls gilt:

∀L ∈ C ∶ L ≤p A.

c) Eine C-harte Sprache, die zu C gehört, heißt C-vollständig.
Die Klasse aller NP-vollständigen Sprachen bezeichnen wir mit
NPC.

Aus A ≤p B folgt offenbar A ≤ B und wie die Relation ≤ ist auch ≤p
reflexiv und transitiv (s. Übungen). In diesem Kapitel verlangen wir
also von einer C-vollständigen Sprache A, dass jede Sprache L ∈ C auf
A in Polynomialzeit reduzierbar ist. Es ist leicht zu sehen, dass alle
im letzten Kapitel als RE-vollständig nachgewiesenen Sprachen (wie
z.B. K,H,H0,PCP etc.) sogar ≤p-vollständig für RE sind.

Satz 168. Die Klassen P und NP sind unter ≤p abgeschlossen.

Beweis. Sei B ∈ P und gelte A ≤p B mittels einer Funktion f ∈ FP.
Seien M und T DTMs mit L(M) = B und T (x) = f(x). Weiter seien
p und q polynomielle Zeitschranken für M und T . Betrachte die DTM
M ′, die bei Eingabe x zuerst T simuliert, um f(x) zu berechnen, und
danach M bei Eingabe f(x) simuliert. Dann gilt

x ∈ A⇔ f(x) ∈ B⇔ f(x) ∈ L(M) ⇔ x ∈ L(M ′).

Also ist L(M ′) = A und wegen

timeM ′(x) ≤ timeT (x) + timeM(f(x)) ≤ q(∣x∣) + p(q(∣x∣))

ist M ′ polynomiell zeitbeschränkt und somit A in P. Den Abschluss
von NP unter ≤p zeigt man vollkommen analog. ∎

Satz 169.
(i) A ≤p B und A ist NP-schwer ⇒ B ist NP-schwer.
(ii) A ≤p B, A ist NP-schwer und B ∈ NP ⇒ B ∈ NPC.
(iii) NPC ∩ P /= ∅ ⇒ P = NP.

Beweis.
(i) Sei L ∈ NP beliebig. Da A NP-schwer ist, folgt L ≤p A. Da zudem

A ≤p B gilt und ≤p transitiv ist, folgt L ≤p B.
(ii) Klar, da mit (i) folgt, dass B NP-schwer und B nach Voraus-

setzung in NP ist.
(iii) Sei A ∈ P eine NP-vollständige Sprache und sei L ∈ NP beliebig.

Dann folgt L ≤p A und da P unter ≤p abgeschlossen ist, folgt
L ∈ P. ∎

Eine einfache Möglichkeit, ein vollständiges Problem für NP und
andere Komplexitätsklassen zu erhalten, besteht darin, als Eingabe
beliebige TMs M zuzulassen, und zu fragen, ob M ein gegebenes
Wort in einer vorgegebenen Zeit- oder Platzschranke akzeptiert.
Um die Komplexität einer solchen Sprache nach oben abschätzen zu
können, müssen wir eine Schranke für die Laufzeit einer universellen
TM herleiten.

Lemma 170. Es gibt eine NTM U für die Sprache

{w#x ∣w ∈ {0,1}∗, x ∈ {0,1,#}∗ und Mw

ist eine NTM, die x akzeptiert }

mit der Laufzeit

timeU(w#x) = O(∣w∣ ⋅ timeMw(x)2).
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Beweis. Betrachte die 3-NTM U die bei Eingabe w#x zunächst den
Binärstring w auf das 2. Band verschiebt und anschließend die Binär-
kodierung des Startzustands vonMw auf das 3. Band schreibt. Sodann
ersetzt U jedes Zeichen ai des auf dem Eingabeband verbliebenen
Strings x durch bin(i) und trennt diese durch #. Hierbei benutzt
U Binärzahlen einer festen Länge, die ausreicht, alle Arbeitszeichen
von Mw darstellen zu können. Schließlich ergänzt U das 1. Band
um k − 1 Bandinschriften (getrennt durch ##), die jeweils nur das
Zeichen ⊔ enthalten. Die aktuellen Kopfpositionen speichert U durch
Markierung des vorangehenden #-Zeichens.
Nun simuliert U jeden einzelnen Rechenschritt von Mw in jeweils
O(∣w∣ ⋅ timeMw(x)) Schritten, was auf die gewünschte Gesamtlaufzeit
führt. ∎

Satz 171. Folgende Sprache ist NP-vollständig:

L = {w#x#0m ∣w,x ∈ {0,1}∗ und Mw ist eine NTM,
die x in ≤m Schritten akzeptiert }

Beweis. Wir modifizieren die NTM U im Beweis von Lemma 170
wie folgt zu einer NTM U ′ mit L(U ′) = L. U ′ simuliert bei Eingabe
w#x#0m die NTM Mw(x) und zählt dabei die simulierten Schritte.
U ′ verwirft, falls der Zähler den Wert m überschreitet und akzeptiert
nur dann, wenn Mw(x) nach höchstens m Schritten akzeptiert. Da U ′

hierzu O(∣w∣(∣x∣ +m)2) Zeit benötigt, ist entscheidet U ′ die Sprache
L in Polynomialzeit.
Sei nun A eine beliebige NP-Sprache. Dann ist A in Polynomialzeit
auf eine Sprache B ⊆ {0,1}∗ in NP reduzierbar (siehe Übungen). Sei
Mw eine durch ein Polynom p zeitbeschränkte NTM für B. Dann
reduziert folgende FP-Funktion f die Sprache B auf L:

f ∶ x↦ w#x#0p(∣x∣). ∎

6.3 Platzkomplexität

Als nächstes definieren wir den Platzverbrauch von NTMs. Intuitiv
ist dies die Anzahl aller während einer Rechnung benutzten Bandfel-
der. Wollen wir auch sublinearen Platz sinnvoll definieren, so dürfen
wir hierbei das Eingabeband offensichtlich nicht berücksichtigen. Um
sicherzustellen, dass eine NTM M das Eingabeband nicht als Speicher
benutzt, verlangen wir, dass M die Felder auf dem Eingabeband nicht
verändert und sich nicht mehr als ein Feld von der Eingabe entfernt.

Definition 172. Eine NTM M heißt Offline-NTM (oder NTM
mit Eingabeband), falls für jede von M bei Eingabe x erreichbare
Konfiguration

K = (q, u1, a1, v1, . . . , uk, ak, vk)
gilt, dass u1a1v1 ein Teilwort von ⊔x⊔ ist.

Definition 173. Der Platzverbrauch einer Offline-NTM M bei
Eingabe x ist definiert als

spaceM(x) = sup
⎧⎪⎪⎪⎨⎪⎪⎪⎩
s ≥ 1

RRRRRRRRRRRRR

∃K = (q, u1, a1, v1, . . . , uk, ak, vk)

mit Kx ⊢∗ K und s =
k

∑
i=2

∣uiaivi∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Sei s ∶ N→ N eine monoton wachsende Funktion. Dann ist M s(n)-
platzbeschränkt, falls für alle Eingaben x gilt:

spaceM(x) ≤ s(∣x∣) und timeM(x) < ∞.

