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1 Klassische Verfahren

1.1 Einführung

Kryptosysteme (Verschlüsselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.
Physikalische Maßnahmen: Tresor etc.
Organisatorische Maßnahmen: einsamer Waldspaziergang etc.
Steganografische Maßnahmen: unsichtbare Tinte etc.
Andererseits können durch kryptografische Verfahren weitere Schutzziele realisiert
werden.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.
Kryptografie: Lehre von der Geheimhaltung von Informationen durch die Verschlüsse-

lung von Daten. Im weiteren Sinne: Wissenschaft von der Übermittlung, Speicherung
und Verarbeitung von Daten in einer von potentiellen Gegnern bedrohten Umgebung.

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stärken bzw. Schwächen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).

1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.
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Codesysteme

– operieren auf semantischen Einheiten,
– starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemäß Funkbefehl testen
yde Frage
sLk Befehl
fin beendet
eom eigene Maschinen

/

Kryptosysteme

– operieren auf syntaktischen Einheiten,
– flexibler Mechanismus durch Schlüsselvereinbarung

Definition 2 (Alphabet). Ein Alphabet A = {a0, . . . , am−1} ist eine geordnete endli-
che Menge von Zeichen ai. Eine Folge x = x1 . . . xn ∈ An heißt Wort (der Länge n).
Die Menge aller Wörter über dem Alphabet A ist A∗ = ⋃

n≥0 A
n.

Beispiel 3. Das lateinische Alphabet Alat enthält die 26 Buchstaben A,...,Z. Bei
der Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Groß- und Kleinschreibung verzichtet (; Verringerung der Redundanz
im Klartext). /

Definition 4 (Kryptosystem). Ein Kryptosystem wird durch folgende Komponenten
beschrieben:
– A, das Klartextalphabet,
– B, das Kryptotextalphabet,
– K, der Schlüsselraum (key space),
– M ⊆ A∗, der Klartextraum (message space),
– C ⊆ B∗, der Kryptotextraum (ciphertext space),
– E : K ×M → C, die Verschlüsselungsfunktion (encryption function),
– D : K × C →M , die Entschlüsselungsfunktion (decryption function) und
– S ⊆ K ×K, eine Menge von Schlüsselpaaren (k, k′) mit der Eigenschaft, dass für

jeden Klartext x ∈M folgende Beziehung gilt:

D(k′, E(k, x)) = x (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k, k) | k ∈ K}, weshalb wir in diesem Fall
auf die Angabe von S verzichten können.
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Angreifer

Klartext x Chiffrier-
funktion E

Kryptotext y Dechiffrier-
funktion D Klartext x

Schlüssel k Schlüssel k′

Sender Empfänger

Zu jedem Schlüssel k ∈ K korrespondiert also eine Chiffrierfunktion Ek : x 7→ E(k, x)
und eine Dechiffrierfunktion Dk : y 7→ D(k, y). Die Gesamtheit dieser Abbildun-
gen wird auch Chiffre (englisch cipher) genannt. (Daneben wird der Begriff „Chiffre“
auch als Bezeichnung für einzelne Kryptotextzeichen oder kleinere Kryptotextsequenzen
verwendet.)

Lemma 5. Für jedes Paar (k, k′) ∈ S ist die Chiffrierfunktion Ek injektiv.

Beweis. Angenommen, für zwei unterschiedliche Klartexte x1 6= x2 ist E(k, x1) =
E(k, x2). Dann folgt

D(k′, E(k, x1)) = D(k′, E(k, x2)) (1.1)= x2 6= x1,

im Widerspruch zu (1.1). �

1.3 Die affine Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a, b,m ganze Zahlen
mit m ≥ 1. Die Zahl a teilt b (kurz: a|b), falls ein d ∈ Z existiert mit b = ad. Teilt m
die Differenz a− b, so schreiben wir hierfür

a ≡m b

(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne

a mod m = min{a− dm ≥ 0 | d ∈ Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r ∈ {0, . . . , m− 1}, für die eine ganze Zahl d ∈ Z existiert mit a = dm+ r.

Die auf Z definierten Operationen

a⊕m b := (a+ b) mod m

und
a�m b := ab mod m.
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Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlüssel k = 13).

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

E(13, x) N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

sind abgeschlossen auf Zm = {0, . . . , m − 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Für
a⊕m −b schreiben wir auch a	m b.
Durch Identifikation der Buchstaben ai mit ihren Indizes können wir die auf Zm definierten
Rechenoperationen auf Buchstaben übertragen.

Definition 7 (Buchstabenrechnung). Sei A = {a0, . . . , am−1} ein Alphabet. Für
Indizes i, j ∈ {0, . . . , m− 1} und eine ganze Zahl z ∈ Z ist

ai + aj = ai⊕mj, ai − aj = ai	mj, aiaj = ai�mj,

ai + z = ai⊕mz, ai − z = ai	mz, zaj = az�mj.

Mit Hilfe dieser Notation lässt sich die Verschiebechiffre, die auch als additive Chiffre
bezeichnet wird, leicht beschreiben.

Definition 8 (additive Chiffre). Bei der additiven Chiffre ist A = B = M = C
ein beliebiges Alphabet mit m := ‖A‖ > 1 und K = {1, . . . ,m− 1}. Für k ∈ K, x ∈M
und y ∈ C gilt

E(k, x) = x+ k und D(c, y) = y − k.

Im Fall des lateinischen Alphabets führt der Schlüssel k = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.3). Natürlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten geschützt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen – etwa von Rätsellösungen – verhindert werden.
ROT13 ist eine involutorische – also zu sich selbst inverse – Abbildung, d.h. für alle
x ∈ A gilt

ROT13(ROT13(x)) = x.

Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar eine echt
involutorische Abbildung.
Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe: Anstatt auf
jeden Klartextbuchstaben den Schlüsselwert k zu addieren, können wir die Klartextbuch-
staben auch mit k multiplizieren. Allerdings erhalten wir hierbei nicht für jeden Wert
von k eine injektive Chiffrierfunktion. So bildet etwa die Funktion g : Alat → Alat mit
g(x) = 2x sowohl A als auch N auf den Buchstaben g(A) = g(N) = A ab. Um die vom
Schlüsselwert k zu erfüllende Bedingung angeben zu können, führen wir folgende Begriffe
ein.

Definition 9 (ggT, kgV, teilerfremd). Seien a, b ∈ Z. Für (a, b) 6= (0, 0) ist

ggT(a, b) = max{d ∈ Z | d teilt die beiden Zahlen a und b}

der größte gemeinsame Teiler von a und b. Für a 6= 0, b 6= 0 ist

kgV(a, b) = min{d ∈ Z | d ≥ 1 und die beiden Zahlen a und b teilen d}
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das kleinste gemeinsame Vielfache von a und b. Ist ggT(a, b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.

Lemma 10. Seien a, b, c ∈ Z mit b 6= 0. Dann gilt ggT(a, b) = ggT(b, a+ bc).

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a+ bc und umgekehrt. �

Euklidscher Algorithmus: Der größte gemeinsame Teiler zweier Zahlen a und b lässt
sich wie folgt bestimmen.
O.B. d.A. sei a > b > 0. Bestimme die natürlichen Zahlen (durch Divsision mit Rest):

r0 = a > r1 = b > r2 > · · · > rs > rs+1 = 0 und d2, d3, . . . ds+1

mit
ri−1 = di+1ri + ri+1 für i = 1, . . . , s.∗

Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(ri−1, ri) = ggT(ri, ri−1 − di+1ri︸ ︷︷ ︸
ri+1

)

folgt ggT(a, b) = ggT(rs, rs+1) = rs.

Beispiel 11. Für a = 693 und b = 147 erhalten wir

i ri−1 = di+1 · ri + ri+1

1 693 = 4 · 147 + 105
2 147 = 1 · 105 + 42
3 105 = 2 · 42 + 21
4 42 = 2 · 21 + 0

und damit ggT(693, 147) = r4 = 21. /

Der Euklidsche Algorithmus lässt sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklidit(a, b)
1 repeat
2 r := a mod b
3 a := b
4 b := r
5 until r = 0
6 return a

Prozedur Euklidrek(a, b)
1 if b = 0 then
2 return a
3 else
4 return Euklidrek(b, a mod b)

Zur Abschätzung von s verwenden wir die Folge der Fibonacci-Zahlen Fn:
∗Also: di = ri−2 div ri−1 und ri = ri−2 mod ri−1.
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Fn =


0, falls n = 0
1, falls n = 1
Fn−1 + Fn−2, falls n ≥ 2

Durch Induktion über i = s, s− 1, . . . , 0 folgt ri ≥ Fs+1−i; also a = r0 ≥ Fs+1. Weiterhin
lässt sich durch Induktion über n ≥ 0 zeigen, dass Fn+1 ≥ φn−1 ist, wobei φ = (1 +

√
5)/2

der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da F2 = F1 =
1 = φ0 ≥ φ−1 ist. Unter der Induktionsannahme Fi+1 ≥ φi−1 für i ≤ n− 1 folgt wegen
φ2 = φ+ 1

Fn+1 = Fn + Fn−1 ≥ φn−2 + φn−3 = φn−3(φ+ 1) = φn−1.

Somit ist a ≥ φs−1, d. h. s ≤ 1 + blogφ ac.

Satz 12. Der Euklidsche Algorithmus führt O(n) Divisionsschritte zur Berechnung von
ggT(a, b) durch, wobei n die Länge der Eingabe a > b > 0 in Binärdarstellung bezeichnet.
Dies führt auf eine Zeitkomplexität von O(n3), da jede Ganzzahldivision in Zeit O(n2)
durchführbar ist.

Erweiterter Euklidscher bzw. Berlekamp-Algorithmus: Der Euklidsche Algorith-
mus kann so modifiziert werden, dass er eine lineare Darstellung

ggT(a, b) = λa+ µb mit λ, µ ∈ Z

des ggT liefert (Zeitkomplexität ebenfalls O(n3)). Hierzu werden neben ri und di weitere
Zahlen

pi = pi−2 − dipi−1, wobei p0 = 1 und p1 = 0,

und
qi = qi−2 − diqi−1, wobei q0 = 0 und q1 = 1,

für i = 0, . . . , n bestimmt. Dann gilt für i = 0 und i = 1,

api + bqi = ri,

und durch Induktion über i,

api+1 + bqi+1 = a(pi−1 − di+1pi) + b(qi−1 − di+1qi)
= api−1 + bqi−1 − di+1(api + bqi)
= (ri−1 − di+1ri)
= ri+1

zeigt man, dass dies auch für i = 2, . . . , s gilt. Insbesondere gilt also

aps + bqs = rs = ggT(a, b).

Korollar 13 (Lemma von Bezout). Der größte gemeinsame Teiler von a und b ist in
der Form

ggT(a, b) = λa+ µb mit λ, µ ∈ Z

darstellbar.



1.3 Die affine Chiffre 7

Beispiel 14. Für a = 693 und b = 147 erhalten wir wegen

i ri−1 = di+1 · ri + ri+1 pi qi

0 1 0
1 693 = 4 · 147 + 105 0 1
2 147 = 1 · 105 + 42 1 −4
3 105 = 2 · 42 + 21 −1 5
4 42 = 2 · 21 + 0 3 −14

pi · 693 + qi · 147 = ri

1 · 693 + 0 · 147 = 693
0 · 693 + 1 · 147 = 147
1 · 693− 4 · 147 = 105
−1 · 693 + 5 · 147 = 42

3 · 693− 14 · 147 = 21

die lineare Darstellung 3 · 693− 14 · 147 = 21. /

Aus der linearen Darstellbarkeit des größten gemeinsamen Teilers ergeben sich eine Reihe
von nützlichen Schlussfolgerungen.

Korollar 15. ggT(a, b) = min{λa+ µb ≥ 1 | λ, µ ∈ Z}.

Beweis. Sei M = {λa + µb ≥ 1 | λ, µ ∈ Z}, m = minM und g = ggT(a, b). Dann folgt
g ≥ m, da g in der Menge M enthalten ist, und g ≤ m, da g jede Zahl in M teilt. �

Korollar 16. Der größte gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

x|a ∧ x|b ⇒ x| ggT(a, b).

Beweis. Seien µ, λ ∈ Z mit µa+ λb = ggT(a, b). Falls x sowohl a als auch b teilt, dann
teilt x auch die Produkte µa und λb und somit auch deren Summe. �

Korollar 17 (Lemma von Euklid). Teilt a das Produkt bc und sind a, b teilerfremd, so
teilt a auch c,

a|bc ∧ ggT(a, b) = 1 ⇒ a|c.

Beweis. Wegen ggT(a, b) = 1 existieren Zahlen µ, λ ∈ Z mit µa + λb = 1. Falls a das
Produkt bc teilt, muss a auch die Zahl cµa+ cλb = c teilen. �

Korollar 18. Wenn a und b zu einer Zahl m ∈ Z teilerfremd sind, so ist auch das
Produkt ab teilerfremd zu m,

ggT(a,m) = ggT(b,m) = 1 ⇒ ggT(ab, m) = 1.

Beweis. Da a und b teilerfremd zum sind, existieren Zahlen µ, λ, µ′, λ′ ∈ Z mit µa+λm =
µ′b+ λ′m = 1. Somit ergibt sich aus der Darstellung

1 = (µa+ λm)(µ′b+ λ′m) = µµ′︸︷︷︸
µ′′

ab+ (µaλ′ + µ′bλ+ λλ′m)︸ ︷︷ ︸
λ′′

m

und Korollar 15, dass auch ab teilerfremd zu m ist. �

Damit nun eine Abbildung g : A→ A von der Bauart g(x) = bx injektiv (oder gleichbe-
deutend, surjektiv) ist, muss es zu jedem Buchstaben y ∈ A genau einen Buchstaben
x ∈ A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.
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Satz 19. Sei m ≥ 1. Die lineare Kongruenzgleichung bx ≡m y besitzt genau dann eine
eindeutige Lösung x ∈ {0, . . . , m− 1}, wenn ggT(b,m) = 1 ist.

Beweis. Angenommen, ggT(b,m) = g > 1. Dann ist mit x auch x′ = x + m/g eine
Lösung von bx ≡m y mit x 6≡m x′. Gilt umgekehrt ggT(b,m) = 1, so folgt aus den
Kongruenzen

bx1 ≡m y

und
bx2 ≡m y

sofort b(x1 − x2) ≡m 0, also m|b(x1 − x2). Wegen ggT(b,m) = 1 folgt mit dem Lemma
von Euklid m|(x1 − x2), also x1 ≡m x2.
Dies zeigt, dass die Abbildung f : Zm → Zm mit f(x) = bx mod m injektiv ist. Da jedoch
Definitions- und Wertebereich von f identisch sind, muss f dann auch surjektiv sein.
Dies impliziert, dass die Kongruenz bx ≡m y für jedes y ∈ Zm lösbar ist. �

Korollar 20. Im Fall ggT(b,m) = 1 hat die Kongruenz bx ≡m 1 genau eine Lösung, die
das multiplikative Inverse von b modulo m genannt und mit b−1 mod m (oder einfach
mit b−1) bezeichnet wird. Die invertierbaren Elemente von Zm werden in der Menge

Z∗m = {b ∈ Zm | ggT(b,m) = 1}

zusammengefasst.

Korollar 18 zeigt, dass Z∗m unter der Operation �m abgeschlossen ist, und mit Korollar 20
folgt, dass (Z∗m,�m) eine multiplikative Gruppe bildet. Allgemeiner zeigt man, dass für
einen beliebigen Ring (R,+, ·, 0, 1) mit Eins die Multiplikation auf der Menge R∗ = {a ∈
R | ∃b ∈ R : ab = 1 = ba} aller Einheiten von R eine Gruppe (R∗, ·, 1) (die so genannte
Einheitengruppe von R) bildet.
Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
λb + µm = ggT(b,m) = 1 zu b−1 = λ mod m. Bei Kenntnis von b−1 kann die Kongru-
enz bx ≡m y leicht zu x = yb−1 mod m gelöst werden. Die folgende Tabelle zeigt die
multiplikativen Inversen b−1 für alle b ∈ Z∗26.

b 1 3 5 7 9 11 15 17 19 21 23 25
b−1 1 9 21 15 3 19 7 23 11 5 17 25

Nun lässt sich die additive Chiffre leicht zur affinen Chiffre erweitern.
Definition 21 (affine Chiffre). Bei der affinen Chiffre ist A = B = M = C ein
beliebiges Alphabet mit m := ‖A‖ > 1 und K = Z∗m × Zm. Für k = (b, c) ∈ K, x ∈ M
und y ∈ C gilt

E(k, x) = bx+ c und D(k, y) = b−1(y − c).

In diesem Fall liefert die Schlüsselkomponente b = −1 für jeden Wert von c eine invo-
lutorische Chiffrierfunktion x 7→ E(b, c;x) = c − x (verschobenes komplementäres
Alphabet). Wählen wir für c ebenfalls den Wert −1, so ergibt sich die Chiffrierfunk-
tion x 7→ −x− 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
−x A Z Y X W V U T S R Q P O N M L K J I H G F E D C B
−x− 1 Z Y X W V U T S R Q P O N M L K J I H G F E D C B A
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Als nächstes illustrieren wir die Ver- und Entschlüsselung mit der affinen Chiffre an einem
kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei A = {A, . . . , Z} = B, also m = 26. Weiter sei k = (9, 2),
also b = 9 und c = 2. Um den Klartextbuchstaben x = F zu verschlüsseln, berechnen wir

E(k, x) = bx+ c = 9F + 2 = V,

da der Index von F gleich 5, der von V gleich 21 und 9 · 5 + 2 = 47 ≡26 21 ist. Um einen
Kryptotextbuchstaben wieder entschlüsseln zu können, benötigen wir das multiplikative
Inverse von b = 9, das sich wegen

i ri−1 = di+1 · ri + ri+1 pi · 26 + qi · 9 = ri

0 1 · 26 + 0 · 9 = 26
1 26 = 2 · 9 + 8 0 · 26 + 1 · 9 = 9
2 9 = 1 · 8 + 1 1 · 26 + (−2) · 9 = 8
3 8 = 8 · 1 + 0 (−1) · 26 + 3 · 9 = 1

zu b−1 = q3 = 3 ergibt. Damit erhalten wir für den Kryptotextbuchstaben y = V den
ursprünglichen Klartextbuchstaben

D(k, y) = b−1(y − c) = 3(V− 2) = F

zurück, da 3 · 19 = 57 ≡26 5 ist. /

Eine wichtige Rolle spielt die Funktion

ϕ : N → N mit ϕ(n) = ‖Z∗n‖ = ‖{a | 0 ≤ a ≤ n− 1, ggT(a, n) = 1}‖,

die sogenannte Eulersche ϕ-Funktion.

n 1 2 3 4 5 6 7 8 9
Z∗n {0} {1} {1, 2} {1, 3} {1, 2, 3, 4} {1, 5} {1,· · ·, 6} {1, 3, 5, 7} {1, 2, 4, 5, 7, 8}
ϕ(n) 1 1 2 2 4 2 6 4 6

Wegen
Zpe − Z∗pe = {0, p, 2p, . . . , (pe−1 − 1)p}

folgt sofort
ϕ(pe) = pe − pe−1 = pe−1(p− 1).

Um hieraus für beliebige Zahlen m ∈ N eine Formel für ϕ(m) zu erhalten, genügt es,
ϕ(ab) im Fall ggT(a, b) = 1 in Abhängigkeit von ϕ(a) und ϕ(b) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Zml → Zm × Zl mit

f(x) := (x mod m,x mod l).
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Beispiel 23. Sei m = 5 und l = 6. Dann erhalten wir die Funktion f : Z30 → Z5 × Z6
mit

x 0 1 2 3 4 5 6 7 8 9
f(x) (0, 0) (1,1) (2, 2) (3, 3) (4, 4) (0,5) (1, 0) (2,1) (3, 2) (4, 3)

x 10 11 12 13 14 15 16 17 18 19
f(x) (0, 4) (1,5) (2, 0) (3,1) (4, 2) (0, 3) (1, 4) (2,5) (3, 0) (4,1)

x 20 21 22 23 24 25 26 27 28 29
f(x) (0, 2) (1, 3) (2, 4) (3,5) (4, 0) (0,1) (1, 2) (2, 3) (3, 4) (4,5)

Man beachte, dass f eine Bijektion zwischen Z30 und Z5 × Z6 ist. Zudem fällt auf, dass
ein x-Wert genau dann in Z∗30 liegt, wenn der Funktionswert f(x) = (y, z) zu Z∗5 × Z∗6
gehört (die Werte x ∈ Z∗30, y ∈ Z∗5 und z ∈ Z∗6 sind fett gedruckt). Folglich bildet f
die Argumente in Z∗30 bijektiv auf die Werte in Z∗5 × Z∗6 ab. Für f−1 erhalten wir somit
folgende Tabelle:

f−1 0 1 2 3 4 5

0 0 25 20 15 10 5
1 6 1 26 21 16 11
2 12 7 2 27 22 17
3 18 13 8 3 28 23
4 24 19 14 9 4 29

/

Der Chinesische Restsatz, den wir im nächsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m, l) = 1 bijektiv und damit invertierbar ist. Wegen

ggT(x,ml) = 1 ⇔ ggT(x,m) = ggT(x, l) = 1
⇔ ggT(x mod m,m) = ggT(x mod l, l) = 1

ist daher die Einschränkung f̂ von f auf den Bereich Z∗ml eine Bijektion zwischen Z∗ml
und Z∗m × Z∗l , d.h. es gilt

ϕ(ml) = ‖Z∗ml‖ = ‖Z∗m × Z∗l ‖ = ‖Z∗m‖ · ‖Z∗l ‖ = ϕ(m)ϕ(l).

Satz 24. Die Eulersche ϕ-Funktion ist multiplikativ, d. h. für teilerfremde Zahlen m und
l gilt ϕ(ml) = ϕ(m)ϕ(l).

Korollar 25. Sei m = ∏k
i=1 p

ei
i die Primfaktorzerlegung von m. Dann gilt

ϕ(m) =
k∏
i=1

pei−1
i (pi − 1) = m

k∏
i=1

(pi − 1)/pi.

Beweis. Es gilt

ϕ(∏k
i=1 p

ei
i ) = ∏k

i=1 ϕ(pei
i ) = ∏k

i=1(pei
i − pei−1

i ) = ∏k
i=1 p

ei−1
i (pi − 1).

�
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Der Chinesische Restsatz

Die beiden linearen Kongruenzen

x ≡3 0
x ≡6 1

besitzen je eine Lösung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfüllt.
Der nächste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Lösungen
existieren, und wie sie berechnet werden können.

Satz 26 (Chinesischer Restsatz). Falls m1, . . . , mk paarweise teilerfremd sind, dann
hat das System

x ≡m1 b1
... (1.2)

x ≡mk
bk

genau eine Lösung modulo m = ∏k
i=1 mi.

Beweis. Da die Zahl ni = m/mi
teilerfremd zu mi ist, existieren Zahlen µi und λi mit

µini + λimi = ggT(ni,mi) = 1.

Dann gilt
µini ≡mi

1

und
µini ≡mj

0

für j 6= i. Folglich erfüllt x = ∑k
j=1 µjnjbj die Kongruenzen

x ≡mi
µinibi ≡mi

bi

für i = 1, . . . , k. Dies zeigt, dass (1.2) lösbar, also die Funktion

f : Zm → Zm1 × · · · × Zmk

mit f(x) = (x mod m1, . . . , x mod mk) surjektiv ist. Da der Definitions- und der Werte-
bereich von f die gleiche Mächtigkeit haben, muss f jedoch auch injektiv sein, d.h. (1.2)
ist sogar eindeutig lösbar. �

Man beachte, dass der Beweis des Chinesischen Restsatzes konstruktiv ist und die Lösung
x unter Verwendung des erweiterten Euklidschen Algorithmus’ effizient berechenbar ist.

1.4 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblöcke, d.h. der Klartext wird nicht zeichenweise, sondern blockwei-
se verarbeitet. Sowohl der Klartext- als auch der Kryptotextraum enthält alle Wörter x
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über A einer festen Länge l. Zur Chiffrierung wird eine (l× l)-Matrix k = (kij) mit Koeffi-
zienten in Zm benutzt, die einen Klartextblock x = x1 . . . xl ∈ Al in den Kryptotextblock
y1 . . . yl ∈ Al transformiert, wobei

yi = x1k1i + · · ·+ xlkli, i = 1, . . . , l

ist (hierbei machen wir von der Buchstabenrechnung Gebrauch). y entsteht also durch
Multiplikation von x mit der Schlüsselmatrix k:

xk = (x1, · · · , xl)


k11 . . . k1l
... . . . ...
kl1 . . . kll

 = (y1, · · · , yl)

Wir bezeichnen die Menge aller (l × l)-Matrizen mit Koeffizienten in Zm mit Zl×lm . Als
Schlüssel können nur invertierbare Matrizen k benutzt werden, da sonst der Chiffrier-
vorgang nicht injektiv ist. k ist genau dann invertierbar, wenn die Determinante von k
teilerfremd zu m ist (siehe Übungen).

Definition 27 (Determinante). Sei R ein kommutativer Ring mit Eins und sei A =
(aij) ∈ Rl×l. Für 1 ≤ i, j ≤ l sei Aij die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matrix. Die Determinante von A ist dann det(A) = a11, falls
l = 1, und

det(A) =
l∑

j=1
(−1)i+jai,jdet(Aij),

wobei i ∈ {1, · · · , l} (beliebig wählbar) ist.

Die Determinantenfunktion ist durch die drei Eigenschaften multilinear, alternierend und
normiert eindeutig festgelegt. Sei f : Rn×n → R eine Funktion.
– f heißt multilinear, falls für jede Matrix A = (a1, . . . , an) ∈ Rn×n mit Spalten
a1, . . . , an ∈ (Rn)T , jeden Spaltenvektor b ∈ (Rn)T und jedes r ∈ R

f(a1, . . . , rai + b, . . . , an) = rf(a1, . . . , ai, . . . , an) + f(a1, . . . , b, . . . , an)

gilt.
– f heißt alternierend, falls im Fall ai = aj für i 6= j f(a1, . . . , an) = 0 ist.
– f heißt normiert, falls f(E) = 1 ist, wobei E die Einheitsmatrix ist.

Für die Dechiffrierung wird die zu k inverse Matrix k−1 benötigt, wofür effiziente Algo-
rithmen bekannt sind (siehe Übungen).

Satz 28. Sei A ein Alphabet und sei k ∈ Zl×lm (l ≥ 1, m = ‖A‖). Die Abbildung
f : Al → Al mit

f(x) = xk,

ist genau dann injektiv, wenn ggT(det(k),m) = 1 ist.

