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1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschäftigen wir uns mit mathematischen Modellen
für Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch lösbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.
Schließlich untersuchen wir die Komplexität von algorithmischen Pro-
blemen, indem wir den benötigten Rechenaufwand möglichst gut nach
oben und unten abschätzen. Eine besondere Rolle spielen hierbei die
NP-vollständigen Probleme, deren Komplexität bis heute offen ist.

Themen der Vorlesung
• Welche Rechenmodelle sind für bestimmte Aufgaben adäquat?

(Automatentheorie)
• Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
• Welcher Aufwand ist zur Lösung eines algorithmischen Problems

nötig? (Komplexitätstheorie)
In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
• Wie lassen sich praktisch relevante Problemstellungen möglichst

effizient lösen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
• Mathematische Grundlagen der Informatik, Beweise führen,

Modellierung (Aussagenlogik, Prädikatenlogik)
Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale
Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung
des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten löst (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben können Zahlen, Formeln, Graphen etc. sein. Diese werden
über einem Eingabealphabet Σ kodiert.

Definition 1.
a) Ein Alphabet Σ = {a1, . . . , am} ist eine geordnete Menge von

endlich vielen Zeichen.
b) Eine Folge x = x1 . . . xn von n Zeichen heißt Wort (der Länge

n).
c) Die Menge aller Wörter über Σ ist

Σ∗ = ⋃
n≥0

Σn,

wobei Σn = {x1 . . . xn ∣ n ≥ 0 und xi ∈ Σ für i = 1, . . . , n} alle
Wörter der Länge n enthält.

d) Das (einzige) Wort der Länge n = 0 ist das leere Wort, welches
wir mit ε bezeichnen.

e) Jede Teilmenge L ⊆ Σ∗ heißt Sprache über dem Alphabet Σ.

Beispiel 2. Sei Σ ein Alphabet. Dann sind ∅,Σ∗,Σ und {ε} Sprachen
über Σ. Die Sprache ∅ enthält keine Wörter und heißt leere Spra-
che. Die Sprache Σ∗ enthält dagegen alle Wörter über Σ, während
die Sprache Σ alle Wörter über Σ der Länge 1 enthält. Die Sprache

1



2 Reguläre Sprachen

{ε} enthält nur das leere Wort, ist also einelementig. Einelementige
Sprachen werden auch als Singleton-Sprachen bezeichnet.

Da Sprachen Mengen sind, können wir sie bzgl. Inklusion vergleichen.
Zum Beispiel gilt

∅ ⊆ {ε} ⊆ Σ∗.

Wir können Sprachen auch vereinigen, schneiden und komplementie-
ren. Seien A und B Sprachen über Σ. Dann ist

• A ∩B = {x ∈ Σ∗ ∣ x ∈ A,x ∈ B} der Schnitt von A und B,
• A ∪B = {x ∈ Σ∗ ∣ x ∈ A ∨ x ∈ B} die Vereinigung von A und
B, und

• A = {x ∈ Σ∗ ∣ x /∈ A} das Komplement von A.
Neben den Mengenoperationen gibt es auch spezielle Sprachoperatio-
nen.

Definition 3.
• Das Produkt (Verkettung, Konkatenation) der Sprachen
A und B ist

AB = {xy ∣ x ∈ A,y ∈ B}.

Ist A = {x} eine Singletonsprache, so schreiben wir für {x}B
auch einfach xB.

• Die n-fache Potenz An einer Sprache A ist induktiv definiert
durch

An =
⎧⎪⎪⎨⎪⎪⎩

{ε}, n = 0,
An−1A, n > 0.

• Die Sternhülle A∗ von A ist A∗ = ⋃n≥0An.
• Die Plushülle A+ von A ist A+ = ⋃n≥1An = AA∗.

2 Reguläre Sprachen

Wir betrachten zunächst Einschränkungen des TM-Modells, die viel-
fältige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Ein endlicher Automat führt
bei einer Eingabe der Länge n
nur n Rechenschritte aus. Um
die gesamte Eingabe lesen zu
können, muss der Automat also
in jedem Schritt ein Zeichen der
Eingabe verarbeiten.

x1 ⋯ xi ⋯ xn

Eingabe-
band

Lesekopf

Steuer-
einheit

Ð→

Definition 4. Ein endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,Σ, δ, q0,E) beschrie-
ben, wobei

• Z ≠ ∅ eine endliche Menge von Zuständen,
• Σ das Eingabealphabet,
• δ ∶ Z ×Σ→ Z die Überführungsfunktion,
• q0 ∈ Z der Startzustand und
• E ⊆ Z die Menge der Endzustände ist.

Die von M akzeptierte oder erkannte Sprache ist

L(M) = {x1 . . . xn ∈ Σ∗
es gibt q1, . . . , qn−1 ∈ Z, qn ∈ E mit
δ(qi, xi+1) = qi+1 für i = 0, . . . , n − 1} .
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2 Reguläre Sprachen 2.1 Endliche Automaten

q0, q1, . . . , qn heißt Rechnung von M(x1 . . . xn), falls δ(qi, xi+1) = qi+1
für i = 0, . . . , n − 1 gilt. Sie heißt akzeptierend, falls qn ∈ E ist.

Beispiel 5. Betrachte den DFA M =
(Z,Σ, δ,0,E) mit Z = {0,1,2}, Σ =
{a, b}, E = {1} und der Überführungs-
funktion

δ 0 1 2

a 1 2 0
b 2 0 1

Graphische Darstellung:

2

0

1

a
bb

a

a

b

Der Startzustand wird meist durch einen Pfeil und Endzustände
werden durch einen doppelten Kreis gekennzeichnet. ◁
Bezeichne δ̂(q, x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand q gestartet wird. Dann können wir
die Funktion

δ̂ ∶ Z ×Σ∗ → Z

induktiv wie folgt definieren. Für q ∈ Z, x ∈ Σ∗ und a ∈ Σ sei

δ̂(q, ε) = q,

δ̂(q, xa) = δ(δ̂(q, x), a).

Die von M erkannte Sprache lässt sich nun auch in der Form

L(M) = {x ∈ Σ∗ ∣ δ̂(q0, x) ∈ E}

schreiben.

Behauptung 6. Der DFA M aus Beispiel 5 akzeptiert die Sprache

L(M) = {x ∈ Σ∗ ∣ #a(x) −#b(x) ≡3 1},

wobei #a(x) die Anzahl der Vorkommen des Zeichens a in x bezeichnet
und j ≡m k bedeutet, dass j − k durch m teilbar ist.

Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {x ∈ Σ∗ ∣
δ̂(0, x) = 1}, d.h. wir müssen folgende Äquivalenz zeigen:

δ̂(0, x) = 1⇔#a(x) −#b(x) ≡3 1.

Hierzu reicht es, die Kongruenz

δ̂(0, x) ≡3 #a(x) −#b(x).

zu beweisen, wofür wir Induktion über die Länge n von x benutzen.
Induktionsanfang (n = 0): klar, da δ̂(0, ε) = #a(ε) = #b(ε) = 0 ist.
Induktionsschritt (n; n + 1): Sei x = x1 . . . xn+1 gegeben und sei

i = δ̂(0, x1 . . . xn). Nach IV gilt dann

i ≡3 #a(x1 . . . xn) −#b(x1 . . . xn).

Wegen δ(i, a) ≡3 i + 1 und δ(i, b) ≡3 i − 1 folgt daher

δ(i, xn+1) ≡3 i +#a(xn+1) −#b(xn+1)
≡3 #a(x1 . . . xn) −#b(x1 . . . xn) +#a(xn+1) −#b(xn+1)
= #a(x) −#b(x).

und somit

δ̂(0, x) = δ(δ̂(0, x1 . . . xn), xn+1) = δ(i, xn+1) ≡3 #a(x) −#b(x).

∎

Eine von einem DFA akzeptierte Sprache wird als regulär bezeichnet.
Die zugehörige Sprachklasse ist

REG = {L(M) ∣M ist ein DFA}.

Beobachtung 7. Alle Singletonsprachen sind regulär.
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2 Reguläre Sprachen 2.1 Endliche Automaten

Beweis. Für jedes Wort x = x1 . . . xn existiert ein DFA Mx mit
L(Mx) = {x}:

q0 q1 q2
⋯ qn

e

x3 xnx1 x2

a ≠ x1
a ≠ x2 a ≠ x3

a ∈ Σ

a ∈ Σ

Formal ist Mx also das Tupel (Z,Σ, δ, q0,E) mit Z = {q0, . . . , qn, e},
E = {qn} und der Überführungsfunktion

δ(q, aj) =
⎧⎪⎪⎨⎪⎪⎩

qi+1, q = qi für ein i mit 0 ≤ i ≤ n − 1 und aj = xi+1

e, sonst.