Wir fassen alle Sprachen, die in einer vorgegebenen Platzschranke
s(n) entscheidbar sind, in folgenden Platzkomplexitätsklassen
zusammen.

Definition 174. Die auf deterministischem Platz s(n) entscheidbaren
Sprachen bilden die Klasse

DSPACE(s(n)) = {L(M)∣M ist eine s(n)-platzb. Offline-DTM}.
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Die auf nichtdeterministischem Platz s(n) entscheidbaren Sprachen
bilden die Klasse

NSPACE(s(n)) = {L(M)∣M ist eine s(n)-platzb. Offline-NTM}.

Die wichtigsten deterministischen Platzkomplexitätsklassen sind

L = DSPACE(O(logn)) „Logarithmischer Platz“
LINSPACE = DSPACE(O(n)) „Linearer Platz“

PSPACE = DSPACE(nO(1)) „Polynomieller Platz“

Die nichtdeterministischen Klassen NL, NLINSPACE und NPSPACE
sind analog definiert.
Dass nichtdeterministische Berechnungen nicht sehr viel Platz gegen-
über deterministischen Berechnungen einsparen können, wurde von
Savitch 1970 bewiesen (siehe Vorlesung Komplexitätstheorie).

Satz 175. Jede s(n)-platzbeschränkte NTM kann von einer s2(n)-
platzbeschränkten DTM simuliert werden (ohne Beweis).

Als Konsequenz hiervon fallen die Klassen NPSPACE und PSPACE zu-
sammen. Zwischen den verschiedenen Zeit- und Platzklassen bestehen
die folgenden elementaren Inklusionsbeziehungen. Für jede Funktion
s(n) ≥ logn gilt

DSPACE(s) ⊆ NSPACE(s) ⊆ DTIME(2O(s))

und für jede Funktion t(n) ≥ n + 2 gilt

DTIME(t) ⊆ NTIME(t) ⊆ DSPACE(t).

Eine unmittelbare Konsequenz hiervon sind folgende Inklusionen:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE.

Die Klassen der Chomsky-Hierarchie lassen sich wie folgt einordnen
(eine dicke Linie deutet an, dass die Inklusion als echt nachgewiesen
werden konnte):

REG=DSPACE(O(1)) = NSPACE(O(1)) ⊊ L,
DCFL⊊LINTIME ∩ CFL ⊊ LINTIME ⊊ P,

CFL⊊NLINTIME ∩DTIME(n3) ⊊ P,
DCSL=LINSPACE ⊆ CSL,

CSL=NLINSPACE ⊆ PSPACE ∩ E,
REC=⋃DSPACE(f(n))

=⋃NSPACE(f(n))

=⋃DTIME(f(n))

=⋃NTIME(f(n)),

RE
REC
EXP

PSPACE
NP
P
NL
L

REG

E
CSL

DCSL
CFL

DCFL

wobei f alle berechenbaren (oder äquivalent: alle) Funktionen f ∶ N→
N durchläuft.
Die Klasse L ist nicht in CFL enthalten, da beispielsweise die Sprache
{anbncn ∣n ≥ 0} in logarithmischem Platz (und linearer Zeit) entscheid-
bar ist. Ob P in CSL enthalten ist, ist nicht bekannt. Auch nicht ob
DCSL ⊆ P gilt. Man kann jedoch zeigen, dass CSL ≠ P ≠ DCSL ist.
Ähnlich verhält es sich mit den Klassen E und PSPACE: Man kann
zwar zeigen, dass sie verschieden sind, aber ob eine in der anderen
enthalten ist, ist nicht bekannt.
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7 NP-vollständige Probleme

7.1 Aussagenlogische Erfüllbarkeitsprobleme

Definition 176.
a) Die Menge der booleschen (oder aussagenlogischen) For-

meln über den Variablen x1, . . . , xn ist induktiv wie folgt defi-
niert:

• Jede Variable xi ist eine boolesche Formel.
• Mit G und H sind auch die Negation ¬G von G und die

Konjunktion (G ∧H) von G und H boolesche Formeln.
b) Eine Belegung von x1, . . . , xn ist ein Wort a = a1 . . . an ∈

{0,1}n. Der Wert F (a) von F unter a ist induktiv über den
Aufbau von F definiert:

F xi ¬G (G ∧H)
F (a) ai 1 −G(a) G(a)H(a)

c) Durch eine boolesche Formel F wird also eine n-stellige boole-
sche Funktion F ∶ {0,1}n → {0,1} definiert, die wir ebenfalls
mit F bezeichnen.

d) F heißt erfüllbar, falls es eine Belegung a mit F (a) = 1 gibt.
e) Gilt dagegen für alle Belegungen a, dass F (a) = 1 ist, so heißt

F Tautologie.

Beispiel 177 (Erfüllbarkeitstest mittels Wahrheitswerttabelle).
Da die Formel F = ((x1 ∨ x2) → (¬x2 ∧ x3)) für die Belegungen

a ∈ {000,001,101} den Wert F (a) = 1 animmt, ist sie erfüllbar:

a (x1 ∨ x2) (¬x2 ∧ x3) ((x1 ∨ x2) → (¬x2 ∧ x3))

000 0 0 1
001 0 1 1
010 1 0 0
011 1 0 0
100 1 0 0
101 1 1 1
110 1 0 0
111 1 0 0

◁

Notation. Wir verwenden die Disjunktion (G ∨H) und die Im-
plikation (G →H) als Abkürzungen für die Formeln ¬(¬G ∧ ¬H)
bzw. (¬G ∨H).

Um Klammern zu sparen, vereinbaren wir folgende Präzedenzregeln:
• Der Junktor ∧ bindet stärker als der Junktor ∨ und dieser

wiederum stärker als der Junktor →.
• Formeln der Form (x1 ○ (x2 ○ (x3 ○ ⋯ ○ xn)⋯))), ○ ∈ {∧,∨,→}

kürzen wir durch (x1 ○ ⋯ ○ xn) ab.
Beispiel 178. Die Formel

G(x1, . . . , xn) = (x1 ∨ ⋅ ⋅ ⋅ ∨ xn) ∧ ⋀
1≤i<j≤n

¬(xi ∧ xj)

nimmt unter einer Belegung a = a1 . . . an genau dann den Wert 1 an,
wenn ∑n

i=1 ai = 1 ist. D.h. es gilt genau dann G(a) = 1, wenn genau
eine Variable xi mit dem Wert ai = 1 belegt ist. Diese Formel wird im
Beweis des nächsten Satzes benötigt. ◁

Bei vielen praktischen Anwendungen ist es erforderlich, eine erfüllende
Belegung für eine vorliegende boolesche Formel zu finden (sofern es ei-
ne gibt). Die Bestimmung der Komplexität des Erfüllbarkeitsproblems

71



7 NP-vollständige Probleme 7.1 Aussagenlogische Erfüllbarkeitsprobleme

(engl. satisfiability) für boolesche Formeln hat also große praktische
Bedeutung.