Beweis. Siehe Übungen. �

Definition 29 (Hill-Chiffre). Sei A = {a0, . . . , am−1} ein beliebiges Alphabet und für
eine natürliche Zahl l ≥ 2 sei M = C = Al. Bei der Hill-Chiffre ist K = {k ∈ Zl×lm |
ggT(det(k),m) = 1} und es gilt

E(k, x) = xk und D(k, y) = yk−1.
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Beispiel 30 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klartextblöcken der Länge
l = 4 über dem lateinischen Alphabet Alat die Schlüsselmatrix

k =


11 13 8 21
24 17 3 25
18 12 23 17
6 15 2 15

 ,
so erhalten wir beispielsweise für den Klartext HILL wegen

(H I L L)


11 13 8 21
24 17 3 25
18 12 23 17
6 15 2 15

 = (N E R X) bzw.

11 H+ 24 I+ 18 L+ 6 L= N

13 H+ 17 I+ 12 L+ 15 L= E

8 H+ 3 I+ 23 L+ 2 L= R

21 H+ 25 I+ 17 L+ 15 L= X

den Kryptotext E(k, HILL) = NERX. Für die Entschlüsselung wird die inverse Matrix k−1

benötigt. Diese wird in den Übungen berechnet. /

1.5 Die Vigenère-Chiffre und andere Stromsysteme

Bei der nach dem Franzosen Blaise de Vigenère (1523–1596) benannten Chiffre werden
zwar nur einzelne Buchstaben chiffriert, aber je nach Position im Klartext unterschiedlich.

Definition 31 (Vigenère-Chiffre). Sei A = B ein beliebiges Alphabet. Die Vigenère-
Chiffre chiffriert unter einem Schlüssel k = k0 . . . kd−1 ∈ K = A∗ einen Klartext
x = x0 . . . xn−1 beliebiger Länge zu

E(k, x) = y0 . . . yn−1, wobei yi = xi + k(i mod d) ist,

und dechiffriert einen Kryptotext y = y0 . . . yn−1 zu

D(k, y) = x0 . . . xn−1, wobei xi = yi − k(i mod d) ist.

Beispiel 32 (Vigenère-Chiffre). Verwenden wir das lateinische Alphabet Alat als Klar-
textalpabet und wählen wir als Schlüssel das Wort k = WIE, so ergibt sich für den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE, VIGENERE) = V+W︸ ︷︷ ︸
R

I+I︸ ︷︷ ︸
Q

G+E︸ ︷︷ ︸
K

E+W︸ ︷︷ ︸
A

N+I︸ ︷︷ ︸
V

E+E︸ ︷︷ ︸
I

R+W︸ ︷︷ ︸
N

E+I︸ ︷︷ ︸
M

= RQKAVINM
/

Um einen Klartext x zu verschlüsseln, wird also das Schlüsselwort k = k0 . . . kd−1 so
oft wiederholt, bis der dabei entstehende Schlüsselstrom k̂ = k0, k1, . . . , kd−1, k0 . . . die
Länge von x erreicht. Dann werden x und k̂ zeichenweise addiert, um den zugehörigen
Kryptotext y zu bilden. Aus diesem kann der ursprüngliche Klartext x zurückgewonnen
werden, indem man den Schlüsselstrom k̂ wieder subtrahiert.
Beispiel 33. Vigenère-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) RQKAVINM (Kryptotext y)

+ WIEWIEWI (Schlüsselstrom k̂) − WIEWIEWI (Schlüsselstrom k̂)
RQKAVINM (Kryptotext y) VIGENERE (Klartext x)

/
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Die Chiffrierarbeit lässt sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenère-Tableau bekannt).

+ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schlüsselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.

Beispiel 34 (Beaufort-Chiffre). Verschlüsseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlüsselwort k = WIE, so erhalten wir den Kryptotext XMEQNSNB. Eine
erneute Verschlüsselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schlüsselstrom) WIEWIEWI (Schlüsselstrom)

− BEAUFORT (Klartext) − XMEQNSNB (Kryptotext)
XMEQNSNB (Kryptotext) BEAUFORT (Klartext)

/

Bei den bisher betrachteten Chiffren wird aus einem Schlüsselwort k = k0 . . . kd−1 ein
periodischer Schlüsselstrom k̂ = k̂0 . . . k̂n−1 erzeugt, das heißt, es gilt k̂i = k̂i+d für
alle i = 0, . . . , n − d − 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schlüsselstrom mit sehr großer Periode oder noch besser ein fortlau-
fender Schlüsselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schlüsselstrom lässt sich beispielsweise ohne großen Aufwand erzeugen, indem man an
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das Schlüsselwort den Klartext oder den Kryptotext anhängt (sogenannte Autokey-
Chiffrierung).†

Beispiel 35 (Autokey-Chiffre). Benutzen wir wieder das Schlüsselwort WIE, um den
Schlüsselstrom durch Anhängen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
für den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schlüsselstrom: Kryptotext-Schlüsselstrom:
VIGENERE (Klartext ) VIGENERE (Klartext )

+ WIEVIGEN (Schlüsselstrom) + WIERQKVD (Schlüsselstrom)
RQKZVKVR (Kryptotext ) RQKVDOMH (Kryptotext )

/

Auch die Dechiffrierung ist in beiden Fällen einfach. Bei der ersten Alternative kann der
Empfänger durch Subtraktion des Schlüsselworts den Anfang des Klartextes bilden und
gleichzeitig den Schlüsselstrom verlängern, so dass sich auf diese Weise Stück für Stück der
gesamte Kryptotext entschlüsseln lässt. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schlüsselstrom vom Kryptotext nur durch das vorangestelle
Schlüsselwort unterscheidet.

1.6 Der One-Time-Pad

Es besteht auch die Möglichkeit, eine Textstelle in einem Buch als Schlüssel zu vereinbaren
und den dort beginnenden Text als Schlüsselstrom zu benutzen (Lauftextverschlüsselung).
Besser ist es jedoch, aus einem relativ kurzen Schlüssel einen möglichst zufällig erscheinen-
den Schlüsselstrom zu erzeugen. Hierzu können beispielsweise Pseudozufallsgeneratoren
eingesetzt werden. Absolute Sicherheit wird dagegen erreicht, wenn der Schlüsselstrom
rein zufällig erzeugt und nach einmaliger Benutzung wieder vernichtet wird.‡ Ein solcher
„Wegwerfschlüssel“ (One-time-pad oder One-time-tape, im Deutschen auch als indivi-
dueller Schlüssel bezeichnet) lässt sich allerdings nur mit großem Aufwand generieren
und verteilen, weshalb diese Chiffre nur wenig praktikabel ist. Dennoch wurde diese
Methode beispielsweise beim „heißen Draht“, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weißen Haus in Washington und dem Kreml in Moskau,
angewandt.
Beispiel 36 (One-time-pad). Sei A = {a0, . . . , am−1} ein beliebiges Klartextalphabet.
Um einen Klartext x = x0 . . . xn−1 zu verschlüsseln, wird auf jeden Klartextbuchstaben xi
ein neuer, zufällig generierter Schlüsselbuchstabe ki addiert,

y = y0 . . . yn−1, wobei yi = xi + ki.
/

Der Klartext wird also wie bei einer additiven Chiffre verschlüsselt, nur dass der Schlüssel
nach einmaligem Gebrauch gewechselt wird. Dies entspricht dem Gebrauch einer Vigenère-
Chiffre, falls als Schlüssel ein zufällig gewähltes Wort von der Länge des Klartextes benutzt
wird. Wie diese ist der One-time-pad im Binärfall also involutorisch.
†Die Idee, den Schlüsselstrom durch Anhängen des Klartextes an ein Schlüsselwort zu bilden, stammt
von Vigenère, während er mit der Erfindung der nach ihm benannten Vigenère-Chiffre „nichts zu
tun“ hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

‡ Diese Art der Schlüsselerzeugung schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918
vor, nachdem ihm ein von Gilbert S. Vernam für den Fernschreibverkehr entwickeltes Chiffriersystem
vorgestellt wurde.
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. . . 01101 + . . . 11001 + . . . 01101

. . . 10100 . . . 10100

Klartext Kryptotext Klartext

Schlüssel Schlüssel

1.7 Klassifikation von Kryptosystemen

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie erzeugen den Kryptotext aus dem Klartext, indem sie Klartextzeichen – einzeln oder
in Gruppen – durch Kryptotextzeichen ersetzen. Dagegen verändern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.
Beispiel 37 (Skytale-Chiffre). Die älteste bekannte Verschlüsselungstechnik stammt aus
der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralförmig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Längsrichtung mit der Geheimbotschaft.

Ü B E R A U S
G E H E I M N
I S V O L L ...

ÜBERAUS GEHEIMNISVOLL ...

; ÜGI . . . BES . . . EHV . . . REO . . . AIL . . . UML . . . SN . . .

Besitzt der Empfänger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. /

Als Schlüssel fungiert hier also der Stabumfang bzw. die Anzahl k der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
beträgt seine Länge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext

E(k, x1 · · ·xkm) =
x1xm+1x2m+1 · · ·x(k−1)m+1x2xm+2x2m+2 · · ·x(k−1)m+2 · · ·xmx2mx3m · · ·xkm

über. Dasselbe Resultat stellt sich ein, wenn wir x zeilenweise in eine k × m-Matrix
schreiben und spaltenweise wieder auslesen (sogenannte Spaltentransposition):

x1 x2 · · · xm
xm+1 xm+2 · · · x2m
x2m+1 x2m+2 · · · x3m

... ... . . . ...
x(k−1)m+1 x(k−1)m+2 · · · xkm

Ist die Klartextlänge kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfügen von sogenannten Blendern (Füllzeichen) verlängert werden. Damit der Emp-
fänger diese Füllzeichen nach der Entschlüsselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.
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Von der Methode, die letzte Zeile nur zum Teil zu füllen, ist dagegen abzuraten. In diesem
Fall würden nämlich auf dem abgewickelten Papierstreifen Lücken entstehen, aus deren
Anordnung man Schlüsse auf den benutzten Schlüssel k ziehen könnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.
Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.

Beispiel 38. Bei Ausführung einer Zick-Zack-Transposition wird der Klartext in
eine Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Höhe der Zick-
Zack-Linie kann als Schlüssel vereinbart werden.

ZZ Z L EE
I K A K I I
C C N ZICKZACKLINIE ; ZZLEIKAKIICCN

/

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass für
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 39 (Blocktranspositionschiffre). Sei A = B ein beliebiges Alphabet und
für eine natürliche Zahl l ≥ 2 sei M = C = Al. Bei einer Blocktranspositionschiffre
wird durch jeden Schlüssel k ∈ K eine Permutation π beschrieben, so dass für alle
Zeichenfolgen x1 · · ·xl ∈M und y1 · · · yl ∈ C

E(k, x1 · · ·xl) = xπ(1) · · ·xπ(l)

und
D(k, y1 · · · yl) = yπ−1(1) · · · yπ−1(l)

gilt.

Eine Blocktransposition mit Blocklänge l lässt sich durch eine Permutation π ∈ Sl (also
auf der Menge {1, . . . , l}) beschreiben.

Beispiel 40. Eine Skytale, die mit 4 Zeilen der Länge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
π(i) 1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 23 6 12 18 24

/

Für die Entschlüsselung muss die zu π inverse Permutation π−1 benutzt werden. Wird
π durch Zyklen (i1 i2 i3 . . . in) dargestellt, wobei i1 auf i2, i2 auf i3 usw. und schließlich
i3 auf i1 abgebildet wird, so ist π−1 sehr leicht zu bestimmen.

Beispiel 41.

i 1 2 3 4 5 6
π(i) 4 6 1 3 5 2

i 1 2 3 4 5 6
π−1(i) 3 6 4 1 5 2
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Obiges π hat beispielsweise die Zyklendarstellung

π = (1 4 3) (2 6) (5) oder π = (1 4 3) (2 6),

wenn, wie allgemein üblich, Einerzklen weggelassen werden. Daraus erhalten wir unmit-
telbar π−1 zu

π−1 = (3 4 1) (6 2) oder (1 3 4) (2 6),

wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Größe dieser Elemente anordnen. /

Beispiel 42. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine
k×m-Matrix eingelesen und der Kryptotext spaltenweise gemäß einer Spaltenpermutation
π, die als Schlüssel dient, wieder ausgelesen. Für π = (1 4 3) (2 6) wird also zuerst Spalte
π(1) = 4, dann Spalte π(2) = 6 und danach Spalte π(3) = 1 usw. und zuletzt Spalte
π(6) = 2 ausgelesen.

3 6 4 1 5 2

D I E S E R
K L A R T E
X T I S T N
I C H T S E
H R L A N G

DIESER KLARTEXT IST NICHT SEHR LANG
; SRSTA RENEG DKXIH EAIHL ETTSN ILTCR

/

Beispiel 43. Bei der Weg-Transposition wird als Schlüssel eine Hamiltonlinie in
einem Graphen mit den Knoten 1, . . . , l benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock x1 · · ·xl wird gemäß der Knotennumerierung in den Graphen
eingelesen und der zugehörige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

O

7
N

8

L

5
T

6

M

3
I

4H

1
A

2

HAMILTON ; TIMLONAH

/

Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren lässt. Der Vorteil, eine Hamiltonlinie als Schlüssel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einprägen kann als eine Zahlenfolge.
Sehr beliebt ist auch die Methode, eine Permutationen in Form eines Schlüsselworts
(oder einer aus mehreren Wörtern bestehenden Schlüsselphrase) im Gedächtnis zu
behalten. Aus einem solchen Schlüsselwort lässt sich die zugehörige Permutation σ leicht
rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter für
jeden einzelnen Buchstaben seine Position i innerhalb des Wortes vermerkt.
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Schlüsselwort für σ C A E S A R
i 1 2 3 4 5 6

σ(i) 3 1 4 6 2 5
Zyklendarstellung von σ (1 3 4 6 5 2)

DIE BLOCKLAENGE IST SECHS ;
EDBOIL LCANKE IGSSET EXCSYH

Die Werte σ(i), die σ auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schlüsselwort-Buchstaben in alphabetischer Reihenfolge durchzählt. Dabei
werden mehrfach vorkommende Buchstaben gemäß ihrer Position im Schlüsselwort
an die Reihe genommen. Alternativ kann man auch alle im Schlüsselwort wiederholt
vorkommenden Buchstaben streichen, was im Fall des Schlüsselworts CAESAR auf eine
Blocklänge von 5 führen würde.
Wir wenden uns nun der Klassifikation von Substitutionschiffren zu. Ein wichtiges
Unterscheidungsmerkmal ist z.B. die Länge der Klartexteinheiten, auf denen die Chiffre
operiert.
Monografische Substitutionen ersetzen Einzelbuchstaben.
Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-

textsegmente auf einmal.
Eine polygrafische Substitution, die auf Buchstabenpaaren operiert, wird digrafisch
genannt. Das älteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta
im Jahr 1563 veröffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextbuchstaben
durch ein einzelnes Kryptotextzeichen ersetzt.

Beispiel 44. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Porta für
diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer 20× 20-Matrix
M = (yij) angeordnet, deren Zeilen und Spalten mit den 20 Klartextbuchstaben
A, . . . , I, L, . . . , T, V, Z indiziert sind. Zur Ersetzung des Buchstabenpaars aiaj wird das in
Zeile i und Spalte j befindliche Kryptotextzeichen

E(M,aiaj) = yij

benutzt. /

Eine Substitution heißt monopartit, falls sie die Klartextsegmente durch Einzelzeichen
ersetzt, sonstmultipartit. Wird der Kryptotext aus Buchstabenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.
Ein frühes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200 – 120 v.Chr.) zurück:

0 1 2 3 4

0 A B C D E

1 F G H I J

2 K L M N O

3 P Q R S T

4 U V W X/Y Z

POLYBIOS ; 3024214301132433

Bei der Polybios-Chiffre dient eine 5×5-Matrix, die aus sämtlichen Klartextbuchstaben
gebildet wird, als Schlüssel.§ Die Verschlüsselung des Klartextes erfolgt buchstabenweise,

§Da nur 25 Plätze zur Verfügung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein
Buchstabe weggelassen oder ein Platz mit zwei Buchstaben besetzt werden.
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indem man einen in Zeile i und Spalte j eingetragenen Klartextbuchstaben durch das
Koordinatenpaar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren
{00, 01, . . . , 44}.
Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verändert wird, führt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.
Monoalphabetische Substitutionen ersetzen die einzelnen Klartextsegment unabhän-

gig von ihrer Position im Klartext.
Polyalphabetische Substitutionen verwenden dagegen eine variable Ersetzungsregel,

auf die sich auch die bereits verarbeiteten Klartextsegmente auswirken.
Die Bezeichnung „monoalphabetisch“ bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus auf einem einzelnen Alphabet beruht (sofern wir das Klartextalphabet als bekannt
voraussetzen). Die von Caesar benutzte Chiffriermethode kann beispielsweise vollständig
durch Angabe des Ersetzungsalphabets

{D,E,F,G,W,...,Y,Z,A,B,C}

beschrieben werden. Auch im Fall, dass nicht einzelne Zeichen, sondern ganze Buch-
stabengruppen auf einmal ersetzt werden, genügt im Prinzip ein einzelnes Alphabet
zur Beschreibung. Hierzu sortiert man die Klartexteinheiten, auf denen der Ersetzungs-
mechanismus operiert, und bildet die Folge (sprich: das Alphabet) der zugeordneten
Kryptotextsegmente.
Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Länge
l ≥ 1 durch Kryptotextsegmente derselben Länge.

Definition 45 (Blockchiffre). Sei A ein beliebiges Alphabet und es gelte M = C = Al,
l ≥ 1. Eine Blockchiffre realisiert für jeden Schlüssel k ∈ K eine bijektive Abbildung g
auf Al und es gilt

E(k, x) = g(x) und D(k, y) = g−1(y)

für alle x ∈ M und y ∈ C. Im Fall l = 1 spricht man auch von einer einfachen
Substitutionschiffre.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zurück, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden können. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhängigkeit von der Länge oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.
Fast alle polyalphabetischen Chiffrierverfahren operieren – genau wie monoalphabetische
Substitutionen – auf Klartextblöcken einer festen Länge l, die sie in Kryptotextblöcke einer
festen Länge l′ überführen, wobei meist l = l′ ist. Da diese Blöcke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugeführt werden. Man
nennt die einzelnen Klartextblöcke in diesem Zusammenhang auch nicht ‚Blöcke‘ sondern
‚Zeichen‘ und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 46 (Stromchiffre). Sei A ein beliebiges Alphabet und sei M = C = Al für
eine natürliche Zahl l ≥ 1. Weiterhin seien K und K̂ Schlüsselräume. Eine Stromchiffre
wird durch eine Verschlüsselungsfunktion E : K̂ ×M → C und einen Schlüsselstrom-
generator g : K × A∗ → K̂ beschrieben. Der Generator g erzeugt aus einem externen
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Schlüssel k ∈ K für einen Klartext x = x0 . . . xn−1, xi ∈M , eine Folge k̂0, . . . , k̂n−1 von
internen Schlüsseln k̂i = g(k, x0 . . . xi−1) ∈ K̂, unter denen x in den Kryptotext

Eg(k, x) = E(k̂0, x0) . . . E(k̂n−1, xn−1)

überführt wird.

Der interne Schlüsselraum kann also wie bei der Blockchiffre eine maximale Größe von
(ml)! annehmen (im häufigen Spezialfall l = 1 also m!). Die Aufgabe des Schlüsselstrom-
generators g besteht darin, aus dem externen Schlüssel k und dem bereits verarbeiteten
Klartext x0 . . . xi−1 den aktuellen internen Schlüssel k̂i zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schlüsselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schlüsselstromgenerator

Vigenère E(k̂, x) = x+ k̂ g(k0 . . . kd−1, x0 . . . xi−1) = k(i mod m)

Beaufort E(k̂, x) = k̂ − x g(k0 . . . kd−1, x0 . . . xi−1) = k(i mod m)

Autokey
mit Klartext-
Schlüsselstrom

E(k̂, x) = x+ k̂ g(k0 . . . kd−1, x0 . . . xi−1) =
{
ki, i < d

xi−d,i ≥ d

Autokey
mit Kryptotext-
Schlüsselstrom

E(k̂, x) = x+ k̂
g(k0 . . . kd−1, x0 . . . xi−1) =

{
ki, i < d

yi−d,i ≥ d

= k(i mod d) +∑bi/dc
j=1 xi−jd

Bei der Vigenère- und Beaufortchiffre hängt der Schlüsselstrom nicht vom Klartext,
sondern nur vom externen Schlüssel k ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).

Gespreizte Substitutionen

Bei den bisher betrachteten Substitutionen haben die einzelnen Blöcke, aus denen der
Kryptotext zusammengesetzt wird, eine einheitliche Länge. Es liegt nahe, einem Gegner
die unbefugte Rekonstruktion des Klartextes dadurch zu erschweren, dass man Blö-
cke unterschiedlicher Länge verwendet. Man spricht hierbei auch von einer Spreizung
(straddling) des Kryptotextalphabets. Ein bekanntes Beispiel für diese Technik ist die
sogenannte Spionage-Chiffre, die vorzugsweise von der ehemaligen sowjetischen Geheim-
polizei NKWD (Naródny Komissariàt Wnutrennich Del; zu deutsch: Volkskommissariat
des Innern) benutzt wurde.

Beispiel 47. Bei der Spionage-Chiffre wird in die erste Zeile einer 3 × 10-Matrix
ein Schlüsselwort w geschrieben, welches keinen Buchstaben mehrfach enthält und eine
Länge von 6 bis 8 Zeichen hat (also zum Beispiel SPIONAGE). Danach werden die anderen
beiden Zeilen der Matrix mit den restlichen Klartextbuchstaben (etwa in alphabetischer
Reihenfolge) gefüllt.

4 1 9 6 0 3 2 7 5 8

S P I O N A G E

8 B C D F H J K L M Q

5 R T U V W X Y Z

GESPREIZT

; 274154795751
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/

Man überzeugt sich leicht davon, dass sich die von der Spionage-Chiffre generierten
Kryptotexte wieder eindeutig dechiffrieren lassen, da die Kryptotextsegmente 1, 2,. . . , 8,
01, 02, . . . , 08, 91, 92, . . . , 98, die für die Klartextbuchstaben eingesetzt werden, die Fano-
Bedingung erfüllen: Keines von ihnen bildet den Anfang eines anderen. Da die Nummern
5 und 8 der beiden letzten Spalten der Matrix auch als Zeilennummern verwendet werden,
liefert dies auch eine Erklärung dafür, warum keine Schlüsselwortbuchstaben in die beiden
letzten Spalten eingetragen werden dürfen.

Verwendung von Blendern und Homophonen

Die Verwendung von gespreizten Chiffren zielt offenbar darauf ab, die „Fuge“ zwischen
den einzelnen Kryptotextsegmenten, die von unterschiedlichen Klartextbuchstaben her-
rühren, zu verdecken, um dem Gegner eine unbefugte Dechiffrierung zu erschweren.
Dennoch bietet die Spionage-Chiffre noch genügend Angriffsfläche, da im Klartext häufig
vorkommende Wortmuster auch im Kryptotext zu Textwiederholungen führen.
Eine Möglichkeit, diese Muster aufzubrechen, besteht darin, Blender in den Klartext
einzustreuen. Abgesehen davon, dass das Entfernen der Blender auch für den rechtmäßigen
Empfänger mit Mühe verbunden ist, muss für den Zugewinn an Sicherheit auch mit einer
Expansion des Kryptotextes bezahlt werden.
Ist man bereit, dies in Kauf zu nehmen, so gibt es auch noch eine wirksamere Methode,
die Übertragung struktureller und statistischer Klartextmerkmale auf den Kryptotext
abzumildern. Die Idee dabei ist, zur Chiffrierung der einzelnen Klartextzeichen a nicht
nur jeweils eines, sondern eine Menge H(a) von Chiffrezeichen vorzusehen, und daraus
für jedes Vorkommen von a im Klartext eines auszuwählen (am besten zufällig). Da
alle Zeichen in H(a) für dasselbe Klartextzeichen stehen, werden sie auch Homophone
genannt.

Definition 48 (homophonen Substitutionschiffre). Sei A ein Klartextalphabet und
sei M = A. Weiter sei C ein Kryptotextraum der Größe ‖C‖ > ‖A‖ = m. In einer
(einfachen) homophonen Substitutionschiffre beschreibt jeder Schlüssel k ∈ K eine
Zerlegung von C in m disjunkte Mengen H(a), a ∈ A.
Um ein Zeichen a ∈ A unter k zu chiffrieren, wird nach einer bestimmten Methode ein
Homophon y aus der Menge H(a) gewählt und für a eingesetzt.

Durch den Einsatz einer homophonen Substitution wird also erreicht, dass verschiedene
Vorkommen eines Klartextzeichens auch auf unterschiedliche Weise ersetzt werden können.
Damit der Empfänger den Kryptotext auch wieder eindeutig dechiffrieren kann, dürfen
sich die Homophonmengen zweier verschiedener Klartextzeichen aber nicht überlappen.
Daher kann es nicht vorkommen, dass zwei verschiedene Klartextbuchstaben durch
dasselbe Geheimtextzeichen ersetzt werden. Man beachte, dass der Chiffriervorgang
x 7→ E(k, x) nicht durch eine Funktion beschreibbar ist, da derselbe Klartext x in
mehrere verschiedene Kryptotexte y übergehen kann.
Durch eine geringfügige Modifikation der Polybios-Chiffre lässt sich die folgende bipartite
homophone Chiffre erhalten.

Beispiel 49 (homophone Substitution). Sei A = {A, . . . , Z}, B = {0, . . . , 9} und C =
{00, . . . , 99}.
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1,0 2,9 3,8 4,7 5,6

1,6 A F K P U

2,7 B G L Q V

3,8 C H M R W

4,9 D I N S X/Y
5,0 E J O T Z

HOMOPHON ; 8203885317320898

Genau wie bei Polybios wird eine 5× 5-Matrix M als Schlüssel benutzt. Die Zeilen und
Spalten von M sind jedoch nicht nur mit jeweils einer, sondern mit zwei Ziffern versehen,
so dass jeder Klartextbuchstabe x über vier verschiedene Koordinatenpaare ansprechbar ist.
Der Kryptotextraum wird durch M also in 25 Mengen H(a), a ∈ A, mit je 4 Homophonen
partitioniert. /

Wie wir noch sehen werden, sind homophone Chiffrierungen auch deshalb schwerer zu
brechen, weil durch sie die charakteristische Häufigkeitsverteilung der Klartextbuchstaben
zerstört wird. Dieser Effekt kann dadurch noch verstärkt werden, dass man für häufig
vorkommende Klartextzeichen a eine entsprechend größere Menge H(a) an Homophonen
vorsieht. Damit lässt sich erreichen, dass die Verteilung der im Geheimtext auftretenden
Zeichen weitgehend nivelliert wird.
Beispiel 50 (homophone Substitution, verbesserte Version). Ist p(a) die Wahrscheinlich-
keit, mit der ein Zeichen a ∈ A in der Klartextsprache auftritt, so sollte ‖H(a)‖ ≈ 100·p(a)
sein.

a p(a) H(a)

A 0.0647 {15, 26, 44, 59, 70, 79}
B 0.0193 {01, 84}
C 0.0268 {13, 28, 75}
D 0.0483 {02, 17, 36, 60, 95}
E 0.1748 {04, 08, 12, 30, 43, 46, 47, 53, 61, 67, 69, 72, 80, 86, 90, 92, 97}
...