∎

Als nächstes betrachten wir Abschlusseigenschaften der Sprachklasse
REG.

Definition 8. Ein k-stelliger Sprachoperator ist eine Abbildung
op, die k Sprachen L1, . . . , Lk auf eine Sprache op(L1, . . . , Lk) abbildet.

Beispiel 9. Der Schnittoperator ∩ bildet zwei Sprachen L1 und L2
auf die Sprache L1 ∩L2 ab. ◁

Definition 10. Eine Sprachklasse K heißt unter op abgeschlossen,
wenn gilt:

L1, . . . , Lk ∈ K ⇒ op(L1, . . . , Lk) ∈ K.

Der Abschluss von K unter op ist die bzgl. Inklusion kleinste Sprach-
klasse K′, die K enthält und unter op abgeschlossen ist.

Beispiel 11. Der Abschluss der Singletonsprachen unter ∩ besteht
aus allen Singletonsprachen und der leeren Sprache.
Der Abschluss der Singletonsprachen unter ∪ besteht aus allen nicht-
leeren endlichen Sprachen. ◁

Definition 12. Für eine Sprachklasse C bezeichne co-C die Klasse
{L̄ ∣ L ∈ C} aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass C genau dann unter Komplementbildung
abgeschlossen ist, wenn co-C = C ist.

Beobachtung 13. Mit L1, L2 ∈ REG sind auch die Sprachen L1 =
Σ∗ ∖L1, L1 ∩L2 und L1 ∪L2 regulär.

Beweis. Sind Mi = (Zi,Σ, δi, q0,Ei), i = 1,2, DFAs mit L(Mi) = Li,
so akzeptiert der DFA

M1 = (Z1,Σ, δ1, q0, Z1 ∖E1)

das Komplement L1 von L1. Der Schnitt L1 ∩L2 von L1 und L2 wird
dagegen von dem DFA

M = (Z1 ×Z2,Σ, δ, (q0, q0),E1 ×E2)

mit
δ((q, p), a) = (δ1(q, a), δ2(p, a))

akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen
L1 ∪ L2 = (L1 ∩L2) ist dann aber auch die Vereinigung von L1 und
L2 regulär. (Wie sieht der zugehörige DFA aus?) ∎

Aus Beobachtung 13 folgt, dass alle endlichen und alle co-endlichen
Sprachen regulär sind. Da die in Beispiel 5 betrachtete Sprache weder
endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle
regulären Sprachen erfasst.
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2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

Es stellt sich die Frage, ob REG neben den mengentheoretischen
Operationen Schnitt, Vereinigung und Komplement unter weiteren
Operationen wie etwa Produkt oder Sternhülle abgeschlossen ist. Im
übernächsten Abschnitt werden wir sehen, dass die Klasse REG als
der Abschluss der endlichen Sprachen unter Vereinigung, Produkt
und Sternhülle charakterisierbar ist.
Beim Versuch, einen endlichen Automaten für das Produkt L1L2 zwei-
er regulärer Sprachen zu konstruieren, stößt man auf die Schwierigkeit,
den richtigen Zeitpunkt für den Übergang von (der Simulation von)
M1 zu M2 zu finden. Unter Verwendung eines nichtdeterministischen
Automaten lässt sich dieses Problem jedoch leicht beheben, da dieser
den richtigen Zeitpunkt „erraten“ kann.
Im nächsten Abschnitt werden wir nachweisen, dass auch nichtde-
terministische endliche Automaten nur reguläre Sprachen erkennen
können.

2.2 Nichtdeterministische endliche Automaten

Definition 14. Ein nichtdeterministischer endlicher Au-
tomat (kurz: NFA; nondeterministic finite automaton) N =
(Z,Σ,∆,Q0,E) ist ähnlich aufgebaut wie ein DFA, nur dass er meh-
rere Startzustände (zusammengefasst in der Menge Q0 ⊆ Z) haben
kann und seine Überführungsfunktion die Form

∆ ∶ Z ×Σ→ P(Z)
hat. Hierbei bezeichnet P(Z) die Potenzmenge (also die Menge
aller Teilmengen) von Z. Diese wird auch oft mit 2Z bezeichnet. Die
von N akzeptierte Sprache ist

L(N) = {x1 . . . xn ∈ Σ∗
∃ q0 ∈ Q0, q1, . . . , qn−1 ∈ Z, qn ∈ E ∶
qi+1 ∈ ∆(qi, xi+1) für i = 0, . . . , n − 1 } .

q0, q1, . . . , qn heißt Rechnung von N(x1 . . . xn), falls qi+1 ∈ ∆(qi, xi+1)
für i = 0, . . . , n − 1 gilt.

Ein NFA N kann bei einer Eingabe x also nicht nur eine, sondern
mehrere verschiedene Rechnungen parallel ausführen. Ein Wort x ge-
hört genau dann zu L(N), wenn N(x) mindestens eine akzeptierende
Rechnung hat.
Im Gegensatz zu einem DFA, dessen Überführungsfunktion auf der
gesamten Menge Z ×Σ definiert ist, kann ein NFA „stecken bleiben“.
Das ist dann der Fall, wenn er in einen Zustand q gelangt, in dem das
nächste Eingabezeichen xi wegen ∆(q, xi) = ∅ nicht gelesen werden
kann.

Beispiel 15. Betrachte den NFA N = (Z,Σ,∆,Q0,E) mit Zustands-
menge Z = {p, q, r, s}, Eingabealphabet Σ = {0,1,2}, Start- und End-
zustandsmenge Q0 = {p} und E = {s} sowie der Überführungsfunktion

∆ p q r s

0 {p, q} ∅ ∅ ∅
1 {p} {r} ∅ ∅
2 {p} ∅ {s} ∅

Graphische Darstellung:

p q r s0 1 2

0, 1, 2

Offensichtlich akzeptiert N die Sprache L(N) = {x012 ∣ x ∈ Σ∗} aller
Wörter, die mit dem Suffix 012 enden. ◁

Beobachtung 16. Sind Ni = (Zi,Σ,∆i,Qi,Ei) (i = 1,2) NFAs, so
werden auch die Sprachen L(N1)L(N2) und L(N1)∗ von einem NFA
erkannt.

Beweis. Sei Li = L(Ni). Wir können Z1 ∩ Z2 = ∅ annehmen. Dann
akzeptiert der NFA

N = (Z1 ∪Z2,Σ,∆3,Q1,E)

5



2 Reguläre Sprachen 2.2 Nichtdeterministische endliche Automaten

mit

∆3(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖E1,

∆1(p, a) ∪ ⋃q∈Q2 ∆2(q, a), p ∈ E1,

∆2(p, a), sonst
und

E =
⎧⎪⎪⎨⎪⎪⎩

E2, Q2 ∩E2 = ∅
E1 ∪E2, sonst

die Sprache L1L2.
Beweis von L1L2 ⊆ L(N): Seien x = x1⋯xk ∈ L1, y = y1⋯yl ∈ L2 und
seien q0, . . . , qk und p0, . . . , pl akzeptierende Rechnungen von N1(x)
und N2(y). Dann gilt q0 ∈ Q1, qk ∈ E1 und p0 ∈ Q2, pl ∈ E2.

• Im Fall l ≥ 1 ist zudem p1 ∈ ∆2(p0, y1) und somit p1 ∈ ∆(qk, y1).
• Im Fall l = 0 ist zudem pl ∈ Q2 ∩E2 und somit qk ∈ E.

Also ist q0, . . . , qk, p1, . . . , pl eine akzeptierende Rechnung von N(xy).
Beweis von L(N) ⊆ L1L2: Sei x = x1⋯xn ∈ L(N) und sei q0, . . . , qn
eine akz. Rechnung von N(x). Dann gilt q0 ∈ Q1, qn ∈ E, q0, . . . , qi ∈ Z1
und qi+1, . . . , qn ∈ Z2 für ein i ∈ {0, . . . , n}.

• Im Fall i = n ist qn ∈ E1 (d.h. x ∈ L1) und Q2 ∩ E2 ≠ ∅ (d.h.
ε ∈ L2).

• Im Fall i < n impliziert der Übergang qi+1 ∈ ∆(qi, xi+1), dass
qi ∈ E1 und qi+1 ∈ ∆2(q, xi+1) für ein q ∈ Q2 ist.

