Vorlesungsskript

Einfihrung in die Theoretische
Informatik

Wintersemester 2013/14

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

11. Dezember 2013

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung

2 Regulare Sprachen

2.1 Endliche Automaten
2.2 Nichtdeterministische endliche Automaten
2.3 Regulare Ausdriicke
2.4 Relationalstrukturen 000

2.4.1 Ordnungs- und Aquivalenzrelationen

2.4.2 Abbildungen oL

2.4.3 Homo- und Isomorphismen
2.5 Minimierung von DFAso oL
2.6 Das Pumping-Lemma
2.7 Grammatiken oo oL

3 Kontextfreie Sprachen
3.1 Chomsky-Normalform
3.2 Das Pumping-Lemma fiir kontextfreie Sprachen
3.3 Der CYK-Algorithmus.
3.4 Kellerautomaten
3.5 Deterministisch kontextfreie Sprachen

4 Kontextsensitive Sprachen
4.1 Kontextsensitive Grammatiken
4.2 Turingmaschinen,
4.3 Linear beschrankte Automaten

28
30
33
35
36
40

Inhaltsverzeichnis

1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch 16sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

Schliefllich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollsténdigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adédquat?
(Automatentheorie)

o Welche Probleme sind 16sbar? (Berechenbarkeitstheorie)
o Welcher Aufwand ist zur Losung eines algorithmischen Problems
notig? (Komplexitatstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)
Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Fuklid benannte Algorithmus zur Berechnung
des grofiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben kénnen Zahlen, Formeln, Graphen etc. sein. Diese werden
iiber einem FEingabealphabet ¥ kodiert.

Definition 1.

a) Ein Alphabet ¥ ={ay,...,a,} ist eine geordnete Menge von
endlich vielen Zeichen.

b) Eine Folge x = x;...x, vonn Zeichen heiffit Wort (der Linge

c) Die Menge aller Worter diber ¥ ist

s =,
n>0
wobei X" = {xy...x, | n 20 undx; € ¥ firi=1,...,n} alle

Worter der Lange n enthdlt.

d) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen.

e) Jede Teilmenge L € ¥* heifst Sprache tber dem Alphabet .

Beispiel 2. Sei X ein Alphabet. Dann sind @, %*, % und {} Sprachen
tber X. Die Sprache @ enthdlt keine Worter und heifit leere Spra-
che. Die Sprache ¥* enthdlt dagegen alle Wérter diber ¥, wdhrend
die Sprache ¥ alle Wérter tiber ¥ der Linge 1 enthdlt. Die Sprache

2 Regulédre Sprachen

{e} enthalt nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singleton-Sprachen bezeichnet.

Da Sprachen Mengen sind, kénnen wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt
gc{e}cyr.
Wir kénnen Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen tiber ¥. Dann ist
e AnB={xeX*|xeA xeB} der Schnitt von A und B,

e AuB={xeX*|zeAvuze B} die Vereinigung von A und
B, und

o A={2ze¥"|2¢ A} das Komplement von A.

Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.

e Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B st
AB={zy|xzeAyeB}.

Ist A = {x} eine Singletonsprache, so schreiben wir fir {x}B
auch einfach xB.

e Die n-fache Potenz A™ ciner Sprache A ist induktiv definiert
durch
An = {e}, n =0,
APTA, n>0.

e Die Sternhiille A* von A ist A* = U, A™.
e Die Plushiille A* von A ist A* =U,s1 A" = AA*.

2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
féltige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Eingabe- N

Ein endlicher Automat fiihrt band
bei einer Eingabe der Lénge n

nur n Rechenschritte aus. Um / Lesekopf
die gesamte Eingabe lesen zu

kénnen, muss der Automat also Steuer-
in jedem Schritt ein Zeichen der einheit
Eingabe verarbeiten.

Definition 4. Fin endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E') beschrie-
ben, wobei

o 7/ + @ eine endliche Menge von Zustianden,
e Y das FEingabealphabet,

e 0:ZxY - Z die Uberfiihrungsfunktion,
e qo € Z der Startzustand und

o FcZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {a:l...a:nez*

es gibt q1,...,qn-1 € Z,q, € E mit
0(qi,iv1) = qiy1 firi=0,....n—-1]"

2 Regulédre Sprachen

0, Q1 - - -, qn heift Rechnung von M(xy...x,), falls 6(qi, Tiv1) = qina
firi=0,....,n—-1 gilt. Sie heifst akzeptierend, falls q, € E ist.

Beispiel 5. Betrachte den DFA M =
(Z,%,0,0,E) mit Z = {0,1,2}, X =
{a,b}, E = {1} und der Uberfiihrungs-
funktion

Graphische Darstellung:

slo 1 2

all 2 0
b2 01

Der Startzustand wird meist durch einen Pfeil und Endzustidnde
werden durch einen doppelten Kreis gekennzeichnet. N

Bezeichne 4 (¢,) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion

0: 7 x> Z

induktiv wie folgt definieren. Fiir g€ Z, z € ¥* und a € ¥ sei

A

O(ge) = a
d(q,xa) 5(0(q,), a).

Die von M erkannte Sprache lésst sich nun auch in der Form

L(M) ={ze>*|6(q,2) € E}

schreiben.
Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache
L(M) ={xeX* | #.(x) - #p(x) =3 1},

wobei #4(x) die Anzahl der Vorkommen des Zeichens a in x bezeichnet
und j =, k bedeutet, dass j —k durch m teilbar ist.

2.1 Endliche Automaten

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € X* |
6(0,2) =1}, d.h. wir miissen folgende Aquivalenz zeigen:

5(0,2) =1 & #4(x) - #(x) =5 1.
Hierzu reicht es, die Kongruenz
0(0,7) =5 #a(z) — #o().

zu beweisen, wofiir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n=0): klar, da 6(0,e) = #4(¢) = #,() = 0 ist.

Induktiorfsschritt (n~mn+1): Sei © = x1...7,,1 gegeben und sei
i=0(0,71...2,). Nach IV gilt dann

i =3 H#o(x1. . 20) —Ho(T1. .. T0).
Wegen 6(i,a) =37+ 1 und 6(i,b) =37 — 1 folgt daher

5(27 xn+1) =3 1+ #a($n+1) - #b(xn+1)
=3 #a(xl v xn) - #b(xl cee xn) + #a(xn+1) - #b(xn+1)
= #a(®) = #o(z).

und somit
5(0,2) = 6(6(0, 21 ... 2,), Zns1) = 6(i, Tns1) =3 #a(x) — #4().
| |

Eine von einem DFA akzeptierte Sprache wird als regulér bezeichnet.
Die zugehorige Sprachklasse ist

REG = {L(M) | M ist ein DFA}.

Beobachtung 7. Alle Singletonsprachen sind requldr.

2 Regulédre Sprachen

Beweis. Fir jedes Wort = = x7...x, existiert ein DFA M, mit
L(M,) ={z}:

€3 T,

Z1 P
OGO ®,

a* o a + T3

aey

a* I

Formal ist M, also das Tupel (Z,%,6,qo, F) mit Z = {qo, ..., qn, €},
E ={g,} und der Uberfiihrungsfunktion

Gi+1, q=¢ fireintmit 0<i<n-1und a; = 251
5(q7a’j) =

e, sonst.

Als nachstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. FEin k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen Ly, ..., Ly auf eine Sprache op(L1, ..., Ly) abbildet.

Beispiel 9. Der Schnittoperator n bildet zwei Sprachen Ly und Lo
auf die Sprache Ly n Ly ab. <

Definition 10. FEine Sprachklasse K heifit unter op abgeschlossen,
wenn gilt:
Li,....Lye K= o0p(Ly,..., L) € K.

Der Abschluss von IC unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K', die KC enthdlt und unter op abgeschlossen ist.

2.1 Endliche Automaten

Beispiel 11. Der Abschluss der Singletonsprachen unter n besteht
aus allen Singletonsprachen und der leeren Sprache.

Der Abschluss der Singletonsprachen unter U besteht aus allen nicht-
leeren endlichen Sprachen. <

Definition 12. Fir eine Sprachklasse C bezeichne co-C die Klasse
{L|LeC} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L, L, € REG sind auch die Sprachen Ly =
Y*N Ly, Lyn Ly und Ly U Ly requldar.

Beweis. Sind Mz = (Zi,z,éi,QmEi), 1= 1,2, DFAs mit L(Ml) = Li;
so akzeptiert der DFA

M, =(Z1,%,01,q0, Z1 ~ Ey)

das Komplement L, von L;. Der Schnitt L; n L, von Ly und Ly wird
dagegen von dem DFA

M =(Z1 x Z2,%,6,(q0, q0), E1 x E2)
mit
6((Qap)a CI,) = (51(Qa Cl), 52(p7 CL))
akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen

LU Ly = (L n Ly) ist dann aber auch die Vereinigung von L; und
Ly regular. (Wie sieht der zugehorige DFA aus?) [|

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulér sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
reguldren Sprachen erfasst.

2 Regulédre Sprachen

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhiille abgeschlossen ist. Im
iiberndchsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt
und Sternhiille charakterisierbar ist.

Beim Versuch, einen endlichen Automaten fiir das Produkt Lq L, zwei-
er regularer Sprachen zu konstruieren, stot man auf die Schwierigkeit,
den richtigen Zeitpunkt fiir den Ubergang von (der Simulation von)
My zu My zu finden. Unter Verwendung eines nichtdeterministischen
Automaten lasst sich dieses Problem jedoch leicht beheben, da dieser
den richtigen Zeitpunkt ,erraten“ kann.

Im néchsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur regulére Sprachen erkennen
konnen.

2.2 Nichtdeterministische endliche Automaten

Definition 14. FEin nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,3,A,Qo, F) ist dhnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustinde (zusammengefasst in der Menge Qo € Z) haben
kann und seine Uberfiihrungsfunktion die Form

A:Zx¥—>P(Z)

hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2% bezeichnet. Die
von N akzeptierte Sprache ist

EIQOEQO7q17"'7Qn—1EZ:QnEE: }

L(N) = ...y €% .
() {xl n € Giv1 € A(Gi, xis1) firi=0,...,n-1

40,41, - - - »qn heifit Rechnung von N(xy...x,), falls qiv1 € A(q;, Tiv1)
firi=0,...,n-1 gilt.

2.2 Nichtdeterministische endliche Automaten

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausfiihren. Ein Wort x ge-
hort genau dann zu L(N), wenn N (x) mindestens eine akzeptierende
Rechnung hat.

Im Gegensatz zu einem DFA, dessen Uberfiihrungsfunktion auf der
gesamten Menge Z x Y definiert ist, kann ein NFA stecken bleiben®.
Das ist dann der Fall, wenn er in einen Zustand ¢ gelangt, in dem das
nichste Eingabezeichen x; wegen A(q,x;) = @ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,%,A,Qo, E) mit Zustands-
menge Z ={p,q,r,s}, Eingabealphabet 3 ={0,1,2}, Start- und End-
zustandsmenge Qo = {p} und E = {s} sowie der Uberfiihrungsfunktion

Graphische Darstellung:
A‘ P q r s

0{pqgy @ @ @ —’@—0'@—1’@—2’
Ll () (1} o o oY
%

2| {py @ {s}

Offensichtlich akzeptiert N die Sprache L(N) ={xz012 |z € ¥*} aller
Wérter, die mit dem Suffiz 012 enden. <

Beobachtung 16. Sind N; = (Z;,3,A,;,Q;, E;) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(Ny) und L(Ny)* von einem NFA
erkannt.

Beweis. Sei L; = L(N;). Wir konnen Z; n Z, = @ annehmen. Dann
akzeptiert der NFA

N = (Zl UZ2727A37Q17E>

2 Regulédre Sprachen

mit
Aq(p,a), peZiN By,
As(p,a) =< Ai(p,a)u Ugeq, D2(q,a), pe Ey,
As(p,a), sonst
und
E:{Eg, Q2N Er =@
EyuFE,, sonst

die Sprache L;Ls.

Beweis von LiLs € L(N): Seien x = x1---xy € L1,y = y1---y; € Lo und
seien qq,...,qe und po,...,p; akzeptierende Rechnungen von Ni(x)
und Ny (y). Dann gilt gy € Q1, qx € £y und po € Qo, p; € Es.

e Im Fall [> 1 ist zudem p; € As(po,y1) und somit p; € A(gg, y1)-

e Im Fall [=0 ist zudem p; € Y N E5 und somit ¢ € .

Also ist qo, ..., qk, p1,- - ., eine akzeptierende Rechnung von N (zy).

Beweis von L(N) ¢ LiLs: Sei x = x1---x, € L(N) und sei qo, ..., qn
eine akz. Rechnung von N (z). Dann gilt o € Q1, ¢u € E, qo,- .., € Z1
und @iy1, .-+, qGn € Zo fir ein 1 € {0,...,n}.

o Im Fall i =n ist g, € By (d.h. x € Ly) und Q2 n FEy # @ (d.h.

g€ Ls).
o Im Fall i < n impliziert der Ubergang ¢;,;1 € A(q;,xi1), dass
qi € By und ¢;11 € Ao(q, 2441) flir ein g € Q5 ist.
Also ist qq, . . ., ¢; eine akz. Rechnung von Ny (z1---x;) und ¢, Gis1, - - -, qn
eine akz. Rechnung von Ny(x;1-+2,), d.h. x € Ly L.

Ganz dhnlich lasst sich zeigen, dass der NFA
N* = (Zl U {qneu}7 27 A47 Ql U {Qneu}a El U {Qneu})
mit
Al(pva)v pEZl\Eb
A4(p7a) = Al(paa) U Uq€Q1 Al(qaa)a JS Eh

g, sonst

2.2 Nichtdeterministische endliche Automaten

die Sprache L} akzeptiert. []

Satz 17 (Rabin und Scott).
REG = {L(N) | N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Fir die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,3, A, Qo, F) einen DFA M =
(P(Z2),%,0,Qo, E') mit L(M) = L(N). Wir definieren die Uberfiih-
rungsfunktion § : P(Z) x ¥ - P(Z) von M mittels

0(Q,a) = J A(g; a).

qeQ

Die Menge §(Q, a) enthélt also alle Zustande, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand ¢ € () das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand () die Information speichert,
in welchen Zustanden sich N momentan befinden kénnte. Fiir die
Erweiterung 6 : P(Z) x £* - P(Z) von § (siehe Seite 3) kénnen wir
nun folgende Behauptung zeigen.
Behauptung. §(Q, z) enthilt alle Zustinde, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.

Wir beweisen die Behauptung induktiv tiber die Lange n von z.
Induktionsanfang (n = 0): klar, da 6(Qp,e) = Qy ist.

Induktionsschritt (n—1~»n): Sei x = x; ... x, gegeben. Nach Induk-
tionsvoraussetzung enthalt

Qn—l = 8(@0,1’1 .. -xn—l)
alle Zusténde, die N(x) in genau n—1 Schritten erreichen kann.
Wegen A
0(Qo,7) =0(Qn-1,72) = U Alg,zn)

q€Qn-1

enthilt dann aber 6(Qo,x) alle Zustinde, die N(z) in genau n
Schritten erreichen kann.

2 Regulédre Sprachen

Deklarieren wir nun diejenigen Teilmengen @) € Z, die mindestens
einen Endzustand von N enthalten, als Endzustiande des Potenz-
mengenautomaten M, d.h.

E'={QcZ|QnE+gz},
so folgt fiir alle Worter z € X*:

reL(N) < N(z)kann in genau |z| Schritten einen Endzustand
erreichen

5(Qo,z)NE # 2

S(Qo,x) e’

xeL(M).

8

)

)

Beispiel 18. Fiir den NFA N = (Z,%,A,Qq, E) aus Beispiel 15

9@_0.@_%@_2»

ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach
Entfernen aller vom Startzustand Qo = {p} aus nicht erreichbaren
Zustdnde):

s | o 1 2

Q={p} |{pay {p} {p}
Qi=1{p.q} | {p,a} {p,v} A{p}
Q={p,r} | {p,a} {p} {p s}
Qs=A{p,s} |{p,a} {p} {p}

2.3 Regulire Ausdriicke

Im obigen Beispiel wurden fiir die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 214l = 16 Zustinde bendétigt, da die
tibrigen 12 Zustande in P(Z) nicht vom Startzustand Qg = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 221 Zustinde
in P(Z) fir die Konstruktion des Potenzmengenautomaten benotigt
werden (siehe Ubungen).

Korollar 19. Die Klasse REG der requldiren Sprachen ist unter fol-
genden Operationen abgeschlossen:

o Komplement, e Produkt,
e Schnitt, e Sternhiille.

e Vereinigung,

2.3 Regulare Ausdriicke

Wir haben uns im letzten Abschnitt davon iiberzeugt, dass auch NFAs
nur regulare Sprachen erkennen koénnen:

REG = {L(M) | M ist ein DFA} = {L(N) | N ist ein NFA}.

In diesem Abschnitt werden wir eine weitere Charakterisierung der
regularen Sprachen kennen lernen:

REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhiille aus der leeren Menge und den Singleton-
sprachen bilden lassen.

2 Regulédre Sprachen

Tatséchlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der reguldren Ausdriicke ~y (iber ei-
nem Alphabet) und die durch ~ dargestellte Sprache L(7y) sind
induktiv wie folgt definiert. Die Symbole @, € und a (a € ¥) sind
requldre Ausdriicke, die

e die leere Sprache L(2) = @,

e die Sprache L(e) = {e} und

o fiir jedes Zeichen a € X die Sprache L(a) = {a}
beschreiben. Sind oo und 5 reguldre Ausdricke, die die Sprachen L(a)
und L(B) beschreiben, so sind auch a3, («|B) und («)* regulire Aus-
driicke, die die Sprachen

. L(aB) = L(a)L(P),

+ L(alB) = L(a) U L(B) und

. L((a)") = L(a)*
beschreiben.

Bemerkung 21.

e Um Klammern zu sparen, definieren wir folgende Prazedenz-
ordnung: Der Sternoperator * bindet stirker als der Produktope-
rator und dieser wiederum starker als der Vereinigungsoperator.
Fiir ((alb(c)*)|d) konnen wir also kurz albc*|d schreiben.

e Da der requlire Ausdruck yy* die Sprache L(~y)* beschreibt,
verwenden wir v+ als Abkiirzung fir den Ausdruck ~vy*.