...
...

Da der Buchstabe A im Deutschen beispielsweise mit einer Wahrscheinlichkeit von p(A) =
0.0647 auftritt, sind für ihn sechs verschiedene Homophone vorgesehen. /

Um den Suchaufwand bei der Dechiffrierung zu reduzieren, empfiehlt es sich, eine 10×10-
Matrix anzulegen, in der jeder Klartextbuchstabe a an allen Stellen vorkommt, deren
Koordinaten in H(a) enthalten sind.

1 2 3 4 5 6 7 8 9 0

1 N E C S A O D X I N

2 R G S N N A U C H Y

3 T L I O U D Z M N E

4 H R E A N E E S I T

5 N I E T P H S L A R

6 E U M F R J E N E D

7 N E K S C T I T A A

8 H N I B R E U G V E

9 T E L S D R E O S E

0 B D W E Q I F E I R

HOMOPHON ; 5698633455291668
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Abbildung 1.1: Realisierung von einfachen Substitutionen mit einer Drehscheibe und mit
Hilfe von Steckverbindungen.

Offenbar kann man diese Matrix auch zur Chiffrierung benutzen, was sogar den positiven
Nebeneffekt hat, dass dadurch eine zufällige Wahl der Homophone begünstigt wird.

1.8 Realisierung von Blocktranspositionen und einfachen
Substitutionen

Abschließend möchten wir eine einfache elektronische Realisierungsmöglichkeit von Block-
transpositionen erwähnen, die auf binär kodierten Klartexten operieren (d.h. A = {0, 1}).
Um einen Binärblock x1 · · ·xl der Länge l zu permutieren, müssen die einzelnen Bits ledig-
lich auf l Leitungen gelegt und diese gemäß π in einer sogenannten Permutationsbox
(kurz P-Box) vertauscht werden.

x6 y6

x5 y5

x4 y4

x3 y3

x2 y2

x1 y1

Die Implementierung einer solchen P-Box kann beispielsweise auf einem VLSI-Chip
erfolgen. Allerdings kann hierbei für größere Werte von l aufgrund der hohen Zahl von
Überkreuzungspunkten ein hoher Flächenbedarf anfallen.
Blocktranspositionen können auch leicht durch Software als eine Folge von Zuweisungen

Y1 := X2; Y2 := X5; . . . Y6 := X4;

implementiert werden. Bei großer Blocklänge und sequentieller Abarbeitung erfordert
diese Art der Implementierung jedoch einen relativ hohen Zeitaufwand.
Von Alberti stammt die Idee, das Klartext- und Kryptotextalphabet auf zwei konzentri-
schen Scheiben unterschiedlichen Durchmessers anzuordnen. In Abbildung 1.1 ist gezeigt,
wie sich mit einer solchen Drehscheibe beispielsweise die additive Chiffre realisieren lässt.
Zur Einstellung des Schlüssels k müssen die Scheiben so gegeneinander verdreht werden,
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dass der Schlüsselbuchstabe ak auf der inneren Scheibe mit dem Klartextzeichen a0 = A
auf der äußeren Scheibe zur Deckung kommt. Auf der Drehscheibe in Abbildung 1.1 ist
beispielsweise der Schlüssel k = 3 eingestellt, das heißt, ak = D. Die Verschlüsselung
geschieht nun durch bloßes Ablesen der zugehörigen Kryptotextzeichen auf der inneren
Scheibe, so dass von der Drehfunktion der Scheiben nur bei einem Schlüsselwechsel
Gebrauch gemacht wird.
Aufgrund ihrer engen Verwandtschaft mit der Klasse der Blocktranspositionen lassen sich
einfache Substitutionen auch mit Hilfe einer P-Box realisieren (vergleiche Abbildung).
Hierfür können beispielsweise zwei Steckkontaktleisten verwendet werden. Der aktuelle
Schlüssel wird in diesem Fall durch Verbinden der entsprechenden Kontakte mit elektri-
schen Kabeln eingestellt (siehe Abbildung 1.1). Um etwa den Klartextbuchstaben E zu
verschlüsseln, drückt man auf die entsprechende Taste, und das zugehörige Kryptotext-
zeichen B wird im selben Moment durch ein aufleuchtendes Lämpchen signalisiert.
Schließlich lassen sich Substitutionen auch leicht durch Software realisieren. Hierzu wird
ein Feld (array) deklariert, dessen Einträge über die Klartextzeichen x ∈ A adressierbar
sind. Das mit x indizierte Feldelemente enthält das Kryptotextzeichen, durch welches x
beim Chiffriervorgang zu ersetzen ist.
Ein Nachteil hierbei ist, dass das Feld nach jedem Schlüsselwechsel neu beschrieben
werden muss. Um dies zu umgehen, kann ein zweidimensionales Feld deklariert werden,
dessen Einträge zusätzlich über den aktuellen Schlüsselwert k adressierbar sind. Ist
genügend Speicherplatz vorhanden, um für alle x ∈ A und alle k ∈ K die zugehörigen
Kryptotextzeichen E(k, x) abspeichern zu können, so braucht das Feld nur einmal
initialisiert und danach nicht mehr geändert werden.

Schlüssel- Klartextbuchstabe
wert A B . . . Z

0 U H . . . C
1 E H . . . A
... ... ... . . . ...

63 Y F . . . W
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2 Kryptoanalyse der klassischen Verfahren

2.1 Klassifikation von Angriffen gegen Kryptosysteme

Die Erfolgsaussichten eines Angriffs gegen ein Kryptosystem hängen sehr stark davon ab,
wie gut die Ausgangslage ist, in der sich der Gegner befindet. Prinzipiell sollte man die
Fähigkeiten des Gegners genauso wenig unterschätzen wie die Unvorsichtigkeit der Anwen-
der von Kryptosystemen. Bereits vor mehr als einem Jahrhundert postulierte Kerckhoffs,
dass die Frage der Sicherheit keinesfalls von irgendwelchen obskuren Annahmen über
den Wissensstand des Gegners abhängig gemacht werden darf.

Goldene Regel für Kryptosystem-Designer (Kerckhoffs’ Prinzip)
Unterschätze niemals den Kryptoanalytiker. Gehe insbesondere immer von der An-
nahme aus, dass dem Gegner das angewandte System bekannt ist.∗

In der folgenden Liste sind eine Reihe von Angriffsszenarien mit zunehmender Gefährlich-
keit aufgeführt. Auch wenn nicht alle Eventualitäten eines Angriffs vorhersehbar sind, so
vermittelt diese Aufstellung doch eine gute Vorstellung davon, welchen unterschiedlichen
Bedrohungen ein Kryptosystem im praktischen Einsatz ausgesetzt sein kann.
Angriff bei bekanntem Kryptotext (ciphertext-only attack)

Der Gegner fängt Kryptotexte ab und versucht, allein aus ihrer Kenntnis Rückschlüsse
auf die zugehörigen Klartexte oder auf die benutzten Schlüssel zu ziehen.

Angriff bei bekanntem Klartext (known-plaintext attack)
Der Gegner ist im Besitz von einigen zusammengehörigen Klartext-Kryptotext-Paaren.
Hierdurch wird erfahrungsgemäß die Entschlüsselung weiterer Kryptotexte oder die
Bestimmung der benutzten Schlüssel wesentlich erleichtert.

Angriff bei frei wählbarem Klartext (chosen-plaintext attack)
Der Angriff des Gegners wird zusätzlich dadurch erleichtert, dass er in der Lage ist
(oder zumindest eine Zeit lang war), sich zu Klartexten seiner Wahl die zugehörigen
Kryptotexte zu besorgen. Kann hierbei die Wahl der Kryptotexte in Abhängigkeit von
zuvor erhaltenen Verschlüsselungsergebnissen getroffen werden, so spricht man von
einem Angriff bei adaptiv wählbarem Klartext (adaptive chosen-plaintext
attack).

Angriff bei frei wählbarem Kryptotext (chosen-ciphertext attack)
Vor der Beobachtung des zu entschlüsselnden Kryptotextes konnte sich der Gegner zu
Kryptotexten seiner Wahl die zugehörigen Klartexte besorgen, ohne dabei jedoch in
den Besitz des Dechiffrierschlüssels zu kommen (Mitternachtsattacke). Das dabei
erworbene Wissen steht ihm nun bei der Durchführung seines Angriffs zur Verfügung.
Auch in diesem Fall können sich die Erfolgsaussichten des Gegners erhöhen, wenn ein
Angriff bei adaptiv wählbarem Kryptotext (adaptive chosen-ciphertext
attack) möglich ist, also der Kryptotext in Abhängigkeit von den zuvor erzielten
Entschlüsselungsergebnissen wählbar ist.

∗Diese Annahme ergibt sich meist schon aus der Tatsache, dass die Prinzipien fast aller heute im
Einsatz befindlichen Kryptosysteme allgemein bekannt sind.
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Angriff bei frei (oder adaptiv) wählbarem Text (chosen-text attack)
Sowohl Klartexte als auch Kryptotexte sind frei (oder sogar adaptiv) wählbar.

Ohne Frage ist ein Kryptosystem, das bereits bei einem Angriff mit bekanntem Kryp-
totext Schwächen erkennen lässt, für den praktischen Einsatz vollkommen ungeeignet.
Tatsächlich müssen aber an ein praxistaugliches Kryptosystem noch weit höhere Anforde-
rungen gestellt werden. Denn häufig unterlaufen den Anwendern sogenannte Chiffrier-
fehler, die einen Gegner leicht in eine sehr viel günstigere Ausgangsposition versetzen
als dies sonst der Fall wäre. So ermöglicht beispielsweise das Auftreten stereotyper
Klartext-Formulierungen einen Angriff bei bekanntem Klartext, sofern der Gegner diese
Formulierungen kennt oder auch nur errät. Begünstigt durch derartige Unvorsichtigkeiten,
die im praktischen Einsatz nicht vollständig vermeidbar sind, können sich selbst winzige
Konstruktionsschwächen eines Kryptosystems sehr schnell zu einer ernsthaften Bedrohung
der damit verfolgten Sicherheitsinteressen auswachsen. Die Geschichte der Kryptografie
belegt sehr eindrucksvoll, dass es häufig die Anwender eines Kryptosystems selbst sind,
die – im unerschütterlichen Glauben an seine kryptografische Stärke – dem Gegner zum
Erfolg verhelfen.
Zusammenfassend lässt sich also festhalten, dass die Gefährlichkeit von Angriffen, denen
ein Kryptosystem im praktischen Einsatz ausgesetzt ist, kaum zu überschätzen ist.
Andererseits kann selbst das beste Kryptosystem keinen Schutz vor einer unbefugten
Dechiffrierung mehr bieten, wenn es dem Gegner etwa gelingt, in den Besitz des geheimen
Schlüssels zu kommen – sei es aus Unachtsamkeit der Anwender oder infolge einer
Gewaltandrohung des Gegners (kompromittierte Schlüssel).

2.2 Kryptoanalyse von einfachen Substitutionschiffren

Durch eine Häufigkeitsanalyse können insbesondere einfache Substitutionen g leicht
gebrochen werden, sofern die einzelnen Buchstaben a in der benutzten Klartextsprache
mit voneinander differierenden Häufigkeiten p(a) auftreten (vergleiche Tabelle 2.1).
Selbst wenn, was insbesondere bei kurzen Texten zu erwarten ist, die tatsächliche
Häufigkeitsverteilung nur in etwa der vom Gegner angenommenen Verteilung entspricht,
reduziert sich dadurch die Zahl der in Frage kommenden einfachen Substitutionen ganz
erheblich. Berechnet man die relativen Häufigkeiten h der Kryptotextbuchstaben im
Kryptotext, so gilt p(a) ≈ h(g(a)) (vorausgesetzt der Kryptotext ist genügend lang).
Für die Schilderung einer nach dieser Methode durchgeführten Kryptoanalse sei auf die
Erzählung „Der Goldkäfer“ von Edgar Allan Poe verwiesen.

Tabelle 2.1: Einteilung von Buchstaben in Cliquen mit vergleichbaren Häufigkeitswerten.

Deutsch Englisch Französisch

sehr häufig E E E

häufig N I R S A T T A O I N S R H N A R S I T U

durchschnittlich D H U L G O C M L D C U M F L D C M P

selten B F W K Z P V P G W Y B V K V F B G Q H X

sehr selten J Y X Q X J Q Z J Y Z K W
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Manche der bisher betrachteten Chiffrierverfahren verwenden einen so kleinen Schlüs-
selraum, dass ohne großen Aufwand eine vollständige Schlüsselsuche ausgeführt werden
kann.
Beispiel 51 (vollständige Schlüsselsuche). Es sei bekannt, dass das Kryptotextstück y =
SAXP mit einer additiven Chiffre erzeugt wurde (K = A = B = Alat). Entschlüsseln wir
y probeweise mit allen möglichen Schlüsselwerten, so erhalten wir folgende Zeichenketten.

k B C D E F G H I J K L M
D(k, y) RZWO QYVN PXUM OWTL NVSK MURJ LTQI KSPH JROG IQNF HPME GOLD

N O P Q R S T U V W X Y Z
FNKC EMJB DLIA CKHZ BJGY AIFX ZHEW YGDV XFCU WEBT VDAS UCZR TBYQ

Unter diesen springen vor allem die beiden Klartextkandidaten x = GOLD (Schlüsselwert
k = M) und x = WEBT (k = W) ins Auge. /

Ist s = ‖K‖ die Größe des Schlüsselraums, so kann der Gegner bei bekanntem Kryptotext
y die Suche nach dem zugehörigen Klartext x auf eine Menge von maximal s Texten
x1, . . . , xs beschränken. Daneben hat der Gegner ein gewisses a priori Wissen über
den Klartext, wie zum Beispiel dass er in deutscher Sprache verfasst ist, das es ihm
gestattet, einen Großteil der Texte xi auszuschließen. Ferner erscheinen aufgrund dieses
Hintergrundwissens manche der übrig gebliebenen Klartextkandidaten plausibler als
andere (sofern nicht nur ein einziger übrig bleibt). Mit jedem Text xi, der nicht als
Klartext in Frage kommt, kann auch mindestens ein Schlüssel ausgeschlossen werden.
Sind noch mehrere Schlüsselwerte möglich, so kann weiteres Kryptotextmaterial Klarheit
bringen. Manchmal hilft aber auch eine Inspektion der verbliebenen Schlüsselwerte
weiter, etwa wenn der Schlüssel nicht rein zufällig erzeugt wurde, sondern aus einem
einprägsamen Schlüsselwort ableitbar ist.
Meist kennt der Gegner zumindest die Sprache, in der der gesuchte Klartext abgefasst
ist. Mit zunehmender Länge gleichen sich die Häufigkeitsverteilungen der Buchstaben
in natürlichsprachigen Texten einer „Grenzverteilung“ an, die in erster Linie von der
benutzten Sprache und nur in geringem Umfang von der Art des Textes abhängt. Diese
Verteilungen weisen typischerweise eine sehr starke Ungleichmäßigkeit auf, was darauf
zurückzuführen ist, dass in natürlichen Sprachen relativ viel Redundanz enthalten ist.
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Abbildung 2.1: Häufigkeitsverteilung der Einzelbuchstaben im Deutschen (in %).

Die Abbildungen 2.1, 2.2 und 2.3, zeigen typische Verteilungen von Einzelbuchstaben
in der deutschen, englischen und französischen Sprache (ohne Berücksichtigung von
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Abbildung 2.2: Häufigkeitsverteilung der Buchstaben im Englischen (in %).
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Abbildung 2.3: Häufigkeitsverteilung der Buchstaben im Französischen (in %).

Interpunktions- und Leerzeichen). Ein typischer deutscher Text besteht demnach zu 62%
aus den sieben häufigsten Zeichen E, N, I, R, S, A, T (das sind nicht einmal 27% der
Klartextzeichen).
Bei additiven Chiffren reicht es oftmals, den häufigsten Buchstaben im Kryptotext zu
bestimmen, und davon den häufigsten Buchstaben der Klartextsprache zu subtrahieren,
um den Schlüssel k zu erhalten. Bei affinen Chiffren müssen gewöhnlich nur die beiden
häufigsten Buchstaben bestimmt werden; dadurch erhält man zwei Verschlüsselungsglei-
chungen. Dieses Gleichungssystem muss gelöst werden, und man erhält das gesuchte
Schlüsselpaar.

Beispiel 52 (Analyse einer affinen Chiffre mittels Buchstabenhäufigkeiten). Es sei
bekannt, dass sich hinter dem Kryptotext

laoea ehoap hwvae ixobg jcbho thlob lokhe ixope vbcix ockix qoppo boapo
mohqc euogk opeho jhkpl eappj seobe ixoap opmcu

ein deutscher Klartext verbirgt, der mit einer affinen Chiffre verschlüsselt wurde. Berech-
nen wir für jedes Chiffrezeichen b die (absolute) Häufigkeit Hy(b) seines Auftretens in
obigem Kryptotext y,

b A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

H(b) 7 6 5 0 10 0 2 8 5 3 4 4 2 0 19 11 2 0 1 1 2 2 1 5 0 0

so liegt die Vermutung nahe, dass das am häufigsten vorkommende Chiffrezeichen O für
das Klartextzeichen E und das am zweithäufigsten vorkommende P für N steht. Unter
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dieser Annahme kann der gesuchte Schlüssel k = (b, c) als Lösung der beiden Gleichungen

b · E + c = O

b · N + c = P

bestimmt werden. Subtrahieren wir nämlich die erste von der zweiten Gleichung, so
erhalten wir die Kongruenz 9 · b ≡26 1, woraus sich b = 3 und damit c = 2 ergibt.
Tatsächlich weist der Schlüssel k = (3, 2) nicht nur für die beiden Paare (E, O) und
(N, P), sondern auch für alle übrigen Paare (a, b) eine gute Übereinstimmung zwischen
der Häufigkeit Hy(b), mit der b = E(k, a) im Kryptotext vorkommt, und der erwarteten
Häufigkeit H100(a) auf, mit der a in einem typischen deutschen Text der Länge 100
vorkommt (die Tabelle zeigt die Werte von H100(a) gerundet):

b O P E H A B C X I L K J U M G V Q S T W R F N Z Y D

Hy(b) 19 11 10 8 7 6 5 5 5 4 4 3 2 2 2 2 2 1 1 1 0 0 0 0 0 0
H100(a) 17 10 7 6 8 8 6 4 3 5 4 3 3 3 1 1 1 3 0 0 2 2 1 1 0 0

a E N S T I R A H C D U L G M K P W O X Y F B V Z Q J

/

2.3 Kryptoanalyse von Blocktranspositionen

Mit Hilfe von Bigrammhäufigkeiten, die manchmal auch als Kontakthäufigkeiten be-
zeichnet werden, lassen sich Blocktranspositionen sehr leicht brechen, sofern genügend
Kryptotext vorliegt. Ist die Blocklänge l bekannt, so trägt man hierzu den Kryptotext
zeilenweise in eine Matrix S = (sij) mit l Spalten S1, . . . , Sl ein. Da jede Zeile dieser
Matrix aus dem zugehörigen Klartextblock mit derselben Permutation π erzeugt wurde,
müssen die Spalten Sj jetzt nur noch in die „richtige“ Reihenfolge gebracht werden, um
den gesuchten Klartext zu erhalten. Der Nachfolger Sk von Sj (bzw. der Vorgänger Sj
von Sk) kann sehr gut anhand der Werte von p̂(Sj, Sk) = ∑

i p(sij, sik) bestimmt werden.
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Abbildung 2.4: Die häufigsten Bigramme im Deutschen (Angaben in %).
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Abbildung 2.5: Die häufigsten Bigramme im Englischen (in %; nach O.P. Meaker, 1939).

Beispiel 53 (Häufigkeitsanalyse von Bigrammen). Für den mit einer Blocktransposition
(mit vermuteter Blocklänge 5) erzeugten Kryptotext
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Abbildung 2.6: Die häufigsten Trigramme im Deutschen (in %).
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Abbildung 2.7: Die häufigsten Trigramme im Englischen (in %).

IHEHR BWEAN RNEII NRKEU ELNZK RXTAE VLOTR ENGIE

erhalten wir eine Matrix S mit den folgenden fünf Spalten.

S1 S2 S3 S4 S5

I H E H R
B W E A N
R N E I I
N R K E U
E L N Z K
R X T A E
V L O T R
E N G I E

Um die richtige Vorgänger- oder Nachfolgerspalte von S1 zu finden, bestimmen wir für
jede potentielle Spalte Sj, j = 2, . . . , 5, wieviele der Bigramme sijsi1 (bzw. si1sij) zu den
20 häufigsten (aus Abbildung 2.4) gehören.

↓ ↓
S2 S3 S4 S5 S1 S2 S3 S4 S5

H E H R I H E H R
W E A N B W E A N
N E I I R N E I I
R K E U N R K E U
L N Z K E L N Z K
X T A E R X T A E
L O T R V L O T R
N G I E E N G I E

1 4 2 2 1 4 2 1

Da die beiden Spaltenpaare (S3, S1) und (S1, S3) jeweils vier häufige Bigramme bilden,
können wir annehmen, dass im Klartext S1 auf S3 oder S3 auf S1 folgen muss. Entscheiden
wir uns für die zweite Möglichkeit, so sollten wir als nächstes die Spaltenpaare (Sj, S1)
und (S3, Sj), j = 2, 4, 5 betrachten.
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↓ ↓

S2 S4 S5 S1 S3 S2 S4 S5

H H R I E H H R
W A N B E W A N
N I I R E N I I
R E U N K R E U
L Z K E N L Z K
X A E R T X A E
L T R V O L T R
N I E E G N I E

1 2 2 1 1 5

Aufgrund des hohen Wertes von p̂(S3, S5) können wir annehmen, dass auf S3 die Spalte
S5 folgt. Im nächsten Schritt erhalten wir daher die folgende Tabelle.

↓ ↓ ↓ ↓

S2 S4 S1 S3 S5 S2 S4

H H I E R H H
W A B E N W A
N I R E I N I
R E N K U R E
L Z E N K L Z
X A R T E X A
L T V O R L T
N I E G E N I

1 2 2 1

Diese lässt die Spaltenanordnung S4, S1, S3, S5, S2 vermuten, welche tatsächlich auf den
gesuchten Klartext führt:

S4 S1 S3 S5 S2

H I E R H
A B E N W
I R E I N
E N K U R
Z E N K L
A R T E X
T V O R L
I E G E N

/

2.4 Kryptoanalyse von polygrafischen Chiffren

Blocksysteme mit kleinem k (beispielsweise bigrafische Systeme) lassen sich ähnlich wie
einfache Substitutionen durch Häufigkeitsanalysen brechen. Wird bei Hill-Chiffren k sehr
groß gewählt, so ist eine solche statistische Analyse nicht mehr möglich. Das Hill-System
kann dann zwar einem Kryptotextangriff widerstehen, jedoch kaum einem Angriff mit
bekanntem Klartext und schon gar nicht einem Angriff mit gewähltem Klartext.
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Angriff mit gewähltem Klartext O.B. d.A. sei A = {0, 1, . . . ,m−1}. Bei einem GK-Angriff
verschafft sich der Gegner den Kryptotext zu 100 . . . 0, 010 . . . 0, . . . , 0 . . . 001 ∈ Al:

g(100 . . . 0) = k1 1 k1 2 . . . k1 l

g(010 . . . 0) = k2 1 k2 2 . . . k2 l
...

g(0 . . . 001) = kl 1 kl 2 . . . kl l

und erhält damit die Schlüsselmatrix k.

BK-Angriff (bekannter Klartext). Sind bei einem BK-Angriff ausreichend geeignete
Klartext-Kryptotextpaare bekannt, so kann das Hill-System folgendermaßen gebrochen
werden: Sind xi, yi (i = 1, . . . , µ) Paare mit xik = yi und gilt ggT(detX,m) = 1 für eine
aus l Blöcken xi, i ∈ I, als Zeilen gebildete Matrix X, so lässt sich die Schlüsselmatrix k
zu k = Y X−1 bestimmen (Y ist die aus den Blöcken yi, i ∈ I, gebildete Matrix).

2.5 Kryptoanalyse von polyalphabetischen Chiffren

Die Vigenère-Chiffre galt bis ins 19. Jahrhundert als sicher. Da der Schlüsselstrom bei
der Vigenère-Chiffre periodisch ist, lassen sie sich mit statistischen Methoden ebenfalls
leicht brechen, insbesondere wenn der Kryptotext im Verhältnis zur Periode d (Länge
des Schlüsselwortes) genügend lang ist.

Bestimmung der Schlüsselwortlänge

Es gibt mehrere Methoden, eine Vigenère-Chiffre zu brechen, sobald die Länge des
Schlüsselwortes bekannt ist. So kann man beispielsweise den Kryptotext zeilenweise in
eine d-spaltige Matrix schreiben. Verfahrensbedingt wurden dann die einzelnen Spalten
y1, . . . , yd durch eine monoalphabetische Substitution (genauer: durch eine Verschie-
bechiffre) verschlüsselt. Sie können daher einzeln wie eine additive Chiffre durch eine
Häufigkeitsanalyse gebrochen werden. Hierbei liefert jede Spalte yi einen Buchstaben ki
des Schlüsselwortes der Vigenère-Chiffre.
Zur Bestimmung der Schlüsselwortlänge betrachten wir zwei Vorgehensweisen: den
Kasiski-Test und die Koinzidenzindex-Untersuchung.
Der Kasiski-Test. Die früheste generelle Methode zur Bestimmung der Periode bei der
Vigenère-Chiffre stammt von Friedrich W. Kasiski (1860). Kommt ein Wort an zwei
verschiedenen Stellen im Kryptotext vor, so kann es sein, dass die gleiche Klartextsequenz
zweimal auf die gleiche Weise, d. h. mit der gleichen Schlüsselsequenz, verschlüsselt
wurde. In diesem Fall ist die Entfernung δ der beiden Vorkommen ein Vielfaches der
Periode d. Werden mehrere Paare mit verschiedenen Entfernungen δi gefunden, so liegt
die Vermutung nahe, dass d gemeinsamer Teiler aller (oder zumindest vieler) δi ist, was
die Anzahl der noch in Frage kommenden Werte für d stark einschränkt.