Also ist q0, . . . , qi eine akz. Rechnung von N1(x1⋯xi) und q, qi+1, . . . , qn
eine akz. Rechnung von N2(xi+1⋯xn), d.h. x ∈ L1L2.
Ganz ähnlich lässt sich zeigen, dass der NFA

N∗ = (Z1 ∪ {qneu},Σ,∆4,Q1 ∪ {qneu},E1 ∪ {qneu})

mit

∆4(p, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆1(p, a), p ∈ Z1 ∖E1,

∆1(p, a) ∪ ⋃q∈Q1 ∆1(q, a), p ∈ E1,

∅, sonst

die Sprache L∗1 akzeptiert. ∎

Satz 17 (Rabin und Scott).
REG = {L(N) ∣ N ist ein NFA}.

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA
auch als NFA aufgefasst werden kann. Für die Gegenrichtung kon-
struieren wir zu einem NFA N = (Z,Σ,∆,Q0,E) einen DFA M =
(P(Z),Σ, δ,Q0,E′) mit L(M) = L(N). Wir definieren die Überfüh-
rungsfunktion δ ∶ P(Z) ×Σ→ P(Z) von M mittels

δ(Q,a) = ⋃
q∈Q

∆(q, a).

Die Menge δ(Q,a) enthält also alle Zustände, in die N gelangen kann,
wenn N ausgehend von einem beliebigen Zustand q ∈ Q das Zeichen
a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert,
indem M in seinem aktuellen Zustand Q die Information speichert,
in welchen Zuständen sich N momentan befinden könnte. Für die
Erweiterung δ̂ ∶ P(Z) ×Σ∗ → P(Z) von δ (siehe Seite 3) können wir
nun folgende Behauptung zeigen.
Behauptung. δ̂(Q0, x) enthält alle Zustände, die N ausgehend von
einem Startzustand nach Lesen von x erreichen kann.
Wir beweisen die Behauptung induktiv über die Länge n von x.
Induktionsanfang (n = 0): klar, da δ̂(Q0, ε) = Q0 ist.
Induktionsschritt (n − 1 ; n): Sei x = x1 . . . xn gegeben. Nach Induk-

tionsvoraussetzung enthält
Qn−1 = δ̂(Q0, x1 . . . xn−1)

alle Zustände, die N(x) in genau n− 1 Schritten erreichen kann.
Wegen

δ̂(Q0, x) = δ(Qn−1, xn) = ⋃
q∈Qn−1

∆(q, xn)

enthält dann aber δ̂(Q0, x) alle Zustände, die N(x) in genau n
Schritten erreichen kann.

6



2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Deklarieren wir nun diejenigen Teilmengen Q ⊆ Z, die mindestens
einen Endzustand von N enthalten, als Endzustände des Potenz-
mengenautomaten M , d.h.

E′ = {Q ⊆ Z ∣ Q ∩E /= ∅},

so folgt für alle Wörter x ∈ Σ∗:

x ∈ L(N) ⇔ N(x) kann in genau ∣x∣ Schritten einen Endzustand
erreichen

⇔ δ̂(Q0, x) ∩E /= ∅
⇔ δ̂(Q0, x) ∈ E′

⇔ x ∈ L(M).

∎

Beispiel 18. Für den NFA N = (Z,Σ,∆,Q0,E) aus Beispiel 15

p q r s0 1 2

0, 1, 2

ergibt die Konstruktion des vorigen Satzes den folgenden DFAM (nach
Entfernen aller vom Startzustand Q0 = {p} aus nicht erreichbaren
Zustände):

δ 0 1 2

Q0 = {p} {p, q} {p} {p}
Q1 = {p, q} {p, q} {p, r} {p}
Q2 = {p, r} {p, q} {p} {p, s}
Q3 = {p, s} {p, q} {p} {p}

{p}

1, 2

{p, q}

0

{p, r} {p, s}
0 1
2

1 0

1, 2

0
2

◁

Im obigen Beispiel wurden für die Konstruktion des DFA M aus
dem NFA N nur 4 der insgesamt 2∥Z∥ = 16 Zustände benötigt, da die
übrigen 12 Zustände in P(Z) nicht vom Startzustand Q0 = {p} aus
erreichbar sind. Es gibt jedoch Beispiele, bei denen alle 2∥Z∥ Zustände
in P(Z) für die Konstruktion des Potenzmengenautomaten benötigt
werden (siehe Übungen).

Korollar 19. Die Klasse REG der regulären Sprachen ist unter fol-
genden Operationen abgeschlossen:

• Komplement,
• Schnitt,
• Vereinigung,

• Produkt,
• Sternhülle.

2.3 Reguläre Ausdrücke

Wir haben uns im letzten Abschnitt davon überzeugt, dass auch NFAs
nur reguläre Sprachen erkennen können:

REG = {L(M) ∣M ist ein DFA} = {L(N) ∣ N ist ein NFA}.

In diesem Abschnitt werden wir eine weitere Charakterisierung der
regulären Sprachen kennen lernen:

REG ist die Klasse aller Sprachen, die sich mittels der
Operationen Vereinigung, Schnitt, Komplement, Produkt
und Sternhülle aus der leeren Menge und den Singleton-
sprachen bilden lassen.
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2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Tatsächlich kann hierbei sogar auf die Schnitt- und Komplementbil-
dung verzichtet werden.

Definition 20. Die Menge der regulären Ausdrücke γ (über ei-
nem Alphabet Σ) und die durch γ dargestellte Sprache L(γ) sind
induktiv wie folgt definiert. Die Symbole ∅, ε und a (a ∈ Σ) sind
reguläre Ausdrücke, die

• die leere Sprache L(∅) = ∅,
• die Sprache L(ε) = {ε} und
• für jedes Zeichen a ∈ Σ die Sprache L(a) = {a}

beschreiben. Sind α und β reguläre Ausdrücke, die die Sprachen L(α)
und L(β) beschreiben, so sind auch αβ, (α∣β) und (α)∗ reguläre Aus-
drücke, die die Sprachen

• L(αβ) = L(α)L(β),
• L(α∣β) = L(α) ∪L(β) und
• L((α)∗) = L(α)∗

beschreiben.

Bemerkung 21.
• Um Klammern zu sparen, definieren wir folgende Präzedenz-
ordnung: Der Sternoperator ∗ bindet stärker als der Produktope-
rator und dieser wiederum stärker als der Vereinigungsoperator.
Für ((a∣b(c)∗)∣d) können wir also kurz a∣bc∗∣d schreiben.

• Da der reguläre Ausdruck γγ∗ die Sprache L(γ)+ beschreibt,
verwenden wir γ+ als Abkürzung für den Ausdruck γγ∗.

Beispiel 22. Die regulären Ausdrücke ε∗, ∅∗, (0∣1)∗00 und ε0∣∅1∗
beschreiben folgende Sprachen:

γ ε∗ ∅∗ (0∣1)∗00 ε0∣∅1∗
L(γ) {ε}∗ = {ε} ∅∗ = {ε} {x00 ∣ x ∈ {0,1}∗} {0}

◁

Beispiel 23. Betrachte nebenstehenden DFA M .
Um für die von M erkannte Sprache

L(M) = {x ∈ {a, b}∗ ∣ #a(x) −#b(x) ≡3 1}

einen regulären Ausdruck zu finden, betrachten
wir zunächst die Sprache L0,0 aller Wörter x, die
den DFA M ausgehend vom Zustand 0 in den

2

0

1

a
bb

a

a

b

Zustand 0 überführen. Weiter sei L≠0
0,0 die Sprache aller solchen Wörter

w ≠ ε, die zwischendurch nicht den Zustand 0 besuchen. Dann setzt
sich jedes x ∈ L0,0 aus beliebig vielen Teilwörtern w1, . . . ,wk ∈ L≠0

0,0
zusammen, d.h. L0,0 = (L≠0

0,0)∗.
Jedes w ∈ L≠0

0,0 beginnt entweder mit einem a (Übergang von 0 nach 1)
oder mit einem b (Übergang von 0 nach 2). Im ersten Fall folgt eine
beliebige Anzahl von Teilwörtern ab (Wechsel zwischen 1 und 2), an
die sich entweder das Suffix aa (Rückkehr von 1 nach 0 über 2) oder
das Suffix b (direkte Rückkehr von 1 nach 0) anschließt. Analog folgt
im zweiten Fall eine beliebige Anzahl von Teilwörtern ba (Wechsel
zwischen 2 und 1), an die sich entweder das Suffix a (direkte Rückkehr
von 2 nach 0) oder das Suffix bb (Rückkehr von 2 nach 0 über 1)
anschließt. Daher lässt sich L≠0

0,0 durch den regulären Ausdruck

γ≠0
0,0 = a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb)

beschreiben. Eine ähnliche Überlegung zeigt, dass sich die die Sprache
L≠0

0,1 aller Wörter, die M ausgehend von 0 in den Zustand 1 über-
führen, ohne dass zwischendurch der Zustand 0 nochmals besucht
wird, durch den regulären Ausdruck γ≠0