Beispiel 22. Die requldaren Ausdricke %, @*, (0[1)*00 und €0|@1*
beschreiben folgende Sprachen:

v €* o* (0[1)*00 e0|z1*
L(v) [{e}* ={e} @ ={e} {z00]ze{0,1}*} {0}

2.3 Reguléire Ausdriicke

Beispiel 23. Betrachte nebenstehenden DFA M.
Um fiir die von M erkannte Sprache

L(M) ={x e{a,b}" | #a(x) - #u(2) =3 1}

einen requldren Ausdruck zu finden, betrachten
wir zundchst die Sprache Lo aller Worter x, die
den DFA M ausgehend vom Zustand 0 in den
Zustand 0 tiberfihren. Weiter sei L3} die Sprache aller solchen Wérter
w # ¢, die zwischendurch nicht den Zustand 0 besuchen. Dann setzt
sich jedes x € Loo aus beliebig vielen Teilwortern wy, ..., wy € LS%
zusammen, d.h. Log = (L))" '

Jedes w € L) beginnt entweder mit einem a (Ubergang von 0 nach 1)
oder mit einem b (Ubergang von 0 nach 2). Im ersten Fall folgt eine
beliebige Anzahl von Teilwortern ab (Wechsel zwischen 1 und 2), an
die sich entweder das Suffix aa (Rickkehr von 1 nach 0 dber 2) oder
das Suffix b (direkte Riickkehr von 1 nach 0) anschliefit. Analog folgt
im zweiten Fall eine beliebige Anzahl von Teilwértern ba (Wechsel
zwischen 2 und 1), an die sich entweder das Suffix a (direkte Riickkehr
von 2 nach 0) oder das Suffix bb (Rickkehr von 2 nach 0 dber 1)

anschlief$t. Daher ldsst sich LS% durch den requldren Ausdruck
6.0 = aab)*(aalb) | b(ba)* (albb)

beschreiben. Eine ahnliche Uberlegung zeigt, dass sich die die Sprache
L7’ aller Worter, die M ausgehend von 0 in den Zustand 1 iiber-
fithren, ohne dass zwischendurch der Zustand 0 nochmals besucht
wird, durch den reguliren Ausdruck 7 = (albb)(ab)* beschreibbar
ist. Somit erhalten wir fiir L(M) den reguliren Ausdruck

You = (349)"6% = (a(ab)* (aalb) | b(ba)*(alob))* (albb) (ab)*.

Satz 24. {L(v) | v ist ein reguldrer Ausdruck} ¢ REG.

2 Regulédre Sprachen

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdriicke @, € und a, a € ¥*, nur regulare Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhiille
abgeschlossen ist (siche Beobachtungen 13 und 16).

Fiir die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
laren Ausdruck v mit L(vy) = L(M). Sei also M = (Z,%,6,qo, F) ein
DFA, wobei wir annehmen kénnen, dass Z = {1,...,m} und ¢ = 1 ist.
Dann léasst sich L(M) als Vereinigung

L(M) = U Lig

qeE

von Sprachen der Form
Lpg={reX"| S(pux) =q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen L, , durch
reguldre Ausdriicke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

Lg,q:{xlu-xneg* 5(p7x1"'xn):qundfur }

i=1,....n-1gilt 6(p,a1...3) <r

Wegen Ly, = L, reicht es, reguldre Ausdriicke v; , fiir die Sprachen

Ly , anzugeben. Tm Fall 7 = 0 enthélt

o - JlaeX]dpa)=giufe}, p=q,
" Haex|6(p,a) = g}, sonst

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen reguldren Ausdruck ~y , beschreibbar. Wegen

r+l _ r T T *TT
Lp7q - Lp,qULp,r+1(Lr+1,r+1) Lr+1,q

lassen sich aus den reguldren Ausdriicken ~; , fiir die Sprachen L7 ,

leicht reguldre Ausdriicke fiir die Sprachen Lj*! gewinnen:

r+l _ o7 r r * T
P)/p,q _’yp,q|7p,r+1(’yr+l,r+1) r)/r+1,q'

2.3 Regulire Ausdriicke

Beispiel 25. Betrachte den DFA

7

Da M insgesamt m =2 Zustinde und nur den Endzustand 2 besitzt,
15t
L(M) = Lig=Li2=Li, = L(7i).
qeE
Um i, 2zu berechnen, benutzen wir die Rekursionsformel

r+l _ o7 r r * AT
Vp,q _Vp,q|’7p,r+1(7r+1,7‘+1) 77"+1,q

und erhalten
Vg =2l a(V22) V2.2,

%1,2 = V?QW?J(V?J)W%Qa
7%,2 = 73,2|’YS,1(7?,1)*7?,2-

Um den requldren Ausdruck 7%72 fir L(M) zu erhalten, gentigt es also,
die reguldren Ausdriicke 77 1, V)9, 791, Va.05 V1o Und Y35 2u berechnen:

. p,q
1,1 1,2 2.1 2,9

0 €lb a a €lb
al(e[b)(elb)*a (elb)|a(elb)*a

1 - — - ~—_—

b*a e[blab*a

5 b*alb*a(e|blab*a)* (e|blab*a)

b*a(blab*a)*

2 Regulédre Sprachen

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

e L ist requldr,

e es gibt einen DFA M mit L = L(M),

e es gibt einen NFA N mit L = L(N),

o es gibt einen requldren Ausdruck v mit L = L(7),

e L ldsst sich mit den Operationen Vereinigung, Produkt und
Sternhiille aus endlichen Sprachen gewinnen,

e L ldsst sich mit den Operationen N, U, Komplement, Produkt
und Sternhiille aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, namlich durch reguldare Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Aquivalenzrelationen) eine wichtige Rolle.

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, R; eine k;-stellige Relation auf A, d.h.
R; ¢ Ak fir ¢ = 1,...,n. Dann heiit (A;Ry,...,R,) Relational-
struktur. Die Menge A heiflt Grundmenge, Triagermenge oder
Individuenbereich der Relationalstruktur.

Wir werden hier hauptsichlich den Fall n =1, k; = 2, also (A, R) mit
R ¢ A x A betrachten. Man nennt dann R eine (binire) Relation
auf A. Oft wird fir (a,b) € R auch die Infix-Schreibweise aRb
benutzt.

Beispiel 27.
o (F,M) mit F={f|f ist Fluss in Europa} und

M ={(f,g9) e FxF | f mindet in g}.

10

2.4 Relationalstrukturen

e (U,B) mit U ={x |z ist Berliner} und
B ={(x,y) e U xU | x ist Bruder von y}.

e (P(M),<), wobei P(M) die Potenzmenge einer beliebigen Men-
ge M und ¢ die Inklusionsbeziehung auf den Teilmengen von M
15t.

e (A Idy), wobei Idy ={(x,x) |z e A} die Identitédt auf A ist.

e (R,<).

e (Z,]), wobei | die "teilt”-Relation bezeichnet (d.h. alb, falls ein
ceZ mit b= ac existiert). <

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt, Vereinigung, Komplement und Differenz
definiert. Seien R und S Relationen auf A, dann ist

RnS = {(x,y)e Ax A| xRy xSy},
RuS = {(x,y)e Ax A|zRyv xSy},
R-S = {(z,y)e Ax A| xRy -xSy},
R = (AxA)-R.

Sei allgemeiner M € P(A x A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt iiber M und die Vereinigung iiber
M folgende Relationen:

MM
UM

N R={(x.y)| VRe M: 2Ry},
ReM

U R={(z,y)| IR € M : zRy}.
ReM

Die transponierte (konverse) Relation zu R ist

R" = {(y,z) | zRy}.

RT wird oft auch mit R~! bezeichnet. Z.B. ist (R,<”) = (R,>).

2 Regulédre Sprachen

Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

RoS={(xz,2)e AxA|Jye A: xRy nySz}.

Beispiel 28. Ist B die Relation "ist Bruder von”, V' 7ist Vater von”,
M 7ist Mutter von” und E =V u M 7ist Elternteil von”, so ist Bo E
die Onkel-Relation. N

Ubliche Bezeichnungen fiir das Relationenprodukt sind auch R ;S und
R - S oder einfach RS. Das n-fache Relationenprodukt Ro---o R von
R wird mit R™ bezeichnet. Dabei ist RO = Id.

Vorsicht: Das n-fache Relationenprodukt R™ von R sollte nicht mit
dem n-fachen kartesischen Produkt R x--- x R der Menge R verwech-
selt werden. Wir vereinbaren, dass R™ das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heifit R

reflexiv, falls Vo € A: xRx (also Ids € R)
irreflexiv, falls Vx € A: -xRx (also Ida < E)
symmetrisch, falls Vo,y € A: xRy = yRx (also Rc RT)

)

asymmetrisch, falls Vz,ye A: xRy = -yRx (also Rc RT
antisymmetrisch, falls Vo, ye A:xRyryRx = x =1y
(also RN RT c Id)
konnex, falls Vo,y e A: xRy v yRx
(also Ax Ac RuRT)

semikonnex, falls Ve,ye A:x +y = xRy vyRx
(also Id € Ru RT)
transitiv, falls Vo,y,2€e A: xRy nyRz = xRz
(also R? ¢ R)
gilt.

2.4 Relationalstrukturen

Die nachfolgende Tabelle gibt einen Uberblick iiber die wichtigsten
Relationalstrukturen.

‘ refl. sym. trans. antisym. asym. konnex semikon.

Aquivalenzrelation | v- v v

(Halb-)Ordnung v v v

Striktordnung v v

lineare Ordnung e v v

lin. Striktord. v v v
Quasiordnung v v

In der Tabelle sind nur die definierenden Eigenschaften durch ein ”v”
gekennzeichnet. Das schliefit nicht aus, dass gleichzeitig auch noch
weitere Eigenschaften vorliegen konnen.

Beispiel 29.

e Die Relation 7ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.

e Die Relation 7ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Aquivalenzrelation.

e (R,<) st irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnunyg.

e (R,<) und (P(M),<) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

e (R,<) ist auch konnex und somit eine lineare Ordnung.

e (P(M),c) ist zwar im Fall |M| < 1 konnex, aber im Fall
|M| > 2 weder semikonnex noch konnezx. q

Graphische Darstellung von Relationen

Eine Relation R auf einer endlichen Menge A kann durch einen gerich-
teten Graphen (oder Digraphen) G = (V, E) mit Knotenmenge

2 Regulédre Sprachen

V = A und Kantenmenge F = R veranschaulicht werden. Hierzu
stellen wir jedes Element x € A als einen Knoten dar und verbin-
den jedes Knotenpaar (z,y) € R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heiflen benachbart oder
adjazent.

Beispiel 30. Fir die Relation (A,R) mit A = {a,b,c,d} und
R={(b,c),(b,d),(c,a),(c,d),(d,d)} erhalten wir folgende graphische

Darstellung.
4,
e

Der Ausgangsgrad eines Knotens x € V ist deg” (z) = | R[x]|, wobei
R[x] ={y €V | zRy} die Menge der Nachfolger von z ist. Entspre-
chend ist deg™(z) = |{y € V | yRz}| der Eingangsgrad von z und
R1[x] ={y € V | yRx} die Menge der Vorgdnger von x. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(z) = deg™(x) = deg”(x) der Grad von z und R[z] = R™'[z]
heilt die Nachbarschaft von x. Ist R zudem irreflexiv, so ist G
schleifenfrei und wir erhalten einen (ungerichteten) Graphen.

<

Darstellung durch eine Adjazenzmatrix

Eine Relation R auf einer endlichen (geordneten) Menge A =

{a1,...,a,} lasst sich durch eine boolesche n x n-Matrix Mg = (m;;)
mit
e 1, aZRaj,
Y71 0, sonst

darstellen. Beispielsweise hat die Relation

R= {(b> C)a (bv d)a (Ca a)> (Ca d)7 (d> d)}

12

2.4 Relationalstrukturen

auf der Menge A = {a,b,c,d} die Matrixdarstellung

My =

o= O O
o O o O
o O = O
—_— = = O

Darstellung durch eine Adjazenzliste

Eine weitere Moglichkeit besteht darin, eine endliche Relation R
in Form einer Tabelle darzustellen, die jedem Element x € A seine
Nachfolgermenge R[x] in Form einer Liste zuordnet:

r R[z]
a/ -
b c¢d
c a,d
d d

Sind Mg = (7;) und Mg = (s;;) boolesche n x n-Matrizen fiir R und
S, so erhalten wir fiir T'= Ro S die Matrix My = (¢;;) mit

ii= V (ricAsi)

t

Die Nachfolgermenge T'[x] von x bzgl. der Relation 7" = RoS berechnet
sich zu

Tlx]=U{Slylly e Rlz]} = U Syl

yeR[z]

Beispiel 31. Betrachte die Relationen R = {(a,a), (a,c),(c,b), (¢, d)}
und S ={(a,b),(d,a),(d,c)} auf der Menge A ={a,b,c,d}.

2 Regulédre Sprachen

Relation R S RoS SoR
» 0 00 @ ®
Digraph
O~@D O @ O
1010 0100 0100 0000
Adjazenz- | 0000 0000 0000 0000
matriz 0101 0000 1010 0000
0000 1010 0000 1111
a:a,c a:b a:b a:-
Adjazenz- | b: - b:- b:- h:-
liste c:b,d c: - c:a,c c: -
d:- d:a,c d:- d:a,b,c,d

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht RoS =SS0 R.

Als nachstes zeigen wir, dass die Menge R = P(A x A) aller bindren
Relationen auf A mit dem Relationenprodukt o als bindrer Operation
ein Monoid) (also eine Halbgruppe mit neutralem Element) bildet.

Satz 32. Seien O, R, S Relationen auf A. Dann gilt
(i) (QoR)oS=Qo(RoS), d.h. o ist assoziativ,
(it) Ido R=Rold=R, d.h. Id ist neutrales Element.

Beweis.
(i) Es gilt:
x(QoR)oSy JueA:z (QoR)u A uSy
JueA: (veAd:2QuRu) AuSy

Ju,ve Az QuRuSy

FveA:zQu(RoS)y
Qo (ReoS)y

R O

FveA:xQu A (FueA:vRu A uSy)

2.4 Relationalstrukturen

(i1) Wegen x [doRy < 3z:x=2 A 2z Ry< x Ry folgt IdoR=R.
Die Gleichheit Ro Id = R folgt analog.

Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine moglichst kleine Modifikation in eine Relation R’ mit
vorgegebenen Eigenschaften zu tiberfithren. Will man dabei alle in R
enthaltenen Paare beibehalten, dann sollte R’ aus R durch Hinzufiigen
moglichst weniger Paare hervorgehen.

Es lasst sich leicht nachpriifen, dass der Schnitt iiber eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R’, die R enthélt.

Definition 33. Sei R eine Relation auf A.
o Die reflexive Hiille von R ist

hre(R) =({S <€ AxA|S ist reflexiv und R c S}.

Die symmetrische Hiille von R ist

hsym(R) =[S <€ AxA|S ist symmetrisch und R c S}.

Die transitive Hiille von R ist

R*=({ScAxA|S ist transitiv und R c S}.

Die reflexiv-transitive Hiille von R ist
R*=({S<cAxA|S ist reflexiv, transitiv und R < S}.

Die Aquivalenzhiille von R ist

ha(R) =({S| S ist eine Aquivalenzrelation auf A und R < S}.

Satz 34. Sei R eine Relation auf A.

2 Regulédre Sprachen

(i) hyea(R) = RUId,,
(it) hoym(R) = RU RT,
(iti) R* = U, RY,

(iv) R* =Upso R™,

(v) hag(R) = (RU RT)*"

Beweis. Siehe Ubungen.]

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a,b) genau
dann in der reflexiv-transitiven Hiille R* von R ist, wenn es ein n >0
gibt mit aR"b, d.h. es gibt Elemente x,...,x, € A mit zo=a, x, =b
und

roRx1Rxs ... 2,1 Rx,,.

In der Graphentheorie nennt man xy, ..., z, einen Weg der Lange n
von a nach b.

2.4.1 Ordnungs- und Aquivalenzrelationen

Wir betrachten zunéchst Ordnungsrelationen, die durch die drei
Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 35.
e (P(M),2), (Z,<), (R,<) und (N,|) sind Ordnungen. (Z,]) ist
keine Ordnung, aber eine Quasiordnung.

o Fir jede Menge M ist die relationale Struktur (P(M);<) eine
Ordnung. Diese ist nur im Fall |M| <1 linear.

e Ist R eine Relation auf A und B< A, so ist Rp=Rn (B x B)
die Finschrankung von R auf B.

e Einschrinkungen von (linearen) Ordnungen sind ebenfalls (li-
neare) Ordnungen.

e Beispielsweise ist (Q,<) die Finschrinkung von (R,<) auf Q
und (N,|) die Finschrinkung von (Z,|) auf N. N

2.4 Relationalstrukturen

Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme dar-
stellen. Sei < eine Ordnung auf A und sei < die Relation < nIdy. Um
die Ordnung < in einem Hasse-Diagramm darzustellen, wird nur
der Graph der Relation

<=< <2 dh z<y & z<yar-Izir<z<y

gezeichnet. Fiir x <y sagt man auch, y ist oberer Nachbar von x.
Weiterhin wird im Fall x <y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 36.

Die Inklusionsrelation auf der Po-
tenzmenge P(M) von M = {a,b,c}
lasst sich durch nebenstehendes
Hasse-Diagramm. darstellen.

1]

© 0
®

Schranken wir die “teilt”-Relation e @

auf die Menge {1,2,...,10} ein,

so erhalten wir folgendes Hasse-
<

e‘

Diagramm.

Definition 37. Sei < eine Ordnung auf A und sei b ein Element in
einer Teilmenge B € A.

e b heifit kleinstes Element oder Minimum von B (kurz
b=min B), falls gilt:

Ve B:b<U.

2 Regulédre Sprachen

e b heifit groBtes Element oder Maximum von B (kurz
b=max B), falls gilt:

Vb e B:b <b.

e b heifst minimal in B, falls es in B kein kleineres Element
qibt:
Vo' e B:b <b=10"=b.

e b heifft maximal in B, falls es in B kein gréfSeres Element
gibt:
Ve B:b<b =b=10"

Bemerkung 38. Da Ordnungen antisymmetrisch sind, kann es in
jeder Teilmenge B hdochstens ein kleinstes und hochstens ein gréfstes
Element geben. Die Anzahl der minimalen und mazimalen Elemente
in B kann dagegen beliebig grofs sein.