Beispiel 54 (Kasiski-Test).

DERERSTEUNDLETZTEVERS... (Klartext x)
+ KASKASKASKASKASKASKAS... (Schlüsselstrom k̂)

NEJ
:::
ORKDEMXDDOTRDEN

:::
ORK... (Kryptotext y)
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Da die Textstücke ORK, bzw. DE im Kryptotext in den Entfernungen δ1 = 15 und δ2 = 9
vorkommen, liegt die Vermutung nahe, dass die Periode d = ggT(9, 15) = 3 ist. /

Koinzidenzindex-Untersuchungen. Zur Bestimmung der Periode d gibt es neben heuristi-
schen Methoden auch folgenden statistischen Ansatz, der erstmals von William Frederick
Friedman im Jahr 1920 beschrieben wurde. Er basiert auf der Beobachtung, dass eine
längere Periode eine zunehmende Glättung der Buchstabenhäufigkeiten im Kryptotext
bewirkt.

Definition 55 (Koinzidenzindex). Der Koinzidenzindex (engl. index of coinci-
dence) eines Textes y der Länge n über dem Alphabet B ist definiert als

IC (y) = 1
n · (n− 1) ·

∑
a∈B

Hy(a) · (Hy(a)− 1).

Hierbei ist Hy(a) die absolute Häufigkeit des Buchstabens a im Text y.

IC (y) gibt also die Wahrscheinlichkeit an, mit der man im Text y an zwei zufällig gewähl-
ten Positionen den gleichen Buchstaben vorfindet. Er ist umso größer, je ungleichmäßiger
die Häufigkeiten Hy(a) sind (siehe unten).
Um die Periode d einer Vigenère-Chiffre zu bestimmen, schreibt man den Kryptotext y für
d = 1, 2, 3, . . . in eine Matrix mit d Spalten und berechnet für jede Spalte yi den Koinzi-
denzindex IC (yi). Für genügend lange Kryptotexte ist dasjenige d, welches das maximale
arithmetische Mittel der Spaltenindizes IC (yi) liefert mit hoher Wahrscheinlichkeit die
gesuchte Periode. Enthält eine Spalte nämlich nur Kryptozeichen, die alle mit demselben
Schlüsselbuchstaben k erzeugt wurden, so stimmt der Koinzidenzindex dieser Spalte
mit dem Koinzidenzindex des zugehörigen Klartextes überein, nimmt also einen relativ
großen Wert an. Wurden dagegen die Kryptozeichen einer Spalte mit unterschiedlichen
Schlüsselbuchstaben generiert, so wird hierdurch eine Glättung der Häufigkeitsverteilung
bewirkt, weshalb der Spaltenindex kleiner ausfällt.
Ist die Einzelbuchstabenverteilung p : A→ [0, 1] der Klartextsprache bekannt, so kann der
Suchraum für den Wert der Periode d erheblich eingeschränkt werden. Hierzu berechnet
man den erwarteten Koinzidenzindex

Ed,n(IC ) = E(IC (Y )),

wobei Y ein mittels einer Vigenère-Chiffre mit einem zufälligen Schlüsselwort der Länge
d aus einem zufälligen Klartext der Länge n generierter Kryptotext ist. Im Fall d = 1
gilt IC (y) = IC (x). Zudem können wir bei längeren Texten von den gegenseitigen
Abhängigkeiten der Zeichen im Text absehen und erhalten

E1,∞(IC ) =
∑
a∈A

p(a)2.

Dieser Wert wird auch als Koinzidenzindex der zugrunde liegenden Sprache bezeichnet.

Definition 56 (Koinzidenzindex einer Sprache). Der Koinzidenzindex ICL ei-
ner Sprache mit Buchstabenverteilung p : A→ [0, 1] ist definiert als

ICL =
∑
a∈A

p(a)2.

ICL ist zudem ein Maß für die Rauheit der Verteilung p:
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Definition 57 (Rauheitsgrad; Measure of Roughness). Der Rauheitsgrad MRL

einer Sprache L mit Einzelbuchstabenverteilung p ist

MRL =
∑
a∈A

(p(a)− 1/m)2 =
∑
a∈A

p(a)2 − 1/m = ICL − 1/m,

wobei m = ‖A‖ ist.

Beispiel 58. Für die englische Sprache (m = 26) gilt beispielsweise IC Englisch ≈ 0.0687
und MREnglisch ≈ 0.0302. /

Übersteigt dagegen die Periode d die Klartextlänge n, so ist der Kryptotext bei zufälliger
Wahl des Schlüsselswortes ebenfalls rein zufällig, was auf einen erwarteten Koinzidenzindex
von

Ed,n(IC ) =
∑
a∈A
‖A‖−2 = ‖A‖−1, d ≥ n ≥ 2

führt. Allgemein gilt

Ed,n(IC ) = n− d
d · (n− 1) · ICL + n · (d− 1)

d · (n− 1) · ‖A‖
−1, n ≤ d,

da von den
(
n
2

)
= n(n− 1)/2 möglichen Positionspaaren ungefähr d ·

(
n/d

2

)
= n(n− d)/2d

Paare nur eine Spalte und
(
d
2

)
(n/d)2 = n2(d− 1)/2d Paare zwei unterschiedliche Spalten

betreffen.
Untenstehende Tabelle gibt den Erwartungswert Ed,n(IC ) des Koinzidenzindexes für
Kryptotexte der Länge n = 100 in Abhängigkeit von der Periodenlänge d einer Vigenère-
Chiffre wieder (in Promille; Klartext ist ein zufällig gewählter Text der englischen Sprache
mit 100 Buchstaben).

d 1 2 3 4 5 6 8 10 100
Ed,100(IC ) 69 54 48 46 44 43 42 41 39

Beispiel 59. Berechnet sich der Koinzidenzindex eines Vigenère-Kryptotextes der Länge
100 zu 0.045, so liegt die Vermutung nahe, dass das verwendete Schlüsselwort die Länge
vier oder fünf hat, falls y aus einem Klartext der englischen Sprache erzeugt wurde. /

Der Koinzidenzindex kann auch Hinweise dafür liefern, mit welchem Kryptoverfahren ein
vorliegender Kryptotext erzeugt wurde. Bei Transpositionschiffren sowie bei einfachen
Substitutionen bleibt nämlich der Koinzidenzindex im Gegensatz zu polyalphabetischen
und polygrafischen Verfahren erhalten. Erstere lassen sich von letzteren zudem dadurch
unterscheiden, dass bei ihnen sogar die Buchstabenhäufigkeiten unverändert bleiben.

Zur Bestimmung des Schlüsselwortes bei bekannter Periode d kann auch wie folgt
vorgegangen werden. Man schreibt den Kryptotext y in Spalten yi auf und berechnet
für a ∈ A und i = 1, . . . , d die relativen Häufigkeiten hi(a) von a in yi. Da yi aus dem
Klartext durch Addition von ki entstanden ist, kommt die Verteilung

hi(a+ k), a ∈ A

für k = ki der Klartextverteilung p(a), a ∈ A näher als für k 6= ki. Da

αi(k) :=
∑
a∈A

p(a)hi(a+ k)
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ein Maß für die Ähnlichkeit der beiden Verteilungen p(a) und hi(a+k) ist (siehe Übungen),
wird der Wert von αi(k) wahrscheinlich für k = ki maximal werden.

Beispiel 60. Der folgende Kryptotext y
HUDS KUAE ZGXR AVTF PGWS WGWS ZHTP PBIL LRTZ PZHW LOIJ VFIC
VBTH LUGI LGPR KHWM YHTI UAXR BHTW UCGX OSPW AOCH IMCS YHWQ
HWCF YOCG OGTZ LBIL SWBF LOHX ZWSI ZVDS ATGS THWI SSUX LMTS
MHWI KSPX OGWI HRPF LSAM USUV VAIL LHGI LHWV VIVL AVTW OCIJ
PTIC MSTX VII

der Länge 203 wurde von einer Vigenère-Chiffre mit Schlüssellänge d = 4 aus englischem
Klartext erzeugt. Schreiben wir den Kryptotext in vier Spalten y1, . . . , y4 der Länge
|y1| = |y2| = |y3| = 51 und |y4| = 50, so ergeben sich folgende Werte für αi(k) (in
Promille):

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α1(k) 36 31 31 45 38 26 42 73 44 26 36 47 30 32 36 29 28 39 48 42 42 39 42 42 35 31
α2(k) 44 41 40 51 41 31 37 43 34 28 36 26 28 43 68 45 35 27 42 43 40 35 30 24 31 45
α3(k) 47 41 48 37 49 40 35 30 48 32 25 42 31 26 43 76 37 31 39 45 35 34 37 26 30 25
α4(k) 38 40 27 41 65 47 28 34 39 33 35 36 30 30 48 44 35 42 47 38 39 34 27 38 36 37

Da α1(k) für k = 7 = H, α2(k) für k = 14 = O, α3(k) für k = 15 = P und α4(k) für
k = 4 = E einen Maximalwert annimmt, lautet das Schlüsselwort HOPE. Damit ergibt
sich folgender Klartext (aus der Erzählung „Der Goldkäfer“ von Edgar Allan Poe).

A GOOD GLASS IN THE BISHOPS HOSTEL IN THE DEVILS SEAT FORTYONE
DEGREES AND THIRTEEN MINUTES NORTH EAST AND BY NORTH MAIN
BRANCH SEVENTH LIMB EAST SIDE SHOOT FROM THE LEFT EYE OF THE
DEATHS HEAD A BEE LINE FROM THE TREE THROUGH THE SHOT FIFTY
FEET OUT /

Zur Bestimmung des Schlüsselwortes kann man auch die Methode des gegenseitigen
Koinzidenzindexes verwenden. Dabei ist die verwendete Klartextsprache (und somit deren
Häufigkeitsverteilung) irrelevant, da die Spalten – wie der Name schon sagt – gegenseitig
in Relation gesetzt werden. Aber zuerst die Definition.

Definition 61 (Gegenseitiger Koinzidenzindex). Der gegenseitge Koinzidenz-
index von zwei Texten y und y′ mit den Längen n und n′ über dem Alphabet B ist
definiert als

IC (y, y′) = 1
n · n′

·
∑
a∈B

Hy(a) ·Hy′(a).

IC (y, y′) ist also die Wahrscheinlichkeit, dass bei zufälliger Wahl einer Position in y und
einer Position in y′ der gleiche Buchstabe vorgefunden wird. IC (y, y′) ist umso größer, je
besser die Häufigkeitsverteilung von y und y′ (d. h. Hy und Hy′) übereinstimmen.
Ist nun y ein Kryptotext, der mit einem Schlüsselwort bekannter Länge d erzeugt wurde,
und sind yi, i = 1, . . . , d die zugehörigen Spalten, so gibt der gegenseitige Koinzidenzindex
der Spalten yi und yj + δ (für 1 ≤ i < j ≤ d) die Wahrscheinlichkeit an, dass man bei
zufälliger Wahl einer Position in yi und in yj + δ denselben Buchstaben vorfindet, wobei
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δ eine Verschiebung von Spalte yj relativ zur Spalte yi ist (mit 0 ≤ δ ≤ 25). Mit großer
Wahrscheinlichkeit nimmt also IC (yi + δ, yj) für δ = δij = kj − ki einen relativ großen
Wert an, während für δ 6= δij mit kleinen Werten zu rechnen ist.

Beispiel 62. Betrachten wir den Kryptotext aus vorigem Beispiel, so ergeben sich für
IC (yi, yj + δ) die folgenden Werte (in Promille):

δ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IC (y1 + δ, y2) 40 31 25 38 25 21 46 74 50 33 31 44 43 34 31 28 24 31 44 45 37 48 64 44 25 31
IC (y1 + δ, y3) 26 47 25 21 47 32 18 49 91 42 27 51 45 31 29 32 23 29 27 39 45 46 39 58 44 24
IC (y1 + δ, y4) 38 40 29 31 35 24 32 58 42 32 44 50 43 39 31 20 34 36 30 40 45 24 42 78 47 22
IC (y2 + δ, y3) 50 85 49 21 28 35 24 34 46 25 24 27 59 50 50 53 51 24 22 26 43 36 35 32 24 34
IC (y2 + δ, y4) 46 53 40 37 51 42 29 23 24 32 40 55 38 31 32 45 67 49 25 27 29 29 34 37 38 35
IC (y3 + δ, y4) 49 36 38 60 36 25 34 19 29 42 41 33 54 27 36 78 47 25 29 33 27 28 47 32 27 54

Also ist (mit großer Wahrscheinlichkeit)

δ1 2 = 7, δ1 3 = 8, δ1 4 = 23, δ2 3 = 1, δ2 4 = 16, δ3 4 = 15.

Wir können nun alle Spalten relativ zur ersten Spalte so verschieben, dass der ganze
Text eine einheitliche Verschiebung δ hat, also die zweite Spalte um −7, die dritte um
−8 und die vierte um −23. Für die Bestimmung von δ, muss man nur den häufigsten
Buchstaben in dem auf diese Weise erzeugten Text bestimmen (oder eine vollständige
Suche durchführen). Dieser ist L (16, 3%). Also ist δ = L−E = H = 7 und das Schlüsselwort
lautet HOPE (H + 7 = O, H + 8 = P, H + 23 = E). /

Analyse der Lauftextverschlüsselung

Zum Brechen einer Stromchiffre mit Klartextschlüsselstrom kann man so vorgehen:
Man geht zunächst davon aus, dass jeder Kryptotextbuchstabe durch Summation eines
Klartext- und Schlüsselstrombuchstabens mit jeweils mittlerer bis hoher Wahrscheinlich-
keit entstanden ist. Dies sind beispielsweise im Englischen die Buchstaben E, T, A, O, I,
N, S, R, H. Zu einem Teilwort w des Kryptotextes bestimmt man dann alle Paare von
Wörtern (w1, w2) mit w1 + w2 = w und w1, w2 ∈ {E, T, A, O, I, N, S, R, H}. In der Regel
ergeben sich nur sehr wenige sinnvolle Paare, aus denen durch Kontextbetrachtungen
und Erweitern von w nach links und rechts der Kryptotext entschlüsselt werden kann.
Wird die Analyse durch ein Computerprogramm durchgeführt, kann an die Stelle der
Kontextbetrachtungen auch die Häufigkeitsverteilung von n-Grammen der Sprache treten.
Das Programm wählt dann solche Wortpaare (w1, w2), die eine hohe Wahrscheinlichkeit
haben.

Beispiel 63. Gegeben ist der Kryptotext MOQKTHCBLMWXF. . .Wir beginnen die Untersu-
chung mit einer Wortlänge von vier Buchstaben, also w = MOQK. Der erste Buchstabe M
kann nur auf eine der folgenden Arten zustande gekommen sein:

ABCDE...I...T...Z (Klartextzeichen)
+ MLKJI...E...T...N (Schlüsselzeichen)
= MMMMM...M...M...M (Kryptotextzeichen)
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Es ergeben sich folgende wahrscheinliche Paare für die Einzelbuchstaben von w:

M: (E,I) O: (A,O) Q: (I,I) K: (R,T)
(I,E) (H,H) (S,S)
(T,T) (O,A) (T,R)

Diese führen auf folgende 3 · 3 · 1 · 3 = 27 Wortpaare (w1, w2):

w1 EAIR EAIS EAIT EHIR . . . THIS . . . TOIT
w2 IOIT IOIS IOIR IHIT . . . THIS . . . TAIR

Als sinnvoll stellt sich aber nur die Wahl w1 = w2 = THIS heraus. /

Autokey Chiffren

Kryptotextschlüsselstrom. Diese Systeme bieten eigentlich keinen großen kryptografischen
Schutz, da sie ohne Kenntnis des Schlüsselwortes sehr leicht entschlüsselt werden können
(falls die Länge des Schlüsselwortes im Verhältnis zur Länge des Kryptotextes relativ kurz
ist). Man subtrahiert dazu den Kryptotext y für δ = 1, 2, . . . von dem um δ Positionen
verschobenen Kryptotext – also y0+δ y1+δ y2+δ y3+δ . . . minus y0 y1 y2 y3 . . . –, bis sinnvoller
(Klar-) Text erscheint:

DUMSQMOZKFN... (Kryptotext y)
− DUMSQMO... („Kryptotextschlüsselstrom“)
= ....NSCHUTZ... (Klartext x)

Klartextschlüsselstrom. Neben der oben beschriebenen Analyse der Lauftextverschlüsse-
lung kann das Brechen der Autokey-Systeme mit Klartextschlüsselstrom auch analog
zur Kasiski-Methode erfolgen: Sei d die Länge des Schlüsselwortes k0 . . . kd−1. Falls im
Klartext die gleiche Buchstabenfolge xi . . . xi+l−1 im Abstand 2d auftritt (beispielsweise
d = 3 und l = 2),

↓ ↓ ↓ ↓
x0 x1 x2 x3 :::::

x4 x5 x6 x7 x8 x9 :::::::
x10 x11 x12 x13 x14 . . . Klartext x

+ k0 k1 k2 k3 x1 x2 x3 :::::
x4 x5 x6 x7 x8 x9 :::::::

x10 x11 . . . Klartextschlüsselstrom kx

= y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 . . . Kryptotext y

so tritt im Kryptotext die gleiche Buchstabenfolge im Abstand d auf, d. h. d kann
auf diese Art unter Umständen leicht bestimmt werden. Ist d bekannt, so können die
Buchstaben k1 . . . kd des Schlüsselwortes der Reihe nach bestimmt werden: Da durch
ki die Klartextzeichen an den Positionen i, d+ i, 2d+ i, . . . eindeutig festgelegt sind,
kann jedes einzelne ki unabhängig von den anderen Schlüsselwortbuchstaben durch eine
statistische Analyse bestimmt werden.
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3 Sicherheit von Kryptosystemen

3.1 Informationstheoretische Sicherheit

Claude E. Shannon untersuchte die Sicherheit kryptografischer Systeme auf informati-
onstheoretischer Basis (1945, freigegeben 1949). Seinen Untersuchungen liegt das Modell
einer Nachrichtenquelle zugrunde, die einzelne Nachrichten unter einer bestimmten
Wahrscheinlichkeitsverteilung aussendet.

Bei der Betrachtung der informationstheoretischen Eigenschaften von Kryptosystemen
gehen wir von einer Wahrscheinlichkeitsverteilung auf den Paaren (k, x) ∈ K ×M aus,
d. h. p(k, x) gibt die Wahrscheinlichkeit an, dass der Klartext x mit dem Schlüssel k ver-
schlüsselt wird. Dabei setzen wir voraus, dass nach jeder Verschlüsselung einer Nachricht
x ein neuer Schlüssel gewählt wird. Dies bedeutet, dass beispielsweise bei der additiven
Chiffre für M = An zu setzen ist (und nicht M = A wie in der formalen Definition eines
Kryptosystems), falls mit dem selben Schlüssel eine Folge von n Buchstaben chiffriert
wird, bevor er gewechselt wird.
Weiterhin nehmen wir an, dass der Schlüssel unabhängig vom Klartext gewählt wird.
D.h. es ist p(k, x) = p(k)p(x), wobei

p(k) =
∑
x∈M

p(k, x)

die Wahrscheinlichkeit für den Schlüssel k und

p(x) =
∑
k∈K

p(k, x)

die Wahrscheinlichkeit für den Klartext x ist. Für einen Kryptotext y berechnet sich die
Wahrscheinlichkeit zu

p(y) =
∑

k,x:E(k,x)=y
p(k, x)

und für einen fest vorgegebenen Kryptotext y mit p(y) > 0 ist

p(x|y) = p(x, y)
p(y) =

∑
k:E(k,x)=y

p(k, x)
p(y)

die (bedingte) Wahrscheinlichkeit dafür, dass y aus dem Klartext x erzeugt wurde.

Definition 64 (informationstheoretisch sicher). Ein Kryptosystem heißt unter einer
Schlüsselverteilung p(k) absolut sicher (informationstheoretisch sicher), falls für
jede Klartextverteilung p(x) gilt:

p(x) = p(x|y) für alle x ∈M und alle y ∈ C mit p(y) > 0.

Bei einem absolut sicheren Kryptosystem ist demnach die a posteriori Wahrscheinlichkeit
p(x|y) einer Klartextnachricht x gleich der a priori Wahrscheinlichkeit p(x), d.h. die
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Wahrscheinlichkeit von x ist unabhängig davon, ob der Kryptotext y bekannt ist oder
nicht. Die Kenntnis von y erlaubt somit keinerlei Rückschlüsse auf die gesendete Nachricht
x. Dies bedeutet, dass es dem Gegner nicht möglich ist – auch nicht mit unbegrenzten
Rechenressourcen – das System zu brechen. Wie wir sehen werden, lässt sich dieses Maß
an Sicherheit nur mit einem extrem hohen Aufwand realisieren.
Ist p(x, y) > 0, so folgt wegen p(x|y)p(y) = p(x, y) = p(y|x)p(x)

p(x|y) = p(y|x)p(x)
p(y)

(Satz von Bayes) und daher ist die Bedingung p(x) = p(x|y) gleichbedeutend mit
p(y) = p(y|x).

Beispiel 65. Sei (M,C,E,D,K) ein Kryptosystem mit M = {x1, . . . , x4}, K =
{k1, . . . , k4}, C = {y1, . . . , y4} und

E x1 x2 x3 x4

k1 y1 y4 y3 y2
k2 y2 y1 y4 y3
k3 y3 y2 y1 y4
k4 y4 y3 y2 y1

Weiter sei p(k1) = 1/2, p(k2) = 1/4 und p(x3) = p(x4) = 1/8. Unter der Klartextverteilung
p(x1) = 1/2, p(x2) = p(x3) = p(x4) = 1/6 ergibt sich dann folgende Verteilung der
Kryptotexte:

p(y1) = 1/2 · 1/2 + (1/4 + 1/8 + 1/8) · 1/6 = 1/3
p(y2) = 1/4 · 1/2 + (1/8 + 1/8 + 1/2) · 1/6 = 1/4
p(y3) = 1/8 · 1/2 + (1/8 + 1/2 + 1/4) · 1/6 = 5/24
p(y4) = 1/8 · 1/2 + (1/2 + 1/4 + 1/8) · 1/6 = 5/24

Die bedingten Wahrscheinlichkeiten p(x|y1) berechnen sich wie folgt:

p(x1|y1) = p(k1, x1)/p(y1) = (1/2)(1/2)/(1/3) = 3/4
p(x2|y1) = p(k2, x2)/p(y1) = (1/4)(1/6)/(1/3) = 1/8
p(x3|y1) = p(k3, x3)/p(y1) = (1/8)(1/6)/(1/3) = 1/16
p(x4|y1) = p(k4, x4)/p(y1) = (1/8)(1/6)/(1/3) = 1/16

Wegen p(x1) = 1/2 6= 3/4 = p(x1|y1) ist das Kryptosystem nicht absolut sicher, zumindest
nicht unter der gegebenen Schlüsselverteilung.
Die Bedingung p(x) = p(x|y) ist nach dem Satz von Bayes genau dann erfüllt, wenn
p(y) = p(y|x) ist. Da jedoch für jedes Paar (x, y) genau ein Schlüssel k = kx,y ∈ K
mit E(k, x) = y existiert, also p(y|x) = p(kx,y) ist, ist dies äquivalent zu p(y) = p(kx,y).
Für y = y1 bedeutet dies, dass alle Schlüssel ki = kxi,y1 die gleiche Wahrscheinlichkeit
p(ki) = 1/4 haben müssen. Eine leichte Rechnung zeigt, dass dann auch p(yi) = 1/4 für
i = 1, . . . , 4 ist. Somit ist das betrachtete Kryptosystem genau dann absolut sicher, wenn
der Schlüssel unter Gleichverteilung gewählt wird. /

Wie in diesem Beispiel lässt sich allgemein folgende hinreichende Bedingung für die
absolute Sicherheit von Kryptosystemen zeigen.
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Satz 66. Ein Kryptosystem mit ‖M‖ = ‖C‖ = ‖K‖, in dem es für jeden Klartext x und
jeden Kryptotext y genau einen Schlüssel k mit E(k, x) = y gibt, ist absolut sicher, wenn
die Schlüssel unter Gleichverteilung gewählt werden.

Beweis. Bezeichne kx,y den eindeutig bestimmten Schlüssel, der den Klartext x auf den
Kryptotext y abbildet. Wegen p(kx,y) = ‖K‖−1 für alle x, y folgt zunächst

p(y|x) =
∑

k:E(k,x)=y
p(k) = p(kx,y) = ‖K‖−1

und
p(y) =

∑
x

p(x)p(y|x) = ‖K‖−1∑
x

p(x) = ‖K‖−1,

also p(x|y) = p(x)p(y|x)/p(y) = p(x). �

In den Übungen wird gezeigt, dass auch die Umkehrung dieses Satzes gilt.

Verwendet man beim One-time-pad nur Klartexte einer festen Länge n, d. h. M ⊆ An, so
ist dieser nach obigem Satz absolut sicher (vorausgesetzt, der Schlüssel wird rein zufällig,
also unter Gleichverteilung gewählt). Variiert die Klartextlänge, so kann ein Gegner aus
y nur die Länge des zugehörigen Klartextes x ableiten. Wird jedoch derselbe Schlüssel k
zweimal verwendet, so kann aus den Kryptotexten die Differenz der zugehörigen Klartexte
ermittelt werden:

y1 = E(x1, k) = x1 + k

y2 = E(x2, k) = x2 + k

}
; y1 − y2 = x1 − x2

Sind die Klartexte natürlichsprachig, so können aus y1 − y2 die beiden Nachrichten x1
und x2 ähnlich wie bei der Analyse einer Lauftextverschlüsselung (siehe Abschnitt 2.5)
rekonstruiert werden.
Da in einem absolut sicheren Kryptosystem der Schlüsselraum K mindestens die Größe
des Klartextraumes M haben muss (siehe Übungen), ist der Aufwand extrem hoch.
Vor der Kommunikation muss ein Schlüssel, dessen Länge der des zu übertragenden
Klartextes entspricht, zufällig generiert und zwischen den Partnern auf einem sicheren
Kanal ausgetauscht werden. Wird hingegen keine absolute Sicherheit angestrebt, so kann
der Schlüsselstrom auch von einem Pseudo-Zufallsgenerator erzeugt werden. Dieser erhält
als Eingabe eine Zufallsfolge s0 (den sogenannten Keim) und erzeugt daraus eine lange
Folge v0 v1 . . . von Pseudo-Zufallszahlen. Als Schlüssel muss jetzt nur noch das Wort s0
ausgetauscht werden.
In der Informationstheorie wird die Unsicherheit, mit der eine durchX beschriebene Quelle
ihre Nachrichten aussendet, nach ihrer Entropie bemessen. Das heißt, die Unsicherheit
über X entspricht genau dem Informationsgewinn, der sich aus der Beobachtung der
Quelle X ziehen lässt. Dabei wird die in einer einzelnen Nachricht x steckende Information
um so höher bemessen, je seltener x auftritt. Tritt eine Nachricht x mit einer positiven
Wahrscheinlichkeit p(x) = Pr[X = x] > 0 auf, dann ist

InfX(x) = log2(1/p(x))

der Informationsgehalt von x. Ist dagegen p(x) = 0, so sei InfX(x) = 0. Dieser Wert
des Informationsgehalts ergibt sich zwangsläufig aus den beiden folgenden Forderungen:
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– Der gemeinsame Informationsgehalt InfX,Y (x, y) von zwei Nachrichten x und y, die aus
stochastisch unabhängigen Quellen X und Y stammen, sollte gleich InfX(x) + InfY (y)
sein;

– der Informationsgehalt einer Nachricht, die mit Wahrscheinlichkeit 1/2 auftritt, soll
genau 1 (bit) betragen.