0,1 = (a∣bb)(ab)∗ beschreibbar
ist. Somit erhalten wir für L(M) den regulären Ausdruck

γ0,1 = (γ≠0
0,0)∗γ≠0

0,1 = (a(ab)∗(aa∣b) ∣ b(ba)∗(a∣bb))∗(a∣bb)(ab)∗.
◁

Satz 24. {L(γ) ∣ γ ist ein regulärer Ausdruck} ⊆ REG.
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2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Beweis. Die Inklusion von rechts nach links ist klar, da die Basis-
ausdrücke ∅, ε und a, a ∈ Σ∗, nur reguläre Sprachen beschreiben
und die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle
abgeschlossen ist (siehe Beobachtungen 13 und 16).
Für die Gegenrichtung konstruieren wir zu einem DFA M einen regu-
lären Ausdruck γ mit L(γ) = L(M). Sei also M = (Z,Σ, δ, q0,E) ein
DFA, wobei wir annehmen können, dass Z = {1, . . . ,m} und q0 = 1 ist.
Dann lässt sich L(M) als Vereinigung

L(M) = ⋃
q∈E

L1,q

von Sprachen der Form
Lp,q = {x ∈ Σ∗ ∣ δ̂(p, x) = q}

darstellen. Folglich reicht es zu zeigen, dass die Sprachen Lp,q durch
reguläre Ausdrücke beschreibbar sind. Hierzu betrachten wir die Spra-
chen

Lrp,q = {x1 . . . xn ∈ Σ∗
δ̂(p, x1 . . . xn) = q und für

i = 1, . . . , n − 1 gilt δ̂(p, x1 . . . xi) ≤ r
} .

Wegen Lp,q = Lmp,q reicht es, reguläre Ausdrücke γrp,q für die Sprachen
Lrp,q anzugeben. Im Fall r = 0 enthält

L0
p,q =

⎧⎪⎪⎨⎪⎪⎩

{a ∈ Σ ∣ δ(p, a) = q} ∪ {ε}, p = q,
{a ∈ Σ ∣ δ(p, a) = q}, sonst

nur Buchstaben (und eventuell das leere Wort) und ist somit leicht
durch einen regulären Ausdruck γ0

p,q beschreibbar. Wegen
Lr+1
p,q = Lrp,q ∪Lrp,r+1(Lrr+1,r+1)∗Lrr+1,q

lassen sich aus den regulären Ausdrücken γrp,q für die Sprachen Lrp,q
leicht reguläre Ausdrücke für die Sprachen Lr+1

p,q gewinnen:
γr+1
p,q = γrp,q ∣γrp,r+1(γrr+1,r+1)∗γrr+1,q.

∎

Beispiel 25. Betrachte den DFA

1

b

2

b

a

a

Da M insgesamt m = 2 Zustände und nur den Endzustand 2 besitzt,
ist

L(M) = ⋃
q∈E

L1,q = L1,2 = L2
1,2 = L(γ2

1,2).

Um γ2
1,2 zu berechnen, benutzen wir die Rekursionsformel

γr+1
p,q = γrp,q ∣γrp,r+1(γrr+1,r+1)∗γrr+1,q

und erhalten

γ2
1,2 = γ1

1,2∣γ1
1,2(γ1

2,2)∗γ1
2,2,

γ1
1,2 = γ0

1,2∣γ0
1,1(γ0

1,1)∗γ0
1,2,

γ1
2,2 = γ0

2,2∣γ0
2,1(γ0

1,1)∗γ0
1,2.

Um den regulären Ausdruck γ2
1,2 für L(M) zu erhalten, genügt es also,

die regulären Ausdrücke γ0
1,1, γ0

1,2, γ0
2,1, γ0

2,2, γ1
1,2 und γ1

2,2 zu berechnen:

r
p, q

1,1 1,2 2,1 2,2

0 ε∣b a a ε∣b

1 -
a∣(ε∣b)(ε∣b)∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b∗a
-

(ε∣b)∣a(ε∣b)∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ε∣b∣ab∗a

2 -
b∗a∣b∗a(ε∣b∣ab∗a)∗(ε∣b∣ab∗a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b∗a(b∣ab∗a)∗
- -

◁
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2 Reguläre Sprachen 2.4 Relationalstrukturen

Korollar 26. Sei L eine Sprache. Dann sind folgende Aussagen äqui-
valent:

• L ist regulär,
• es gibt einen DFA M mit L = L(M),
• es gibt einen NFA N mit L = L(N),
• es gibt einen regulären Ausdruck γ mit L = L(γ),
• L lässt sich mit den Operationen Vereinigung, Produkt und

Sternhülle aus endlichen Sprachen gewinnen,
• L lässt sich mit den Operationen ∩, ∪, Komplement, Produkt

und Sternhülle aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG ken-
nenlernen, nämlich durch reguläre Grammatiken. Zuvor befassen wir
uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen
Relationen (insbesondere Äquivalenzrelationen) eine wichtige Rolle.

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, Ri eine ki-stellige Relation auf A, d.h.
Ri ⊆ Aki für i = 1, . . . , n. Dann heißt (A;R1, . . . ,Rn) Relational-
struktur. Die Menge A heißt Grundmenge, Trägermenge oder
Individuenbereich der Relationalstruktur.
Wir werden hier hauptsächlich den Fall n = 1, k1 = 2, also (A,R) mit
R ⊆ A ×A betrachten. Man nennt dann R eine (binäre) Relation
auf A. Oft wird für (a, b) ∈ R auch die Infix-Schreibweise aRb
benutzt.

Beispiel 27.
• (F,M) mit F = {f ∣ f ist Fluss in Europa} und

M = {(f, g) ∈ F × F ∣ f mündet in g}.

• (U,B) mit U = {x ∣ x ist Berliner} und

B = {(x, y) ∈ U ×U ∣ x ist Bruder von y}.

• (P(M),⊆), wobei P(M) die Potenzmenge einer beliebigen Men-
ge M und ⊆ die Inklusionsbeziehung auf den Teilmengen von M
ist.

• (A, IdA), wobei IdA = {(x,x) ∣ x ∈ A} die Identität auf A ist.
• (R,≤).
• (Z, ∣), wobei ∣ die ”teilt”-Relation bezeichnet (d.h. a∣b, falls ein
c ∈ Z mit b = ac existiert). ◁

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen
Operationen Schnitt,Vereinigung,Komplement undDifferenz
definiert. Seien R und S Relationen auf A, dann ist

R ∩ S = {(x, y) ∈ A ×A ∣ xRy ∧ xSy},
R ∪ S = {(x, y) ∈ A ×A ∣ xRy ∨ xSy},
R − S = {(x, y) ∈ A ×A ∣ xRy ∧ ¬xSy},
R = (A ×A) −R.

Sei allgemeinerM⊆ P(A ×A) eine beliebige Menge von Relationen
auf A. Dann sind der Schnitt überM und die Vereinigung über
M folgende Relationen:

⋂M = ⋂
R∈M

R = {(x, y) ∣ ∀R ∈ M ∶ xRy},

⋃M = ⋃
R∈M

R = {(x, y) ∣ ∃R ∈ M ∶ xRy}.

Die transponierte (konverse) Relation zu R ist

RT = {(y, x) ∣ xRy}.

RT wird oft auch mit R−1 bezeichnet. Z.B. ist (R,≤T ) = (R,≥).
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2 Reguläre Sprachen 2.4 Relationalstrukturen

Seien R und S Relationen auf A. Das Produkt oder die Komposi-
tion von R und S ist

R ○ S = {(x, z) ∈ A ×A ∣ ∃y ∈ A ∶ xRy ∧ ySz}.

Beispiel 28. Ist B die Relation ”ist Bruder von”, V ”ist Vater von”,
M ”ist Mutter von” und E = V ∪M ”ist Elternteil von”, so ist B ○E
die Onkel-Relation. ◁

Übliche Bezeichnungen für das Relationenprodukt sind auch R ;S und
R ⋅ S oder einfach RS. Das n-fache Relationenprodukt R ○ ⋯ ○R von
R wird mit Rn bezeichnet. Dabei ist R0 = Id.
Vorsicht: Das n-fache Relationenprodukt Rn von R sollte nicht mit
dem n-fachen kartesischen Produkt R ×⋯ ×R der Menge R verwech-
selt werden. Wir vereinbaren, dass Rn das n-fache Relationenprodukt
bezeichnen soll, falls R eine Relation ist.

