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1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In
dieser Vorlesung beschéftigen wir uns mit mathematischen Modellen
fiir Maschinentypen von unterschiedlicher Berechnungskraft. Unter
anderem lernen wir das Rechenmodell der Turingmaschine (TM) ken-
nen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein
weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme
algorithmisch 16sbar sind und wo die Grenzen der Berechenbarkeit
verlaufen.

Schliefllich untersuchen wir die Komplexitat von algorithmischen Pro-
blemen, indem wir den benétigten Rechenaufwand méglichst gut nach
oben und unten abschétzen. Eine besondere Rolle spielen hierbei die
NP-vollsténdigen Probleme, deren Komplexitat bis heute offen ist.

Themen der Vorlesung
o Welche Rechenmodelle sind fiir bestimmte Aufgaben adédquat?
(Automatentheorie)

o Welche Probleme sind 16sbar? (Berechenbarkeitstheorie)
o Welcher Aufwand ist zur Losung eines algorithmischen Problems
notig? (Komplexitatstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen
um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen
o Wie lassen sich praktisch relevante Problemstellungen moglichst
effizient 16sen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik
o Mathematische Grundlagen der Informatik, Beweise fiihren,
Modellierung (Aussagenlogik, Pradikatenlogik)
Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zuriick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Fuklid benannte Algorithmus zur Berechnung
des grofiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme,
bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Proble-
meingaben kénnen Zahlen, Formeln, Graphen etc. sein. Diese werden
iiber einem FEingabealphabet ¥ kodiert.

Definition 1.

a) Ein Alphabet 3 ={ay,...,a,} ist eine geordnete Menge von
endlich vielen Zeichen.

b) Eine Folge x = x1...x, von n Zeichen heifst Wort (der Ldnge

¢) Die Menge aller Worter tiber ¥ ist

s =,
n>0
wobei X" = {xy...x, | n20undx; € X firi=1,...,n} alle

Worter der Lange n enthdlt.

d) Das (einzige) Wort der Linge n = 0 ist das leere Wort, welches
wir mit € bezeichnen.

e) Jede Teilmenge L € ¥* heifst Sprache tber dem Alphabet .

Das zu einer Sprache L gehorige Entscheidungsproblem ist die Frage,
ob ein gegebenes Wort x in L enthalten ist oder nicht.
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2 Regulare Sprachen

Wir betrachten zunachst Einschrankungen des TM-Modells, die viel-
faltige praktische Anwendungen haben, wie z.B. endliche Automaten
(DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Eingabe-
band -

/ Lesekopf

Ein endlicher Automat fiihrt
bei einer Eingabe der Lange n

nur n Rechenschritte aus. Um Steuer-
die gesamte Eingabe lesen zu einheit
konnen,

muss der Automat also in jedem Schritt ein Zeichen der Eingabe
verarbeiten.

Definition 2. Fin endlicher Automat (kurz: DFA; deterministic
finite automaton) wird durch ein 5-Tupel M = (Z,%,0,qo, E') beschrie-
ben, wobei

o 7 + @ eine endliche Menge von Zustdanden,
e Y das FEingabealphabet,

e 0:ZxX — Z die Uberfiihrungsfunktion,
e (o€ Z der Startzustand und

o ECZ die Menge der Endzustande ist.

Die von M akzeptierte oder erkannte Sprache ist

HQ17"'7Qn—1€Z7QnEE: }

L(M) = Ty €2 ir
(M) {xl nt 6(¢is Ti1) = w1 firi=0,...,n-1

Beispiel 3. Betrachte den DFA M =
(Z2,%2,6,0,E) mit Z = {0,1,2}, ¥ =
{a,b}, E = {1} und der Uberfihrungs-

funktion

Graphische Darstellung:

slo 1 2

all 2 0
b2 0 1

Der Startzustand wird meist durch einen Pfeil und Endzustande
werden durch einen doppelten Kreis gekennzeichnet. <

Bezeichne & (¢,x) denjenigen Zustand, in dem sich M nach Lesen von
x befindet, wenn M im Zustand ¢ gestartet wird. Dann kénnen wir
die Funktion X
0: x> 7
induktiv wie folgt definieren. Fiir g€ Z, x € ¥* und a € 3 sei
0(g,e) = q,
0(q,za) = 0(6(q,x),a).
Die von M erkannte Sprache lasst sich nun auch in der Form
L(M) ={zeX*|6(qo,2) € E}
schreiben.
Behauptung 4. Der DFA M aus Beispiel 3 akzeptiert die Sprache
L(M)={xeX*|#a(x)-#p(xr) =1 mod 3},

wobei #,(x) die Anzahl der Vorkommen des Zeichens a in x bezeich-
net und 7 = k mod m bedeutet, dass j — k durch m teilbar ist. Fiir
Letzteres schreiben wir auch kurz j =, k.
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Beweis. Da M nur den Endzustand 1 hat, ist L(M) = {z € X |
6(0,2) =1}, d.h. wir miissen folgende Aquivalenz zeigen:

50(0,7) = 1 o #4(x) - #(x) =5 1.
Hierzu reicht es, die Kongruenz
0(0,2) =5 #a() - #o(x).

zu beweisen, wofiir wir Induktion tiber die Lange n von x benutzen.

Induktionsanfang (n = 0): klar, da §(0,e) = #4(¢) = #,(e) = 0 ist.

Induktiorjsschritt (n~n+1): Sei x = x1...2,,1 gegeben und sei
i=0(0,21...2,). Nach IV gilt dann

i =3 H#a(x1. .. Tn) —Ho(T1. .. T0).
Wegen 0(i,a) =37+ 1 und 0(i,b) =5 i — 1 folgt

5(7’7 xn+1) =3 1+ #a(xn+1) - #b('rn+1)
=3 #a(Il C In) - #b(xl .. xn) + #a(xrwl) - #b(x'rwl)
= #ta(®) - #o(2).

Folglich ist
5(0,2) = 6(6(0, 21 ... 20), Tns1) = 0(i, Tns1) =3 #a(x) — #4(2).

2.1 Endliche Automaten
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