Die Einheit, in der der Informationsgehalt gemessen wird, ist bit (basic indissoluble
information unit). Die Entropie von X ist nun der erwartete Informationsgehalt einer
von X stammenden Nachricht.

Definition 67 (Entropie). Sei X eine Zufallsvariable mit Wertebereich W (X) =
{x1, . . . , xn} und sei pi = Pr[X = xi]. Dann ist die Entropie von X definiert als

H(X) =
n∑
i=1

piInfX(xi) =
n∑
i=1

pi log2(1/pi
).

Beispiel 68. Sei X eine Zufallsvariable mit der Verteilung

xi sonnig leicht bewölkt bewölkt stark bewölkt Regen Schnee Nebel
pi 1/4 1/4 1/8 1/8 1/8 1/16 1/16

Dann ergibt sich die Entropie von X zu

H(X) = 1/4 · (2 + 2) + 1/8 · (3 + 3 + 3) + 1/16 · (4 + 4) = 2.625.
/

Die Entropie nimmt im Fall p1 = · · · pn = 1/n den Wert log2(n) an. Für jede andere
Verteilung p1, . . . , pn gilt dagegen H(X) < log2(n) (Beweis unten). Generell ist die
Unsicherheit über X um so kleiner, je ungleichmäßiger X verteilt ist. Bringt X nur einen
einzigen Wert mit positiver Wahrscheinlichkeit hervor, dann (und nur dann) nimmt H(X)
den Wert 0 an. Für den Nachweis von oberen Schranken für die Entropie benutzen wir
folgende Hilfsmittel aus der Analysis.

Definition 69 (konkav). Eine reellwertige Funktion f ist konkav auf einem Intervall
I, falls für alle x 6= y ∈ I und 0 ≤ t ≤ 1 gilt:

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

Gilt sogar „>“ anstelle von „≥“, so heißt f streng konkav auf I.

Beispiel 70. Die Funktion f(x) = log2(x) ist streng konkav auf (0,∞). /

Für den Beweis des nächsten Satzes benötigen wir die Jensensche Ungleichung, die wir
ohne Beweis angeben.

Satz 71 (Jensensche Ungleichung). Sei f eine streng konkave Funktion auf I und seien
0 < a1, . . . , an < 1 reelle Zahlen mit ∑n

i=1 ai = 1. Dann gilt für alle x1, . . . , xn ∈ I,

f

(
n∑
i=1

aixi

)
≥

n∑
i=1

aif(xi).

Hierbei tritt Gleichheit genau dann ein, wenn alle xi den gleichen Wert haben.
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Satz 72. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) = {x1, . . . , xn}
und Verteilung Pr[X=xi] = pi, i = 1, . . . , n. Dann ist H(X) ≤ log2(n), wobei Gleichheit
genau im Fall pi = 1/n für i = 1, . . . , n eintritt.

Beweis. Es gilt

H(X) =
n∑
i=1

pi log2(1/pi) ≤ log2

n∑
i=1

pi/pi = log2 n.

Nach obigem Satz tritt Gleichheit genau im Fall 1/p1 = · · · = 1/pn ein, was mit pi = 1/n
für i = 1, . . . , n gleichbedeutend ist. �

Eine wichtige Eigenschaft der Entropie ist, dass sie eine untere Schranke für die mittlere
Codewortlänge von Binärcodes bildet. Ein Binärcode für X ist eine (geordnete) Menge
C = {y1, . . . , yn} von binären Codewörtern yi für die Nachrichten xi mit der Eigenschaft,
dass die Abbildung c : M∗ → {0, 1}∗ mit c(xi1 · · · xik) = yi1 · · · yik injektiv ist. Die
Injektivität von c stellt sicher, dass jede Folge yi1 · · · yik von Codewörtern eindeutig
decodierbar ist.
Die mittlere Codewortlänge von C unter X ist

L(C) =
n∑
i=1

pi · |yi|.

C heißt optimal, wenn kein anderer Binärcode fürX eine kürzere mittlere Codewortlänge
besitzt. Für einen optimalen Binärcode C für X gilt (ohne Beweis)

H(X) ≤ L(C) < H(X) + 1.

Beispiel 73. Sei X die Zufallsvariable aus dem letzten Beispiel. Betrach-
ten wir die beiden Codes C1 = {001, 010, 011, 100, 101, 110, 111} und C2 =
{00, 01, 100, 101, 110, 1110, 1111}, so erhalten wir für die mittlere Codewortlänge von
C1 den Wert L(C1) = 3, während C2 wegen |yi| = log2(1/pi

) den Wert L(C2) = H(X)
erreicht und somit optimal ist. /

Die Redundanz eines Codes für eine Zufallsvariable X ist um so höher, je größer seine
mittlere Codewortlänge im Vergleich zur Entropie von X ist. Um auch Codes über
unterschiedlichen Alphabeten miteinander vergleichen zu können, ist es notwendig, die
Codewortlänge in einer festen Einheit anzugeben. Hierzu berechnet man die Bitlänge
eines Wortes x über einem Alphabet A mit m > 2 Buchstaben zu |x|2 = |x| log2(m).
Beispielsweise ist die Bitlänge von GOLD (über dem lateinischen Alphabet) |GOLD|2 =
4 log2(26) = 18, 8. Entsprechend berechnet sich für einen Code C = {y1, . . . , yn} unter
einer Verteilung p1, . . . , pn die mittlere Codewortlänge (in bit) zu

L2(C) =
n∑
i=1

pi · |yi|2.

Damit können wir die Redundanz eines Codes als den mittleren Anteil der Codewort-
buchstaben definieren, die keine Information tragen.

Definition 74 (Redundanz). Die (relative) Redundanz eines Codes C für X ist
definiert als

R(C) = L2(C)−H(X)
L2(C) .
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Beispiel 75. Während eine von X generierte Nachricht im Durchschnitt H(X) = 2.625
bit an Information enthält, haben die Codewörter von C1 eine Bitlänge von 3. Der Anteil
an „überflüssigen“ Zeichen pro Codewort beträgt also

R(C1) = 3− 2.625
3 = 12, 5%,

wogegen C2 keine Redundanz besitzt. /

Auch Schriftsprachen wie Deutsch oder Englisch und Programmiersprachen wie C oder
PASCAL können als eine Art Code aufgefasst werden. Um die statistischen Eigenschaften
einer solchen Sprache L zu erforschen, erweist es sich als zweckmäßig, die Textstücke der
Länge n (n-Gramme) von L für unterschiedliche n getrennt voneinander zu betrachten.
Sei also Ln die Zufallsvariable, die die Verteilung aller n-Gramme in L beschreibt.
Interpretieren wir diese n-Gramme als Codewörter einer einheitlichen Codewortlänge n,
so ist

R(Ln) = n log2 m−H(Ln)
n log2 m

die Redundanz dieses Codes. Es ist zu erwarten, dass eine Sprache umso mehr Redundanz
aufweist, je restriktiver die Gesetzmäßigkeiten sind, unter denen in ihr Worte und Sätze
gebildet werden.

Definition 76 (Entropie einer Sprache). Für eine Sprache L über einem Alphabet
A mit ‖A‖ = m und n-Gramm-Verteilung Ln ist H(Ln)/n die Entropie von Ln (pro
Buchstabe). Falls dieser Wert für n gegen ∞ gegen einen Grenzwert

H(L) = lim
n→∞

H(Ln)/n

konvergiert, so wird dieser Grenzwert als die Entropie von L bezeichnet. In diesem
Fall konvergiert R(Ln) gegen den Grenzwert

R(L) = lim
n→∞

R(Ln) = log2 m−H(L)
log2 m

,

der als die (relative) Redundanz von L bezeichnet wird. Der Zähler Rabs(L) = log2 m−
H(L) in diesem Ausdruck wird auch als die absolute Redundanz der Klartextsprache
(gemessen in bit/Buchstabe) bezeichnet.

Für eine Reihe von natürlichen Sprachen wurden die Redundanzen R(Ln) der n-Gramme
(für nicht allzu große Werte von n) empirisch bestimmt, woraus sich R(L) näherungsweise
bestimmen lässt.

Beispiel 77. Im Deutschen hat die Einzelbuchstabenverteilung L1 eine Entropie von
H(L1) = 4, 1 bit, während eine auf Alat gleichverteilte Zufallsvariable U einen Entro-
piewert von H(U) = log(26) = 4, 76 hat. Für die Bi- und Trigramme ergeben sich
Entropiewerte von H(L2)/2 = 3, 86 und H(L3)/3 = 3, 61 bit pro Buchstabe. Mit wach-
sender Länge sinkt die Entropie von deutschsprachigen Texten weiter ab und strebt gegen
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einen Grenzwert H(L) von 1, 56 bit pro Buchstabe.

n H(Ln) H(Ln)/n Rabs(Ln)/n R(Ln)

1 4, 10 4, 10 0, 66 14%
2 7, 72 3, 86 0, 90 19%
3 10, 82 3, 61 1, 15 24%
... ... ... ... ...
∞ ∞ H(L) = 1, 56 Rabs(L) = 3, 20 R(L) = 67%

Ein durchschnittlicher deutscher Text hinreichender Länge enthät also einen Redun-
danzanteil von ca. 67%, so dass er sich bei optimaler Kodierung auf circa 1/3 seiner
ursprünglichen Länge komprimieren lässt. /

Wir betrachten nun den Fall, dass mit einem Kryptosystem Klartexte der Länge n
verschlüsselt werden, ohne dass dabei der Schlüssel gewechselt wird. D. h. die Chiffrier-
funktion hat die Form

En : K × An → Cn,

wobei wir die Klartextlänge n variabel halten und der Einfachheit halber annehmen, dass
die Menge Cn der zugehörigen Kryptotexte die gleiche Kardinalität ‖Cn‖ = ‖An‖ = mn

wie der Klartextraum hat. Ist y ein abgefangener Kryptotext, so ist

K(y) = {k ∈ K | ∃x ∈ An : En(k, x) = y ∧ p(x) > 0}

die Menge aller in Frage kommenden Schlüssel für y. K(y) besteht aus einem „echten“
(d. h. dem zur Generierung von y tatsächlich benutzten) und ‖K(y)‖ − 1 so genannten
„unechten“ Schlüsseln. Aus informationstheoretischer Sicht ist das Kryptosystem desto
unsicherer, je kleiner die erwartete Anzahl

s̄n =
∑
y∈Cn

p(y) · (‖K(y)‖ − 1) =
∑
y∈Cn

p(y) · ‖K(y)‖ − 1

der unechten Schlüssel ist. Ist s̄n gleich 0, so liefert der abgefangene Kryptotext y dem
Gegner genügend Information, um den benutzten Schlüssel und somit den zu y gehörigen
Klartext eindeutig bestimmen zu können (sofern er über unbegrenzte Ressourcen an
Rechenkraft und Zeit verfügt).

Definition 78 (Eindeutigkeitsdistanz). Die Eindeutigkeitsdistanz n0 eines Kryp-
tosystems ist der kleinste Wert von n, für den s̄n = 0 wird.

Als nächstes wollen wir eine untere Schranke für s̄n (und damit für n0) herleiten. Hierzu
benötigen wir den Begriff der bedingten EntropieH(X|Y ) von X, wenn Y bereits bekannt
ist.

Definition 79 (bedingte Entropie). Seien X, Y Zufallsvariablen. Dann ist die be-
dingte Entropie von X unter Y definiert als

H(X|Y ) =
∑

y∈W (Y )
p(y) · H(X|y),

wobei X|y die Zufallsvariable mit der Verteilung Pr[X|y = x] = p(x|y) = Pr[X = x |
Y = y] ist (d.h. H(X|y) = ∑

x∈W (X) p(x|y) · log2(1/p(x|y)).
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Satz 80.
(i) H(X, Y ) = H(Y ) +H(X|Y ).
(ii) H(X, Y ) ≤ H(X) +H(Y ), wobei Gleichheit genau dann eintritt, wenn X und Y

stochastisch unabhängig sind.

Beweis. s. Übungen. �

Korollar 81. H(X|Y ) ≤ H(X), wobei Gleichheit genau dann eintritt, wenn X und Y
stochastisch unabhängig sind.

Satz 82. In jedem Kryptosystem gilt für die Klartextentropie H(X), die Schlüsselentropie
H(K) und die Kryptotextentropie H(Y )

H(K|Y ) = H(K) +H(X)−H(Y ).

Beweis. Zunächst ist H(K|Y ) = H(K,Y )−H(Y ). Es reicht also zu zeigen, dass

H(K,Y ) = H(K) +H(X)

ist. Da bei Kenntnis des Schlüssels der Wert von X bereits eindeutig durch Y und der
Wert von Y eindeutig durch X festgelegt ist, folgt unter Berücksichtigung der gemachten
Annahme, dass X und K unabhängig sind,

H(K,Y ) = H(K,X, Y ) = H(K,X) +H(Y |K,X)︸ ︷︷ ︸
=0

= H(K) +H(X).

�

Jetzt verfügen wir über alle Hilfsmittel, um die erwartete Anzahl

s̄n =
∑
y∈Cn

p(y) · ‖K(y)‖ − 1

der unechten Schlüssel nach unten abschätzen zu können. Seien Xn und Yn die Zufallsva-
riablen, die die Verteilungen der n-Gramme der Klartextsprache und der zugehörigen
Kryptotexte beschreiben.

Lemma 83.
(i) H(K|Yn) ≤ log2(s̄n + 1),
(ii) H(K|Yn) ≥ H(K)− nR(L) log2 m.

Beweis.
(i) Unter Verwendung der Jensenschen Ungleichung folgt

H(K|Yn) =
∑
y∈Cn

p(y) · H(K|y)

≤
∑
y∈Cn

p(y) · log2 ‖K(y)‖

≤ log2
∑
y∈Cn

p(y) · ‖K(y)‖

= log2(s̄n + 1).
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(ii) Mit Satz 82 folgt
H(K|Yn) = H(K) +H(Xn)−H(Yn).

Die Klartextentropie H(Xn) lässt sich durch

H(Xn) = H(Ln) ≥ nH(L) = n(1−R(L)) log2 m

abschätzen, wobei m = ‖A‖ ist. Zudem lässt sich die Kryptotextentropie H(Yn)
wegen W (Yn) = Cn und ‖Cn‖ = mn durch

H(Yn) ≤ n log2 m

abschätzen. Somit ist

H(K|Yn) = H(K) +H(Xn)−H(Yn)︸ ︷︷ ︸
≥−nR(L) log2 m

.

�

Zusammen ergibt sich also

log2(s̄n + 1) ≥ H(K)− nR(L) log2 m.

Im Fall, dass der Schlüssel unter Gleichverteilung gezogen wird, erreicht H(K) den
maximalen Wert log2 ‖K‖, was auf die gesuchte Abschätzung für s̄n führt. Wir fassen
zusammen.

Satz 84. Werden mit einem Kryptosystem Klartexte x ∈ An der Länge n mit einem unter
Gleichverteilung gezogenen Schlüssel k ∈ K verschlüsselt, und ist ‖Cn‖ = ‖An‖ = mn

für den zugehörigen Kryptotextraum Cn = {E(k, x) | k ∈ K, x ∈ An}, so gilt für die
erwartete Anzahl s̄n der unechten Schlüssel,

s̄n ≥
‖K‖
mnR(L) − 1.

Setzen wir in obiger Abschätzung s̄n = 0, so erhalten wir folgende untere Schranke für
die Eindeutigkeitsdistanz n0 des Kryptosystems.

Korollar 85. Unter den Bedingungen des obigen Satzes gilt

n0 ≥
log2 ‖K‖
R(L) log2 m

= log2 ‖K‖
log2 m−H(L) = log2 ‖K‖

Rabs(L) .

Man beachte, dass wir nur die Mindestmenge an Kryptotext zur eindeutigen Bestimmung
des Schlüssels abgeschätzt haben. Natürlich erlaubt die eindeutige Bestimmung des
Schlüssels auch die eindeutige Bestimmung des Klartexts. Unter Umständen kann jedoch
der Klartext auch schon bei Kenntnis von wesentlich weniger Kryptotext eindeutig
bestimmbar sein.

Beispiel 86. Für Substitutionen bei deutschsprachigem Klartext ergeben sich folgende
Werte log2 ‖K‖/Rabs(L) als untere Schranke für die Eindeutigkeitsdistanz n0 (wobei wir
von einer absoluten Redundanz von Rabs(L) = 3.2 bit/Zeichen ausgehen, was einer
relativen Redundanz von R(L) = 3, 2/4, 76 ≈ 67% entspricht):
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Kryptosystem Schlüsselanzahl ‖K‖ log2 ‖K‖ log2 ‖K‖/Rabs(L)

additive Chiffre 26 4.7 4.7
3.2 ≈ 1.5

affine Chiffre 12 · 26 = 312 8.3 2.6
einfache Substitution 26! 88.4 27.6
Vigenère-Chiffre 26d 4.7 · d 1.5 · d

Dagegen erhalten wir für Blocktranspositionen folgende unteren Schranken für die Min-
destmenge an Kryptotext, die zur eindeutigen Bestimmung des Schlüssels benötigt wird:

Analyse auf Rabs(L) Blocklänge l
der Basis von 10 20 50 100 1 000

Einzelzeichen 0, 66 59 165 578 1415 22 986
Bigrammen 0, 90 40 111 390 954 15 502
Trigrammen 1, 15 24 65 226 553 9 473
n-Grammen, n→∞ 3, 20 7 19 67 164 2 665

Auch wenn die unteren Schranken für n0 bei der Analyse auf der Basis von Einzelzeichen
endlich sind, ist in diesem Fall n0 =∞, da eine solche Analyse nicht zum Ziel führen
kann, unabhängig davon, über wie viel Kryptotext der Gegner verfügt. /

3.2 Weitere Sicherheitsbegriffe

Wie wir gesehen haben, muss für die Benutzung eines informationstheoretisch sicheren
Kryptosystems ein immenser Aufwand betrieben werden. Daher begnügt man sich in der
Praxis meist mit schwächeren Sicherheitsanforderungen.
– Ein Kryptosystem gilt als komplexitätstheoretisch sicher oder als berechnungs-
sicher (computationally secure), falls es dem Gegner nicht möglich ist, das
System mit einem für ihn lohnenswerten Aufwand zu brechen. Das heißt, der Zeitauf-
wand und die Kosten für einen erfolgreichen Angriff (sofern er überhaupt möglich ist)
übersteigen den potentiellen Nutzen bei weitem.

– Ein Kryptosystem gilt als nachweisbar sicher (provably secure), wenn seine
Sicherheit mit bekannten komplexitätstheoretischen Hypothesen verknüpft werden
kann, deren Gültigkeit gemeinhin akzeptiert wird.

– Als praktisch sicher (practically secure) werden dagegen Kryptosysteme einge-
stuft, die über mehrere Jahre hinweg jedem Versuch einer erfolgreichen Kryptoanalyse
widerstehen konnten, obwohl sie bereits eine weite Verbereitung gefunden haben und
allein schon deshalb ein lohnenswertes Ziel für einen Angriff darstellen.

Die komplexitätstheoretische Analyse eines Kryptosystems ist äußerst schwierig. Dies
hängt damit zusammen, daß der Aufwand eines erfolgreichen Angriffs unabhängig von
der vom Gegner angewandten Strategie abgeschätzt werden muss. Das heißt, es müssen
nicht nur alle derzeit bekannten kryptoanalytischen Ansätze, sondern alle möglichen in
Betracht gezogen werden. Dabei darf sich die Aufwandsanalyse nicht ausschließlich an
einer vollständigen Rekonstruktion des Klartextes orientieren, da bereits ein geringfügiger
Unterschied zwischen dem a posteriori und dem a priori Wissen für den Gegner einen
Vorteil bedeuten kann.
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Aus den genannten Gründen ist es bis heute noch für kein praktikables Kryptosystem
gelungen, seine komplexitätstheoretische Sicherheit mathematisch zu beweisen. Damit
ist auch nicht so schnell zu rechnen, zumindest nicht solange der Status fundamentaler
komplexitätstheoretischer Fragen wie etwa des berühmten P ?=NP-Problems offen ist.
Dagegen gibt es eine ganze Reihe praktikabler Kryptosysteme, die als nachweisbar sicher
oder praktisch sicher gelten.
Wir schließen diesen Abschnitt mit einer Präzisierung des komplexitätstheoretischen
Sicherheitsbegriffs. Hierzu ist es erforderlich, die Verletzung der Vertraulichkeit als ein
algorithmisches Problem für den Gegner zu formulieren.

Definition 87 (Vorteil eines Gegners). Sei S = (M,C,E,D,K) ein Kryptosystem
mit Schlüsselverteilung K. Ein Gegner ist ein Paar (G, V ) von probabilistischen Algo-
rithmen, wobei G = (X0, X1) zwei Klartexte x0 6= x1 ∈M generiert und V bei Eingabe
zweier Klartexte x0, x1 ∈M und eines Kryptotextes y ∈ C ein Bit ausgibt. Der Vorteil
von (G, V ) ist

α(G, V ) = Pr[V (X0, X1, E(K,XB)) = B]− 1/2,

wobei B eine unabhängig von G und V auf {0, 1} gleichverteilte Zufallsvariable ist, d.h.
Pr[B = 0] = Pr[B = 1] = 1/2.

Satz 88. Bei einem absolut sicheren Kryptosystem S kann kein Gegner einen Vorteil
größer als 0 erzielen.

Beweis. Bei einem absolut sicheren Kryptosystem hängt die Kryptotextverteilung Y =
E(K,X) nicht von der zugrunde liegenden Klartextverteilung X ab. Daher sind auch die
ZVen V (X0, X1, E(K,XB)) und B stochastisch unabhängig und es folgt

Pr[V (X0, X1, E(K,XB)) = B]
= Pr[V (X0, X1, E(K,XB)) = 0] · Pr[B = 0 | V (X0, X1, E(K,XB)) = 0]︸ ︷︷ ︸

= Pr[B=0] = 1/2

+ Pr[V (X0, X1, E(K,XB)) = 1] · Pr[B = 1 | V (X0, X1, E(K,XB)) = 1]︸ ︷︷ ︸
= Pr[B=1] = 1/2

= 1/2.

�

In den Übungen wird auch die umgekehrte Implikation bewiesen. Ein Kryptosystem ist
somit genau dann absolut sicher, wenn kein Gegner einen Vorteil größer 0 erzielt. Für
die Präzisierung des komplexitätstheoretischen Sicherheitsbegriffs sind nun die beiden
folgenden Fragen von entscheidender Bedeutung:
– Über welche Rechenressourcen verfügt ein Gegner realistischerweise?
– Wie groß darf der vom Gegner erzielte Vorteil höchstens sein, damit die Vertraulichkeit

der Nachricht noch gewahrt bleibt?
Eine Antwort auf diese Fragen liefert Definition 89. Dabei gehen wir davon aus, dass
das gewünschte Maß an Sicherheit durch einen Parameter s ∈ N regulierbar ist. Aus
Praktikabilitätsgründen sollten dann alle legalen Operationen (wie die Chiffrierung oder
die Schlüsselgenerierung) effizient (d.h. in Zeit sO(1)) durchführbar sein. Natürlich darf
dann auch der Gegner (Gs, Vs) vom Parameterwert s abhängen. Typischerweise werden
Kryptosysteme nach der Schlüssellänge s = |k| parameterisiert.
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Definition 89 (komplexitätstheoretisch sicher). Sei S ein Kryptosystem mit varia-
blem Sicherheitsparameter s.
– Eine Funktion ε : N→ R heißt vernachlässigbar, wenn für jedes Polynom p eine
Zahl n0 existiert, so dass ε(n) < 1/p(n) für alle n ≥ n0 ist.

– Ein Gegner (Gs, Vs) für S heißt effizient, wenn sowohl Gs als auch Vs durch proba-
bilistische Schaltkreise der Größe sO(1) berechenbar sind.

– S heißt komplexitätstheoretisch sicher, wenn jeder effiziente Gegner (Gs, Vs)
nur einen vernachlässigbaren Vorteil erzielen kann (d.h. die Funktion s 7→ α(Gs, Vs)
ist vernachlässigbar).
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4 Moderne symmetrische Kryptosysteme & ihre
Analyse

4.1 Produktchiffren

Produktchiffren erhält man durch die sequentielle Anwendung mehrerer Verschlüsse-
lungsverfahren. Sie können extrem schwer zu brechen sein, auch wenn die einzelnen
Komponenten leicht zu brechen sind.

Definition 90 (Produktkryptosystem). Seien S1 = (M1, C1, E1, D1, K1) und S2 =
(M2, C2, E2, D2, K2) Kryptosysteme mit C1 = M2. Dann ist das Produktkryptosystem
von S1 und S2 definiert als S1 × S2 = (M1, C2, E,D,K1 ×K2) mit

E(k1, k2;x) = E2(k2, E1(k1, x)) und D(k1, k2; y) = D1(k1, D2(k2, y))

für alle x ∈M1, y ∈ C2 und (k1, k2) ∈ K1 ×K2.

Der Schlüsselraum von S1 × S2 umfasst also alle Paare (k1, k2) von Schlüsseln k1 ∈ K1
und k2 ∈ K2, wobei wir voraussetzen, dass die Schlüssel unabhängig gewählt werden (d.h.
es gilt p(k1, k2) = p(k1)p(k2)).

Beispiel 91. Sei A = {a0, . . . , am−1}. Man sieht leicht, dass die affine Chiffre
S = (M,C,K,E,D) mit M = C = A und K = Z∗m × Zm das Produkt S = S1 × S2
der multiplikativen Chiffre S1 = (M,C,K1, E1, D1) mit der additiven Chiffre S2 =
(M,C,K2, E2, D2) ist, da für jeden Schlüssel k = (k1, k2) ∈ K = Z∗m × Zm gilt:

E(k, x) = k1x+ k2 = E2(k2, E1(k1, x)).