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heißt R
reflexiv, falls ∀x ∈ A ∶ xRx (also IdA ⊆ R)
irreflexiv, falls ∀x ∈ A ∶ ¬xRx (also IdA ⊆ R)
symmetrisch, falls ∀x, y ∈ A ∶ xRy⇒ yRx (also R ⊆ RT )
asymmetrisch, falls ∀x, y ∈ A ∶ xRy⇒ ¬yRx (also R ⊆ RT )
antisymmetrisch, falls ∀x, y ∈ A ∶ xRy ∧ yRx⇒ x = y

(also R ∩RT ⊆ Id)
konnex, falls ∀x, y ∈ A ∶ xRy ∨ yRx

(also A ×A ⊆ R ∪RT )
semikonnex, falls ∀x, y ∈ A ∶ x ≠ y⇒ xRy ∨ yRx

(also Id ⊆ R ∪RT )
transitiv, falls ∀x, y, z ∈ A ∶ xRy ∧ yRz ⇒ xRz

(also R2 ⊆ R)
gilt.

Die nachfolgende Tabelle gibt einen Überblick über die wichtigsten
Relationalstrukturen.

refl. sym. trans. antisym. asym. konnex semikon.

Äquivalenzrelation ✓ ✓ ✓
(Halb-)Ordnung ✓ ✓ ✓
Striktordnung ✓ ✓
lineare Ordnung ✓ ✓ ✓
lin. Striktord. ✓ ✓ ✓
Quasiordnung ✓ ✓

In der Tabelle sind nur die definierenden Eigenschaften durch ein ”✓”
gekennzeichnet. Das schließt nicht aus, dass gleichzeitig auch noch
weitere Eigenschaften vorliegen können.
Beispiel 29.

• Die Relation ”ist Schwester von” ist zwar in einer reinen Da-
mengesellschaft symmetrisch, i.a. jedoch weder symmetrisch
noch asymmetrisch noch antisymmetrisch.

• Die Relation ”ist Geschwister von” ist zwar symmetrisch, aber
weder reflexiv noch transitiv und somit keine Äquivalenzrelation.

• (R,<) ist irreflexiv, asymmetrisch, transitiv und semikonnex
und somit eine lineare Striktordnung.

• (R,≤) und (P(M),⊆) sind reflexiv, antisymmetrisch und tran-
sitiv und somit Ordnungen.

• (R,≤) ist auch konnex und somit eine lineare Ordnung.
• (P(M),⊆) ist zwar im Fall ∥M∥ ≤ 1 konnex, aber im Fall

∥M∥ ≥ 2 weder semikonnex noch konnex. ◁

Graphische Darstellung von Relationen

Eine RelationR auf einer endlichen MengeA kann durch einen gerich-
teten Graphen (oderDigraphen) G = (V,E) mitKnotenmenge

11



2 Reguläre Sprachen 2.4 Relationalstrukturen

V = A und Kantenmenge E = R veranschaulicht werden. Hierzu
stellen wir jedes Element x ∈ A als einen Knoten dar und verbin-
den jedes Knotenpaar (x, y) ∈ R durch eine gerichtete Kante (Pfeil).
Zwei durch eine Kante verbundene Knoten heißen benachbart oder
adjazent.
Beispiel 30. Für die Relation (A,R) mit A = {a, b, c, d} und
R = {(b, c), (b, d), (c, a), (c, d), (d, d)} erhalten wir folgende graphische
Darstellung.

a b

dc

◁

Der Ausgangsgrad eines Knotens x ∈ V ist deg+(x) = ∥R[x]∥, wobei
R[x] = {y ∈ V ∣ xRy} die Menge der Nachfolger von x ist. Entspre-
chend ist deg−(x) = ∥{y ∈ V ∣ yRx}∥ der Eingangsgrad von x und
R−1[x] = {y ∈ V ∣ yRx} die Menge der Vorgänger von x. Falls R
symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem
Fall ist d(x) = deg−(x) = deg+(x) der Grad von x und R[x] = R−1[x]
heißt die Nachbarschaft von x. Ist R zudem irreflexiv, so ist G
schleifenfrei und wir erhalten einen (ungerichteten) Graphen.

Darstellung durch eine Adjazenzmatrix

Eine Relation R auf einer endlichen (geordneten) Menge A =
{a1, . . . , an} lässt sich durch eine boolesche n × n-Matrix MR = (mij)
mit

mij ∶= { 1, aiRaj,
0, sonst

darstellen. Beispielsweise hat die Relation
R = {(b, c), (b, d), (c, a), (c, d), (d, d)}

auf der Menge A = {a, b, c, d} die Matrixdarstellung

MR =

⎛
⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1 1
1 0 0 1
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

.

Darstellung durch eine Adjazenzliste

Eine weitere Möglichkeit besteht darin, eine endliche Relation R
in Form einer Tabelle darzustellen, die jedem Element x ∈ A seine
Nachfolgermenge R[x] in Form einer Liste zuordnet:

x R[x]

a -
b c, d

c a, d

d d

Sind MR = (rij) und MS = (sij) boolesche n × n-Matrizen für R und
S, so erhalten wir für T = R ○ S die Matrix MT = (tij) mit

tij = ⋁
k=1,...,n

(rik ∧ skj)

Die Nachfolgermenge T [x] von x bzgl. der Relation T = R○S berechnet
sich zu

T [x] = ⋃{S[y] ∣ y ∈ R[x]} = ⋃
y∈R[x]

S[y].

Beispiel 31. Betrachte die Relationen R = {(a, a), (a, c), (c, b), (c, d)}
und S = {(a, b), (d, a), (d, c)} auf der Menge A = {a, b, c, d}.
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Relation R S R ○ S S ○R

Digraph
a b

dc

a b

dc

a b

dc

a b

dc

Adjazenz-
matrix

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0

0 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

Adjazenz-
liste

a ∶a, c
b ∶ -
c ∶ b, d
d ∶ -

a ∶ b
b ∶ -
c ∶ -
d ∶a, c

a ∶ b
b ∶ -
c ∶ a, c
d ∶ -

a ∶ -
b ∶ -
c ∶ -
d ∶a, b, c, d

◁

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht
kommutativ ist, d.h. i.a. gilt nicht R ○ S = S ○R.
Als nächstes zeigen wir, dass die Menge R = P(A ×A) aller binären
Relationen auf A mit dem Relationenprodukt ○ als binärer Operation
ein Monoid) (also eine Halbgruppe mit neutralem Element) bildet.

Satz 32. Seien Q, R, S Relationen auf A. Dann gilt
(i) (Q ○R) ○ S = Q ○ (R ○ S), d.h. ○ ist assoziativ,
(ii) Id ○R = R ○ Id = R, d.h. Id ist neutrales Element.

Beweis.
(i) Es gilt:

x (Q ○R) ○ S y ⇔ ∃u ∈ A ∶ x (Q ○R) u ∧ u S y

⇔ ∃u ∈ A ∶ (∃v ∈ A ∶ x Q v R u) ∧ u S y

⇔ ∃u, v ∈ A ∶ x Q v R u S y

⇔ ∃v ∈ A ∶ x Q v ∧ (∃u ∈ A ∶ v R u ∧ u S y)
⇔ ∃v ∈ A ∶ x Q v (R ○ S) y
⇔ x Q ○ (R ○ S) y

(ii) Wegen x Id○R y⇔∃z ∶ x = z ∧ z R y⇔ x R y folgt Id○R = R.
Die Gleichheit R ○ Id = R folgt analog.

∎

Manchmal steht man vor der Aufgabe, eine gegebene Relation R
durch eine möglichst kleine Modifikation in eine Relation R′ mit
vorgegebenen Eigenschaften zu überführen. Will man dabei alle in R
enthaltenen Paare beibehalten, dann sollte R′ aus R durch Hinzufügen
möglichst weniger Paare hervorgehen.
Es lässt sich leicht nachprüfen, dass der Schnitt über eine Menge
reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder re-
flexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder
Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive
oder symmetrische) Relation R′, die R enthält.

Definition 33. Sei R eine Relation auf A.
• Die reflexive Hülle von R ist

hrefl(R) = ⋂{S ⊆ A ×A ∣ S ist reflexiv und R ⊆ S}.

• Die symmetrische Hülle von R ist

hsym(R) = ⋂{S ⊆ A ×A ∣ S ist symmetrisch und R ⊆ S}.

• Die transitive Hülle von R ist

R+ = ⋂{S ⊆ A ×A ∣ S ist transitiv und R ⊆ S}.

• Die reflexiv-transitive Hülle von R ist

R∗ = ⋂{S ⊆ A ×A ∣ S ist reflexiv, transitiv und R ⊆ S}.

• Die Äquivalenzhülle von R ist

häq(R) = ⋂{S ∣ S ist eine Äquivalenzrelation auf A und R ⊆ S}.