Definition 39. Sei < eine Ordnung auf A und sei B € A.

o Jedes Element uwe A mit uw < b fir alle be B heifit untere und
jedes o€ A mit b<o fiir alle be B heifst obere Schranke von
B.

e B heifit nach oben beschriankt, wenn B eine obere Schran-
ke hat, und nach unten beschrankt, wenn B eine untere
Schranke hat.

e B heifit beschrankt, wenn B nach oben und nach unten be-
schrankt ist.
e Besitzt B eine griofte untere Schranke i, d.h. besitzt die Menge

U aller unteren Schranken von B ein grofites Element i, so
heifit ¢ das Infimum von B (kurz i = inf B):

(VbeB:b>i)A[Vue A: (Vbe B:b>u) = u<i].

e Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge
O aller oberen Schranken von B ein kleinstes Element s, so

2.4 Relationalstrukturen

heifit s das Supremum von B (s =sup B):
(VbeB:b<s)A[Voe A: (Vbe B:b<o) = s<0]

Bemerkung 40. B kann nicht mehr als ein Supremum und ein
Infimum haben.

Beispiel 41. Betrachte nebenstehende Ordnung auf der Menge A =
{a,b,c,d,e}. Die folgende Tabelle zeigt fiir verschie- @ @
dene Teilmengen B ¢ A alle minimalen und maxi-

malen Elemente in B Minimum und Maximum, alle e.@
unteren und oberen Schranken, sowie Infimum und

Supremum von B (falls existent). ©

untere obere

B minimal mazximal min max inf sup
Schranken
{a,b} a,b a,b - - c¢de - - -
{c,d} c,d c,d - - e ab e -
{a,b,c} c a,b c - c,e - c -
{a,b,c,e} e a,b e - e - e -
{a,c,d, e} e a e a e a e a

Bemerkung 42.

e Auch in linearen Ordnungen muss nicht jede beschrinkte Teil-
menge ein Supremum oder Infimum besitzen.

e So hat in der linear geordneten Menge (Q,<) die Teilmenge
B={reQ|2*<2} = {zeQ|2?<2}

weder ein Supremum noch ein Infimum.

e Dagegen hat in (R, <) jede beschrinkte Teilmenge B ein Supre-
mum und ein Infimum (aber moglicherweise kein Mazimum oder

15

2 Regulédre Sprachen

Als néchstes betrachten wir Aquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.

Ist E eine Aquivalenzrelation, so nennt man die Nachbarschaft E[x]
die von = reprisentierte Aquivalenzklasse und bezeichnet sie
mit [z]g oder einfach mit [x]. Eine Menge S ¢ A heifit Repridsen-
tantensystem, falls sie genau ein Element aus jeder Aquivalenzklasse
enthélt.

Beispiel 43.
o Auf der Menge aller Geraden im R? die Parallelitit. Offen-
bar bilden alle Geraden mit derselben Richtung (oder Steigung)
jeweils eine Aquivalenzklasse. Daher wird ein Reprisentanten-

system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

e Auf der Menge aller Menschen “im gleichen Jahr geboren wie’.
Hier bildet jeder Jahrgang eine Aquivalenzklasse.

o Auf Z die Relation "gleicher Rest bei Division durch m” Die
zugehérigen Aquivalenzklassen sind

[r]:{an|aEmr}7 r=0,1,...,m-1.

Ein Reprdsentantensystem wird beispielsweise durch die Reste
0,1,...,m—1 gebildet. N

Definition 44. Fine Familie {B; |i € 1} von nichtleeren Teilmengen
B; ¢ A heifst Partition der Menge A, falls gilt:

a) die Mengen B; iiberdecken A, d.h. A= U B; und

b) die Mengen B; sind paarweise disjunkt, d.h. fir je zwei ver-
schiedene Mengen B; # B; gilt B;n B, = @.

Die Aquivalenzklassen einer Aquivalenzrelation E bilden eine Parti-
tion {[z] |z € A} von A (siehe Satz 45). Diese Partition wird auch
Quotienten- oder Faktormenge genannt und mit A/E bezeichnet.
Die Anzahl der Aquivalenzklassen von E wird auch als der Index

16

2.4 Relationalstrukturen

von E bezeichnet. Wie der nichste Satz zeigt, beschreiben Aquiva-
lenzrelationen auf A und Partitionen von A denselben Sachverhalt.

Satz 45. Sei E eine Relation auf A. Dann sind folgende Aussagen
aquivalent.

(i) E ist eine Aquivalenzrelation auf A.

(it) Fir alle z,y € A gilt

rEy < Elz] = Ely] (*)
(iti) Es gibt eine Partition {B;|i €I} von A mit
rFEy < Jiel:x,ye B,
Beweis.
(i) = (ii) Sei E eine Aquivalenzrelation auf A. Da E transitiv ist,
impliziert zEy die Inklusion FE[y] ¢ E[z]:
ze Ely]l=>yFz=zEz= z¢ E[z].

Da E symmetrisch ist, folgt aus xFy aber auch E[x] ¢ E[y].

Umgekehrt folgt aus E[z] = E[y] wegen der Reflexivitat von E,
dass y € E[y] = E[z] enthalten ist, und somit zFEy. Dies zeigt,
dass F die Aquivalenz (*) erfiillt.

(ii) = (iii) Wir zeigen, dass die Aquivalenzklassen E[z], z € A, die
Menge A partitionieren, falls £ die Bedingung (*) erfillt.
Wegen E|[x] = E[z] folgt xEx und somit = € E[z]. Folglich
tiberdecken die Mengen E[z] die Menge A.

Ist E[z]n E[y] #+ @ und z ein Element in E[z]n E[y], so gilt
zEz und yEz und daher folgt E[z] = E[z] = E[y].

(i1i) = (i) Existiert schliefllich eine Partition {B; | i€ I} von A mit
xRy < Jiel:x,ye B; soist E reflexiv, da zu jedem x € A
eine Menge B; mit x € B; existiert. Zudem ist £ symmetrisch,
da aus x,y € B; auch y,x € B; folgt. Und E ist transitiv, da aus
x,y € B; und y, z € B; wegen y € B; n B; die Gleichheit B; = B;
und somit z, z € B; folgt.

2 Regulédre Sprachen

Die kleinste Aquivalenzrelation auf A ist die Identitét Id 4, die groBte
die Allrelation A x A. Die Aquivalenzklassen der Identitit enthalten
jeweils nur ein Element, d.h. A/Ids = {{z} |z € A}, und die Allrelati-
on erzeugt nur eine Aquivalenzklasse, namlich A/(Ax A) = {A}.

Fiir zwei Aquivalenzrelationen F ¢ E’ sind auch die Aquivalenzklas-
sen [x]g von E in den Klassen [x]g von E’ enthalten. Folglich ist
jede Aquivalenzklasse von E’ die Vereinigung von (evtl. mehreren)
Aquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als £’. Demnach ist die Identitét die feinste und die Allrelation die
grébste Aquivalenzrelation.

{M}

Die feiner-Relation auf
der Menge aller Parti-
tionen von M = {a,b,c}
hat das folgende Hasse-
Diagramm:

{Ha}, {b;c}}

{{a}, {0}, {c}}

2.4.2 Abbildungen

Definition 46. Sei R eine bindre Relation auf einer Menge M.
e R heifit rechtseindeutig, falls fir alle x,y,z € M gilt:

TRynrzRz =y =z.

e R heifit linkseindeutig, falls fiir alle x,y,z € M gilt:

TRz ANyRz =z =1y.

17

2.4 Relationalstrukturen

e Der Nachbereich N(R) und der Vorbereich V(R) von R
sind
N(R) = | R[z] und V(R)=|J R"[z].

xeM xeM

e Eine rechtseindeutige Relation R mit V(R) = A und N(R) < B
heifst Abbildung oder Funktion von A nach B (kurz
R:A- B).

Bemerkung 47.

o Wie 1iblich werden wir Abbildungen meist mit kleinen Buchsta-
ben f,g,h,... bezeichnen und fir (x,y) € f nicht xfy sondern
f(x) =y oder f:xw~y schreiben.

o Ist f: A— B eine Abbildung, so wird der Vorbereich V(f) = A
der Definitionsbereich und die Menge B der Wertebereich
oder Wertevorrat von f genannt.

e Der Nachbereich N(f) wird als Bild von f bezeichnet.

Definition 48.
e Im Fall N(f) = B heifst f surjektiv.
o Ist f linkseindeutig, so heifst f injektiv. In diesem Fall impli-
ziert f(x) = f(y) die Gleichheit x =vy.
e Fine injektive und surjektive Abbildung heifit bijektiv.

o Ist f injektiv, so ist auch f~1: N(f) = A eine Abbildung, die
als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich V/(f~1) = N(f) von f~! nur
dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

Definition 49. Seien (Ay, R1) und (As, Ry) Relationalstrukturen.

2 Regulédre Sprachen

e Fine Abbildung h : Ay - Ay heifs$t Homomorphismus, falls
fur alle a,be Ay gilt:

aR1b = h(a)Rah(D).

e Sind (Ay, Ry) und (As, Ry) Ordnungen, so spricht man von
Ordnungshomomorphismen oder einfach von monotonen
Abbildungen.

e Injektive Ordnungshomomorphismen werden auch streng mo-
notone Abbildungen genannt.

Beispiel 50. Folgende Abbildung h: Ay - Ay ist ein bijektiver Ord-
nungshomomorphismus.

(4,<)

Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h="
kein Homomorphismus, da h™ nicht monoton ist. Es gilt ndamlich

2c3, aber h'(2)=b¢c=h"'(3).
<

Definition 51. Ein bijektiver Homomorphismus h : Ay — As, bei
dem auch h™' ein Homomorphismus ist, d.h. es gilt

Va,be Ay : aR1b < h(a)Ryh(b).

heifit Isomorphismus. In diesem Fall heiffen die Strukturen (A1, Ry)
und (Az, Ry) isomorph (kurz: (A1, Ry) = (As, Ry)).

18

2.4 Relationalstrukturen
Beispiel 52.
e Die Abbildung h: R - R* mit
h:xwe”

ist ein Ordnungsisomorphismus zwischen (R, <) und (R*,<).

o Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elemen-
ten:

¢ oo l./\\/

Anders ausgedriickt: Die Klasse aller dreielementigen Ordnungen
zerfillt unter der Aquivalenzrelation = in fiinf Aquivalenzklassen,
die durch obige fiinf Hasse-Diagramme reprdasentiert werden.

e FirneN sei

T, = {keN|k teilt n}
die Menge aller Teiler von n und
P, = {peT,|p ist prim}
die Menge aller Primteiler von n. Dann ist die Abbildung
h:kw— P,

ein (surjektiver) Ordnungshomomorphismus von (T,,|) auf
(P(P,),<). h ist sogar ein Isomorphismus, falls n quadratfrei
ist (d.h. es gibt kein k > 2, so dass k? die Zahl n teilt).

e Die beiden folgenden Graphen G und G' sind isomorph. Zwei
Isomorphismen sind beispielsweise hy und hsy.

2 Regulédre Sprachen

G = (V,E")

v |12345
hi(v)[13524
ha(v)[14253

e Wihrend auf der Knotenmenge V = [3] insgesamt 23 = 8 ver-
schiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

VANVAN

*——0

d

Bemerkung 53. Auf der Knotenmenge V = {1,...,n} existieren ge-
nau 2) verschiedene Graphen. Sei a(n) die Anzahl aller nichtisomor-
phen Graphen auf V. Da jede Isomorphieklasse mindestens einen und
héchstens n! verschiedene Graphen enthdlt, ist 2(3)/n! <a(n) < 2(5).
Tatsdchlich ist a(n) asymptotisch gleich u(n) = 2G)/n! (in Zei-
chen: a(n) ~u(n)), d.h.

lim a(n)/u(n) = 1.

Also gibt es auf V ={1,...,n} nicht wesentlich mehr als u(n) nicht-
isomorphe Graphen.

19

2.5 Minimierung von DFAs

2.5 Minimierung von DFAs

Wie kénnen wir feststellen, ob ein DFA M = (Z,%, 4, qo,) unnétige
Zusténde enthalt? Zunachst einmal konnen alle Zustdnde entfernt
werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden
gehen wir daher davon aus, dass M keine unerreichbaren Zustande
enthélt. Offensichtlich konnen zwei Zustédnde ¢ und p zu einem Zu-
stand verschmolzen werden (kurz: g ~ p), wenn M von ¢ und von p
ausgehend jeweils dieselben Worter akzeptiert. Bezeichnen wir den
DFA (Z,%,6,q, E) mit My, so sind ¢ und p genau dann verschmelzbar,
wenn L(M,) = L(M,) ist.

Fassen wir alle zu einem Zustand z dquivalenten Zustande in dem
neuen Zustand

[2]. ={<" e Z| L(M./) = L(M.)}

zusammen (wofiir wir auch kurz [2] oder Z schreiben) und ersetzen
wir Z und E durch Z ={Z |z € Z} und £ = {Z]| z € '}, so erhalten
wir den DFA M’ =(Z,%,d, 4o, E') mit

§'(g,a) = 8(g, a).

Hierbei bezeichnet Q fiir eine Teilmenge Q € Z die Menge {G | ¢ € Q}
aller Aquivalenzklassen ¢, die mindestens ein Element ¢ € enthalten.
Der nachste Satz zeigt, dass M’ tatséchlich der gesuchte Minimalau-
tomat ist.

Satz 54. Sei M = (Z,%,0,q0,E) ein DFA, der nur Zustinde ent-
hdlt, die vom Startzustand qo aus erreichbar sind. Dann ist M' =
(Z,E,é’,(jo,E) mit

6'(q,a) =6(q,a)

ein DFA fir L(M) mit einer minimalen Anzahl von Zustinden.

Beweis. Wir zeigen zuerst, dass ¢’ wohldefiniert ist, also der Wert
von ¢’(,a) nicht von der Wahl des Reprasentanten g abhangt. Hierzu

2 Regulédre Sprachen

zeigen wir, dass im Fall p ~ ¢ auch §(q,a) und d(p,a) aquivalent sind:

L(M,) = L(M,) VeeX :xeL(M,) < xeL(M,)
Vo eX* :ax e L(M,) < ax € L(M,)
Ve eX :xe L(Msga)) < € L(Msgpa))

L(Ms(g,0)) = L(Ms(p,a))-

bl

Als néchstes zeigen wir, dass L(M') = L(M) ist. Sei « =y ...z, eine
Eingabe und seien

q; = S(QO,ZEI...ZL’Z'), 1= 0,...771
die von M beim Abarbeiten von x durchlaufenen Zustinde. Wegen
6"(Gi-1, i) = 0(qi-1, 7)) = G

durchlauft M’ dann die Zustinde

Qanvla"'aQn'

Da aber ¢, genau dann zu E gehort, wenn g, € E ist, folgt
L(M'") = L(M) (man beachte, dass ¢, entweder nur Endzustinde
oder nur Nicht-Endzustdande enthélt, vgl. Beobachtung 55).

Es bleibt zu zeigen, dass M’ eine minimale Anzahl | Z| von Zustinden
hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es
reicht also zu zeigen, dass die Anzahl k = | Z| = |{L(M,) | z € Z}|| der

Zustéande von M’ nicht von M, sondern nur von L = L(M) abhéngt.

Far z € X7 sei
L,={yeX |zyeL}.

Dann gilt {L, [x € ¥*} ¢ {L(M.) | z € Z}, da L, = L(M;,)
ist. Die umgekehrte Inklusion gilt ebenfalls, da nach Voraussetzung
jeder Zustand ¢ € Z iiber ein x € X* erreichbar ist. Also hingt
k=|{L(M,)|zeZ}| =|{Ls|2eX*}| nur von L ab. n

20

2.5 Minimierung von DFAs

Eine interessante Folgerung aus obigem Beweis ist, dass fiir eine re-
gulére Sprache L ¢ ¥* die Menge {L, | x € ¥*} nur endlich viele
verschiedene Sprachen enthélt, und somit die durch

rRry< L,=1L,

auf ¥* definierte Aquivalenzrelation R; endlichen Index hat.

Fiir die algorithmische Konstruktion von M’ aus M ist es notwendig
herauszufinden, ob zwei Zustande p und ¢ von M aquivalent sind oder
nicht.

Bezeichne AAB = (A~ B)u (B~ A) die symmetrische Differenz von
zwei Mengen A und B. Dann ist die Indquivalenz p ¢ q zweier Zustén-
de p und ¢ gleichbedeutend mit L(M,)AL(M,) + @. Wir nennen ein
Wort x € L(M,)AL(M,) einen Unterscheider zwischen p und q.

Beobachtung 55.

e FEndzustinde p € E sind nicht mit Zustinden q € Z\ E dquivalent
(da sie durch e unterschieden werden).

o Wenn §(p,a) und §(q,a) indquivalent sind, dann auch p und q
(da jeder Unterscheider x von 0(p,a) und 6(q,a) einen Unter-
scheider ax von p und q liefert).

Wenn also D nur Paare von inaquivalenten Zustanden enthélt, dann
trifft dies auch auf die Menge

D= {{p,q}[FaeX:{d(p,a),0(q,a)} € D}
zu. Wir kénnen somit ausgehend von der Menge

Do={{p,q} |peE,q¢ E}

eine Folge von Mengen
DocDycc{{z,z2}cZ|z+2}
mittels der Vorschrift
Dy = Div{{p,q} | Ja e X:{d(p,a),d(q,a)} € Di}

2 Regulédre Sprachen

berechnen, indem wir zu D; alle Paare {p, ¢} hinzufiigen, fiir die eines
der Paare {0(p,a),d(q,a)}, a € &, bereits zu D; gehort. Da Z endlich
ist, muss es ein j mit Dj;,; = D; geben. In diesem Fall gilt (siehe
Ubungen):

pta<{p,q}€D;

Folglich kann M’ durch Verschmelzen aller Zusténde p,q mit {p,q} ¢
D; gebildet werden. Der folgende Algorithmus berechnet fiir einen
beliebigen DFA M den zugehorigen Minimal-DFA M.

Algorithmus min-DFA(M)

1 Input: DFA M = (Z,%,6,q0, F)

> entferne alle nicht erreichbaren Zustaende

3 D'={{z,2}|zeE 2 ¢E}

1 repeat

5 D:=D

6 D':=Du{{p,q}|JaecX:{5(p,a),d(q,a)} € D}

7 until D'=D

s OQutput: M’ =(Z,%,0",G, E), wobei fiir jeden Zustand
zeZgilt: 2={2'eZ|{z,2'} ¢ D}

Beispiel 56. Betrachte den DFA M

ib

Dann enthdlt Dy die Paare

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.