Aussagenlogisches Erfüllbarkeitsproblem (Sat):
Gegeben: Eine boolesche Formel F in den Variablen x1, . . . , xn.
Gefragt: Ist F erfüllbar?

Dabei kodieren wir boolesche Formeln F durch Binärstrings wF und
ordnen umgekehrt jedem Binärstring w eine Formel Fw zu. Um die
Notation zu vereinfachen, werden wir jedoch meist F anstelle von wF
schreiben.

Satz 179 (Cook, Karp, Levin). Sat ist NP-vollständig.

Beweis. Es ist leicht zu sehen, dass Sat ∈ NP ist, da eine NTM
zunächst eine Belegung a für eine gegebene booleschen Formel F
nichtdeterministisch raten und dann in Polynomialzeit testen kann,
ob F (a) = 1 ist (guess and verify Strategie).
Es bleibt zu zeigen, dass Sat NP-hart ist. Sei L eine beliebige NP-
Sprache und sei M = (Z,Σ,Γ, δ, q0) eine durch ein Polynom p zeitbe-
schränkte k-NTM mit L(M) = L. Da sich eine t(n)-zeitbeschränkte
k-NTM in Zeit t2(n) durch eine 1-NTM simulieren lässt, können wir
k = 1 annehmen. Unsere Aufgabe besteht nun darin, in Polynomi-
alzeit zu einer gegebenen Eingabe w = w1 . . .wn eine Formel Fw zu
konstruieren, die genau dann erfüllbar ist, wenn w ∈ L ist,

w ∈ L⇔ Fw ∈ Sat.

Wir können o.B.d.A. annehmen, dass Z = {q0, . . . , qm}, E = {qm} und
Γ = {a1, . . . , al} ist. Zudem können wir annehmen, dass δ für jedes
Zeichen a ∈ Γ die Anweisung qma→ qmaN enthält.
Die Idee besteht nun darin, die Formel Fw so zu konstruieren, dass
sie unter einer Belegung a genau dann wahr wird, wenn a eine akzep-
tierende Rechnung von M(w) beschreibt. Hierzu bilden wir Fw über

den Variablen

xt,q, für 0 ≤ t ≤ p(n), q ∈ Z,
yt,i, für 0 ≤ t ≤ p(n),−p(n) ≤ i ≤ p(n),
zt,i,a, für 0 ≤ t ≤ p(n),−p(n) ≤ i ≤ p(n), a ∈ Γ,

die für folgende Aussagen stehen:

xt,q: zum Zeitpunkt t befindet sich M im Zustand q,
yt,i: zur Zeit t besucht M das Feld mit der Nummer i,
zt,i,a: zur Zeit t steht das Zeichen a auf dem i-ten Feld.

Konkret sei nun Fw = R ∧ S ∧ Ü1 ∧ Ü2 ∧ E. Dabei stellt die Formel
R = ⋀p(n)t=0 Rt (Randbedingungen) sicher, dass wir jeder erfüllenden
Belegung eindeutig eine Folge von Konfigurationen K0, . . . ,Kp(n) zu-
ordnen können:

Rt = G(xt,q0 , . . . , xt,qm) ∧G(yt,−p(n), . . . , yt,p(n))

∧
p(n)

⋀
i=−p(n)

G(zt,i,a1 , . . . , zt,i,al
).

Die Teilformel Rt sorgt also dafür, dass zum Zeitpunkt t
• genau ein Zustand q ∈ {q0, . . . , qm} eingenommen wird,
• genau ein Bandfeld i ∈ {−p(n), . . . , p(n)} besucht wird und
• auf jedem Feld i genau ein Zeichen a ∈ Γ steht.

Die Formel S (wie Startbedingung) stellt sicher, dass zum Zeitpunkt
0 tatsächlich die Startkonfiguration

−p(n) −1 0 n−1 n p(n)

⊔ ⋯ ⊔ w1 ⋯ wn ⊔ ⋯ ⊔
↑

q0

vorliegt:
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S = x0,q0 ∧ y0,0 ∧
−1
⋀

i=−p(n)

z0,i,⊔ ∧
n−1
⋀
i=0
z0,i,wi+1 ∧

p(n)

⋀
i=n

z0,i,⊔

Die Formel Ü1 sorgt dafür, dass der Inhalt von nicht besuchten Feldern
beim Übergang von Kt zu Kt+1 unverändert bleibt:

Ü1 =
p(n)−1
⋀
t=0

p(n)

⋀
i=−p(n)

⋀
a∈Γ

(¬yt,i ∧ zt,i,a → zt+1,i,a)

Die Formel Ü2 achtet darauf, dass sich bei jedem Übergang der Zu-
stand, die Kopfposition und das gerade gelesene Zeichen gemäß einer
Anweisung in δ verändern:

Ü2 =
p(n)−1
⋀
t=0

p(n)

⋀
i=−p(n)

⋀
a∈Γ

⋀
p∈Z

(xt,p ∧ yt,i ∧ zt,i,a →

⋁
(q,b,D)∈δ(p,a)

xt+1,q ∧ yt+1,i+D ∧ zt+1,i,b),

wobei

i +D =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i − 1, D = L
i, D = N
i + 1, D = R

ist. Schließlich überprüft E, ob M zur Zeit p(n) den Endzustand qm
erreicht hat:

E = xp(n),qm

Da der Aufbau der Formel f(w) = Fw einem einfachen Bildungsgesetz
folgt und ihre Länge polynomiell in n ist, folgt f ∈ FP. Es ist klar,
dass Fw im Fall w ∈ L(M) erfüllbar ist, indem wir die Variablen von
Fw gemäß einer akz. Rechnung von M(w) belegen. Umgekehrt führt
eine Belegung a mit Fw(a) = 1 wegen R(a) = 1 eindeutig auf eine
Konfigurationenfolge K0, . . . ,Kp(n), so dass gilt:

• K0 ist Startkonfiguration von M(w) (wegen S(a) = 1),
• Ki ⊢Ki+1 für i = 0, . . . , p(n) − 1 (wegen Ü1(a) = Ü2(a) = 1),
• M nimmt spätestensin der Konfiguration Kp(n) den Endzustand
qm an (wegen E(a) = 1).

Also gilt für alle w ∈ Σ∗ die Äquivalenz w ∈ L(M) ⇔ Fw ∈ Sat, d.h.
die FP-Funktion f ∶ w ↦ Fw reduziert L(M) auf Sat. ∎

Korollar 180. Sat ∈ P⇔ P = NP.

Gelingt es also, einen Polynomialzeit-Algorithmus für Sat zu fin-
den, so lässt sich daraus leicht ein effizienter Algorithmus für jedes
NP-Problem ableiten. Als nächstes betrachten wir das Erfüllbarkeits-
problem für boolesche Schaltkreise.