Satz 34. Sei R eine Relation auf A.
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2 Reguläre Sprachen 2.4 Relationalstrukturen

(i) hrefl(R) = R ∪ IdA,
(ii) hsym(R) = R ∪RT ,
(iii) R+ = ⋃n≥1Rn,
(iv) R∗ = ⋃n≥0Rn,
(v) häq(R) = (R ∪RT )∗.

Beweis. Siehe Übungen. ∎

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a, b) genau
dann in der reflexiv-transitiven Hülle R∗ von R ist, wenn es ein n ≥ 0
gibt mit aRnb, d.h. es gibt Elemente x0, . . . , xn ∈ A mit x0 = a, xn = b
und

x0Rx1Rx2 . . . xn−1Rxn.

In der Graphentheorie nennt man x0, . . . , xn einen Weg der Länge n
von a nach b.

2.4.1 Ordnungs- und Äquivalenzrelationen

Wir betrachten zunächst Ordnungsrelationen, die durch die drei
Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 35.
• (P(M),⊆), (Z,≤), (R,≤) und (N, ∣) sind Ordnungen. (Z, ∣) ist

keine Ordnung, aber eine Quasiordnung.
• Für jede Menge M ist die relationale Struktur (P(M);⊆) eine

Ordnung. Diese ist nur im Fall ∥M∥ ≤ 1 linear.
• Ist R eine Relation auf A und B ⊆ A, so ist RB = R ∩ (B ×B)

die Einschränkung von R auf B.
• Einschränkungen von (linearen) Ordnungen sind ebenfalls (li-

neare) Ordnungen.
• Beispielsweise ist (Q,≤) die Einschränkung von (R,≤) auf Q

und (N, ∣) die Einschränkung von (Z, ∣) auf N. ◁

Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme dar-
stellen. Sei ≤ eine Ordnung auf A und sei < die Relation ≤ ∩ IdA. Um
die Ordnung ≤ in einem Hasse-Diagramm darzustellen, wird nur
der Graph der Relation

⋖= < ∖<2, d.h. x ⋖ y ⇔ x < y ∧ ¬∃z ∶ x < z < y

gezeichnet. Für x ⋖ y sagt man auch, y ist oberer Nachbar von x.
Weiterhin wird im Fall x ⋖ y der Knoten y oberhalb vom Knoten x
gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 36.

Die Inklusionsrelation auf der Po-
tenzmenge P(M) von M = {a, b, c}
lässt sich durch nebenstehendes
Hasse-Diagramm darstellen.

∅

{b}

{a, b} {a, c}

{a}

{b, c}

{c}

M

Schränken wir die ”teilt”-Relation
auf die Menge {1,2, . . . ,10} ein,
so erhalten wir folgendes Hasse-
Diagramm.

1

2 3 5 7

4 6 9 10

8

◁

Definition 37. Sei ≤ eine Ordnung auf A und sei b ein Element in
einer Teilmenge B ⊆ A.

• b heißt kleinstes Element oder Minimum von B (kurz
b = minB), falls gilt:

∀b′ ∈ B ∶ b ≤ b′.

14
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• b heißt größtes Element oder Maximum von B (kurz
b = maxB), falls gilt:

∀b′ ∈ B ∶ b′ ≤ b.

• b heißt minimal in B, falls es in B kein kleineres Element
gibt:

∀b′ ∈ B ∶ b′ ≤ b⇒ b′ = b.

• b heißt maximal in B, falls es in B kein größeres Element
gibt:

∀b′ ∈ B ∶ b ≤ b′⇒ b = b′.

Bemerkung 38. Da Ordnungen antisymmetrisch sind, kann es in
jeder Teilmenge B höchstens ein kleinstes und höchstens ein größtes
Element geben. Die Anzahl der minimalen und maximalen Elemente
in B kann dagegen beliebig groß sein.

Definition 39. Sei ≤ eine Ordnung auf A und sei B ⊆ A.
• Jedes Element u ∈ A mit u ≤ b für alle b ∈ B heißt untere und

jedes o ∈ A mit b ≤ o für alle b ∈ B heißt obere Schranke von
B.

• B heißt nach oben beschränkt, wenn B eine obere Schran-
ke hat, und nach unten beschränkt, wenn B eine untere
Schranke hat.

• B heißt beschränkt, wenn B nach oben und nach unten be-
schränkt ist.

• Besitzt B eine größte untere Schranke i, d.h. besitzt die Menge
U aller unteren Schranken von B ein größtes Element i, so
heißt i das Infimum von B (kurz i = infB):

(∀b ∈ B ∶ b ≥ i) ∧ [∀u ∈ A ∶ (∀b ∈ B ∶ b ≥ u) ⇒ u ≤ i].

• Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge
O aller oberen Schranken von B ein kleinstes Element s, so

heißt s das Supremum von B (s = supB):

(∀b ∈ B ∶ b ≤ s) ∧ [∀o ∈ A ∶ (∀b ∈ B ∶ b ≤ o) ⇒ s ≤ o]

Bemerkung 40. B kann nicht mehr als ein Supremum und ein
Infimum haben.

Beispiel 41. Betrachte nebenstehende Ordnung auf der Menge A =
{a, b, c, d, e}. Die folgende Tabelle zeigt für verschie-
dene Teilmengen B ⊆ A alle minimalen und maxi-
malen Elemente in B Minimum und Maximum, alle
unteren und oberen Schranken, sowie Infimum und
Supremum von B (falls existent).

a b

c d

e

B minimal maximal min max untere
Schr

obere
anken inf sup

{a, b} a, b a, b - - c, d, e - - -
{c, d} c, d c, d - - e a, b e -

{a, b, c} c a, b c - c, e - c -
{a, b, c, e} e a, b e - e - e -
{a, c, d, e} e a e a e a e a

◁

Bemerkung 42.
• Auch in linearen Ordnungen muss nicht jede beschränkte Teil-

menge ein Supremum oder Infimum besitzen.
• So hat in der linear geordneten Menge (Q,≤) die Teilmenge

B = {x ∈ Q ∣ x2 ≤ 2} = {x ∈ Q ∣ x2 < 2}

weder ein Supremum noch ein Infimum.
• Dagegen hat in (R,≤) jede beschränkte Teilmenge B ein Supre-

mum und ein Infimum (aber möglicherweise kein Maximum oder
Minimum).
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2 Reguläre Sprachen 2.4 Relationalstrukturen

Als nächstes betrachten wir Äquivalenzrelationen, die durch die drei
Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.
Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E[x]
die von x repräsentierte Äquivalenzklasse und bezeichnet sie
mit [x]E oder einfach mit [x]. Eine Menge S ⊆ A heißt Repräsen-
tantensystem, falls sie genau ein Element aus jeder Äquivalenzklasse
enthält.

Beispiel 43.
• Auf der Menge aller Geraden im R2 die Parallelität. Offen-

bar bilden alle Geraden mit derselben Richtung (oder Steigung)
jeweils eine Äquivalenzklasse. Daher wird ein Repräsentanten-
system beispielsweise durch die Menge aller Ursprungsgeraden
gebildet.

• Auf der Menge aller Menschen ”im gleichen Jahr geboren wie”.
Hier bildet jeder Jahrgang eine Äquivalenzklasse.

• Auf Z die Relation ”gleicher Rest bei Division durch m”. Die
zugehörigen Äquivalenzklassen sind

[r] = {a ∈ Z ∣ a ≡m r}, r = 0,1, . . . ,m − 1.

Ein Repräsentantensystem wird beispielsweise durch die Reste
0,1, . . . ,m − 1 gebildet. ◁

Definition 44. Eine Familie {Bi ∣ i ∈ I} von nichtleeren Teilmengen
Bi ⊆ A heißt Partition der Menge A, falls gilt:

a) die Mengen Bi überdecken A, d.h. A = ⋃i∈I Bi und
b) die Mengen Bi sind paarweise disjunkt, d.h. für je zwei ver-

schiedene Mengen Bi /= Bj gilt Bi ∩Bj = ∅.

Die Äquivalenzklassen einer Äquivalenzrelation E bilden eine Parti-
tion {[x] ∣ x ∈ A} von A (siehe Satz 45). Diese Partition wird auch
Quotienten- oder Faktormenge genannt und mit A/E bezeichnet.
Die Anzahl der Äquivalenzklassen von E wird auch als der Index

von E bezeichnet. Wie der nächste Satz zeigt, beschreiben Äquiva-
lenzrelationen auf A und Partitionen von A denselben Sachverhalt.
Satz 45. Sei E eine Relation auf A. Dann sind folgende Aussagen
äquivalent.
(i) E ist eine Äquivalenzrelation auf A.
(ii) Für alle x, y ∈ A gilt

xEy⇔ E[x] = E[y] (∗)

(iii) Es gibt eine Partition {Bi ∣ i ∈ I} von A mit
xEy⇔∃i ∈ I ∶ x, y ∈ Bi.