21

2.5 Minimierung von DFAs

Die Paare in Dy sind in der folgenden Matriz durch den Unterscheider
€ markiert.

S T = W N

(LI RSS!
M| M

123 45
Wegen

{p,q} {1,4y {1,5} {2,4} {2,5}
{0(¢g,a),0(p,a)} | {2,3} {2,6} {1,3} {1,6}

enthdlt Dy zusdtzlich die Paare {1,4}, {1,5}, {2,4}, {2,5} (in obiger
Matriz durch den Unterscheider a markiert). Da die verbliebenen
Paare {1,2}, {3,6}, {4,5} wegen

{p,q}
{0(p,a),0(q,a)}
{6(p,b),6(q,b)}

{1,2} {3,6} {4,5}
{1,2} {4,5} {3,6}
{3,6} {1,2} {4,5}

nicht zu Dy hinzugefiigt werden kénnen, ist Dy = D1. Aus den unmar-
kierten Paaren {1,2}, {3,6} und {4,5} erhalten wir die Aquivalenz-
klassen

1={1,2}, 3={3,6} und 4={4,5},
die auf folgenden Minimal-DFA M’ fihren:

b a
OO
a b

2 Regulédre Sprachen

Es ist auch moglich, einen Minimalautomaten M; direkt aus einer
reguldren Sprache L zu gewinnen (also ohne einen DFA M fiir L zu
kennen). Da wegen

8((]07.1') = S(QO,Z/) Aad S(qu) ~ 8(Q07y)
< L(M; = L(M;

< L,=1,

(qo,z) (q0,v)

zwel Eingaben x und y den DFA M’ genau dann in denselben Zu-

stand (qo,) = 0(qo,y) tiberfihren, wenn L, = L, ist, konnen wir

den von M’ bei Eingabe x erreichten Zustand 3(%,95) auch mit
der Sprache L, bezeichnen. Dies fithrt auf den zu M’ isomorphen
(also bis auf die Benennung der Zustédnde mit M’ identischen) DFA
ML = (ZL, E, 5L7 L€> EL) mit

Z, {L,|xzeX},
E; {L,|x €L} und
(5L(Lx,a) = L:m.

Notwendig und hinreichend fiir die Existenz von My, ist, dass Ry,
endlichen Index hat, also die Menge {L, | z € ¥*} endlich ist.

Beispiel 57. Fir L={zy...2,€{0,1}*|n>2 und x,1 =0} ist

L, x€{e, 1} oder x endet mit 11,
Lu{0,1}, x=0 oder x endet mit 10,
Lu{e 0,1}, x endet mit 00,

Lu{e}, x endet mit 01.

L, =

Somit erhalten wir den folgenden Minimalautomaten M.

22

2.5 Minimierung von DFAs

<

Im Fall, dass M bereits ein Minimalautomat ist, sind alle Zustande
von M' von der Form ¢ = {q}, so dass M isomorph zu M’ und damit
auch isomorph zu My, ist. Dies zeigt, dass alle Minimalautomaten fiir
eine Sprache L isomorph sind.

Satz 58 (Myhill und Nerode).
1. REG ={L| Ry hat endlichen Index}.

2. Sei L reguldr und sei index(Ry) der Index von Ryp. Dann gibt
es fiir L bis auf Isomorphie genau einen Minimal-DFA. Dieser
hat index(Ry) Zustinde.

Beispiel 59. Sei L ={ab! |i>0}. Wegen b € L,iALy; fiir i #j hat
R unendlichen Index, d.h. L ist nicht requldr. <

Die Zusténde von M; kénnen anstelle von L, auch mit den Aqui-
valenzklassen [z]g, (bzw. mit geeigneten Repriasentanten) benannt
werden. Der resultierende Minimal-DFA Mg, = (Z,%,4, [¢], E) mit

Z = Alzlg, [weX,
E {[]r, |z € L} und
6([$]RL7Q) = [xa]RL

wird auch als Aquivalenzklassenautomat bezeichnet.

Die Konstruktion von Mp, ist meist einfacher als die von M}, da die
Bestimmung der Sprachen L, entfillt. Um die Uberfithrungsfunktion
von Mp, aufzustellen, reicht es, ausgehend von r; = € eine Folge
ri,...,TE von paarweise bzgl. Ry indquivalenten Wortern zu bestim-
men, so dass zu jedem Wort 7;a, a € X, ein r; mit r,aRpr; existiert.
In diesem Fall ist §([r;],a) = [ria] = [r].

Beispiel 60. Fir die Sprache L ={xy... 2, €{0,1}* | 2,1 =0} lasst
sich Mg, wie folgt konstruieren:

2 Regulédre Sprachen

Wir beginnen mit ri = €.
Da r10 =0 ¢ [e] ist, wihlen wir ro =0 und setzen §([¢],0) = [0].
Da r1 =1¢€[e] ist, setzen wir §([¢],1) = [£].
Da r,0 = 00 ¢ [e] u[0] ist, ist r3 = 00 wund wir setzen
0([0],0) = [00].
5. Da rel =01 ¢ [e]u[0]u[00] ist, wihlen wir ry =01 und setzen
6([0],1) =[01].
6. Da die Worter r30 = 000 € [00], 731 =001 € [01], 740 =010¢€ [
und r41 = 011 € [¢] sind, setzen wir 5([00],0) = [00], ([00],1)
[01], 6([01],0) = [0] und 6([01],1) = [£].
Wir erhalten also folgenden Minimal-DFA Mg, :

e o~

0]

Wir fassen nochmals die wichtigsten Ergebnisse zusammen.
Korollar 61. Sei L eine Sprache. Dann sind folgende Aussagen dqui-
valent:

o L ist requldr,

e es gibt einen DFA M mit L = L(M),

e es gibt einen NFA N mit L = L(N),

o es gibt einen requliren Ausdruck v mit L = L(7y),

e die Aquivalenzrelation Ry, hat endlichen Index.
Wir werden im néchsten Abschnitt noch eine weitere Methode kennen-

lernen, mit der man beweisen kann, dass eine Sprache nicht regulér
ist, namlich das Pumping-Lemma.

23

2.6 Das Pumping-Lemma

2.6 Das Pumping-Lemma

Wie kann man von einer Sprache nachweisen, dass sie nicht regulér ist?
Eine Moglichkeit besteht darin, die Kontraposition folgender Aussage
anzuwenden.

Satz 62 (Pumping-Lemma fiir reguldre Sprachen).
Zu jeder reguldren Sprache L gibt es eine Zahl I, so dass sich alle
Worter x € L mit |x| > 1 in x = uwow zerlegen lassen mit

1. v#e,

2. |uv| <1 und

3. wv'w € L fir alle i > 0.

Fulls eine Zahl | mit diesen Eigenschaften existiert, wird das kleinste
solche | die Pumping-Zahl von L genannt.

Beweis. Sei M = (Z,%,9,q0, F) ein DFA fir L und sei | = | Z]
die Anzahl der Zustéinde von M. Setzen wir M auf eine Eingabe
x =x1...20, € L der Lange n > [an, so muss M nach spatestens [
Schritten einen Zustand ¢ € Z zum zweiten Mal besuchen:

Hj,k;:OSj<k’£l/\3(qg,x1...x]~)=3(qo,x1...xk):q.

Wiéhlen wir nun u=x1...2;, V=21 ...2, Und W = Tpyq . .. Ty, SO ist
|v] =k —j>1und |uv| = k <. Ausserdem gilt uviw € L fir i > 0, da
wegen 0(q,v) =g

S(qo,uviw) = g(S(S(qg,u),vi),w) = S(S(Q,vi),w) = S(qg,x) eF
— ~——
q q

ist. []

2 Regulédre Sprachen

Beispiel 63. Die Sprache

L={xe{a,b}" [#a(x) - #u(x) =3 1}

hat die Pumping-Zahll = 3. Sei namlich x € L beliebig mit |x| > 3. Dann
lasst sich innerhalb des Prifixes von x der Linge drei ein nichtleeres
Teilwort v finden, das gepumpt werden kann:

1. Fall: x hat das Prifiz ab (oder ba).

Zerlege x = uvw mit u=¢ und v = ab (bzw. v ="ba).
2. Fall: x hat das Prifix aab (oder bba).

Zerlege © = uvw mit u=a (bzw. u=">) und v =ab (bzw. v ="ba).
3. Fall: x hat das Prifiz aaa (oder bbb).

Zerlege x = uvw mit u =¢ und v = aaa (bzw. v = bbb). <

Beispiel 64. FEine endliche Sprache L hat die Pumping-Zahl

- 0, L=g,
max{|z|+ 1|z e L},

sonst.

4

Tatsdchlich lasst sich jedes Wort x € L der Linge |z| > 1 ,pumpen’
(da solche Warter gar nicht existieren), weshalb die Pumping-Zahl
héchstens 1 ist. Zudem gibt es im Fall I >0 ein Wort x € L der Linge
|z| =1 -1, das sich nicht ,pumpen® lisst, weshalb die Pumping-Zahl
nicht kleiner als | sein kann. N

Wollen wir mit Hilfe des Pumping-Lemmas von einer Sprache L zeigen,
dass sie nicht regular ist, so geniigt es, fiir jede Zahl [ein Wort x € L
der Lénge |z| > [anzugeben, so dass fir jede Zerlegung von x in drei
Teilworter u, v, w mindestens eine der drei in Satz 62 aufgefiihrten
Eigenschaften verletzt ist.

Beispiel 65. Die Sprache

L={aib?|j>0}

24

2.6 Das Pumping-Lemma

ist nicht reqular, da sich fiir jede Zahl 1 > 0 das Wort x = a'b' der
Lange |z| = 21 > 1 in der Sprache L befindet, welches offensichtlich
nicht in Teilworter u,v,w mit v # € und uwv?w € L zerlegbar ist. <

Beispiel 66. Die Sprache
L={a"|n>0}

ist ebenfalls nicht requldr. Andernfalls miisste es ndamlich eine Zahl
[geben, so dass jede Quadratzahl n? > 1 als Summe von natirlichen
Zahlen u + v + w darstellbar ist mit der Eigenschaft, dass v>1 und
u+v <l ist, und fir jedes i >0 auch u+1v+w eine Quadratzahl ist.
Insbesondere miisste also u+ 2v +w =n?+v eine Quadratzahl sein,
was wegen

n?<n?+v<n®+l<n?+20+1=(n+1)?
ausgeschlossen ist. <
Beispiel 67. Auch die Sprache
L={a?|p prim }

ist nicht requldr, da sich sonst jede Primzahl p einer bestimmten Min-
destgriofie | als Summe von natiirlichen Zahlen u + v+ w darstellen
liefle, so dass v > 1 und fir alle i >0 auch u+iw+w=p+ (i—1)v
prim ist. Dies ist jedoch firi=p+1 wegen

p+(p+1-Dv=p(l+v)
nicht der Fall. <

Bemerkung 68. Mit Hilfe des Pumping-Lemmas kann nicht fiir jede
Sprache L ¢ REG gezeigt werden, dass L nicht requldr ist, da seine
Umkehrung falsch ist. So hat beispielsweise die Sprache

L={a'bic*|i=0 oder j =k}

die Pumping-Zahl 1 (d.h. jedes Wort x € L mit Ausnahme von € kann
»gepumpt“ werden). Dennoch ist L nicht requlir (siehe Ubungen,).

2 Regulédre Sprachen

2.7 Grammatiken

Eine beliebte Methode, Sprachen zu beschreiben, sind Grammatiken.
Implizit haben wir hiervon bei der Definition der reguldren Ausdriicke
bereits Gebrauch gemacht.

Beispiel 69. Die Sprache RA aller requldren Ausdricke iiber ei-
nem Alphabet 3 = {aq,...,a} ldsst sich aus dem Symbol R durch
wiederholte Anwendung folgender Regeln erzeugen:

R - @, R - RR,
R — €, R — (R|R),
R - ani=1.. .k R > (R)".

<
Definition 70. Eine Grammatik ist ein 4-Tupel G = (V, %, P,S),
wobei

e V eine endliche Menge von Variablen (auch Nichtterminal-
symbole genannt),

e Y das Terminalalphabet,

e Pc(VuX)*x(VuX)* eine endliche Menge von Regeln (oder
Produktionen) und

e SecV die Startvariable ist.

Fir (u,v) € P schreiben wir auch kurz u —¢ v bzw. v - v, wenn die
benutzte Grammatik aus dem Kontext ersichtlich ist.

Definition 71. Seien o, € (V uX)*.
a) Wir sagen, B ist aus « in einem Schritt ableitbar (kurz:
a =g (), falls eine Regel u »g v und Worter I,r € (V uX)*
existieren mit
a = lur und B = lor.

Hierfiir schreiben wir auch lur =g lvr. (Man beachte, dass
durch Unterstreichen von u in o sowohl die benutzte Regel als

25

2.7 Grammatiken

auch die Stelle in «, an der u durch v ersetzt wird, eindeutig
erkennbar sind.)

b) Eine Folge o = (o, u0,70), - - -, (L, Um, Tm) von Tripeln (1;,u;,r;)
heifst Ableitung von 5 aus «, falls gilt:
e lougrg =, lypumr, = und
o Liur; = i Uis1mi fliiri=0,...,m~-1.

Die Lange von o ist m und wir notieren o auch in der Form
lougro = Liuiry = = Ly 1 U 1Tm-1 = Iy U T
c¢) Die durch G erzeugte Sprache ist
L(G) ={z eX*| S =z}
d) Ein Wort cce (VuX)*® mit S =, a heifit Satzform von G.

Zur Erinnerung: Die Relation =* bezeichnet die reflexive, transitive
Hiille der Relation =, d.h. o =* [bedeutet, dass es ein n > 0 gibt mit
a =" 3. Hierzu sagen wir auch, [ist aus « (in n Schritten) ableitbar.
Die Relation =" bezeichnet das n-fache Produkt der Relation =, d.h.
es gilt a =" 3, falls Worter «y, ..., a, existieren mit

e ap=a, a, = und

o ;= firi=0,...,n—-1.

Beispiel 72. Wir betrachten nochmals die Grammatik G = ({R}, XU
{@,¢6,(,),",|}, P, R), die die Menge der requliaren Ausdricke tuber dem
Alphabet 35 erzeugt, wobei P die oben angegebenen Regeln enthdlt. Ist
Y. ={0,1}, so lasst sich der requlire Ausdruck (01)*(e|@) beispielsweise
wie folgt ableiten:

R=RR=(R)"R= (RR)'R= (RR)"(R|R)

= (0R)"(R|R) = (01)"(B|R) = (01)"(¢|B) = (01)*(e|]z)

Man unterscheidet vier verschiedene Typen von Grammatiken.

2 Regulédre Sprachen

Definition 73. Sei G = (V, %, P,S) eine Grammatik.

1. G heifit vom Typ 3 oder regular, falls fir alle Regeln u — v
gilt: weV und ve XV uX u {e}.

2. G heifst vom Typ 2 oder kontextfret, falls fiir alle Regeln
u—>v gilt: ueV.

3. G heifit vom Typ 1 oder kontextsensitiv, falls fiir alle Regeln
u — v gilt: |v| > |u| (mit Ausnahme der e-Sonderregel, siche
unten,).

4. Jede Grammatik ist automatisch vom Typ O.

e-Sonderregel: In einer kontextsensitiven Grammatik G =
(V,%, P,S) kann auch die verkiirzende Regel S — ¢ benutzt wer-
den. Aber nur, wenn das Startsymbol S nicht auf der rechten Seite
einer Regel in P vorkommt.

Die Sprechweisen ,vom Typ ¢“ bzw. ,regular”, kontextfrei“ und ,kon-
textsensitiv® werden auch auf die durch solche Grammatiken erzeugte
Sprachen angewandt. (Der folgende Satz rechtfertigt dies fiir die regu-
laren Sprachen, die wir bereits mit Hilfe von DFAs definiert haben.)
Die zugehoérigen neuen Sprachklassen sind

CFL = {L(G) | G ist eine kontextfreie Grammatik},
(context free languages) und
CSL = {L(G) | G ist eine kontextsensitive Grammatik}

(context sensitive languages). Da die Klasse der Typ 0 Sprachen
mit der Klasse der rekursiv aufzdhlbaren (recursively enumerable)
Sprachen iibereinstimmt, bezeichnen wir diese Sprachklasse mit

RE = {L(G) | G ist eine Grammatik}.

Die Sprachklassen
REG c CFL c CSL c RE

26

2.7 Grammatiken

bilden eine Hierarchie (d.h. alle Inklusionen sind echt), die so genannte
Chomsky-Hierarchie.

Als néachstes zeigen wir, dass sich mit regularen Grammatiken gerade
die regularen Sprachen erzeugen lassen. Hierbei erweist sich folgende
Beobachtung als niitzlich.

Lemma 74. Zu jeder reguliren Grammatik G = (V,%, P,S) gibt es
eine dquivalente requlire Grammatik G', die keine Produktionen der
Form A — a hat.

Beweis. Betrachte die Grammatik G’ = (V/, X, P’,S) mit

1% Vu{Xet,
P = {A-aX,eu | A-gal U{Xpew >} UPN(V xY).

Es ist leicht zu sehen, dass G’ die gleiche Sprache wie GG erzeugt. =

Satz 75. REG = {L(G) | G ist eine requlire Grammatik}.

Beweis. Sei L € REG und sei M = (Z,%,6,qy, F) ein DFA mit
L(M) = L. Wir konstruieren eine reguldare Grammatik G = (V, X, P, S)
mit L(G) = L. Setzen wir

vV = Z,
S = qo und
P = {g—ap|i(q,a)=p}u{q—c|qeE},

so gilt fir alle Worter x = x1 ... 2, € X*:
xeL(M) < 3q,.
5(Qi—17'xi) =q; fir 7 = 1a R L

e Q1 €4 3que B

< dq,...,q,€V:

Gi1 ~¢ vig; firi=1,... . nund ¢, > €
< dq1,...,q, €V :

Qo =g 1. wiq; firi=1,...,nund g, »¢ ¢
< xel(Q)

2 Regulédre Sprachen 2.7 Grammatiken

Fiir die entgegengesetzte Inklusion sei nun G = (V, 3, P,S) eine re- iber die Grammatik G' = ({A, B,C, D},{a,b}, P, A) mit
guldre Grammatik, die keine Produktionen der Form A — a enthélt.
Dann kénnen wir die gerade beschriebene Konstruktion einer Gram- P A—aB,bC\e,
matik aus einem DFA ,umdrehen“, um ausgehend von G einen NFA B — aC,bA,bD,
M =(Z,%,6,{S}, E) mit C - aA,bB,aD,
D —¢
Z =V,
E = {A|A-ge} und auf den NFA
d(A,a) = {B|A—-gaB}

zu erhalten. Genau wie oben folgt nun L(M) = L(G). |

Beispiel 76. Der DFA

fihrt auf die Grammatik ({qo, q1,42,q3},{0,1}, P, qo) mit

P qo— 1qo,0q1,
q1 —~ 0go, 13,
q2 ~> 0q2, 13, ¢,
g3 = 0q1, 1qo, €.