Für S ′ = S2×S1 erhalten wir das Kryptosystem S ′ = (M,C,K ′, E ′, D′) mit K ′ = Zm×Z∗m
und

E ′(k1, k2;x) = k2(x+ k1) = k2x+ k2k1 = E(k2, k2k1;x)
für jeden Schlüssel (k1, k2) ∈ K ′. Da die Abbildung

(k1, k2) 7→ (k2, k2k1)

eine Bijektion zwischen den Schlüsselräumen K ′ und K ist und der Schlüssel (k1, k2) im
System S ′ die gleiche Chiffrierfunktion realisiert wie der Schlüssel (k2, k2k1) in S, sind
die Kryptosysteme S = S1 × S2 und S ′ = S2 × S1 als gleich (genauer: äquivalent, siehe
Übungen) anzusehen, d.h. S1 und S2 kommutieren. /

Definition 92 (endomorph, idempotent). Ein Kryptosystem S = (M,C,K,D,E)
mit M = C heißt endomorph. Ein endomorphes Kryptosystem S heißt idempotent,
falls S × S = S ist.

Beispiel 93. Eine leichte Rechnung zeigt, dass die additive, die multiplikative und die
affine Chiffre idempotent sind. Ebenso die Blocktransposition sowie die Vigenère- und
Hill-Chiffre. /
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Will man durch mehrmalige Anwendung (Iteration) derselben Chiffriermethode eine
höhere Sicherheit erreichen, so darf diese nicht idempotent sein. Man kann beispielsweise
versuchen, ein nicht idempotentes System S durch die Kombination S = S1 × S2 zweier
idempotenter Verfahren S1 und S2 zu erhalten. Wegen

(S1 × S2)× (S1 × S2) = S1 × (S2 × S1)× S2

= S1 × (S1 × S2)× S2

= (S1 × S1)× (S2 × S2)
= S1 × S2

dürfen hierbei S1 und S2 jedoch nicht kommutieren.
Im Rest dieses Kapitels werden wir nur noch das Binäralphabet A = {0, 1} als Klar- und
Kryptotextalphabet benutzen und auch der Schlüsselraum wird von der Form {0, 1}k
sein, wobei k die Schlüssellänge bezeichnet.
Eine iterierte Blockchiffre wird typischerweise durch eine Rundenfunktion (round
function) g und einen Schlüsselgenerator (key schedule algorithm) f beschrieben.
Ist N die Rundenzahl, so erzeugt f bei Eingabe eines Schlüssels K eine Folge
f(K) = (K1, . . . , KN) von N Rundenschlüsseln Ki für g. Mit diesen wird ein Klartext
x = w0 durch N -malige Anwendung der Rundenfunktion g zu einem Kryptotext y = wN

verschlüsselt:

w1 := g(K1, w0)
...
wN := g(KN , wN−1)

Um y wieder zu entschlüsseln, muss die inverse Rundenfunktion g−1 mit umgekehrter
Rundenschlüsselfolge KN , . . . , K1 benutzt werden:

wN−1 := g−1(KN , wN)
...
w0 := g−1(K1, w1)

Beispiele für iterierte Chiffren sind der aus 16 Runden bestehende DES-Algorithmus und
der AES mit einer variablen Rundenzahl N ∈ {10, 12, 14}, die wir in späteren Abschnitten
behandeln werden.

4.2 Substitutions-Permutations-Netzwerke

In diesem Abschnitt betrachten wir den prinzipiellen Aufbau von iterierten Blockchiffren.
Als Basisbausteine für die Rundenfunktion eignen sich Substitutionen und Transpositionen
besonders gut. Aus Effizienzgründen sollten die Substitutionen nur eine relativ kleine
Blocklänge l haben.
Definition 94 (Teilwort). Für ein Wort u = u1 · · ·un ∈ {0, 1}n und Indizes 1 ≤ i ≤
j ≤ n bezeichne u[i, j] das Teilwort ui · · ·uj von u. Im Fall n = lm bezeichnen wir
das Teilwort u[(i− 1)l + 1, il] auch einfach mit u(i), d.h. es gilt u = u(1) · · ·u(m), wobei
|u(i)| = l.

Sei πS : Al → Al
′ eine Substitution, die Binärblöcke u der Länge l in Binärblöcke

v = πS(u) der Länge l′ überführt (engl. auch als S-Box bezeichnet).
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u1 u2 u3 u4

v1 v2 v3 v4 v5 v6

S-Box

Durch parallele Anwendung von m dieser S-Boxen erhalten wir folgende Substitution
S : Alm → Al

′m,
S(u1 · · ·ulm) = πS(u(1)) · · · πS(u(m)).

Für die Speicherung einer S-Box πS : {0, 1}l → {0, 1}l′ auf einem Speicherchip werden
l′2l Bit Speicherplatz benötigt (im Fall l = l′ also l2l Bit). Für l = l′ = 16 wären dies
beispielsweise 220 Bit, was Smartcard-Anwendungen bereits ausschließen würde.
Für eine Transposition P auf Alm bezeichnen wir die zugehörige Permutation auf
{1, . . . , lm} mit πP , d.h.

P (u1 · · ·ulm) = uπP (1) · · ·uπP (m).

Definition 95 (Substitutions-Permutations-Netzwerk). Sei A = {0, 1} und sei
M = C = Alm für natürliche Zahlen l,m ≥ 1. Ein Substitutions-Permutations-
Netzwerk (SPN) wird durch Permutationen πS : {0, 1}l → {0, 1}l und πP :
{1, . . . , lm} → {1, . . . , lm} sowie durch einen Schlüsselgenerator f : {0, 1}k →
{0, 1}lm(N+1) beschrieben. Der Generator f erzeugt aus einem (externen) Schlüssel
K ∈ {0, 1}k eine Folge f(K) = (K1, . . . , KN+1) von N + 1 Rundenschlüsseln Kr,
unter denen ein Klartext x ∈ {0, 1}lm gemäß folgendem Algorithmus in einen Kryptotext
y = Ef,πS ,πP

(K, x) ∈ {0, 1}lm überführt wird.

Chiffrierfunktion Ef,πS ,πP
(K, x)

1 w0 := x
2 for r := 1 to N − 1 do
3 ur := wr−1 ⊕Kr

4 vr := S(ur)
5 wr := P (vr)
6 uN := wN−1 ⊕KN

7 vN := S(uN)
8 y := vN ⊕KN+1

Zu Beginn jeder Runde r ∈ {1, . . . , N} wird wr−1 zunächst einer XOR-Operation mit dem
Rundenschlüssel Kr unterworfen (dies wird round key mixing genannt), deren Resultat
ur den S-Boxen zugeführt wird. Auf die Ausgabe vr der S-Boxen wird in jeder Runde
r ≤ N − 1 die Transposition P angewendet, was die Eingabe wr für die nächste Runde
r + 1 liefert.
Am Ende der letzten Runde r = N wird nicht die Transposition P angewandt, sondern der
Rundenschlüssel KN+1 auf vN addiert. Durch diese (whitening genannte) Vorgehensweise
wird einerseits erreicht, dass auch für den letzten Chiffrierschritt der Schlüssel benötigt
und somit der Gegner von einer partiellen Entschlüsselung des Kryptotexts abgehalten
wird. Zum Zweiten ermöglicht dies eine (legale) Entschlüsselung nach fast demselben
Verfahren (siehe Übungen).
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Abbildung 4.1: Ein Substitutions-Permutations-Netzwerk.

Beispiel 96. Sei l = m = N = 4 und sei k = 32. Für f wählen wir die Funktion f(K) =
(K1, . . . , K5) mit Kr = K[4(r− 1) + 1, 4(r− 1) + 16]. Weiter seien πS : {0, 1}4 → {0, 1}4

und πP : {1, . . . , 16} → {1, . . . , 16} die folgenden Permutationen (wobei die Argumente
und Werte von πS hexadezimal dargestellt sind; siehe auch Abbildung 4.1):

z 0 1 2 3 4 5 6 7 8 9 A B C D E F

πS(z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

und

z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (z) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Für den Schlüssel K = 0011 1010 1001 0100 1101 0110 0011 1111 liefert f beispielsweise
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die Rundenschlüssel f(K) = (K1, . . . , K5) mit

K1 = 0011 1010 1001 0100,
K2 = 1010 1001 0100 1101,
K3 = 1001 0100 1101 0110,
K4 = 0100 1101 0110 0011,
K5 = 1101 0110 0011 1111,

unter denen der Klartext x = 0010 0110 1011 0111 die folgenden Chiffrierschritte durch-
läuft:

x = 0010 0110 1011 0111 = w0

w0 ⊕K1 = 0001 1100 0010 0011 = u1

S(u1) = 0100 0101 1101 0001 = v1

P (v1) = 0010 1110 0000 0111 = w1

...
P (v3) = 1110 0100 0110 1110 = w3

w3 ⊕K4 = 1010 1001 0000 1101 = u4

S(u4) = 0110 1010 1110 1001 = v4

u4 ⊕K5 = 1011 1100 1101 0110 = y. /

4.3 Lineare Approximationen

Sei f : {0, 1}l → {0, 1}l′ eine Abbildung. Wählen wir für f eine zufällige Eingabe U =
U1 · · ·Ul unter Gleichverteilung, so gilt für die zugehörige Ausgabe V = f(U) = V1 · · ·Vl′ ,

Pr[V = v | U = u] =

1 πS(u) = v,

0 sonst

für alle u ∈ {0, 1}l und v ∈ {0, 1}l′ . Wegen Pr[U = u] = 2−l folgt

Pr[V = v, U = u] =

2−l πS(u) = v,

0 sonst.

Ist f linear, so sind die Zufallsvariablen Vj in der Form

Vj = Ui1 ⊕ · · · ⊕ Uik

für geeignete Indizes 1 ≤ i1 < · · · < ik ≤ l darstellbar. Die Idee hinter der linearen
Kryptoanalyse ist nun, Gleichungen der Form

Vj1 ⊕ · · · ⊕ Vjk′ = Ui1 ⊕ · · · ⊕ Uik ⊕ c

mit 1 ≤ i1 < · · · < ik ≤ l, 1 ≤ j1 < · · · < jk′ ≤ l′ und c ∈ {0, 1} zu finden, die mit großer
WK gelten. Definieren wir für a ∈ {0, 1}l und b ∈ {0, 1}l′ die Zufallsvariablen

Ua =
l⊕

i=1
aiUi und Vb =

l′⊕
i=1

biVi,
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so sind wir also an solchen Werten für a, b und c interessiert, für die das Ereignis Vb = Ua⊕c
(oder gleichbedeutend: Ua ⊕ Vb ⊕ c = 0) eine möglichst große Wahrscheinlichkeit besitzt.
Für eine Zufallsvariable X mit WertebereichW (X) = {0, 1} und p = Pr[X = 0] bezeichne
ε(X) den Wert ε(X) = p− 1/2 (auch Bias von X genannt).
Unter Benutzung dieser Notation sollte also der Bias ε(Ua ⊕ Vb ⊕ c) der Zufallsvariablen
Ua ⊕ Vb ⊕ c einen möglichst groß sein. Wegen

ε(Ua ⊕ Vb ⊕ 1) = −ε(Ua ⊕ Vb)

ist die durch a und b beschriebene lineare Approximation Ua ⊕ Vb also um so besser,
je größer der Absolutbetrag |ε(Ua ⊕ Vb)| des Bias dieser Approximation ist.

Beispiel 97. Wir betrachten die S-Box πS : {0, 1}4 → {0, 1}4 aus Beispiel 96. Dann
nimmt die Zufallsvariable (U1, . . . , U4, V1, . . . , V4) die folgenden 16 Werte jeweils mit
Wahrscheinlichkeit 2−4 = 1/16 an.

U1 U2 U3 U4 V1 V2 V3 V4 U3 ⊕ U4 ⊕ V1 ⊕ V4

0 0 0 0 1 1 1 0 1
0 0 0 1 0 1 0 0 1
0 0 1 0 1 1 0 1 1
0 0 1 1 0 0 0 1 1
0 1 0 0 0 0 1 0 0
0 1 0 1 1 1 1 1 1
0 1 1 0 1 0 1 1 1
0 1 1 1 1 0 0 0 1
1 0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 0 0
1 0 1 0 0 1 1 0 1
1 0 1 1 1 1 0 0 1
1 1 0 0 0 1 0 1 1
1 1 0 1 1 0 0 1 1
1 1 1 0 0 0 0 0 1
1 1 1 1 0 1 1 1 1

Um nun ε(Ua ⊕ Vb) zu berechnen, genügt es, die Anzahl L(a, b) der Zeilen zu bestimmen,
für die Ua = Vb ist. Dann gilt Pr[Ua ⊕ Vb = 0] = Pr[Ua = Vb] = L(a, b)/16 und somit

ε(Ua ⊕ Vb) = L(a, b)/16− 1/2 = (L(a, b)− 8)/16.

Für a = 0011 und b = 1001 gibt es z.B. L(a, b) = 2 Zeilen (Zeile 5 und Zeile 10) mit
Ua = U3 ⊕ U4 = Vb = V1 ⊕ V4, d.h. ε(U3 ⊕ U4 ⊕ V1 ⊕ V4) = (L(a, b)− 8)/16 = −3/8. Die
folgende Tabelle zeigt für alle Werte von a und b (hexadezimal dargestellt) die Anzahlen
L(a, b).
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a b

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 8 6 6 8 8 6 14 10 10 8 8 10 10 8 8
2 8 8 6 6 8 8 6 6 8 8 10 10 8 8 2 10
3 8 8 8 8 8 8 8 8 10 2 6 6 10 10 6 6

...
F 8 6 4 6 6 8 10 8 8 6 12 6 6 8 10 8

/

4.4 Lineare Kryptoanalyse eines SPN

Wir betrachten nun das SPN aus Beispiel 96 und führen eine lineare Kryptoanalyse
durch. Dabei handelt es sich um einen Angriff bei bekanntem Klartext, d.h. es steht
eine Menge M von t Klartext-Kryptotext-Paaren (x, y) zur Verfügung, die alle mit dem
gleichen unbekannten Schlüssel K erzeugt wurden.
Seien K1, . . . , K5 die zu K gehörigen Rundenschlüssel. Das Ziel besteht zunächst einmal
darin, eine lineare Approximation für die Abbildung x 7→ u4 zu finden, bei der die
Rundenschlüssel K1, . . . , K4 benutzt werden (siehe Abbildung 4.2). Hierzu benutzen wir
die beiden folgenden linearen Approximationen an die S-Box S:

T = U1 ⊕ U3 ⊕ U4 ⊕ V2

mit einem Bias von ε(T ) = (L(B, 4)− 8)/16 = (12− 8)/16 = 1/4 und

T ′ = U2 ⊕ V2 ⊕ V4

mit einem Bias von ε(T ′) = (L(4, 5)− 8)/16 = (4− 8)/16 = −1/4.
Konkret benutzen wir die lineare Approximation T für die S-Box S1

2 ,

T1 = U1
5 ⊕ U1

7 ⊕ U1
8 ⊕ V 1

6

und die lineare Approximation T ′ für die S-Boxen S2
2 , S3

2 , S3
4 ,

T2 = U2
6 ⊕ V 2

6 ⊕ V 2
8 ,

T3 = U3
6 ⊕ V 3

6 ⊕ V 3
8 ,

T4 = U3
14 ⊕ V 3

14 ⊕ V 3
16.

Indem wir nun die linearen Approximationen T1, . . . , T4 der S-Boxen S1
2 , S2

2 , S3
2 und S3

4
„zusammen schalten“, erhalten wir für ein c ∈ {0, 1} die gesuchte lineare Approximation

X5 ⊕X7 ⊕X8 ⊕ U4
6 ⊕ U4

8 ⊕ U4
14 ⊕ U4

16 = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ c (4.1)

von x 7→ u4. An dieser Stelle ergeben sich folgende drei Fragen.
1. Warum gilt (4.1)?
2. Wie gut ist die lineare Approximation X5 ⊕X7 ⊕X8 ⊕ U4

6 ⊕ U4
8 ⊕ U4

14 ⊕ U4
16?

3. Wie können wir mit ihrer Hilfe den Schlüssel bestimmen?
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Abbildung 4.2: Eine lineare Approximation an ein Substitutions-Permutations-Netzwerk.

Wir gehen zunächst auf Frage 1 ein. Seien c1, . . . , c4 die Schlüsselbitsummen

c1 = K1
5 ⊕K1

7 ⊕K1
8 , c2 = K2

6 , c3 = K3
6 ⊕K3

14, c4 = K4
6 ⊕K4

8 ⊕K4
14 ⊕K4

16.

Dann gilt

X5 ⊕X7 ⊕X8 = U1
5 ⊕ U1

7 ⊕ U1
8 ⊕ c1

= T1 ⊕ V 1
6 ⊕ c1

= T1 ⊕W 1
6 ⊕ c1

= T1 ⊕ U2
6 ⊕ c1 ⊕ c2

= T1 ⊕ T2 ⊕ V 2
6 ⊕ V 2

8 ⊕ c1 ⊕ c2
= T1 ⊕ T2 ⊕W 2

6 ⊕W 2
14 ⊕ c1 ⊕ c2

= T1 ⊕ T2 ⊕ U3
6 ⊕ U3

14 ⊕ c1 ⊕ c2 ⊕ c3
= T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ V 3

6 ⊕ V 3
8 ⊕ V 3

14 ⊕ V 3
16 ⊕ c1 ⊕ c2 ⊕ c3

= T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕W 3
6 ⊕W 3

8 ⊕W 3
14 ⊕W 3

16 ⊕ c1 ⊕ c2 ⊕ c3
= T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ U4

6 ⊕ U4
8 ⊕ U4

14 ⊕ U4
16 ⊕ c1 ⊕ c2 ⊕ c3 ⊕ c4.
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Nun zu Frage 2: Wären die Zufallsvariablen T1, . . . , T4 unabhängig, so würde uns das
folgende Piling-up-Lemma den Bias-Wert 23(1/4)(−1/4)3 = −1/32 für T1⊕· · ·⊕T4 liefern.
Sind nämlich X1, X2 unabhängige Zufallsvariablen mit Wertebereich W (Xi) = {0, 1}
und Bias εi = ε(Xi), dann ist

Pr[X1 ⊕X2 = 0] = Pr[X1 = X2 = 0] + Pr[X1 = X2 = 1]
= (1/2 + ε1)(1/2 + ε2) + (1/2− ε1)(1/2− ε2)
= 1/2 + 2ε1ε2

und Pr[X1 ⊕X2 = 1] = 1/2− 2ε1ε2, d.h. es gilt ε(X1 ⊕X2) = 2ε1ε2. Diese Beobachtung
lässt sich leicht verallgemeinern.

Lemma 98 (Piling-up Lemma).
Seien X1, . . . , Xn unabhängige {0, 1}-wertige Zufallsvariablen mit Bias εi = ε(Xi). Dann
gilt

ε(X1 ⊕ · · · ⊕Xn) = 2n−1
n∏
i=1

εi.

Beweis. Wir führen den Beweis durch Induktion über n.
Induktionsanfang (n = 1): Klar.
Induktionsschritt (n ; n+ 1): Nach Induktionsvoraussetzung hat die Zufallsvariable

Z = X1 ⊕ · · · ⊕Xn den Bias ε(Z) = 2n−1ε(X1) · · · ε(Xn) und daher folgt

ε(X1 ⊕ · · · ⊕Xn+1) = ε(Z ⊕Xn+1) = 2ε(Z)εn+1 = 2nε1 · · · εn+1.

�

Beispiel 99. Seien X1, X2, X3 Zufallsvariablen mit ε(Xi) = 1/4 für i = 1, 2, 3. Dann
gilt nach obigem Lemma εi,j = ε(Xi ⊕ Xj) = 1/8 für 1 ≤ i < j ≤ 3. Man beachte,
dass die Zufallsvariablen X1 ⊕X2 und X2 ⊕X3 nicht unabhängig sind, und daher das
Piling-up-Lemma nicht anwendbar ist. Dieses würde nämlich für die Zufallsvariable

(X1 ⊕X2)⊕ (X2 ⊕X3) = X1 ⊕X3

ein Bias von ε = 2(1/8)2 = 1/32 ergeben, was dem tatsächlichen Wert ε(X1 ⊕X3) = ε1,3 =
1/8 widersprechen würde. /

Obwohl die Zufallsvariablen T1, . . . , T4 nicht unabhängig sind, stellt sich in der Praxis
heraus, dass sich der tatsächliche Wert ε = ε(T1 ⊕ · · · ⊕ T4) nicht zu sehr von diesem
“hypothetischen” Wert unterscheidet, d.h.

|ε(X5 ⊕X7 ⊕X8 ⊕ U4
6 ⊕ U4

8 ⊕ U4
14 ⊕ U4

16)| ≈ 1/32.

Und schließlich zu Frage 3: Wir wissen bereits, dass ein zufälliger Klartext X entweder
mit hoher oder mit niedriger Wahrscheinlichkeit auf ein Zwischenresultat U4 mit

X5 ⊕X7 ⊕X8 ⊕ U4
6 ⊕ U4

8 ⊕ U4
14 ⊕ U4

16 = 0 (4.2)

führt. Gehen wir also davon aus, dass M eine repräsentative Auswahl von Klartext-
Kryptotext-Paaren (x, y) darstellt, so wird die Anzahl der Paare (x, y) in M , die (4.2)
erfüllen, ebenfalls eine Mehrheit oder eine Minderheit in M bilden. Man beachte, dass
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sich für jeden Subschlüssel-Kandidaten (engl. candidate subkey) (L1, L2) für (K5
(2), K

5
(4))

die zu einem Kryptotext y gehörigen Werte u4
6, u4

8, u4
14 und u4

16 leicht berechnen lassen,
da π−1

S bekannt ist.
Die Idee besteht nun darin, für jeden Kandidaten (L1, L2) die Anzahl α(L1, L2) aller
Paare (x, y) in M zu bestimmen, die bei Benützung von (L1, L2) Gleichung (4.2) erfüllen.
Für den richtigen Kandidaten wird diese Anzahl ungefähr bei t/2± t/32 liegen, wogegen
bei Benutzung eines falschen Subschlüssels mit einer Anzahl von circa t/2 zu rechnen ist.
Für genügend große Werte von t lassen sich auf diese Weise 8 Bit von K5 (und damit
von K) bestimmen.

Algorithmus LinearAttack
1 for (L1, L2) := (0, 0) to (F, F ) do
2 α(L1, L2) := 0
3 for each (x, y) ∈M do
4 for (L1, L2) := (0, 0) to (F, F ) do
5 v4

(2) := L1 ⊕ y(2)
6 v4

(4) := L2 ⊕ y(4)
7 u4

(2) := π−1
S (v4

(2))
8 u4

(4) := π−1
S (v4

(4))
9 if x5 ⊕ x7 ⊕ x8 ⊕ u4

6 ⊕ u4
8 ⊕ u4

14 ⊕ u4
16 = 0 then

10 α(L1, L2) := α(L1, L2) + 1
11 max := −1
12 for (L1, L2) := (0, 0) to (F, F ) do
13 β(L1, L2) := |α(L1, L2)− t/2|
14 if β(L1, L2) > max then
15 max := β(L1, L2)
16 maxkey := (L1, L2)
17 output(maxkey)

Im allgemeinen werden für eine erfolgreiche lineare Attacke circa t ≈ cε−2 Klartext-
Kryptotext-Paare benötigt, wobei c eine „kleine“ Konstante ist (im Beispielfall reichen
t ≈ 8000 Paare, d.h. c ≈ 8, da ε−2 = 1024 ist).

4.5 Differentielle Kryptoanalyse von SPNs

Bei der differentiellen Kryptoanalyse handelt es sich um einen Angriff bei frei wählba-
rem Klartext. Genauer gesagt, basiert der Angriff auf einer Menge M von t Klartext-
Kryptotext-Doppelpaaren (x, x∗, y, y∗) mit der Eigenschaft, dass alle Klartext-Paare
(x, x∗) die gleiche Differenz x′ = x⊕ x∗ bilden.

Definition 100 (Eingabe- und Ausgabedifferenz). Seien x, x∗ ∈ {0, 1}l zwei Ein-
gaben für eine S-Box πS : {0, 1}l → {0, 1}l′ und seien y = πS(x) und y∗ = πS(x∗) die
zugehörigen Ausgaben. Dann wird x′ = x⊕ x∗ die Eingabedifferenz (engl. input-xor)
und y′ = πS(x) ⊕ πS(x∗) die Ausgabedifferenz (engl. output-xor) des Paares (x, x∗)
genannt. Für eine vorgegebene Eingabedifferenz a′ ∈ {0, 1}l} sei weiter

∆(a′) = {(x, x∗) | x, x∗ ∈ {0, 1}l, x⊕ x∗ = a′} = {(x, x⊕ a′) | x ∈ {0, 1}l}

die Menge aller Eingabepaare, die die Differenz a′ realisieren.
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Berechnen wir für alle Eingabepaare (x, x∗) ∈ ∆(a′) die zugehörigen Ausgabedifferenzen,
so verteilen sich diese mehr oder weniger gleichmäßig auf die 2l′ möglichen Werte in
{0, 1}l′ . Man beachte, dass im Fall einer linearen S-Box nur die Ausgabedifferenz πS(a′)
auftritt, da dann πS(x)⊕πS(x∗) = πS(x⊕x∗) ist. Ist dagegen πS nicht linear, so kann die
Eingabedifferenz a′ auf unterschiedliche Ausgabedifferenzen führen, je nachdem, durch
welches Eingabepaar (x, x∗) ∈ ∆(a′) die Differenz a′ realisiert wird. Im Allgemeinen lässt
sich eine differentielle Kryptoanalyse um so leichter durchführen, je ungleichmäßiger die
auftretenden Ausgabedifferenzen verteilt sind.
Definition 101 (Differential, Weitergabequotient). Sei a′ ∈ {0, 1}l eine Eingabe-
und sei b′ ∈ {0, 1}l′ eine Ausgabedifferenz für eine S-Box πS. Dann heißt (a′, b′) Diffe-
rential. Die Anzahl der Eingabepaare (x, x∗), die die Eingabedifferenz a′ in die Ausgabe-
differenz b′ überführen, bezeichnen wir mit D(a′, b′), d.h.

D(a′, b′) = ‖{(x, x∗) ∈ ∆(a′) | πS(x)⊕ πS(x∗) = b′}‖.

Der Weitergabequotient (engl. propagation ratio) von πS für ein Differential (a′, b′) ist

Q(a′, b′) = D(a′, b′)
2l .