Beweis.
(i) ⇒ (ii) Sei E eine Äquivalenzrelation auf A. Da E transitiv ist,

impliziert xEy die Inklusion E[y] ⊆ E[x]:
z ∈ E[y] ⇒ yEz ⇒ xEz ⇒ z ∈ E[x].

Da E symmetrisch ist, folgt aus xEy aber auch E[x] ⊆ E[y].
Umgekehrt folgt aus E[x] = E[y] wegen der Reflexivität von E,
dass y ∈ E[y] = E[x] enthalten ist, und somit xEy. Dies zeigt,
dass E die Äquivalenz (∗) erfüllt.

(ii) ⇒ (iii) Wir zeigen, dass die Äquivalenzklassen E[x], x ∈ A, die
Menge A partitionieren, falls E die Bedingung (∗) erfüllt.
Wegen E[x] = E[x] folgt xEx und somit x ∈ E[x]. Folglich
überdecken die Mengen E[x] die Menge A.
Ist E[x] ∩E[y] ≠ ∅ und z ein Element in E[x] ∩E[y], so gilt
xEz und yEz und daher folgt E[x] = E[z] = E[y].

(iii) ⇒ (i) Existiert schließlich eine Partition {Bi ∣ i ∈ I} von A mit
xEy ⇔ ∃i ∈ I ∶ x, y ∈ Bi, so ist E reflexiv, da zu jedem x ∈ A
eine Menge Bi mit x ∈ Bi existiert. Zudem ist E symmetrisch,
da aus x, y ∈ Bi auch y, x ∈ Bi folgt. Und E ist transitiv, da aus
x, y ∈ Bi und y, z ∈ Bj wegen y ∈ Bi ∩Bj die Gleichheit Bi = Bj

und somit x, z ∈ Bi folgt.

16



2 Reguläre Sprachen 2.4 Relationalstrukturen

∎

Die kleinste Äquivalenzrelation auf A ist die Identität IdA, die größte
die Allrelation A×A. Die Äquivalenzklassen der Identität enthalten
jeweils nur ein Element, d.h. A/IdA = {{x} ∣ x ∈ A}, und die Allrelati-
on erzeugt nur eine Äquivalenzklasse, nämlich A/(A ×A) = {A}.
Für zwei Äquivalenzrelationen E ⊆ E′ sind auch die Äquivalenzklas-
sen [x]E von E in den Klassen [x]E′ von E′ enthalten. Folglich ist
jede Äquivalenzklasse von E′ die Vereinigung von (evtl. mehreren)
Äquivalenzklassen von E. E bewirkt also eine feinere Partitionierung
als E′. Demnach ist die Identität die feinste und die Allrelation die
gröbste Äquivalenzrelation.

Die feiner-Relation auf
der Menge aller Parti-
tionen von M = {a, b, c}
hat das folgende Hasse-
Diagramm: {{a},{b},{c}}

{{a, b},{c}} {{a, c},{b}}
{{a},{b, c}}

{M}

2.4.2 Abbildungen

Definition 46. Sei R eine binäre Relation auf einer Menge M .
• R heißt rechtseindeutig, falls für alle x, y, z ∈M gilt:

xRy ∧ xRz ⇒ y = z.

• R heißt linkseindeutig, falls für alle x, y, z ∈M gilt:

xRz ∧ yRz ⇒ x = y.

• Der Nachbereich N(R) und der Vorbereich V (R) von R
sind

N(R) = ⋃
x∈M

R[x] und V (R) = ⋃
x∈M

RT [x].

• Eine rechtseindeutige Relation R mit V (R) = A und N(R) ⊆ B
heißt Abbildung oder Funktion von A nach B (kurz
R ∶ A→ B).

Bemerkung 47.
• Wie üblich werden wir Abbildungen meist mit kleinen Buchsta-

ben f, g, h, ... bezeichnen und für (x, y) ∈ f nicht xfy sondern
f(x) = y oder f ∶ x↦ y schreiben.

• Ist f ∶ A→ B eine Abbildung, so wird der Vorbereich V (f) = A
der Definitionsbereich und die Menge B der Wertebereich
oder Wertevorrat von f genannt.

• Der Nachbereich N(f) wird als Bild von f bezeichnet.

Definition 48.
• Im Fall N(f) = B heißt f surjektiv.
• Ist f linkseindeutig, so heißt f injektiv. In diesem Fall impli-

ziert f(x) = f(y) die Gleichheit x = y.
• Eine injektive und surjektive Abbildung heißt bijektiv.
• Ist f injektiv, so ist auch f−1 ∶ N(f) → A eine Abbildung, die

als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich V (f−1) = N(f) von f−1 nur
dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

Definition 49. Seien (A1,R1) und (A2,R2) Relationalstrukturen.
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• Eine Abbildung h ∶ A1 → A2 heißt Homomorphismus, falls
für alle a, b ∈ A1 gilt:

aR1b⇒ h(a)R2h(b).

• Sind (A1,R1) und (A2,R2) Ordnungen, so spricht man von
Ordnungshomomorphismen oder einfach von monotonen
Abbildungen.

• Injektive Ordnungshomomorphismen werden auch streng mo-
notone Abbildungen genannt.

Beispiel 50. Folgende Abbildung h ∶ A1 → A2 ist ein bijektiver Ord-
nungshomomorphismus.

b

d

a

c

1

2

3

4

(A,≤) (B,⊑)

h

Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h−1

kein Homomorphismus, da h−1 nicht monoton ist. Es gilt nämlich

2 ⊑ 3, aber h−1(2) = b /≤ c = h−1(3).
◁

Definition 51. Ein bijektiver Homomorphismus h ∶ A1 → A2, bei
dem auch h−1 ein Homomorphismus ist, d.h. es gilt

∀a, b ∈ A1 ∶ aR1b⇔ h(a)R2h(b).

heißt Isomorphismus. In diesem Fall heißen die Strukturen (A1,R1)
und (A2,R2) isomorph (kurz: (A1,R1) ≅ (A2,R2)).

Beispiel 52.
• Die Abbildung h ∶ R→ R+ mit

h ∶ x↦ ex

ist ein Ordnungsisomorphismus zwischen (R,≤) und (R+,≤).
• Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elemen-

ten:

Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen
zerfällt unter der Äquivalenzrelation ≅ in fünf Äquivalenzklassen,
die durch obige fünf Hasse-Diagramme repräsentiert werden.

• Für n ∈ N sei
Tn = {k ∈ N ∣ k teilt n}

die Menge aller Teiler von n und

Pn = {p ∈ Tn ∣ p ist prim}

die Menge aller Primteiler von n. Dann ist die Abbildung

h ∶ k ↦ Pk

ein (surjektiver) Ordnungshomomorphismus von (Tn, ∣) auf
(P(Pn),⊆). h ist sogar ein Isomorphismus, falls n quadratfrei
ist (d.h. es gibt kein k ≥ 2, so dass k2 die Zahl n teilt).

• Die beiden folgenden Graphen G und G′ sind isomorph. Zwei
Isomorphismen sind beispielsweise h1 und h2.
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1

5 2

4 3

1

5 2

4 3

G = (V,E)
v 1 2 3 4 5

h1(v) 1 3 5 2 4
h2(v) 1 4 2 5 3

G′ = (V,E′)

• Während auf der Knotenmenge V = [3] insgesamt 23 = 8 ver-
schiedene Graphen existieren, gibt es auf dieser Menge nur 4
verschiedene nichtisomorphe Graphen:

◁

Bemerkung 53. Auf der Knotenmenge V = {1, . . . , n} existieren ge-
nau 2(

n
2) verschiedene Graphen. Sei a(n) die Anzahl aller nichtisomor-

phen Graphen auf V . Da jede Isomorphieklasse mindestens einen und
höchstens n! verschiedene Graphen enthält, ist 2(

n
2)/n! ≤ a(n) ≤ 2(

n
2).

Tatsächlich ist a(n) asymptotisch gleich u(n) = 2(
n
2)/n! (in Zei-

chen: a(n) ∼ u(n)), d.h.

lim
n→∞

a(n)/u(n) = 1.

Also gibt es auf V = {1, . . . , n} nicht wesentlich mehr als u(n) nicht-
isomorphe Graphen.