Umgekehrt fihrt die Grammatik G = ({A, B,C},{a,b}, P, A) mit

P: A-aB,bC e,
B — aC,bA,b,
C - aA,bB,a

27

3 Kontextfreie Sprachen

3 Kontextfreie Sprachen

Wie wir gesehen haben, ist die Sprache L = {a™b™ | n > 0} nicht regulér.
Es ist aber leicht, eine kontextfreie Grammatik fiir L zu finden:

G =({S},{a,b},{S = aSL,S - ¢},S).

Damit ist klar, dass die Klasse der reguldren Sprachen echt in der
Klasse der kontextfreien Sprachen enthalten ist. Als néchstes wollen
wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt
in der Klasse der kontextsensitiven Sprachen enthalten ist:

REG ¢ CFL ¢ CSL.

Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur
Regeln der Form A — o haben. Dies lasst die Verwendung von belie-
bigen e-Regeln der Form A — ¢ zu. Eine kontextsensitive Grammatik
darf dagegen hochstens die e-Regel S — ¢ haben. Voraussetzung
hierfiir ist, dass S das Startsymbol ist und dieses nicht auf der rech-
ten Seite einer Regel vorkommt. Daher sind nicht alle kontextfrei-
en Grammatiken kontextsensitiv. Beispielsweise ist die Grammatik
G = ({S},{a,b},{S - aSbh,S - ¢},5) nicht kontextsensitiv, da sie
die Regel S — ¢ enthélt, obwohl S auf der rechten Seite der Regel
S — aSbh vorkommt.

Es lasst sich jedoch zu jeder kontextfreien Grammatik eine aquivalen-
te kontextfreie Grammatik G’ konstruieren, die auch kontextsensitiv
ist. Hierzu zeigen wir zuerst, dass sich zu jeder kontextfreien Gram-
matik G, in der nicht das leere Wort ableitbar ist, eine aquivalente
kontextfreie Grammatik G’ ohne e-Regeln konstruieren lésst.

Satz 77. Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie
Grammatik G' ohne e-Produktionen mit L(G") = L(G) ~ {e}.

28

Beweis. Zuerst sammeln wir mit folgendem Algorithmus alle Varia-
blen A, aus denen das leere Wort ableitbar ist. Diese werden auch als
e-ableitbar bezeichnet.

I B ={AeV|A->¢}

2 repeat

3 E=F

I E'=Fu{AeV|3By,....,Bye E:A— B;...By}
5 until F=FE'

Nun konstruieren wir G’ = (V, X, P’ S) wie folgt:
Nehme zu P’ alle Regeln A - o/ mit o/ # € hinzu, fir

die P eine Regel A — « enthalt, so dass o/ aus a durch
Entfernen von beliebig vielen Variablen A € E hervorgeht.

Beispiel 78. Betrachte die Grammatik G = (V,%,P,S) mit V =
{8, T,U,X,Y, Z}, ¥ ={a,b,c} und den Regeln

P: S->aY bX,Z;, Y ->bS,aYY;, T->U,;
X —>aS,bXX;, Z—-¢e ST, cZ; U-abc.

Bei der Berechnung von E = {AeV | A=*¢} ergeben sich der Reihe
nach folgende Belequngen fiir die Mengenvariablen E und E’:

B {2y 14,5}
E | {Z S} {Z, 5}

Um nun die Regelmenge P’ zu bilden, entfernen wir aus P die einzige
e-Regel Z — ¢ und figen die Regeln X — a (wegen X - aS), Y - b
(wegen Y — bS) und Z — ¢ (wegen Z — cZ) hinzu:

P S-aY bX, Z, Y - b,05,aYY; T-U,;
X >a,a5,bXX; Z ¢ ST, cz; U — abe. 4

3 Kontextfreie Sprachen

Als direkte Anwendung des obigen Satzes kénnen wir die Inklusion
der Klasse der Typ 2 Sprachen in der Klasse der Typ 1 Sprachen
zeigen.

Korollar 79. REG ¢ CFL c CSL ¢ RE.

Beweis. Die Inklusionen REG ¢ CFL und CSL ¢ RE sind klar. Wegen
{a™b"|n > 0} € CFL - REG ist die Inklusion REG < CFL auch echt. Also
ist nur noch die Inklusion CFL ¢ CSL zu zeigen. Nach obigem Satz
ex. zu L € CFL eine kontextfreie Grammatik G = (V. X, P, S) ohne
e-Produktionen mit L(G) = L ~ {¢}. Da G dann auch kontextsensitiv
ist, folgt hieraus im Fall € ¢ L unmittelbar L(G) = L € CSL. Im Fall
¢ € L erzeugt die kontextsensitive Grammatik
G'=(Vu{S}, 5, Pu{S - S,e},5)

die Sprache L(G") = L, d.h. L € CSL. [

Als néachstes zeigen wir folgende Abschlusseigenschaften der kontext-
freien Sprachen.
Satz 80. Die Klasse CFL ist abgeschlossen unter Vereinigung, Produkt
und Sternhiille.

Beweis. Seien G; = (V;, %, P;, S;), i = 1,2, kontextfreie Grammatiken
fiir die Sprachen L(G;) = L; mit V1 nV3 = @ und sei S eine neue
Variable. Dann erzeugt die kontextfreie Grammatik

Gy = (Viulau{S}, 5, PLuPU{S > 51,5}, 5)
die Vereinigung L(G3) = L1 U Ly. Die Grammatik
G4= (WU‘/QU{S},Z,PlUPQU{S—>5152},S)

erzeugt das Produkt L(G,) = Ly Ly und die Sternhiille (L;)* wird von
der Grammatik

G5 = (‘/1 U {S},E,Pl @) {S - 51575}75)

erzeugt. m

29

Offen bleibt zunéchst, ob die kontextfreien Sprachen auch unter
Schnitt und Komplement abgeschlossen sind. Hierzu miissen wir flir
bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies
gelingt mit einem Pumping-Lemma fiir kontextfreie Sprachen, fiir
dessen Beweis wir Grammatiken in Chomsky-Normalform benotigen.

Satz (Pumping-Lemma fiir kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl [, so dass sich alle
Worter z € L mit |z| > in z = wvwzxy zerlegen lassen mit

1. vx #e,
2. Jvwz| <1 und

3. wvtwxty € L fir alle i > 0.

Beispiel 81. Betrachte die Sprache L = {a™b"|n > 0}. Dann lisst
sich jedes Wort z = a™b™ mit |z| > 2 pumpen: Zerlege z = vvwzxy mil
u=a"', v=a,w=e, x=0bundy=0""1. <

Beispiel 82. Die Sprache {a™b"c™ | n > 0} ist nicht kontextfrei. Fir
eine vorgegebene Zahl 1 > 0 hat namlich z = alb!c! die Lange |z| = 31 > 1.
Dieses Wort ldsst sich aber nicht pumpen, da fir jede Zerlequng
z = wvwzy mit vr # £ und jvwz| <1 das Wort 2’ = wo?wa?y nicht zu
L gehort:

o Wegen vz # ¢ ist |z| < |2/
o Wegen |vwz| <1 kann in vx nicht jedes der drei Zeichen a,b,c
vorkommen.

o Kommt aber in vx beispielsweise kein a vor, so ist

#a(2') = #a(2) = 1= |2|/3 <|2'|/3,

also kann 2’ nicht zu L gehdren. <

3 Kontextfreie Sprachen

Die Chomsky-Normalform ist auch Grundlage fiir einen effizienten
Algorithmus zur Losung des Wortproblems fiir kontextfreie Gramma-
tiken, das wie folgt definiert ist.

Wortproblem fiir kontextfreie Grammatiken:

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.
Gefragt: Ist v € L(G)?

Satz. Das Wortproblem fiir kontextfreie Grammatiken ist effizient
entscheidbar.

3.1 Chomsky-Normalform

Definition 83. Fine Grammatik (V,%,P,S) ist in Chomsky-
Normalform (CNF), falls P cV x (V2uX) ist, also alle Regeln
die Form A - BC' oder A — a haben.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen,
missen wir neben den e-Regeln A — £ auch sdmtliche Variablenumbe-
nennungen A — B loswerden.

Definition 84. Regeln der Form A — B heiflen Variablenumbe-
nennungen.

Satz 85. Zu jeder kontextfreien Grammatik G ex. eine kontextfreie
Grammatik G' ohne Variablenumbenennungen mit L(G") = L(G).

Beweis. Zuerst entfernen wir sukzessive alle Zyklen

A1—>A2—>"'—>Ak—>A1,

indem wir diese Regeln aus P entfernen und alle iibrigen Vorkommen
der Variablen A,,..., Ay durch A; ersetzen. Falls sich unter den ent-
fernten Variablen A,,..., Ay die Startvariable S befindet, sei A; die
neue Startvariable.

30

3.1 Chomsky-Normalform

Nun entfernen wir sukzessive die restlichen Variablenumbenennungen,
indem wir

« eine Regel A - B wihlen, so dass in P keine Variablenumbe-
nennung B — C' mit B auf der rechten Seite existiert,

o diese Regel A —» B aus P entfernen und
o fiir jede Regel B - « in P die Regel A - o zu P hinzunehmen.
|

Beispiel 86. Ausgehend von den Produktionen
P:S—-aY bX, Z, Y - b,bS5,aYY; T-U,;
X >a,a5,bXX; Z->¢ ST, cz; U—abc

entfernen wir den Zyklus S - Z — S, indem wir die Regeln S - Z
und Z — S entfernen und dafiir die Produktionen S — ¢, T, cS (wegen
Z = ¢, T,cZ) hinzunehmen:
S—>aY,bX,c,T,cS; Y - b,bS,aYY; T - U,
X —»a,a5,0XX; U — abc.
Nun entfernen wir die Regel T' — U wund fiigen die Regel T — abc
(wegen U — abc) hinzu:
S —aY,bX,c,T,cS; Y - b,b5,aYY; T — abc;
X > a,a5,bXX; U — abc.
Als ndchstes entfernen wir dann auch die Regel S — T und fiigen die
Regel S — abe (wegen T — abe) hinzu:
S = abc,aY,bX,c,cS; Y - b,0S,aYY; T— abe;
X = a,a5,bX X, U- abc.

Da T und U nun nirgends mehr auf der rechten Seite vorkommen,
kénnen wir die Regeln T — abc und U — abc weglassen:

S —abc,aY,bX,c,cS; Y - b,05,aYY; X - a,aS,bX X.

3 Kontextfreie Sprachen

Nach diesen Vorarbeiten ist es nun leicht, eine gegebene kontextfreie
Grammatik in Chomsky-Normalform umzuwandeln.

Satz 87. Zu jeder kontextfreien Sprache L € CFL gibt es eine CNF-
Grammatik G' mit L(G") = L~ {e}.

Beweis. Aufgrund der beiden vorigen Sétze hat L \ {¢} eine kon-
textfreie Grammatik G' = (V, X, P, S) ohne e-Produktionen und ohne
Variablenumbenennungen. Wir transformieren G wie folgt in eine
CNF-Grammatik.

o Fiige fiir jedes Terminalsymbol a € 3 eine neue Variable X, zu
V und eine neue Regel X, - a zu P hinzu.

e Ersetze alle Vorkommen von a durch X,, aufler wenn a alleine
auf der rechten Seite einer Regel steht.

o Ersetze jede Regel A - By ... By, k>3, durch die k-1 Regeln
A—B1Ay, Ai—> BoAg, ..., Ap-3— Br2Ag-2, Ar-2—> Bi-1Bx,

wobei Ay, ..., A,_o neue Variablen sind. []

Beispiel 88. In der Produktionenmenge
P: S—abc,aY,bX,c,cS; X—a,aS,bXX; Y—>b0,bS,aYY

ersetzen wir die Terminalsymbole a, b und ¢ durch die Variablen A,
B und C' (aufer wenn sie alleine auf der rechten Seite einer Regel
vorkommen) und figen die Regeln A—a, B—b, C'—c hinzu:

S—c,ABC,AY,BX,CS; X—a,AS,BXX;
Y—>b,BS,AYY; A-a; B—-b; C—c.
Ersetze nun die Regeln S— ABC, X - BXX und Y - AYY durch
die Regeln S - AS', "> BC, X - BX', X' > XX und Y - AY’,
Y'-YY:
S—c, AS"AY, BX,CS; S'"- BC,
X—-a,AS,BX"; X'-XX; Y->b,BS,AY'", Y'->YY;

A—a; B-b; C'—c. 4

31

3.1 Chomsky-Normalform

Eine interessante Frage ist, ob in einer kontextfreien Grammatik G
jedes Wort = € L(G) “eindeutig” ableitbar ist. Es ist klar, dass in
diesem Kontext Ableitungen, die sich nur in der Reihenfolge der
Regelanwendungen unterscheiden, nicht als verschieden betrachtet
werden sollten. Dies erreichen wir dadurch, dass wir die Reihenfolge
der Regelanwendungen festlegen.

Definition 89. Sei G = (V, X, P, S) eine konteztfreie Grammatik.
a) Eine Ableitung

Qg = loA()TO = 51A17”1 = = lm_lAm_lrm_l = Oy

heifit Linksableitung von o (kurz ag =3), falls in jedem
Ableitungsschritt die am weitesten links stehende Variable ersetzt
wird, d.h. es gilt l; € ¥X* firt=0,...,m-1.

*

b) Rechtsableitungen oy =% o, sind analog definiert.

c) G heifst mehrdeutig, wenn es ein Wort x € L(G) gibt, das
zwei verschiedene Linksableitungen S =7 x hat. Andernfalls
heifst G eindeutig.

Offenbar gelten fiir alle Worter o € ¥* folgende Aquivalenzen:

rel(G) & S="r & S=>71 o S=%a.

Beispiel 90. Wir betrachten die Grammatik G = ({S},{a,b},{S -
aSbS,e},S). Offenbar hat das Wort aabb in G acht verschiedene
Ableitungen, die sich allerdings nur in der Reihenfolge der Regelan-

3 Kontextfreie Sprachen

wendungen unterscheiden:

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb
S = aSbhS = aaSbShS = aaSbbS = aaSbb = aabb
S = aSbS = aaSbSbS = aabSbS = aabbS = aabb
S = aSbS = aaSbSbS = aabSbS = aabSb = aabb
S = aSbhS = aaSbShS = aaSbSb = aabSb = aabb
S = aSbS = aaSbSbS = aaSbSb = aaSbb = aabb
S = aSbS = aSb = aaSbSb = aabSb = aabb

S = aSbS = aSb = aaSbSb = aaSbb = aabb.

Darunter sind genau eine Links- und genau eine Rechtsableitung:
S = aSbS = aaSbSbS =, aabSbS =1, aabbS = aabb
und
S =r aSbS =, aSb=r aaSbSb = aaSbb =pr aabb.

Die Grammatik G ist eindeutig. Dies liegt daran, dass in keiner Satz-
form von G die Variable S von einem a gefolgt wird. Daher muss
jede Linksableitung eines Wortes x € L(G) die am weitesten links
stehende Variable der aktuellen Satzform aS[genau dann nach aSbS
expandieren, falls das Prifix o in x von einem a gefolgt wird.
Dagegen ist die Grammatik G' = ({S},{a,b},{S - aSbS,ab,c},S)
mehrdeutig, da das Wort x = ab zwei verschiedene Linksableitungen
hat:

S = ab und S = aSbS = abS =, ab. <

Wir gehen an dieser Stelle kurz der Frage nach, welche Sprache von
der Grammatik G = ({S},{a,b},{S = aSbS,c},S) erzeugt wird. Zu-
nichst einmal ist klar, dass L(G) nur Worter z € {a,b}* mit der
Eigenschaft #,(x) = #,(2) enthélt. Allerdings sind nicht alle Worter
mit dieser Eigenschaft in L(G) enthalten, da beispielsweise ba ¢ L(G)
ist. Damit ein Wort x in G ableitbar ist, muss zudem fiir jedes Préfix
u von x gelten, dass #,(u) > #4(u) ist.

32

3.1 Chomsky-Normalform

Wir zeigen durch Induktion iiber die Ableitungslange [, dass jede in
G ableitbare Satzform « € {a,b,S}* folgende Bedingungen erfiillt.

(%) #ala) =#i()
(%) #4(u) > #4(u) fir jedes Prafix u von a.
[=0: Klar, da a = S beide Bedingungen erfillt.
[~ 1+1: Gelte S =l a=£.
o Falls § aus a durch Anwendung der Regel S — ¢ entsteht, ist
dies ebenfalls klar.
e Entsteht § aus « durch die Regel S — aSbS, so folgt
#.(B) = #o(a) +1 = #p(a) + 1 = #4(5), also (*). Zudem

entspricht jedem Préfix w von ein Préfix «' von a mit

#Hao(u) — #p(u) > #4(u') = #p(u'), wodurch sich (**) von «
auf £ ubertragt.

Tatsachlich sind in G genau die Worter = € {a,b}* ableitbar, die die
Bedingungen (x, **) erfiillen.

Dazu zeigen wir durch Induktion tiber n folgende Behauptung.

Behauptung 91. Alle Worter x € {a,b}* der Linge < n, die die

Bedingungen (x, **) erfillen, sind in G ableitbar.

n =0: Klar, da x = aus S ableitbar ist.

n~ n+1: Sei x ein Wort der Lange n+1, das die Bedingungen (*, *x)
erfilllt und sei u das kiirzeste Prafix von z mit #,(u) = #4(u) > 1.

e Dann muss u die Form u = avb haben, wobei v die Bedingungen
(%, #x) erfiillt. Nach IV gilt daher S =* v.

e Zudem hat x die Form x = uw, wobei auch w die Bedingungen
(%, *+) erfiillt. Nach IV gilt daher S =* w.
e Nun ist x aus S wie folgt ableitbar: S = aSbS =* avbS =
uS =* uw = .
Ableitungen in einer kontextfreien Grammatik lassen sich graphisch

sehr gut durch einen Syntaxbaum (auch Ableitungsbaum genannt,
engl. parse tree) veranschaulichen.