Definition 181.
a) Ein boolescher Schaltkreis über den Variablen x1, . . . , xn ist

eine Folge S = (g1, . . . , gm) von Gattern

gl ∈ {0,1, x1, . . . , xn, (¬, j), (∧, j, k), (∨, j, k)}

mit 1 ≤ j, k < l.
b) Die am Gatter gl berechnete n-stellige boolesche Funktion ist

induktiv wie folgt definiert:

gl 0 1 xi (¬, j) (∧, j, k) (∨, j, k)
gl(a) 0 1 ai 1 − gj(a) gj(a)gk(a) gj(a) + gk(a) − gj(a)gk(a)

c) S berechnet die boolesche Funktion S(a) = gm(a).
d) S heißt erfüllbar, wenn eine Eingabe a ∈ {0,1}n mit S(a) = 1

existiert.
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Beispiel 182. Der Schaltkreis

S = (x1, x2, x3, x4, (∧,1,2), (∧,2,3),
(∨,3,4), (¬,5), (¬,6), (¬,7),
(∨,6,8), (∨,9,10), (∧,11,12))

ist nebenstehend graphisch dargestellt.

∧
∨∨
¬¬¬
∨∧∧
x4x3x2x1 ◁

Bemerkung 183.
• Die Anzahl der Eingänge eines Gatters g wird als Fanin von g

bezeichnet, die Anzahl der Ausgänge von g (d.h. die Anzahl der
Gatter, die g als Eingabe benutzen) als Fanout.

• Boolesche Formeln entsprechen also booleschen Schaltkreisen
mit Fanout ≤ 1 und umgekehrt.

Erfüllbarkeitsproblem für boolesche Schaltkreise (CirSat):
Gegeben: Ein boolescher Schaltkreis S.
Gefragt: Ist S erfüllbar?

Da eine boolesche Formel F leicht in einen äquivalenten Schaltkreis
S mit s(a) = F (a) für alle Belegungen a transformiert werden kann,
folgt Sat ≤p CirSat.

Korollar 184. CirSat ist NP-vollständig.

Bemerkung 185. Da Sat NP-vollständig ist, ist CirSat in Polyno-
mialzeit auf Sat reduzierbar. Dies bedeutet, dass sich jeder Schaltkreis
S in Polynomialzeit in eine äquivalente Formel FS überführen lässt.
FS und S müssen aber nicht logisch äquivalent sein.

CirSat ist sogar auf eine ganz spezielle Sat-Variante reduzierbar.

Definition 186.
a) Ein Literal ist eine Variable xi oder eine negierte Variable ¬xi,

die wir auch kurz mit x̄i bezeichnen.

b) Eine Klausel ist eine Disjunktion C = ⋁kj=1 lj von Literalen.
Hierbei ist auch k = 0 zulässig, d.h. die leere Klausel repräsen-
tiert die Konstante 0 und wird üblicherweise mit bezeichnet.

c) Eine Formel F ist in konjunktiver Normalform (kurz
KNF), falls F eine Konjunktion

F =
m

⋀
i=1
Ci

von m ≥ 0 Klauseln ist. Im Fall m = 0 repräsentiert F die
Konstante 1.

d) Enthält jede Klausel höchstens k Literale, so heißt F in k-KNF.
Notation. Klauseln werden oft als Menge C = {l1, . . . , lk} ihrer Li-
terale und KNF-Formeln als Menge F = {C1, . . . ,Cm} ihrer Klauseln
dargestellt. Enthält F die leere Klausel, so ist F unerfüllbar, wogegen
die leere KNF-Formel immer wahr (also eine Tautologie) ist.

Erfüllbarkeitsproblem für k-KNF Formeln (k-Sat):
Gegeben: Eine boolesche Formel F in k-KNF.
Gefragt: Ist F erfüllbar?

Folgende Variante von 3-Sat ist für den Nachweis weiterer NP-
Vollständigkeitsresultate sehr nützlich.

Not-All-Equal-SAT (NaeSat):
Gegeben: Eine Formel F in 3-KNF.
Gefragt: Hat F eine (erfüllende) Belegung, unter der in keiner

Klausel alle Literale denselben Wahrheitswert haben?

Beispiel 187. Die 3-KNF Formel F = (x1∨x̄2)∧(x̄1∨x3)∧(x2∨x̄3∨x4)
ist alternativ durch folgende Klauselmenge darstellbar:

F = {{x1, x̄2},{x̄1, x3},{x2, x̄3, x4}}
Offenbar ist F (1111) = 1, d.h. F ∈ 3-Sat. Da unter dieser Belegung in
jeder Klausel von F nicht nur mindestens ein Literal wahr, sondern
auch mindestens ein Literal falsch wird, ist F auch in NaeSat. ◁
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Satz 188. 3-Sat ist NP-vollständig.

Beweis. Es ist nicht schwer zu sehen, dass 3-Sat in NP entscheid-
bar ist. Wir zeigen, dass 3-Sat NP-hart ist, indem wir CirSat
auf 3-Sat reduzieren. Hierzu transformieren wir einen Schaltkreis
S = (g1, . . . , gm) mit n Eingängen in eine 3-KNF Formel FS über den
Variablen x1, . . . , xn, y1, . . . , ym. FS enthält neben der Klausel {ym}
für jedes Gatter gi die Klauseln folgender Formel Fi enthält:

Gatter gi Semantik von Fi Klauseln von Fi

0 yi = 0 {ȳi}
1 yi = 1 {yi}
xj yi = xj {ȳi, xj},{x̄j, yi}
(¬, j) yi = ȳj {ȳi, ȳj},{yj, yi}
(∧, j, k) yi = yj ∧ yk {ȳi, yj},{ȳi, yk},{ȳj, ȳk, yi}
(∨, j, k) yi = yj ∨ yk {ȳj, yi},{ȳk, yi},{ȳi, yj, yk}

Nun ist leicht zu sehen, dass für alle a ∈ {0,1}n folgende Äquivalenz
gilt:

S(a) = 1⇔∃b ∈ {0,1}m ∶ FS(ab) = 1.

Ist nämlich a ∈ {0,1}n eine Eingabe mit S(a) = 1. Dann erhalten wir
mit

bl = gl(a) für l = 1, . . . ,m

eine erfüllende Belegung ab1 . . . bm für FS. Ist umgekehrt ab1 . . . bm eine
erfüllende Belegung für FS, so folgt durch Induktion über i = 1, . . . ,m,
dass

gi(a) = bi

ist. Insbesondere muss also gm(a) = bm gelten, und da {ym} eine
Klausel in FS ist, folgt S(a) = gm(a) = bm = 1. Damit haben wir ge-

zeigt, dass der Schaltkreis S und die 3-KNF-Formel FS erfüllbarkeits-
äquivalent sind, d.h.

S ∈ CirSat⇔ FS ∈ 3-Sat.