2.5 Minimierung von DFAs

Wie können wir feststellen, ob ein DFA M = (Z,Σ, δ, q0,E) unnötige
Zustände enthält? Zunächst einmal können alle Zustände entfernt
werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden
gehen wir daher davon aus, dass M keine unerreichbaren Zustände
enthält. Offensichtlich können zwei Zustände q und p zu einem Zu-
stand verschmolzen werden (kurz: q ∼ p), wenn M von q und von p
ausgehend jeweils dieselben Wörter akzeptiert. Bezeichnen wir den
DFA (Z,Σ, δ, q,E) mitMq, so sind q und p genau dann verschmelzbar,
wenn L(Mq) = L(Mp) ist.
Fassen wir alle zu einem Zustand z äquivalenten Zustände in dem
neuen Zustand

[z]∼ = {z′ ∈ Z ∣ L(Mz′) = L(Mz)}

zusammen (wofür wir auch kurz [z] oder z̃ schreiben) und ersetzen
wir Z und E durch Z̃ = {z̃ ∣ z ∈ Z} und Ẽ = {z̃ ∣ z ∈ E}, so erhalten
wir den DFA M ′ = (Z̃,Σ, δ′, q̃0, Ẽ) mit

δ′(q̃, a) = δ̃(q, a).

Hierbei bezeichnet Q̃ für eine Teilmenge Q ⊆ Z die Menge {q̃ ∣ q ∈ Q}
aller Äquivalenzklassen q̃, die mindestens ein Element q ∈ Q enthalten.
Der nächste Satz zeigt, dass M ′ tatsächlich der gesuchte Minimalau-
tomat ist.

Satz 54. Sei M = (Z,Σ, δ, q0,E) ein DFA, der nur Zustände ent-
hält, die vom Startzustand q0 aus erreichbar sind. Dann ist M ′ =
(Z̃,Σ, δ′, q̃0, Ẽ) mit

δ′(q̃, a) = δ̃(q, a)
ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis. Wir zeigen zuerst, dass δ′ wohldefiniert ist, also der Wert
von δ′(q̃, a) nicht von der Wahl des Repräsentanten q abhängt. Hierzu
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zeigen wir, dass im Fall p ∼ q auch δ(q, a) und δ(p, a) äquivalent sind:

L(Mq) = L(Mp) ⇒ ∀x ∈ Σ∗ ∶ x ∈ L(Mq) ↔ x ∈ L(Mp)
⇒ ∀x ∈ Σ∗ ∶ ax ∈ L(Mq) ↔ ax ∈ L(Mp)
⇒ ∀x ∈ Σ∗ ∶ x ∈ L(Mδ(q,a)) ↔ x ∈ L(Mδ(p,a))
⇒ L(Mδ(q,a)) = L(Mδ(p,a)).

Als nächstes zeigen wir, dass L(M ′) = L(M) ist. Sei x = x1 . . . xn eine
Eingabe und seien

qi = δ̂(q0, x1 . . . xi), i = 0, . . . , n

die von M beim Abarbeiten von x durchlaufenen Zustände. Wegen

δ′(q̃i−1, xi) = ̃δ(qi−1, xi) = q̃i

durchläuft M ′ dann die Zustände

q̃0, q̃1, . . . , q̃n.

Da aber qn genau dann zu E gehört, wenn q̃n ∈ Ẽ ist, folgt
L(M ′) = L(M) (man beachte, dass q̃n entweder nur Endzustände
oder nur Nicht-Endzustände enthält, vgl. Beobachtung 55).
Es bleibt zu zeigen, dassM ′ eine minimale Anzahl ∥Z̃∥ von Zuständen
hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es
reicht also zu zeigen, dass die Anzahl k = ∥Z̃∥ = ∥{L(Mz) ∣ z ∈ Z}∥ der
Zustände von M ′ nicht von M , sondern nur von L = L(M) abhängt.
Für x ∈ Σ∗ sei

Lx = {y ∈ Σ∗ ∣ xy ∈ L}.

Dann gilt {Lx ∣ x ∈ Σ∗} ⊆ {L(Mz) ∣ z ∈ Z}, da Lx = L(Mδ̂(q0,x)
)

ist. Die umgekehrte Inklusion gilt ebenfalls, da nach Voraussetzung
jeder Zustand q ∈ Z über ein x ∈ Σ∗ erreichbar ist. Also hängt
k = ∥{L(Mz) ∣ z ∈ Z}∥ = ∥{Lx ∣ x ∈ Σ∗}∥ nur von L ab. ∎

Eine interessante Folgerung aus obigem Beweis ist, dass für eine re-
guläre Sprache L ⊆ Σ∗ die Menge {Lx ∣ x ∈ Σ∗} nur endlich viele
verschiedene Sprachen enthält, und somit die durch

xRL y⇔ Lx = Ly
auf Σ∗ definierte Äquivalenzrelation RL endlichen Index hat.
Für die algorithmische Konstruktion von M ′ aus M ist es notwendig
herauszufinden, ob zwei Zustände p und q von M äquivalent sind oder
nicht.
Bezeichne A∆B = (A ∖B) ∪ (B ∖A) die symmetrische Differenz von
zwei Mengen A und B. Dann ist die Inäquivalenz p /∼ q zweier Zustän-
de p und q gleichbedeutend mit L(Mp)∆L(Mq) ≠ ∅. Wir nennen ein
Wort x ∈ L(Mp)∆L(Mq) einen Unterscheider zwischen p und q.
Beobachtung 55.

• Endzustände p ∈ E sind nicht mit Zuständen q ∈ Z∖E äquivalent
(da sie durch ε unterschieden werden).

• Wenn δ(p, a) und δ(q, a) inäquivalent sind, dann auch p und q
(da jeder Unterscheider x von δ(p, a) und δ(q, a) einen Unter-
scheider ax von p und q liefert).

Wenn also D nur Paare von inäquivalenten Zuständen enthält, dann
trifft dies auch auf die Menge

D′ = {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈D}

zu. Wir können somit ausgehend von der Menge

D0 = {{p, q} ∣ p ∈ E, q /∈ E}

eine Folge von Mengen

D0 ⊆D1 ⊆ ⋯ ⊆ {{z, z′} ⊆ Z ∣ z ≠ z′}

mittels der Vorschrift

Di+1 =Di ∪ {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈Di}
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berechnen, indem wir zu Di alle Paare {p, q} hinzufügen, für die eines
der Paare {δ(p, a), δ(q, a)}, a ∈ Σ, bereits zu Di gehört. Da Z endlich
ist, muss es ein j mit Dj+1 = Dj geben. In diesem Fall gilt (siehe
Übungen):

p /∼ q⇔ {p, q} ∈Dj.

Folglich kann M ′ durch Verschmelzen aller Zustände p, q mit {p, q} /∈
Dj gebildet werden. Der folgende Algorithmus berechnet für einen
beliebigen DFA M den zugehörigen Minimal-DFA M ′.

Algorithmus min-DFA(M)
1 Input: DFA M = (Z,Σ, δ, q0,E)
2 entferne alle nicht erreichbaren Zustaende
3 D′ ∶= {{z, z′} ∣ z ∈ E, z′ /∈ E}
4 repeat
5 D ∶=D′

6 D′ ∶=D ∪ {{p, q} ∣ ∃a ∈ Σ ∶ {δ(p, a), δ(q, a)} ∈D}
7 until D′ =D
8 Output: M ′ = (Z̃,Σ, δ′, q̃0, Ẽ), wobei für jeden Zustand

z ∈ Z gilt: z̃ = {z′ ∈ Z ∣ {z, z′} /∈D}

Beispiel 56. Betrachte den DFA M

2

1

3

6

4

5

b

b

b

b

a

a

a

a

aa bb

Dann enthält D0 die Paare

{1,3},{1,6},{2,3},{2,6},{3,4},{3,5},{4,6},{5,6}.

Die Paare in D0 sind in der folgenden Matrix durch den Unterscheider
ε markiert.

2
3 ε ε

4 a a ε

5 a a ε

6 ε ε ε ε

1 2 3 4 5
Wegen

{p, q} {1,4} {1,5} {2,4} {2,5}
{δ(q, a), δ(p, a)} {2,3} {2,6} {1,3} {1,6}

enthält D1 zusätzlich die Paare {1, 4}, {1, 5}, {2, 4}, {2, 5} (in obiger
Matrix durch den Unterscheider a markiert). Da die verbliebenen
Paare {1,2}, {3,6}, {4,5} wegen

{p, q} {1,2} {3,6} {4,5}
{δ(p, a), δ(q, a)} {1,2} {4,5} {3,6}
{δ(p, b), δ(q, b)} {3,6} {1,2} {4,5}

nicht zu D1 hinzugefügt werden können, ist D2 =D1. Aus den unmar-
kierten Paaren {1,2}, {3,6} und {4,5} erhalten wir die Äquivalenz-
klassen

1̃ = {1,2}, 3̃ = {3,6} und 4̃ = {4,5},
die auf folgenden Minimal-DFA M ′ führen:

1̃ 3̃ 4̃
b

b

a

a
a b

◁
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