3 Kontextfreie Sprachen

Definition 92. Sei G = (V, E) ein Digraph.
e Fin vo-vp-Weg in GG ist eine Folge von Knoten vy, ..
(vi,vi;1) € E firi=0,...,k-1. Seine Lange ist k.
e Ein Weg heifit einfach oder Pfad, falls alle seine Knoten paar-
weise verschieden sind.
e Fin u-v-Weg der Linge > 1 mit uw =v heifit Zyklus.
e G heifit azyklisch, wenn es in G keinen Zyklus gibt.

e G heifit gerichteter Wald, wenn G azyklisch ist und jeder
Knoten v € V' Eingangsgrad deg™ (v) <1 hat.

o Ein Knoten u eV vom Ausgangsgrad deg”(u) =0 heifst Blatt.

e Ein Knoten w eV heifst Wurzel von G, falls alle Knoten v eV
von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).

., U mat

e FEin gerichteter Wald, der eine Wurzel hat, heifit gerichte-
ter Baum.

e Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig
bestimmt sind, kann auf ihre Angabe verzichtet werden. Man
spricht dann auch von einem Wurzelbaum.

Definition 93. Wir ordnen einer Ableitung
& = llérl = = lm,lAm,le,1 = Oy

den Syntaxbaum T,, zu, wobei die Baume Ty, ..., T,, induktiv wie folgt

definiert sind:
o Ty besteht aus einem einzigen Knoten, der mit Ay markiert ist.
e Wird im (i + 1)-ten Ableitungsschritt die Regel A; — vy ... vy
mit v; e XUV fir j=1,...,k angewandt, so ensteht T;.1 aus
T;, indem wir das Blatt A; in T; durch folgenden Unterbaum

ersetzen:
k> 0: Az k= 0: Az

/N |

v et Uk €

33

3.2 Das Pumping-Lemma fiir kontextfreie Sprachen

o Hierber stellen wir uns die Kanten von oben nach unten gerichtet
und die Kinder vy ...vg von links nach rechts geordnet vor.

Beispiel 94. Betrachte die Grammatik G = ({S},{a,b},{S -
aShS,e},S) und die Ableitung

S = aSbS = aaSbSbS = aaSbbS = aabbS = aabb.

Die zugehérigen Syntaxbiume sind dann

T()ZS Tli S TQZ S T31 S T4Z S T5Z S
/1N /N /I\ /I\ /I\
aSbS aSbSs aSbS aSbsS aSbs

AN /N N /IN
aSbsS aSbsS aSbs aSbs e

Die Satzform «; ergibt sich aus T;, indem wir die Bldtter von T; von
links nach rechts zu einem Wort zusammensetzen. <

Bemerkung 95.

e Aus einem Syntaxbaum ist die zugehirige Linksableitung eindeu-
tig rekonstruierbar. Daher fiihren unterschiedliche Linksableitun-
gen auch auf unterschiedliche Syntarbdume. Linksableitungen
und Syntaxbdume entsprechen sich also eineindeutig. Ebenso
Rechtsableitungen und Syntaxbiume.

e Ist T Syntazbaum einer CNF-Grammatik, so hat jeder Knoten
in T héchstens zwei Kinder (d.h. T ist ein Bindrbaum,).

3.2 Das Pumping-Lemma fiir kontextfreie
Sprachen

In diesem Abschnitt beweisen wir das Pumping-Lemma fir kontext-
freie Sprachen. Dabei nutzen wir die Tatsache aus, dass die Syntax-
baume einer CNF-Grammatik Bindrbaume sind.

3 Kontextfreie Sprachen

Definition 96. Die Tiefe eines Baumes mit Wurzel w ist die mazi-
male Pfadldnge von w zu einem Blatt.

Lemma 97. Fin Bindrbaum B der Tiefe k hat hochstens 2% Blitter.

Beweis. Wir fuhren den Beweis durch Induktion uber k.
k =0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

k~> k+1: Sei B ein Binarbaum der Tiefe k + 1. Dann héngen an B’s
Wurzel maximal zwei Teilbdume. Da deren Tiefe < k ist, haben sie

nach IV hochstens 2% Blatter. Also hat B < 2k+1 Blatter. n

Korollar 98. Ein Bindrbaum B mit mehr als 2¥=1 Bldattern hat min-
destens Tiefe k.

Beweis. Wiirde B mehr als 25-! Blétter und eine Tiefe < k-1 besitzen,
so wiirde dies im Widerspruch zu Lemma 97 stehen. [

Satz 99 (Pumping-Lemma fiir kontextfreie Sprachen).
Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle
Worter z € L mit |z| > | in z = uvowzy zerlegen lassen mit

1. vx #e,

2. lvwx| <1 und

3. wv'waty € L fir alle i > 0.

Beweis. Sei G = (V, %, P,S) eine CNF-Grammatik fir L \ {¢}. Dann
gibt es in G fiir jedes Wort z = 27...2, € L mit n > 1, eine Ablei-
g tung
Tgn_l S:OéoﬁOél"‘ﬁOémZZ.
Da G in CNF ist, werden hierbei n — 1 Regeln
der Form A - BC und n Regeln der Form
A — a angewandt, d.h. m = 2n — 1 und z hat
den Syntaxbaum 75, ;. Wir kénnen annehmen,

3.2 Das Pumping-Lemma fiir kontextfreie Sprachen

dass zuerst alle Regeln der Form A - BC und
danach die Regeln der Form A — a zur An-
wendung kommen. Dann besteht die Satzform
a1 aus n Variablen und der Syntaxbaum 7},
hat ebenfalls n Blatter. Setzen wir [= 2%, wobei
k= ||V ist, so hat T,,; im Fall n > [mindestens
[=2k > 2k-1 Blatter und daher mindestens die
Tiefe k. Sei 7 ein von der Wurzel ausgehender
Pfad maximaler Lange in 7;,_;. Dann hat 7 die
Lange > k und unter den letzten k + 1 Knoten
von 7 miissen zwei mit derselben Variablen A
markiert sein.
Seien U und [/’ die von diesen Knoten ausge-
henden Unterbdume des vollstandigen Syntax-
baums 75,_;. Nun zerlegen wir z wie folgt. w’
ist das Teilwort von 2z = uw’y, das von U erzeugt
wird und w ist das Teilwort von w’ = vwz, das
von [/ erzeugt wird. Jetzt bleibt nur noch zu
zeigen, dass diese Zerlegung die geforderten 3
Eigenschaften erfillt.

« Da U mehr Blétter hat als U’, ist vz # ¢ (Bedingung 1).

e Da der Baum U* = U nT,_; die Tiefe < k hat (andernfalls wére
7 nicht maximal), hat U* hochstens 2% = [Blétter. Da U* genau
lvwz| Blatter hat, folgt |[vwz| <1 (Bedingung 2).

o Fiir den Nachweis von Bedingung 3 lassen sich schliefSlich Syntax-
baume B’ fiir die Worter uviwaty, i > 0, wie folgt konstruieren:

Bo By Bo
A ¢ _;; \
w u
uw Y v v X Y U U X Y
w
v X
w

3 Kontextfreie Sprachen

BO entsteht also aus B! = Ty,,_1, indem wir U durch U’ ersetzen,
und Bi*! entsteht aus Bf, indem wir U’ durch U ersetzen. ™

Satz 100. Die Klasse CFL ist nicht abgeschlossen unter Schnitt und
Komplement.

Beweis. Die beiden Sprachen
Ly ={a"b"c™ |n,m >0} und Lg = {a"b"c™ | n,m >0}

sind kontextfrei. Nicht jedoch Ly n Ly =
nicht unter Schnitt abgeschlossen.

{a"b"c™ | n > 0}. Also ist CFL

Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlos-
sen ist, kann CFL wegen de Morgan nicht unter Komplementbildung
abgeschlossen sein.]

3.3 Der CYK-Algorithmus

In diesem Abschnitt stellen wir den bereits angekiindigten effizienten
Algorithmus zur Losung des Wortproblems fiir kontextfreie Gramma-
tiken vor.

Wortproblem fiir kontextfreie Grammatiken:

Gegeben: Eine kontextfreie Grammatik G und ein Wort .
Gefragt: Ist v € L(G)?

Wir 16sen das Wortproblem, indem wir G zunéchst in Chomsky-
Normalform bringen und dann den nach seinen Autoren Cocke,

ounger und [<asami benannten -Algorithmus anwenden, welcher
auf dem Prinzip der Dynamischen Programmierung beruht.

Satz 101. Das Wortproblem fiir kontextfreie Grammatiken ist effizi-
ent entscheidbar.

35

3.3 Der CYK-Algorithmus

Beweis. Seien eine Grammatik G = (V, 3, P,S) und ein Wort z =
x1 ... T, gegeben. Falls x = ¢ ist, konnen wir effizient priifen, ob S =* ¢
gilt. Andernfalls transformieren wir G in eine CNF-Grammatik G’ fir
die Sprache L(G) \ {e}. Chomsky-Normalform. Es lasst sich leicht
verifizieren, dass die notigen Umformungsschritte effizient ausfithrbar
sind. Nun setzen wir den CYK-Algorithmus auf das Paar (G’,z) an,
der die Zugehorigkeit von x zu L(G") wie folgt entscheidet.

Bestimme fir [=1,...,nund k=1,...,n
Vig(z)={AeV|A=>"1;..

aller Variablen, aus denen das mit x; beginnende Teilwort xy ... xg 1
von z der Lange [ableitbar ist. Dann gilt offensichtlich x € L(G") <

-1+ 1 die Menge

. $k+l—1}

SeVui(x).
Fir [=1 ist
Vik(z)={AeV|A-ux}
und fir [=2,...,n ist
Vik(x)={AeV |3'<l3IBeVy4(z)3C € Vi jrr(z): A—> BC}.

Eine Variable A gehort also ge-
nau dann zu Vjx(x), [> 2, falls
eine Zahl I" € {1,...,1 -1} und
eine Regel A - BC(C' existieren,
so dass B € Vyy(x) und C e
‘/l,l/’]ﬁll(x) sind.

N
A A

* Thtl'-1 Lhrtr =+ Thel

Algorithmus CYK(G,x)

1 Input: CNF-Grammatik G = (V, %, P,S) und ein Wort z =z ...x,
> for k:=1ton do

3 VLk::{AGV|A—>xk€P}

, for [:=2 ton do

5 for k:=1ton-[0+1do

6 Vik=2

7 for ':=1tol-1do

3 Kontextfreie Sprachen

8 for all A— BC¢eP do

9 if BeVyy and CeVi_y then
10 Vik=Vixu{A4}

11 if S eV, then accept else reject

Der CYK-Algorithmus lésst sich leicht dahingehend modifizieren, dass
er im Fall z € L(G) auch einen Syntaxbaum 7" von x ausgibt. Hierzu
gentigt es, zu jeder Variablen A in V;; den Wert von I’ und die Regel
A — BC' zu speichern, die zur Aufnahme von A in Vj;, gefithrt haben.
Im Fall S €V, 1(x) lasst sich dann mithilfe dieser Information leicht
ein Syntaxbaum 7' von x konstruieren.

Beispiel 102. Betrachte die CNF-Grammatik mit den Produktionen

S—-AS"AY,BX,CS,c; S">BC; X—-AS,BX" a; X'->XX;
Y—>BS AY'b; Y'->YY; A-a; B-b; C—c.

Dann erhalten wir fir das Wort x = abb folgende Mengen V), :

Ty a b b
1) {X, A} [{V,B} | {v,B} |
2 {s} | {Y"}

30 {vY}

Wegen S ¢ Vs 1(abb) ist x ¢ L(G). Dagegen gehirt das Wort y = aababb
wegen S € Vg 1(aababb) zu L(G):
a a b a b b
(XA} [{X, A} [{v.B} [(X, 4} | (Y. B} | {Y, B} |
(X3 0 {sy | {sy | {sh | Y
Xy Xy vy | Y
(X3 {5y | {1}
Xy | V3
{15} S

36

3.4 Kellerautomaten

3.4 Kellerautomaten

Wie miissen wir das Maschinenmodell des DFA erweitern, damit die
Sprache L = {a™" | n >0} und alle anderen kontextfreien Sprachen
erkannt werden kénnen? Dass ein DFA die Sprache L = {a"b" | n > 0}
nicht erkennen kann, liegt an seinem beschriankten Speichervermogen,
das zwar von L aber nicht von der Eingabe abhangen darf.

Um L erkennen zu kénnen, reicht bereits ein so genannter Kellerspei-
cher (Stapel, engl. stack, pushdown memory) aus. Dieser erlaubt nur
den Zugriff auf die hochste belegte Speicheradresse. Ein Kellerautomat

 verfiligt iiber einen Kellerspeicher,
Eingabe-

band —

/ Lesekopf
A
Steuer- /

einheit
Keller-
speicher

o kann e-Uberginge machen,

o liest in jedem Schritt das aktuelle
Eingabezeichen und das oberste
Kellersymbol,

o kann das oberste Kellersymbol
entfernen (durch eine pop-Ope-
ration) und

o durch beliebig viele Symbole ersetzen (durch eine push-Opera-
tion).

Fiir eine Menge M bezeichne P.(M) die Menge aller endlichen Teil-
mengen von M, d.h.

P(M)={Ac M| A ist endlich}.

Definition 103. Ein Kellerautomat (kurz: PDA; pushdown au-
tomaton) wird durch ein 6-Tupel M = (Z,%,1,6,qo,#) beschrieben,
wobei

o 7 + & eine endliche Menge von Zustianden,
e Y das Eingabealphabet,

3 Kontextfreie Sprachen

I' das Kelleralphabet,
§: Zx(Bu{e})xI' - P.(ZxI*) die Uberfiihrungsfunktion,
qo € Z der Startzustand und

€' das Kelleranfangszeichen ist.

Wenn ¢ der momentane Zustand, A das oberste Kellerzeichen und

u € ¥ das néchste Eingabezeichen (bzw. u = ¢) ist, so kann M im Fall
(p,B1...By)€d(q,u, A)

e in den Zustand p wechseln,

o den Lesekopf auf dem Eingabeband um |u| Positionen vorriicken
und

e das Zeichen A im Keller durch die Zeichenfolge B; ... By erset-
zen.

Hierfiir sagen wir auch, M fithrt die Anweisung quA — pB; ... By
aus. Da im Fall u = ¢ kein Eingabezeichen gelesen wird, spricht man
auch von einem spontanen Ubergang (oder e-Ubergang). Eine
Konfiguration wird durch ein Tripel

K=(q,x;...xn,A1... A)) € Zx 5" xT*

beschrieben und besagt, dass
e ¢ der momentane Zustand,
e x;...x, der ungelesene Rest der Eingabe und
o Aj...A; der aktuelle Kellerinhalt ist (A; steht oben).

Eine Anweisung quA; — pB;... By (mit u € {¢,2;}) uberfihrt die
Konfiguration K in die Folgekonfiguration

K'=(p,xj...xp,By...BpAsy... A)) mit j =i+ |ul.

Hierfiir schreiben wir auch kurz K - K’. Eine Rechnung von M
bei Eingabe z ist eine Folge von Konfigurationen Ky, K1, K5... mit
Ko = (qo,x,#) und Ko+ K + K- Ky heifit Startkonfiguration

37

3.4 Kellerautomaten

von M bei Eingabe z. Die reflexive, transitive Hiille von + bezeich-
nen wir wie tiblich mit +*. Die von M akzeptierte oder erkannte
Sprache ist

L(M) = {zeXr[IpeZ:(q,z,#) " (p.c.e)}.

Ein Wort z wird also genau dann von M akzeptiert, wenn es eine
Rechnung gibt, bei der M das gesamte Eingabewort bis zum Ende
liest und den Keller leert. Man beachte, dass bei leerem Keller kein
weiterer Ubergang mehr moglich ist.

Beispiel 104. Sei M = (Z,%,T,6,q,#) ein PDA mit Z = {q,p},
¥ ={a,b}, ' = {A,#} und den Anweisungen

e#,e (1)
6:qet>q (1) qa# —qA (2) a#, A (2)
quA - qAA (3) qA-p (4) aA,AA(3) bA,e(5)
pAd=p(5) \%bA,s(él)
Dann akzeptiert M die Eingabe aabb:

, aabb, F (q,abb, A) + (q,bb,AA) + (p,b,A) + (p,e,¢).
(¢, aa #)(2)(61@)(3)(61)(4)(10)(5)(19)

Allgemeiner akzeptiert M das Wort x = a™b™ mit folgender Rechnung:
n=0: (Q7€a #) ('I) (p7€75)‘

n>1: (q,a™b", - (g, a™ b, A) =" (g, b, An
(g #) 5 A)

F o (p, bl A1) L (poee).
o (p)(5) (p,€,¢€)

Dies zeigt {a™b™ | n >0} € L(M). Als ndchstes zeigen wir, dass jede
von M akzeptierte Fingabe x = x1...x, die Form x =a™b™ hat.
Ausgehend von der Startkonfiguration (q,xz,#) sind nur die Anwei-
sungen (1) oder (2) ausfihrbar. Falls M Anweisung (1) wahit, wird
der Keller geleert. Daher kann M in diesem Fall nur das leere Wort
x=¢c=a%" akzeptieren.

3 Kontextfreie Sprachen

Falls die akzeptierende Rechnung mit Anweisung (2) beginnt, muss
x1 = a sein. Danach ist nur Anweisung (3) ausfihrbar, bis M das
erste b liest:

(Q7x1 - Ty, #) (;) (Qa L2 .. Tp, A) (g)m—l (Qa Tm+l - - - xnvAm)

a2 - Ty, A1
(Z) (p,flf +2 L,)

mit £1 =T9g = =Ty =a und Ty, =b. Damit M den Keller leeren
kann, miissen jetzt noch genau m —1 b’s kommen, weshalb x auch in
diesem Fuall die Form a™b™ hat. <

Als néchstes zeigen wir, dass PDAs genau die kontextfreien Sprachen
erkennen.

Satz 105. CFL={L(M) | M ist ein PDA}.

Beweis. Wir zeigen zuerst die Inklusion von links nach rechts.