Q(a′, b′) ist also die (bedingte) Wahrscheinlichkeit

Pr[πS(x)⊕ πS(x∗) = b′ | x⊕ x∗ = a′],

dass zwei zufällig gewählte Eingaben die Ausgabedifferenz b′ erzeugen, wenn sie die
Eingabedifferenz a′ bilden.
Beispiel 102. Betrachten wir die S-Box πS : {0, 1}4 → {0, 1}4 aus Beispiel 96, so
erhalten wir für die Eingabedifferenz a′ = 1011 die Menge

∆(a′) = {(0000, 1011), . . . , (1111, 0100)}

von möglichen Eingabepaaren, die auf folgende Ausgabedifferenzen y′ = y ⊕ y∗ = πS(x)⊕
πS(x∗) führen:

x x∗ y y∗ y′

0000 1011 1110 1100 0010
0001 1010 0100 0110 0010
0010 1001 1101 1010 0111
0011 1000 0001 0011 0010
0100 1111 0010 0111 0101
0101 1110 1111 0000 1111
0110 1101 1011 1001 0010
0111 1100 1000 0101 1101
1000 0011 0011 0001 0010
1001 0010 1010 1101 0111
1010 0001 0110 0100 0010
1011 0000 1100 1110 0010
1100 0111 0101 1000 1101
1101 0110 1001 1011 0010
1110 0101 0000 1111 1111
1111 0100 0111 0010 0101
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Die Ausgabedifferenz b′ = 0010 kommt also D(a′, 0010) = 8 Mal vor, während die
Differenzen 0101, 0111, 1101 und 1111 je zwei Mal und die übrigen Werte überhaupt nicht
vorkommen (siehe Zeile B in nachfolgender Tabelle). Führen wir diese Berechnungen für
jede der 24 = 16 Eingabedifferenzen a′ ∈ {0, 1}4 aus, so erhalten wir die folgenden Werte
für die Häufigkeiten D(a′, b′) der Ausgabedifferenz b′ bei Eingabedifferenz a′ (a′ und b′
sind hexadezimal dargestellt):

a′ b′

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
... ...
B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2
... ...
F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

/

Können wir nun in einem SPN für bestimmte S-Boxen Si Differentiale (a′i, b′i) finden, so
dass die Eingabedifferenz dieser Differentiale mit der (permutierten) Ausgabedifferenz der
Differentiale in der jeweils vorhergehenden Runde übereinstimmt (siehe Abbildung 4.3), so
können wir diese Differentiale zu einer so genannten Differentialspur (engl. differential
trail) zusammen setzen. Unter der Annahme, dass die beteiligten S-Boxen Si (diese werden
auch als aktiv bezeichnet) unabhängig voneinander den zugeordneten Differentialen
(a′i, b′i) folgen (bzw. nicht folgen), berechnet sich der Weitergabequotient der Spur als das
Produkt der Weitergabequotienten der beteiligten Differentiale. Obwohl diese Annahme
i.a. nicht zutrifft, treten in praktischen Anwendungen kaum große Abweichungen von
diesem hypothetischen Wert auf.

Beispiel 103. Betrachten wir das SPN aus Beispiel 96, so lassen sich folgende Differen-
tiale zu einer Spur für die Abbildung x 7→ u4 kombinieren (siehe auch Abbildung 4.3):

Für S1
2 : das Differential (1011, 0010) = (B, 2) mit Q(B, 2) = 1/2,

für S2
3 : das Differential (0100, 0110) = (4, 6) mit Q(4, 6) = 3/8 und

für S3
2 und S3

3 : das Differential (0010, 0101) = (2, 5) mit Q(2, 5) = 3/8.
Gemäß dieser Spur führt also die Klartextdifferenz

x′ = 0000 1011 0000 0000

mit hypothetischer Wahrscheinlichkeit 1/2(3/8)3 = 27/1024 ≈ 0, 026 auf die Differenz

(v3)′ = 0000 0101 0101 0000,

welche wiederum mit Wahrscheinlichkeit 1 auf die Differenz

(u4)′ = 0000 0110 0000 0110

führt. Das Differential

(a′, b′) = (0000 1011 0000 0000, 0000 0110 0000 0110)
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y

v4

u4

w3

v3

u3

w2

v2

u2

w1

v1

u1

x

K5

K4

K3

K2

K1

S1
1 S1

2 S1
3 S1

4

S2
1 S2

2 S2
3 S2

4

S3
1 S3

2 S3
3 S3

4

S4
1 S4

2 S4
3 S4

4

Abbildung 4.3: Eine Differentialspur für ein Substitutions-Permutations-Netzwerk.

für die Abbildung x 7→ u4 hat also einen hypothetischen Weitergabequotienten von ε =
Q(a′, b′) = 27/1024. /

Sei nun (a′, b′) ein Differential für die Abbildung x 7→ u4 mit einem hypothetischen
Weitergabequotienten ε = Q(a′, b′). Weiter sei M eine Menge von t Klartext-Kryptotext-
Doppelpaaren (x, x∗, y, y∗), die alle mit dem gleichen unbekannten Schlüssel K erzeugt
wurden und zusätzlich die Eigenschaft haben, dass die Klartextdifferenz x′ = x⊕ x∗ = a′

ist. Dann wird ca. ein ε-Anteil dieser Doppelpaare der vorgegebenen Differentialspur
folgen und daher bei Verschlüsselung mit K Zwischenergebnisse u4 und (u4)∗ liefern, die
die Differenz

(u4)′ = u4 ⊕ (u4)∗ = b′

aufweisen. Doppelpaare mit dieser Eigenschaft werden richtige Doppelpaare (für das
Differential (a′, b′)) genannt. Ein Großteil der falschen Doppelpaare lässt sich daran
erkennen, dass die Kryptotext-Differenzen nicht die erwarteten 0l-Blöcke aufweisen (im
aktuellen Beispiel sind dies die Blöcke y′(1) und y′(3)). Es empfiehlt sich, diese Doppelpaare
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auszufiltern, da sie (wie alle falschen Doppelpaare) nur „Hintergrundrauschen“ erzeugen
und somit die Bestimmung des Schlüssels eher behindern.

Beobachtung 104. Für die Ausgabe vN(i) der S-Box SNi in Runde N gilt

vN(i) = y(i) ⊕KN+1
(i)

und die Eingabe uN(i) der S-Box SNi in Runde N ist

uN(i) = π−1
S (vN(i)) = π−1

S (y(i) ⊕KN+1
(i) )

y(i)

vN(i)

uN(i)

SNi

KN+1
(i)

Da die S-Box SNi nicht linear ist, hängt die aus den Kryptotextblöcken y(i) und (y(i))∗
zurückgerechnete Eingabedifferenz

(uN(i))′ = uN(i) ⊕ (uN(i))∗ = π−1
S (y(i) ⊕KN+1

(i) )⊕ π−1
S ((y(i))∗ ⊕KN+1

(i) )

von dem Schlüsselblock KN+1
(i) ab. Ist also (x, x∗, y, y∗) ein richtiges Doppelpaar, so sind

sowohl die Eingabedifferenzen b′(i) = (uN(i))′ von SNi als auch die Kryptotextblöcke y(i) und
y∗(i) bekannt. Folglich kommen nur solche Subkey-Werte L für KN+1

(i) infrage, für die

π−1
S (y(i) ⊕ L)⊕ π−1

S (y∗(i) ⊕ L) = b′(i) (4.3)

ist. Erfüllt L Gleichung (4.3), so sagen wir auch, L ist mit dem Doppelpaar (x, x∗, y, y∗)
konsistent.

Gemäß Beobachtung 104 kann jedes richtige Doppelpaar dazu benutzt werden, einige
Kandidaten für den Rundenschlüsselblock KN+1

(i) auszuschließen. Ist M hinreichend groß,
so wird sich schließlich der richtige Schlüsselblock als derjenige herausstellen, der mit
den meisten Doppelpaaren konsistent ist. Wir benutzen nun die Spur aus Beispiel 103
für einen Angriff mittels differentieller Analyse.

Beispiel 105. Der Algorithmus DifferentialAttack bestimmt für jeden Subschlüssel-
Kandidaten (L1, L2) für (K5

(2), K
5
(4)) die Anzahl γ(L1, L2) aller Doppelpaare (x, x∗, y, y∗)

in M , die mit (L1, L2) konsistent sind und (in Zeile 4) nicht als falsch erkannt werden.
Ausgegeben wird der Kandidat (L1, L2) mit dem größten γ-Wert. /

Algorithmus DifferentialAttack
1 for (L1, L2) := (0, 0) to (F, F ) do
2 γ(L1, L2) := 0
3 for each (x, x∗, y, y∗) ∈M do
4 if y(1) = y∗(1) und y(3) = y∗(3) then
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5 for (L1, L2) := (0, 0) to (F, F ) do
6 v4

(2) := L1 ⊕ y(2)
7 v4

(4) := L2 ⊕ y(4)
8 u4

(2) := π−1
S (v4

(2))
9 u4

(4) := π−1
S (v4

(4))
10 (v4

(2))∗ := L1 ⊕ y∗(2)
11 (v4

(4))∗ := L2 ⊕ y∗(4)
12 (u4

(2))∗ := π−1
S ((v4

(2))∗)
13 (u4

(4))∗ := π−1
S ((v4

(4))∗)
14 (u4

(2))′ := u4
(2) ⊕ (u4

(2))∗
15 (u4

(4))′ := u4
(4) ⊕ (u4

(4))∗
16 if (u4

(2))′ = 0110 und (u4
(4))′ = 0110 then

17 γ(L1, L2) := γ(L1, L2) + 1
18 max−1
19 for (L1, L2) := (0, 0) to (F, F ) do
20 if γ(L1, L2) > max then
21 max := γ(L1, L2)
22 maxkey := (L1, L2)
23 output(maxkey)

Im allgemeinen werden für eine erfolgreiche differentielle Attacke circa t ≈ cε−1 Klartext-
Kryptotext-Doppelpaare benötigt, wobei ε der Weitergabequotient der benutzten Spur
und c eine „kleine“ Konstante ist (im Beispielfall reichen t ≈ 80 Doppelpaare, wobei
ε−1 ≈ 38 ist).
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5 DES und AES

5.1 Der Data Encryption Standard (DES)

Der DES wurde von IBM im Zuge einer im Mai 1973 veröffentlichten Ausschreibung
des NBS (National Bureau of Standards; heute National Institute of Standards and
Technology, NIST) als ein Nachfolger von Lucifer entwickelt, im März 1975 veröffentlicht,
und im Januar 1977 als Verschlüsselungsstandard der US-Regierung für nicht geheime
Nachrichten genormt. Obwohl der DES ursprünglich nur für einen Zeitraum von 10 bis
15 Jahren als Standard dienen sollte, wurde er circa alle 5 Jahre (zuletzt im Januar 1999)
überprüft und als Standard fortgeschrieben.
Bereits im September 1997 veröffentlichte das NIST eine Ausschreibung für den AES
(Advanced Encryption Standard) genannten Nachfolger des DES. Nach einer mehrjährigen
Auswahlprozedur wurde im November 2001 der Rijndael-Algorithmus als AES genormt.
Der DES ist eine Feistel-Chiffre mit 16 Runden. Die Rundenfunktion g einer Feistel-
Chiffre berechnet das Zwischenergebnis wi aus den beiden Hälften Li−1 und Ri−1 von
wi−1 gemäß der Vorschrift

g(Ki, Li−1Ri−1) = LiRi,

wobei sich wi = LiRi zusammensetzt aus

Li = Ri−1 und
Ri = Li−1 ⊕ f(Ri−1, Ki).

Li−1

32
Ri−1

32

Li

32
Ri

32

Ki

48f

+

Der DES chiffriert Binärblöcke der Länge 64 und benutzt hierzu einen Schlüssel mit
56 Bit. Der Schlüssel ergibt zusammen mit 8 Paritätsbits (die Bits 8, 16,. . . , 64) einen
ebenfalls 64 Bit langen Schlüsselblock K. Es gibt somit 256 ≈ 7.2 · 1016 verschiedene
Schlüssel. Im Einzelnen werden folgende Chiffrierschritte ausgeführt:
1. Zuerst wird der Klartextblock x einer Initialpermutation IP unterzogen:

x1x2 · · ·x64 7→ IP (x) = x58x50 · · · x7.

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
Initialpermutation IP

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
Expansion E

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Permutation P
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2. Danach wird 16 Mal die Rundenfunktion g mit den Rundenschlüsseln K1, . . . , K16

angewendet, wobei die Funktion f : {0, 1}32 × {0, 1}48 → {0, 1}32 wie folgt berechnet
wird:

Ri−1

E

P

f(Ri−1, Ki)

Ki

S1 S2 S3 S4 S5 S6 S7 S8

Berechnung der Funktion f
Bei Eingabe (Ri−1, Ki) wird Ri−1 durch die Expansionsabbildung E auf einen 48-Bit
Block E(Ri−1) erweitert. Dieser wird mit Ki bitweise addiert (x-or); als Ergebnis
erhält man den Vektor B = E(Ri−1) ⊕ Ki. Danach wird B in acht 6-Bit Blöcke
B1, . . . , B8 aufgeteilt, die mittels 8 S-Boxen S1, . . . , S8 auf 4-Bit Blöcke Ci = Si(Bi)
reduziert werden. Die S-Boxen sind in Form einer Tabelle dargestellt, die wie folgt
ausgewertet wird:

Ist Bi = b1 · · · b6, so findet man Si(Bi) in Zeile b1b6 und Spalte b2b3b4b5 (jeweils
aufgefasst als Binärzahl) der Tabelle für Si. Zum Beispiel ist S1(011010) = 1001,
da in Zeile (00)2 = 0 und Spalte (1101)2 = 13 die Zahl 9 = (1001)2 steht.

Die Konkatenation der von den acht S-Boxen gelieferten Bitblöcke C1 . . . C8 ergibt
einen 32-Bit Vektor C, welcher noch der Permutation P unterworfen wird.

3. Aus dem nach der 16. Iteration erhaltenen Bitvektor w16 = L16R16 wird durch
Vertauschen der beiden Hälften und Anwendung der inversen Initialpermutation der
Kryptotext y gebildet:

L16R16 7→ y = IP−1(R16L16).

S1: 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 S5: 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S2: 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 S6: 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S3: 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 S7: 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S4: 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 S8: 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Die acht Substitutionsboxen
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Die Schlüsselgenerierung. Zuerst wählt die Funktion PC 1 (permuted choice 1) aus
dem Schlüssel K die kryptografisch relevanten Bits aus und permutiert sie. Das erhaltene
Ergebnis wird in zwei 28-Bit Blöcke unterteilt. Diese beiden Blöcke werden dann in 16
Runden jeweils zyklisch um ein oder zwei Bit verschoben (siehe dazu Tabelle LS(i)).

K

64

K1

48

K2

K16

28 28

PC1

PC2

PC2

PC2

LS(1) LS(1)

LS(2) LS(2)

...
...

LS(16) LS(16)

57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 3 28 15 6 21 10

10 2 59 51 43 35 27 23 19 12 4 26 8
19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55
7 62 54 46 38 30 22 30 40 51 45 33 48

14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32

permuted choice 1 permuted choice 2

Anzahl der
Iteration Links-Shifts

i LS(i)

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

Aus den beiden Blöcken nach Runde i bestimmt die Funktion PC 2 (permuted choice 2)
jeweils den Rundenschlüssel Ki durch Entfernen der 8 Bits an den Stellen 9, 18, 22, 25,
35, 38, 43 und 56 sowie einer Permutation der verbleibenden 48 Bits.

Eigenschaften von DES Der DES hat sich zwar weitgehend durchgesetzt, jedoch
wurde er anfangs von manchen US-Behörden und -Banken nicht verwendet. Der Grund
dafür liegt in folgenden Sicherheitsbedenken, die nach seiner Veröffentlichung im Jahre
1975 geäußert wurden:
– Die 56-Bit Schlüssellänge bietet eventuell eine zu geringe Sicherheit gegen Ausprobie-

ren aller Schlüssel bei einem Angriff mit bekanntem oder gewähltem Klartext.
– Die Entwurfskriterien für die einzelnen Bestandteile, insbesondere für die S-Boxen,

sind nicht veröffentlicht worden. Es wurde der Verdacht geäußert, dass der DES mit
Hilfe von Falltürinformationen leicht zu brechen sei.

– Kryptoanalytische Untersuchungen, die von IBM und der US National Security Agen-
cy (NSA) durchgeführt wurden, sind nicht veröffentlicht worden. Als jedoch Biham
und Shamir Anfang der 90er Jahre das Konzept der differentiellen Kryptoanalyse
veröffentlichten, gaben die Entwickler von DES bekannt, dass sie diese Angriffsmög-
lichkeit beim Entwurf von DES bereits kannten und speziell die S-Boxen entsprechend
konzipiert hätten.
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Im Fall von DES ist die lineare Kryptoanalyse effizienter als die differentielle Krypto-
analyse. Da hierzu jedoch circa 243 Klartext-Kryptotext-Paare notwendig sind (deren
Generierung bei einem von Matsui, dem Erfinder der linearen Kryptoanalyse, unternom-
menen Angriff bereits 40 Tage in Anspruch nahm), stellen diese Angriffe keine realistische
Bedrohung dar.
Dagegen wurde im Juli 1998 mit einer von der Electronic Frontier Foundation (EFF) für
250 000 Dollar gebauten Maschine namens “DES Cracker” eine vollständige Schlüsselsuche
in circa 56 Stunden durchgeführt (was den Gewinn der von RSA Laboratory ausgeschrie-
benen “DES Challenge II-2” bedeutete). Und im Januar 1999 gewann Distributed.Net,
eine weltweite Vereinigung von Computerfans, den mit 10 000 Dollar dotierten “DES
Challenge III”. Durch den kombinierten Einsatz eines Supercomputer namens “Deep
Crack” von EFF und 100 000 PCs, die weltweit über das Internet kommunizierten,
wurden nur 22 Stunden und 15 Minuten benötigt, um den Schlüssel für ein Klartext-
Kryptotextpaar mit dem Klartext „See you in Rome (second AES Conference, March
22-23, 1999)“ zu finden.

Definition 106 (schwache Schlüssel). Ein DES-Schlüssel K heißt schwach, falls
alle durch ihn erzeugten Rundenschlüssel gleich sind (d.h. es gilt ‖{K1,. . . , K16}‖=1).

Es gibt vier schwache Schlüssel (siehe Übungen):

0101010101010101
FEFEFEFEFEFEFEFE
1F1F1F1F0E0E0E0E
E0E0E0E0F1F1F1F1

und für sie gilt DES(K,DES(K, x)) = x.
Neben diesen schwachen Schlüsseln existieren noch sechs weitere sogenannte „semischwa-
che“ Schlüsselpaare (K,K ′), für die DES(K ′,DES(K, x)) = x gilt (siehe Übungen).

5.2 Betriebsarten von Blockchiffren

Für den DES wurden vier verschiedene Betriebsarten vorgeschlagen, in denen grundsätz-
lich jede Blockchiffre E mit beliebiger Blocklänge l betrieben werden kann. Bei den ersten
beiden Betriebsarten (ECB und CBC) werden Kryptotextblöcke der Länge l übertragen.
Mit einer Blockchiffre kann aber auch ein Stromsystem realisiert werden, mit dem sich
Kryptotextblöcke einer beliebigen Länge t, 1 ≤ t ≤ l, übertragen lassen (OFB und CFB).

x1 x2 xn

EK EK EK

y1 y2 yn

. . .

. . .

x1 x2 xn

DK DK DK

y1 y2 yn

Sender
Empfänger
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ECB-Mode (electronic code book; elektronisches Codebuch): Die Binär-Nachricht
x wird in 64-Bit Blöcke xi zerlegt. Der letzte Block xn wird, falls nötig, mit einer
vorher vereinbarten Bitfolge aufgefüllt. Die Blöcke werden nacheinander mit demselben
Schlüssel K einzeln verschlüsselt, übertragen und auf Empfängerseite mittels der zu
E gehörigen Dechiffrierfunktion D wieder entschlüsselt.

Um zu verhindern, dass ein Eindringling den Kryptotext verändert, ohne dass der
Empfänger dies bemerkt, wird beim CBC-Mode jeder Kryptotextblock nicht nur von dem
zugehörigen Klartextblock, sondern auch von allen vorausgehenden Blöcken abhängig
gemacht. Dies hat auch zur Folge, dass gleiche Klartextblöcke auf unterschiedliche
Kryptotextblöcke abgebildet werden.

iv x1 x2 x3

+ + +

EK EK EK

y1 y2 y3

iv

x1 x2 x3

+ + +

DK DK DK

. . .

. . .

y1 y2 y3

Sender
Empfänger

CBC-Mode (cipher block chaining; Blockverkettung des Schlüsseltextes): Jeder
Klartextblock xi wird mit dem Kryptotextblock EK(xi−1) bitweise (modulo 2) addiert,
bevor er verschlüsselt wird (zur Verschlüsselung von x1 wird ein Initialisierungsvektor
iv verwendet.

OFB-Mode (output feedback; Rückführung der Ausgabe): Die Binär-Nachricht x
wird in t-Bit Blöcke (für festes t: 1 ≤ t ≤ l) zerlegt. Die Chiffrierfunktion EK
dient zur Erzeugung einer pseudozufälligen Folge von t-Bit Blöcken, die bitweise
(modulo 2) zu den entsprechenden Klartextblöcken addiert werden. Als Eingabe für
die Chiffrierfunktion EK dient ein Schieberegister, das anfangs mit einem Initiali-
sierungsvektor iv geladen ist. Bei jeder Übertragung eines t-Bit Klartextblockes xi
erzeugt die Chiffrierfunktion EK zunächst einen Ausgabevektor, von dem nur die
ersten t Bits verwendet werden. Diese dienen sowohl zur Verschlüsselung von xi, als
auch zur Modifikation des Eingaberegisters, in das sie von rechts geschoben werden.

CFB-Mode (cipher feedback; Rückführung des Kryptotextes): Ähnlich zum OFB-
Mode, nur dass zur Erneuerung des Eingaberegisters nicht die ersten t Bits der
EK-Ausgabe, sondern der daraus gewonnene t-Bit Kryptotextblock verwendet wird.

Eine weitere Variante des OFB-Modes ist der Counter-Mode, bei dem die Pseudo-
zufallsfolge mit Hilfe von EK aus einer fortlaufenden Binärblockfolge T0, T1, . . . mit
Ti+1 = Ti + 1 mod 2l erzeugt wird. Dies hat den Vorteil, dass spätere Blöcke der Pseu-
dozufallsfolge nicht von den vorhergehenden abhängen, und daher die Blöcke EK(Ti)
parallel berechnet werden können.



5.3 Endliche Körper 71

5.3 Endliche Körper

Wie wir bereits wissen, bildet Zp für primes p einen endlichen Körper der Größe p. Dieser
Körper lässt sich für jede Zahl n ≥ 1 zu einem Körper der Größe pn erweitern. Da bis
auf Isomorphie nur ein Körper dieser Größe existiert, wird er einfach mit F(pn) oder Fpn

bezeichnet. Um diesen Körper zu konstruieren, betrachten wir zunächst den Polynomring
Zp[x] über Zp.

Definition 107 (Polynomring). Sei p prim. Dann enthält Zp[x] alle Polynome

p(x) = anx
n + · · · a1x+ a0

in der Variablen x mit Koeffizienten ai ∈ Zp, an 6= 0. n heißt Grad von p (kurz:
deg(p) = n). Zp[x] bildet mit der üblichen Polynomaddition und Polynommultiplikation
einen Ring.
Ein Polynom m(x) teilt ein Polynom g(x) (kurz: m(x)|g(x)), falls ein Polynom d(x) ∈
Zp[x] existiert mit g(x) = d(x)m(x). Teilt m(x) die Differenz f(x)−g(x) zweier Polynome,
so schreiben wir hierfür

f(x) ≡m(x) g(x)
und sagen, f(x) ist kongruent zu g(x) modulo m(x). Weiterhin bezeichne

f(x) mod m(x)

den bei der Polynomdivision von f(x) durch m(x) auftretenden Rest, also dasjenige
Polynom r(x) vom Grad deg(r) < deg(m), für das ein Polynom d(x) ∈ Zp[x] existiert
mit f(x) = d(x)m(x) + r(x).

Ähnlich wie beim Übergang von Z zu Zm können wir für ein fest gewähltes Polynom
m(x) vom Grad deg(m) = n jedem Polynom p(x) ∈ Zp[x] mittels

p(x) 7→ p(x) mod m(x)

eindeutig ein Polynom vom Grad höchstens n− 1 zuordnen. Auf diese Weise erhalten
wir den Restklassenpolynomring Zp[x]/m(x) aller Polynome vom Grad höchstens n− 1,
wobei die Addition und Multiplikation wie in Zp[x], gefolgt von einer Reduktion modulo
m(x), definiert ist. Und wie Zm ist Zp[x]/m(x) genau dann ein Körper, wenn m(x) nur
triviale Teiler besitzt.

Definition 108 (irreduzibel). Ein Polynom m(x) ∈ Zp[x] heißt irreduzibel, falls
keine Polynome p(x), q(x) ∈ Zp[x] vom Grad deg(p), deg(q) ≥ 1 existieren mit

m(x) = p(x)q(x).

Satz 109. Der Restklassenpolynomring Zp[x]/m(x) ist genau dann ein Körper, wenn
m(x) in Zp[x] irreduzibel ist.

Beweis. siehe Übungen. �

Da für jede Zahl n ≥ 1 ein irreduzibles Polynom m(x) = xn +∑n−1
i=0 mix

i ∈ Zp[x] vom
Grad n existiert, lässt sich auf diese Weise für jede Primzahlpotenz pn ein Körper der
Größe pn konstruieren. Hierbei können wir jedes Körperelement

a(x) =
n−1∑
i=0

aix
i ∈ Fpn
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durch den Koeffizientenvektor (an−1, . . . , a0) ∈ (Fp)n darstellen. Die Addition zweier
Polynome a(x) = ∑n−1

i=0 aix
i und b(x) = ∑n−1

i=0 bix
i in F2n entspricht dann der üblichen

Vektoraddition (komponentenweisen Addition modulo p):
(an−1, . . . , a0) + (bn−1, . . . , b0) = (cn−1, . . . , c0) mit ci = ai + bi für i = 0, . . . , n− 1.

Im Fall p = 2 ist dies also die bitweise Addition modulo 2 (x-or). Die Multiplikation in
Fpn lässt sich wegen

a(x)b(x) =
n−1∑
i=0

aix
ib(x)

auf die Addition und (wiederholte) Multiplikation mit dem Polynom p(x) = x zurückfüh-
ren. Wegen

xn ≡m(x) −
n−1∑
i=0

mix
i

ist

xb(x) ≡m(x) bn−1x
n +

n−2∑
i=0

bix
i+1

≡m(x)

n−1∑
i=1

bi−1x
i − bn−1

n−1∑
i=0

mix
i

≡m(x)

n−1∑
i=0

(bi−1 − bn−1mi)xi,

wobei wir b−1 = 0 setzen. Die Multiplikation von b(x) mit x entspricht somit einem
Linksshift um eine Stelle, dem sich im Fall bn−1 6= 0 noch die Subtraktion des Koeffizien-
tenvektors (bn−1mn−1, . . . , bn−1m0) anschließt. Im Fall p = 2 erhalten wir also

xb(x) =


∑n−1
i=1 bi−1x

i, bn−1 = 0,∑n−1
i=0 (bi−1 ⊕mi)xi, bn−1 = 1

bzw. in Vektorschreibweise:

(0, . . . , 0, 1, 0) · (bn−1, . . . , b0) =

(bn−2, . . . , b0, 0), bn−1 = 0,
(bn−2, . . . , b0, 0)⊕ (mn−1, . . . ,m0), bn−1 = 1.