Zudem ist leicht zu sehen, dass die Reduktionsfunktion S ↦ FS in FP
berechenbar ist, womit CirSat ≤p 3-Sat folgt. ∎

7.2 Entscheidungsprobleme für reguläre
Sprachen

In diesem Abschnitt betrachten wir verschiedene Entscheidungspro-
bleme für reguläre Sprachen, die als DFA, NFA oder als regulärer
Ausdruck (RA) gegeben sind. Wir werden sehen, dass das Wortpro-
blem sowohl für NFAs als auch für reguläre Ausdrücke effizient lösbar
ist. Dagegen wird sich das Äquivalenzproblem für reguläre Ausdrücke
als co-NP-hart herausstellen. Dies gilt sogar für sternfreie reguläre
Ausdrücke (kurz SFRAs), also für reguläre Ausdrücke, die keinen
Stern enthalten und daher nur endliche Sprachen beschreiben können.
Satz 189. Das Wortproblem für NFAs,

WPNFA = {N#x ∣ N ist ein NFA und x ∈ L(N)},

ist in P entscheidbar.

Beweis. Um die Zugehörigkeit von x zu L(N) zu testen, simulieren
wir den Potenzmengen-DFA bei Eingabe x:

P-Algorithmus für WPNFA

1 Input: NFA N = (Z,Σ, δ,Q0,E) und ein Wort x = x1 . . . xn
2 Q ∶= Q0
3 for i ∶= 1 to n do
4 Q ∶= ⋃q∈Q δ(q, xi)
5 if Q ∩E ≠ ∅ then accept else reject
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Es ist klar, dass dieser Algorithmus korrekt arbeitet und auch in eine
polynomiell zeitbeschränkte DTM für die Sprache WPNFA transfor-
miert werden kann. ∎

Korollar 190. Das Wortproblem für reguläre Ausdrücke ist in P
entscheidbar:

WPRA = {α#x ∣ α ist ein regulärer Ausdruck und x ∈ L(α)} ∈ P.

Beweis. Ein regulärer Ausdruck α lässt sich in Polynomialzeit in einen
äquivalenten NFA Nα transformieren. Daher gilt WPRA ≤p WPNFA
mittels f ∶ (α#x) ↦ (Nα#x). Da nach vorigem Satz WPNFA ∈ P ist,
und da P unter ≤p abgeschlossen ist, folgt WPRA ∈ P. ∎

Ganz ähnlich folgt auch, dass das Leerheits- und das Schnittproblem
für NFAs in Polynomialzeit lösbar sind (siehe Übungen). Als nächstes
zeigen wir, dass die Probleme ÄPSFRA und IPSFRA co-NP-vollständig
sind.

Satz 191. Das Äquivalenzproblem für sternfreie reguläre Ausdrücke

ÄPSFRA = {α#β ∣ α,β sind SFRAs mit L(α) = L(β)}

ist co-NP-vollständig.

Beweis. Wir zeigen, dass das Inäquivalenzproblem für SFRAs NP-
vollständig ist. Sei α ein sternfreier regulärer Ausdruck der Länge m
über einem Alphabet Σ. Es ist leicht zu zeigen (durch Induktion über
den Aufbau von α), dass L(α) ⊆ Σ≤m gilt, wobei

Σ≤m =
m

⋃
i=0

Σi

ist. Daher entscheidet folgender NP-Algorithmus das Inäquivalenzpro-
blem für SFRAs:

NP-Algorithmus für das Inäquivalenzproblem für SFRAs
1 Input: SFRAs α und β
2 m ∶= max{∣α∣, ∣β∣}
3 guess x ∈ {0,1}≤m
4 if x ∈ L(α)∆L(β) then accept else reject

Als nächstes reduzieren wir 3-Sat auf das Inäquivalenzproblem für
SFRAs. Sei eine 3-KNF Formel F = {C1, . . . ,Cm} gegeben. Betrachte
den regulären Ausdruck αF = (α1∣ . . . ∣αm) mit αj = βj1 . . . βjn und

βij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, xi ∈ Cj,
1, x̄i ∈ Cj,
(0∣1), sonst.

Dann ist L(αj) = {a ∈ {0,1}n ∣ Cj(a) = 0} und daher folgt

F ∈ 3-Sat ⇔ ∃a ∈ {0,1}n ∶ F (a) = 1
⇔ ∃a ∈ {0,1}n∀j = 1, . . . ,m ∶ Cj(a) = 1
⇔ ∃a ∈ {0,1}n∀j = 1, . . . ,m ∶ a /∈ L(αj)
⇔ ∃a ∈ {0,1}n ∶ a /∈ L(αF )
⇔ L(αF ) ≠ {0,1}n

Also folgt 3-Sat ≤p ÄPSFRA mittels F ↦ αF# (0∣1) . . . (0∣1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n-mal

. ∎

Ganz ähnlich lässt sich 3-Sat auf das Komplement des Inklusions-
problems für sternfreie reguläre Ausdrücke reduzieren, d.h. IPSFRA
ist ebenfalls co-NP-vollständig (siehe Übungen). Daher sind das
Äquivalenz- und Inklusionsproblem für reguläre Ausdrücke (und somit
auch für NFAs) co-NP-hart. Diese Probleme sind sogar PSPACE-
vollständig (ohne Beweis).
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Wort- Leerheits- Schnitt- Äquivalenz- Inklusions-
problem problem problem problem problem
x∈L ? L=∅ ? L1∩L2 /=∅ ? L1=L2 ? L1⊆L2

DFA P P P P P
SFRA P P P co-NP-vollständig
RA P P P PSPACE-vollständig
NFA P P P PSPACE-vollständig

Die Tabelle gibt die Komplexitäten der wichtigsten Entscheidungs-
probleme für durch DFAs, NFAs oder (sternfreie) reguläre Ausdrücke
gegebene reguläre Sprachen an.

7.3 Graphprobleme

Definition 192. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ (V2) = {{u, v} ⊆ V ∣ u ≠ v}.

a) Die Knotenzahl von G ist n(G) = ∥V ∥.
b) Die Kantenzahl von G ist m(G) = ∥E∥.
c) Die Nachbarschaft von v ∈ V ist

NG(v) = {u ∈ V ∣ {u, v} ∈ E}

und die Nachbarschaft von U ⊆ V ist NG(U) = ⋃u∈U NG(u).
d) Der Grad von v ist degG(v) = ∥NG(v)∥.
e) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach n,
m, N(v), N(U), deg(v), δ usw.

Beispiel 193.
• Der vollständige Graph (V,E) auf n Knoten, d.h. ∥V ∥ = n

und E = (V2), wird mit Kn und der leere Graph (V,∅) auf n
Knoten wird mit En bezeichnet.

K1: K2: K3: K4: K5:

• Der vollständige bipartite Graph (A,B,E) auf a + b Kno-
ten, d.h. A∩B = ∅, ∥A∥ = a, ∥B∥ = b und E = {{u, v} ∣ u ∈ A,v ∈
B} wird mit Ka,b bezeichnet.

K1,1: K1,2: K2,2: K2,3: K3,3:

• Der Pfad der Länge m wird mit Pm bezeichnet.

P1: P2: P3: P4:

• Der Kreis der Länge n wird mit Cn bezeichnet.