Idee: Konstruiere zu einer kontextfreien Grammatik G = (V, %, P, S)
einen PDA M = ({¢},%,T,4, g, S) mit I' =V uX, so dass gilt:

S=7x1...0, gdw. (q,x1...2,,5) " (q,¢,€).

Hierzu fligen wir fiir jede Regel A -4 « in P die Anweisung ge A — qa
und fiir jedes a € X die Anweisung gaa — ge zu ¢ hinzu.

M berechnet also nichtdeterministisch eine Linksableitung fiir die
Eingabe x. Da M hierbei den Syntaxbaum von oben nach unten
aufbaut, wird M als Top-Down Parser bezeichnet. Nun ist leicht zu
sehen, dass sogar folgende Aquivalenz gilt:

S=b .z, gdw. (g, z1...2,,5) " (q,¢,¢).
Daher folgt

rel(G) & S=pz < (¢,2,9)r" (¢,6,6) < veL(M).

38

3.4 Kellerautomaten

Als néchstes zeigen wir die Inklusion von rechts nach links.

Idee: Konstruiere zu einem PDA M = (Z,%,1,0,qo, #) eine kontext-
freie Grammatik G = (V, X, P, S) mit Variablen X4, A€, p,p' € Z,
so dass folgende Aquivalenz gilt:

(pyz, A) =" (p,e,¢e) gdw. Xpay =" . (%)

Ein Wort z soll also genau dann in G' aus X4, ableitbar sein, wenn
M ausgehend vom Zustand p bei Lesen von z in den Zustand p’
gelangen kann und dabei das Zeichen A aus dem Keller entfernt. Um
dies zu erreichen, fligen wir fiir jede Anweisung puA — poA; ... A,
k >0, die folgenden |Z|* Regeln zu P hinzu:

Fir jede Zustandsfolge p1, ..., pe: Xpap, = UXpoaipr - - - Xpooy Appr-

Um damit alle Worter x € L(M) aus S ableiten zu kénnen, benétigen
wir jetzt nur noch fir jeden Zustand p € Z die Regel S' - X, 4,. Die
Variablenmenge von G ist also

V={Stu{Xpap |p,p € Z, AT}

und P enthélt neben den Regeln S - X 4,, p € Z, fiir jede Anweisung
puA - poAi... A, k>0, von M und jede Zustandsfolge p1, ..., px
die Regel X,4p, = uXpoa1ps - - - Xppy Aupr-

Unter der Voraussetzung, dass die Aquivalenz (*) gilt, lidsst sich nun
leicht die Korrektheit von G zeigen. Es gilt

reL(M) < (q,z,#)r" (p,e,e) firein p e Z
= S=> X uy=>"xfireinp eZ
< reL(G).

Wir miissen also nur noch die Giiltigkeit von () zeigen. Hierzu zeigen
wir durch Induktion tber m fir alle p,p’ € Z, A €' und z € ¥*
folgende starkere Behauptung:

()

(p,fﬂ,A) = (p,,€,€) gdW XpAp’ =M 7.

3 Kontextfreie Sprachen 3.4 Kellerautomaten

m =0: Da sowohl (p,z,A) % (p',¢,¢) als auch X4, =0 2 falsch Wegen X, 4, —¢ « gibt es eine Anweisung puA — poA; ... Ag,
sind, ist die Aquivalenz (**) fiir m = 0 erfiillt. k >0, und Zustdnde py,...,py € Z mit

m~~>m + 1: Wir zeigen zuerst die Implikation von links nach rechts.

. a=uX X
Fiir eine gegebene Rechnung poA1p1 Pr-1AkPk >

(poa, A) - (po, 2", Ar ... Ag) F™ (9, ,€) wobei p;, = p' ist. Wegen @ =™ x ex. eine Zerlegung = = uuy . .. ug
und Zahlen m; > 1 mit my + -+ +mg =m und

der Lange m + 1 sei puA — poAy... A, k > 0, die im ersten
Rechenschritt ausgefiihrte Anweisung (d.h. = = uz’). Zudem
sei p; fiir ¢ = 1,...,k der Zustand, in den M mit Kellerinhalt
Aiy1 .. Ay gelangt (d.h. p, = p'). Dann enthdlt P die Regel
Xpap, = UXpoArps - - Xpoy App- Weiter sei u; firi=1,... &k das
Teilwort von 2/, das M zwischen den Besuchen von p;_; und p;

Xpi—lAiPi =" U; (Z = 1, ey k)
Nach IV gibt es somit Rechnungen

(pic1, ui, Ay) F™ (piye,e), i=1,... k,

liest. aus denen sich die gesuchte Rechnung der Lange m + 1 zusam-
Dann gibt es Zahlen m; > 1 mit my + -+ my = m und mensetzen lasst:
(pic1, i, Ay) F™ (pi, e, €) (p,uuy ... up, A)+ (po,uy . ug, Ay ... Ag)

=T (plauQ---Uk,AQ...Ak)
fir i =1,...,k. Nach IV gibt es daher Ableitungen :
ME-1 A
Xpi—lAipi =" Ui, L= 17"'7k7 = (pk;—l,uk, k)
=k (pka g, 8) . [|
die wir zu der gesuchten Ableitung zusammensetzen konnen:

Beispiel 106. Sei G = ({S},{a,b}, P,S) mit

XPAPk = UXpoAlm x 'ka—2Ak—1pk—1ka—1Akpk
=" uulXP1A2p2 .- 'ka—2Ak—1Pk—1ka—1Akpk P: S~ aSbSa (1) S = a. (2)
:'>mk,1 wtty - U1 Xy Ao Der zugehérige PDA besitzt dann die Anweisungen
mg =
- e tem 0: qaa—>ge, (0) qbb>qe, (0)
Zuletzt zeigen wir den Induktionsschritt fiir die Implikation von qeS = qaSbs, (1') ¢S —qa. (2)

rechts nach links von (*x). Gelte also umgekehrt X, 4,y =™ 2

und sei « die im ersten Schritt abgeleitete Satzform, d.h. Der Linksableitung

S = aSbS = aabS = aaba
A @)

pAp = @ =>""T. 0 @

39

3 Kontextfreie Sprachen

in G entspricht beispielsweise die akzeptierende Rechnung

(q,aaba, S) ('1_') (q,aaba,aSbs) ('8) (g, aba, SbS)
- ,aba,abS) + (q,ba,bS
& (g) I (g)

F (q,a,5) F sa,a) + (q,¢e,¢
(0,)(q) & (¢,a,a) o (¢,€,¢)

von M und umgekehrt. <

Beispiel 107. Sei M der PDA ({p,q},{a,b},{A,#},6,p,#) mit

0 :pe# —qe, (1) paA—pAA, (3) gbA—qe. (5)
pa#t >pA, (2) pbA—qe, (4)

Dann erhalten wir die Grammatik G = (V, %3, P,.S) mit der Variablen-
menge

vV ={5, Xpstps Xpttqr Xattps Xatqr Xpaps Xpag, XqAp, Xqu}-
Die Regelmenge P enthdlt neben den beiden Startregeln
S Xppp, Xprq (0,0)

die folgenden Produktionen:

Anweisung zugehorige Regel

puA = poAy ... Ay R Xpap,™ UXpgarp, - -Xpy s Ay
pe#t — g (1) 0 - Xpgq—€ (1)
pa#t >pA (2) 1 Xppp =~ aXpa (2)
Xppg=>aXpa (2")
paA—pAA (3) 2 0 Xpap—=>aXpa, X4, (3)
0 Xpag=aXpa, Xpoag o (37)
D Xpap—=aXpa, X, ap (3")
0 Xpag=aXpaXoag (3")
pbA — qe (4) 0 - Xpaq—b (47)
qbA - qe (5) 0 - Xgaq—b (5)

40

3.5 Deterministisch kontextfreie Sprachen

Der akzeptierenden Rechnung
, aabb, F (p,abb, A) + (p,bb,AA) + (¢.b,A) + (q,¢,¢
(p #) 5 @) &5 @) & (@0, A4) = (g.2)

von M entspricht dann die Ableitung

S=X X XX b "
(?) p#q (3) Qa pAq (?j?/) aa pAq qu (j/}) aa qu g/}) aa

in G und umgekehrt. <

3.5 Deterministisch kontextfreie Sprachen

Von besonderem Interesse sind kontextfreie Sprachen, die von einem
deterministischen Kellerautomaten erkannt werden konnen.

Definition 108. Ein Kellerautomat heifit deterministisch, falls +
eine rechtseindeutige Relation ist:

KrKinKr Ky, = K, =K,.

Aquivalent hierzu ist, dass die Uberfithrungsfunktion § fiir alle
(q,a,A) € Zx ¥ xT folgende Bedingung erfiillt (siche Ubungen):

16(g, a, A)][+16(q,e, A)| < 1.

Beispiel 109. Der PDA M = ({qo, 1,92}, {a,b,c},{A, B,#},6, qo, #)
mit der Uberfihrungsfunktion

0 qoa# = qoA#H qb# = qB# qaA—>qAA qbA—qBA
qaB - qAB qbB—»qBB qcA—->qA
qaA—q @bB - q QEHF — 2

qocB—-q B

3 Kontextfreie Sprachen

erkennt die Sprache L(M) = {xcx® | x € {a,b}*}. Um auf einen Blick
erkennen zu kénnen, ob M deterministisch ist, empfiehlt es sich, d in
Form einer Tabelle darzustellen:

0| a.# 4. A @B |a,# a.A 0,8 | @2.# @A ¢, B

el - - - Je - -|- - -
a | @A# @AA @AB| - ¢ - - - -
b | @B# qBA qBB | - - q - - -
c - A @B - - - - - -

Man beachte, dass jedes Tabellenfeld hichstens eine Anweisung enthdlt
und jede Spalte, die einen e-Fintrag in der ersten Zeile hat, sonst
keine weiteren Eintrage enthdlt. Daher ist fir alle (q,a,A) € Z x X xT'
die Bedingung

[6(q,a, A)| +]6(g, e, A)| <1

erfullt. <

Verlangen wir von einem deterministischen Kellerautomaten, dass er
seine Kingabe durch Leeren des Kellers akzeptiert, so konnen nicht
alle regularen Sprachen von deterministischen Kellerautomaten er-
kannt werden. Um beispielsweise die Sprache L = {a, aa} zu erkennen,
muss der Keller von M nach Lesen von a geleert werden. Daher ist
es M nicht mehr moglich, die Eingabe aa zu akzeptieren. Determi-
nistische Kellerautomaten kénnen also durch Leeren des Kellers nur
préfixfreie Sprachen L akzeptieren (d.h. kein Wort = € L ist Prafix
eines anderen Wortes in L).

Wir kénnen das Problem aber einfach dadurch losen, dass wir deter-
ministischen Kellerautomaten erlauben, ihre Eingabe durch Erreichen
eines Endzustands zu akzeptieren.

Definition 110.

41

3.5 Deterministisch kontextfreie Sprachen

e Fin Kellerautomat mit Endzustianden wird durch ein 7-
Tupel M = (Z,%,1,6, qo, #, E) beschrieben. Dabei sind die Kom-
ponenten Z,%,1',0,qo, # dieselben wie bei einem PDA und zu-
satzlich ist B2 € Z eine Menge von Endzustanden.

e Die von M akzeptierte oder erkannte Sprache ist
L(M)={xeX*|Ipe E,aecl™: (qo,z,#) " (p,e,)}.

o M ist ein deterministischer Kellerautomat mit Endzu-
stianden (kurz: DPDA), falls M zusdtzlich fir alle (q,a,A) €
Z x % x I folgende Bedingung erfillt:

16(g,a, A)| +]d(q,e, A)[<1.

e Die Klasse der deterministisch kontextfreien Sprachen ist defi-
niert durch

DCFL = {L(M)|M ist ein DPDA}.

Die Klasse der deterministisch kontextfreien Sprachen ldsst sich auch
mit Hilfe von speziellen kontextfreien Grammatiken charakterisieren,
den so genannten L R(k)-Grammatiken.

Der erste Buchstabe L steht fiir die Leserichtung bei der Syntaxana-
lyse, d.h. das Eingabewort x wird von links (nach rechts) gelesen.
Der zweite Buchstabe R bedeutet, dass bei der Syntaxanalyse eine
Rechtsableitung entsteht. Schliellich gibt der Parameter k an, wieviele
Zeichen man iiber das aktuelle Eingabezeichen hinauslesen muss, da-
mit der niachste Schritt eindeutig feststeht (k wird auch als Lookahead
bezeichnet).

Durch LR(0)-Grammatiken lassen sich nur die préfixfreien Sprachen
in DCFL erzeugen. Dagegen erzeugen die LR(k)-Grammatiken fiir
jedes k > 1 genau die Sprachen in DCFL.

Daneben gibt es noch LL(k)-Grammatiken, die fiir wachsendes k
immer mehr deterministisch kontextfreie Sprachen erzeugen.

3 Kontextfreie Sprachen

Als néachstes zeigen wir, dass DCFL unter Komplementbildung abge-
schlossen ist. Versuchen wir, die End- und Nichtendzustéande eines

DPDA M einfach zu vertauschen, um einen DPDA M fiir L(M) zu
erhalten, so ergeben sich folgende Schwierigkeiten:

1. Falls M eine Eingabe x nicht zu Ende liest, wird = weder von
M noch von M akzeptiert.

2. Falls M nach dem Lesen von x noch e-Uberginge ausfiihrt und
dabei End- und Nichtendzustande besucht, wird x von M und
von M akzeptiert.

Der néchste Satz zeigt, wie sich Problem 1 beheben lésst.

Satz 111. Jede Sprache L € DCFL wird von einem DPDA M’ erkannt,
der alle Fingaben zu Ende liest.

Beweis. Sei M = (Z,3,T,0,qo,#, E) ein DPDA mit L(M) = L. Falls
M eine Eingabe x = xy...x, nicht zu Ende liest, muss einer der
folgenden drei Griinde vorliegen:

1. M gerét in eine Konfiguration (q, z; ... x,,€), i <n, mit leerem
Keller.

2. M gerat in eine Konfiguration (q,x;...x,, AYy), ¢ < n, in der
wegen 0(q,z;, A) = 6(q,e,A) = @ keine Anweisung ausfithrbar
ist.

3. M gerat in eine Konfiguration (¢, z;...x,, Av), i <n, so dass
M ausgehend von der Konfiguration (g¢,e, A) eine unendliche
Folge von e-Anweisungen ausfiihrt.

Die erste Ursache schliefen wir aus, indem wir ein neues Zeichen O
auf dem Kellerboden platzieren:

(a) se# — qo#0O
Die zweite Ursache schlieflen wir durch Hinzunahme eines Fehlerzu-

stands r sowie folgender Anweisungen aus (hierbei ist [V =T'u {O}):

(b) qaA—rA, fur alle (q,a,A) € Z x ¥ xI" mit A =0 oder
5(q7 a’ A) = 6(q’ 67 A) = 67

(dabei sei s der neue Startzustand).

42

3.5 Deterministisch kontextfreie Sprachen

fiir alle a € X und Ael”.

Als néchstes verhindern wir die Ausfiihrung einer unendlichen Folge
von e-Ubergingen. Dabei unterscheiden wir die beiden Fille, ob M
hierbei auch Endzustéinde besucht oder nicht. Falls ja, sehen wir einen
Umweg tiber den neuen Endzustand ¢ vor.

(d) gsA—>rA, firallegeZ und A €T, so dass M ausge-
hend von der Konfiguration (¢,e, A) unend-
lich viele e-Uberginge ausfithrt ohne dabei
einen Endzustand zu besuchen.

(e) qeA—tA
teA —>rA,

fur alle g € Z und A € I', so dass M ausge-
hend von der Konfiguration (g,¢, A) unend-
lich viele e-Ubergiange ausfiihrt und dabei
auch Endzustdnde besucht.

SchlieBlich iibernehmen wir von M die folgenden Anweisungen:

(f) alle Anweisungen aus d, soweit sie nicht durch Anweisungen
vom Typ (d) oder (e) iiberschrieben wurden.

Zusammenfassend transformieren wir M in den DPDA
M =(Zu{rs,t}, 5176 s, #, Eu{t})

mit IV = T'u{O}, wobei ¢’ die unter (a) bis (f) genannten Anweisungen
enthalt. []

Beispiel 112. Wenden wir diese Konstruktion auf den DPDA

M = ({q0a q1, Q2}, {Cl, b, C}a {Aa Ba #}7 57 qo, #7 {q2})

mit der Uberfihrungsfunktion

3 Kontextfreie Sprachen

0 ‘ QO7# QO7A quB ‘ q17# Q17A q17B ‘ q27# C]2,A q2aB

€ - - - 42 - - QF - -
a | @A# @AA @AB| - @ - - - -
b | qB# q@BA qBB - - q1 - - -
¢l - @A @B | - - - | - - -

an, so erhalten wir den DPDA

M’ = ({q07 q1,92,7, S, t}a {(Z, ba C}, {Aa B7 #7 D}a 5,a S, #7 {C]27 t})
mit folgender Uberfiihrungsfunktion 6':

o ‘%a# QOaA qO>B qo,0

Q17# Q17A q1aB q1,0 Q27# QQaAQZ;BQ%D

el - - - -lae - - -|# - - -
a |QA# @AA AB ro| - ¢ rB ro| - rA rB rO
b |qB# @BA BB ro| - rA ¢ ro| - rA rB ro
c |l r# @A @B ro| - rA rB ro| - rA rB ro

Typ| (£,0) (F) (F))| (F) (£:0)(£,0) (0) | () (b) (b) (D)
‘3,# s,A s,B s,alr,# r,A r,B r,.O|t,# t,A t,B t,O0
Q#0 - - |- - - —|r# - - -

o ST M

Typ| (a) | (e)

<

Satz 113. Die Klasse DCFL ist unter Komplement abgeschlossen, d.h.
es gilt DCFL = co-DCFL.

Beweis. Sei M = (Z,%,T,6,q0,#, F) ein DPDA, der alle Eingaben
zu Ende liest, und sei L(M) = L. Wir konstruieren einen DPDA M
fiir L.

3.5 Deterministisch kontextfreie Sprachen

Die Idee dabei ist, dass sich M in seinem Zustand (q,7) neben dem
aktuellen Zustand ¢ von M in der Komponente ¢ merkt, ob M nach
Lesen des letzten Zeichens (bzw. seit Rechnungsbeginn) einen Endzu-
stand besucht hat (i = 2) oder nicht (i = 1). Mochte M das néchste
Zeichen lesen und befindet sich M im Zustand (g,1), so macht M
noch einen Umweg tiber den Endzustand (g, 3).