Es ist leicht zu sehen, dass die Multiplikation mit einem festen Körperelement
(an−1, . . . , a0) ∈ Fpn , also die Abbildung (bn−1, . . . , b0) 7→ (an−1, . . . , a0) · (bn−1, . . . , b0)
linear über Fp ist. Folglich ist jede lineare Abbildung f : (Fpn)k → (Fpn)l über dem
Körper Fpn auch linear über Fp, falls wir f als Abbildung von (Fp)nk nach (Fp)nl auffassen
(siehe Übungen).
Beispiel 110. Sei p = 2 und n = 3. Zunächst benötigen wir ein irreduzibles Polynom
m(x) ∈ Z2[x] vom Grad 3,

m(x) = a3x
3 + a2x2 + a1x+ a0.

Da m(x) im Fall a0 = 0 den nichttrivialen Teiler p(x) = x hat und im Fall a3 = 0 nicht
den Grad 3 hat, genügt es, die 4 Kandidaten

m1(x) = x3 + 1
m2(x) = x3 + x+ 1
m3(x) = x3 + x2 + 1
m4(x) = x3 + x2 + x+ 1
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zu betrachten. Da nun aber

x3 + 1 = (x+ 1)(x2 + x+ 1)

und
x3 + x2 + x+ 1 = (x+ 1)(x2 + 1)

ist, gibt es in Z2[x] nur zwei irreduzible Polynome vom Grad 3: x3 +x+ 1 und x3 +x2 + 1.
Nehmen wir bspw. m(x) = x3 + x+ 1, so ist

(x2 + 1) + (x+ 1) = x2 + x

und
(x2 + 1)(x+ 1) = x2

in Z2[x]/(x3 + x+ 1), da

(x2 + 1)(x+ 1) = x3 + x2 + x+ 1 = x2 + (x3 + x+ 1) ≡x3+x+1 x
2

ist. /

Wie das folgende Beispiel zeigt, lässt sich das multiplikative Inverse eines Polynoms
p(x) 6= 0 in Fpn mit dem erweiterten Euklidschen Algorithmus berechnen.

Beispiel 111. Sei p = 2 und seien m(x) = x8 +x4 +x3 +x+1 und a(x) = x6 +x4 +x+1
zwei Polynome. Dann können wir mit dem Euklidschen Algorithmus den (in Bezug auf
den Grad) größten gemeinsamen Teiler g(x) von m(x) und a(x) berechnen:

i ri−1(x) = di+1(x) · ri(x) + ri+1(x)

1 x8 + x4 + x3 + x+ 1 = (x2 + 1) · (x6 + x4 + x+ 1) + x2

2 x6 + x4 + x+ 1 = (x4 + x2) ·x2 + x+ 1
3 x2 = (x+ 1) · (x+ 1) + 1
4 x+ 1 = (x+ 1) ·1 + 0

Es ist also g(x) = r4(x) = 1. Der erweiterte Euklidsche Algorithmus berechnet nun
Polynome pi(x) und qi(x) gemäß der Vorschrift

pi(x) = pi−2(x)− di(x) · pi−1(x), wobei p0(x) = 1 und p1(x) = 0,

und
qi(x) = qi−2(x)− di(x) · qi−1(x), wobei q0(x) = 0 und q1(x) = 1,

welche für i = 0, 1, 2, 3, 4 die Gleichung pi(x)m(x) + qi(x)a(x) = ri(x) erfüllen:

i pi(x) ·m(x) + qi(x) · a(x) = ri(x)

0 1 ·m(x) + 0 · a(x) = m(x)
1 0 ·m(x) + 1 · a(x) = a(x)
2 1 ·m(x) + (x2 + 1) · a(x) = x2

3 (x4 + x2) ·m(x) + (x6 + x2 + 1) · a(x) = x+ 1
4 (x5 + x4 + x3 + x2 + 1) ·m(x) + (x7 + x6 + x3 + x) · a(x) = 1

Aus der letzten Zeile können wir das multiplikative Inverse q4(x) = x7 + x6 + x3 + x von
a(x) modulo m(x) ablesen. /
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5.4 Der Advanced Encryption Standard (AES)

5.4.1 Geschichte des AES

– Im September 1997 veröffentlichte das NIST eine Ausschreibung für den AES, in der
eine Blocklänge von 128 Bit und variable Schlüssellängen von 128, 192 und 256 Bit
gefordert wurden. Einreichungsschluss war der 15. Juni 1998.

– Von den 21 Einreichungen erfüllten 15 die geforderten Kriterien. Diese stammten
aus den Ländern Australien, Belgien, Costa Rica, Deutschland, Frankreich, Groß-
britannien, Israel, Japan, Korea, Norwegen sowie den USA und wurden auf der 1.
AES-Konferenz am 20. August 1998 als AES-Kandidaten akzeptiert.

– Im August 1999 wählte NIST auf der 2. AES-Konferenz in Rom die Finalisten MARS,
RC6, Rijndael, Serpent und Twofish aus.

– Im April 2000 wurde der Rijndael-Algorithmus auf der 3. AES-Konferenz zum Sieger
erklärt und im November 2001 als AES genormt.

Die wichtigsten Entscheidungskriterien waren
– Sicherheit,
– Kosten (Effizienz bei Software-, Hardware- und Smartcard-Implementationen) sowie
– Algorithmen- und Implementations-Charakeristika (unter anderem Flexibilität und

Einfachheit des Designs).
Die Blocklänge und die Schlüssellänge können beim Rijndael unabhängig voneinander im
Bereich 128, 160, 192, 224 oder 256 Bit gewählt werden. Die Rundenzahl N des Rijndael
hängt wie folgt von der Blocklänge l und der gewählten Schlüssellänge k ab:

l k
128 160 192 224 256

128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Beim AES-Standard wurde die Blocklänge auf 128 Bit fixiert und die Schlüssellänge auf die
Werte 128, 192 oder 256 Bit beschränkt. Wir beschränken uns hier auf die Beschreibung
des 10-Runden AES mit l = 128 Bit Blocklänge und k = 128 Bit Schlüssellänge.
Die Elemente a(x) = ∑7

i=0 aix
i des Körpers F(28) = Z2[x]/(x8 + x4 + x3 + x+ 1) können

durch eine 8-Bit Koeffizientenfolge (a7, . . . , a0) (also durch 2 Bytes) dargestellt werden.
Hierzu verwenden wir die Funktionen FieldToBinary und BinaryToField, die wie
folgt definiert sind:
– BinaryToField: {0, 1}8 → F(28) berechnet aus der 8-Bit Koeffizienten-Darstellung

das zugehörige Körperelement.
– FieldToBinary: F(28)→ {0, 1}8 berechnet die Inverse der Funktion BinaryTo-

Field.
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5.4.2 Die AES S-Box.

Sowohl bei der Schlüsselgenerierung als auch bei der Chiffrierung wird eine Substitution
SubBytes verwendet, die auf einer 8-Bit S-Box πSubBytes basiert. Diese S-Box benutzt als
nicht-linearen Bestandteil die Funktion FieldInv: F(28)→ F(28), die das multiplikative
Inverse im Körper F(28) berechnet. Konkret wird die S-Box πSubBytes durch folgenden
Algorithmus berechnet (die Indexrechnung in Zeile 8 erfolgt modulo 8).

πSubBytes(a7 · · · a0)
1 input a7 · · · a0
2 z := BinaryToField(a7 · · · a0) if z 6= 0 then
3 z := FieldInv(z)
4 a7 · · · a0 := FieldToBinary(z)
5 c7 · · · c0 := 01100011
6 for i := 0 to 7 do
7 bi := ai ⊕ ai+4 ⊕ ai+5 ⊕ ai+6 ⊕ ai+7 ⊕ ci
8 output b7 · · · b0

Beispiel 112. Wir berechnen πSubBytes(01010011). Die Funktion BinaryToField liefert
das zugehörige Polynom

z = BinaryToField(01010011) = x6 + x4 + x+ 1.

Das multiplikative Inverse von z in F(28) ist

x7 + x6 + x3 + x

(siehe Beispiel 111). Die Funktion FieldToBinary liefert die zugehörige Koeffizienten-
Darstellung

FieldToBinary(x7 + x6 + x3 + x) = 11001010.

Es folgt die Berechnung der Ausgabe b7 · · · b0 = 11101101 mittels

b7 = a7 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ c7 = 1⊕ 1⊕ 0⊕ 0⊕ 1⊕ 0 = 1
b6 = a6 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ c6 = 1⊕ 0⊕ 1⊕ 0⊕ 0⊕ 1 = 1

...
b1 = a1 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ a0 ⊕ c1 = 1⊕ 0⊕ 1⊕ 1⊕ 0⊕ 1 = 0
b0 = a0 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ c0 = 0⊕ 0⊕ 0⊕ 1⊕ 1⊕ 1 = 1

Somit ist πSubBytes(01010011) = 11101101 oder hexadezimal: πSubBytes(53) = ED. /

Wir können die AES S-Box in Form einer 16× 16-Matrix angeben, wobei der Eintrag in
Zeile X und Spalte Y den Wert πSubBytes(XY ) enthält:
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X Y

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
...

...
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

5.4.3 Die Schlüsselgenerierung.

Beim 10-Runden AES mit Block- und Schlüssellänge l = k = 128 werden 11 Rundenschlüs-
sel K0, . . . , K10 der Länge 128 benutzt. Jedes Ki besteht also aus 16 Bytes bzw. 4 Worten
mit jeweils 4 Bytes. Bei der Berechnung der Rundenschlüssel werden (Wort-)Konstanten
RCon[1], . . . , RCon[10] mit RCon[i] = FieldToBinary(xi−1)024 ∈ {0, 1}32 benutzt. In
Hexadezimal-Darstellung ergeben sich folgende Werte:

i 1 2 3 4 5
RCon[i] 01000000 02000000 04000000 08000000 10000000

i 6 7 8 9 10
RCon[i] 20000000 40000000 80000000 1B000000 36000000

Reihen wir die 11 Rundenschlüssel aneinander, so entsteht ein Array w[0], . . . , w[43] von
44 Worten, die gemäß folgendem Algorithmus aus dem 128-Bit Schlüssel K berechnet
werden.

KeyExpansion(K)
1 input K = K[0] · · ·K[15]
2 for i := 0 to 3 do
3 w[i] := (K[4i], K[4i+ 1], K[4i+ 2], K[4i+ 3])
4 for i := 4 to 43 do
5 temp := w[i− 1]
6 if i ≡4 0 then temp := SubWord(RotWord(temp))⊕RCon[i/4]
7 w[i] := w[i− 4]⊕ temp
8 output w[0] . . . w[43]

Die hierbei benutzten Funktionen sind wie folgt definiert:
– RotWord : F(2)8 × F(2)8 × F(2)8 × F(2)8 → F(2)8 × F(2)8 × F(2)8 × F(2)8 führt

eine zyklische Verschiebung der 4 Eingabebytes um ein Byte nach links durch:

RotWord(B0, B1, B2, B3) = (B1, B2, B3, B0),

– SubWord : F(2)8 × F(2)8 × F(2)8 × F(2)8 → F(2)8 × F(2)8 × F(2)8 × F(2)8 ersetzt
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jedes Eingabebyte Bi durch πSubBytes(Bi):

SubWord(B0, B1, B2, B3)
= SubBytes(B0, B1, B2, B3)
= (πSubBytes(B0), πSubBytes(B1), πSubBytes(B2), πSubBytes(B3))

5.4.4 Der AES-Chiffrieralgorithmus

Unter Benutzung der 11 Rundenschlüssel K0, . . . , K10 wird der 128 Bit Klartextblock
wie folgt chiffriert:

AES-Verschlüsselung
1 AddRoundKey(K0)
2 for i := 1 to 9 do
3 SubBytes
4 ShiftRows
5 MixColumns
6 AddRoundKey(Ki)
7 SubBytes
8 ShiftRows
9 AddRoundKey(K10)

Im einzelnen werden also die folgenden Chiffrierschritte ausgeführt:
1. Zuerst wird der Klartextblock x einer Addition mit dem 128-Bit Rundenschlüssel K0

unterworfen. Diese Operation wird mit AddRoundKey bezeichnet.
2. Danach werden 9 Runden ausgeführt, wobei in jeder Runde i eine Substitution namens

SubBytes, eine Permutation namens ShiftRows, eine lineare Substitution namens
MixColumns und eine AddRoundKey Operation mit dem Rundenschlüssel Ki

durchgeführt werden.
3. Es folgt Runde 10 mit den Operationen SubBytes, ShiftRows und

AddRoundKey(K10).
Der Klartext x = x0 · · ·x15, xi ∈ {0, 1}4, (und alle daraus berechneten Zwischenergebnisse)
werden in Form eines Arrays

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

dargestellt, das wie folgt initialisiert wird:

x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15
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ShiftRows ist eine 128-Bit Permutation, die wie folgt definiert ist:

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

7→

s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

MixColumns ist eine lineare 32-Bit Substitution, die auf den Spalten der Zwischener-
gebnisse operiert. Zu ihrer Berechnung wird folgende Funktion benutzt:
– FieldMult: F(28)× F(28)→ F(28) führt die Multiplikation im Körper F(28) aus.

MixColumns(c0, c1, c2, c3)
1 input (c0, c1, c2, c3)
2 for i := 0 to 3 do ti := BinaryToField(ci)
3 u0 := FieldMult(x, t0) + FieldMult(x+ 1, t1) + t2 + t3
4 u1 := FieldMult(x, t1) + FieldMult(x+ 1, t2) + t3 + t0
5 u2 := FieldMult(x, t2) + FieldMult(x+ 1, t3) + t0 + t1
6 u3 := FieldMult(x, t3) + FieldMult(x+ 1, t0) + t1 + t2
7 for i := 0 to 3 do ci := FieldToBinary(ui)
8 output (c0, c1, c2, c3)

MixColumns führt eine lineare Transformation in dem Vektorraum (F28)4 aus, die sich
auch wie folgt beschreiben lässt (hierbei stellen wir die 8 Bit Koeffizientenvektoren der
Polynome in F28 hexadezimal dar, also 03 für x+ 1):

c0
c1
c2
c3

 7→


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



c0
c1
c2
c3


Besonders elegant lässt sich die Operation MixColumns im Polynom-Restklassenring
F28 [y]/(y4 + 1) beschreiben. Sei c(y) = ∑3

i=0 ciy
i das durch die Spalte (c0, c1, c2, c3)

repräsentierte Polynom in diesem Ring und sei a(y) das Polynom a(y) = 03y3 + 01y2 +
01y + 02. Dann ist leicht zu sehen, dass

MixColumns(c(y)) = a(y)c(y)

ist, d.h. bei MixColumns handelt es sich um eine multiplikative Chiffre mit festem
Schlüssel a(y) im Ring F28 [y]/(y4 + 1). Da das Polynom y4 + 1 nicht irreduzibel in
F28 [y] ist, ist F28 [y]/(y4 + 1) zwar kein Körper. Da jedoch a(y) invertierbar im Ring
F28 [y]/(y4 + 1) ist, kann die Inverse zu MixColumns mittels

MixColumns−1(c(y)) = a−1(y)c(y)

berechnet werden, wobei a−1(y) = 0By3 + 0Dy2 + 09y + 0E ist.

5.4.5 Kryptoanalytische Betrachtungen

Bis heute konnten keine Schwachstellen gefunden werden, d.h. alle bekannten Angriffe
sind mindestens so aufwändig wie eine vollständige Schlüsselsuche. Die Tatsache, dass
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für die S-Box die Inversen-Operation in einem endlichen Körper gewählt wurde, hat
zur Folge, dass die Tabellen für die Güte der linearen Approximationen und für die
Weitergabequotienten der Differenzenpaare einen hohen Grad an Uniformität aufweisen.
Dadurch wird die S-Box resistent gegen lineare und differentielle Analysen. Zudem
verhindert die lineare Transformation MixColumns lineare und differentielle Angriffe
mit nur wenigen aktiven S-Boxen (diese Technik wird von den AES-Entwicklern als wide
trail strategy bezeichnet).



80

6 Zahlentheoretische Grundlagen

In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum
Verständnis der Public-Key Verfahren, die im nächsten Abschnitt vorgestellt werden,
benötigen.

Satz 113. Sei G eine endliche Gruppe der Ordnung ‖G‖ = m. Dann gilt am = 1 für
alle a ∈ G.

Beweis. Wir betrachten hier nur den Fall, dass G kommutativ ist. Der allgemeine Fall
wird in den Übungen bewiesen.
Sei also G = {b1, . . . , bm} abelsch und sei a ∈ G beliebig. Wegen abi 6= abj für i 6= j folgt
G = {ab1, . . . , abm}. Dies impliziert ∏m

i=1 bi = ∏m
i=1 abi = am

∏m
i=1 bi. Also muss am = 1

sein. �

Korollar 114 (Kleiner Satz von Fermat). Ist p eine Primzahl und a eine nicht durch p
teilbare Zahl (d.h. a ∈ Z∗p), dann ist ap−1 − 1 durch p teilbar:

∀a ∈ Z∗p : ap−1 ≡p 1.

6.1 Diskrete Logarithmen

Nehmen wir ein beliebiges Element a aus G und betrachten die Folge a0 = 1, a1 = a, a2,
a3, . . . , so wissen wir nach obigem Satz, dass spätestens für e = ‖G‖ wieder ae = 1 gilt.

Definition 115 (Ordnung). Die Ordnung von a in G ist

ordG(a) = min{e ≥ 1 | ae = 1}.

Die von a in G erzeugte Untergruppe {ae | e ≥ 0} = {a0, . . . , aordG(a)−1} bezeichnen wir
mit [a]G oder mit [a], wenn G aus dem Kontext ersichtlich ist.

Im FallG = Z∗m schreiben wir auch einfach ordm(a). Für das folgende besonders interessant
sind Elemente a aus G, die die gesamte Gruppe erzeugen.

Definition 116 (Primitivwurzel/Erzeuger). Sei G eine endliche Gruppe der Ord-
nung ‖G‖ = m. Ein Element g ∈ G der Ordnung ordG(g) = ‖G‖ = m heißt Erzeuger
von G.

Ein Element a ∈ G ist also genau dann ein Erzeuger, wenn die von a erzeugte Untergruppe
[a] gleich G ist. Falls G einen Erzeuger besitzt, wird G auch zyklisch genannt. Da
ordG(a) = ‖[a]‖ ist und [a] eine Untergruppe von G ist, ist ordG(a) für alle a ∈ G ein
Teiler von ‖G‖ = m. Zudem gilt für beliebige ganze Zahlen i, j (siehe Übungen)

ai = aj ⇔ i ≡ord(a) j.
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Satz 117 (Gauß). Genau für m ∈ {1, 2, 4, pk, 2pk | 2 < p prim} ist die Gruppe Z∗m
zyklisch (ohne Beweis).
Für ein beliebiges Gruppenelement b ∈ G ist die Exponentiation e 7→ be eine bijektive Ab-
bildung von der Menge {0, 1, . . . , ordg(b)− 1} auf [b]G. Die zugehörige Umkehrabbildung
spielt in der Kryptografie eine wichtige Rolle.
Definition 118 (Index/diskreter Logarithmus). Seien b ∈ G und a ∈ [b]. Dann
heißt der eindeutig bestimmte Exponent e ∈ {0, 1, . . . , ordG(b)− 1} mit

be = a

Index oder diskreter Logarithmus von a zur Basis b in G (kurz: e = logG, b(a)). Im
Fall G = Z∗m schreiben wir auch einfach e = logm, b(a).

Während die diskrete Exponentialfunktion e 7→ be durch wiederholtes Quadrieren
und Multiplizieren (siehe nächsten Abschnitt) effizient berechenbar ist, sind bis heute
keine effizienten Verfahren zur Berechnung des diskreten Logarithmus bekannt.
Beispiel 119. Betrachte die Gruppe G = Z∗11. Dann ist g = 2 ein Erzeuger von G, d.h.
ord11(2) = 10.

e 0 1 2 3 4 5 6 7 8 9
2e 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
log11,2(a) 0 1 8 2 4 9 7 3 6 5

/

Im Beweis des nächsten Satzes bestimmen wir die Anzahl aller Erzeuger einer zyklischen
Gruppe G.
Satz 120. Eine endliche Gruppe G der Ordnung ‖G‖ = m ist genau dann zyklisch, falls
jede Gleichung der Form xe = 1, e ≥ 1, höchstens e verschiedene Lösungen a ∈ G hat.
In diesem Fall hat G genau ϕ(m) Erzeuger.

Beweis. Falls G zyklisch und g ein Erzeuger von G ist, so ist gi, i ≥ 0, genau dann eine
Lösung von xe = 1, wenn gie = 1 also ie ≡m 0 ist. Daher hat xe = 1 genau ggT(e,m) ≤ e
verschiedene Lösungen.
Wir zeigen nun, dass G für jeden Teiler d von m genau ϕ(d) Elemente der Ordnung
d enthält, falls die Polynomgleichung xe = 1 für jedes e ≥ 1 höchstens e verschiedene
Lösungen hat. Sei

Sd = {a ∈ G | ord(a) = d}
die Menge aller Elemente der Ordnung d und sei a ∈ Sd beliebig. Dann reicht es zu
zeigen, dass Sd = {ai | i ∈ Z∗d} ist.
Jedes Element in Sd erfüllt die Gleichung xd = 1, die nach Voraussetzung höchstens d
verschiedene Lösungen hat. Da mit a auch a2, . . . , ad paarweise verschiedene Lösungen
dieser Gleichung sind, folgt Sd ⊆ {a, a2, . . . , ad}. Zudem hat ai genau dann die Ordnung
d, wenn ggT(i, d) = 1 ist (siehe Übungen). �

Da die Gleichung xd = 1 in einem Körper höchstens d verschiedene Lösungen hat (siehe
Übungen), hat die multiplikative Gruppe F∗pn genau ϕ(pn − 1) Erzeuger. Insbesondere
hat die Gruppe F∗p = Z∗p genau ϕ(p− 1) Erzeuger.
Falls die Primfaktorzerlegung von der Gruppenordnung m bekannt ist, lässt sich effizient
überprüfen, ob ein gegebenes Element a ∈ G ein Erzeuger ist oder nicht.
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Satz 121. Sei G eine endliche Gruppe der Ordnung ‖G‖ = m. Ein Element a ∈ G ist
genau dann ein Erzeuger, wenn für jeden Primteiler q von m gilt:

am/q 6= 1.

Beweis. Falls a ein Erzeuger vonG ist, so gilt ae 6= 1 für alle Exponenten e ∈ {1, . . . ,m−1}
und somit auch für alle Exponenten e der Form m/q, q prim.
Ist dagegen a ∈ G kein Erzeuger, so ist ord(a) < m, und da ord(a) ein Teiler von m ist,
existiert eine Zahl d ≥ 2 mit d · ord(a) = m. Sei q ein beliebiger Primteiler von d. Dann
gilt

am/q = ad ord(a)/q = (aord(a))d/q = 1. �

Der folgende probabilistische Algorithmus ComputeGenerator berechnet einen Er-
zeuger a für eine zyklische Gruppe G, falls alle Primteiler q von m = ‖G‖ bekannt sind
und sich die Elemente von G zufällig generieren lassen.

ComputeGenerator(G, q1, . . . , qk)
1 input zyklische Gruppe G und alle Primteiler q1, . . . , qk von m = ‖G‖
2 repeat
3 guess randomly a ∈ G
4 until am/qi 6= 1 für i = 1, . . . , k
5 output a

Da ϕ(m) ≥ m/(2 ln lnm) für hinreichend große m gilt, findet der Algorithmus in jedem
Schleifendurchlauf mit Wahrscheinlichkeit ϕ(m)/m ≥ 1/(2 ln lnm) einen Erzeuger. Die
erwartete Anzahl der Schleifendurchläufe ist also O(ln lnm).

6.2 Effiziente Berechnung von Potenzen

Falls sich in einer Gruppe G das Produkt zweier Elemente effizient berechnen lässt,
sind auch Potenzen ae durch wiederholtes Quadrieren und Multiplizieren effizient
berechenbar. Hierzu sind maximal 2dlog ee Multiplikationen erforderlich.
Sei e = ∑r

i=0 ei · 2i mit r = blog2 ec die Binärdarstellung von e. Dann können wir den
Exponenten e sukzessive mittels b0 = e0 und bi = bi−1 + ei2i = ∑i

j=0 ej ·2j für i = 1, . . . , r
zu br = e berechnen. Der Algorithmus Pot berechnet nach diesem Schema in der
Variablen y die Potenzen abi für i = 0, . . . , r.
Alternativ können wir auch das Horner-Schema zur Berechnung von e benutzen. Sei
cr = er = 1 und sei ci−1 = 2ci + ei−1 für i = r, . . . , 1. Dann ist ci = ∑r

j=i ej · 2j−i, also
c0 = ∑r

j=0 ej · 2j = e. Dies führt auf den Algorithmus HornerPot, der in der Variablen
z die Potenzen aci für i = r, . . . , 0 berechnet.

Pot(a, e)
1 x := a; y := ae0

2 for i := 1 to r do
3 x := x2; y := y · xei

4 return y

HornerPot(a, e)
1 z := a
2 for i := r − 1 downto 0 do
3 z := z2 · aei

4 return z
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Beispiel 122. Sei a = 1920, e = 19 und G = Z∗m für m = 2773. Dann berechnen die
Algorithmen Pot und HornerPot die modulare Potenz 192019 mod 2773 = 1868 wie
folgt.

i ei bi xi = a2i
yi = abi i ei ci zi = aci

0 1 1 19201 = 1920 19201 = 1920 4 1 1 19201 = 1920
1 1 3 19202 = 1083 1920 · 10831 = 2383 3 0 2 19202 · 19200 = 1083
2 0 3 10832 = 2683 2383 · 26830 = 2383 2 0 4 10832 · 19200 = 2683
3 0 3 26832 = 2554 2383 · 25540 = 2383 1 1 9 26832 · 19201 = 1016
4 1 19 25542 = 820 2383 · 8201 = 1868 0 1 19 10162 · 19201 = 1868

/
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