C3: C4: C5: C6:

7.3.1 Cliquen, Stabilität und Kantenüberdeckungen

Definition 194. Sei G = (V,E) ein Graph.
a) Ein Graph G′ = (V ′,E′) heißt Sub-/Teil-/Untergraph von

G, falls V ′ ⊆ V und E′ ⊆ E ist. Ein Subgraph G′ = (V ′,E′) heißt
(durch V ′) induziert, falls E′ = E ∩ (V

′
2 ) ist. Hierfür schreiben

wir auch H = G[V ′].
b) Ein Weg ist eine Folge von (nicht notwendig verschiedenen)

Knoten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , ` − 1. Sind alle
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Knoten auf dem Weg paarweise verschieden, so heißt der Weg
einfach oder Pfad. Die Länge des Weges ist die Anzahl der
Kanten, also `. Im Fall ` = 0 heißt der Weg trivial. Ein Weg
v0, . . . , v` heißt auch v0-v`-Weg.

c) Ein Zyklus ist ein u-v-Weg der Länge ` ≥ 2 mit u = v.
d) Ein Kreis ist ein Zyklus v0, v1 . . . , v`−1, v0 der Länge ` ≥ 3, für

den v0, v1, . . . , v`−1 paarweise verschieden sind.
e) G heißt zusammenhängend, wenn es von jedem Knoten u in

G zu jedem Knoten v in G einen Weg gibt.
f) Eine Knotenmenge U ⊆ V heißt stabil oder unabhängig,

wenn keine Kante in G beide Endpunkte in U hat, d.h. es gilt
E ∩ (U2) = ∅. Die Stabilitätszahl ist

α(G) = max{∥U∥ ∣ U ist stabile Menge in G}.

g) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt (U2) ⊆ E. Die
Cliquenzahl ist

ω(G) = max{∥U∥ ∣ U ist Clique in G}.

h) Eine Knotenmenge U ⊆ V heißt Kantenüberdeckung (engl.
vertex cover), wenn jede Kante e ∈ E mindestens einen End-
punkt in U hat, d.h. es gilt e∩U /= ∅ für alle Kanten e ∈ E. Die
Überdeckungszahl ist

β(G) = min{∥U∥ ∣ U ist eine Kantenüberdeckung in G}.

Für einen gegebenen Graphen G und eine Zahl k ≥ 1 betrachten wir
die folgenden Fragestellungen:

Clique: Hat G eine Clique der Größe k?
Matching: Hat G ein Matching der Größe k?

Independent Set (IS): Hat G eine stabile Menge der Größe k?
Vertex Cover (VC): Hat G eine Kantenüberdeckung der Größe k?

Satz 195.
• Clique, IS und VC sind NP-vollständig.
• Matching ist in P entscheidbar (ohne Beweis).

Beweis. Wir zeigen zuerst, dass IS NP-hart ist. Hierzu reduzieren
wir 3-Sat auf IS. Sei F = {C1, . . . ,Cm} mit Ci = {li,1, . . . , li,ki

} für i =
1, . . . ,m eine 3-KNF-Formel über den Variablen x1, . . . , xn. Betrachte
den Graphen G = (V,E) mit

V = {vij ∣1 ≤ i ≤m,1 ≤ j ≤ ki} und
E = {{vs,t, vu,v} ∈ (V2) ∣ s = u oder lst ist komplementär zu luv}.

Dabei heißen zwei Literale komplementär, wenn das eine die Nega-
tion des anderen ist. Nun gilt

F ∈ 3-Sat ⇔ es gibt eine Belegung, die in jeder Klausel Ci
mindestens ein Literal wahr macht

⇔ es gibt m Literale l1,j1 , . . . , lm,jm , die paarwei-
se nicht komplementär sind

⇔ es gibt m Knoten v1,j1 , . . . , vm,jm , die nicht
durch Kanten verbunden sind

⇔ G besitzt eine stabile Knotenmenge der Grö-
ße m.

Als nächstes reduzieren wir IS auf Clique. Es ist leicht zu sehen,
dass jede Clique in einem Graphen G = (V,E) eine stabile Menge in
dem zu G komplementären Graphen Ḡ = (V, Ē) mit Ē = (V2) ∖E ist
und umgekehrt. Daher lässt sich IS mittels

f ∶ (G,k) ↦ (Ḡ, k)
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auf Clique reduzieren. Schließlich ist eine Menge I offenbar genau
dann stabil, wenn ihr Komplement V ∖ I eine Kantenüberdeckung ist.
Daher lässt sich IS mittels

f ∶ (G,k) ↦ (G,n(G) − k)

auf VC reduzieren. ∎

7.3.2 Färbung von Graphen

Definition 196. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f ∶ V → N heißt Färbung von G, wenn f(u) ≠

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f ∶ V → {1, . . . , k} exis-

tiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N ∣ G ist k-färbbar}.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Um zu zeigen, dass 3-Coloring NP-vollständig ist, reduzieren wir
NaeSat auf 3-Coloring. Die Reduktion von CirSat auf 3-Sat
lässt sich nämlich leicht zu einer Reduktion von CirSat auf NaeSat
modifizieren, weshalb NaeSat (wie 3-Sat) NP-vollständig ist.

Satz 197. NaeSat ist NP-vollständig.

Beweis. Es ist klar, dass NaeSat ∈ NP liegt. Die Reduktion s↦ Fs
von CirSat auf 3-Sat aus vorigem Beweis erfüllt bereits die folgen-
den Bedingungen:

• Ist s(a) = 1, so können wir a zu einer erfüllenden Belegung ab
von Fs erweitern, d.h. unter ab wird in jeder Klausel von Fs ein
Literal wahr.

• Tatsächlich wird unter der Belegung ab in jeder Dreierklausel
von Fs auch bereits ein Literal falsch.

Letzteres ist leicht zu sehen, da ab für jedes Und-Gatter gi nicht nur
die Dreierklausel {ȳi, yj, yk}, sondern auch die Klauseln {ȳj, yi} und
{ȳk, yi} erfüllt. Diese verhindern nämlich, dass ab alle Literale der
Dreierklausel {ȳi, yj, yk} erfüllt. Entsprechend verhindern die zu einem
Oder-Gatter gi gehörigen Klauseln {yj, ȳi} und {yk, ȳj}, dass ab alle
Literale der Dreierklausel {yi, ȳj, ȳk} erfüllt.
Um zu erreichen, dass auch in den übrigen Klauseln C mit ∥C∥ < 3
ein Literal falsch wird, können wir einfach eine neue Variable z zu
diesen Klauseln hinzufügen und z mit dem Wert 0 belegen. Sei also
F ′
s die 3-KNF Formel über den Variablen x1, . . . , xn, y1, . . . , ym, z, die

die Klausel {ym, z} und für jedes Gatter gi die Klauseln folgender
Formel F ′

i enthält:

Gatter gi Klauseln von F ′
i

0 {ȳi, z}
1 {yi, z}
xj {ȳi, xj, z},{x̄j, yi, z}
(¬, j) {ȳi, ȳj, z},{yj, yi, z}
(∧, j, k) {ȳi, yj, z},{ȳi, yk, z},{ȳj, ȳk, yi}
(∨, j, k) {ȳj, yi, z},{ȳk, yi, z},{ȳi, yj, yk}

Wie wir gesehen haben, lässt sich dann jede Belegung a ∈ {0,1}n der
x-Variablen mit s(a) = 1 zu einer Belegung abc ∈ {0,1}n+m+1 für F ′

s

erweitern, unter der in jeder Klausel von F ′
s mindestens ein Literal

wahr und mindestens ein Literal falsch wird, d.h. es gilt

s ∈ CirSat⇒ F ′
s ∈ NaeSat.
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Für den Nachweis der umgekehrten Implikation sei nun F ′
s ∈ NaeSat

angenommen. Dann existiert eine Belegung abc ∈ {0,1}n+m+1 für F ′
s,

unter der in jeder Klausel ein wahres und ein falsches Literal vorkom-
men. Da dies auch unter der komplementären Belegung abc der Fall
ist, können wir c = 0 annehmen. Dann erfüllt aber die Belegung ab
die Formel Fs und damit folgt s(a) = 1, also s ∈ CirSat. ∎

Satz 198.
(i) 1-Coloring und 2-Coloring sind in P entscheidbar.
(ii) 3-Coloring ist NP-vollständig.