Konkret erhalten wir M = (Zx{1,2,3},%,I",8, s, #, Zx{3}) mit

5:{(%,1), G ¢ E,

(q0,2), sonst,

indem wir zu ¢’ fiir jede Anweisung ge A -, py die Anweisungen

(. 1)eA—~ (p, 1)y, fallsp¢ E,
(¢,1)eA - (p,2)y, fallspe E und

(¢,2)eA — (p,2)7,

sowie fir jede Anweisung gaA —); py die Anweisungen

(q,1)eA ~ (q,3)A,

(¢,2)aAd - (p,1)y, fallspfFE,
(¢,2)aA - (p,2)y, fallspekFE,
(¢,3)aA - (p,1)y, falls p¢ E und
(¢,3)aA - (p,2)y, fallspeFE.

hinzufiigen. [

Eine niitzliche Eigenschaft von M ist, dass M in einem Endzustand
keine e-Ubergéinge macht.

Beispiel 114. Angenommen, ein DPDA M = (Z,%,1,0,q0,#, E)
fiihrt bei der Eingabe x = a folgende Rechnung aus:

(6107(%#) = (fha&’h) = (q275772)-

3 Kontextfreie Sprachen

Dann wiirde M im Fall E = {qo, ¢} (d.h. v € L(M)) die Rechnung

((q0,2),a,#) = ((Ch’ 1)75771) = ((Q272)75,’72)

ausfiihren. Da (q1,1),(q2,2) ¢ Zx{3} sind, verwirft also M das Wort
a. Dagegen wiirde M im Fall E = {qo} (d.h. x ¢ L(M)) die Rechnung

(((]0,2),(1,#) = ((CIIa 1)75771) = ((Q2> 1)75772) = ((QQ73)75772)

ausfiihren. Da (q2,3) € Zx{3} ein Endzustand von M ist, wiirde M
nun also das Wort a akzeptieren. <

Satz 115. Die Klasse DCFL ist nicht abgeschlossen unter Schnitt,
Vereinigung, Produkt und Sternhiille.

Beweis. Die beiden Sprachen
Ly ={a"b"c™ | n,m >0} und Lg = {a"b"c™ |n,m >0}

sind deterministisch kontextfrei (siche Ubungen). Da der Schnitt
Ly n Ly = {a™"c™ | n > 0} nicht kontextfrei ist, liegt er auch nicht in
DCFL, also ist DCFL nicht unter Schnitt abgeschlossen.

Da DCFL unter Komplementbildung abgeschlossen ist, kann DCFL
wegen de Morgan dann auch nicht unter Vereinigung abgeschlossen
sein. Beispielsweise sind folgende Sprachen deterministisch kontextfrei:

Ly ={a'b’c*|i#j} und Ly = {a'bic"|j#k}.

Thre Vereinigung L3 U Ly = {a’bick | i # j oder j # k} gehort aber nicht
zu DCFL, d.h. Ly u L, € CFL ~ DCFL. DCFL ist ndmlich unter Schnitt
mit reguliren Sprachen abgeschlossen (siche Ubungen). Daher wire
mit L3 u L, auch die Sprache

(Lsu Ly)n L(a*b*c*) = {a"b"c" | n >0}

(deterministisch) kontextfrei.

44

3.5 Deterministisch kontextfreie Sprachen

Als néachstes zeigen wir, dass DCFL nicht unter Produktbildung abge-
schlossen ist. Wir wissen bereits, dass L = Ly u L, ¢ DCFL ist. Dann
ist auch die Sprache

0L =0L3u0Ly ¢ DCFL,

da sich ein DPDA M = (Z,%,T,6,qo,#, E) fur 0L leicht zu einem
DPDA fiir L umbauen liefle. Sei ndmlich (p,e,7) die Konfiguration,
die M nach Lesen der Eingabe 0 erreicht. Dann erkennt der DP-
DA M'"=(Zu{s}, X, 1,0, s,#, FE) die Sprache L, wobei §’ wie folgt
definiert ist:

o - o7

(q,u,A) =(s,e,#),
(q,u,A) e Zx (X u{e}) xT.

Es ist leicht zu sehen, dass die beiden Sprachen {e¢,0} und Ls = L3U0L,
in DCFL sind (siehe Ubungen). Thr Produkt {&,0}Ls = Ls u0L; =
L3u0Lsu0L3u00Ly gehort aber nicht zu DCFL. Da DCFL unter
Schnitt mit reguliren Sprachen abgeschlossen ist (sieche Ubungen),
ware andernfalls auch

{,0}Lsn L(0a*b*c*) = 0L3 U 0Ly
in DCFL, was wir bereits ausgeschlossen haben. []

Dass DCFL auch nicht unter Sternhiillenbildung abgeschlossen ist,
ldsst sich ganz dhnlich zeigen (siehe Ubungen). Wir fassen die be-
wiesenen Abschlusseigenschaften der Klassen REG, DCFL und CFL in
folgender Tabelle zusammen:

Vereinigung Schnitt Komplement Produkt Sternhiille

REG ja ja ja ja ja
DCFL nein nein ja nein nein
CFL ja nein nein ja ja

4 Kontextsensitive Sprachen

4 Kontextsensitive Sprachen

In diesem Kapitel fithren wir das Maschinenmodell des linear be-
schréankten Automaten (LBA) ein und zeigen, dass LBAs genau die
kontextsensitiven Sprachen erkennen. Die Klasse CSL ist unter Kom-
plementbildung abgeschlossen. Es ist jedoch offen, ob die Klasse DCSL
der von einem deterministischen LBA erkannten Sprachen eine echte
Teilklasse von CSL ist (diese Frage ist als LBA-Problem bekannt).

4.1 Kontextsensitive Grammatiken

Zur Erinnerung: Eine Grammatik G = (V) 3, P, S) heifit kontextsen-
sitiv, falls fur alle Regeln a — 3 gilt: |5] > |o|. Als einzige Ausnahme
hiervon ist die Regel S — ¢ erlaubt. Allerdings nur dann, wenn das
Startsymbol S nicht auf der rechten Seite einer Regel vorkommt.

Das néchste Beispiel zeigt, dass die Sprache L = {a"b"c™ | n > 0} von ei-
ner kontextsensitiven Grammatik erzeugt wird. Da L nicht kontextfrei
ist, ist also die Klasse CFL echt in der Klasse CSL enthalten.

Beispiel 116. Betrachte die kontextsensitive Grammatik G =
(V,X,P,S) mit V={S, B}, ¥={a,b,c} und den Regeln

P:S—aSBc,abc (1,2) ¢B—-Bc(3) bB—0bb(4)
In G laf$t sich beispielsweise das Wort w = aabbee ableiten:

S = aSBc = aabcBc = aabBcc = aabbee
(1) (2) (3) (4)

Allgemein gilt fiir alle n > 1:

S —n-1 anfls(Bc)n—l - anbc(BC)n—l :>(3) abBn-1cn —n-1 anben
(1) (2) (3) (4)

45

Also gilt ambnc™ € L(Q) fir alle n > 1. Umgekehrt folgt durch Induktion
tber die Ableitungslinge m, dass jede Satzform u mit S =™ « die
folgenden Bedingungen erfillt:

o #a(a) =#p(a) + #p(a) = #.(a),
e links von S und links von einem a kommen nur a’s vor,
o links von einem b kommen nur a’s oder b’s vor.

Daraus ergibt sich, dass in G nur Worter der Form w = a™b"c" ableit-
bar sind. <

4.2 Turingmaschinen

Um ein geeignetes Maschinenmodell fiir die kontextsensitiven Sprachen
zu finden, fithren wir zunéchst das Rechenmodell der nichtdeterminis-
tischen Turingmaschine (NTM) ein. Eine NTM erhélt ihre Eingabe

auf einem nach links und rechts

. Schreib-
unbegrenzten Band. Wahrend Lese-Kopf Arbeitsband
ihrer Rechnung kann sie den «— mit Eingabe
Schreib-Lese-Kopf auf dem o Tufe e T] e JeaJu]

Band in beide Richtungen be-
wegen und dabei die besuch-
ten Bandfelder lesen sowie ge-
lesenen Zeichen gegebenenfalls
iiberschreiben.

—

Steuer-
einheit

Es gibt mehrere Arten von Turingmaschinen (u.a. mit einseitig unend-
lichem Band oder mit mehreren Schreib-Lese-Képfen auf dem Band).
Wir verwenden folgende Variante der Mehrband-Turingmaschine.

Definition 117. Sei k> 1.

a) Fine nichtdeterministische k-Band-Turingmaschine
(kurz k-NTM oder einfach NTM) wird durch ein 6-Tupel
M= (Z,%,T,0,q0, E) beschrieben, wobei

4 Kontextsensitive Sprachen

Z eine endliche Menge von Zustinden,

Y das Fingabealphabet (wobei L ¢),

[' das Arbeitsalphabet (wobei L u{u} cT'),

§: ZxTk - P(ZxTkx{L,R,N}*) die Uberfihrungsfunk-
tion,

qo der Startzustand und
o FcZ die Menge der Endzustinde ist.

b) Eine k-NTM M heifst deterministisch (kurz: M ist eine k-
DTM oder einfach DTM), falls fir alle (q,aq,...a) € Z x Tk
die Ungleichung ||0(q, a1, ... a)| <1 gilt.

Fiar (¢, al,...,al,D1,...,Dy) €(q,a1,...a;) schreiben wir auch

(g,a1,...,ax) = (¢',ay,...,a,, D1,...,Dg).

Eine solche Anweisung ist ausfithrbar, falls
e ¢ der aktuelle Zustand von M ist und

e sich fiir=1,...,k der Lesekopf des i-ten Bandes auf einem mit
a; beschrifteten Feld befindet.

Ihre Ausfithrung bewirkt, dass M
e vom Zustand ¢ in den Zustand ¢’ iibergeht,

« auf Band i das Symbol a; durch a ersetzt und

o den Kopf geméafi D; bewegt (L: ein Feld nach links, R: ein Feld
nach rechts, N: keine Bewegung).

Definition 118. Sei M = (Z,%,T,0,qo, E) eine k-NTM.
a) Fine Konfiguration von M ist ein (3k + 1)-Tupel

K: (q,ul,al,vl,...,uk,akwk) EZX (I“* XFXF*)k

und besagt, dass

e ¢ der momentane Zustand ist und

46

b)

4.2 Turingmaschinen

e dasi-te Band mitUu;a;v;U. .. beschriftet ist, wobei sich
der Kopf auf dem Zeichen a; befindet.

Im Fall k = 1 schreiben wir fir eine Konfiguration (q,u,a,v)
auch kurz uqav.

Die Startkonfiguration von M bei Fingabe v =xy...x, € X*
15t

T #e,

Tr=c€.

P (qo,8,21,To ... Ty, U8, ... €, LL,E),
xX
(QO7€7 L, &,...,¢, U,g),
y y /I _ !/ ! ! ! !/ / ;
Eine Konfiguration K' = (q,u},a},vy,...,u},a,v;) heifst Fol-

gekonfiguration von K = (p,uy,a,vy,..., Uk, ag,v) (kurz
K+ K'), falls eine Anweisung

(q,a1,...,ax) = (¢’ b1, ..., bg, D1,...,Dy)
existiert, so dass firi=1,...,k gilt:
im Fall D; = N: | D; = R: D;=L:
K: Uz‘a—z’w K: uia—i U K: Uia—ivi
K" uz?TZUz K" ;b CT;UZ’ K’ u;aT b; v;

I — .h-
ul = u;, u; = u;b; und Lo us uife,
ulal =
I _
a; = b; und L, v, uite, U, sonst
. av) =
Ui = Vi u, sonst. | und v} = bv;.

Man beachte, dass sich die Linge der Bandinschrift u;a;v; beim
Ubergang von K zu K' genau dann um 1 erhéht, wenn in K’
zum, ersten Mal ein neues Feld auf dem i-ten Band besucht wird.
Andernfalls bleibt die Liange von u;a;v; unverdndert. Die Linge
von u;a;v; entspricht also genaw der Anzahl der auf dem i-ten
Band besuchten Felder (inkl. Eingabezeichen im Fall i=1).

4 Kontextsensitive Sprachen

d) Eine Rechnung von M bei Fingabe x ist eine Folge von Kon-
figurationen Ko, K1, Ky... mit Kog= K, und Ko+ Ki + Ky---.

e) Die von M akzeptierte oder erkannte Sprache ist
L(M):{xez*|E|K€EX(F*XI‘XI‘*)’“;K$ - K}

M akzeptiert also eine Eingabe = (hierfiir sagen wir kurz M (z) ak-
zeptiert), falls es eine Rechnung K, = Ko+ K; + K-+ + K; von M(x)
gibt, bei der ein Endzustand erreicht wird.

Beispiel 119. Betrachte die 1-DTM M = (Z,%,1,6,q0, E) mit
Z ={q,---qu}, X = {a,b}, T = Xu{A B,u}, E = {q}, wobei ¢
folgende Anweisungen emthdlt:

goa — AR (1) Anfang der Schleife: Ersetze das erste a durch A.

(2) Bewege den Kopf nach rechts bis zum ersten b
(3) und ersetze dies durch ein B (falls kein b mehr
(4) vorhanden ist, dann halte ohne zu akzeptieren).

qa > qaR
aB-qBR
@b > @BL
(5) Bewege den Kopf zuriick nach links bis ein A

(6) kommt, gehe wieder ein Feld nach rechts und wie-

(7) derhole die Schieife.

20 — qaaL
2B — g2 BL
@A - qAR

qoB—qBR (8) Fualls kein a am Anfang der Schleife, dann teste,
@3B —q3BR (9) ob noch ein b vorhanden ist. Wenn ja, dann halte
qsu = quUN (10) ohne zu akzeptieren. Andernfalls akzeptiere.

Dann fiihrt M bei Fingabe aabb folgende Rechnung aus:
goaabb + Agqrabb + Aagqibb + AgsaBb
(1) (2) (4)
F ¢AaBb + AqaBb + AAqBb
(5) (7) (1)
— AABqlb — AAQQBB = AQQABB
(3) (4) (6)

+ AAqBB + AAB@B + AABBgsu ~ AABBquu
(7 (8) (9) (10)

47

4.3 Linear beschrankte Automaten

Ahnlich lift sich amb™ € L(M) fiir ein belicbiges n > 1 zeigen. Ande-
rerseits fihrt die Eingabe abb auf die Rechnung

qgoabb - Aqbb - ¢ ABb + AqyBb + ABgsb,
(1) (4) (M) (8)

die nicht weiter fortsetzbar ist. Da M deterministisch ist, kann M (abb)
auch nicht durch eine andere Rechnung den Endzustand q4 erreichen.
D.h. abb gehort nicht zu L(M). Tatsdchlich lisst sich durch Betrach-
tung der tibrigen Fdlle (x =a™™, n>m, x =a"bma*, m,k > 1, etc.)
zetgen, dass M nur Fingaben der Form a™b™ akzeptiert, und somit
L(M) ={a"b" |n=>1} ist. N

Es ist leicht zu sehen, dass jede Typ-0 Sprache von einer NTM M
akzeptiert wird, die ausgehend von x eine Riickwértsableitung (Re-
duktion) auf das Startsymbol sucht. Ist # ¢ und markieren wir das
letzte Zeichen von z, so kann M das Ende der Eingabe erkennen, ohne
dariiber hinaus lesen zu miissen. Zudem ist im Fall einer Typ-1 Spra-
che die linke Seite einer Regel hochstens so lang wie die rechte Seite.
Deshalb muss M beim Erkennen von kontextsensitiven Sprachen den
Bereich der Eingabe wahrend der Rechnung nicht verlassen.

4.3 Linear beschrankte Automaten

Eine 1-NTM M, die bei keiner Eingabe x # ¢, deren letztes Zeichen
markiert ist, den Bereich der Eingabe verléasst, wird als LBA (linear
beschriankter Automat) bezeichnet. Ein LBA

darf also bei Eingaben der Lange n > 0
wahrend der Rechnung nur die n mit der Ein-

gabe beschrifteten Bandfelder besuchen und Rv
iiberschreiben. Tatséachlich lésst sich zeigen, Steuer-
dass jede k-NTM, die bei Eingaben der Lén- einheit
ge n hochstens linear viele (also cn+c fiir eine

4 Kontextsensitive Sprachen

Konstante ¢) Bandfelder besucht, von einem LBA simuliert werden
kann.

In diesem Abschnitt zeigen wir, dass LBAs genau die kontextsensitiven
Sprachen erkennen.

Definition 120.

a) Fir ein Alphabet ¥ und ein Wort © =y ...x, € ¥* bezeichne &
das Wort

|z, xr=¢,
€T =
1. Tpalp, T#e
iiber dem Alphabet 3 =X u{a|a e X}.

b) Eine 1-NTM M = (Z,3,T,6,q, E) heifit linear beschrinkt
(kurz: M ist ein LBA), falls M bei jeder Eingabe & der Ldnge
n héchstens max{n, 1} Bandfelder besucht:

VreX : K; v ugav = |uav| < max{|z|,1}.
c¢) Die von einem LBA akzeptierte oder erkannte Sprache ist
L(M)={xeX*| M(Z) akzeptiert}.

d) FEin deterministischer LBA wird auch als DLBA bezeichnet.

e) Die Klasse der deterministisch kontextsensitiven Spra-
chen ist definiert als

DCSL = {L(M) | M st ein DLBA}.

48

4.3 Linear beschrankte Automaten

	1 Einleitung
	2 Reguläre Sprachen
	2.1 Endliche Automaten
	2.2 Nichtdeterministische endliche Automaten
	2.3 Reguläre Ausdrücke
	2.4 Relationalstrukturen
	2.4.1 Ordnungs- und Äquivalenzrelationen
	2.4.2 Abbildungen
	2.4.3 Homo- und Isomorphismen

	2.5 Minimierung von DFAs
	2.6 Das Pumping-Lemma
	2.7 Grammatiken

	3 Kontextfreie Sprachen
	3.1 Chomsky-Normalform
	3.2 Das Pumping-Lemma für kontextfreie Sprachen
	3.3 Der CYK-Algorithmus
	3.4 Kellerautomaten
	3.5 Deterministisch kontextfreie Sprachen

	4 Kontextsensitive Sprachen
	4.1 Kontextsensitive Grammatiken
	4.2 Turingmaschinen
	4.3 Linear beschränkte Automaten