Beweis. Es ist leicht zu sehen, dass 1-Coloring und 2-Coloring
in P und 3-Coloring in NP entscheidbar sind. Zum Nachweis, dass
3-Coloring NP-hart ist, reduzieren wir NaeSat auf 3-Coloring.
Sei eine 3-KNF-Formel F = {C1, . . . ,Cm} über den Variablen
x1, . . . , xn mit Klauseln

Cj = {lj,1, . . . , lj,kj
}, kj ≤ 3

gegeben. Wir können annehmen, dass F keine Einerklauseln ent-
hält. Wir konstruieren einen Graphen GF = (V,E), der genau dann
3-färbbar ist, wenn F ∈ NaeSat ist. Wir setzen

V = {s, x1, . . . , xn, x̄1, . . . , x̄n} ∪ {vjk ∣1 ≤ j ≤m,1 ≤ k ≤ kj}

und

E ={{s, xi},{s, x̄i},{xi, x̄i} ∣ 1 ≤ i ≤ n} ∪ {{s, vjk} ∣ kj = 2}∪

{{vjk, vjl} ∣ k ≠ l} ∪ {{vjk, xi} ∣ ljk = x̄i} ∪ {{vjk, x̄i} ∣ ljk = xi}.

Sei a = a1 . . . an eine Belegung für F , unter der in jeder Klausel
Cj = {lj1, . . . , ljkj

} ein Literal wahr und eines falsch wird. Wir können

annehmen, dass lj1(a) = 0 und lj2(a) = 1 ist. Dann lässt sich GF wie
folgt mit den 3 Farben 0,1,2 färben:

Knoten v s xi x̄i vj1 vj2 vj3 (falls kj = 3)
Farbe c(v) 2 ai āi 0 1 2

Ist umgekehrt c ∶ V → {0,1,2} eine 3-Färbung von GF , dann kön-
nen wir annehmen, dass c(v) = 2 ist. Dies hat zur Folge, dass
{c(xi), c(x̄i)} = {0,1} für i = 1, . . . , n ist. Zudem müssen die Kno-
ten vj1, . . . , vjkj

im Fall kj = 2 mit 0 und 1 und im Fall kj = 3 mit
allen drei Farben 0, 1 und 2 gefärbt sein. Wir können annehmen, dass
c(vj1) = 0 und c(vj2) = 1 ist. Wegen {vjk, l̄jk} ∈ E muss c(vjk) ≠ c(l̄jk)
für k = 1, . . . , kj und daher c(vjk) = c(ljk) für k = 1,2 gelten. Also
macht die Belegung a = c(x1) . . . c(xn) die Literale lj1, j = 1, . . . ,m,
falsch und die Literale lj2, j = 1, . . . ,m, wahr. Insgesamt gilt also

F ∈ NaeSat⇔ GF ∈ 3-Coloring. ∎

7.3.3 Euler- und Hamiltonkreise

Definition 199. Sei G = (V,E) ein Graph und sei s = (v0, v1, . . . , vl)
eine Folge von Knoten mit {vi, vi+1} ∈ E für i = 0, . . . , l − 1.

a) s heißt Eulerlinie (auch Eulerzug oder Eulerweg) in G,
falls s jede Kante in E genau einmal durchläuft, d.h. es gilt
{{vi, vi+1} ∣ i = 0, . . . , l − 1} = E und l = ∥E∥.

b) Gilt zudem vl = v0, so heißt s Eulerkreis (auch Eulerzyklus
oder Eulertour).

c) s heißt Hamiltonpfad in G, falls s jeden Knoten in V genau
einmal durchläuft, d.h. es gilt {v0, . . . , vl} = V und l = ∥V ∥ − 1.

d) Ist zudem {v0, vl} ∈ E, d.h. s′ = (v0, v1, . . . , vl, v0) ist ein Kreis,
so heißt s′ Hamiltonkreis.
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Die angegebenen Definitionen lassen sich unmittelbar auf Digraphen
übertragen, indem wir jede darin vorkommende ungerichtete Kante
{u, v} durch die gerichtete Kante (u, v) ersetzen.

Beispiel 200 (Das Königsberger Brückenproblem).
Gibt es einen Spaziergang über alle 7
Brücken, bei dem keine Brücke mehrmals
überquert wird und der zum Ausgangs-
punkt zurückführt?

a

b

c

d

a

b

c

d

Diese Frage wurde von Euler (1707 – 1783)
durch Betrachtung des nebenstehenden Gra-
phen beantwortet. Dieser Graph hat offenbar
genau dann einen Eulerkreis, wenn die Ant-
wort „ja“ ist. (Wir werden gleich sehen, dass
die Antwort „nein“ ist.) ◁

Beispiel 201.
Der nebenstehende Graph besitzt die Eulerlinie
(4,1,2,3,5,7,6,4,5,2,4,7), aber keinen Euler-
kreis.

1
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Der nebenstehende Digraph besitzt den Euler-
kreis s = (1,4,5,2,3,5,7,4,7,6,4,2,1).
Es folgen ein Hamiltonkreis in einem Graphen
sowie ein a-d-Hamiltonpfad in einem Graphen
und ein m-p-Hamiltonpfad in einem Digraphen:
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◁

Wir betrachten für einen gegebenen Graphen (bzw. Digraphen) G
und zwei Knoten s und t folgende Entscheidungsprobleme:

Das Eulerlinienproblem (EulerPath bzw. DiEulerPath)
Hat G eine Eulerlinie von s nach t?

Das Hamiltonpfadproblem (HamPath bzw. DiHamPath)
Hat G einen Hamiltonpfad von s nach t?
Zudem betrachten wir für einen gegebenen Graphen (bzw. Digraphen)
G die folgenden Probleme:

Das Eulerkreisproblem (EulerCycle bzw. DiEulerCycle)
Hat G einen Eulerkreis?

Das Hamiltonkreisproblem (HamCycle bzw. DiHamCycle)
Hat G einen Hamiltonkreis?

Satz 202 (Euler, 1736). Sei G ein zusammenhängender Graph.
(i) G besitzt genau dann einen Eulerkreis, wenn alle seine Knoten

geraden Grad haben.
(ii) G besitzt im Fall s ≠ t genau dann eine Eulerlinie von s nach t,

wenn s und t ungeraden Grad und alle übrigen Knoten geraden
Grad haben.

Beweis.
(i) Falls G einen Eulerkreis s besitzt, existiert zu jeder Kante, auf

der s einen Knoten erreicht, eine weitere Kante, auf der s den
Knoten wieder verlässt. Daher hat jeder Knoten geraden Grad.
Ist umgekehrt G zusammenhängend und hat jeder Knoten gera-
den Grad, so können wir wie folgt einen Eulerkreis s konstruie-
ren:

Berechnung eines Eulerkreises in G = (V,E)
1 Wähle u ∈ V beliebig und initialisiere s zu s = (u)
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2 Wähle einen beliebigen Knoten u auf dem Weg s, der mit
einer unmarkierten Kante verbunden ist .

3 Folge ausgehend von u den unmarkierten Kanten auf einem
beliebigen Weg z solange wie möglich und markiere
dabei jede durchlaufene Kante. (Da von jedem
erreichten Knoten v ≠ u ungerade viele markierte Kanten
ausgehen, muss der Weg z zum Ausgangspunkt u
zurückführen.)

4 Füge den Zyklus z an der Stelle u in s ein.
5 Wenn noch nicht alle Kanten markiert sind , gehe zu 2.
6 Output: s

(ii) Da G im Fall s ≠ t genau dann eine Eulerlinie von s nach t
hat, wenn der Graph G′ = (V ∪{uneu},E∪{{t, uneu},{uneu, s}})
einen Eulerkreis hat, folgt dies aus Teil (i) des Satzes.

∎

Ganz ähnlich lässt sich ein entsprechender Satz für Digraphen bewei-
sen. Zuvor übertragen wir die Begriffe Weg, Pfad usw. von Graphen
auf Digraphen.

Definition 203. Sei G = (V,E) ein Digraph, d.h. E ⊆ V × V =
{(u, v) ∣ u, v ∈ V }, wobei E auch Schlingen (u,u) enthalten kann, und
sei v ∈ V ein Knoten.

a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V ∣ (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V ∣ (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = ∥N+(v)∥.
e) Der Eingangsgrad von v ist deg−(v) = ∥N−(v)∥.
f) Der Grad von v ist deg(v) = deg+(v) + deg−(v).
g) Ein (gerichteter) v0-vj-Weg in G ist eine Folge von Knoten

(v0, . . . , vj) mit (vi, vi+1) ∈ E für i = 0, . . . , j − 1.

h) Ein (gerichteter) Zyklus in G ist ein gerichteter u-v-Weg
der Länge j ≥ 1 mit u = v.

i) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad,
falls alle durchlaufenen Knoten paarweise verschieden sind.

j) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
(v0, . . . , vj−1, v0), für den v0, . . . , vj−1 paarweise verschieden sind.

k) G heißt stark zusammenhängend, wenn es von jedem Kno-
ten u in G zu jedem Knoten v in G einen Weg gibt.

Satz 204 (Euler, 1736). Sei G = (V,E) ein stark zusammenhängender
Digraph.
(i) G besitzt genau dann einen Eulerkreis, wenn für jeden Knoten

u in V der Ein- und Ausgangsgrad übereinstimmen.
(ii) G besitzt genau dann eine Eulerlinie von s nach t, wenn für

jeden Knoten u ∈ V ∖ {s, t} der Ein- und Ausgangsgrad überein-
stimmen und deg+(s) − deg−(s) = deg−(t) − deg+(t) = 1 ist.

Korollar 205. Die Probleme EulerPath, EulerCycle, Di-
EulerPath und DiEulerCycle sind alle in P entscheidbar.

Beim Problem des Handlungsreisenden sind die Entfernungen dij
zwischen n Städten i, j ∈ {1, . . . , n} gegeben. Gesucht ist eine Rund-
reise (i1, . . . , in) mit minimaler Länge di1,i2 + ⋯ + din−1,in + din,i1 , die
jede Stadt genau einmal besucht. Die Entscheidungsvariante dieses
Optimierungsproblems ist wie folgt definiert.

Problem des Handlungsreisenden (TSP; traveling-salesman-
problem)
Gegeben: Eine n × n Matrix D = (di,j) ∈ Nn×n und eine Zahl k.
Gefragt: Existiert eine Permutation π ∶ {1, . . . , n} → {1, . . . , n},

so dass die Rundreise (π(1), . . . , π(n)) die Länge ≤ k
hat?

Wir zeigen nun, dass die Probleme DiHamPath, HamPath, Di-
HamCycle, HamCycle und TSP alle NP-vollständig sind. Es ist
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leicht zu sehen, dass diese Probleme in NP entscheidbar sind. Zum
Nachweis der NP-Härte zeigen wir folgende Reduktionen:

3-Sat ≤p DiHamPath ≤p HamPath,
DiHamCycle ≤p HamCycle ≤p TSP.

Wir reduzieren zuerst HamCycle auf TSP.

Satz 206. HamCycle ≤p TSP.

Beweis. Sei ein Graph G = (V,E) gegeben. Wir können annehmen,
dass V = {1, . . . , n} ist. Dann lässt sich G in Polynomialzeit auf die
TSP Instanz (D,n) mit D = (di,j) und

di,j =
⎧⎪⎪⎨⎪⎪⎩

1, falls {i, j} ∈ E,
2, sonst,

transformieren. Diese Reduktion ist korrekt, da G genau dann einen
Hamiltonkreis hat, wenn es in dem Distanzgraphen D eine Rundreise
(π(1), . . . , π(n)) der Länge L(π) ≤ n gibt. ∎

Als nächstes reduzieren wir DiHamCycle auf HamCycle.

Satz 207. DiHamCycle ≤p HamCycle.

Beweis. Wir transformieren wir einen Digraphen G auf einen Graphen
G′, indem wir lokal für jeden Knoten u ∈ V die folgende Ersetzung
durchführen:

u u′ u u′′

Dann ist klar, dass die Funktion G↦ G′ in FP berechenbar ist, und
G genau dann einen Hamiltonkreis enthält, wenn dies auf G′ zutrifft.
Ähnlich lässt sich auch DiHamPath auf HamPath reduzieren. ∎

Satz 208. DiHamPath ≤p DiHamCycle.

Beweis. Um DiHamPath auf DiHamCycle zu reduzieren, trans-
formieren wir einen gegebenen Digraphen G = (V,E) mit zwei ausge-
zeichneten Knoten s, t ∈ V in den Digraphen G′ = (V ′,E′) mit

V ′ = V ∪ {uneu} und
E′ = E ∪ {(t, uneu), (uneu, s)}.

Offenbar ist G′ in Polynomialzeit aus G berechenbar und besitzt genau
dann einen Hamiltonkreis, wenn G einen s-t-Hamiltonpfad besitzt.
Ähnlich lässt sich auch HamPath auf HamCycle reduzieren. ∎
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